WO2017033650A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2017033650A1
WO2017033650A1 PCT/JP2016/071707 JP2016071707W WO2017033650A1 WO 2017033650 A1 WO2017033650 A1 WO 2017033650A1 JP 2016071707 W JP2016071707 W JP 2016071707W WO 2017033650 A1 WO2017033650 A1 WO 2017033650A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
fuel
gas
stage
channel
Prior art date
Application number
PCT/JP2016/071707
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 橋本
真人 川見
和輝 若宮
厚太郎 八木
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2017033650A1 publication Critical patent/WO2017033650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a fuel cell system in which a plurality of fuel cells are housed in a housing is known.
  • a supply pipe that supplies a fuel gas and an oxidant gas to each of the plurality of fuel cells, and a discharge pipe that discharges the negative exhaust gas and the positive exhaust gas from each of the plurality of fuel cells are provided inside the housing.
  • a discharge pipe that discharges the negative exhaust gas and the positive exhaust gas from each of the plurality of fuel cells are provided inside the housing.
  • the reformer that generates the fuel gas is disposed at a position away from some of the fuel cells, so that the heat released from the plurality of fuel cells can be efficiently supplied to the reformer. Difficult to grant. For this reason, it is not easy to realize the thermal self-sustaining operation of the fuel cell system. Furthermore, since a gantry for supporting a plurality of fuel cells, reformers, pipes, and the like is provided in the housing, manufacture and maintenance of the fuel cell system are complicated. As a result, the manufacturing cost and maintenance cost of the fuel cell system may increase.
  • the air electrodes of a plurality of fuel cell stacks accommodated in the stack case are exposed to the space in the stack case, so that each fuel cell stack is
  • the piping for supplying air to the pipe is omitted.
  • an air discharge pipe, a fuel supply pipe, and a fuel discharge pipe are installed in a case base on which a plurality of fuel cell stacks are placed. Thereby, simplification of piping in a stack case is achieved.
  • the flow direction of the fuel gas in the fuel supply pipe in the case base is opposite to the flow direction of the fuel gas in the fuel discharge pipe and the flow direction of the air in the air discharge pipe. ing. For this reason, there is a limit in reducing the pressure loss of the fuel gas and air in the case base. Further, in the battery module, the heat of the high-temperature exhaust gas discharged from the fuel cell stack and flowing through the air discharge pipe and the fuel discharge pipe is not effectively used.
  • the present invention is directed to a fuel cell system, and its main purpose is to effectively use exhaust heat related to a plurality of fuel cells while simplifying the structure of the fuel cell system.
  • One fuel cell system includes a reformer that reforms a raw fuel to generate a fuel gas, and a plurality of solid oxide types that generate electric power using the fuel gas and the oxidant gas, respectively.
  • a fuel cell ; a stage that supports the plurality of fuel cells; a housing that houses the reformer, the plurality of fuel cells and the stage in an internal space; and the fuel gas from the reformer in the housing.
  • a fuel gas supply passage for supplying the fuel gas to the plurality of fuel cells, a negative exhaust gas discharge passage for collecting the negative exhaust gas discharged from the plurality of fuel cells in the housing, and the oxidant gas in the housing.
  • a gas discharge channel Inside the stage, one of the fuel gas supply channel and the oxidizing gas supply channel, and the one of the negative exhaust gas discharge channel and the positive exhaust gas discharge channel. And one discharge channel adjacent to each other so as to exchange heat with the partition wall interposed therebetween.
  • the reformer is disposed inside the stage. According to the fuel cell system, exhaust heat associated with a plurality of fuel cells can be effectively used while simplifying the structure of the fuel cell system.
  • the one supply flow path and the one discharge flow path are arranged inside the stage, and the gas flow direction in the one supply flow path The gas flow direction in the discharge channel is the same.
  • the one supply flow path and the one discharge flow path are arranged inside the stage, and the gap is between the one supply flow path and the one discharge flow path.
  • the said partition is equipped with an uneven
  • the other one of the one supply channel and the one discharge channel, the fuel gas supply channel and the oxidant gas supply channel is provided inside the stage.
  • a supply flow channel, and the other supply flow channel and the other discharge flow channel adjacent to each other across the partition wall among the negative electrode exhaust gas discharge flow channel and the positive electrode exhaust gas discharge flow channel are arranged.
  • Another fuel cell system includes a reformer that reforms a raw fuel to generate a fuel gas, and a plurality of solid oxide types that generate electric power using the fuel gas and the oxidant gas, respectively.
  • An oxidant gas supply flow path for supplying the plurality of fuel cells, and a positive electrode for collecting positive exhaust gas discharged from the plurality of fuel cells in the housing And a gas discharge channel.
  • a gas discharge channel Inside the stage, one of the fuel gas supply channel and the oxidizing gas supply channel, and the one of the negative exhaust gas discharge channel and the positive exhaust gas discharge channel. And one discharge passage having the same gas flow direction. According to the fuel cell system, gas pressure loss can be reduced, and energy required for driving the fuel cell system can be reduced.
  • the one supply flow channel, the one discharge flow channel, and the reformer are disposed inside the stage, and the reformer is configured to include the plurality of fuel cells. And the one discharge channel.
  • an exhaust gas combustion that combusts the unused fuel gas contained in the anode exhaust gas from the plurality of fuel cells, adjacent to the reformer and the partition wall in a heat exchangeable manner inside the stage.
  • the reformer is positioned between the plurality of fuel cells and the exhaust gas combustion unit, the one exhaust passage is the negative exhaust gas exhaust passage, and the negative exhaust gas exhaust passage The negative exhaust gas flowing through the exhaust gas is guided to the exhaust gas combustion section.
  • the exhaust gas combustion unit is also a startup temperature raising unit that raises the temperature of the reformer and the plurality of fuel cells by burning a temperature raising fluid during the startup operation of the fuel cell system.
  • FIG. 1 is a diagram showing a configuration of a fuel cell system 1 according to a first embodiment of the present invention.
  • the fuel cell system 1 is a power generation system that generates power using a fuel cell.
  • the fuel cell system 1 includes a hot module 2, an impurity removing unit 41, a first heat exchanger 42, a blower 43, a second heat exchanger 44, a condensing unit 45, a water vapor generating unit 46, and raw fuel.
  • a supply source 48, a water supply unit 31, and a heating fluid generation unit 33 are provided. The water supply unit 31 and the heating fluid generation unit 33 are used during start-up operation of the fuel cell system 1 described later.
  • the hot module 2 includes a housing 21, a plurality of fuel cells 23, a temperature raising unit 24, a stage 27, and a stage support unit 28.
  • the housing 21 is a substantially rectangular parallelepiped housing, for example. In FIG. 1, a part of the configuration of the fuel cell system 1 (for example, the housing 21) is shown in cross section (the same applies to FIG. 10 described later).
  • the inner surface of the housing 21 is formed of a heat insulating material (for example, rock wool) having a relatively high heat insulating property.
  • a metal container whose entire inner surface is covered with a heat insulating material is used.
  • a plurality of fuel cells 23, a temperature raising unit 24, a stage 27, and a stage support unit 28 are accommodated in the internal space 210 of the housing 21.
  • the temperature raising unit 24 is used during start-up operation of the fuel cell system 1 described later.
  • twelve fuel cells 23 are accommodated in the internal space 210 of the housing 21.
  • Each of the plurality of fuel cells 23 is a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell).
  • SOFC Solid Oxide Fuel Cell
  • Each fuel cell 23 is, for example, a cell stack in which a plurality of cells (unit cells) not shown are stacked in the vertical direction.
  • the outer shape of the fuel cell 23 is, for example, a substantially rectangular parallelepiped shape.
  • Fuel gas is supplied to the negative electrode (anode) of each fuel cell 23, and oxidant gas is supplied to the positive electrode (cathode). Thereby, an electrochemical reaction occurs in each fuel cell 23, and power generation is performed. In other words, each fuel cell 23 generates power using fuel gas and oxidant gas.
  • the electrochemical reaction in the fuel cell 23 is an exothermic reaction, and the generated heat is used for heating a reformer 22 (see FIG. 2 and FIG. 3) to be described later in which reforming that is an endothermic reaction is performed.
  • Power generation by the fuel cell 23 is performed at a high temperature of 600 to 1000 degrees, for example.
  • the fuel gas is, for example, hydrogen gas
  • the oxidant gas is, for example, oxygen.
  • the fuel gas may be various gases other than hydrogen gas
  • the oxidant gas may be various gases other than oxygen.
  • each stage 27 is a plate-like member extending in the left-right direction in FIG. In the following description, the left-right direction in FIG. 1 is also referred to as the longitudinal direction of the stage 27.
  • Each stage 27 supports a plurality of fuel cells 23.
  • the plurality of stages 27 are supported by a stage support portion 28. In the example shown in FIG. 1, four stages 27 that are spaced apart from each other in the vertical direction are supported by two stage support portions 28 from both the left and right sides.
  • Each stage 27 supports, for example, three fuel cells 23.
  • the stage 27 is in contact with the lower surface of the fuel cell 23 and supports the fuel cell 23 from below.
  • the number of the plurality of fuel cells 23 accommodated in the housing 21 may be variously changed.
  • the number of the plurality of fuel cells 23 supported by one stage 27 may be variously changed.
  • the number of stages 27 may be variously changed according to the number of fuel cells 23 and the like. For example, the number of stages 27 may be 1 or 2 or more.
  • FIG. 2 is a perspective view showing a part of the fuel cells 23 and a part of the stage 27 in the housing 21.
  • FIG. 2 shows a cross section of the stage 27.
  • FIG. 3 is an enlarged view showing a cross section perpendicular to the longitudinal direction of one stage 27.
  • the fuel cell 23 on the stage 27 is also shown.
  • the structures of the plurality of stages 27 are substantially the same, for example.
  • the reformer 22, the exhaust gas combustion unit 47, the fuel gas supply passage 251, the negative exhaust gas discharge passage 252, and the oxidant gas supply are provided inside each stage 27.
  • a flow path 253 and a positive exhaust gas discharge flow path 254 are disposed.
  • the number of each of the reformer 22, the exhaust gas combustion unit 47, the fuel gas supply passage 251, the negative exhaust gas discharge passage 252, the oxidant gas supply passage 253, and the positive exhaust gas discharge passage 254 is The number of stages 27 is the same. Specifically, the four reformers 22, the four exhaust gas combustion sections 47, the four fuel gas supply channels 251, the four negative exhaust gas discharge channels 252, and the four oxidant gas supply channels 253. The four positive exhaust gas discharge channels 254 are accommodated in the housing 21.
  • each stage 27 is divided into a plurality of divided spaces 271 to 276 by partition walls 270 that are relatively thin and have relatively high thermal conductivity.
  • the partition wall 270 is, for example, a thin plate member made of metal.
  • Each of the divided spaces 271 to 276 is a substantially quadrangular columnar space extending in the longitudinal direction of the stage 27 (that is, the left-right direction in FIG. 1).
  • the divided spaces 271 to 276 are respectively referred to as “first divided space 271”, “second divided space 272”, “third divided space 273”, “fourth divided space 274”, “fifth divided space”. 275 ”and“ sixth divided space 276 ”.
  • the first divided space 271 is arranged in the uppermost layer inside the stage 27 (that is, the layer closest to the plurality of fuel cells 23 arranged on the stage 27).
  • the first divided space 271 is provided over the entire width of the stage 27 (that is, the entire width direction of the stage 27 in the left-right direction in FIG. 3).
  • the reformer 22 is disposed in the first divided space 271.
  • the reformer 22 is disposed in the uppermost layer inside the stage 27.
  • the reformer 22 is adjacent to the plurality of fuel cells 23 arranged on the stage 27 and the upper surface of the stage 27 (that is, the cell support surface that supports the plurality of fuel cells 23) so that heat can be exchanged in the vertical direction. To do.
  • the second divided space 272 is disposed below the first divided space 271 inside the stage 27, and is adjacent to the first divided space 271 in the vertical direction with a partition wall 270 extending substantially horizontally.
  • the second divided space 272 is arranged in the second layer from the top in the stage 27 (that is, the second layer closest to the plurality of fuel cells 23 arranged on the stage 27).
  • the second divided space 272 is provided over the entire width of the stage 27.
  • An exhaust gas combustion unit 47 is disposed in the second divided space 272. In other words, the exhaust gas combustion unit 47 is arranged in the second layer from the upper side inside the stage 27.
  • the exhaust gas combustion unit 47 is adjacent to the reformer 22 in the first divided space 271 so that heat can be exchanged in the vertical direction across the partition wall 270.
  • the third divided space 273 and the fourth divided space 274 are disposed below the second divided space 272 inside the stage 27, and are adjacent to the second divided space 272 in the vertical direction across the partition wall 270 that extends substantially horizontally. To do.
  • the third divided space 273 and the fourth divided space 274 are arranged in the third layer from the upper side inside the stage 27.
  • the third divided space 273 and the fourth divided space 274 are adjacent to each other so that heat can be exchanged in the horizontal direction with a partition wall 270 extending substantially vertically.
  • the internal space of the third divided space 273 is used as the fuel gas supply channel 251.
  • the internal space of the fourth divided space 274 is used as the oxidant gas supply channel 253.
  • the fuel gas supply channel 251 and the oxidant gas supply channel 253 are arranged in the third layer from the upper side in the stage 27 (that is, the third fuel cell 23 arranged on the stage 27 is third. Layer).
  • the fuel gas supply channel 251 and the oxidant gas supply channel 253 are adjacent to the exhaust gas combustion part 47 in the second divided space 272 so that heat can be exchanged in the vertical direction across the partition wall 270.
  • the fifth divided space 275 is disposed below the third divided space 273 inside the stage 27, and is adjacent to the third divided space 273 in the vertical direction with the partition wall 270 extending substantially horizontally.
  • the sixth divided space 276 is disposed below the fourth divided space 274 inside the stage 27 and is adjacent to the fourth divided space 274 in the vertical direction with the partition wall 270 extending substantially horizontally.
  • the fifth divided space 275 and the sixth divided space 276 are arranged in the lowest layer (that is, the layer farthest from the plurality of fuel cells 23 arranged on the stage 27) inside the stage 27.
  • the fifth divided space 275 and the sixth divided space 276 are adjacent to each other so that heat can be exchanged in the horizontal direction with a partition wall 270 extending substantially vertically.
  • the internal space of the fifth divided space 275 is used as the negative electrode exhaust gas discharge passage 252.
  • the internal space of the sixth divided space 276 is used as the positive electrode exhaust gas discharge channel 254.
  • the negative exhaust gas exhaust passage 252 and the positive exhaust gas exhaust passage 254 are arranged in the lowest layer inside the stage 27.
  • the negative exhaust gas discharge flow path 252 is adjacent to the fuel gas supply flow path 251 that is the internal space of the third divided space 273 so that heat can be exchanged in the vertical direction across the partition wall 270.
  • the positive exhaust gas discharge channel 254 is adjacent to the oxidant gas supply channel 253 that is the internal space of the fourth divided space 274 so that heat can be exchanged in the vertical direction across the partition wall 270.
  • the reformer 22 accommodated in the stage 27 includes a plurality of fuel cells 23 on the stage 27, an exhaust gas combustion unit 47, a fuel gas supply channel 251, an oxidant gas supply channel 253, a negative exhaust gas exhaust flow. It is located between the path 252 and the positive electrode exhaust gas discharge path 254.
  • the exhaust gas combustion unit 47 is located between the reformer 22 and the fuel gas supply channel 251, the oxidant gas supply channel 253, the negative exhaust gas exhaust channel 252, and the positive exhaust gas exhaust channel 254.
  • FIG. 4 to 6 are sectional views of the stage 27 cut perpendicularly to the longitudinal direction at three different positions in the longitudinal direction of the stage 27, respectively.
  • the reformer 22 is connected to the fuel gas supply flow path 251 through a connection flow path 277 a that penetrates the exhaust gas combustion unit 47 in the vertical direction.
  • the fuel gas supply channel 251 is connected to the fuel gas inlet of the negative electrode of the fuel cell 23 via a connection channel 277 b that penetrates the exhaust gas combustion unit 47 and the reformer 22 in the vertical direction.
  • the oxidant gas supply channel 253 is connected to the oxidant gas inlet of the positive electrode of the fuel cell 23 via a connection channel 277 c that penetrates the exhaust gas combustion unit 47 and the reformer 22 in the vertical direction.
  • the fuel gas inlet and the oxidant gas inlet are provided on the lower surface of the fuel cell 23 in contact with the stage 27, for example.
  • the negative exhaust gas discharge flow path 252 is connected to the negative electrode of the fuel cell 23 via the fuel gas supply flow path 251, the exhaust gas combustion section 47, and the connection flow path 277 d penetrating the reformer 22 in the vertical direction.
  • the positive exhaust gas discharge channel 254 is connected to the positive exhaust gas discharge port of the positive electrode of the fuel cell 23 via a connecting flow channel 277e penetrating the oxidant gas supply channel 253, the exhaust gas combustion unit 47 and the reformer 22 in the vertical direction.
  • the negative exhaust gas exhaust port and the positive exhaust gas exhaust port are provided, for example, on the lower surface of the fuel cell 23 in contact with the stage 27.
  • the negative electrode exhaust gas discharge channel 252 is connected to the exhaust gas combustion unit 47 through a connection channel 277 f that penetrates the fuel gas supply channel 251 in the vertical direction.
  • the positive exhaust gas discharge channel 254 is connected to the exhaust gas combustion unit 47 via a connection channel 277g that penetrates the oxidant gas supply channel 253 in the vertical direction.
  • the reformer 22 of each stage 27 is connected to a raw fuel supply source 48 disposed outside the housing 21 via a raw fuel common supply pipe 261 as shown in FIGS.
  • An impurity removing unit 41 and a first heat exchanger 42 are provided on the raw fuel common supply pipe 261.
  • the impurity removing unit 41 removes impurities (for example, sulfur-based impurities and nitrogen-based impurities) from the raw fuel supplied from the raw fuel supply source 48 to the reformer 22.
  • Each reformer 22 also branches from the raw fuel common supply pipe 261 upstream of the first heat exchanger 42 (specifically, between the first heat exchanger 24 and the impurity removal unit 41). It is also connected to a water vapor generation unit 46 disposed outside the housing 21 via the water vapor supply pipe 262.
  • the raw fuel common supply pipe 261 is disposed inside the stage support portion 28.
  • the reformer 22 reforms the raw fuel to generate a reformed gas containing a fuel gas.
  • a fuel gas for example, LP gas, city gas, natural gas, kerosene, biogas or bioethanol is used.
  • the raw fuel is reformed by, for example, a steam reforming method, a partial oxidation reforming method, an autothermal reforming method, or the like.
  • the city gas that is the raw fuel supplied from the raw fuel supply source 48 by the reformer 22 is heated at a high temperature by the steam reforming method using the steam supplied from the steam generation unit 46.
  • a reformed gas containing hydrogen gas as a fuel gas is generated under reforming.
  • the reformed gas from the reformer 22 is guided to the fuel gas supply channel 251 through the connection channel 277a shown in FIG.
  • the reformed gas flows in a predetermined flow direction along the longitudinal direction of the stage 27 in the fuel gas supply channel 251.
  • the reformed gas flows from the left side to the right side in FIG.
  • the reformed gas flowing through the fuel gas supply channel 251 is supplied to the negative electrodes of the three fuel cells 23 on the stage 27 via connection channels 277b (see FIG. 4).
  • the fuel gas supply channel 251 supplies the fuel gas (including reformed gas) from the reformer 22 in the housing 21 to the plurality of fuel cells 23.
  • the negative exhaust gas which is the gas discharged from the negative electrode of each fuel cell 23, is led to the negative exhaust gas discharge flow path 252 via the connection flow path 277d shown in FIG.
  • the negative electrode exhaust gas discharge passage 252 collects the negative electrode exhaust gas discharged from the plurality of fuel cells 23.
  • the negative electrode exhaust gas includes water vapor generated when hydrogen gas, which is a fuel gas, is used for power generation in the fuel cell 23, and unused fuel gas that has not been used for power generation in the fuel cell 23.
  • the negative exhaust gas flows in the predetermined flow direction along the longitudinal direction of the stage 27 in the negative exhaust gas discharge channel 252.
  • the negative electrode exhaust gas flows from the left side to the right side in FIG. That is, the flow direction of the negative exhaust gas in the negative exhaust gas discharge flow path 252 and the flow direction of the reformed gas in the fuel gas supply flow path 251 are the same.
  • the reformed gas flowing in the fuel gas supply flow path 251 adjacent to the upper side of the negative exhaust gas discharge flow path 252 via the partition wall 270 is heated by the high temperature negative exhaust gas flowing in the negative exhaust gas discharge flow path 252 shown in FIG.
  • the negative exhaust gas flowing through the negative exhaust gas discharge channel 252 is guided to the exhaust gas combustion unit 47 through the connection channel 277f shown in FIG.
  • the oxidant gas supply channel 253 of each stage 27 is connected to a blower 43 disposed outside the housing 21 via an oxidant gas common supply pipe 263 as shown in FIGS.
  • the oxidant gas common supply pipe 263 is disposed inside the stage support portion 28.
  • the blower 43 supplies air containing oxygen gas, which is oxidant gas, to the oxidant gas supply channel 253 of each stage 27 via the oxidant gas common supply pipe 263.
  • the air flows in the predetermined flow direction along the longitudinal direction of the stage 27.
  • air flows from the left side to the right side in FIG.
  • the air flowing through the oxidant gas supply channel 253 is supplied to the positive electrodes of the three fuel cells 23 on the stage 27 via the connection channels 277c shown in FIG.
  • the oxidant gas supply channel 253 supplies the oxidant gas (including air) to the plurality of fuel cells 23 in the housing 21.
  • the positive exhaust gas that is the gas discharged from the positive electrode of each fuel cell 23 is led to the positive exhaust gas discharge flow channel 254 via the connection flow channel 277e shown in FIG.
  • the positive exhaust gas discharge passage 254 collects positive exhaust gases discharged from the plurality of fuel cells 23.
  • the positive exhaust gas includes unused oxidant gas that has not been used for power generation in the fuel cell 23.
  • the positive exhaust gas flows in the positive exhaust gas discharge passage 254 in the predetermined flow direction along the longitudinal direction of the stage 27.
  • the positive electrode exhaust gas flows from the left side to the right side in FIG. That is, the flow direction of the positive exhaust gas in the positive exhaust gas discharge flow path 254 and the flow direction of the air in the oxidant gas supply flow path 253 are the same.
  • the high-temperature positive exhaust gas flowing through the positive exhaust gas discharge channel 254 shown in FIG. 3 heats the air flowing through the oxidant gas supply channel 253 adjacent to the upper side of the positive exhaust gas exhaust channel 254 via the partition wall 270.
  • the positive exhaust gas flowing through the positive exhaust gas discharge channel 254 is guided to the exhaust gas combustion unit 47 through the connection channel 277g shown in FIG.
  • the flow direction of the positive exhaust gas in the positive exhaust gas discharge channel 254 and the flow direction of the reformed gas in the fuel gas supply channel 251 are the same. Further, the flow direction of air in the oxidant gas supply channel 253 and the flow direction of negative electrode exhaust gas in the negative electrode exhaust gas discharge channel 252 are the same.
  • the merged negative electrode exhaust gas and positive electrode exhaust gas are combusted. Thereby, unused fuel gas contained in the negative electrode exhaust gas from the plurality of fuel cells 23 is burned.
  • a catalytic combustor is used as the exhaust gas combustion unit 47.
  • Heat generated by combustion in the exhaust gas combustion unit 47 (that is, combustion heat) is transmitted to the reformer 22 adjacent to the upper side of the exhaust gas combustion unit 47 via the partition wall 270.
  • the combustion heat in the exhaust gas combustion section 47 is also transmitted to the reformed gas and air in the fuel gas supply channel 251 and the oxidant gas supply channel 253 adjacent to the lower side of the exhaust gas combustion unit 47 via the partition wall 270. Is done.
  • the exhaust gas that has passed through the exhaust gas combustion portion 47 of each stage 27 is guided to the outside of the housing 21 via the exhaust gas common discharge pipe 264.
  • the exhaust gas common discharge pipe 264 is disposed inside the stage support portion 28.
  • the exhaust gas discharged out of the housing 21 is guided to the second heat exchanger 44 through the exhaust gas common discharge pipe 264.
  • the air supplied from the blower 43 to the oxidant gas supply channel 253 of each stage 27 is preheated using the high-temperature exhaust gas flowing through the exhaust gas common discharge pipe 264.
  • the exhaust gas that has passed through the second heat exchanger 44 is guided to the first heat exchanger 42 through the exhaust gas common discharge pipe 264.
  • the raw fuel and steam supplied from the raw fuel supply source 48 and the steam generator 46 to the reformer 22 of each stage 27 using the high-temperature exhaust gas flowing through the exhaust gas common exhaust pipe 264. Is preheated.
  • the exhaust gas that has passed through the first heat exchanger 42 is guided to the condensing unit 45 through the exhaust gas common discharge pipe 264.
  • steam in exhaust gas is condensed and water is produced
  • the water generated by the condensing unit 45 is supplied to the water vapor generating unit 46 through the water supply pipe 451.
  • water is heated to generate water vapor.
  • the water vapor generated by the water vapor generation unit 46 is guided to the raw fuel common supply pipe 261 via the water vapor supply pipe 262, and together with the raw fuel that has passed through the impurity removal unit 41, the reforming of each stage 27 is performed. It is supplied to the mass device 22 and used for the steam reforming described above.
  • the exhaust gas that has passed through the condensing unit 45 is discharged to the outside of the fuel cell system 1.
  • the heat of the negative exhaust gas discharged from the plurality of fuel cells 23 to the negative exhaust gas discharge passage 252 is transmitted to the reformed gas flowing through the fuel gas supply passage 251. Thereby, the reformed gas supplied to each fuel cell 23 is heated. Further, the heat of the positive exhaust gas discharged from the plurality of fuel cells 23 to the positive exhaust gas discharge passage 254 is transmitted to the air flowing through the oxidant gas supply passage 253. Thereby, the air supplied to each fuel cell 23 is heated. Further, the exhaust gas discharged from the exhaust gas combustion unit 47 is used to preheat the raw fuel and steam supplied to the reformer 22 in the first heat exchanger 42, and in the second heat exchanger 44. Then, preheating of the air supplied to the oxidant gas supply channel 253 is performed.
  • the fuel cell system 1 can perform the steady operation without using the heat generated in the steady operation without applying the heat required in the system during the steady operation from outside the system. Furthermore, in the fuel cell system 1, by using the steam contained in the exhaust gas for the steam reforming performed in the reformer 22, the water required in the system during steady operation is given from outside the system. Steady operation can be performed. In other words, in the fuel cell system 1 during the steady operation, the heat independent operation and the water independent operation are possible.
  • the start-up operation of the fuel cell system 1 is to change the state of the fuel cell system 1 from a stopped state to a steady operation state in which power generation is constantly performed.
  • the water supply unit 31 stores water and supplies the water to the reformer 22 of the fuel cell system 1 when the fuel cell system 1 is activated.
  • the water supply unit 31 includes, for example, a water storage unit 311, a pump 312, and an activation water supply pipe 313.
  • the water storage unit 311 is a tank that stores water (for example, pure water).
  • the water storage unit 311 is connected to the water vapor generation unit 46 of the fuel cell system 1 via the startup water supply pipe 313.
  • the pump 312 is provided on the activation water supply pipe 313 and supplies water stored in the water storage unit 311 to the water vapor generation unit 46.
  • the heating fluid generation unit 33 is connected to the raw fuel supply source 48 via the impurity removal unit 41 by the starting raw fuel supply pipe 255.
  • the heating fluid generator 33 is also connected to the blower 43 via the activation gas supply pipe 256.
  • the raw fuel for example, LP gas, city gas, natural gas, kerosene, biogas, or bioethanol
  • the blower 43 for example, , Air
  • a relatively high temperature gas hereinafter referred to as “heating gas”
  • a catalytic combustor is used as the heating fluid generator 33.
  • generation part 33 the city gas which is raw fuel is oxidized, and the gas for heating is produced
  • the heating gas generated by the heating fluid generator 33 is supplied to the temperature raising unit 24 in the housing 21 via the heating fluid supply pipe 257, and is supplied from the temperature raising unit 24 to the internal space 210 of the housing 21. Supplied with.
  • the heating gas is continuously supplied from the temperature raising unit 24 to the internal space 210, whereby the reformer 22 in each stage 27 and a plurality of stages supported by each stage 27.
  • the fuel cell 23 is heated.
  • the raw fuel from the raw fuel supply source 48 passes through the impurity removal unit 41 and is guided into the housing 21. Further, water from the water supply unit 31 is supplied to the water vapor generation unit 46, converted into water vapor by the water vapor generation unit 46, and then guided into the housing 21. In the housing 21, raw fuel and water vapor are supplied to the reformer 22 in each stage 27 via the raw fuel common supply pipe 261. Then, the reformer 22 steam-reforms the raw fuel to generate a reformed gas containing a fuel gas, and supplies the reformed gas to the negative electrodes of the plurality of fuel cells 23 via the fuel gas supply channels 251 of each stage 27. Is done.
  • air containing oxidant gas is supplied from the blower 43 through the oxidant gas common supply pipe 263 to the oxidant gas supply channel 253 in each stage 27.
  • the air is supplied from the oxidant gas supply channel 253 to the positive electrodes of the plurality of fuel cells 23.
  • the fuel cell system 1 In the fuel cell system 1, until the reformer 22 and the plurality of fuel cells 23 reach a predetermined temperature and the outputs from the plurality of fuel cells 23 reach a predetermined power generation amount and become stable, that is, the fuel cell system 1 The start-up operation described above is continued until the steady operation state is reached.
  • water supply from the water supply unit 31 to the water vapor generating unit 46 is stopped, and the temperature rising unit 24 supplies the internal space 210 to the interior space 210. The supply of the heating gas is stopped.
  • the fuel cell system 1 includes the housing 21, the plurality of fuel cells 23, the stage 27, the reformer 22, the fuel gas supply channel 251, the negative exhaust gas discharge channel 252, An oxidant gas supply channel 253 and a positive exhaust gas discharge channel 254 are provided.
  • the plurality of fuel cells 23 are supported by a stage 27. Inside the stage 27, a reformer 22, a fuel gas supply channel 251, a negative exhaust gas discharge channel 252, an oxidant gas supply channel 253, and a positive exhaust gas discharge channel 254 are arranged.
  • the housing 21 can be downsized as compared with the case where each component in the stage 27 is arranged outside the stage 27.
  • the fuel cell system 1 can be reduced in size.
  • the fuel gas supply flow path 251, the negative exhaust gas discharge flow path 252, the oxidant gas supply flow path 253, and the positive exhaust gas discharge flow path 254 are arranged inside the stage 27, thereby providing a plurality of fuel cells.
  • the air supply / exhaust structure to 23 can be simplified.
  • the negative exhaust gas discharge channel 252 is adjacent to the fuel gas supply channel 251 and the partition wall 270 so that heat exchange is possible. Thereby, the fuel gas (including reformed gas) supplied to the fuel cell 23 can be efficiently heated using the negative electrode exhaust gas.
  • the positive exhaust gas discharge channel 254 is adjacent to the oxidant gas supply channel 253 and the partition wall 270 so that heat exchange is possible. Thereby, the oxidant gas (including air) supplied to the fuel cell 23 can be efficiently heated using the positive electrode exhaust gas.
  • the reformer 22 can be efficiently heated by the heat released from the plurality of fuel cells 23.
  • the exhaust heat that is, the heat of the negative exhaust gas and the positive exhaust gas
  • the plurality of fuel cells 23 are reduced. (Heat released) can be used effectively.
  • the fuel cell system 1 can be reduced in size.
  • the flow direction of the reformed gas in the fuel gas supply channel 251 and the flow direction of the negative electrode exhaust gas in the negative electrode exhaust gas discharge channel 252 are the same. Thereby, the pressure loss of the gas passing through the fuel gas supply channel 251, the fuel cell 23, and the negative exhaust gas discharge channel 252 can be reduced. Further, the flow direction of air in the oxidant gas supply channel 253 and the flow direction of positive electrode exhaust gas in the positive electrode exhaust gas discharge channel 254 are the same. Thereby, the pressure loss of the gas passing through the oxidant gas supply channel 253, the fuel cell 23, and the positive exhaust gas discharge channel 254 can be reduced. As a result, the energy required for driving the fuel cell system 1 can be reduced, and the running cost of the fuel cell system 1 can be reduced.
  • the reformer 22 is positioned between the negative exhaust gas exhaust passage 252 and the positive exhaust gas exhaust passage 254 and the plurality of fuel cells 23. Thereby, the reformer 22 can be efficiently heated using the heat released from the plurality of fuel cells 23 and the heat of the negative electrode exhaust gas and the positive electrode exhaust gas.
  • the reformer 22 is adjacent to a plurality of fuel cells 23 supported by the stage 27 so that heat exchange is possible with the battery support surface of the stage 27 interposed therebetween. Thereby, the reformer 22 can be heated more efficiently by using the heat released from the plurality of fuel cells 23.
  • the fuel cell system 1 further includes an exhaust gas combustion unit 47.
  • the exhaust gas combustion unit 47 burns unused fuel gas contained in the negative electrode exhaust gas from the plurality of fuel cells 23.
  • the exhaust gas combustion unit 47 is disposed inside the stage 27 together with the negative electrode exhaust gas exhaust passage 252.
  • the exhaust gas combustion unit 47 is adjacent to the inside of the stage 27 so as to exchange heat with the reformer 22 and the partition wall 270 interposed therebetween.
  • the reformer 22 is located between the plurality of fuel cells 23 and the exhaust gas combustion unit 47. Thereby, the reformer 22 can be heated more efficiently by using the heat released from the plurality of fuel cells 23 and the combustion heat in the exhaust gas combustion section 47.
  • the exhaust gas combustion part 47 is adjacent to the fuel gas supply channel 251 and the partition wall 270 so that heat exchange is possible. Accordingly, the fuel gas (including reformed gas) supplied to the fuel cell 23 can be efficiently heated using the combustion heat in the exhaust gas combustion unit 47. Further, the exhaust gas combustion unit 47 is adjacent to the oxidant gas supply channel 253 and the partition wall 270 so that heat exchange is possible. Thus, the oxidant gas (including air) supplied to the fuel cell 23 can be efficiently heated using the combustion heat in the exhaust gas combustion unit 47.
  • FIG. 7 is a cross-sectional view showing another preferred example of the stage 27.
  • the partition wall 270 between the fuel gas supply channel 251 and the negative exhaust gas discharge channel 252 includes an uneven portion 278.
  • the concavo-convex portion 278 is formed by, for example, causing a part of the thin plate-like partition wall material to protrude toward the fuel gas supply channel 251 and the other part of the partition wall material to protrude toward the anode exhaust gas discharge channel 252. It is formed.
  • the shape of the concavo-convex portion 278 may be variously changed.
  • the partition wall 270 may have a corrugated shape that undulates in the vertical direction.
  • the surface area of the partition 270 increases. Thereby, the heat exchange efficiency is improved between the negative exhaust gas discharge passage 252 and the fuel gas supply passage 251. As a result, the fuel gas (including reformed gas) in the fuel gas supply channel 251 can be heated more efficiently by the negative electrode exhaust gas in the negative electrode exhaust gas discharge channel 252.
  • the partition wall 270 between the oxidant gas supply channel 253 and the positive exhaust gas discharge channel 254 is also provided with an uneven portion 278.
  • the surface area of the partition 270 is increased, and the heat exchange efficiency is improved between the positive exhaust gas discharge channel 254 and the oxidant gas supply channel 253.
  • the oxidant gas (including air) in the oxidant gas supply channel 253 can be more efficiently heated by the cathode exhaust gas in the cathode exhaust gas discharge channel 254.
  • the reformer 22 In the fuel cell system 1, the reformer 22, the exhaust gas combustion unit 47, the fuel gas supply passage 251, the oxidant gas supply passage 253, the negative exhaust gas discharge passage 252, and the positive exhaust gas discharge passage 254 inside each stage 27.
  • the arrangement may be variously changed.
  • the positive exhaust gas discharge channel 254 may be disposed below the fuel gas supply channel 251 shown in FIG. 3, and the negative exhaust gas discharge channel 252 may be disposed below the oxidant gas supply channel 253.
  • the reformed gas in the fuel gas supply channel 251 is heated by the positive exhaust gas in the positive exhaust gas discharge channel 254 adjacent in the vertical direction so that heat exchange is possible with the fuel gas supply channel 251 and the partition wall 270 interposed therebetween.
  • the air in the oxidant gas supply channel 253 is heated by the negative exhaust gas in the negative exhaust gas discharge channel 252 adjacent in the vertical direction so that heat exchange is possible with the oxidant gas supply channel 253 and the partition wall 270 interposed therebetween.
  • the concavo-convex portions 278 are also provided in these partition walls 270.
  • the negative electrode exhaust gas discharge channel 252 and the positive electrode exhaust gas discharge channel 254 are not necessarily arranged below the fuel gas supply channel 251 and the oxidant gas supply channel 253.
  • a fuel gas supply channel 251 and a negative exhaust gas discharge channel 252 are disposed below the exhaust gas combustion unit 47, and a positive exhaust gas discharge channel 254 is disposed below the fuel gas supply channel 251 to discharge negative exhaust gas.
  • An oxidant gas supply channel 253 may be disposed below the channel 252.
  • the reformed gas in the fuel gas supply flow path 251 is mixed with the negative electrode exhaust gas discharge flow path 252 and the negative electrode in the positive exhaust gas discharge flow path 254 which are adjacent to each other so as to exchange heat between the fuel gas supply flow path 251 and the partition wall 270.
  • the air in the oxidant gas supply channel 253 is passed through the oxidant gas supply channel 253 and the partition wall 270 so that heat exchange is possible, and the negative exhaust gas in the negative exhaust gas discharge channel 252 and the positive exhaust gas discharge channel 254 are adjacent to each other. And heated by positive electrode exhaust gas. From the viewpoint of increasing the efficiency of heating the fuel gas and the oxidant gas, it is preferable that the concavo-convex portions 278 are also provided in these partition walls 270.
  • the negative exhaust gas discharge flow path 252 and the positive exhaust gas discharge flow path 254 are disposed adjacent to the lower side of the exhaust gas combustion part 47, and the fuel is provided below the negative exhaust gas discharge flow path 252 and the positive exhaust gas discharge flow path 254.
  • the gas supply channel 251 and the oxidant gas supply channel 253 may be disposed adjacent to each other.
  • the fuel gas supply channel 251, the negative exhaust gas exhaust channel 252, the oxidant gas supply channel 253, and the positive exhaust gas exhaust channel 254 are arranged in the vertical direction. May be arranged adjacent to each other in the horizontal direction at substantially the same position.
  • the arrangement order in the horizontal direction of the fuel gas supply flow path 251, the negative exhaust gas discharge flow path 252, the oxidant gas supply flow path 253, and the positive exhaust gas discharge flow path 254 is not particularly limited.
  • the fuel gas supply channel 251 is preferably adjacent to at least one of the negative electrode exhaust gas exhaust channel 252 and the positive electrode exhaust gas exhaust channel 254.
  • the oxidant gas supply channel 253 is adjacent to at least one of the negative electrode exhaust gas discharge channel 252 and the positive electrode exhaust gas discharge channel 254. Is preferred.
  • the reformer 22 is arranged in the uppermost layer of the stage 27, the negative exhaust gas exhaust passage 252 and the positive exhaust gas exhaust passage 254 are arranged in the second layer from the upper side, and the third from the upper side.
  • the fuel gas supply channel 251 and the oxidant gas supply channel 253 may be disposed in the layer, and the exhaust gas combustion unit 47 may be disposed in the lowermost layer.
  • FIG. 10 shows a fuel cell system 1a according to the second embodiment of the present invention.
  • the first heat exchanger 42, the second heat exchanger 44, the heating fluid generation unit 33, and the temperature raising unit 24 are omitted from the fuel cell system 1 shown in FIG.
  • the other configuration of the fuel cell system 1a is substantially the same as that of the fuel cell system 1 shown in FIG. 1, and the same reference numerals are given to the corresponding components of the fuel cell system 1a in the following description.
  • the reformed gas and air supplied to each fuel cell 23 are heated inside each stage 27 in the same manner as described above. Specifically, the reformed gas in the fuel gas supply channel 251 shown in FIG. 3 is heated by the high temperature negative exhaust gas in the negative exhaust gas discharge channel 252 and the combustion heat in the exhaust gas combustion section 47. Further, the air in the oxidant gas supply channel 253 is heated by the high-temperature cathode exhaust gas in the cathode exhaust gas discharge channel 254 and the combustion heat in the exhaust gas combustion unit 47. Thus, the reformed gas and air supplied to the fuel cell 23 are heated to a desired temperature without performing preliminary heating in the first heat exchanger 42 and the second heat exchanger 44 (see FIG. 1). Can do.
  • the partition wall 270 between the fuel gas supply channel 251 and the negative exhaust gas discharge channel 252, and the oxidant gas supply channel 253 and the positive exhaust gas discharge channel It is preferable that the above-described concavo-convex portion 278 is provided in the partition wall 270 between the H.254 and the H.254. In addition, an uneven portion 278 may also be provided on the partition wall 270 between the exhaust gas combustion unit 47 and the fuel gas supply channel 251 and the oxidant gas supply channel 253.
  • the exhaust gas combustion unit 47 disposed in each stage 27 includes a reformer 22 in each stage 27 and a plurality of fuel cells supported by each stage 27. It plays the role of the starting temperature rising part which heats 23.
  • the raw fuel guided from the raw fuel supply source 48 by the starting raw fuel supply pipe 255 and the air guided from the blower 43 by the starting gas supply pipe 256 are merged and merged.
  • the subsequent fluid (hereinafter referred to as “heating fluid”) is guided to the internal space 210 of the housing 21 by the heating fluid supply pipe 258.
  • the temperature raising fluid may be heated by a heater or other heating means before being introduced into the housing 21.
  • the temperature raising fluid supply pipe 258 is disposed inside the stage support portion 28 inside the housing 21 and connected to the exhaust gas combustion portion 47 in each stage 27.
  • the temperature raising fluid is supplied to the exhaust gas combustion section 47 (see FIG. 3) of each stage 27 through the temperature raising fluid supply pipe 258.
  • the exhaust gas combustion unit 47 burns the fluid for raising the temperature (that is, the mixed fluid of raw fuel and air), and the combustion heat causes the reformer 22 (see FIG. 3) in each stage 27 and each The temperature of the plurality of fuel cells 23 on the stage 27 is increased.
  • the exhaust gas combustion unit 47 is used for raising the temperature of the reformer 22 and the fuel cell 23 during start-up operation and for burning unused fuel gas or the like during steady operation.
  • the structure provided in the housing 21 can be reduced and the housing 21 can be reduced in size.
  • the fuel cell system 1a can be reduced in size.
  • the structure of the fuel cell system 1a can be simplified by omitting the first heat exchanger 42 and the second heat exchanger 44.
  • the raw fuel via the raw fuel common supply pipe 261, the reformer 22, the fuel cell 23, etc., and the oxidant gas common supply pipe 263, the fuel cell 23, etc.
  • the exhausted air may be supplied to the exhaust gas combustion unit 47.
  • the raw fuel and air merge at the exhaust gas combustion section 47 to form a temperature rising fluid.
  • each stage 27 may be variously changed.
  • the exhaust gas combustion unit 47 is not provided inside the stage 27, and the reformer 22, the fuel gas supply channel 251, the oxidant gas supply channel 253, the negative exhaust gas exhaust channel 252, A positive exhaust gas discharge channel 254 may be provided inside the stage 27.
  • the exhaust gas combustion unit 47 is provided, for example, inside or outside the housing 21.
  • a negative exhaust gas exhaust passage 252 and a positive exhaust gas exhaust passage 254 are disposed adjacent to each other below the reformer 22 disposed in the uppermost layer in the stage 27.
  • the reformer 22 is located between the plurality of fuel cells 23, the negative exhaust gas exhaust passage 252 and the positive exhaust gas exhaust passage 254.
  • the fuel gas supply channel 251 and the oxidant gas supply channel 253 are disposed adjacent to the lower side of the negative exhaust gas exhaust channel 252 and the positive exhaust gas exhaust channel 254.
  • the reformed gas in the fuel gas supply channel 251 by the high-temperature negative exhaust gas flowing through the negative exhaust gas exhaust channel 252 and the high-temperature positive exhaust gas flowing through the positive exhaust gas exhaust channel 254, and The air in the oxidant gas supply channel 253 can be efficiently heated. Further, the reforming is performed by the high-temperature negative exhaust gas in the negative exhaust gas exhaust passage 252, the high-temperature positive exhaust gas in the positive exhaust exhaust passage 254, and heat released from the plurality of fuel cells 23 supported by the stage 27.
  • the vessel 22 can be heated efficiently.
  • the reformer 22 and the exhaust gas combustion part 47 are not provided inside the stage 27, and the fuel gas supply channel 251, the oxidant gas supply channel 253, the negative exhaust gas exhaust channel 252 and the positive exhaust gas.
  • a discharge channel 254 is provided inside the stage 27.
  • the discharge channel and the other discharge channel are arranged inside the stage 27.
  • the reformer 22 is disposed, for example, inside the housing 21, and the exhaust gas combustion unit 47 is provided, for example, inside or outside the housing 21.
  • the fuel gas supply channel 251 and the oxidant gas supply channel 253 are arranged in the uppermost layer in the stage 27.
  • the fuel gas supply channel 251 and the oxidant gas supply channel 253 are adjacent to a plurality of fuel cells 23 arranged on the stage 27 so that heat can be exchanged in the vertical direction across the cell support surface of the stage 27.
  • the negative exhaust gas discharge channel 252 and the positive exhaust gas discharge channel 254 are disposed adjacent to the lower side of the fuel gas supply channel 251 and the oxidant gas supply channel 253.
  • the reformed gas in the supply channel 251 and the air in the oxidant gas supply channel 253 can be efficiently heated.
  • the fuel gas supply channel 251 is disposed in the uppermost layer in the stage 27, and the negative exhaust gas exhaust channel 252 is disposed adjacent to the lower side of the fuel gas supply channel 251.
  • the fuel gas supply channel 251 is adjacent to a plurality of fuel cells 23 arranged on the stage 27 so that heat can be exchanged in the vertical direction across the cell support surface of the stage 27.
  • the reformed gas in the fuel gas supply channel 251 is more efficiently converted by the high-temperature negative exhaust gas flowing through the negative electrode exhaust gas discharge channel 252 and the heat released from the plurality of fuel cells 23 supported by the stage 27. Can be heated.
  • an oxidant gas supply flow path 253 and a positive electrode exhaust gas discharge flow path 254 may be arranged inside the stage 27.
  • one of the fuel gas supply channel 251 and the oxidant gas supply channel 253, the negative exhaust gas discharge channel 252 and the positive exhaust gas discharge channel 254 are included.
  • One discharge channel may be arranged inside the stage 27.
  • the housing 21 can be reduced in size, and as a result, the fuel cell systems 1 and 1a can be reduced in size.
  • manufacture and maintenance of the fuel cell systems 1 and 1a can be simplified.
  • the supply / exhaust structure to the plurality of fuel cells 23 can be simplified.
  • the one discharge channel is adjacent to the one supply channel so that heat exchange is possible with the partition wall 270 interposed therebetween.
  • the gas flow direction in one supply flow path and the gas flow direction in one discharge flow path are Are preferably the same.
  • the pressure loss of the gas in one supply flow path, the fuel cell 23, and one discharge flow path can be reduced similarly to the above.
  • the energy required for driving the fuel cell systems 1 and 1a can be reduced, and the running cost of the fuel cell systems 1 and 1a can be reduced.
  • the one discharge flow path does not necessarily sandwich the one supply flow path and the partition wall 270. Adjacent heat exchange is not necessary.
  • the fuel gas supply flow path 251 and the negative exhaust gas discharge flow path 252 may be arranged in the stage 27 so as to be separated in the horizontal direction at substantially the same position in the vertical direction.
  • the oxidant gas supply channel 253 and the positive exhaust gas discharge channel 254 may be spaced apart in the horizontal direction at substantially the same position in the vertical direction.
  • the stage 27 is formed by stacking three plate-like members 279a to 279c in the vertical direction.
  • Two gaps between the plate-like member 279a and the plate-like member 279b are a fuel gas supply channel 251 and a negative exhaust gas discharge channel 252. Further, two gaps between the plate-like member 279b and the plate-like member 279c are an oxidant gas supply channel 253 and a positive exhaust gas discharge channel 254.
  • a fuel gas supply channel 251, a negative exhaust gas discharge channel 252, and a reformer 22 are disposed inside the stage 27.
  • the reformer 22 is disposed in the uppermost layer in the stage 27, the negative exhaust gas exhaust passage 252 is disposed adjacent to the lower side of the reformer 22, and the fuel gas supply passage 251 is the negative exhaust gas exhaust passage 252. It is arranged adjacent to the lower side.
  • one supply flow path, one discharge flow path, and the reformer 22 are disposed inside the stage 27, and the reformer 22 includes a plurality of fuel cells 23 and the one discharge flow path. Located between. Thereby, the reformer 22 can be efficiently heated using the heat released from the plurality of fuel cells 23 and the high-temperature gas flowing through one of the discharge passages.
  • a fuel gas supply channel 251, a negative exhaust gas discharge channel 252, a reformer 22, and an exhaust gas combustion unit 47 are arranged inside the stage 27.
  • the reformer 22 is disposed in the uppermost layer in the stage 27, and the exhaust gas combustion unit 47 is disposed adjacent to the lower side of the reformer 22.
  • the fuel gas supply channel 251 is disposed adjacent to the lower side of the exhaust gas combustion unit 47, and the negative gas exhaust gas discharge channel 252 is disposed adjacent to the lower side of the fuel gas supply channel 251.
  • one supply flow path, one discharge flow path, the reformer 22 and the exhaust gas combustion unit 47 are arranged inside the stage 27, and the reformer 22 includes a plurality of fuel cells 23 and an exhaust gas combustion unit. 47.
  • One discharge channel is a negative electrode exhaust gas discharge channel 252.
  • the negative electrode exhaust gas that has passed through the negative electrode exhaust gas discharge passage 252 is guided to the exhaust gas combustion section 47, and unused fuel gas in the negative electrode exhaust gas is burned, whereby the reformer 22 can be efficiently heated.
  • the reformer 22 may be omitted from the example illustrated in FIG. 16, and the exhaust gas combustion unit 47, the fuel gas supply flow path 251, and the negative electrode exhaust gas discharge flow path 252 may be disposed inside the stage 27.
  • the fuel gas supply flow path 251, the negative exhaust gas discharge flow path 252, the oxidant gas supply flow path 253, and the positive exhaust gas discharge flow path 254 are not provided inside the stage 27.
  • the exhaust gas combustion part 47 is arrange
  • the reformer 22 is disposed in the uppermost layer in the stage 27, and the exhaust gas combustion unit 47 is disposed adjacent to the lower side of the reformer 22. Thereby, the reformer 22 can be efficiently heated using the heat released from the plurality of fuel cells 23 and the combustion heat in the exhaust gas combustion section 47.
  • the exhaust gas combustion unit 47 may be omitted from the example illustrated in FIG. 17, and only the reformer 22 may be disposed inside the stage 27.
  • the reformer 22 can be efficiently heated using heat released from the plurality of fuel cells 23. Also in the examples shown in FIGS. 14 to 17, exhaust heat related to the plurality of fuel cells 23 can be effectively used while simplifying the structure of the fuel cell systems 1 and 1a.
  • the fuel cell system 1, 1a can be variously changed.
  • the plurality of fuel cells 23 supported on the upper surface of the one stage 27 are, for example, above the one stage 27.
  • Fuel gas and oxidant gas may be supplied from the other stage 27 located, and negative electrode exhaust gas and positive electrode exhaust gas may be discharged from the plurality of fuel cells 23 to the other stage 27.
  • the plurality of fuel cells 23 are not necessarily supported on the upper surface of each stage 27.
  • the stage 27 may be provided on the side of the plurality of fuel cells 23 and may be in contact with the side surface of each fuel cell 23 to support each fuel cell 23 from the side. In this case, the side surface of the stage 27 becomes the battery support surface.
  • the fuel gas inlet, the oxidant gas inlet, the negative exhaust gas outlet, and the positive exhaust gas outlet of the fuel cell 23 are provided on the side surface of the fuel cell 23, for example.
  • the stage 27 may be provided on the upper side of the plurality of fuel cells 23 and may be in contact with the upper surface of each fuel cell 23 to support each fuel cell 23 from above.
  • the lower surface of the stage 27 becomes the battery support surface.
  • the fuel gas inlet, the oxidant gas inlet, the negative exhaust gas outlet, and the positive exhaust gas outlet of the fuel cell 23 are provided on the upper surface of the fuel cell 23, for example.
  • a stand that supports the plurality of fuel cells 23 from below may be provided separately from the stage 27.
  • the gas flow directions in the fuel gas supply channel 251, the negative exhaust gas discharge channel 252, the oxidant gas supply channel 253, and the positive exhaust gas discharge channel 254 may be different. Good.
  • a start-up material different from the raw fuel may be supplied to the reformer 22.
  • the starting material for example, nitrogen, hydrogen, LP gas, city gas, bioethanol or the like is used.
  • the water vapor contained in the exhaust gas from the exhaust gas combustion unit 47 is taken out as water by the condensing unit 45 and then supplied to the water vapor generation unit 46.
  • the part may be supplied to the reformer 22 in a gaseous state. Even in this case, it is possible to realize water self-sustained operation during steady operation.
  • the reformer 22 and the fuel cell 23 do not necessarily have to be heated by the heating gas from the temperature raising unit 24, and can be modified by various other configurations.
  • the mass device 22 and the fuel cell 23 may be heated.
  • the reformer 22 and the fuel cell 23 may be heated by an electric heater provided in the housing 21.
  • the heating gas may be continuously supplied from the temperature raising unit 24 to the internal space 210 of the housing 21.
  • the water self-sustained operation is not necessarily performed during the steady operation, and water may be continuously supplied from the water supply unit 31 to the water vapor generation unit 46.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a fuel cell system comprising a reformer (22), a plurality of fuel cells (23), a stage (27), a housing (21), a fuel gas supply channel (251), a negative electrode exhaust gas discharge channel (252), an oxidizer gas supply channel (253), and a positive electrode exhaust gas discharge channel (254). The stage (27) supports the plurality of fuel cells (23). The reformer (22), the fuel gas supply channel (251), the negative electrode exhaust gas discharge channel (252), the oxidizer gas supply channel (253), and the positive electrode exhaust gas discharge channel (254) are disposed within the stage (27). The negative electrode exhaust gas discharge channel (252) is adjacent to the fuel gas supply channel (251) with a partition wall (270) therebetween so as to be capable of heat exchange. The positive electrode exhaust gas discharge channel (254) is adjacent to the oxidizer gas supply channel (253) with the partition wall (270) therebetween so as to be capable of heat exchange. Due to this configuration, the structure of a fuel cell system can be simplified and waste heat from the plurality of fuel cells (23) can be effectively utilized.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 従来より、燃料電池を利用して発電を行う様々な燃料電池システムが提案されている。例えば、複数の燃料電池がハウジングに収容された燃料電池システムが知られている。当該燃料電池システムでは、複数の燃料電池のそれぞれに燃料ガスおよび酸化剤ガスを供給する供給管、並びに、複数の燃料電池のそれぞれからの負極排ガスおよび正極排ガスを排出する排出管が、ハウジングの内部空間に配置される。このように、多数の配管をハウジング内に配置する必要があるため、燃料電池システムの小型化に限界がある。 Conventionally, various fuel cell systems that generate power using fuel cells have been proposed. For example, a fuel cell system in which a plurality of fuel cells are housed in a housing is known. In the fuel cell system, a supply pipe that supplies a fuel gas and an oxidant gas to each of the plurality of fuel cells, and a discharge pipe that discharges the negative exhaust gas and the positive exhaust gas from each of the plurality of fuel cells are provided inside the housing. Arranged in space. Thus, since it is necessary to arrange many pipes in the housing, there is a limit to downsizing of the fuel cell system.
 また、このような燃料電池システムでは、燃料ガスを生成する改質器は一部の燃料電池から離れた位置に配置されるため、複数の燃料電池から放出される熱を改質器に効率良く付与することが難しい。このため、燃料電池システムの熱自立運転の実現が容易ではない。さらには、複数の燃料電池、改質器および配管等を支持する架台がハウジング内に設けられるため、燃料電池システムの製造やメンテナンスが複雑化する。その結果、燃料電池システムの製造コストおよび維持コストが増大するおそれがある。 Further, in such a fuel cell system, the reformer that generates the fuel gas is disposed at a position away from some of the fuel cells, so that the heat released from the plurality of fuel cells can be efficiently supplied to the reformer. Difficult to grant. For this reason, it is not easy to realize the thermal self-sustaining operation of the fuel cell system. Furthermore, since a gantry for supporting a plurality of fuel cells, reformers, pipes, and the like is provided in the housing, manufacture and maintenance of the fuel cell system are complicated. As a result, the manufacturing cost and maintenance cost of the fuel cell system may increase.
 そこで、特開2004-327130号公報(文献1)の電池モジュールでは、スタックケース内に収容された複数の燃料電池スタックの空気極を、スタックケース内の空間に露出させることにより、各燃料電池スタックに空気を供給する配管を省略している。また、当該電池モジュールでは、複数の燃料電池スタックが載置されるケース土台内に、空気排出管、燃料供給管および燃料排出管が設置されている。これにより、スタックケース内の配管の簡素化が図られている。 Therefore, in the battery module disclosed in Japanese Patent Application Laid-Open No. 2004-327130 (Reference 1), the air electrodes of a plurality of fuel cell stacks accommodated in the stack case are exposed to the space in the stack case, so that each fuel cell stack is The piping for supplying air to the pipe is omitted. In the battery module, an air discharge pipe, a fuel supply pipe, and a fuel discharge pipe are installed in a case base on which a plurality of fuel cell stacks are placed. Thereby, simplification of piping in a stack case is achieved.
 ところで、文献1の電池モジュールでは、ケース土台内の燃料供給管における燃料ガスの流れ方向が、燃料排出管における燃料ガスの流れ方向、および、空気排出管における空気の流れ方向と、逆向きになっている。このため、ケース土台内における燃料ガスおよび空気の圧損の低減に限界がある。また、当該電池モジュールでは、燃料電池スタックから排出されて空気排出管および燃料排出管を流れる高温の排出ガスの熱が有効利用されていない。 By the way, in the battery module of Document 1, the flow direction of the fuel gas in the fuel supply pipe in the case base is opposite to the flow direction of the fuel gas in the fuel discharge pipe and the flow direction of the air in the air discharge pipe. ing. For this reason, there is a limit in reducing the pressure loss of the fuel gas and air in the case base. Further, in the battery module, the heat of the high-temperature exhaust gas discharged from the fuel cell stack and flowing through the air discharge pipe and the fuel discharge pipe is not effectively used.
 本発明は、燃料電池システムに向けられており、燃料電池システムの構造を簡素化しつつ、複数の燃料電池に係る排熱を有効利用することを主な目的としている。 The present invention is directed to a fuel cell system, and its main purpose is to effectively use exhaust heat related to a plurality of fuel cells while simplifying the structure of the fuel cell system.
 本発明に係る一の燃料電池システムは、原燃料を改質して燃料ガスを生成する改質器と、それぞれが前記燃料ガスおよび酸化剤ガスを用いて発電を行う固体酸化物形の複数の燃料電池と、前記複数の燃料電池を支持するステージと、内部空間に前記改質器、前記複数の燃料電池および前記ステージを収容するハウジングと、前記ハウジング内において前記改質器からの前記燃料ガスを前記複数の燃料電池に供給する燃料ガス供給流路と、前記ハウジング内において前記複数の燃料電池から排出された負極排ガスが集められる負極排ガス排出流路と、前記ハウジング内において前記酸化剤ガスを前記複数の燃料電池に供給する酸化剤ガス供給流路と、前記ハウジング内において前記複数の燃料電池から排出された正極排ガスが集められる正極排ガス排出流路とを備える。前記ステージの内部に、前記燃料ガス供給流路および前記酸化剤ガス供給流路のうち一方の供給流路と、前記負極排ガス排出流路および前記正極排ガス排出流路のうち前記一方の供給流路と隔壁を挟んで熱交換可能に隣接する一方の排出流路とが配置される。または、前記ステージの内部に前記改質器が配置される。当該燃料電池システムによれば、燃料電池システムの構造を簡素化しつつ、複数の燃料電池に係る排熱を有効利用することができる。 One fuel cell system according to the present invention includes a reformer that reforms a raw fuel to generate a fuel gas, and a plurality of solid oxide types that generate electric power using the fuel gas and the oxidant gas, respectively. A fuel cell; a stage that supports the plurality of fuel cells; a housing that houses the reformer, the plurality of fuel cells and the stage in an internal space; and the fuel gas from the reformer in the housing. A fuel gas supply passage for supplying the fuel gas to the plurality of fuel cells, a negative exhaust gas discharge passage for collecting the negative exhaust gas discharged from the plurality of fuel cells in the housing, and the oxidant gas in the housing. An oxidant gas supply flow path for supplying the plurality of fuel cells, and a positive electrode for collecting positive exhaust gas discharged from the plurality of fuel cells in the housing And a gas discharge channel. Inside the stage, one of the fuel gas supply channel and the oxidizing gas supply channel, and the one of the negative exhaust gas discharge channel and the positive exhaust gas discharge channel. And one discharge channel adjacent to each other so as to exchange heat with the partition wall interposed therebetween. Alternatively, the reformer is disposed inside the stage. According to the fuel cell system, exhaust heat associated with a plurality of fuel cells can be effectively used while simplifying the structure of the fuel cell system.
 本発明の一の好ましい実施の形態では、前記ステージの内部に、前記一方の供給流路および前記一方の排出流路が配置され、前記一方の供給流路におけるガスの流れ方向と、前記一方の排出流路におけるガスの流れ方向とが同じである。 In one preferable embodiment of the present invention, the one supply flow path and the one discharge flow path are arranged inside the stage, and the gas flow direction in the one supply flow path The gas flow direction in the discharge channel is the same.
 本発明の他の好ましい実施の形態では、前記ステージの内部に、前記一方の供給流路および前記一方の排出流路が配置され、前記一方の供給流路と前記一方の排出流路との間の前記隔壁が凹凸部を備える。 In another preferred embodiment of the present invention, the one supply flow path and the one discharge flow path are arranged inside the stage, and the gap is between the one supply flow path and the one discharge flow path. The said partition is equipped with an uneven | corrugated | grooved part.
 本発明の他の好ましい実施の形態では、前記ステージの内部に、前記一方の供給流路および前記一方の排出流路と、前記燃料ガス供給流路および前記酸化剤ガス供給流路のうち他方の供給流路と、前記負極排ガス排出流路および前記正極排ガス排出流路のうち前記他方の供給流路と隔壁を挟んで熱交換可能に隣接する他方の排出流路とが配置される。 In another preferred embodiment of the present invention, the other one of the one supply channel and the one discharge channel, the fuel gas supply channel and the oxidant gas supply channel is provided inside the stage. A supply flow channel, and the other supply flow channel and the other discharge flow channel adjacent to each other across the partition wall among the negative electrode exhaust gas discharge flow channel and the positive electrode exhaust gas discharge flow channel are arranged.
 本発明に係る他の燃料電池システムは、原燃料を改質して燃料ガスを生成する改質器と、それぞれが前記燃料ガスおよび酸化剤ガスを用いて発電を行う固体酸化物形の複数の燃料電池と、前記複数の燃料電池を支持するステージと、内部空間に前記改質器、前記複数の燃料電池および前記ステージを収容するハウジングと、前記ハウジング内において前記改質器からの前記燃料ガスを前記複数の燃料電池に供給する燃料ガス供給流路と、前記ハウジング内において前記複数の燃料電池から排出された負極排ガスが集められる負極排ガス排出流路と、前記ハウジング内において前記酸化剤ガスを前記複数の燃料電池に供給する酸化剤ガス供給流路と、前記ハウジング内において前記複数の燃料電池から排出された正極排ガスが集められる正極排ガス排出流路とを備える。前記ステージの内部に、前記燃料ガス供給流路および前記酸化剤ガス供給流路のうち一方の供給流路と、前記負極排ガス排出流路および前記正極排ガス排出流路のうち前記一方の供給流路とガスの流れ方向が同じである一方の排出流路とが配置される。当該燃料電池システムによれば、ガスの圧損を低減し、燃料電池システムの駆動に必要なエネルギーを低減することができる。 Another fuel cell system according to the present invention includes a reformer that reforms a raw fuel to generate a fuel gas, and a plurality of solid oxide types that generate electric power using the fuel gas and the oxidant gas, respectively. A fuel cell; a stage that supports the plurality of fuel cells; a housing that houses the reformer, the plurality of fuel cells and the stage in an internal space; and the fuel gas from the reformer in the housing. A fuel gas supply passage for supplying the fuel gas to the plurality of fuel cells, a negative exhaust gas discharge passage for collecting the negative exhaust gas discharged from the plurality of fuel cells in the housing, and the oxidant gas in the housing. An oxidant gas supply flow path for supplying the plurality of fuel cells, and a positive electrode for collecting positive exhaust gas discharged from the plurality of fuel cells in the housing And a gas discharge channel. Inside the stage, one of the fuel gas supply channel and the oxidizing gas supply channel, and the one of the negative exhaust gas discharge channel and the positive exhaust gas discharge channel. And one discharge passage having the same gas flow direction. According to the fuel cell system, gas pressure loss can be reduced, and energy required for driving the fuel cell system can be reduced.
 本発明の一の好ましい実施の形態では、前記ステージの内部に、前記一方の供給流路、前記一方の排出流路および前記改質器が配置され、前記改質器が、前記複数の燃料電池と前記一方の排出流路との間に位置する。 In one preferred embodiment of the present invention, the one supply flow channel, the one discharge flow channel, and the reformer are disposed inside the stage, and the reformer is configured to include the plurality of fuel cells. And the one discharge channel.
 より好ましくは、前記ステージの内部にて前記改質器と隔壁を挟んで熱交換可能に隣接し、前記複数の燃料電池からの前記負極排ガスに含まれる未利用の前記燃料ガスを燃焼させる排ガス燃焼部をさらに備え、前記改質器が、前記複数の燃料電池と前記排ガス燃焼部との間に位置し、前記一方の排出流路が前記負極排ガス排出流路であり、前記負極排ガス排出流路を流れる前記負極排ガスが前記排ガス燃焼部へと導かれる。 More preferably, an exhaust gas combustion that combusts the unused fuel gas contained in the anode exhaust gas from the plurality of fuel cells, adjacent to the reformer and the partition wall in a heat exchangeable manner inside the stage. And the reformer is positioned between the plurality of fuel cells and the exhaust gas combustion unit, the one exhaust passage is the negative exhaust gas exhaust passage, and the negative exhaust gas exhaust passage The negative exhaust gas flowing through the exhaust gas is guided to the exhaust gas combustion section.
 さらに好ましくは、前記排ガス燃焼部は、前記燃料電池システムの起動運転の際に、昇温用流体を燃焼させて前記改質器および前記複数の燃料電池を昇温させる起動昇温部でもある。 More preferably, the exhaust gas combustion unit is also a startup temperature raising unit that raises the temperature of the reformer and the plurality of fuel cells by burning a temperature raising fluid during the startup operation of the fuel cell system.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above object and other objects, features, aspects, and advantages will become apparent from the following detailed description of the present invention with reference to the accompanying drawings.
第1の実施の形態に係る燃料電池システムの構成を示す図である。It is a figure which shows the structure of the fuel cell system which concerns on 1st Embodiment. 燃料電池およびステージの斜視図である。It is a perspective view of a fuel cell and a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. 第2の実施の形態に係る燃料電池システムの構成を示す図である。It is a figure which shows the structure of the fuel cell system which concerns on 2nd Embodiment. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage. ステージの断面図である。It is sectional drawing of a stage.
 図1は、本発明の第1の実施の形態に係る燃料電池システム1の構成を示す図である。燃料電池システム1は、燃料電池を用いて発電を行う発電システムである。燃料電池システム1は、ホットモジュール2と、不純物除去部41と、第1熱交換器42と、ブロワ43と、第2熱交換器44と、凝縮部45と、水蒸気生成部46と、原燃料供給源48と、水供給部31と、加熱用流体生成部33とを備える。水供給部31および加熱用流体生成部33は、後述する燃料電池システム1の起動運転時に利用される。 FIG. 1 is a diagram showing a configuration of a fuel cell system 1 according to a first embodiment of the present invention. The fuel cell system 1 is a power generation system that generates power using a fuel cell. The fuel cell system 1 includes a hot module 2, an impurity removing unit 41, a first heat exchanger 42, a blower 43, a second heat exchanger 44, a condensing unit 45, a water vapor generating unit 46, and raw fuel. A supply source 48, a water supply unit 31, and a heating fluid generation unit 33 are provided. The water supply unit 31 and the heating fluid generation unit 33 are used during start-up operation of the fuel cell system 1 described later.
 ホットモジュール2は、ハウジング21と、複数の燃料電池23と、昇温部24と、ステージ27と、ステージ支持部28とを備える。ハウジング21は、例えば、略直方体状の筐体である。図1では、燃料電池システム1の一部の構成(例えば、ハウジング21)を断面にて示す(後述する図10においても同様)。ハウジング21の内面は、断熱性が比較的高い断熱材料(例えば、ロックウール)により形成される。ハウジング21としては、例えば、金属製のコンテナの内面全体を断熱材料により覆ったものが利用される。 The hot module 2 includes a housing 21, a plurality of fuel cells 23, a temperature raising unit 24, a stage 27, and a stage support unit 28. The housing 21 is a substantially rectangular parallelepiped housing, for example. In FIG. 1, a part of the configuration of the fuel cell system 1 (for example, the housing 21) is shown in cross section (the same applies to FIG. 10 described later). The inner surface of the housing 21 is formed of a heat insulating material (for example, rock wool) having a relatively high heat insulating property. As the housing 21, for example, a metal container whose entire inner surface is covered with a heat insulating material is used.
 ハウジング21の内部空間210には、複数の燃料電池23、昇温部24、ステージ27およびステージ支持部28が収容される。昇温部24は、後述する燃料電池システム1の起動運転時に利用される。図1に示す例では、ハウジング21の内部空間210には、12個の燃料電池23が収容される。複数の燃料電池23はそれぞれ、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)である。各燃料電池23は、例えば、図示省略の複数のセル(単電池)が上下方向に積層されたセルスタックである。燃料電池23の外形は、例えば、略直方体状である。 A plurality of fuel cells 23, a temperature raising unit 24, a stage 27, and a stage support unit 28 are accommodated in the internal space 210 of the housing 21. The temperature raising unit 24 is used during start-up operation of the fuel cell system 1 described later. In the example shown in FIG. 1, twelve fuel cells 23 are accommodated in the internal space 210 of the housing 21. Each of the plurality of fuel cells 23 is a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell). Each fuel cell 23 is, for example, a cell stack in which a plurality of cells (unit cells) not shown are stacked in the vertical direction. The outer shape of the fuel cell 23 is, for example, a substantially rectangular parallelepiped shape.
 各燃料電池23の負極(アノード)には燃料ガスが供給され、正極(カソード)には酸化剤ガスが供給される。これにより、各燃料電池23において電気化学反応が生じ、発電が行われる。換言すれば、各燃料電池23は、燃料ガスおよび酸化剤ガスを用いて発電を行う。燃料電池23における電気化学反応は発熱反応であり、発生した熱は、吸熱反応である改質が行われる後述の改質器22(図2および図3参照)の加熱等に利用される。燃料電池23による発電は、例えば600度~1000度の高温下にて行われる。燃料ガスは、例えば水素ガスであり、酸化剤ガスは、例えば酸素である。燃料ガスは、水素ガス以外の様々なガスであってよく、酸化剤ガスも、酸素以外の様々なガスであってよい。 Fuel gas is supplied to the negative electrode (anode) of each fuel cell 23, and oxidant gas is supplied to the positive electrode (cathode). Thereby, an electrochemical reaction occurs in each fuel cell 23, and power generation is performed. In other words, each fuel cell 23 generates power using fuel gas and oxidant gas. The electrochemical reaction in the fuel cell 23 is an exothermic reaction, and the generated heat is used for heating a reformer 22 (see FIG. 2 and FIG. 3) to be described later in which reforming that is an endothermic reaction is performed. Power generation by the fuel cell 23 is performed at a high temperature of 600 to 1000 degrees, for example. The fuel gas is, for example, hydrogen gas, and the oxidant gas is, for example, oxygen. The fuel gas may be various gases other than hydrogen gas, and the oxidant gas may be various gases other than oxygen.
 ハウジング21内において、燃料電池23は複数のステージ27により支持される。各ステージ27は、図1中において左右方向に延びる板状部材である。以下の説明では、図1中の左右方向を、ステージ27の長手方向とも呼ぶ。各ステージ27は、複数の燃料電池23を支持する。また、複数のステージ27は、ステージ支持部28により支持される。図1に示す例では、上下方向に互いに離間して配列される4つのステージ27が、2つのステージ支持部28により左右両側から支持される。各ステージ27は、例えば、3つの燃料電池23を支持する。ステージ27は、例えば、燃料電池23の下面に接し、燃料電池23を下側から支持する。 In the housing 21, the fuel cell 23 is supported by a plurality of stages 27. Each stage 27 is a plate-like member extending in the left-right direction in FIG. In the following description, the left-right direction in FIG. 1 is also referred to as the longitudinal direction of the stage 27. Each stage 27 supports a plurality of fuel cells 23. The plurality of stages 27 are supported by a stage support portion 28. In the example shown in FIG. 1, four stages 27 that are spaced apart from each other in the vertical direction are supported by two stage support portions 28 from both the left and right sides. Each stage 27 supports, for example, three fuel cells 23. For example, the stage 27 is in contact with the lower surface of the fuel cell 23 and supports the fuel cell 23 from below.
 燃料電池システム1では、ハウジング21内に収容される複数の燃料電池23の数は、様々に変更されてよい。また、1つのステージ27により支持される複数の燃料電池23の数も、様々に変更されてよい。ステージ27の数は、燃料電池23の数等に合わせて様々に変更されてよい。例えば、ステージ27の数は1であってもよく、2以上であってもよい。 In the fuel cell system 1, the number of the plurality of fuel cells 23 accommodated in the housing 21 may be variously changed. In addition, the number of the plurality of fuel cells 23 supported by one stage 27 may be variously changed. The number of stages 27 may be variously changed according to the number of fuel cells 23 and the like. For example, the number of stages 27 may be 1 or 2 or more.
 図2は、ハウジング21内の一部の燃料電池23および一部のステージ27を示す斜視図である。図2では、ステージ27の断面を示す。図3は、1つのステージ27の長手方向に垂直な断面を拡大して示す図である。図3では、ステージ27上の燃料電池23も併せて示す。後述する図4ないし図9、並びに、図11ないし図17においても同様である。複数のステージ27の構造は、例えば、互いに略同じである。図2および図3に示すように、各ステージ27の内部には、改質器22と、排ガス燃焼部47と、燃料ガス供給流路251と、負極排ガス排出流路252と、酸化剤ガス供給流路253と、正極排ガス排出流路254とが配置される。 FIG. 2 is a perspective view showing a part of the fuel cells 23 and a part of the stage 27 in the housing 21. FIG. 2 shows a cross section of the stage 27. FIG. 3 is an enlarged view showing a cross section perpendicular to the longitudinal direction of one stage 27. In FIG. 3, the fuel cell 23 on the stage 27 is also shown. The same applies to FIGS. 4 to 9 and FIGS. 11 to 17 described later. The structures of the plurality of stages 27 are substantially the same, for example. As shown in FIGS. 2 and 3, the reformer 22, the exhaust gas combustion unit 47, the fuel gas supply passage 251, the negative exhaust gas discharge passage 252, and the oxidant gas supply are provided inside each stage 27. A flow path 253 and a positive exhaust gas discharge flow path 254 are disposed.
 図1に示す例では、改質器22、排ガス燃焼部47、燃料ガス供給流路251、負極排ガス排出流路252、酸化剤ガス供給流路253および正極排ガス排出流路254のそれぞれの数は、ステージ27の数と同じである。具体的には、4つの改質器22と、4つの排ガス燃焼部47と、4つの燃料ガス供給流路251と、4つの負極排ガス排出流路252と、4つの酸化剤ガス供給流路253と、4つの正極排ガス排出流路254とが、ハウジング21内に収容される。 In the example shown in FIG. 1, the number of each of the reformer 22, the exhaust gas combustion unit 47, the fuel gas supply passage 251, the negative exhaust gas discharge passage 252, the oxidant gas supply passage 253, and the positive exhaust gas discharge passage 254 is The number of stages 27 is the same. Specifically, the four reformers 22, the four exhaust gas combustion sections 47, the four fuel gas supply channels 251, the four negative exhaust gas discharge channels 252, and the four oxidant gas supply channels 253. The four positive exhaust gas discharge channels 254 are accommodated in the housing 21.
 図3に示すように、各ステージ27の内部は、比較的薄くかつ熱伝導性が比較的高い隔壁270により、複数の分割空間271~276に分割されている。隔壁270は、例えば、金属により形成される薄板状の部材である。分割空間271~276はそれぞれ、ステージ27の長手方向(すなわち、図1中の左右方向)に延びる略四角柱状の空間である。以下の説明では、分割空間271~276をそれぞれ、「第1分割空間271」、「第2分割空間272」、「第3分割空間273」、「第4分割空間274」、「第5分割空間275」、「第6分割空間276」と呼ぶ。 As shown in FIG. 3, the interior of each stage 27 is divided into a plurality of divided spaces 271 to 276 by partition walls 270 that are relatively thin and have relatively high thermal conductivity. The partition wall 270 is, for example, a thin plate member made of metal. Each of the divided spaces 271 to 276 is a substantially quadrangular columnar space extending in the longitudinal direction of the stage 27 (that is, the left-right direction in FIG. 1). In the following description, the divided spaces 271 to 276 are respectively referred to as “first divided space 271”, “second divided space 272”, “third divided space 273”, “fourth divided space 274”, “fifth divided space”. 275 ”and“ sixth divided space 276 ”.
 第1分割空間271は、ステージ27の内部において最上層(すなわち、ステージ27上に配置された複数の燃料電池23に最も近い層)に配置される。第1分割空間271は、ステージ27の全幅(すなわち、図3中の左右方向であるステージ27の幅方向全体)に亘って設けられる。第1分割空間271には、改質器22が配置される。換言すれば、改質器22は、ステージ27の内部において最上層に配置される。改質器22は、ステージ27上に配置された複数の燃料電池23と、ステージ27の上面(すなわち、複数の燃料電池23を支持する電池支持面)を挟んで上下方向に熱交換可能に隣接する。 The first divided space 271 is arranged in the uppermost layer inside the stage 27 (that is, the layer closest to the plurality of fuel cells 23 arranged on the stage 27). The first divided space 271 is provided over the entire width of the stage 27 (that is, the entire width direction of the stage 27 in the left-right direction in FIG. 3). The reformer 22 is disposed in the first divided space 271. In other words, the reformer 22 is disposed in the uppermost layer inside the stage 27. The reformer 22 is adjacent to the plurality of fuel cells 23 arranged on the stage 27 and the upper surface of the stage 27 (that is, the cell support surface that supports the plurality of fuel cells 23) so that heat can be exchanged in the vertical direction. To do.
 第2分割空間272は、ステージ27の内部において、第1分割空間271の下側に配置され、略水平に広がる隔壁270を挟んで第1分割空間271と上下方向に隣接する。第2分割空間272は、ステージ27の内部において、上側から2番目の層(すなわち、ステージ27上に配置された複数の燃料電池23に2番目に近い層)に配置される。第2分割空間272は、ステージ27の全幅に亘って設けられる。第2分割空間272には、排ガス燃焼部47が配置される。換言すれば、排ガス燃焼部47は、ステージ27の内部において、上側から2番目の層に配置される。排ガス燃焼部47は、第1分割空間271内の改質器22と、隔壁270を挟んで上下方向に熱交換可能に隣接する。 The second divided space 272 is disposed below the first divided space 271 inside the stage 27, and is adjacent to the first divided space 271 in the vertical direction with a partition wall 270 extending substantially horizontally. The second divided space 272 is arranged in the second layer from the top in the stage 27 (that is, the second layer closest to the plurality of fuel cells 23 arranged on the stage 27). The second divided space 272 is provided over the entire width of the stage 27. An exhaust gas combustion unit 47 is disposed in the second divided space 272. In other words, the exhaust gas combustion unit 47 is arranged in the second layer from the upper side inside the stage 27. The exhaust gas combustion unit 47 is adjacent to the reformer 22 in the first divided space 271 so that heat can be exchanged in the vertical direction across the partition wall 270.
 第3分割空間273および第4分割空間274は、ステージ27の内部において、第2分割空間272の下側に配置され、略水平に広がる隔壁270を挟んで第2分割空間272と上下方向に隣接する。第3分割空間273および第4分割空間274は、ステージ27の内部において、上側から3番目の層に配置される。第3分割空間273と第4分割空間274とは、略鉛直に広がる隔壁270を挟んで水平方向に熱交換可能に隣接する。 The third divided space 273 and the fourth divided space 274 are disposed below the second divided space 272 inside the stage 27, and are adjacent to the second divided space 272 in the vertical direction across the partition wall 270 that extends substantially horizontally. To do. The third divided space 273 and the fourth divided space 274 are arranged in the third layer from the upper side inside the stage 27. The third divided space 273 and the fourth divided space 274 are adjacent to each other so that heat can be exchanged in the horizontal direction with a partition wall 270 extending substantially vertically.
 第3分割空間273の内部空間は、燃料ガス供給流路251として利用される。第4分割空間274の内部空間は、酸化剤ガス供給流路253として利用される。換言すれば、燃料ガス供給流路251および酸化剤ガス供給流路253は、ステージ27の内部において、上側から3番目の層(すなわち、ステージ27上に配置された複数の燃料電池23に3番目に近い層)に配置される。燃料ガス供給流路251および酸化剤ガス供給流路253は、第2分割空間272内の排ガス燃焼部47と、隔壁270を挟んで上下方向に熱交換可能に隣接する。 The internal space of the third divided space 273 is used as the fuel gas supply channel 251. The internal space of the fourth divided space 274 is used as the oxidant gas supply channel 253. In other words, the fuel gas supply channel 251 and the oxidant gas supply channel 253 are arranged in the third layer from the upper side in the stage 27 (that is, the third fuel cell 23 arranged on the stage 27 is third. Layer). The fuel gas supply channel 251 and the oxidant gas supply channel 253 are adjacent to the exhaust gas combustion part 47 in the second divided space 272 so that heat can be exchanged in the vertical direction across the partition wall 270.
 第5分割空間275は、ステージ27の内部において、第3分割空間273の下側に配置され、略水平に広がる隔壁270を挟んで第3分割空間273と上下方向に隣接する。第6分割空間276は、ステージ27の内部において、第4分割空間274の下側に配置され、略水平に広がる隔壁270を挟んで第4分割空間274と上下方向に隣接する。第5分割空間275および第6分割空間276は、ステージ27の内部において最下層(すなわち、ステージ27上に配置された複数の燃料電池23から最も遠い層)に配置される。第5分割空間275と第6分割空間276とは、略鉛直に広がる隔壁270を挟んで水平方向に熱交換可能に隣接する。 The fifth divided space 275 is disposed below the third divided space 273 inside the stage 27, and is adjacent to the third divided space 273 in the vertical direction with the partition wall 270 extending substantially horizontally. The sixth divided space 276 is disposed below the fourth divided space 274 inside the stage 27 and is adjacent to the fourth divided space 274 in the vertical direction with the partition wall 270 extending substantially horizontally. The fifth divided space 275 and the sixth divided space 276 are arranged in the lowest layer (that is, the layer farthest from the plurality of fuel cells 23 arranged on the stage 27) inside the stage 27. The fifth divided space 275 and the sixth divided space 276 are adjacent to each other so that heat can be exchanged in the horizontal direction with a partition wall 270 extending substantially vertically.
 第5分割空間275の内部空間は、負極排ガス排出流路252として利用される。第6分割空間276の内部空間は、正極排ガス排出流路254として利用される。換言すれば、負極排ガス排出流路252および正極排ガス排出流路254は、ステージ27の内部において、最下層に配置される。負極排ガス排出流路252は、第3分割空間273の内部空間である燃料ガス供給流路251と、隔壁270を挟んで上下方向に熱交換可能に隣接する。正極排ガス排出流路254は、第4分割空間274の内部空間である酸化剤ガス供給流路253と、隔壁270を挟んで上下方向に熱交換可能に隣接する。 The internal space of the fifth divided space 275 is used as the negative electrode exhaust gas discharge passage 252. The internal space of the sixth divided space 276 is used as the positive electrode exhaust gas discharge channel 254. In other words, the negative exhaust gas exhaust passage 252 and the positive exhaust gas exhaust passage 254 are arranged in the lowest layer inside the stage 27. The negative exhaust gas discharge flow path 252 is adjacent to the fuel gas supply flow path 251 that is the internal space of the third divided space 273 so that heat can be exchanged in the vertical direction across the partition wall 270. The positive exhaust gas discharge channel 254 is adjacent to the oxidant gas supply channel 253 that is the internal space of the fourth divided space 274 so that heat can be exchanged in the vertical direction across the partition wall 270.
 ステージ27の内部に収容された改質器22は、当該ステージ27上の複数の燃料電池23と、排ガス燃焼部47、燃料ガス供給流路251、酸化剤ガス供給流路253、負極排ガス排出流路252および正極排ガス排出流路254との間に位置する。排ガス燃焼部47は、改質器22と、燃料ガス供給流路251、酸化剤ガス供給流路253、負極排ガス排出流路252および正極排ガス排出流路254との間に位置する。 The reformer 22 accommodated in the stage 27 includes a plurality of fuel cells 23 on the stage 27, an exhaust gas combustion unit 47, a fuel gas supply channel 251, an oxidant gas supply channel 253, a negative exhaust gas exhaust flow. It is located between the path 252 and the positive electrode exhaust gas discharge path 254. The exhaust gas combustion unit 47 is located between the reformer 22 and the fuel gas supply channel 251, the oxidant gas supply channel 253, the negative exhaust gas exhaust channel 252, and the positive exhaust gas exhaust channel 254.
 図4ないし図6はそれぞれ、ステージ27の長手方向における3つの異なる位置においてステージ27を長手方向に垂直に切断した断面図である。図4に示すように、改質器22は、排ガス燃焼部47を上下方向に貫通する接続流路277aを介して、燃料ガス供給流路251に接続される。燃料ガス供給流路251は、排ガス燃焼部47および改質器22を上下方向に貫通する接続流路277bを介して、燃料電池23の負極の燃料ガス導入口に接続される。また、酸化剤ガス供給流路253は、排ガス燃焼部47および改質器22を上下方向に貫通する接続流路277cを介して、燃料電池23の正極の酸化剤ガス導入口に接続される。燃料ガス導入口および酸化剤ガス導入口は、例えば、ステージ27に接する燃料電池23の下面に設けられる。 4 to 6 are sectional views of the stage 27 cut perpendicularly to the longitudinal direction at three different positions in the longitudinal direction of the stage 27, respectively. As shown in FIG. 4, the reformer 22 is connected to the fuel gas supply flow path 251 through a connection flow path 277 a that penetrates the exhaust gas combustion unit 47 in the vertical direction. The fuel gas supply channel 251 is connected to the fuel gas inlet of the negative electrode of the fuel cell 23 via a connection channel 277 b that penetrates the exhaust gas combustion unit 47 and the reformer 22 in the vertical direction. The oxidant gas supply channel 253 is connected to the oxidant gas inlet of the positive electrode of the fuel cell 23 via a connection channel 277 c that penetrates the exhaust gas combustion unit 47 and the reformer 22 in the vertical direction. The fuel gas inlet and the oxidant gas inlet are provided on the lower surface of the fuel cell 23 in contact with the stage 27, for example.
 図5に示すように、負極排ガス排出流路252は、燃料ガス供給流路251、排ガス燃焼部47および改質器22を上下方向に貫通する接続流路277dを介して、燃料電池23の負極の負極排ガス排出口に接続される。正極排ガス排出流路254は、酸化剤ガス供給流路253、排ガス燃焼部47および改質器22を上下方向に貫通する接続流路277eを介して、燃料電池23の正極の正極排ガス排出口に接続される。負極排ガス排出口および正極排ガス排出口は、例えば、ステージ27に接する燃料電池23の下面に設けられる。 As shown in FIG. 5, the negative exhaust gas discharge flow path 252 is connected to the negative electrode of the fuel cell 23 via the fuel gas supply flow path 251, the exhaust gas combustion section 47, and the connection flow path 277 d penetrating the reformer 22 in the vertical direction. Connected to the negative gas exhaust gas outlet. The positive exhaust gas discharge channel 254 is connected to the positive exhaust gas discharge port of the positive electrode of the fuel cell 23 via a connecting flow channel 277e penetrating the oxidant gas supply channel 253, the exhaust gas combustion unit 47 and the reformer 22 in the vertical direction. Connected. The negative exhaust gas exhaust port and the positive exhaust gas exhaust port are provided, for example, on the lower surface of the fuel cell 23 in contact with the stage 27.
 図6に示すように、負極排ガス排出流路252は、燃料ガス供給流路251を上下方向に貫通する接続流路277fを介して、排ガス燃焼部47に接続される。正極排ガス排出流路254は、酸化剤ガス供給流路253を上下方向に貫通する接続流路277gを介して、排ガス燃焼部47に接続される。 As shown in FIG. 6, the negative electrode exhaust gas discharge channel 252 is connected to the exhaust gas combustion unit 47 through a connection channel 277 f that penetrates the fuel gas supply channel 251 in the vertical direction. The positive exhaust gas discharge channel 254 is connected to the exhaust gas combustion unit 47 via a connection channel 277g that penetrates the oxidant gas supply channel 253 in the vertical direction.
 各ステージ27の改質器22は、図1および図2に示すように、原燃料共通供給管261を介して、ハウジング21外に配置される原燃料供給源48に接続される。原燃料共通供給管261上には、不純物除去部41および第1熱交換器42が設けられる。不純物除去部41では、原燃料供給源48から改質器22へと供給される原燃料から不純物(例えば、硫黄系不純物や窒素系不純物)が除去される。各改質器22は、また、第1熱交換器42よりも上流において(具体的には、第1熱交換器24と不純物除去部41との間において)原燃料共通供給管261から分岐する水蒸気供給管262を介して、ハウジング21外に配置される水蒸気生成部46にも接続される。ハウジング21内においては、原燃料共通供給管261は、ステージ支持部28の内部に配置される。 The reformer 22 of each stage 27 is connected to a raw fuel supply source 48 disposed outside the housing 21 via a raw fuel common supply pipe 261 as shown in FIGS. An impurity removing unit 41 and a first heat exchanger 42 are provided on the raw fuel common supply pipe 261. The impurity removing unit 41 removes impurities (for example, sulfur-based impurities and nitrogen-based impurities) from the raw fuel supplied from the raw fuel supply source 48 to the reformer 22. Each reformer 22 also branches from the raw fuel common supply pipe 261 upstream of the first heat exchanger 42 (specifically, between the first heat exchanger 24 and the impurity removal unit 41). It is also connected to a water vapor generation unit 46 disposed outside the housing 21 via the water vapor supply pipe 262. In the housing 21, the raw fuel common supply pipe 261 is disposed inside the stage support portion 28.
 改質器22は、原燃料を改質して燃料ガスを含む改質ガスを生成する。原燃料としては、例えば、LPガス、都市ガス、天然ガス、灯油、バイオガスまたはバイオエタノール等が利用される。改質器22では、例えば、水蒸気改質法、部分酸化改質法、自己熱改質法等により原燃料の改質が行われる。図1に示す例では、改質器22により、原燃料供給源48から供給された原燃料である都市ガスが、水蒸気生成部46から供給された水蒸気を利用して、水蒸気改質法により高温下にて改質され、燃料ガスである水素ガスを含む改質ガスが生成される。 The reformer 22 reforms the raw fuel to generate a reformed gas containing a fuel gas. As the raw fuel, for example, LP gas, city gas, natural gas, kerosene, biogas or bioethanol is used. In the reformer 22, the raw fuel is reformed by, for example, a steam reforming method, a partial oxidation reforming method, an autothermal reforming method, or the like. In the example shown in FIG. 1, the city gas that is the raw fuel supplied from the raw fuel supply source 48 by the reformer 22 is heated at a high temperature by the steam reforming method using the steam supplied from the steam generation unit 46. A reformed gas containing hydrogen gas as a fuel gas is generated under reforming.
 各ステージ27の内部では、改質器22からの改質ガスが、図4に示す接続流路277aを介して燃料ガス供給流路251へと導かれる。改質ガスは、燃料ガス供給流路251内において、ステージ27の長手方向に沿う所定の流れ方向へと流れる。図1に示す例では、改質ガスは、図1中の左側から右側へと流れる。燃料ガス供給流路251を流れる改質ガスは、ステージ27上の3つの燃料電池23の負極へと、それぞれ接続流路277b(図4参照)を介して供給される。換言すれば、燃料ガス供給流路251は、ハウジング21内において改質器22からの燃料ガス(を含む改質ガス)を複数の燃料電池23に供給する。 Inside each stage 27, the reformed gas from the reformer 22 is guided to the fuel gas supply channel 251 through the connection channel 277a shown in FIG. The reformed gas flows in a predetermined flow direction along the longitudinal direction of the stage 27 in the fuel gas supply channel 251. In the example shown in FIG. 1, the reformed gas flows from the left side to the right side in FIG. The reformed gas flowing through the fuel gas supply channel 251 is supplied to the negative electrodes of the three fuel cells 23 on the stage 27 via connection channels 277b (see FIG. 4). In other words, the fuel gas supply channel 251 supplies the fuel gas (including reformed gas) from the reformer 22 in the housing 21 to the plurality of fuel cells 23.
 各燃料電池23の負極から排出されるガスである負極排ガスはそれぞれ、図5に示す接続流路277dを介して負極排ガス排出流路252へと導かれる。換言すれば、負極排ガス排出流路252は、複数の燃料電池23から排出された負極排ガスを集める。負極排ガスには、燃料ガスである水素ガスが燃料電池23における発電に使用されることにより生成される水蒸気、および、燃料電池23における発電に利用されなかった未利用の燃料ガス等が含まれる。 The negative exhaust gas, which is the gas discharged from the negative electrode of each fuel cell 23, is led to the negative exhaust gas discharge flow path 252 via the connection flow path 277d shown in FIG. In other words, the negative electrode exhaust gas discharge passage 252 collects the negative electrode exhaust gas discharged from the plurality of fuel cells 23. The negative electrode exhaust gas includes water vapor generated when hydrogen gas, which is a fuel gas, is used for power generation in the fuel cell 23, and unused fuel gas that has not been used for power generation in the fuel cell 23.
 負極排ガスは、負極排ガス排出流路252内において、ステージ27の長手方向に沿う上述の所定の流れ方向へと流れる。図1に示す例では、負極排ガスは、図1中の左側から右側へと流れる。すなわち、負極排ガス排出流路252における負極排ガスの流れ方向と、燃料ガス供給流路251における改質ガスの流れ方向とは同じである。図3に示す負極排ガス排出流路252を流れる高温の負極排ガスにより、負極排ガス排出流路252の上側に隔壁270を介して隣接する燃料ガス供給流路251を流れる改質ガスが加熱される。負極排ガス排出流路252を流れる負極排ガスは、図6に示す接続流路277fを介して排ガス燃焼部47へと導かれる。 The negative exhaust gas flows in the predetermined flow direction along the longitudinal direction of the stage 27 in the negative exhaust gas discharge channel 252. In the example shown in FIG. 1, the negative electrode exhaust gas flows from the left side to the right side in FIG. That is, the flow direction of the negative exhaust gas in the negative exhaust gas discharge flow path 252 and the flow direction of the reformed gas in the fuel gas supply flow path 251 are the same. The reformed gas flowing in the fuel gas supply flow path 251 adjacent to the upper side of the negative exhaust gas discharge flow path 252 via the partition wall 270 is heated by the high temperature negative exhaust gas flowing in the negative exhaust gas discharge flow path 252 shown in FIG. The negative exhaust gas flowing through the negative exhaust gas discharge channel 252 is guided to the exhaust gas combustion unit 47 through the connection channel 277f shown in FIG.
 各ステージ27の酸化剤ガス供給流路253は、図1および図2に示すように、酸化剤ガス共通供給管263を介して、ハウジング21外に配置されるブロワ43に接続される。ハウジング21内においては、酸化剤ガス共通供給管263は、ステージ支持部28の内部に配置される。ブロワ43により、酸化剤ガスである酸素ガスを含む空気が、酸化剤ガス共通供給管263を介して、各ステージ27の酸化剤ガス供給流路253に供給される。 The oxidant gas supply channel 253 of each stage 27 is connected to a blower 43 disposed outside the housing 21 via an oxidant gas common supply pipe 263 as shown in FIGS. In the housing 21, the oxidant gas common supply pipe 263 is disposed inside the stage support portion 28. The blower 43 supplies air containing oxygen gas, which is oxidant gas, to the oxidant gas supply channel 253 of each stage 27 via the oxidant gas common supply pipe 263.
 酸化剤ガス供給流路253において、空気は、ステージ27の長手方向に沿う上述の所定の流れ方向へと流れる。図1に示す例では、空気は、図1中の左側から右側へと流れる。酸化剤ガス供給流路253を流れる空気は、ステージ27上の3つの燃料電池23の正極へと、それぞれ図4に示す接続流路277cを介して供給される。換言すれば、酸化剤ガス供給流路253は、ハウジング21内において酸化剤ガス(を含む空気)を複数の燃料電池23に供給する。 In the oxidant gas supply channel 253, the air flows in the predetermined flow direction along the longitudinal direction of the stage 27. In the example shown in FIG. 1, air flows from the left side to the right side in FIG. The air flowing through the oxidant gas supply channel 253 is supplied to the positive electrodes of the three fuel cells 23 on the stage 27 via the connection channels 277c shown in FIG. In other words, the oxidant gas supply channel 253 supplies the oxidant gas (including air) to the plurality of fuel cells 23 in the housing 21.
 各燃料電池23の正極から排出されるガスである正極排ガスはそれぞれ、図5に示す接続流路277eを介して正極排ガス排出流路254へと導かれる。換言すれば、正極排ガス排出流路254は、複数の燃料電池23から排出された正極排ガスを集める。正極排ガスには、燃料電池23における発電に利用されなかった未利用の酸化剤ガス等が含まれる。 The positive exhaust gas that is the gas discharged from the positive electrode of each fuel cell 23 is led to the positive exhaust gas discharge flow channel 254 via the connection flow channel 277e shown in FIG. In other words, the positive exhaust gas discharge passage 254 collects positive exhaust gases discharged from the plurality of fuel cells 23. The positive exhaust gas includes unused oxidant gas that has not been used for power generation in the fuel cell 23.
 正極排ガスは、正極排ガス排出流路254内において、ステージ27の長手方向に沿う上述の所定の流れ方向へと流れる。図1に示す例では、正極排ガスは、図1中の左側から右側へと流れる。すなわち、正極排ガス排出流路254における正極排ガスの流れ方向と、酸化剤ガス供給流路253における空気の流れ方向とは同じである。図3に示す正極排ガス排出流路254を流れる高温の正極排ガスにより、正極排ガス排出流路254の上側に隔壁270を介して隣接する酸化剤ガス供給流路253を流れる空気が加熱される。正極排ガス排出流路254を流れる正極排ガスは、図6に示す接続流路277gを介して排ガス燃焼部47へと導かれる。 The positive exhaust gas flows in the positive exhaust gas discharge passage 254 in the predetermined flow direction along the longitudinal direction of the stage 27. In the example shown in FIG. 1, the positive electrode exhaust gas flows from the left side to the right side in FIG. That is, the flow direction of the positive exhaust gas in the positive exhaust gas discharge flow path 254 and the flow direction of the air in the oxidant gas supply flow path 253 are the same. The high-temperature positive exhaust gas flowing through the positive exhaust gas discharge channel 254 shown in FIG. 3 heats the air flowing through the oxidant gas supply channel 253 adjacent to the upper side of the positive exhaust gas exhaust channel 254 via the partition wall 270. The positive exhaust gas flowing through the positive exhaust gas discharge channel 254 is guided to the exhaust gas combustion unit 47 through the connection channel 277g shown in FIG.
 燃料電池システム1では、正極排ガス排出流路254における正極排ガスの流れ方向と、燃料ガス供給流路251における改質ガスの流れ方向とも同じである。また、酸化剤ガス供給流路253における空気の流れ方向と、負極排ガス排出流路252における負極排ガスの流れ方向とも同じである。 In the fuel cell system 1, the flow direction of the positive exhaust gas in the positive exhaust gas discharge channel 254 and the flow direction of the reformed gas in the fuel gas supply channel 251 are the same. Further, the flow direction of air in the oxidant gas supply channel 253 and the flow direction of negative electrode exhaust gas in the negative electrode exhaust gas discharge channel 252 are the same.
 排ガス燃焼部47では、負極排ガス排出流路252からの負極排ガスと、正極排ガス排出流路254からの正極排ガスとが合流する。排ガス燃焼部47では、合流後の負極排ガスおよび正極排ガスが燃焼される。これにより、複数の燃料電池23からの負極排ガスに含まれる未利用の燃料ガス等が燃焼される。排ガス燃焼部47としては、例えば、触媒燃焼器が利用される。排ガス燃焼部47における燃焼により生じた熱(すなわち、燃焼熱)は、排ガス燃焼部47の上側に隔壁270を介して隣接する改質器22に伝達される。また、排ガス燃焼部47における燃焼熱は、排ガス燃焼部47の下側に隔壁270を介して隣接する燃料ガス供給流路251および酸化剤ガス供給流路253内の改質ガスおよび空気にも伝達される。 In the exhaust gas combustion unit 47, the negative electrode exhaust gas from the negative electrode exhaust gas discharge channel 252 and the positive electrode exhaust gas from the positive electrode exhaust gas discharge channel 254 merge. In the exhaust gas combustion section 47, the merged negative electrode exhaust gas and positive electrode exhaust gas are combusted. Thereby, unused fuel gas contained in the negative electrode exhaust gas from the plurality of fuel cells 23 is burned. For example, a catalytic combustor is used as the exhaust gas combustion unit 47. Heat generated by combustion in the exhaust gas combustion unit 47 (that is, combustion heat) is transmitted to the reformer 22 adjacent to the upper side of the exhaust gas combustion unit 47 via the partition wall 270. The combustion heat in the exhaust gas combustion section 47 is also transmitted to the reformed gas and air in the fuel gas supply channel 251 and the oxidant gas supply channel 253 adjacent to the lower side of the exhaust gas combustion unit 47 via the partition wall 270. Is done.
 図1および図2に示すように、各ステージ27の排ガス燃焼部47を通過した排ガスは、排ガス共通排出管264を介して、ハウジング21の外部へと導かれる。ハウジング21の内部においては、排ガス共通排出管264は、ステージ支持部28の内部に配置される。ハウジング21外へと排出された排ガスは、排ガス共通排出管264により第2熱交換器44へと導かれる。第2熱交換器44では、排ガス共通排出管264を流れる高温の排ガスを利用して、ブロワ43から各ステージ27の酸化剤ガス供給流路253へと供給される空気が予備加熱される。 As shown in FIGS. 1 and 2, the exhaust gas that has passed through the exhaust gas combustion portion 47 of each stage 27 is guided to the outside of the housing 21 via the exhaust gas common discharge pipe 264. Inside the housing 21, the exhaust gas common discharge pipe 264 is disposed inside the stage support portion 28. The exhaust gas discharged out of the housing 21 is guided to the second heat exchanger 44 through the exhaust gas common discharge pipe 264. In the second heat exchanger 44, the air supplied from the blower 43 to the oxidant gas supply channel 253 of each stage 27 is preheated using the high-temperature exhaust gas flowing through the exhaust gas common discharge pipe 264.
 第2熱交換器44を通過した排ガスは、排ガス共通排出管264により第1熱交換器42へと導かれる。第1熱交換器42では、排ガス共通排出管264を流れる高温の排ガスを利用して、原燃料供給源48および水蒸気生成部46から各ステージ27の改質器22に供給される原燃料および水蒸気が予備加熱される。 The exhaust gas that has passed through the second heat exchanger 44 is guided to the first heat exchanger 42 through the exhaust gas common discharge pipe 264. In the first heat exchanger 42, the raw fuel and steam supplied from the raw fuel supply source 48 and the steam generator 46 to the reformer 22 of each stage 27 using the high-temperature exhaust gas flowing through the exhaust gas common exhaust pipe 264. Is preheated.
 第1熱交換器42を通過した排ガスは、排ガス共通排出管264により凝縮部45へと導かれる。凝縮部45では、排ガス中の水蒸気が凝縮されて水が生成される。凝縮部45により生成された水は、水供給管451を介して水蒸気生成部46へと供給される。水蒸気生成部46では、水が加熱されて水蒸気が生成される。水蒸気生成部46により生成された水蒸気は、上述のように、水蒸気供給管262を介して原燃料共通供給管261へと導かれ、不純物除去部41を通過した原燃料と共に、各ステージ27の改質器22へと供給されて上述の水蒸気改質に利用される。一方、凝縮部45を通過した排ガスは、燃料電池システム1の外部へと排出される。 The exhaust gas that has passed through the first heat exchanger 42 is guided to the condensing unit 45 through the exhaust gas common discharge pipe 264. In the condensing part 45, the water vapor | steam in exhaust gas is condensed and water is produced | generated. The water generated by the condensing unit 45 is supplied to the water vapor generating unit 46 through the water supply pipe 451. In the water vapor generation unit 46, water is heated to generate water vapor. As described above, the water vapor generated by the water vapor generation unit 46 is guided to the raw fuel common supply pipe 261 via the water vapor supply pipe 262, and together with the raw fuel that has passed through the impurity removal unit 41, the reforming of each stage 27 is performed. It is supplied to the mass device 22 and used for the steam reforming described above. On the other hand, the exhaust gas that has passed through the condensing unit 45 is discharged to the outside of the fuel cell system 1.
 燃料電池システム1の定常運転では、上述のように、ステージ27に支持される複数の燃料電池23のそれぞれにおいて、燃料ガスおよび酸化剤ガスを用いて発電が行われる。複数の燃料電池23における発電の際に発生した熱は、図3に示すステージ27内の最上層にて複数の燃料電池23と隣接する改質器22に伝達される。複数の燃料電池23から改質器22に付与された熱は、改質器22における原燃料の水蒸気改質等に利用される。 In the steady operation of the fuel cell system 1, as described above, in each of the plurality of fuel cells 23 supported by the stage 27, power generation is performed using the fuel gas and the oxidant gas. Heat generated during power generation in the plurality of fuel cells 23 is transmitted to the reformer 22 adjacent to the plurality of fuel cells 23 in the uppermost layer in the stage 27 shown in FIG. The heat applied from the plurality of fuel cells 23 to the reformer 22 is used for steam reforming of the raw fuel in the reformer 22.
 燃料電池システム1の定常運転では、複数の燃料電池23から負極排ガス排出流路252へと排出された負極排ガスの熱が、燃料ガス供給流路251を流れる改質ガスに伝達される。これにより、各燃料電池23に供給される改質ガスの加熱が行われる。また、複数の燃料電池23から正極排ガス排出流路254へと排出された正極排ガスの熱が、酸化剤ガス供給流路253を流れる空気に伝達される。これにより、各燃料電池23に供給される空気の加熱が行われる。さらに、排ガス燃焼部47から排出された排ガスを利用して、第1熱交換器42において、改質器22に供給される原燃料および水蒸気の予備加熱が行われ、第2熱交換器44において、酸化剤ガス供給流路253に供給される空気の予備加熱が行われる。 In the steady operation of the fuel cell system 1, the heat of the negative exhaust gas discharged from the plurality of fuel cells 23 to the negative exhaust gas discharge passage 252 is transmitted to the reformed gas flowing through the fuel gas supply passage 251. Thereby, the reformed gas supplied to each fuel cell 23 is heated. Further, the heat of the positive exhaust gas discharged from the plurality of fuel cells 23 to the positive exhaust gas discharge passage 254 is transmitted to the air flowing through the oxidant gas supply passage 253. Thereby, the air supplied to each fuel cell 23 is heated. Further, the exhaust gas discharged from the exhaust gas combustion unit 47 is used to preheat the raw fuel and steam supplied to the reformer 22 in the first heat exchanger 42, and in the second heat exchanger 44. Then, preheating of the air supplied to the oxidant gas supply channel 253 is performed.
 このように、燃料電池システム1では、定常運転時に発生する熱を利用して、定常運転時にシステム内にて必要とされる熱をシステム外から付与することなく定常運転を行うことができる。さらに、燃料電池システム1では、排ガスに含まれる水蒸気を改質器22において行われる水蒸気改質に利用することにより、定常運転時にシステム内にて必要とされる水を、システム外から付与することなく定常運転を行うことができる。換言すれば、定常運転時の燃料電池システム1では、熱自立運転および水自立運転が可能である。 As described above, the fuel cell system 1 can perform the steady operation without using the heat generated in the steady operation without applying the heat required in the system during the steady operation from outside the system. Furthermore, in the fuel cell system 1, by using the steam contained in the exhaust gas for the steam reforming performed in the reformer 22, the water required in the system during steady operation is given from outside the system. Steady operation can be performed. In other words, in the fuel cell system 1 during the steady operation, the heat independent operation and the water independent operation are possible.
 次に、燃料電池システム1の起動運転(いわゆる、コールドスタート)について説明する。燃料電池システム1の起動運転とは、燃料電池システム1の状態を停止状態から、定常的に発電を行う定常運転状態へと変更することである。 Next, the start-up operation (so-called cold start) of the fuel cell system 1 will be described. The start-up operation of the fuel cell system 1 is to change the state of the fuel cell system 1 from a stopped state to a steady operation state in which power generation is constantly performed.
 燃料電池システム1の起動運転では、水供給部31、加熱用流体生成部33および昇温部24が利用される。水供給部31は、水を貯溜するとともに、燃料電池システム1の起動運転の際に、当該水を燃料電池システム1の改質器22に供給する。水供給部31は、例えば、水貯溜部311と、ポンプ312と、起動用水供給管313とを備える。水貯溜部311は、水(例えば、純水)を貯溜するタンクである。水貯溜部311は、起動用水供給管313を介して、燃料電池システム1の水蒸気生成部46に接続される。ポンプ312は、起動用水供給管313上に設けられ、水貯溜部311に貯溜されている水を水蒸気生成部46へと供給する。 In the start-up operation of the fuel cell system 1, the water supply unit 31, the heating fluid generation unit 33, and the temperature raising unit 24 are used. The water supply unit 31 stores water and supplies the water to the reformer 22 of the fuel cell system 1 when the fuel cell system 1 is activated. The water supply unit 31 includes, for example, a water storage unit 311, a pump 312, and an activation water supply pipe 313. The water storage unit 311 is a tank that stores water (for example, pure water). The water storage unit 311 is connected to the water vapor generation unit 46 of the fuel cell system 1 via the startup water supply pipe 313. The pump 312 is provided on the activation water supply pipe 313 and supplies water stored in the water storage unit 311 to the water vapor generation unit 46.
 加熱用流体生成部33は、起動用原燃料供給管255により、不純物除去部41を介して原燃料供給源48に接続される。加熱用流体生成部33は、また、起動用ガス供給管256を介してブロワ43に接続される。加熱用流体生成部33では、原燃料供給源48から供給される原燃料(例えば、LPガス、都市ガス、天然ガス、灯油、バイオガスまたはバイオエタノール)が、ブロワ43から供給されるガス(例えば、空気)を利用して燃焼され、比較的高温のガス(以下、「加熱用ガス」という。)が生成される。図1に示す例では、加熱用流体生成部33として触媒燃焼器が利用される。そして、加熱用流体生成部33において、原燃料である都市ガスが酸化されて加熱用ガスが生成される。 The heating fluid generation unit 33 is connected to the raw fuel supply source 48 via the impurity removal unit 41 by the starting raw fuel supply pipe 255. The heating fluid generator 33 is also connected to the blower 43 via the activation gas supply pipe 256. In the heating fluid generator 33, the raw fuel (for example, LP gas, city gas, natural gas, kerosene, biogas, or bioethanol) supplied from the raw fuel supply source 48 is supplied from the blower 43 (for example, , Air), and a relatively high temperature gas (hereinafter referred to as “heating gas”) is generated. In the example shown in FIG. 1, a catalytic combustor is used as the heating fluid generator 33. And in the heating fluid production | generation part 33, the city gas which is raw fuel is oxidized, and the gas for heating is produced | generated.
 加熱用流体生成部33により生成された加熱用ガスは、加熱用流体供給管257を介して、ハウジング21内の昇温部24へと供給され、昇温部24からハウジング21の内部空間210へと供給される。燃料電池システム1では、昇温部24から内部空間210へと加熱用ガスが継続的に供給されることにより、各ステージ27内の改質器22、および、各ステージ27に支持される複数の燃料電池23が昇温される。 The heating gas generated by the heating fluid generator 33 is supplied to the temperature raising unit 24 in the housing 21 via the heating fluid supply pipe 257, and is supplied from the temperature raising unit 24 to the internal space 210 of the housing 21. Supplied with. In the fuel cell system 1, the heating gas is continuously supplied from the temperature raising unit 24 to the internal space 210, whereby the reformer 22 in each stage 27 and a plurality of stages supported by each stage 27. The fuel cell 23 is heated.
 続いて、原燃料供給源48からの原燃料が、不純物除去部41を通過してハウジング21内へと導かれる。また、水供給部31からの水が水蒸気生成部46に供給され、水蒸気生成部46にて水蒸気とされた後、ハウジング21内へと導かれる。ハウジング21内では、原燃料および水蒸気が、原燃料共通供給管261を介して各ステージ27内の改質器22に供給される。そして、改質器22により原燃料が水蒸気改質されることにより燃料ガスを含む改質ガスが生成され、各ステージ27の燃料ガス供給流路251を介して複数の燃料電池23の負極に供給される。一方、各ステージ27内の酸化剤ガス供給流路253には、ブロワ43から酸化剤ガス共通供給管263を介して酸化剤ガスを含む空気が供給される。当該空気は、酸化剤ガス供給流路253から複数の燃料電池23の正極に供給される。 Subsequently, the raw fuel from the raw fuel supply source 48 passes through the impurity removal unit 41 and is guided into the housing 21. Further, water from the water supply unit 31 is supplied to the water vapor generation unit 46, converted into water vapor by the water vapor generation unit 46, and then guided into the housing 21. In the housing 21, raw fuel and water vapor are supplied to the reformer 22 in each stage 27 via the raw fuel common supply pipe 261. Then, the reformer 22 steam-reforms the raw fuel to generate a reformed gas containing a fuel gas, and supplies the reformed gas to the negative electrodes of the plurality of fuel cells 23 via the fuel gas supply channels 251 of each stage 27. Is done. On the other hand, air containing oxidant gas is supplied from the blower 43 through the oxidant gas common supply pipe 263 to the oxidant gas supply channel 253 in each stage 27. The air is supplied from the oxidant gas supply channel 253 to the positive electrodes of the plurality of fuel cells 23.
 これにより、複数の燃料電池23による発電が行われ、発電時に発生する熱により改質器22がさらに加熱される。また、複数の燃料電池23からの排ガスから凝縮部45にて生成された水は、水蒸気生成部46へと供給される。 Thereby, power generation is performed by the plurality of fuel cells 23, and the reformer 22 is further heated by heat generated during power generation. Further, the water generated in the condensing unit 45 from the exhaust gases from the plurality of fuel cells 23 is supplied to the water vapor generating unit 46.
 燃料電池システム1では、改質器22および複数の燃料電池23が所定の温度に達し、複数の燃料電池23からの出力が所定の発電量に達して安定するまで、すなわち、燃料電池システム1が定常運転状態となるまで、上述の起動運転が継続される。燃料電池システム1の定常運転が開始され、上述の水自立および熱自立が成立すると、水供給部31から水蒸気生成部46への水の供給が停止され、昇温部24から内部空間210への加熱用ガスの供給が停止される。 In the fuel cell system 1, until the reformer 22 and the plurality of fuel cells 23 reach a predetermined temperature and the outputs from the plurality of fuel cells 23 reach a predetermined power generation amount and become stable, that is, the fuel cell system 1 The start-up operation described above is continued until the steady operation state is reached. When steady operation of the fuel cell system 1 is started and water self-sustained and heat self-sustained are established, water supply from the water supply unit 31 to the water vapor generating unit 46 is stopped, and the temperature rising unit 24 supplies the internal space 210 to the interior space 210. The supply of the heating gas is stopped.
 以上に説明したように、燃料電池システム1は、ハウジング21と、複数の燃料電池23と、ステージ27と、改質器22と、燃料ガス供給流路251と、負極排ガス排出流路252と、酸化剤ガス供給流路253と、正極排ガス排出流路254とを備える。複数の燃料電池23は、ステージ27により支持される。ステージ27の内部には、改質器22、燃料ガス供給流路251、負極排ガス排出流路252、酸化剤ガス供給流路253および正極排ガス排出流路254が配置される。 As described above, the fuel cell system 1 includes the housing 21, the plurality of fuel cells 23, the stage 27, the reformer 22, the fuel gas supply channel 251, the negative exhaust gas discharge channel 252, An oxidant gas supply channel 253 and a positive exhaust gas discharge channel 254 are provided. The plurality of fuel cells 23 are supported by a stage 27. Inside the stage 27, a reformer 22, a fuel gas supply channel 251, a negative exhaust gas discharge channel 252, an oxidant gas supply channel 253, and a positive exhaust gas discharge channel 254 are arranged.
 これにより、ステージ27内の各構成がステージ27の外部に配置される場合に比べ、ハウジング21を小型化することができる。その結果、燃料電池システム1を小型化することができる。また、上記各構成を支持する架台等をハウジング21内に設ける必要がなく、ハウジング21の外部で各ステージ27に複数の燃料電池23等を据え付けた後に複数のステージ27等を組み立てることにより、燃料電池システム1の製造やメンテナンスを簡素化することができる。 Thereby, the housing 21 can be downsized as compared with the case where each component in the stage 27 is arranged outside the stage 27. As a result, the fuel cell system 1 can be reduced in size. In addition, it is not necessary to provide a frame or the like for supporting each of the above components in the housing 21, and a plurality of fuel cells 23 and the like are installed on each stage 27 outside the housing 21. Manufacturing and maintenance of the battery system 1 can be simplified.
 上述のように、ステージ27の内部に、燃料ガス供給流路251、負極排ガス排出流路252、酸化剤ガス供給流路253および正極排ガス排出流路254が配置されることにより、複数の燃料電池23への給排気構造を簡素化することができる。また、負極排ガス排出流路252は、燃料ガス供給流路251と隔壁270を挟んで熱交換可能に隣接する。これにより、負極排ガスを利用して、燃料電池23に供給される燃料ガス(を含む改質ガス)を効率良く加熱することができる。正極排ガス排出流路254は、酸化剤ガス供給流路253と隔壁270を挟んで熱交換可能に隣接する。これにより、正極排ガスを利用して、燃料電池23に供給される酸化剤ガス(を含む空気)を効率良く加熱することができる。さらに、ステージ27の内部に改質器22が配置されることにより、複数の燃料電池23から放出される熱により、改質器22を効率良く加熱することができる。 As described above, the fuel gas supply flow path 251, the negative exhaust gas discharge flow path 252, the oxidant gas supply flow path 253, and the positive exhaust gas discharge flow path 254 are arranged inside the stage 27, thereby providing a plurality of fuel cells. The air supply / exhaust structure to 23 can be simplified. The negative exhaust gas discharge channel 252 is adjacent to the fuel gas supply channel 251 and the partition wall 270 so that heat exchange is possible. Thereby, the fuel gas (including reformed gas) supplied to the fuel cell 23 can be efficiently heated using the negative electrode exhaust gas. The positive exhaust gas discharge channel 254 is adjacent to the oxidant gas supply channel 253 and the partition wall 270 so that heat exchange is possible. Thereby, the oxidant gas (including air) supplied to the fuel cell 23 can be efficiently heated using the positive electrode exhaust gas. Furthermore, by arranging the reformer 22 inside the stage 27, the reformer 22 can be efficiently heated by the heat released from the plurality of fuel cells 23.
 このように、燃料電池システム1では、燃料電池システム1の構造を簡素化しつつ、複数の燃料電池23に係る排熱(すなわち、負極排ガスおよび正極排ガスの有する熱、および、複数の燃料電池23から放出される熱)を有効利用することができる。また、燃料電池システム1を小型化することができる。 Thus, in the fuel cell system 1, while simplifying the structure of the fuel cell system 1, the exhaust heat (that is, the heat of the negative exhaust gas and the positive exhaust gas) and the plurality of fuel cells 23 are reduced. (Heat released) can be used effectively. Moreover, the fuel cell system 1 can be reduced in size.
 上述のように、燃料ガス供給流路251における改質ガスの流れ方向と、負極排ガス排出流路252における負極排ガスの流れ方向とは同じである。これにより、燃料ガス供給流路251、燃料電池23および負極排ガス排出流路252を通過するガスの圧損を低減することができる。また、酸化剤ガス供給流路253における空気の流れ方向と、正極排ガス排出流路254における正極排ガスの流れ方向とは同じである。これにより、酸化剤ガス供給流路253、燃料電池23および正極排ガス排出流路254を通過するガスの圧損を低減することができる。その結果、燃料電池システム1の駆動に必要なエネルギーを低減することができ、燃料電池システム1のランニングコストを低減することができる。 As described above, the flow direction of the reformed gas in the fuel gas supply channel 251 and the flow direction of the negative electrode exhaust gas in the negative electrode exhaust gas discharge channel 252 are the same. Thereby, the pressure loss of the gas passing through the fuel gas supply channel 251, the fuel cell 23, and the negative exhaust gas discharge channel 252 can be reduced. Further, the flow direction of air in the oxidant gas supply channel 253 and the flow direction of positive electrode exhaust gas in the positive electrode exhaust gas discharge channel 254 are the same. Thereby, the pressure loss of the gas passing through the oxidant gas supply channel 253, the fuel cell 23, and the positive exhaust gas discharge channel 254 can be reduced. As a result, the energy required for driving the fuel cell system 1 can be reduced, and the running cost of the fuel cell system 1 can be reduced.
 上述のように、改質器22は、負極排ガス排出流路252および正極排ガス排出流路254と、複数の燃料電池23との間に位置する。これにより、複数の燃料電池23から放出される熱、並びに、負極排ガスおよび正極排ガスの有する熱を利用して、改質器22を効率良く加熱することができる。また、改質器22は、ステージ27に支持された複数の燃料電池23と、ステージ27の電池支持面を挟んで熱交換可能に隣接する。これにより、複数の燃料電池23から放出される熱を利用して、改質器22をさらに効率良く加熱することができる。 As described above, the reformer 22 is positioned between the negative exhaust gas exhaust passage 252 and the positive exhaust gas exhaust passage 254 and the plurality of fuel cells 23. Thereby, the reformer 22 can be efficiently heated using the heat released from the plurality of fuel cells 23 and the heat of the negative electrode exhaust gas and the positive electrode exhaust gas. The reformer 22 is adjacent to a plurality of fuel cells 23 supported by the stage 27 so that heat exchange is possible with the battery support surface of the stage 27 interposed therebetween. Thereby, the reformer 22 can be heated more efficiently by using the heat released from the plurality of fuel cells 23.
 燃料電池システム1は、排ガス燃焼部47をさらに備える。排ガス燃焼部47は、複数の燃料電池23からの負極排ガスに含まれる未利用の燃料ガスを燃焼させる。排ガス燃焼部47は、負極排ガス排出流路252と共にステージ27の内部に配置される。排ガス燃焼部47は、ステージ27の内部にて改質器22と隔壁270を挟んで熱交換可能に隣接する。改質器22は、複数の燃料電池23と排ガス燃焼部47との間に位置する。これにより、複数の燃料電池23から放出される熱、並びに、排ガス燃焼部47における燃焼熱を利用して、改質器22をより一層効率良く加熱することができる。 The fuel cell system 1 further includes an exhaust gas combustion unit 47. The exhaust gas combustion unit 47 burns unused fuel gas contained in the negative electrode exhaust gas from the plurality of fuel cells 23. The exhaust gas combustion unit 47 is disposed inside the stage 27 together with the negative electrode exhaust gas exhaust passage 252. The exhaust gas combustion unit 47 is adjacent to the inside of the stage 27 so as to exchange heat with the reformer 22 and the partition wall 270 interposed therebetween. The reformer 22 is located between the plurality of fuel cells 23 and the exhaust gas combustion unit 47. Thereby, the reformer 22 can be heated more efficiently by using the heat released from the plurality of fuel cells 23 and the combustion heat in the exhaust gas combustion section 47.
 また、排ガス燃焼部47は、燃料ガス供給流路251と隔壁270を挟んで熱交換可能に隣接する。これにより、排ガス燃焼部47における燃焼熱を利用して、燃料電池23に供給される燃料ガス(を含む改質ガス)の加熱を効率良く行うことができる。さらに、排ガス燃焼部47は、酸化剤ガス供給流路253と隔壁270を挟んで熱交換可能に隣接する。これにより、排ガス燃焼部47における燃焼熱を利用して、燃料電池23に供給される酸化剤ガス(を含む空気)の加熱を効率良く行うことができる。 Further, the exhaust gas combustion part 47 is adjacent to the fuel gas supply channel 251 and the partition wall 270 so that heat exchange is possible. Accordingly, the fuel gas (including reformed gas) supplied to the fuel cell 23 can be efficiently heated using the combustion heat in the exhaust gas combustion unit 47. Further, the exhaust gas combustion unit 47 is adjacent to the oxidant gas supply channel 253 and the partition wall 270 so that heat exchange is possible. Thus, the oxidant gas (including air) supplied to the fuel cell 23 can be efficiently heated using the combustion heat in the exhaust gas combustion unit 47.
 図7は、ステージ27の他の好ましい例を示す断面図である。図7に示す例では、燃料ガス供給流路251と負極排ガス排出流路252との間の隔壁270が、凹凸部278を備える。凹凸部278は、例えば、薄板状の隔壁材料の一部を燃料ガス供給流路251に向けて突出させ、当該隔壁材料の他の一部を負極排ガス排出流路252に向けて突出させることにより形成される。凹凸部278の形状は様々に変更されてよく、例えば、隔壁270は、上下方向に波打つ波板状とされてもよい。 FIG. 7 is a cross-sectional view showing another preferred example of the stage 27. In the example shown in FIG. 7, the partition wall 270 between the fuel gas supply channel 251 and the negative exhaust gas discharge channel 252 includes an uneven portion 278. The concavo-convex portion 278 is formed by, for example, causing a part of the thin plate-like partition wall material to protrude toward the fuel gas supply channel 251 and the other part of the partition wall material to protrude toward the anode exhaust gas discharge channel 252. It is formed. The shape of the concavo-convex portion 278 may be variously changed. For example, the partition wall 270 may have a corrugated shape that undulates in the vertical direction.
 燃料ガス供給流路251と負極排ガス排出流路252との間の隔壁270に凹凸部278が設けられることにより、当該隔壁270の表面積が増大する。これにより、負極排ガス排出流路252と燃料ガス供給流路251との間に熱交換効率が向上する。その結果、負極排ガス排出流路252内の負極排ガスにより、燃料ガス供給流路251内の燃料ガス(を含む改質ガス)を、より一層効率良く加熱することができる。 By providing the concavo-convex portion 278 in the partition 270 between the fuel gas supply channel 251 and the negative exhaust gas discharge channel 252, the surface area of the partition 270 increases. Thereby, the heat exchange efficiency is improved between the negative exhaust gas discharge passage 252 and the fuel gas supply passage 251. As a result, the fuel gas (including reformed gas) in the fuel gas supply channel 251 can be heated more efficiently by the negative electrode exhaust gas in the negative electrode exhaust gas discharge channel 252.
 図7に示す例では、酸化剤ガス供給流路253と正極排ガス排出流路254との間の隔壁270も、凹凸部278を備える。これにより、当該隔壁270の表面積が増大し、正極排ガス排出流路254と酸化剤ガス供給流路253との間に熱交換効率が向上する。その結果、正極排ガス排出流路254内の正極排ガスにより、酸化剤ガス供給流路253内の酸化剤ガス(を含む空気)を、より一層効率良く加熱することができる。 In the example shown in FIG. 7, the partition wall 270 between the oxidant gas supply channel 253 and the positive exhaust gas discharge channel 254 is also provided with an uneven portion 278. Thereby, the surface area of the partition 270 is increased, and the heat exchange efficiency is improved between the positive exhaust gas discharge channel 254 and the oxidant gas supply channel 253. As a result, the oxidant gas (including air) in the oxidant gas supply channel 253 can be more efficiently heated by the cathode exhaust gas in the cathode exhaust gas discharge channel 254.
 燃料電池システム1では、各ステージ27の内部における改質器22、排ガス燃焼部47、燃料ガス供給流路251、酸化剤ガス供給流路253、負極排ガス排出流路252および正極排ガス排出流路254の配置は、様々に変更されてよい。 In the fuel cell system 1, the reformer 22, the exhaust gas combustion unit 47, the fuel gas supply passage 251, the oxidant gas supply passage 253, the negative exhaust gas discharge passage 252, and the positive exhaust gas discharge passage 254 inside each stage 27. The arrangement may be variously changed.
 例えば、図3に示す燃料ガス供給流路251の下側に正極排ガス排出流路254が配置され、酸化剤ガス供給流路253の下側に負極排ガス排出流路252が配置されてもよい。この場合、燃料ガス供給流路251内の改質ガスは、燃料ガス供給流路251と隔壁270を挟んで熱交換可能に上下方向に隣接する正極排ガス排出流路254内の正極排ガスにより加熱される。また、酸化剤ガス供給流路253内の空気は、酸化剤ガス供給流路253と隔壁270を挟んで熱交換可能に上下方向に隣接する負極排ガス排出流路252内の負極排ガスにより加熱される。燃料ガスおよび酸化剤ガスの加熱の効率化という観点からは、これらの隔壁270にも、凹凸部278が設けられることが好ましい。 For example, the positive exhaust gas discharge channel 254 may be disposed below the fuel gas supply channel 251 shown in FIG. 3, and the negative exhaust gas discharge channel 252 may be disposed below the oxidant gas supply channel 253. In this case, the reformed gas in the fuel gas supply channel 251 is heated by the positive exhaust gas in the positive exhaust gas discharge channel 254 adjacent in the vertical direction so that heat exchange is possible with the fuel gas supply channel 251 and the partition wall 270 interposed therebetween. The The air in the oxidant gas supply channel 253 is heated by the negative exhaust gas in the negative exhaust gas discharge channel 252 adjacent in the vertical direction so that heat exchange is possible with the oxidant gas supply channel 253 and the partition wall 270 interposed therebetween. . From the viewpoint of increasing the efficiency of heating the fuel gas and the oxidant gas, it is preferable that the concavo-convex portions 278 are also provided in these partition walls 270.
 負極排ガス排出流路252および正極排ガス排出流路254は、必ずしも、燃料ガス供給流路251および酸化剤ガス供給流路253の下側に配置される必要はない。例えば、排ガス燃焼部47の下側に燃料ガス供給流路251および負極排ガス排出流路252が配置され、燃料ガス供給流路251の下側に正極排ガス排出流路254が配置され、負極排ガス排出流路252の下側に酸化剤ガス供給流路253が配置されてもよい。この場合、燃料ガス供給流路251内の改質ガスは、燃料ガス供給流路251と隔壁270を挟んで熱交換可能に隣接する負極排ガス排出流路252および正極排ガス排出流路254内の負極排ガスおよび正極排ガスにより加熱される。また、酸化剤ガス供給流路253内の空気は、酸化剤ガス供給流路253と隔壁270を挟んで熱交換可能に隣接する負極排ガス排出流路252および正極排ガス排出流路254内の負極排ガスおよび正極排ガスにより加熱される。燃料ガスおよび酸化剤ガスの加熱の効率化という観点からは、これらの隔壁270にも、凹凸部278が設けられることが好ましい。 The negative electrode exhaust gas discharge channel 252 and the positive electrode exhaust gas discharge channel 254 are not necessarily arranged below the fuel gas supply channel 251 and the oxidant gas supply channel 253. For example, a fuel gas supply channel 251 and a negative exhaust gas discharge channel 252 are disposed below the exhaust gas combustion unit 47, and a positive exhaust gas discharge channel 254 is disposed below the fuel gas supply channel 251 to discharge negative exhaust gas. An oxidant gas supply channel 253 may be disposed below the channel 252. In this case, the reformed gas in the fuel gas supply flow path 251 is mixed with the negative electrode exhaust gas discharge flow path 252 and the negative electrode in the positive exhaust gas discharge flow path 254 which are adjacent to each other so as to exchange heat between the fuel gas supply flow path 251 and the partition wall 270. Heated by exhaust gas and positive exhaust gas. Further, the air in the oxidant gas supply channel 253 is passed through the oxidant gas supply channel 253 and the partition wall 270 so that heat exchange is possible, and the negative exhaust gas in the negative exhaust gas discharge channel 252 and the positive exhaust gas discharge channel 254 are adjacent to each other. And heated by positive electrode exhaust gas. From the viewpoint of increasing the efficiency of heating the fuel gas and the oxidant gas, it is preferable that the concavo-convex portions 278 are also provided in these partition walls 270.
 あるいは、負極排ガス排出流路252および正極排ガス排出流路254が、排ガス燃焼部47の下側に隣接して配置され、負極排ガス排出流路252および正極排ガス排出流路254の下側に、燃料ガス供給流路251および酸化剤ガス供給流路253が隣接して配置されてもよい。 Alternatively, the negative exhaust gas discharge flow path 252 and the positive exhaust gas discharge flow path 254 are disposed adjacent to the lower side of the exhaust gas combustion part 47, and the fuel is provided below the negative exhaust gas discharge flow path 252 and the positive exhaust gas discharge flow path 254. The gas supply channel 251 and the oxidant gas supply channel 253 may be disposed adjacent to each other.
 また、図8に示すように、排ガス燃焼部47の下側において、燃料ガス供給流路251、負極排ガス排出流路252、酸化剤ガス供給流路253および正極排ガス排出流路254が、上下方向の略同じ位置に水平方向に隣接して配置されてもよい。燃料ガス供給流路251、負極排ガス排出流路252、酸化剤ガス供給流路253および正極排ガス排出流路254の水平方向における配置順序は特に限定されるものではない。ただし、負極排ガスまたは正極排ガスによる燃料ガスの加熱の効率化という観点からは、燃料ガス供給流路251は、負極排ガス排出流路252および正極排ガス排出流路254の少なくとも一方と隣接することが好ましい。また、負極排ガスまたは正極排ガスによる酸化剤ガスの加熱の効率化という観点からは、酸化剤ガス供給流路253は、負極排ガス排出流路252および正極排ガス排出流路254の少なくとも一方と隣接することが好ましい。 Further, as shown in FIG. 8, on the lower side of the exhaust gas combustion section 47, the fuel gas supply channel 251, the negative exhaust gas exhaust channel 252, the oxidant gas supply channel 253, and the positive exhaust gas exhaust channel 254 are arranged in the vertical direction. May be arranged adjacent to each other in the horizontal direction at substantially the same position. The arrangement order in the horizontal direction of the fuel gas supply flow path 251, the negative exhaust gas discharge flow path 252, the oxidant gas supply flow path 253, and the positive exhaust gas discharge flow path 254 is not particularly limited. However, from the viewpoint of increasing the efficiency of heating the fuel gas by the negative electrode exhaust gas or the positive electrode exhaust gas, the fuel gas supply channel 251 is preferably adjacent to at least one of the negative electrode exhaust gas exhaust channel 252 and the positive electrode exhaust gas exhaust channel 254. . Further, from the viewpoint of improving the efficiency of heating the oxidant gas by the negative electrode exhaust gas or the positive electrode exhaust gas, the oxidant gas supply channel 253 is adjacent to at least one of the negative electrode exhaust gas discharge channel 252 and the positive electrode exhaust gas discharge channel 254. Is preferred.
 図9に示すように、ステージ27の最上層に改質器22が配置され、上側から2番目の層に負極排ガス排出流路252および正極排ガス排出流路254が配置され、上側から3番目の層に燃料ガス供給流路251および酸化剤ガス供給流路253が配置され、最下層に排ガス燃焼部47が配置されてもよい。 As shown in FIG. 9, the reformer 22 is arranged in the uppermost layer of the stage 27, the negative exhaust gas exhaust passage 252 and the positive exhaust gas exhaust passage 254 are arranged in the second layer from the upper side, and the third from the upper side. The fuel gas supply channel 251 and the oxidant gas supply channel 253 may be disposed in the layer, and the exhaust gas combustion unit 47 may be disposed in the lowermost layer.
 図10は、本発明の第2の実施の形態に係る燃料電池システム1aを示す図である。燃料電池システム1aでは、図1に示す燃料電池システム1から第1熱交換器42、第2熱交換器44、加熱用流体生成部33および昇温部24が省略される。燃料電池システム1aのその他の構成は、図1に示す燃料電池システム1と略同様であり、以下の説明では、燃料電池システム1aの対応する構成に同符号を付す。 FIG. 10 shows a fuel cell system 1a according to the second embodiment of the present invention. In the fuel cell system 1a, the first heat exchanger 42, the second heat exchanger 44, the heating fluid generation unit 33, and the temperature raising unit 24 are omitted from the fuel cell system 1 shown in FIG. The other configuration of the fuel cell system 1a is substantially the same as that of the fuel cell system 1 shown in FIG. 1, and the same reference numerals are given to the corresponding components of the fuel cell system 1a in the following description.
 燃料電池システム1aの定常運転の際には、各燃料電池23に供給される改質ガスおよび空気は、上記と同様に、各ステージ27の内部において加熱される。具体的には、図3に示す燃料ガス供給流路251内の改質ガスが、負極排ガス排出流路252内の高温の負極排ガス、および、排ガス燃焼部47における燃焼熱により加熱される。また、酸化剤ガス供給流路253内の空気が、正極排ガス排出流路254内の高温の正極排ガス、および、排ガス燃焼部47における燃焼熱により加熱される。これにより、第1熱交換器42および第2熱交換器44(図1参照)における予備加熱を行うことなく、燃料電池23に供給される改質ガスおよび空気を、所望の温度まで加熱することができる。改質ガスおよび空気の加熱の効率化という観点からは、燃料ガス供給流路251と負極排ガス排出流路252との間の隔壁270、および、酸化剤ガス供給流路253と正極排ガス排出流路254との間の隔壁270に、上述の凹凸部278が設けられることが好ましい。また、排ガス燃焼部47と燃料ガス供給流路251および酸化剤ガス供給流路253との間の隔壁270にも、凹凸部278が設けられてもよい。 During steady operation of the fuel cell system 1a, the reformed gas and air supplied to each fuel cell 23 are heated inside each stage 27 in the same manner as described above. Specifically, the reformed gas in the fuel gas supply channel 251 shown in FIG. 3 is heated by the high temperature negative exhaust gas in the negative exhaust gas discharge channel 252 and the combustion heat in the exhaust gas combustion section 47. Further, the air in the oxidant gas supply channel 253 is heated by the high-temperature cathode exhaust gas in the cathode exhaust gas discharge channel 254 and the combustion heat in the exhaust gas combustion unit 47. Thus, the reformed gas and air supplied to the fuel cell 23 are heated to a desired temperature without performing preliminary heating in the first heat exchanger 42 and the second heat exchanger 44 (see FIG. 1). Can do. From the viewpoint of improving the efficiency of heating the reformed gas and air, the partition wall 270 between the fuel gas supply channel 251 and the negative exhaust gas discharge channel 252, and the oxidant gas supply channel 253 and the positive exhaust gas discharge channel It is preferable that the above-described concavo-convex portion 278 is provided in the partition wall 270 between the H.254 and the H.254. In addition, an uneven portion 278 may also be provided on the partition wall 270 between the exhaust gas combustion unit 47 and the fuel gas supply channel 251 and the oxidant gas supply channel 253.
 燃料電池システム1aの起動運転の際には、各ステージ27の内部に配置される排ガス燃焼部47が、各ステージ27内の改質器22、および、各ステージ27に支持される複数の燃料電池23を昇温する起動昇温部の役割を果たす。燃料電池システム1aの起動運転時には、原燃料供給源48から起動用原燃料供給管255により導かれた原燃料と、ブロワ43から起動用ガス供給管256により導かれた空気とが合流し、合流後の流体(以下、「昇温用流体」という。)が、昇温用流体供給管258によりハウジング21の内部空間210へと導かれる。昇温用流体は、ハウジング21内に導かれる前に、ヒータや他の加熱手段により加熱されてもよい。 In the start-up operation of the fuel cell system 1a, the exhaust gas combustion unit 47 disposed in each stage 27 includes a reformer 22 in each stage 27 and a plurality of fuel cells supported by each stage 27. It plays the role of the starting temperature rising part which heats 23. During the starting operation of the fuel cell system 1a, the raw fuel guided from the raw fuel supply source 48 by the starting raw fuel supply pipe 255 and the air guided from the blower 43 by the starting gas supply pipe 256 are merged and merged. The subsequent fluid (hereinafter referred to as “heating fluid”) is guided to the internal space 210 of the housing 21 by the heating fluid supply pipe 258. The temperature raising fluid may be heated by a heater or other heating means before being introduced into the housing 21.
 昇温用流体供給管258は、ハウジング21の内部において、ステージ支持部28の内部に配置され、各ステージ27内の排ガス燃焼部47に接続される。昇温用流体は、昇温用流体供給管258により、各ステージ27の排ガス燃焼部47(図3参照)へと供給される。各ステージ27では、排ガス燃焼部47により昇温用流体(すなわち、原燃料と空気との混合流体)が燃焼され、燃焼熱により、各ステージ27内の改質器22(図3参照)および各ステージ27上の複数の燃料電池23の昇温が行われる。 The temperature raising fluid supply pipe 258 is disposed inside the stage support portion 28 inside the housing 21 and connected to the exhaust gas combustion portion 47 in each stage 27. The temperature raising fluid is supplied to the exhaust gas combustion section 47 (see FIG. 3) of each stage 27 through the temperature raising fluid supply pipe 258. In each stage 27, the exhaust gas combustion unit 47 burns the fluid for raising the temperature (that is, the mixed fluid of raw fuel and air), and the combustion heat causes the reformer 22 (see FIG. 3) in each stage 27 and each The temperature of the plurality of fuel cells 23 on the stage 27 is increased.
 燃料電池システム1aでは、排ガス燃焼部47が、起動運転時における改質器22および燃料電池23の昇温、および、定常運転時における未利用の燃料ガス等の燃焼に利用される。これにより、ハウジング21内に設けられる構成を減少させることができ、ハウジング21を小型化することができる。その結果、燃料電池システム1aを小型化することができる。また、第1熱交換器42および第2熱交換器44が省略されることにより、燃料電池システム1aの構造を簡素化することができる。 In the fuel cell system 1a, the exhaust gas combustion unit 47 is used for raising the temperature of the reformer 22 and the fuel cell 23 during start-up operation and for burning unused fuel gas or the like during steady operation. Thereby, the structure provided in the housing 21 can be reduced and the housing 21 can be reduced in size. As a result, the fuel cell system 1a can be reduced in size. Moreover, the structure of the fuel cell system 1a can be simplified by omitting the first heat exchanger 42 and the second heat exchanger 44.
 燃料電池システム1aの起動運転の際には、原燃料共通供給管261、改質器22および燃料電池23等を経由した原燃料、並びに、酸化剤ガス共通供給管263および燃料電池23等を経由した空気が、排ガス燃焼部47に供給されてもよい。この場合、排ガス燃焼部47において原燃料および空気が合流して昇温用流体となる。 During the start-up operation of the fuel cell system 1a, the raw fuel via the raw fuel common supply pipe 261, the reformer 22, the fuel cell 23, etc., and the oxidant gas common supply pipe 263, the fuel cell 23, etc. The exhausted air may be supplied to the exhaust gas combustion unit 47. In this case, the raw fuel and air merge at the exhaust gas combustion section 47 to form a temperature rising fluid.
 燃料電池システム1,1aでは、各ステージ27の内部に配置される構成は、様々に変更されてよい。例えば、図11に示すように、ステージ27の内部に排ガス燃焼部47は設けられず、改質器22、燃料ガス供給流路251、酸化剤ガス供給流路253、負極排ガス排出流路252および正極排ガス排出流路254が、ステージ27の内部に設けられてもよい。この場合、排ガス燃焼部47は、例えば、ハウジング21の内部または外部に設けられる。図11に示す例では、ステージ27内の最上層に配置された改質器22の下側に、負極排ガス排出流路252および正極排ガス排出流路254が隣接して配置される。換言すれば、改質器22は、複数の燃料電池23と、負極排ガス排出流路252および正極排ガス排出流路254との間に位置する。燃料ガス供給流路251および酸化剤ガス供給流路253は、負極排ガス排出流路252および正極排ガス排出流路254の下側に隣接して配置される。 In the fuel cell systems 1 and 1a, the configuration arranged inside each stage 27 may be variously changed. For example, as shown in FIG. 11, the exhaust gas combustion unit 47 is not provided inside the stage 27, and the reformer 22, the fuel gas supply channel 251, the oxidant gas supply channel 253, the negative exhaust gas exhaust channel 252, A positive exhaust gas discharge channel 254 may be provided inside the stage 27. In this case, the exhaust gas combustion unit 47 is provided, for example, inside or outside the housing 21. In the example shown in FIG. 11, a negative exhaust gas exhaust passage 252 and a positive exhaust gas exhaust passage 254 are disposed adjacent to each other below the reformer 22 disposed in the uppermost layer in the stage 27. In other words, the reformer 22 is located between the plurality of fuel cells 23, the negative exhaust gas exhaust passage 252 and the positive exhaust gas exhaust passage 254. The fuel gas supply channel 251 and the oxidant gas supply channel 253 are disposed adjacent to the lower side of the negative exhaust gas exhaust channel 252 and the positive exhaust gas exhaust channel 254.
 図11に示す例では、負極排ガス排出流路252を流れる高温の負極排ガス、および、正極排ガス排出流路254を流れる高温の正極排ガスにより、燃料ガス供給流路251内の改質ガス、および、酸化剤ガス供給流路253内の空気を効率良く加熱することができる。また、負極排ガス排出流路252内の高温の負極排ガス、正極排ガス排出流路254内の高温の正極排ガス、および、ステージ27に支持される複数の燃料電池23から放出される熱により、改質器22を効率良く加熱することができる。 In the example shown in FIG. 11, the reformed gas in the fuel gas supply channel 251 by the high-temperature negative exhaust gas flowing through the negative exhaust gas exhaust channel 252 and the high-temperature positive exhaust gas flowing through the positive exhaust gas exhaust channel 254, and The air in the oxidant gas supply channel 253 can be efficiently heated. Further, the reforming is performed by the high-temperature negative exhaust gas in the negative exhaust gas exhaust passage 252, the high-temperature positive exhaust gas in the positive exhaust exhaust passage 254, and heat released from the plurality of fuel cells 23 supported by the stage 27. The vessel 22 can be heated efficiently.
 図12に示す例では、ステージ27の内部に改質器22および排ガス燃焼部47は設けられず、燃料ガス供給流路251、酸化剤ガス供給流路253、負極排ガス排出流路252および正極排ガス排出流路254が、ステージ27の内部に設けられる。換言すれば、燃料ガス供給流路251および酸化剤ガス供給流路253のうち一方の供給流路および他方の供給流路と、負極排ガス排出流路252および正極排ガス排出流路254のうち一方の排出流路および他方の排出流路とが、ステージ27の内部に配置される。この場合、改質器22は、例えばハウジング21の内部に配置され、排ガス燃焼部47は、例えばハウジング21の内部または外部に設けられる。 In the example shown in FIG. 12, the reformer 22 and the exhaust gas combustion part 47 are not provided inside the stage 27, and the fuel gas supply channel 251, the oxidant gas supply channel 253, the negative exhaust gas exhaust channel 252 and the positive exhaust gas. A discharge channel 254 is provided inside the stage 27. In other words, one of the fuel gas supply channel 251 and the oxidant gas supply channel 253 and the other supply channel, and one of the negative exhaust gas discharge channel 252 and the positive exhaust gas discharge channel 254. The discharge channel and the other discharge channel are arranged inside the stage 27. In this case, the reformer 22 is disposed, for example, inside the housing 21, and the exhaust gas combustion unit 47 is provided, for example, inside or outside the housing 21.
 図12に示す例では、燃料ガス供給流路251および酸化剤ガス供給流路253が、ステージ27内の最上層に配置される。燃料ガス供給流路251および酸化剤ガス供給流路253は、ステージ27上に配置された複数の燃料電池23と、ステージ27の電池支持面を挟んで上下方向に熱交換可能に隣接する。また、負極排ガス排出流路252および正極排ガス排出流路254は、燃料ガス供給流路251および酸化剤ガス供給流路253の下側に隣接して配置される。そして、負極排ガス排出流路252を流れる高温の負極排ガス、正極排ガス排出流路254を流れる高温の正極排ガス、および、ステージ27に支持される複数の燃料電池23から放出される熱により、燃料ガス供給流路251内の改質ガス、および、酸化剤ガス供給流路253内の空気を効率良く加熱することができる。 In the example shown in FIG. 12, the fuel gas supply channel 251 and the oxidant gas supply channel 253 are arranged in the uppermost layer in the stage 27. The fuel gas supply channel 251 and the oxidant gas supply channel 253 are adjacent to a plurality of fuel cells 23 arranged on the stage 27 so that heat can be exchanged in the vertical direction across the cell support surface of the stage 27. The negative exhaust gas discharge channel 252 and the positive exhaust gas discharge channel 254 are disposed adjacent to the lower side of the fuel gas supply channel 251 and the oxidant gas supply channel 253. The high temperature negative exhaust gas flowing through the negative exhaust gas exhaust flow path 252, the high temperature positive exhaust gas flowing through the positive exhaust gas exhaust flow path 254, and the heat released from the plurality of fuel cells 23 supported by the stage 27, the fuel gas The reformed gas in the supply channel 251 and the air in the oxidant gas supply channel 253 can be efficiently heated.
 ステージ27の内部には、必ずしも、燃料ガス供給流路251、負極排ガス排出流路252、酸化剤ガス供給流路253および正極排ガス排出流路254の全てが設けられる必要はない。例えば、図13に示す例では、燃料ガス供給流路251がステージ27内の最上層に配置され、負極排ガス排出流路252が燃料ガス供給流路251の下側に隣接して配置される。燃料ガス供給流路251は、ステージ27上に配置された複数の燃料電池23と、ステージ27の電池支持面を挟んで上下方向に熱交換可能に隣接する。これにより、燃料ガス供給流路251内の改質ガスを、負極排ガス排出流路252を流れる高温の負極排ガス、および、ステージ27に支持される複数の燃料電池23から放出される熱により効率良く加熱することができる。燃料ガス供給流路251および負極排ガス排出流路252に代えて、酸化剤ガス供給流路253および正極排ガス排出流路254が、ステージ27の内部に配置されてもよい。 Inside the stage 27, it is not always necessary to provide all of the fuel gas supply channel 251, the negative exhaust gas discharge channel 252, the oxidant gas supply channel 253, and the positive exhaust gas discharge channel 254. For example, in the example shown in FIG. 13, the fuel gas supply channel 251 is disposed in the uppermost layer in the stage 27, and the negative exhaust gas exhaust channel 252 is disposed adjacent to the lower side of the fuel gas supply channel 251. The fuel gas supply channel 251 is adjacent to a plurality of fuel cells 23 arranged on the stage 27 so that heat can be exchanged in the vertical direction across the cell support surface of the stage 27. As a result, the reformed gas in the fuel gas supply channel 251 is more efficiently converted by the high-temperature negative exhaust gas flowing through the negative electrode exhaust gas discharge channel 252 and the heat released from the plurality of fuel cells 23 supported by the stage 27. Can be heated. Instead of the fuel gas supply flow path 251 and the negative electrode exhaust gas discharge flow path 252, an oxidant gas supply flow path 253 and a positive electrode exhaust gas discharge flow path 254 may be arranged inside the stage 27.
 このように、燃料電池システム1,1aでは、燃料ガス供給流路251および酸化剤ガス供給流路253のうち一方の供給流路と、負極排ガス排出流路252および正極排ガス排出流路254のうち一方の排出流路とが、ステージ27の内部に配置されてもよい。これにより、上記と同様に、ハウジング21を小型化することができ、その結果、燃料電池システム1,1aを小型化することができる。また、燃料電池システム1,1aの製造やメンテナンスを簡素化することができる。さらに、複数の燃料電池23への給排気構造を簡素化することもできる。当該一方の排出流路は、上記一方の供給流路と隔壁270を挟んで熱交換可能に隣接する。これにより、一方の排出流路を流れる高温のガス(すなわち、負極排ガスまたは正極排ガス)を利用して、一方の供給流路を流れるガス(すなわち、改質ガスまたは空気)を効率良く加熱することができる。換言すれば、燃料電池システム1,1aの構造を簡素化しつつ、複数の燃料電池23に係る排熱を有効利用することができる。 As described above, in the fuel cell systems 1 and 1a, one of the fuel gas supply channel 251 and the oxidant gas supply channel 253, the negative exhaust gas discharge channel 252 and the positive exhaust gas discharge channel 254 are included. One discharge channel may be arranged inside the stage 27. Thereby, like the above, the housing 21 can be reduced in size, and as a result, the fuel cell systems 1 and 1a can be reduced in size. Moreover, manufacture and maintenance of the fuel cell systems 1 and 1a can be simplified. Furthermore, the supply / exhaust structure to the plurality of fuel cells 23 can be simplified. The one discharge channel is adjacent to the one supply channel so that heat exchange is possible with the partition wall 270 interposed therebetween. This makes it possible to efficiently heat the gas (that is, reformed gas or air) that flows through one supply channel using the high-temperature gas (that is, negative electrode exhaust gas or positive electrode exhaust gas) that flows through one discharge channel. Can do. In other words, exhaust heat related to the plurality of fuel cells 23 can be effectively utilized while simplifying the structure of the fuel cell systems 1 and 1a.
 上述のように、ステージ27内に一方の供給流路と一方の排出流路とが配置される場合、一方の供給流路におけるガスの流れ方向と、一方の排出流路におけるガスの流れ方向とは、同じであることが好ましい。これにより、上記と同様に、一方の供給流路、燃料電池23および一方の排出流路におけるガスの圧損を低減することができる。その結果、燃料電池システム1,1aの駆動に必要なエネルギーを低減することができ、燃料電池システム1,1aのランニングコストを低減することができる。後述する図14ないし図16における例においても同様である。 As described above, when one supply flow path and one discharge flow path are arranged in the stage 27, the gas flow direction in one supply flow path and the gas flow direction in one discharge flow path are Are preferably the same. Thereby, the pressure loss of the gas in one supply flow path, the fuel cell 23, and one discharge flow path can be reduced similarly to the above. As a result, the energy required for driving the fuel cell systems 1 and 1a can be reduced, and the running cost of the fuel cell systems 1 and 1a can be reduced. The same applies to the examples in FIGS. 14 to 16 described later.
 一方の供給流路におけるガスの流れ方向と、一方の排出流路におけるガスの流れ方向とが同じである場合、当該一方の排出流路は、必ずしも当該一方の供給流路と隔壁270を挟んで熱交換可能に隣接する必要はない。例えば、図14に示すように、ステージ27の内部に、燃料ガス供給流路251と負極排ガス排出流路252とが、上下方向の略同じ位置にて水平方向に離間して配置されてもよい。また、酸化剤ガス供給流路253と正極排ガス排出流路254とも、上下方向の略同じ位置にて水平方向に離間して配置されてもよい。図14に示す例では、3つの板状部材279a~279cを上下方向に積層することによりステージ27が形成される。板状部材279aと板状部材279bとの間の2つの間隙が、燃料ガス供給流路251および負極排ガス排出流路252である。また、板状部材279bと板状部材279cとの間の2つの間隙が、酸化剤ガス供給流路253および正極排ガス排出流路254である。 When the gas flow direction in one supply flow path and the gas flow direction in one discharge flow path are the same, the one discharge flow path does not necessarily sandwich the one supply flow path and the partition wall 270. Adjacent heat exchange is not necessary. For example, as shown in FIG. 14, the fuel gas supply flow path 251 and the negative exhaust gas discharge flow path 252 may be arranged in the stage 27 so as to be separated in the horizontal direction at substantially the same position in the vertical direction. . Further, the oxidant gas supply channel 253 and the positive exhaust gas discharge channel 254 may be spaced apart in the horizontal direction at substantially the same position in the vertical direction. In the example shown in FIG. 14, the stage 27 is formed by stacking three plate-like members 279a to 279c in the vertical direction. Two gaps between the plate-like member 279a and the plate-like member 279b are a fuel gas supply channel 251 and a negative exhaust gas discharge channel 252. Further, two gaps between the plate-like member 279b and the plate-like member 279c are an oxidant gas supply channel 253 and a positive exhaust gas discharge channel 254.
 図15に示す例では、ステージ27の内部に、燃料ガス供給流路251、負極排ガス排出流路252および改質器22が配置される。改質器22は、ステージ27内の最上層に配置され、負極排ガス排出流路252は改質器22の下側に隣接して配置され、燃料ガス供給流路251は負極排ガス排出流路252の下側に隣接して配置される。換言すれば、ステージ27の内部に、一方の供給流路、一方の排出流路および改質器22が配置され、改質器22が、複数の燃料電池23と当該一方の排出流路との間に位置する。これにより、複数の燃料電池23から放出される熱、および、一方の排出流路を流れる高温のガスを利用して、改質器22を効率良く加熱することができる。 15, a fuel gas supply channel 251, a negative exhaust gas discharge channel 252, and a reformer 22 are disposed inside the stage 27. The reformer 22 is disposed in the uppermost layer in the stage 27, the negative exhaust gas exhaust passage 252 is disposed adjacent to the lower side of the reformer 22, and the fuel gas supply passage 251 is the negative exhaust gas exhaust passage 252. It is arranged adjacent to the lower side. In other words, one supply flow path, one discharge flow path, and the reformer 22 are disposed inside the stage 27, and the reformer 22 includes a plurality of fuel cells 23 and the one discharge flow path. Located between. Thereby, the reformer 22 can be efficiently heated using the heat released from the plurality of fuel cells 23 and the high-temperature gas flowing through one of the discharge passages.
 図16に示す例では、ステージ27の内部に、燃料ガス供給流路251、負極排ガス排出流路252、改質器22および排ガス燃焼部47が配置される。改質器22は、ステージ27内の最上層に配置され、排ガス燃焼部47は改質器22の下側に隣接して配置される。燃料ガス供給流路251は排ガス燃焼部47の下側に隣接して配置され、負極排ガス排出流路252は燃料ガス供給流路251の下側に隣接して配置される。 In the example shown in FIG. 16, a fuel gas supply channel 251, a negative exhaust gas discharge channel 252, a reformer 22, and an exhaust gas combustion unit 47 are arranged inside the stage 27. The reformer 22 is disposed in the uppermost layer in the stage 27, and the exhaust gas combustion unit 47 is disposed adjacent to the lower side of the reformer 22. The fuel gas supply channel 251 is disposed adjacent to the lower side of the exhaust gas combustion unit 47, and the negative gas exhaust gas discharge channel 252 is disposed adjacent to the lower side of the fuel gas supply channel 251.
 換言すれば、ステージ27の内部に、一方の供給流路、一方の排出流路、改質器22および排ガス燃焼部47が配置され、改質器22が、複数の燃料電池23と排ガス燃焼部47との間に位置する。一方の排出流路は負極排ガス排出流路252である。負極排ガス排出流路252を通過した負極排ガスが、排ガス燃焼部47へと導かれ、負極排ガス中の未利用の燃料ガスが燃焼されることにより、改質器22を効率良く加熱することができる。なお、図16に示す例から改質器22が省略され、ステージ27の内部に排ガス燃焼部47と、燃料ガス供給流路251と、負極排ガス排出流路252とが配置されてもよい。 In other words, one supply flow path, one discharge flow path, the reformer 22 and the exhaust gas combustion unit 47 are arranged inside the stage 27, and the reformer 22 includes a plurality of fuel cells 23 and an exhaust gas combustion unit. 47. One discharge channel is a negative electrode exhaust gas discharge channel 252. The negative electrode exhaust gas that has passed through the negative electrode exhaust gas discharge passage 252 is guided to the exhaust gas combustion section 47, and unused fuel gas in the negative electrode exhaust gas is burned, whereby the reformer 22 can be efficiently heated. . Note that the reformer 22 may be omitted from the example illustrated in FIG. 16, and the exhaust gas combustion unit 47, the fuel gas supply flow path 251, and the negative electrode exhaust gas discharge flow path 252 may be disposed inside the stage 27.
 図17に示す例では、ステージ27の内部に、燃料ガス供給流路251、負極排ガス排出流路252、酸化剤ガス供給流路253および正極排ガス排出流路254は設けられず、改質器22と、排ガス燃焼部47とが配置される。改質器22は、ステージ27内の最上層に配置され、排ガス燃焼部47は改質器22の下側に隣接して配置される。これにより、複数の燃料電池23から放出される熱、および、排ガス燃焼部47における燃焼熱を利用して、改質器22を効率良く加熱することができる。なお、図17に示す例から排ガス燃焼部47が省略され、ステージ27の内部に改質器22のみが配置されてもよい。この場合、複数の燃料電池23から放出される熱を利用して、改質器22を効率良く加熱することができる。図14ないし図17に示す例においても、燃料電池システム1,1aの構造を簡素化しつつ、複数の燃料電池23に係る排熱を有効利用することができる。 In the example shown in FIG. 17, the fuel gas supply flow path 251, the negative exhaust gas discharge flow path 252, the oxidant gas supply flow path 253, and the positive exhaust gas discharge flow path 254 are not provided inside the stage 27. And the exhaust gas combustion part 47 is arrange | positioned. The reformer 22 is disposed in the uppermost layer in the stage 27, and the exhaust gas combustion unit 47 is disposed adjacent to the lower side of the reformer 22. Thereby, the reformer 22 can be efficiently heated using the heat released from the plurality of fuel cells 23 and the combustion heat in the exhaust gas combustion section 47. Note that the exhaust gas combustion unit 47 may be omitted from the example illustrated in FIG. 17, and only the reformer 22 may be disposed inside the stage 27. In this case, the reformer 22 can be efficiently heated using heat released from the plurality of fuel cells 23. Also in the examples shown in FIGS. 14 to 17, exhaust heat related to the plurality of fuel cells 23 can be effectively used while simplifying the structure of the fuel cell systems 1 and 1a.
 上記燃料電池システム1,1aは、様々な変更が可能である。 The fuel cell system 1, 1a can be variously changed.
 燃料電池システム1,1aでは、複数のステージ27が上下方向に配列される場合、一のステージ27の上面上に支持される複数の燃料電池23に対し、例えば、当該一のステージ27の上側に位置する他のステージ27から燃料ガスおよび酸化剤ガスが供給され、当該複数の燃料電池23から当該他のステージ27へと負極排ガスおよび正極排ガスが排出されてもよい。 In the fuel cell systems 1 and 1a, when the plurality of stages 27 are arranged in the vertical direction, the plurality of fuel cells 23 supported on the upper surface of the one stage 27 are, for example, above the one stage 27. Fuel gas and oxidant gas may be supplied from the other stage 27 located, and negative electrode exhaust gas and positive electrode exhaust gas may be discharged from the plurality of fuel cells 23 to the other stage 27.
 燃料電池システム1,1aでは、複数の燃料電池23は、必ずしも各ステージ27の上面上に支持される必要はない。例えば、ステージ27は、複数の燃料電池23の側方に設けられ、各燃料電池23の側面に接して各燃料電池23を側方から支持してもよい。この場合、ステージ27の側面が電池支持面になる。また、燃料電池23の燃料ガス導入口、酸化剤ガス導入口、負極排ガス排出口および正極排ガス排出口は、例えば、燃料電池23の側面に設けられる。ステージ27は、複数の燃料電池23の上側に設けられ、各燃料電池23の上面に接して各燃料電池23を上側から支持してもよい。この場合、ステージ27の下面が電池支持面になる。また、燃料電池23の燃料ガス導入口、酸化剤ガス導入口、負極排ガス排出口および正極排ガス排出口は、例えば、燃料電池23の上面に設けられる。このように、ステージ27が複数の燃料電池23の側方または上方に配置される場合、複数の燃料電池23を下方から支持する架台が、ステージ27とは別に設けられてもよい。 In the fuel cell systems 1 and 1a, the plurality of fuel cells 23 are not necessarily supported on the upper surface of each stage 27. For example, the stage 27 may be provided on the side of the plurality of fuel cells 23 and may be in contact with the side surface of each fuel cell 23 to support each fuel cell 23 from the side. In this case, the side surface of the stage 27 becomes the battery support surface. The fuel gas inlet, the oxidant gas inlet, the negative exhaust gas outlet, and the positive exhaust gas outlet of the fuel cell 23 are provided on the side surface of the fuel cell 23, for example. The stage 27 may be provided on the upper side of the plurality of fuel cells 23 and may be in contact with the upper surface of each fuel cell 23 to support each fuel cell 23 from above. In this case, the lower surface of the stage 27 becomes the battery support surface. Further, the fuel gas inlet, the oxidant gas inlet, the negative exhaust gas outlet, and the positive exhaust gas outlet of the fuel cell 23 are provided on the upper surface of the fuel cell 23, for example. As described above, when the stage 27 is disposed on the side or the upper side of the plurality of fuel cells 23, a stand that supports the plurality of fuel cells 23 from below may be provided separately from the stage 27.
 図3に示すステージ27内では、燃料ガス供給流路251、負極排ガス排出流路252、酸化剤ガス供給流路253および正極排ガス排出流路254のそれぞれにおけるガスの流れ方向は、異なっていてもよい。 In the stage 27 shown in FIG. 3, the gas flow directions in the fuel gas supply channel 251, the negative exhaust gas discharge channel 252, the oxidant gas supply channel 253, and the positive exhaust gas discharge channel 254 may be different. Good.
 燃料電池システム1,1aの起動運転時には、改質器22に原燃料とは異なる起動用材料が供給されてもよい。起動用材料としては、例えば、窒素、水素、LPガス、都市ガスまたはバイオエタノール等が使用される。 During the start-up operation of the fuel cell system 1, 1a, a start-up material different from the raw fuel may be supplied to the reformer 22. As the starting material, for example, nitrogen, hydrogen, LP gas, city gas, bioethanol or the like is used.
 燃料電池システム1,1aでは、排ガス燃焼部47からの排ガスに含まれる水蒸気を、凝縮部45にて水として取り出した上で水蒸気生成部46に供給しているが、水蒸気を含む当該排ガスの一部が、ガス状のまま改質器22へと供給されてもよい。この場合であっても、定常運転時の水自立運転の実現が可能である。 In the fuel cell systems 1, 1 a, the water vapor contained in the exhaust gas from the exhaust gas combustion unit 47 is taken out as water by the condensing unit 45 and then supplied to the water vapor generation unit 46. The part may be supplied to the reformer 22 in a gaseous state. Even in this case, it is possible to realize water self-sustained operation during steady operation.
 図1に示す燃料電池システム1の起動運転では、改質器22および燃料電池23の加熱は、必ずしも昇温部24からの加熱用ガスにより行われる必要はなく、他の様々な構成により、改質器22および燃料電池23が加熱されてもよい。例えば、ハウジング21内に設けられた電気ヒータにより、改質器22および燃料電池23が加熱されてもよい。 In the start-up operation of the fuel cell system 1 shown in FIG. 1, the reformer 22 and the fuel cell 23 do not necessarily have to be heated by the heating gas from the temperature raising unit 24, and can be modified by various other configurations. The mass device 22 and the fuel cell 23 may be heated. For example, the reformer 22 and the fuel cell 23 may be heated by an electric heater provided in the housing 21.
 燃料電池システム1では、定常運転の際に、必ずしも熱自立運転が行われる必要はなく、昇温部24からハウジング21の内部空間210に加熱用ガスが継続的に供給されてもよい。また、燃料電池システム1,1aでは、定常運転の際に、必ずしも水自立運転は行われる必要はなく、水供給部31から水蒸気生成部46に水が継続的に供給されてもよい。 In the fuel cell system 1, it is not always necessary to perform the heat self-sustained operation during the steady operation, and the heating gas may be continuously supplied from the temperature raising unit 24 to the internal space 210 of the housing 21. In the fuel cell systems 1 and 1a, the water self-sustained operation is not necessarily performed during the steady operation, and water may be continuously supplied from the water supply unit 31 to the water vapor generation unit 46.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is illustrative and not restrictive. Therefore, it can be said that many modifications and embodiments are possible without departing from the scope of the present invention.
 1,1a  燃料電池システム
 21  ハウジング
 22  改質器
 23  燃料電池
 27  ステージ
 47  排ガス燃焼部
 210  内部空間
 251  燃料ガス供給流路
 252  負極排ガス排出流路
 253  酸化剤ガス供給流路
 254  正極排ガス排出流路
 270  隔壁
 278  凹凸部
DESCRIPTION OF SYMBOLS 1,1a Fuel cell system 21 Housing 22 Reformer 23 Fuel cell 27 Stage 47 Exhaust gas combustion part 210 Internal space 251 Fuel gas supply flow path 252 Negative exhaust gas exhaust flow path 253 Oxidant gas supply flow path 254 Positive exhaust gas exhaust flow path 270 Partition wall 278 Concavity and convexity

Claims (8)

  1.  燃料電池システムであって、
     原燃料を改質して燃料ガスを生成する改質器と、
     それぞれが前記燃料ガスおよび酸化剤ガスを用いて発電を行う固体酸化物形の複数の燃料電池と、
     前記複数の燃料電池を支持するステージと、
     内部空間に前記改質器、前記複数の燃料電池および前記ステージを収容するハウジングと、
     前記ハウジング内において前記改質器からの前記燃料ガスを前記複数の燃料電池に供給する燃料ガス供給流路と、
     前記ハウジング内において前記複数の燃料電池から排出された負極排ガスが集められる負極排ガス排出流路と、
     前記ハウジング内において前記酸化剤ガスを前記複数の燃料電池に供給する酸化剤ガス供給流路と、
     前記ハウジング内において前記複数の燃料電池から排出された正極排ガスが集められる正極排ガス排出流路と、
    を備え、
     前記ステージの内部に、前記燃料ガス供給流路および前記酸化剤ガス供給流路のうち一方の供給流路と、前記負極排ガス排出流路および前記正極排ガス排出流路のうち前記一方の供給流路と隔壁を挟んで熱交換可能に隣接する一方の排出流路とが配置される、または、前記ステージの内部に前記改質器が配置される。
    A fuel cell system,
    A reformer that reforms raw fuel to produce fuel gas;
    A plurality of solid oxide fuel cells, each generating power using the fuel gas and oxidant gas;
    A stage for supporting the plurality of fuel cells;
    A housing that houses the reformer, the plurality of fuel cells, and the stage in an internal space;
    A fuel gas supply flow path for supplying the fuel gas from the reformer to the plurality of fuel cells in the housing;
    A negative exhaust gas exhaust passage for collecting negative exhaust gases discharged from the plurality of fuel cells in the housing;
    An oxidant gas supply flow path for supplying the oxidant gas to the plurality of fuel cells in the housing;
    A positive exhaust gas exhaust passage for collecting positive exhaust gases discharged from the plurality of fuel cells in the housing;
    With
    Inside the stage, one of the fuel gas supply channel and the oxidizing gas supply channel, and the one of the negative exhaust gas discharge channel and the positive exhaust gas discharge channel. And one discharge channel adjacent to each other so as to exchange heat with the partition wall interposed therebetween, or the reformer is disposed inside the stage.
  2.  請求項1に記載の燃料電池システムであって、
     前記ステージの内部に、前記一方の供給流路および前記一方の排出流路が配置され、
     前記一方の供給流路におけるガスの流れ方向と、前記一方の排出流路におけるガスの流れ方向とが同じである。
    The fuel cell system according to claim 1,
    The one supply channel and the one discharge channel are arranged inside the stage,
    The gas flow direction in the one supply flow path is the same as the gas flow direction in the one discharge flow path.
  3.  請求項1または2に記載の燃料電池システムであって、
     前記ステージの内部に、前記一方の供給流路および前記一方の排出流路が配置され、
     前記一方の供給流路と前記一方の排出流路との間の前記隔壁が凹凸部を備える。
    The fuel cell system according to claim 1 or 2,
    The one supply channel and the one discharge channel are arranged inside the stage,
    The partition wall between the one supply channel and the one discharge channel includes an uneven portion.
  4.  請求項1ないし3のいずれかに記載の燃料電池システムであって、
     前記ステージの内部に、
     前記一方の供給流路および前記一方の排出流路と、
     前記燃料ガス供給流路および前記酸化剤ガス供給流路のうち他方の供給流路と、
     前記負極排ガス排出流路および前記正極排ガス排出流路のうち前記他方の供給流路と隔壁を挟んで熱交換可能に隣接する他方の排出流路と、
    が配置される。
    The fuel cell system according to any one of claims 1 to 3,
    Inside the stage,
    The one supply channel and the one discharge channel;
    Of the fuel gas supply channel and the oxidant gas supply channel, the other supply channel;
    Of the negative exhaust gas discharge flow channel and the positive exhaust gas discharge flow channel, the other supply flow channel and the other discharge flow channel adjacent to each other so as to exchange heat with a partition wall therebetween,
    Is placed.
  5.  燃料電池システムであって、
     原燃料を改質して燃料ガスを生成する改質器と、
     それぞれが前記燃料ガスおよび酸化剤ガスを用いて発電を行う固体酸化物形の複数の燃料電池と、
     前記複数の燃料電池を支持するステージと、
     内部空間に前記改質器、前記複数の燃料電池および前記ステージを収容するハウジングと、
     前記ハウジング内において前記改質器からの前記燃料ガスを前記複数の燃料電池に供給する燃料ガス供給流路と、
     前記ハウジング内において前記複数の燃料電池から排出された負極排ガスが集められる負極排ガス排出流路と、
     前記ハウジング内において前記酸化剤ガスを前記複数の燃料電池に供給する酸化剤ガス供給流路と、
     前記ハウジング内において前記複数の燃料電池から排出された正極排ガスが集められる正極排ガス排出流路と、
    を備え、
     前記ステージの内部に、前記燃料ガス供給流路および前記酸化剤ガス供給流路のうち一方の供給流路と、前記負極排ガス排出流路および前記正極排ガス排出流路のうち前記一方の供給流路とガスの流れ方向が同じである一方の排出流路とが配置される。
    A fuel cell system,
    A reformer that reforms raw fuel to produce fuel gas;
    A plurality of solid oxide fuel cells, each generating power using the fuel gas and oxidant gas;
    A stage for supporting the plurality of fuel cells;
    A housing that houses the reformer, the plurality of fuel cells, and the stage in an internal space;
    A fuel gas supply flow path for supplying the fuel gas from the reformer to the plurality of fuel cells in the housing;
    A negative exhaust gas exhaust passage for collecting negative exhaust gases discharged from the plurality of fuel cells in the housing;
    An oxidant gas supply flow path for supplying the oxidant gas to the plurality of fuel cells in the housing;
    A positive exhaust gas exhaust passage for collecting positive exhaust gases discharged from the plurality of fuel cells in the housing;
    With
    Inside the stage, one of the fuel gas supply channel and the oxidizing gas supply channel, and the one of the negative exhaust gas discharge channel and the positive exhaust gas discharge channel. And one discharge passage having the same gas flow direction.
  6.  請求項1ないし5のいずれかに記載の燃料電池システムであって、
     前記ステージの内部に、前記一方の供給流路、前記一方の排出流路および前記改質器が配置され、
     前記改質器が、前記複数の燃料電池と前記一方の排出流路との間に位置する。
    A fuel cell system according to any one of claims 1 to 5,
    Inside the stage, the one supply channel, the one discharge channel and the reformer are arranged,
    The reformer is located between the plurality of fuel cells and the one discharge channel.
  7.  請求項6に記載の燃料電池システムであって、
     前記ステージの内部にて前記改質器と隔壁を挟んで熱交換可能に隣接し、前記複数の燃料電池からの前記負極排ガスに含まれる未利用の前記燃料ガスを燃焼させる排ガス燃焼部をさらに備え、
     前記改質器が、前記複数の燃料電池と前記排ガス燃焼部との間に位置し、
     前記一方の排出流路が前記負極排ガス排出流路であり、
     前記負極排ガス排出流路を流れる前記負極排ガスが前記排ガス燃焼部へと導かれる。
    The fuel cell system according to claim 6,
    An exhaust gas combustion unit that combusts the unused fuel gas contained in the negative exhaust gas from the plurality of fuel cells and is adjacent to the reformer and the partition so as to be capable of heat exchange inside the stage. ,
    The reformer is located between the plurality of fuel cells and the exhaust gas combustion unit;
    The one discharge channel is the negative electrode exhaust gas discharge channel,
    The negative exhaust gas flowing through the negative exhaust gas exhaust passage is guided to the exhaust gas combustion section.
  8.  請求項7に記載の燃料電池システムであって、
     前記排ガス燃焼部は、前記燃料電池システムの起動運転の際に、昇温用流体を燃焼させて前記改質器および前記複数の燃料電池を昇温させる起動昇温部でもある。
    The fuel cell system according to claim 7, wherein
    The exhaust gas combustion unit is also a startup temperature raising unit that raises the temperature of the reformer and the plurality of fuel cells by burning a temperature raising fluid during a startup operation of the fuel cell system.
PCT/JP2016/071707 2015-08-26 2016-07-25 Fuel cell system WO2017033650A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-166753 2015-08-26
JP2015166753A JP6560564B2 (en) 2015-08-26 2015-08-26 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2017033650A1 true WO2017033650A1 (en) 2017-03-02

Family

ID=58099880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071707 WO2017033650A1 (en) 2015-08-26 2016-07-25 Fuel cell system

Country Status (2)

Country Link
JP (1) JP6560564B2 (en)
WO (1) WO2017033650A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344863B (en) * 2023-05-17 2023-08-18 武汉海亿新能源科技有限公司 Combined heat and power thermal management system of multi-fuel cell system and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114324A (en) * 2003-10-10 2005-04-28 Univ Of Tokyo Regenerated heat exchanger and regenerated heat exchange method
JP2009037814A (en) * 2007-07-31 2009-02-19 Tokyo Gas Co Ltd Temperature decreasing method for high temperature region of solid-oxide fuel cell, and device for the same
JP2009272117A (en) * 2008-05-07 2009-11-19 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2010534913A (en) * 2007-07-26 2010-11-11 ブルーム エナジー コーポレーション Hotbox design with multi-stream heat exchanger and single air control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114324A (en) * 2003-10-10 2005-04-28 Univ Of Tokyo Regenerated heat exchanger and regenerated heat exchange method
JP2010534913A (en) * 2007-07-26 2010-11-11 ブルーム エナジー コーポレーション Hotbox design with multi-stream heat exchanger and single air control
JP2009037814A (en) * 2007-07-31 2009-02-19 Tokyo Gas Co Ltd Temperature decreasing method for high temperature region of solid-oxide fuel cell, and device for the same
JP2009272117A (en) * 2008-05-07 2009-11-19 Ngk Spark Plug Co Ltd Solid oxide fuel cell

Also Published As

Publication number Publication date
JP6560564B2 (en) 2019-08-14
JP2017045602A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6017977B2 (en) Fuel cell system
JP5485666B2 (en) Fuel cell system
JP7263212B2 (en) Fuel cell module and fluid supply device used therefor
JP5851863B2 (en) Fuel cell module
JP6030547B2 (en) Fuel cell module
JP5550453B2 (en) Fuel cell module and fuel cell device
KR20090078700A (en) A thermally self-controllable solid oxide fuel cell system
JP6550814B2 (en) Air preheater and power generator
JP2010080260A (en) Fuel battery module and fuel battery device
JP5908746B2 (en) Fuel cell system
JP2009110675A (en) Fuel cell device
JP6406704B2 (en) Fuel cell module
JP4942952B2 (en) Operation method of high temperature fuel cell
JP5700978B2 (en) Cell stack device, fuel cell module and fuel cell device
JP6560564B2 (en) Fuel cell system
JP6715707B2 (en) Fuel cell system
KR101250418B1 (en) fuel processor of fuel cell
JP4789524B2 (en) Solid oxide fuel cell assembly
JP2019164893A (en) Device for fuel cell
JP7144369B2 (en) fuel cell system
JP2019091619A (en) Fuel cell module and fluid supply apparatus used therefor
JP6495767B2 (en) Fuel cell system
JP5376402B2 (en) Fuel cell module
JP7397631B2 (en) fuel cell module
JP2012219008A (en) Thermal treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838997

Country of ref document: EP

Kind code of ref document: A1