WO2017033585A1 - Mixer and method for supplying power to power receiving section attached to mixer - Google Patents

Mixer and method for supplying power to power receiving section attached to mixer Download PDF

Info

Publication number
WO2017033585A1
WO2017033585A1 PCT/JP2016/070021 JP2016070021W WO2017033585A1 WO 2017033585 A1 WO2017033585 A1 WO 2017033585A1 JP 2016070021 W JP2016070021 W JP 2016070021W WO 2017033585 A1 WO2017033585 A1 WO 2017033585A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
mixer
power receiving
receiving unit
Prior art date
Application number
PCT/JP2016/070021
Other languages
French (fr)
Japanese (ja)
Inventor
司 瓶子
大木 紀知
岩本 貴宏
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Priority to NZ735881A priority Critical patent/NZ735881A/en
Priority to AU2016312442A priority patent/AU2016312442A1/en
Publication of WO2017033585A1 publication Critical patent/WO2017033585A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/02Controlling the operation of the mixing
    • B28C7/022Controlling the operation of the mixing by measuring the consistency or composition of the mixture, e.g. with supply of a missing component
    • B28C7/026Controlling the operation of the mixing by measuring the consistency or composition of the mixture, e.g. with supply of a missing component by measuring data of the driving system, e.g. rotational speed, torque, consumed power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4206Control apparatus; Drive systems, e.g. coupled to the vehicle drive-system
    • B28C5/422Controlling or measuring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/16Vehicles adapted to transport, to carry or to comprise special loads or objects for carrying mixed concrete, e.g. having rotatable drums
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present invention relates to a mixer and a method for supplying power to a power receiving unit attached to the mixer.
  • Patent Document 1 discloses a conventional mixer.
  • the mixer includes a mixer drum (drum), a support (vehicle body), a solar power generator, and a plurality of electric devices (residual water detection sensor (sensor)).
  • the mixer drum is provided with an opening having one end opened.
  • the support portion is rotatably mounted with a mixer drum.
  • the solar power generator is provided on the outer peripheral surface of the mixer drum.
  • the solar power generator generates power by receiving sunlight while rotating with the mixer drum.
  • the plurality of electric devices are provided side by side in the circumferential direction on the inner peripheral surface of the mixer drum. The plurality of electrical devices rotate with the mixer drum.
  • this mixer can supply the electric power generated by receiving sunlight while a solar power generator provided on the outer peripheral surface of the mixer drum rotates together with the mixer drum to a plurality of electric devices. That is, this mixer does not need to feed power from the support side to the electrical equipment provided on the mixer drum side via the power line, and the power line for feeding power to the electrical equipment does not break.
  • the mixer of Patent Document 1 generates power with a solar power generator that is affected by the surrounding environment such as time zone and weather. For this reason, this mixer may not be able to stably supply power to the electrical equipment depending on the surrounding environment.
  • the present invention has been made in view of the above-described conventional situation, and it is an object to be solved to provide a mixer capable of satisfactorily supplying power to an electric device that rotates together with the mixer drum.
  • the mixer of the present invention includes a support part, a mixer drum, an electric device, and a power transmission part.
  • the mixer drum has a drive shaft that is rotatably supported by the support portion, and rotates around the drive shaft.
  • the electrical equipment is attached to the mixer drum.
  • the power transmission unit has a power receiving unit and a power feeding unit.
  • the power receiving unit is attached to the mixer drum and supplies electric power to the electric device.
  • the power feeding unit is attached to the support unit, and supplies power to the power receiving unit with a predetermined space between the power receiving unit and the power receiving unit temporarily or constantly facing the power receiving unit.
  • the support portion has a cylindrical concealing portion provided coaxially with the drive shaft so as to cover the periphery of the drive shaft of the mixer drum.
  • the power receiving unit is provided on the outer peripheral surface of the drive shaft of the mixer drum, and the power feeding unit is provided on the inner peripheral surface of the concealing unit.
  • the power transmission unit has a power reception unit provided on the outer peripheral surface of the mixer drum.
  • the power transmission unit includes a power supply support member that extends along the circumferential direction of the mixer drum and is disposed at a position where the power supply unit temporarily faces the power reception unit.
  • the power transmission unit includes at least one of a power receiving unit and a power feeding unit.
  • the method for supplying power to the power receiving unit attached to the mixer of the present invention includes the first to third procedures.
  • the first procedure an electrical characteristic value corresponding to the power supplied from the power supply unit to the power reception unit is obtained.
  • the second procedure the position of the power receiving unit with respect to the power feeding unit is obtained from the electrical characteristic value obtained in the first procedure.
  • a current is supplied to the power feeding unit based on the position of the power receiving unit obtained in the second procedure.
  • the method for supplying power to the power receiving unit returns to the first procedure when the electrical characteristic value becomes smaller than a predetermined value.
  • FIG. 1 It is a side view which shows the mixer truck of Embodiment 1.
  • (A) is a perspective view showing a main part
  • (B) is a sectional view taken along line XX in (A), regarding the mixer of the mixer truck of the first embodiment.
  • 3 is a flowchart illustrating a step of obtaining a position of the power receiving unit with respect to the power feeding unit according to the first embodiment and supplying power from the power feeding unit to the power receiving unit.
  • (A) is a perspective view showing a main part
  • (B) is a YY cross-sectional view in (A) regarding the mixer of the mixer truck of the second embodiment.
  • 10 is a flowchart illustrating steps for obtaining a position of a power reception unit with respect to a power supply unit according to Embodiment 2 and supplying power from the power supply unit to the power reception unit.
  • (A) is a side view
  • (B) is a ZZ cross-sectional view in (A) regarding the mixer of the mixer truck of the third embodiment. It is a side view which shows the principal part of the mixer of the mixer truck of Embodiment 4.
  • FIG. 1 is a side view showing a main part
  • (B) is a WW cross-sectional view in (A) regarding a mixer of a mixer truck of a fifth embodiment.
  • (A) is a side view and (B) is a VV cross-sectional view in (A) regarding the mixer of the mixer vehicle of Embodiment 6.
  • FIG. It is a perspective view which shows the principal part of the mixer of the mixer truck of Embodiment 6.
  • Embodiments 1 to 6 embodying a mixer vehicle in which the mixer of the present invention is mounted on a support portion of a vehicle body will be described with reference to the drawings.
  • the mixer vehicle of the first embodiment includes a vehicle body 50, a mixer 10J, a hopper 50C, and a chute 50D.
  • the vehicle body 50 has a cabin 50A and a gantry 50F.
  • the cabin 50A is provided on the front side of the vehicle body 50 (front and rear are the left and right in FIG. 1, the same applies hereinafter).
  • the gantry 50F is provided on the rear side of the cabin 50A.
  • An engine (not shown) travels the vehicle body 50 and is provided on the lower side of the cabin 50A (upper and lower are the upper and lower in FIG. 1; the same applies hereinafter).
  • the mixer 10 ⁇ / b> J includes a mixer drum 10, a front support unit 11 ⁇ / b> F, a rear support unit 11 ⁇ / b> B, a power transmission unit 30, and a slump sensor 16.
  • the mixer drum 10 has a drum body 10A, a drive shaft 10B, two drum blades (not shown), and a roller ring 10D.
  • the drum body 10A has a cylindrical shape.
  • the drum main body 10A is provided with an opening 10E having one end opened. Further, the drum body 10A is closed at the other end in the back direction when viewed from one end by a closing portion 10F.
  • the drive shaft 10B is connected to the center of the closing portion 10F and extends outward from the drum body 10A.
  • the drive shaft 10 ⁇ / b> B extends on the rotation shaft 10 ⁇ / b> G of the mixer drum 10.
  • the drive shaft 10B is connected to a speed reducer (not shown).
  • the speed reducer is connected to a hydraulic motor (not shown).
  • the hydraulic motor is connected to a hydraulic pump (not shown) via a pipe (not shown).
  • the hydraulic pump is connected to a vehicle engine (not shown).
  • the rotational force of the engine is transmitted to the drive shaft 10B via the hydraulic pump, piping, hydraulic motor, and speed reducer to rotate the mixer drum 10.
  • Each drum blade is helically fixed along the inner peripheral surface of the drum body 10A with a predetermined interval. That is, each drum blade rotates with the drum body 10A.
  • the roller ring 10D has an annular shape and is provided so as to go around the outer surface on the opening 10E side of the drum body 10A.
  • the rear support portion 11B rotatably supports the mixer drum 10 in a forward tilt posture in which the opening portion 10E of the mixer drum 10 is positioned upward and the opening portion 10E is lifted above the closing portion 10F.
  • the rear support portion 11B rotatably supports the roller ring 10D of the mixer drum 10 from below by a plurality of rollers 11A provided at the rear end portion.
  • the front support portion 11F rotatably supports the drive shaft 10B of the mixer drum 10.
  • the front support portion 11F and the rear support portion 11B pivotally support the mixer drum 10, and the mixer drum 10 rotates about the rotation shaft 10G.
  • the power transmission unit 30 includes a concealing unit 30B, a plurality of power feeding units 30D, a power feeding side control unit 30E, a power feeding side storage battery 30F, and a power receiving unit 30C.
  • the concealing portion 30B has a cylindrical shape, is provided coaxially with the drive shaft 10B so as to cover the periphery of the drive shaft 10B, and is fixed to the front support portion 11F. A predetermined gap is provided between the inner peripheral surface of the concealing portion 30B and the outer peripheral surface of the drive shaft 10B.
  • Each power feeding unit 30D is a coil in which a metal wire whose surface is covered with an insulating film is coaxially wound a plurality of times and bundled in an annular shape. Further, each of the power supply portions 30D has an annular shape having a width in the radial direction. Each power feeding portion 30D is attached with one end of the annular shape contacting the inner peripheral surface (circumferential surface) of the concealing portion 30B.
  • each power feeding portion 30D is attached in a row in the circumferential direction of the inner peripheral surface with the distance between them being equally spaced.
  • the six power feeding units 30D are associated with values of 0 to 5 in the order in which they are arranged in a line (see FIG. 2B). Specifically, 0 to 5 ID (identification) signals (pulse signals, etc.) corresponding to each of the six power supply units 30D are allocated to the six power supply units 30D.
  • Each power supply section 30D has both ends of the metal wire drawn out long.
  • Each power feeding part 30D is attached to the front support part 11F side.
  • the power supply side control unit 30E is provided in the front support unit 11F.
  • the power supply side control unit 30E is electrically connected at both ends of a metal wire that is extended from each power supply unit 30D (see FIG. 2B).
  • the power supply side storage battery 30F is adjacent to the power supply side control unit 30E and is provided in the front support unit 11F.
  • the power supply side storage battery 30F is electrically connected to the power supply side control unit 30E.
  • the feeding side control unit 30E is supplied with a direct current from the feeding side storage battery 30F.
  • the power supply side control unit 30E converts this direct current into an alternating current and supplies it to each power supply unit 30D.
  • the power receiving unit 30C is a coil in which a metal wire whose surface is covered with an insulating film is coaxially wound a plurality of times and bundled in an annular shape.
  • Each of the power receiving units 30C has an annular shape having a width in the radial direction.
  • the power receiving unit 30C has both ends of the metal wire drawn out long.
  • the power receiving unit 30 ⁇ / b> C is attached such that one end of the annular shape is in contact with the outer peripheral surface of the drive shaft 10 ⁇ / b> B of the mixer drum 10. That is, the power receiving unit 30C is attached at a position where the other end of the ring faces the other end of the ring of each power feeding unit 30D (see FIG. 2B).
  • the power receiving unit 30C is attached to the drive shaft 10B of the mixer drum 10 and rotates together with the mixer drum 10. A predetermined interval is provided between the annular other end side of the power receiving unit 30C and the annular other end side of each power feeding unit 30D.
  • the power receiving unit 30C that rotates together with the mixer drum 10 does not come into contact with each power feeding unit 30D. That is, the power receiving unit 30C rotates together with the mixer drum 10 and temporarily faces each power feeding unit 30D.
  • the slump sensor 16 which is an electrical device, includes an electrode 12 and a control unit 15.
  • the electrode 12 is provided on the inner peripheral surface of the mixer drum 10.
  • the control unit 15 is provided on the outer peripheral surface of the mixer drum 10.
  • the electrode 12 and the control unit 15 are electrically connected to each other through a through hole 17 that penetrates the drum main body 10A in a watertight manner. That is, the slump sensor 16 is attached to the mixer drum 10 and rotates together with the mixer drum 10.
  • the slump sensor 16 obtains a slump value by the control unit 15 based on a predetermined value such as a resistance value or a capacitance value of ready-mixed concrete measured using the electrode 12.
  • the slump sensor 16 is electrically connected to the control unit 15 at both ends of a metal wire drawn out from the power receiving unit 30C.
  • the hopper 50C is formed with an input port that opens while expanding upward.
  • the lower end of the hopper 50C is opened in the front lower direction, and a discharge port is formed.
  • Hopper 50 ⁇ / b> C has a discharge port communicating with the center of opening 10 ⁇ / b> E of mixer drum 10.
  • the hopper 50C is fixed to the upper portion of the rear support portion 11B. The hopper 50C puts the ready-mixed concrete thrown into the inlet into the mixer drum 10 from the outlet.
  • the chute 50D is supported by the rear support portion 11B so that the distal end portion thereof is rotatable in the horizontal direction and the vertical direction with the base end portion as the center.
  • the horizontal direction does not necessarily mean a strict horizontal direction, but includes a state slightly deviated from the strict horizontal direction.
  • the chute 50D guides the ready-mixed concrete discharged from the mixer drum 10 to a desired position.
  • the mixer 10J, the hopper 50C, and the chute 50D are mounted on the upper side of the mount 50F of the vehicle body 50.
  • the mixer 10J supplies power from each power supply unit 30D to the power reception unit 30C using electromagnetic induction. Specifically, in the mixer 10J, the mixer drum 10 rotates about the rotation shaft 10G and the ready-mixed concrete charged into the mixer drum 10 is agitated. At this time, the power reception unit 30 ⁇ / b> C and the slump sensor 16 rotate together with the mixer drum 10 on a circumference around the rotation shaft 10 ⁇ / b> G of the mixer drum 10. At this time, the mixer 10J converts the direct current supplied from the power supply side storage battery 30F into an alternating current by the power supply side control unit 30E and supplies it to each power supply unit 30D. Then, as shown in FIG.
  • an alternating magnetic field M is generated around each power supply unit 30D.
  • the power receiving unit 30C moves in the alternating magnetic field.
  • the power receiving unit 30C is arranged in an alternating magnetic field to generate an induced current. In this way, the mixer 10J can supply power to each power receiving section 30C on the mixer drum 10 side from each power feeding section 30D on the front support section 11F side by electromagnetic induction.
  • the AC magnetic field generated around each power feeding unit 30D is the smallest in the middle between adjacent power feeding units 30D. For this reason, when the power receiving unit 30C is positioned in the middle of the adjacent power feeding units 30D, the amount of power supplied to the power receiving unit 30C is minimized. For this reason, the dimension between the adjacent power supply units 30D is set so that the amount of power supplied to the power receiving unit 30C in the middle of the adjacent power supply units 30D is larger than the amount of power necessary to operate the slump sensor 16. ing.
  • the flowchart shown in FIG. 4 is repeatedly executed by the control unit 15 at predetermined time intervals.
  • the control unit 15 includes a current sensor (not shown). As a result, the control unit 15 repeatedly detects the value of the induced current generated in the power receiving unit 30C every predetermined time and detects it with a current sensor.
  • step S1 in order to specify the position of the power receiving unit 30C, it is determined whether or not the specific completion flag (flag) is 0 (step S1). Specifically, a specific completion flag is set in which 1 is set when the position of the power receiving unit 30C is completed, and 0 is set when the position of the power receiving unit 30C is not completed. If 0 is set in the specific completion flag, the process proceeds to step S2. If 1 is set in the specific completion flag, the process proceeds to step S5. This specific completion flag is set to 0 every time the engine of the mixer vehicle is started.
  • step S2 the value of the induced current generated in the power receiving unit 30C for each power feeding unit 30D is measured. Specifically, alternating current is supplied to the 0th to 5th power feeding units 30D one by one in order. At this time, in order to identify which power supply unit 30D is supplied with the alternating current by the control unit 15, the power reception unit 30C and the power supply unit 30D receive ID signals corresponding to the 0th to 5th power supply units 30D. To the control unit 15. Then, the value of the induced current generated in the power receiving unit 30 ⁇ / b> C for each power feeding unit 30 ⁇ / b> D supplied with the alternating current is measured by the current sensor of the control unit 15.
  • the value of the induced current generated in the power receiving unit 30C becomes the maximum if the power receiving unit 30C faces the 0th power feeding unit 30D.
  • the term “opposite” refers to a state in which the power receiving unit 30C and the power feeding unit 30D are completely facing each other (the same applies hereinafter).
  • the induced current generated in the power receiving unit 30C varies depending on the amount of the power receiving unit 30C and the 0th power feeding unit 30D facing each other.
  • the control unit 15 obtains an induced current value that is an electrical characteristic value corresponding to the power fed from the power feeding unit 30D to the power receiving unit 30C.
  • the position of the power receiving unit 30C with respect to each power feeding unit 30D is specified from the value of the induced current generated in the power receiving unit 30C with respect to each power feeding unit 30D (step S3). Specifically, among the values of the induced current generated in the power receiving unit 30C for each power feeding unit 30D (hereinafter referred to as the value of the induced current for the power feeding unit 30D) measured in step S2, the largest value and the next largest value. Based on the ratio of the values, the position of the power receiving unit 30C with respect to the 0th to 5th adjacent power feeding units 30D is obtained.
  • the power receiving unit 30C straddles the 0th and 1st power feeding units 30D.
  • the position is close to the 0th power feeding unit 30D.
  • the position of the power receiving unit 30C with respect to the 0th to 5th power feeding units 30D is specified from the value of the induced current that is the electrical characteristic value.
  • 1 is set in the identification completion flag to indicate that the identification of the position of the power receiving unit 30C has been completed (step S4).
  • this position information is transmitted to the power feeding side control unit 30E via the power receiving unit 30C and the power feeding unit 30D.
  • step S5 an alternating current is supplied to the power feeding unit 30D facing the power receiving unit 30C based on the position of the power receiving unit 30C specified in step S3 (step S5). Specifically, an alternating current is supplied to the power feeding unit 30D facing the position of the power receiving unit 30C identified in step S3.
  • the mixer 10J can supply power to the power reception unit 30C from the power supply unit 30D without supplying unnecessary AC current to the power supply unit 30D that is not opposed to the power reception unit 30C.
  • step S6 it is determined whether the value of the induced current generated in the power receiving unit 30C is smaller than a predetermined value. Specifically, when the power receiving unit 30C that rotates together with the mixer drum 10 passes through the power supply unit 30D to which an alternating current is supplied, power is not supplied from the power supply unit 30D. That is, by comparing whether the value of the induced current generated in the power receiving unit 30C is smaller than a predetermined value (the predetermined value is stored in the control unit 15 in advance), the power feeding unit 30D to which the alternating current is supplied is received. It can be seen whether the part 30C has passed.
  • a predetermined value the predetermined value is stored in the control unit 15 in advance
  • step S7 the specific completion flag is set to 0, and the specification of the position of the power receiving unit 30C is completed. Indicates no. If it is determined that the value of the induced current generated in the power receiving unit 30C is not smaller than the predetermined value, the flowchart ends, and the control unit 15 executes the flowchart again from step S1.
  • the mixer 10J of this mixer vehicle has a predetermined gap between the power feeding unit 30D attached to the front support portion 11F side and the power receiving unit 30C attached to the mixer drum 10 side. Thereby, even if this mixer 10J rotates when the mixer drum 10 stirs ready-mixed concrete, electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 10J, the power receiving unit 30C temporarily opposes the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C.
  • the mixer 10J does not need to supply power to the slump sensor 16 attached to the mixer drum 10 side from the front support portion 11F side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 10J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, power can be stably supplied to the slump sensor 16 attached to the mixer drum 10. .
  • the mixer 10 ⁇ / b> J of the mixer vehicle of the first embodiment can satisfactorily supply power to the slump sensor 16 attached to the mixer drum 10 and rotating together with the mixer drum 10.
  • the front support portion 11F has a cylindrical concealment portion 30B provided coaxially with the drive shaft 10B so as to cover the periphery of the drive shaft 10B of the mixer drum 10.
  • the power receiving unit 30C is provided on the outer peripheral surface of the drive shaft 10B of the mixer drum 10
  • the power feeding unit 30D is provided on the inner peripheral surface of the concealing unit 30B.
  • the power transmission unit 30 has a plurality of power feeding units 30D. For this reason, the power transmission unit 30 of the mixer 10J can supply more power from each power feeding unit 30D to the power receiving unit 30C than when one power feeding unit 30D and one power receiving unit 30C are provided.
  • the method for supplying power to the power receiving unit 30C attached to the mixer 10J includes a first procedure to a third procedure.
  • the first procedure an induced current value corresponding to the power supplied from the power supply unit 30D to the power reception unit 30C is obtained.
  • the second procedure the position of the power receiving unit 30C with respect to the power feeding unit 30D is obtained from the value of the induced current obtained in the first procedure.
  • a current is supplied to the power feeding unit 30D based on the position of the power receiving unit 30C obtained in the second procedure.
  • the method of supplying power to the power receiving unit 30C returns to the first procedure when the induced current generated in the power receiving unit 30C becomes smaller than a predetermined value.
  • the mixer vehicle of the second embodiment has one power supply unit 30D, the mixer drum 10 has a power storage battery 14, and the mixer 10J.
  • the position specifying method and the power feeding method of the power receiving unit 30C attached to the battery are different from those of the first embodiment.
  • Other configurations are the same as those of the first embodiment, and the same configurations as those of the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • One feeding portion 30D is attached with one end of the annular shape coming into contact with the inner peripheral surface of the concealing portion 30B (see FIG. 5B).
  • both ends of the metal wire are drawn out long and are electrically connected to the power feeding side control unit 30E (see FIG. 5B).
  • the power receiving side storage battery 14 is provided on the outer peripheral surface of the mixer drum 10, and is attached adjacent to the control unit 15 of the slump sensor 16. The power receiving side storage battery 14 is electrically connected to the control unit 15.
  • the power supply side control unit 30E converts the direct current supplied from the power supply side storage battery 30F into an alternating current and supplies the alternating current to the power supply unit 30D. Then, an alternating magnetic field is generated around the power feeding unit 30D.
  • the power receiving unit 30C and the slump sensor 16 rotate together with the mixer drum 10 on a circumference around the rotation shaft 10G of the mixer drum 10 to periodically face the power feeding unit 30D. That is, the mixer 10J can feed power from the power feeding unit 30D to the power receiving unit 30C while the power receiving unit 30C and the power feeding unit 30D are facing each other. That is, the mixer 10J is not constantly supplied with power from the power supply unit 30D to the power reception unit 30C.
  • the mixer 10J supplies power to the power-receiving-side storage battery 14 from the power receiving unit 30C via the control unit 15 while charging the power receiving unit 30C from the power supplying unit 30D.
  • the mixer 10J can operate the slump sensor 16 using the electric power stored in the power receiving side storage battery 14 while the power receiving unit 30D is not supplying power to the power receiving unit 30C.
  • the capacity that can be stored by the power storage battery 14 must be larger than the power consumed by the slump sensor 16 while the mixer drum 10 rotates once.
  • the amount that the power feeding unit 30D and the power receiving unit 30C confront each other to feed and charge the power receiving side storage battery 14 must be larger than the power consumed by the slump sensor 16 while the mixer drum 10 rotates once.
  • the flowchart shown in FIG. 6 is repeatedly executed by the control unit 15 at predetermined time intervals.
  • the control unit 15 includes a current sensor (not shown). Thereby, the control unit 15 repeats the value of the induced current generated in the power receiving unit 30C at every predetermined time, and is detected by the current sensor.
  • step S11 in order to specify the position of the power receiving unit 30C, it is determined whether or not the specific completion flag is 0 (step S11). Specifically, a specific completion flag is set in which 1 is set when the position of the power receiving unit 30C is completed, and 0 is set when the position of the power receiving unit 30C is not completed. If 0 is set in the specific completion flag, the process proceeds to step S12. If 1 is set in the specific completion flag, the process proceeds to step S14. This specific completion flag is set to 0 every time the engine of the mixer vehicle is started.
  • step S12 the state where the power receiving unit 30C and the power feeding unit 30D are opposed to each other is specified, and the state at that time is stored.
  • the method for specifying the position of the power receiving unit 30C attached to the mixer 10J is to obtain a state in which the value of the induced current generated in the power receiving unit 30C is maximized by rotating the mixer drum 10 once with the alternating current supplied to the power feeding unit 30D. . That is, the state where the value of the induced current generated in the power receiving unit 30C is the maximum is the state where the power receiving unit 30C and the power feeding unit 30D face each other.
  • the predetermined value is stored in the control unit 15 in advance. If it is determined that the value of the induced current is greater than the predetermined value, it is determined whether the induced current value has continued to increase and then started to decrease.
  • the state (maximum value) immediately before starting the decrease is a state in which the power receiving unit 30C and the power feeding unit 30D face each other, and the power receiving unit at this time
  • the position of 30C is stored in the control unit 15.
  • 1 is set in the identification completion flag to indicate that the identification of the position of the power receiving unit 30C is completed, and the supply of the alternating current to the power feeding unit 30D is stopped (step S13).
  • step S14 it is determined whether the power receiving unit 30C is facing the power feeding unit 30D when the mixer drum is rotating. Specifically, it is determined whether or not the power feeding unit 30D and the power receiving unit 30C stored in the control unit 15 are in the vicinity of the position facing each other in step S12. When the power feeding unit 30D and the power receiving unit 30C are in the vicinity of the facing position, the process proceeds to step S15. When the power feeding unit 30D and the power receiving unit 30C are not in the vicinity of the facing position, the process proceeds to step S16.
  • step S15 supply of alternating current to the power feeding unit 30D is started. In this way, power is supplied from the power supply unit 30D to the power reception unit 30C. And the control part 15 performs a flowchart again from step S11.
  • step S16 the supply of the alternating current to the power feeding unit 30D is stopped. Specifically, if the power feeding unit 30D and the power receiving unit 30C are not confronted with each other, power cannot be supplied from the power feeding unit 30D to the power receiving unit 30C. Reduce consumption. And the control part 15 performs a flowchart again from step S11.
  • the mixer 10J of this mixer vehicle also has a predetermined gap between the power feeding unit 30D attached to the front support portion 11F side and the power receiving unit 30C attached to the mixer drum 10 side.
  • the mixer 10J does not need to supply power to the slump sensor 16 attached to the mixer drum 10 side from the front support portion 11F side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 10J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, power can be stably supplied to the slump sensor 16 attached to the mixer drum 10. .
  • the mixer 10J of the mixer vehicle of the second embodiment can also supply power to the slump sensor 16 attached to the mixer drum 10 and rotating together with the mixer drum 10.
  • the front support portion 11F has a cylindrical concealment portion 30B provided coaxially with the drive shaft 10B so as to cover the periphery of the drive shaft 10B of the mixer drum 10.
  • the power receiving unit 30C is provided on the outer peripheral surface of the drive shaft 10B of the mixer drum 10
  • the power feeding unit 30D is provided on the inner peripheral surface of the concealing unit 30B.
  • the method for supplying power to the power receiving unit 30C attached to the mixer 10J includes a first procedure to a third procedure.
  • the first procedure an induced current value corresponding to the power supplied from the power supply unit 30D to the power reception unit 30C is obtained.
  • the second procedure the position of the power receiving unit 30C with respect to the power feeding unit 30D is obtained from the value of the induced current obtained by the first means.
  • a current is supplied to the power feeding unit 30D based on the position of the power receiving unit 30C obtained in the second procedure.
  • the method of supplying power to the power receiving unit 30C returns to the first procedure when the induced current generated in the power receiving unit 30C becomes smaller than a predetermined value.
  • the power feeding method to the power receiving unit 30C it is not necessary to obtain the position on the circumference of the power receiving unit 30C around the rotating shaft 10G with another sensor.
  • the position of the power receiving unit 30C with respect to the power feeding unit 30D can be specified, the power can be supplied to the power feeding unit 30D with good timing depending on the position of the power receiving unit 30C with respect to the power feeding unit 30D. Consumption can be suppressed.
  • this mixer 10J includes one power feeding unit 30D and one power receiving unit 30C.
  • the power receiving unit 30C rotates together with the mixer drum 10 and periodically faces the power feeding unit 30D. Therefore, the mixer 10J can determine the rotation speed of the mixer drum 10 based on the value of the induced current generated in the power receiving unit 30C that periodically changes.
  • the mixer vehicle of the third embodiment has a power supply support member 30J, and has six power supply portions 30D arranged on the power supply support member 30J.
  • the positions at which the power receiving unit 30C is arranged on the mixer drum 10 are different from those in the first and second embodiments.
  • the same configurations as those of the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the power transmission unit 230 includes a power supply support member 30J.
  • the power supply support member 30J has a semi-cylindrical shape.
  • the power supply support member 30J is provided coaxially with the mixer drum 10 so as to cover the lower portion of the intermediate portion of the outer peripheral surface of the mixer drum 10, and is fixed on the gantry 50F. That is, the power supply support member 30 ⁇ / b> J extends along the circumferential direction of the mixer drum 10.
  • a predetermined gap is provided between the power supply support member 30J and the mixer drum 10.
  • Each of the power supply portions 30D is arranged in a row with one end side of the annular shape abutting on the semi-cylindrical inner peripheral surface of the power supply support member 30J and with the same distance between each other in the circumferential direction of the power supply support member 30J.
  • the power receiving unit 30 ⁇ / b> C is attached such that one end of the annular shape is in contact with the outer peripheral surface of the mixer drum 10.
  • the power receiving unit 30C rotates together with the mixer drum 10 and temporarily confronts the other end of the ring with the other end of the ring of each power feeding unit 30D.
  • the power receiving unit 30C rotates together with the mixer drum 10 with a predetermined gap between each power feeding unit 30D and does not come into contact with each power feeding unit 30D.
  • the mixer 10J of this mixer vehicle also has a predetermined gap between the power feeding unit 30D attached to the power feeding support member 30J side and the power receiving unit 30C attached to the mixer drum 10 side.
  • the mixer 10J does not need to supply power to the slump sensor 16 attached to the mixer drum 10 side from the power supply support member 30J side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 10J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, power can be stably supplied to the slump sensor 16 attached to the mixer drum 10. .
  • the mixer 10J of the mixer truck of the third embodiment can also supply power to the slump sensor 16 attached to the mixer drum 10 and rotating together with the mixer drum 10.
  • the power transmission unit 230 includes a power receiving unit 30C provided on the outer peripheral surface of the mixer drum 10.
  • the power transmission unit 230 includes a power supply support member 30J that extends along the circumferential direction of the mixer drum 10 and is disposed at a position where the power supply unit 30D temporarily faces the power reception unit 30C. For this reason, when the mixer drum 10 rotates, the mixer 10J receives power from the power feeding unit 30D compared to the case where the power feeding unit 30D is provided around the drive shaft 10B and the power receiving unit 30C is provided on the outer peripheral surface of the drive shaft. The part 30C can be passed quickly.
  • the power transmission unit 230 of the mixer 10J can supply more power from the power feeding unit 30D to the power receiving unit 30C.
  • the power transmission unit 230 has a plurality of power feeding units 30D. For this reason, the power transmission unit 230 of the mixer 10J can supply more power from the power feeding unit 30D to the power receiving unit 30C than when one power receiving unit 30C and one power feeding unit 30D are provided.
  • the mixer vehicle of the fourth embodiment is different from the first to third embodiments in the position where the power feeding unit 30D is disposed and the position where the power receiving unit 30C is disposed.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the mixer drum 110 connects the front end of the drive shaft 110B to the speed reducer 70.
  • the speed reducer 70 includes a first gear 70A and a second gear 70B.
  • the first gear 70A and the second gear 70B are spur gears.
  • the second gear 70B meshes with the first gear 70A and is disposed below the first gear 70A.
  • the second gear 70B has an outer diameter smaller than that of the first gear 70A.
  • the second gear 70 ⁇ / b> B is coaxially connected to the output shaft 72 of the hydraulic motor 71.
  • the power feeding unit 30D is attached such that one end side of the annular shape is in contact with the rear end surface of the front support unit 111F.
  • the power feeding unit 30 ⁇ / b> D is disposed coaxially with the rotation shaft 10 ⁇ / b> G of the mixer drum 110.
  • the power supply unit 30D has both ends of the metal wire drawn out long, is laid inside the front support unit 11F, and is electrically connected to the power supply side control unit 30E.
  • the power receiving unit 30C is attached such that one end of the annular shape comes into contact with the front end surface of the drive shaft 110B.
  • the power receiving unit 30 ⁇ / b> C is disposed coaxially with the rotation shaft 10 ⁇ / b> G of the mixer drum 110.
  • the other end of the ring is opposed to the other end of the ring of the power feeding unit 30D.
  • the power receiving unit 30 ⁇ / b> C has both ends of the metal wire drawn out long, is laid on the inside of the drive shaft 110 ⁇ / b> B and the outer surface of the mixer drum 110, and is electrically connected to the control unit 15 of the slump sensor 16.
  • the power receiving unit 30 ⁇ / b> C rotates around the rotation shaft 10 ⁇ / b> G together with the drive shaft 110 ⁇ / b> B of the mixer drum 110.
  • the power receiving unit 30C that rotates together with the drive shaft 110B of the mixer drum 110 does not contact the power feeding unit 30D.
  • the power receiving unit 30C and the power feeding unit 30D are always opposed to each other. For this reason, in this mixer 110J, the power receiving unit 30C is always located in the AC magnetic field generated around the power feeding unit 30D to which the AC current is supplied.
  • the mixer 110J can always supply power from the power supply unit 30D to the power reception unit 30C.
  • the mixer 110J of this mixer vehicle also has a predetermined interval between the power feeding unit 30D attached to the front support portion 111F side and the power receiving unit 30C attached to the mixer drum 110 side.
  • the power feeding unit 30D can feed power to the power receiving unit 30C.
  • the mixer 110J does not need to supply power to the slump sensor 16 attached to the mixer drum 110 side from the front support portion 111F via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 110J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, it can stably supply power to the slump sensor 16 attached to the mixer drum 110. .
  • the mixer 110J of the mixer vehicle of the fourth embodiment can also supply power to the slump sensor 16 attached to the mixer drum 110 and rotating together with the mixer drum 110.
  • the mixer drum 210 has an opening member 10H.
  • the opening member 10H has a cylindrical shape having the same diameter as the opening 110E of the mixer drum 210, and both ends are open and communicated.
  • the opening member 10 ⁇ / b> H is fixed by contacting one end of the opening member 10 ⁇ / b> E with the opening 110 ⁇ / b> E of the mixer drum 210.
  • the power supply support member 130J has a cylindrical shape, and both ends are open and communicated.
  • the power supply support member 130J is provided coaxially with the mixer drum 210 so as to cover the periphery of the opening member 10H, and is attached to the rear support portion 11B. A predetermined interval is provided between the power supply support member 130J and the opening member 10H.
  • the ten power supply portions 30D are attached in a row with one end of the annular shape abutting against the inner peripheral surface of the power supply support member 130J and with the same distance between each other in the circumferential direction of the power supply support member 130J. ing.
  • Each power supply section 30D has both ends of the metal wire drawn out long, is laid on the rear support section 11B and the gantry 50F, and is electrically connected to the power supply side control section 30E (not shown).
  • the power receiving unit 30 ⁇ / b> C abuts one end of the annular shape on the outer peripheral surface of the opening member 10 ⁇ / b> H of the mixer drum 210.
  • the power receiving unit 30 ⁇ / b> C has both ends of the metal wire drawn out long, is laid on the outer surface of the mixer drum 210, and is electrically connected to the control unit 15 of the slump sensor 16.
  • the power receiving unit 30C rotates together with the mixer drum 210 and temporarily confronts the other end of the ring with the other end of the ring of each power feeding unit 30D.
  • the power receiving unit 30C rotates together with the mixer drum 210 with a predetermined gap between each power feeding unit 30D and does not come into contact with each power feeding unit 30D.
  • the mixer 210J of this mixer vehicle is also provided with a predetermined gap between the power feeding portion 30D attached to the power feeding support member 130J attached to the rear support portion 11B and the power receiving portion 30C attached to the mixer drum 210 side. There is an interval. Thereby, even if this mixer 210J rotates when the mixer drum 210 agitates ready mixed concrete etc., the electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 210J, the power receiving unit 30C temporarily opposes the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C.
  • the mixer 210J does not need to supply power to the slump sensor 16 attached to the mixer drum 210 side from the rear support portion 11B side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Further, since this mixer 210J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, it can stably supply power to the slump sensor 16 attached to the mixer drum 210. .
  • the mixer 210J of the mixer truck of the fifth embodiment can also supply power to the slump sensor 16 attached to the mixer drum 210 and rotating together with the mixer drum 210.
  • the power transmission unit 330 is provided in the opening 110E in which the power receiving unit 30C is the outer peripheral surface of the mixer drum 210.
  • the power transmission unit 330 includes a power supply support member 130J that extends along the circumferential direction of the opening member 10H of the mixer drum 210 and is disposed at a position where the power supply unit 30D temporarily faces the power reception unit 30C.
  • the mixer 210J has a power feeding unit 30D around the drive shaft 10B when the mixer drum 210 rotates, and the power feeding unit 30D compared to the case where the power receiving unit 30C is provided on the outer peripheral surface of the drive shaft 10B.
  • the power receiving unit 30C can be passed quickly.
  • the power transmission unit 330 of the mixer 210J can supply more power from the power feeding unit 30D to the power receiving unit 30C.
  • the power transmission unit 330 has a plurality of power feeding units 30D. For this reason, the power transmission unit 330 of the mixer 210J can supply more power from the power feeding unit 30D to the power receiving unit 30C than when one power receiving unit 30C and one power feeding unit 30D are provided.
  • the mixer vehicle of the sixth embodiment includes the configuration of the opening 210E of the mixer drum 310, the position where the power feeding unit 30D is disposed, and the position where the power receiving unit 30C is disposed.
  • the same components as those in the first to fifth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the mixer drum 310 has a power receiving support member 10K at the opening 210E.
  • the power receiving support member 10K includes a disk-shaped power receiving support portion main body 10L and three cylindrical power receiving connection portions 10M that are elongated.
  • the power receiving support body 10L is provided at the center of the opening 210E of the mixer drum 310.
  • the power receiving support portion main body 10L is arranged so that the central axis is coaxial with the rotation shaft 10G.
  • Each power receiving connecting portion 10M is connected at one end to the outer peripheral portion of the power receiving supporting portion main body 10L at an angle of 120 degrees.
  • Each power receiving connection portion 10 ⁇ / b> M is connected to the inner peripheral surface of the opening 210 ⁇ / b> E that is one end portion of the mixer drum 310 at the other end.
  • the mixer drum 310 is provided with a through-hole 10N that penetrates at a place where the other end of the power receiving connecting portion 10M extending upward from the power receiving supporting body 10L is connected.
  • the through hole 10N communicates with the other end of the power receiving connecting portion 10M extending upward from the power receiving supporting portion main body 10L.
  • the power receiving unit 30C is attached such that one end of the ring shape comes into contact with the disk-shaped rear surface of the power receiving support main body 10L.
  • the power receiving unit 30 ⁇ / b> C is disposed coaxially with the rotation shaft 10 ⁇ / b> G of the mixer drum 310.
  • the power receiving unit 30C is electrically connected to the control unit 15 of the slump sensor 16 with both ends of the metal wire drawn out long.
  • the drawn metal wire is laid on the inner side of the power receiving connection portion 10M extending upward from the power receiving support portion main body 10L, the through hole 10N of the mixer drum 310, and the outer surface of the mixer drum 310.
  • the roller ring 10D is provided with a groove 10P in one portion of the inner periphery. The metal wire drawn out from the power receiving unit 30C passes through the groove 10P.
  • the hopper 150C has a power supply support member 230J.
  • the power supply support member 230J includes a disk-shaped power supply support portion main body 230K and two long cylindrical power supply connection portions 230L.
  • the power supply support portion main body 230K is disposed at the center of a discharge port 150G formed by opening in the front lower direction at the lower end of the hopper 150C.
  • the power supply support body 230K is arranged so that the central axis is coaxial with the rotation shaft 10G of the mixer drum 310.
  • Each power supply connecting portion 230L is connected to the outer peripheral portion of the power supply support portion main body 230K on a straight line with the power supply support portion main body 230K interposed therebetween. Further, the other end of each power supply connecting portion 230L is connected to the lower part of the left side wall 150L and the right side wall 150R (left and right in FIG. 11) of the hopper 150C. Further, the left side wall 150L of the hopper 150C is provided with a through hole 150D penetrating in a place where the power feeding connecting portion 230L is connected. The through hole 150D communicates with the other end of the power feeding connecting portion 230L to which the other end of the left side wall 150L of the hopper 150C is connected.
  • the power feeding unit 30D is attached with one end of the annular shape coming into contact with the front surface of the power feeding support body 230K.
  • the power feeding unit 30 ⁇ / b> D is disposed coaxially with the rotation shaft 10 ⁇ / b> G of the mixer drum 310.
  • the power supply unit 30D is electrically connected to a power supply side control unit (not shown) with both ends of the metal wire drawn out long.
  • the drawn metal wire is laid on the inside of one power supply connecting portion 230L, the through hole 150D of the hopper 150C, the rear support portion 11B, and the mount 50F.
  • the power receiving unit 30C rotates around the rotating shaft 10G together with the mixer drum 310.
  • the power receiving unit 30C that rotates together with the mixer drum 310 does not come into contact with the power feeding unit 30D.
  • the power receiving unit 30C and the power feeding unit 30D are always opposed to each other even when the mixer drum 310 rotates. For this reason, in this mixer 310J, the power receiving unit 30C is always located in the AC magnetic field generated around the power feeding unit 30D to which the AC current is supplied.
  • the mixer 310J can always supply power from the power supply unit 30D to the power reception unit 30C.
  • the mixer 310J of this mixer vehicle also includes a power feeding unit 30D attached to the power feeding support member 230J attached to the rear support unit 11B via the hopper 150C, and a power receiving unit 30C attached to the mixer drum 310 side. There is a predetermined interval between the two. Thereby, even if this mixer 310J rotates when the mixer drum 310 agitates ready mixed concrete etc., the electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 310J, the power receiving unit 30C always faces the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C.
  • the mixer 310J does not need to supply power to the slump sensor 16 attached to the mixer drum 310 side from the rear support portion 11B side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 310J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, it can stably supply power to the slump sensor 16 attached to the mixer drum 310. .
  • the mixer 310J of the mixer vehicle of the sixth embodiment can also supply power to the slump sensor 16 attached to the mixer drum 310 and rotating together with the mixer drum 310.
  • the present invention is not limited to the first to sixth embodiments described with reference to the above description and the drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the power supply unit and the power reception unit use a coil in which a metal wire is coaxially wound a plurality of times and bundled into an annular shape.
  • the present invention is not limited to this, and the metal wire has a rectangular shape.
  • a coil that is wound a plurality of times and bundled into a quadrangular ring shape may be used for the power feeding unit and the power receiving unit.
  • the power feeding units when a plurality of power feeding units are arranged, the power feeding units can be arranged without gaps, so that a large amount of power is supplied to the power receiving unit when the power receiving unit is located in the middle of adjacent power feeding units. can do.
  • a coil in which a metal wire is coaxially wound a plurality of times with a diameter in a predetermined range and bundled into an annular shape is used for the power supply unit. May be used.
  • power is supplied from the power feeding unit to the power receiving unit by electromagnetic induction.
  • the present invention is not limited thereto, and power may be supplied from the power feeding unit to the power receiving unit by a magnetic resonance method or the like.
  • the present invention is not limited to this, and a plurality of power receiving units may be provided. In this case, any one of the power feeding units and the power receiving unit can always face each other. Thereby, it is possible to supply power to the slump sensor more stably.
  • the plurality of power feeding units are arranged in a line in the circumferential direction of the inner peripheral surface of the concealing unit or the power feeding support member. Two or more rows may be arranged in the circumferential direction of the inner peripheral surface of the power supply support member.
  • the power feeding units in adjacent rows are arranged so as not to be parallel to the rotation axis of the mixer drum, and the power receiving units are arranged one by one in each power feeding unit row so as to face each row.
  • adjacent power receiving units are arranged in parallel to the rotation axis of the mixer drum. By doing so, the amount of the power feeding unit and the power receiving unit facing each other can be changed in adjacent rows.
  • the power feeding unit is disposed outside the power receiving unit.
  • the configuration is not limited thereto, and the power receiving unit may be disposed outside the power feeding unit.
  • the power feeding unit and the power receiving unit are opposed to each other in the direction perpendicular to the drive axis, they may be opposed to each other in parallel with the drive axis or at a predetermined angle with respect to the drive axis.
  • the power receiving unit may be provided on the outer peripheral surface formed in a truncated cone shape at the front end or rear end of the mixer drum.
  • the rotational force obtained from the engine as the power source is transmitted to the mixer drum, but the power source may not be the engine, and the rotational force obtained from the electric motor or the like is used as the power source. It may be used as (8)
  • the mixer vehicle is used.
  • the present invention is not limited to this, and a mixer in which a front support portion and a rear support portion are installed at a work site and the mixer drum is rotatably mounted may be used. .
  • the rotational force for rotating the mixer drum may be obtained from an electric motor or the like.
  • the number of slump sensors is one, but the number of slump sensors may not be one and may be two or more.
  • the ready-mixed concrete is agitated by the mixer drum.
  • the present invention is not limited to this, and various agglomerates and liquids may be agitated or kneaded by the mixer drum.
  • the slump sensor is provided on the inner peripheral surface and the outer peripheral surface of the mixer drum.
  • the present invention is not limited to this, and the slump sensor may be provided anywhere on the inner surface and the outer surface of the mixer drum. .
  • the slump sensor is provided on the mixer drum.
  • the slump sensor may not be provided, and another electric device such as a tachometer may be provided on the mixer drum.
  • the power supply side storage battery is provided.
  • the present invention is not limited to this, and a vehicle body battery may be used as the power supply side storage battery.
  • the power receiving side storage battery is provided in the second embodiment, a large-capacity capacitor or the like may be used as the power receiving side storage battery.
  • the components of the power transmission unit are separately assembled, but these components may be unitized.
  • the position of the power receiving unit with respect to the 0th to 5th power feeding units is obtained.
  • the timing control of the power supply to the power feeding unit may be performed. Specifically, first, the position information of the power receiving unit facing one of the adjacent power feeding units is stored in the control unit. Next, the time required for the power receiving unit to reach the position facing the other side from the position facing one of the adjacent power feeding units is obtained and stored in the control unit. Next, the position information of the power receiving unit facing the other of the adjacent power feeding units is stored in the control unit. The time required for the power receiving unit to change from the state facing one of the adjacent power feeding units to the state facing the other when the power receiving unit is opposed to one and the other of the adjacent power feeding units.
  • the position of the power receiving unit with respect to the power feeding unit is specified based on the magnitude of the induced current generated in the power receiving unit.
  • the present invention is not limited to this, and a biaxial acceleration sensor or the like is used.
  • the position of the power receiving unit with respect to the power feeding unit may be specified.
  • the biaxial acceleration sensor is provided on the outer peripheral surface of the mixer drum and rotates together with the mixer drum. The biaxial acceleration sensor rotates with the mixer drum, outputs a value corresponding to the position of the biaxial acceleration sensor as an output value, and gives it to the control unit.
  • the output value of the biaxial acceleration sensor when the value of the induced current generated in the power receiving unit rotating with the mixer drum is maximized is stored in the control unit. Then, by comparing the output value stored in the control unit with the output value corresponding to the current position of the biaxial acceleration sensor, it is determined whether the power feeding unit 30D and the power receiving unit 30C are in the vicinity of the facing position. To do.
  • the position of the power receiving unit with respect to the 0th to 5th power feeding units is specified by the control unit.
  • the present invention is not limited to this, and the value of the induced current is transmitted from the control unit to the power feeding side control unit. Then, the position of the power receiving unit with respect to the 0th to 5th power feeding units may be specified by the power feeding side control unit.

Abstract

Provided is a mixer capable of satisfactorily supplying power to an electrical instrument that rotates with a mixer drum. This mixer (10J) comprises a front support section (11F), a rear support section (11B), a mixer drum (10), a slump sensor (16), and a power transmission section (30). The mixer drum (10) includes a drive shaft (10B) that is rotatably supported by the front support section (11F), and rotates about the drive shaft (10B). The slump sensor (16) is attached to the mixer drum (10). The power transmission section (30) includes a power receiving section (30C) and a power supply section (30D). The power receiving section (30C) is attached to the mixer drum (10) and supplies power to the slump sensor (16). The power supply section (30D) is attached to the front support section (11F), is provided at a predetermined distance from the power receiving section (30C), and supplies power to the power receiving section (30C) by temporarily or constantly facing the power receiving section (30C).

Description

ミキサ及びそのミキサに取り付けられた受電部への給電方法Mixer and method for supplying power to power receiving unit attached to mixer
 本発明はミキサ(mixer)及びそのミキサに取り付けられた受電部への給電方法に関するものである。 The present invention relates to a mixer and a method for supplying power to a power receiving unit attached to the mixer.
 特許文献1は従来のミキサを開示している。このミキサは、ミキサドラム(mixer drum)(ドラム(drum))、支持部(車体)、太陽光発電機、及び複数の電気機器(残水検知センサ(sensor))を備えている。ミキサドラムは一端が開口した開口部が設けられている。支持部はミキサドラムを回転自在に搭載している。太陽光発電機はミキサドラムの外周面に設けられている。太陽光発電機はミキサドラムと共に回転しつつ太陽光を受けて発電する。複数の電気機器はミキサドラムの内周面に周方向に並んで設けられている。これら複数の電気機器はミキサドラムと共に回転する。このため、このミキサはミキサドラムの外周面に設けられた太陽光発電機がミキサドラムと共に回転しつつ太陽光を受けて発電した電力を複数の電気機器に給電することができる。つまり、このミキサは支持部側からミキサドラム側に設けられた電気機器へ電力線を介して給電を行う必要がなく、電気機器に給電するための電力線が断線することがない。 Patent Document 1 discloses a conventional mixer. The mixer includes a mixer drum (drum), a support (vehicle body), a solar power generator, and a plurality of electric devices (residual water detection sensor (sensor)). The mixer drum is provided with an opening having one end opened. The support portion is rotatably mounted with a mixer drum. The solar power generator is provided on the outer peripheral surface of the mixer drum. The solar power generator generates power by receiving sunlight while rotating with the mixer drum. The plurality of electric devices are provided side by side in the circumferential direction on the inner peripheral surface of the mixer drum. The plurality of electrical devices rotate with the mixer drum. For this reason, this mixer can supply the electric power generated by receiving sunlight while a solar power generator provided on the outer peripheral surface of the mixer drum rotates together with the mixer drum to a plurality of electric devices. That is, this mixer does not need to feed power from the support side to the electrical equipment provided on the mixer drum side via the power line, and the power line for feeding power to the electrical equipment does not break.
特開2008―100407号公報Japanese Patent Laid-Open No. 2008-100407
 しかし、特許文献1のミキサは時間帯及び天気等の周囲の環境から影響を受ける太陽光発電機で発電している。このため、このミキサは周囲の環境によって安定して電気機器に給電できないおそれがある。 However, the mixer of Patent Document 1 generates power with a solar power generator that is affected by the surrounding environment such as time zone and weather. For this reason, this mixer may not be able to stably supply power to the electrical equipment depending on the surrounding environment.
 本発明は、上記従来の実情に鑑みてなされたものであって、ミキサドラムと共に回転する電気機器に良好に給電することができるミキサを提供することを解決すべき課題としている。 The present invention has been made in view of the above-described conventional situation, and it is an object to be solved to provide a mixer capable of satisfactorily supplying power to an electric device that rotates together with the mixer drum.
 本発明のミキサは、支持部、ミキサドラム、電気機器、及び電力伝送部を備えている。ミキサドラムは支持部に回転自在に軸支された駆動軸を有し、駆動軸を中心に回転する。電気機器はミキサドラムに取り付けられている。電力伝送部は受電部及び給電部を有している。受電部はミキサドラムに取り付けられて電気機器へ電力を供給する。給電部は支持部に取り付けられ、受電部との間に所定の間隔を空けて、受電部に一時的又は常時的に対峙して受電部へ給電する。 The mixer of the present invention includes a support part, a mixer drum, an electric device, and a power transmission part. The mixer drum has a drive shaft that is rotatably supported by the support portion, and rotates around the drive shaft. The electrical equipment is attached to the mixer drum. The power transmission unit has a power receiving unit and a power feeding unit. The power receiving unit is attached to the mixer drum and supplies electric power to the electric device. The power feeding unit is attached to the support unit, and supplies power to the power receiving unit with a predetermined space between the power receiving unit and the power receiving unit temporarily or constantly facing the power receiving unit.
 本発明のミキサにおいて、支持部はミキサドラムの駆動軸の周囲を覆うように駆動軸に同軸に設けられた円筒状の隠蔽部を有している。また、電力伝送部は、受電部がミキサドラムの駆動軸の外周面に設けられ、給電部は隠蔽部の内周面に設けられている。 In the mixer of the present invention, the support portion has a cylindrical concealing portion provided coaxially with the drive shaft so as to cover the periphery of the drive shaft of the mixer drum. In the power transmission unit, the power receiving unit is provided on the outer peripheral surface of the drive shaft of the mixer drum, and the power feeding unit is provided on the inner peripheral surface of the concealing unit.
 本発明のミキサにおいて、電力伝送部は、受電部がミキサドラムの外周面に設けられている。また、電力伝送部は、ミキサドラムの周方向に沿って伸びて、給電部が受電部に一時的に対峙する位置に配置した給電支持部材を有している。 In the mixer of the present invention, the power transmission unit has a power reception unit provided on the outer peripheral surface of the mixer drum. The power transmission unit includes a power supply support member that extends along the circumferential direction of the mixer drum and is disposed at a position where the power supply unit temporarily faces the power reception unit.
 本発明のミキサにおいて、電力伝送部は少なくとも受電部又は給電部のいずれか一方を複数有している。 In the mixer of the present invention, the power transmission unit includes at least one of a power receiving unit and a power feeding unit.
 本発明のミキサに取り付けられた受電部への給電方法は、第1手順~第3手順を備えている。第1手順は給電部から受電部に給電された電力に応じた電気特性値を得る。第2手順は第1手順で得られた電気特性値から給電部に対する受電部の位置を求める。第3手順は第2手順で求めた受電部の位置に基づいて給電部に電流を供給する。また、この受電部への給電方法は電気特性値が所定の値より小さくなった場合、第1手順に戻る。 The method for supplying power to the power receiving unit attached to the mixer of the present invention includes the first to third procedures. In the first procedure, an electrical characteristic value corresponding to the power supplied from the power supply unit to the power reception unit is obtained. In the second procedure, the position of the power receiving unit with respect to the power feeding unit is obtained from the electrical characteristic value obtained in the first procedure. In the third procedure, a current is supplied to the power feeding unit based on the position of the power receiving unit obtained in the second procedure. In addition, the method for supplying power to the power receiving unit returns to the first procedure when the electrical characteristic value becomes smaller than a predetermined value.
実施形態1のミキサ車を示す側面図である。It is a side view which shows the mixer truck of Embodiment 1. 実施形態1のミキサ車のミキサに関し、(A)は要部を示す斜視図であり、(B)は(A)におけるX-X断面図である。(A) is a perspective view showing a main part, and (B) is a sectional view taken along line XX in (A), regarding the mixer of the mixer truck of the first embodiment. 給電部及び受電部が対向し、給電部の周囲で発生する磁界の中に受電部が位置している状態を示す模式図である。It is a schematic diagram which shows the state in which the electric power feeding part and the electric power receiving part oppose, and the electric power receiving part is located in the magnetic field generated around the electric power feeding part. 実施形態1の給電部に対する受電部の位置を求めて、給電部から受電部に給電するステップ(step)を示すフローチャート(flow chart)である。3 is a flowchart illustrating a step of obtaining a position of the power receiving unit with respect to the power feeding unit according to the first embodiment and supplying power from the power feeding unit to the power receiving unit. 実施形態2のミキサ車のミキサに関し、(A)は要部を示す斜視図であり、(B)は(A)におけるY-Y断面図である。(A) is a perspective view showing a main part, and (B) is a YY cross-sectional view in (A) regarding the mixer of the mixer truck of the second embodiment. 実施形態2の給電部に対する受電部の位置を求めて、給電部から受電部に給電するステップを示すフローチャートである10 is a flowchart illustrating steps for obtaining a position of a power reception unit with respect to a power supply unit according to Embodiment 2 and supplying power from the power supply unit to the power reception unit. 実施形態3のミキサ車のミキサに関し、(A)は側面図であり、(B)は(A)におけるZ-Z断面図である。(A) is a side view and (B) is a ZZ cross-sectional view in (A) regarding the mixer of the mixer truck of the third embodiment. 実施形態4のミキサ車のミキサの要部を示す側面図である。It is a side view which shows the principal part of the mixer of the mixer truck of Embodiment 4. 実施形態5のミキサ車のミキサに関し、(A)は要部を示す側面図であり、(B)は(A)におけるW-W断面図である。(A) is a side view showing a main part, and (B) is a WW cross-sectional view in (A) regarding a mixer of a mixer truck of a fifth embodiment. 実施形態6のミキサ車のミキサ関し、(A)は側面図であり、(B)は(A)におけるV-V断面図である。(A) is a side view and (B) is a VV cross-sectional view in (A) regarding the mixer of the mixer vehicle of Embodiment 6. FIG. 実施形態6のミキサ車のミキサの要部を示す斜視図である。It is a perspective view which shows the principal part of the mixer of the mixer truck of Embodiment 6.
 次に、本発明のミキサを車体の支持部に搭載したミキサ車を具体化した実施形態1~6について、図面を参照しつつ説明する。 Next, Embodiments 1 to 6 embodying a mixer vehicle in which the mixer of the present invention is mounted on a support portion of a vehicle body will be described with reference to the drawings.
<実施形態1>
 実施形態1のミキサ車は、図1に示すように、車体50、ミキサ10J、ホッパ(hopper)50C、及びシュート(chute)50Dを備えている。
<Embodiment 1>
As shown in FIG. 1, the mixer vehicle of the first embodiment includes a vehicle body 50, a mixer 10J, a hopper 50C, and a chute 50D.
 車体50は、キャビン(cabin)50A、架台50Fを有している。キャビン50Aは車体50の前側(前後は図1における左右である。以下同じ)に設けられている。架台50Fはキャビン50Aの後側に設けられている。エンジン(engine)(図示せず)は、車体50を走行させるものであり、キャビン50Aの下側(上下は図1における上下である。以下同じ)に設けられている。 The vehicle body 50 has a cabin 50A and a gantry 50F. The cabin 50A is provided on the front side of the vehicle body 50 (front and rear are the left and right in FIG. 1, the same applies hereinafter). The gantry 50F is provided on the rear side of the cabin 50A. An engine (not shown) travels the vehicle body 50 and is provided on the lower side of the cabin 50A (upper and lower are the upper and lower in FIG. 1; the same applies hereinafter).
 ミキサ10Jは、図1に示すように、ミキサドラム10、前支持部11F、後支持部11B、電力伝送部30、及びスランプセンサ(slump sensor)16を備えている。 As shown in FIG. 1, the mixer 10 </ b> J includes a mixer drum 10, a front support unit 11 </ b> F, a rear support unit 11 </ b> B, a power transmission unit 30, and a slump sensor 16.
 ミキサドラム10は、ドラム(drum)本体10A、駆動軸10B、2枚のドラムブレード(drum blade)(図示せず)、及びローラリング(roller ring)10Dを有している。ドラム本体10Aは円筒状をなしている。ドラム本体10Aは一端が開口した開口部10Eが設けられている。また、ドラム本体10Aは一端から見て奥方向である他端が閉鎖部10Fで閉じられている。駆動軸10Bは閉鎖部10Fの中心に連結されてドラム本体10Aの外方向に伸びている。この駆動軸10Bはミキサドラム10の回転軸10G上に伸びている。 The mixer drum 10 has a drum body 10A, a drive shaft 10B, two drum blades (not shown), and a roller ring 10D. The drum body 10A has a cylindrical shape. The drum main body 10A is provided with an opening 10E having one end opened. Further, the drum body 10A is closed at the other end in the back direction when viewed from one end by a closing portion 10F. The drive shaft 10B is connected to the center of the closing portion 10F and extends outward from the drum body 10A. The drive shaft 10 </ b> B extends on the rotation shaft 10 </ b> G of the mixer drum 10.
 駆動軸10Bは減速機(図示せず)に連結している。減速機は油圧モーター(motor)(図示せず)に連結している。油圧モーターは配管(図示せず)を介して油圧ポンプ(pump)(図示せず)に連結している。また、油圧ポンプは車体のエンジン(図示せず)に連結されている。こうして、エンジンの回転力は油圧ポンプ、配管、油圧モーター、及び減速機を介して駆動軸10Bに伝達してミキサドラム10を回転させる。 The drive shaft 10B is connected to a speed reducer (not shown). The speed reducer is connected to a hydraulic motor (not shown). The hydraulic motor is connected to a hydraulic pump (not shown) via a pipe (not shown). The hydraulic pump is connected to a vehicle engine (not shown). Thus, the rotational force of the engine is transmitted to the drive shaft 10B via the hydraulic pump, piping, hydraulic motor, and speed reducer to rotate the mixer drum 10.
 各ドラムブレードは所定の間隔を空けてドラム本体10Aの内周面に沿って螺旋状に固定されている。つまり、各ドラムブレードはドラム本体10Aと共に回転する。ローラリング10Dは円環状であり、ドラム本体10Aの開口部10E側の外側面を一周するように設けられている。 Each drum blade is helically fixed along the inner peripheral surface of the drum body 10A with a predetermined interval. That is, each drum blade rotates with the drum body 10A. The roller ring 10D has an annular shape and is provided so as to go around the outer surface on the opening 10E side of the drum body 10A.
 後支持部11Bはミキサドラム10の開口部10Eを上方に位置して開口部10Eを閉鎖部10Fより上側に持ち上げた前傾姿勢でミキサドラム10を回転自在に支持している。詳しくは、後支持部11Bは後端部に設けられた複数のローラ11Aによってミキサドラム10のローラリング10Dを下側から回転自在に支持している。また、前支持部11Fはミキサドラム10の駆動軸10Bを回転自在に支持している。こうして、前支持部11F及び後支持部11Bはミキサドラム10を軸支して、ミキサドラム10が回転軸10Gを中心にして回転する。 The rear support portion 11B rotatably supports the mixer drum 10 in a forward tilt posture in which the opening portion 10E of the mixer drum 10 is positioned upward and the opening portion 10E is lifted above the closing portion 10F. Specifically, the rear support portion 11B rotatably supports the roller ring 10D of the mixer drum 10 from below by a plurality of rollers 11A provided at the rear end portion. Further, the front support portion 11F rotatably supports the drive shaft 10B of the mixer drum 10. Thus, the front support portion 11F and the rear support portion 11B pivotally support the mixer drum 10, and the mixer drum 10 rotates about the rotation shaft 10G.
 電力伝送部30は、図1及び図2(A)に示すように、隠蔽部30B、複数の給電部30D、給電側制御部30E、給電側蓄電池30F、及び受電部30Cを有している。 As shown in FIGS. 1 and 2A, the power transmission unit 30 includes a concealing unit 30B, a plurality of power feeding units 30D, a power feeding side control unit 30E, a power feeding side storage battery 30F, and a power receiving unit 30C.
 隠蔽部30Bは円筒状をなしており、駆動軸10Bの周囲を覆うように駆動軸10Bに同軸に設けられて、前支持部11Fに固定されている。隠蔽部30Bの内周面と駆動軸10Bの外周面との間は所定の間隔を空けている。各給電部30Dは表面を絶縁膜で被覆した金属線を同軸に複数回巻いて円環状に束ねたコイル(coil)である。また、この各給電部30Dは径方向に幅を有した円環状である。各給電部30Dは、円環状の一端側を隠蔽部30Bの内周面(円周面)に当接して取り付けられている。 The concealing portion 30B has a cylindrical shape, is provided coaxially with the drive shaft 10B so as to cover the periphery of the drive shaft 10B, and is fixed to the front support portion 11F. A predetermined gap is provided between the inner peripheral surface of the concealing portion 30B and the outer peripheral surface of the drive shaft 10B. Each power feeding unit 30D is a coil in which a metal wire whose surface is covered with an insulating film is coaxially wound a plurality of times and bundled in an annular shape. Further, each of the power supply portions 30D has an annular shape having a width in the radial direction. Each power feeding portion 30D is attached with one end of the annular shape contacting the inner peripheral surface (circumferential surface) of the concealing portion 30B.
 隠蔽部30Bは、内周面の周方向に6個の給電部30Dが互いの間の寸法を等間隔にして1列に取り付けられている。6個の給電部30Dは1列に並んだ順番に0~5の値が関連付けられている(図2(B)参照)。詳しくは、6個の給電部30Dのそれぞれに対応させた0~5のID(identificaion)信号(パルス(pulse)信号等)を6個の給電部30Dに割り当てておく。各給電部30Dは金属線の両端が長く引き出されている。各給電部30Dは前支持部11F側に取り付けられている。 In the concealing portion 30B, six power feeding portions 30D are attached in a row in the circumferential direction of the inner peripheral surface with the distance between them being equally spaced. The six power feeding units 30D are associated with values of 0 to 5 in the order in which they are arranged in a line (see FIG. 2B). Specifically, 0 to 5 ID (identification) signals (pulse signals, etc.) corresponding to each of the six power supply units 30D are allocated to the six power supply units 30D. Each power supply section 30D has both ends of the metal wire drawn out long. Each power feeding part 30D is attached to the front support part 11F side.
 給電側制御部30Eは、前支持部11Fに設けられている。給電側制御部30Eは各給電部30Dから長く引き出された金属線の両端が電気的に接続されている(図2(B)参照)。給電側蓄電池30Fは給電側制御部30Eに隣り合い、前支持部11Fに設けられている。給電側蓄電池30Fは給電側制御部30Eに電気的に接続されている。給電側制御部30Eは給電側蓄電池30Fから直流電流が供給される。給電側制御部30Eはこの直流電流を交流電流に変換して各給電部30Dに供給する。 The power supply side control unit 30E is provided in the front support unit 11F. The power supply side control unit 30E is electrically connected at both ends of a metal wire that is extended from each power supply unit 30D (see FIG. 2B). The power supply side storage battery 30F is adjacent to the power supply side control unit 30E and is provided in the front support unit 11F. The power supply side storage battery 30F is electrically connected to the power supply side control unit 30E. The feeding side control unit 30E is supplied with a direct current from the feeding side storage battery 30F. The power supply side control unit 30E converts this direct current into an alternating current and supplies it to each power supply unit 30D.
 受電部30Cは表面を絶縁膜で被覆した金属線を同軸に複数回巻いて円環状に束ねたコイルである。また、この各受電部30Cは径方向に幅を有した円環状である。受電部30Cは金属線の両端が長く引き出されている。受電部30Cは円環状の一端側をミキサドラム10の駆動軸10Bの外周面に当接して取り付けられている。つまり、受電部30Cは、円環状の他端側を各給電部30Dの円環状の他端側に対峙する位置に取り付けられている(図2(B)参照)。 The power receiving unit 30C is a coil in which a metal wire whose surface is covered with an insulating film is coaxially wound a plurality of times and bundled in an annular shape. Each of the power receiving units 30C has an annular shape having a width in the radial direction. The power receiving unit 30C has both ends of the metal wire drawn out long. The power receiving unit 30 </ b> C is attached such that one end of the annular shape is in contact with the outer peripheral surface of the drive shaft 10 </ b> B of the mixer drum 10. That is, the power receiving unit 30C is attached at a position where the other end of the ring faces the other end of the ring of each power feeding unit 30D (see FIG. 2B).
 受電部30Cはミキサドラム10の駆動軸10Bに取り付けられてミキサドラム10と共に回転する。受電部30Cの円環状の他端側と各給電部30Dの円環状の他端側との間は所定の間隔を空けている。ミキサドラム10と共に回転する受電部30Cは各給電部30Dに接触することはない。つまり、受電部30Cはミキサドラム10と共に回転して一時的に各給電部30Dに対峙する。 The power receiving unit 30C is attached to the drive shaft 10B of the mixer drum 10 and rotates together with the mixer drum 10. A predetermined interval is provided between the annular other end side of the power receiving unit 30C and the annular other end side of each power feeding unit 30D. The power receiving unit 30C that rotates together with the mixer drum 10 does not come into contact with each power feeding unit 30D. That is, the power receiving unit 30C rotates together with the mixer drum 10 and temporarily faces each power feeding unit 30D.
 電気機器であるスランプセンサ16は、電極12、及び制御部15を具備している。電極12はミキサドラム10の内周面に設けられている。制御部15はミキサドラム10の外周面に設けられている。電極12及び制御部15はドラム本体10Aに水密状に貫通して設けられた貫通孔17を介して電気的に接続されている。つまり、スランプセンサ16はミキサドラム10に取り付けられてミキサドラム10と共に回転する。 The slump sensor 16, which is an electrical device, includes an electrode 12 and a control unit 15. The electrode 12 is provided on the inner peripheral surface of the mixer drum 10. The control unit 15 is provided on the outer peripheral surface of the mixer drum 10. The electrode 12 and the control unit 15 are electrically connected to each other through a through hole 17 that penetrates the drum main body 10A in a watertight manner. That is, the slump sensor 16 is attached to the mixer drum 10 and rotates together with the mixer drum 10.
 スランプセンサ16は電極12を利用して測定したレディミクストコンクリート(ready-mixed concrete)の抵抗値や静電容量値等の所定の値に基づいて制御部15でスランプ(slump)値を求める。スランプセンサ16は制御部15に受電部30Cから長く引き出された金属線の両端が電気的に接続されている。 The slump sensor 16 obtains a slump value by the control unit 15 based on a predetermined value such as a resistance value or a capacitance value of ready-mixed concrete measured using the electrode 12. The slump sensor 16 is electrically connected to the control unit 15 at both ends of a metal wire drawn out from the power receiving unit 30C.
 ホッパ50Cは上方向に拡がりながら開口した投入口が形成されている。ホッパ50Cは下端が前方下方向に開口し排出口が形成されている。ホッパ50Cは排出口がミキサドラム10の開口部10Eの中央部に連通している。ホッパ50Cは後支持部11Bの上部に固定されている。ホッパ50Cは投入口に投入されたレディミクストコンクリートを排出口からミキサドラム10内に投入する。 The hopper 50C is formed with an input port that opens while expanding upward. The lower end of the hopper 50C is opened in the front lower direction, and a discharge port is formed. Hopper 50 </ b> C has a discharge port communicating with the center of opening 10 </ b> E of mixer drum 10. The hopper 50C is fixed to the upper portion of the rear support portion 11B. The hopper 50C puts the ready-mixed concrete thrown into the inlet into the mixer drum 10 from the outlet.
 シュート50Dは後支持部11Bに基端部を中心にして先端部が水平方向及び上下方向に回動自在に支持されている。なお、水平方向とは、必ずしも厳密な水平方向を意味するものではなく、厳密な水平方向から多少ずれた状態も含む。こうして、シュート50Dはミキサドラム10から排出されるレディミクストコンクリートを所望の位置に誘導する。 The chute 50D is supported by the rear support portion 11B so that the distal end portion thereof is rotatable in the horizontal direction and the vertical direction with the base end portion as the center. The horizontal direction does not necessarily mean a strict horizontal direction, but includes a state slightly deviated from the strict horizontal direction. Thus, the chute 50D guides the ready-mixed concrete discharged from the mixer drum 10 to a desired position.
 このミキサ車は、こうして構成されたミキサ10J、ホッパ50C、及びシュート50Dを、車体50の架台50Fの上側に搭載する。 In this mixer vehicle, the mixer 10J, the hopper 50C, and the chute 50D thus configured are mounted on the upper side of the mount 50F of the vehicle body 50.
 次に、このミキサ車のミキサ10Jの動作について説明する。ミキサ10Jは、電磁誘導を利用して各給電部30Dから受電部30Cに給電する。詳しくは、このミキサ10Jはミキサドラム10が回転軸10Gを中心にして回転してミキサドラム10内に投入されたレディミクストコンクリートを攪拌する。このとき、受電部30C及びスランプセンサ16はミキサドラム10と共にミキサドラム10の回転軸10Gを中心にした円周上を回転する。この際、このミキサ10Jは給電側制御部30Eで給電側蓄電池30Fから供給された直流電流を交流電流に変換して各給電部30Dに供給する。すると、各給電部30Dは、図3に示すように、周囲に交流磁界Mが発生する。受電部30Cはこの交流磁界の中を移動する。受電部30Cは交流磁界の中に配置されることによって誘導電流が発生する。
 こうして、このミキサ10Jは電磁誘導によって前支持部11F側の各給電部30Dからミキサドラム10側の受電部30Cに給電することができる。
Next, the operation of the mixer 10J of this mixer vehicle will be described. The mixer 10J supplies power from each power supply unit 30D to the power reception unit 30C using electromagnetic induction. Specifically, in the mixer 10J, the mixer drum 10 rotates about the rotation shaft 10G and the ready-mixed concrete charged into the mixer drum 10 is agitated. At this time, the power reception unit 30 </ b> C and the slump sensor 16 rotate together with the mixer drum 10 on a circumference around the rotation shaft 10 </ b> G of the mixer drum 10. At this time, the mixer 10J converts the direct current supplied from the power supply side storage battery 30F into an alternating current by the power supply side control unit 30E and supplies it to each power supply unit 30D. Then, as shown in FIG. 3, an alternating magnetic field M is generated around each power supply unit 30D. The power receiving unit 30C moves in the alternating magnetic field. The power receiving unit 30C is arranged in an alternating magnetic field to generate an induced current.
In this way, the mixer 10J can supply power to each power receiving section 30C on the mixer drum 10 side from each power feeding section 30D on the front support section 11F side by electromagnetic induction.
 各給電部30Dの周囲に発生する交流磁界は、隣り合う給電部30Dの中間が最も少なくなる。このため、隣り合う給電部30Dの中間に受電部30Cが位置した場合に受電部30Cに給電される量が最も少なくなる。このため、隣り合う給電部30Dの間の寸法は、隣り合う給電部30Dの中間で受電部30Cに給電される量がスランプセンサ16を動作させるのに必要な電力量より大きくなるように設定している。 The AC magnetic field generated around each power feeding unit 30D is the smallest in the middle between adjacent power feeding units 30D. For this reason, when the power receiving unit 30C is positioned in the middle of the adjacent power feeding units 30D, the amount of power supplied to the power receiving unit 30C is minimized. For this reason, the dimension between the adjacent power supply units 30D is set so that the amount of power supplied to the power receiving unit 30C in the middle of the adjacent power supply units 30D is larger than the amount of power necessary to operate the slump sensor 16. ing.
 次に、ミキサ10Jに取り付けられた受電部30Cの位置特定方法及び給電部30Dへ交流電流を供給する給電方法について説明する。図4に示すフローチャートは所定の時間毎に繰り返して制御部15で実行される。制御部15は電流センサ(図示せず)を具備している。これにより、制御部15は受電部30Cで発生した誘導電流の値を所定の時間毎に繰り返して電流センサ(sensor)で検知している。 Next, a method for specifying the position of the power receiving unit 30C attached to the mixer 10J and a power feeding method for supplying an alternating current to the power feeding unit 30D will be described. The flowchart shown in FIG. 4 is repeatedly executed by the control unit 15 at predetermined time intervals. The control unit 15 includes a current sensor (not shown). As a result, the control unit 15 repeatedly detects the value of the induced current generated in the power receiving unit 30C every predetermined time and detects it with a current sensor.
 まず、受電部30Cの位置を特定するために、特定完了フラグ(flag)が0かどうか判定する(ステップS1)。詳しくは、受電部30Cの位置の特定が完了している場合に1がセット(setting)され、受電部30Cの位置の特定が完了していない場合に0がセットされる特定完了フラグを設ける。この特定完了フラグに0がセットされている場合、ステップS2に移行する。また、この特定完了フラグに1がセットされている場合、ステップS5に移行する。この特定完了フラグはミキサ車のエンジンの駆動を開始する毎に0がセットされる。 First, in order to specify the position of the power receiving unit 30C, it is determined whether or not the specific completion flag (flag) is 0 (step S1). Specifically, a specific completion flag is set in which 1 is set when the position of the power receiving unit 30C is completed, and 0 is set when the position of the power receiving unit 30C is not completed. If 0 is set in the specific completion flag, the process proceeds to step S2. If 1 is set in the specific completion flag, the process proceeds to step S5. This specific completion flag is set to 0 every time the engine of the mixer vehicle is started.
≪位置特定方法≫
 ステップS2に移行すると、各給電部30Dに対する受電部30Cで発生した誘導電流の値を測定する。詳しくは、0番目~5番目の給電部30Dに1つずつ順番に交流電流を供給する。このとき、何れの給電部30Dに交流電流を供給しているか制御部15で識別するため、0番目~5番目の給電部30Dのそれぞれに対応させたID信号を受電部30C及び給電部30Dを介して制御部15に送信する。そして、交流電流が供給された各給電部30Dに対する受電部30Cで発生した誘導電流の値を制御部15の電流センサで測定する。例えば、0番目の給電部30Dに交流電流を供給した場合、受電部30Cが0番目の給電部30Dに対向していれば受電部30Cに発生する誘導電流の値が最大となる。ここで、対向とは受電部30Cと給電部30Dとが完全に対峙している状態をいう(以下同じ。)。また、受電部30Cが0番目の給電部30Dに対向していなければ、受電部30Cに発生する誘導電流は、受電部30Cと0番目の給電部30Dとが対峙する量に応じて変化する。制御部15は給電部30Dから受電部30Cに給電された電力に応じた電気特性値である誘導電流の値を得る。
≪Location identification method≫
When the process proceeds to step S2, the value of the induced current generated in the power receiving unit 30C for each power feeding unit 30D is measured. Specifically, alternating current is supplied to the 0th to 5th power feeding units 30D one by one in order. At this time, in order to identify which power supply unit 30D is supplied with the alternating current by the control unit 15, the power reception unit 30C and the power supply unit 30D receive ID signals corresponding to the 0th to 5th power supply units 30D. To the control unit 15. Then, the value of the induced current generated in the power receiving unit 30 </ b> C for each power feeding unit 30 </ b> D supplied with the alternating current is measured by the current sensor of the control unit 15. For example, when an alternating current is supplied to the 0th power feeding unit 30D, the value of the induced current generated in the power receiving unit 30C becomes the maximum if the power receiving unit 30C faces the 0th power feeding unit 30D. Here, the term “opposite” refers to a state in which the power receiving unit 30C and the power feeding unit 30D are completely facing each other (the same applies hereinafter). Further, if the power receiving unit 30C does not face the 0th power feeding unit 30D, the induced current generated in the power receiving unit 30C varies depending on the amount of the power receiving unit 30C and the 0th power feeding unit 30D facing each other. The control unit 15 obtains an induced current value that is an electrical characteristic value corresponding to the power fed from the power feeding unit 30D to the power receiving unit 30C.
 次に、各給電部30Dに対する受電部30Cで発生した誘導電流の値から各給電部30Dに対する受電部30Cの位置を特定する(ステップS3)。詳しくは、ステップS2において測定した、各給電部30Dに対する受電部30Cで発生した誘導電流の値(以下、給電部30Dに対する誘導電流の値という。)の中で、最も大きい値、及び次に大きい値の比率を基にして、0番目~5番目の隣り合う給電部30Dに対する受電部30Cの位置を求める。例えば、0番目の給電部30Dに対する誘導電流の値が最も大きく、1番目の給電部30Dに対する誘導電流の値が次ぎに大きい場合、受電部30Cは0番目と1番目との給電部30Dに跨って、0番目の給電部30Dに寄った位置にある。こうして、電気特性値である誘導電流の値から0番目~5番目の給電部30Dに対する受電部30Cの位置を特定する。そして、特定完了フラグに1をセットして、受電部30Cの位置の特定を完了したことを示す(ステップS4)。このように、制御部15で0番目~5番目の給電部30Dに対する受電部30Cの位置を特定したら、この位置情報を受電部30C及び給電部30Dを介して給電側制御部30Eへ送信する。 Next, the position of the power receiving unit 30C with respect to each power feeding unit 30D is specified from the value of the induced current generated in the power receiving unit 30C with respect to each power feeding unit 30D (step S3). Specifically, among the values of the induced current generated in the power receiving unit 30C for each power feeding unit 30D (hereinafter referred to as the value of the induced current for the power feeding unit 30D) measured in step S2, the largest value and the next largest value. Based on the ratio of the values, the position of the power receiving unit 30C with respect to the 0th to 5th adjacent power feeding units 30D is obtained. For example, when the value of the induced current for the 0th power feeding unit 30D is the largest and the value of the induced current for the first power feeding unit 30D is the next largest, the power receiving unit 30C straddles the 0th and 1st power feeding units 30D. Thus, the position is close to the 0th power feeding unit 30D. In this way, the position of the power receiving unit 30C with respect to the 0th to 5th power feeding units 30D is specified from the value of the induced current that is the electrical characteristic value. Then, 1 is set in the identification completion flag to indicate that the identification of the position of the power receiving unit 30C has been completed (step S4). As described above, when the position of the power receiving unit 30C with respect to the 0th to 5th power feeding units 30D is specified by the control unit 15, this position information is transmitted to the power feeding side control unit 30E via the power receiving unit 30C and the power feeding unit 30D.
≪給電方法≫
 次に、ステップS3で特定された受電部30Cの位置に基づいて受電部30Cに対峙する給電部30Dに交流電流を供給する(ステップS5)。詳しくは、ステップS3で特定された受電部30Cの位置に対峙する給電部30Dに交流電流を供給する。こうして、このミキサ10Jは受電部30Cが対峙していない給電部30Dに無用な交流電流を供給することなく、給電部30Dから受電部30Cに給電することができる。
≪Power supply method≫
Next, an alternating current is supplied to the power feeding unit 30D facing the power receiving unit 30C based on the position of the power receiving unit 30C specified in step S3 (step S5). Specifically, an alternating current is supplied to the power feeding unit 30D facing the position of the power receiving unit 30C identified in step S3. Thus, the mixer 10J can supply power to the power reception unit 30C from the power supply unit 30D without supplying unnecessary AC current to the power supply unit 30D that is not opposed to the power reception unit 30C.
 次に、受電部30Cで発生した誘導電流の値が所定の値より小さいか判定する(ステップS6)。詳しくは、ミキサドラム10と共に回転する受電部30Cは、交流電流が供給されている給電部30Dを通過すると、給電部30Dから給電されなくなる。つまり、受電部30Cで発生した誘導電流の値が所定の値(所定の値は予め制御部15に保存されている)より小さいか比べることによって、交流電流が供給されている給電部30Dを受電部30Cが通過したかが判る。受電部30Cで発生した誘導電流の値が所定の値より小さいと判定された場合、ステップS7に移行して、特定完了フラグに0をセットして、受電部30Cの位置の特定が完了していないことを示す。また、受電部30Cで発生した誘導電流の値が所定の値より小さくないと判定された場合、フローチャートが終了し、再び制御部15はフローチャートをステップS1から実行する。 Next, it is determined whether the value of the induced current generated in the power receiving unit 30C is smaller than a predetermined value (step S6). Specifically, when the power receiving unit 30C that rotates together with the mixer drum 10 passes through the power supply unit 30D to which an alternating current is supplied, power is not supplied from the power supply unit 30D. That is, by comparing whether the value of the induced current generated in the power receiving unit 30C is smaller than a predetermined value (the predetermined value is stored in the control unit 15 in advance), the power feeding unit 30D to which the alternating current is supplied is received. It can be seen whether the part 30C has passed. If it is determined that the value of the induced current generated in the power receiving unit 30C is smaller than the predetermined value, the process proceeds to step S7, the specific completion flag is set to 0, and the specification of the position of the power receiving unit 30C is completed. Indicates no. If it is determined that the value of the induced current generated in the power receiving unit 30C is not smaller than the predetermined value, the flowchart ends, and the control unit 15 executes the flowchart again from step S1.
 このように、このミキサ車のミキサ10Jは、前支持部11F側に取り付けられた給電部30Dと、ミキサドラム10側に取り付けられた受電部30Cとの間に所定の間隔を空けている。これにより、このミキサ10Jはミキサドラム10がレディミクストコンクリートを攪拌する際に回転しても給電部30Dと受電部30Cとが接触することがない。このため、このミキサ10Jは受電部30Cが給電部30Dに一時的に対峙する。この際、給電部30Dは受電部30Cへ給電することができる。つまり、このミキサ10Jは前支持部11F側からミキサドラム10側に取り付けられたスランプセンサ16へ電力線を介して給電を行う必要がなく、簡単な回路でスランプセンサ16へ給電することができる。さらに、このミキサ10Jは、太陽光発電機のように時間帯及び天気等の周囲の環境から影響を受けることがないため、ミキサドラム10に取り付けられたスランプセンサ16に安定的に給電することができる。 As described above, the mixer 10J of this mixer vehicle has a predetermined gap between the power feeding unit 30D attached to the front support portion 11F side and the power receiving unit 30C attached to the mixer drum 10 side. Thereby, even if this mixer 10J rotates when the mixer drum 10 stirs ready-mixed concrete, electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 10J, the power receiving unit 30C temporarily opposes the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C. That is, the mixer 10J does not need to supply power to the slump sensor 16 attached to the mixer drum 10 side from the front support portion 11F side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 10J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, power can be stably supplied to the slump sensor 16 attached to the mixer drum 10. .
 したがって、実施形態1のミキサ車のミキサ10Jは、ミキサドラム10に取り付けられてミキサドラム10と共に回転するスランプセンサ16に良好に給電することができる。 Therefore, the mixer 10 </ b> J of the mixer vehicle of the first embodiment can satisfactorily supply power to the slump sensor 16 attached to the mixer drum 10 and rotating together with the mixer drum 10.
 また、このミキサ10Jにおいて、前支持部11Fはミキサドラム10の駆動軸10Bの周囲を覆うように駆動軸10Bに同軸に設けられた円筒状の隠蔽部30Bを有している。また、電力伝送部30は、受電部30Cがミキサドラム10の駆動軸10Bの外周面に設けられ、給電部30Dは隠蔽部30Bの内周面に設けられている。このため、このミキサ10Jは電力伝送部30をミキサドラム10の駆動軸10Bの外周部に配置するため、電力伝送部30を小型化することができる。 Further, in this mixer 10J, the front support portion 11F has a cylindrical concealment portion 30B provided coaxially with the drive shaft 10B so as to cover the periphery of the drive shaft 10B of the mixer drum 10. In the power transmission unit 30, the power receiving unit 30C is provided on the outer peripheral surface of the drive shaft 10B of the mixer drum 10, and the power feeding unit 30D is provided on the inner peripheral surface of the concealing unit 30B. For this reason, since this mixer 10J arrange | positions the electric power transmission part 30 in the outer peripheral part of the drive shaft 10B of the mixer drum 10, the electric power transmission part 30 can be reduced in size.
 また、このミキサ10Jにおいて、電力伝送部30は給電部30Dを複数有している。このため、このミキサ10Jの電力伝送部30は、給電部30D及び受電部30Cが1つずつ設けられた場合に比べて、各給電部30Dから受電部30Cに、より多く給電することができる。 Further, in this mixer 10J, the power transmission unit 30 has a plurality of power feeding units 30D. For this reason, the power transmission unit 30 of the mixer 10J can supply more power from each power feeding unit 30D to the power receiving unit 30C than when one power feeding unit 30D and one power receiving unit 30C are provided.
 また、ミキサ10Jに取り付けられた受電部30Cへの給電方法は、第1手順~第3手順を備えている。第1手順は給電部30Dから受電部30Cに給電された電力に応じた誘導電流の値を得る。第2手順は第1手順で得られた誘導電流の値から給電部30Dに対する受電部30Cの位置を求める。第3手順は第2手順で求めた受電部30Cの位置に基づいて給電部30Dに電流を供給する。また、この受電部30Cへの給電方法は受電部30Cで発生する誘導電流が所定の値より小さくなった場合、第1手順に戻る。このため、この受電部30Cへの給電方法は回転軸10Gを中心にした受電部30Cの円周上の位置を別のセンサで求めなくて済む。また、給電部30Dに対する受電部30Cの位置を特定することができると、受電部30Cの給電部30Dに対する位置によって給電部30Dへの電力の供給をタイミング(timing)よく行うことができるため、無用な電力の消費を抑えることができる。 In addition, the method for supplying power to the power receiving unit 30C attached to the mixer 10J includes a first procedure to a third procedure. In the first procedure, an induced current value corresponding to the power supplied from the power supply unit 30D to the power reception unit 30C is obtained. In the second procedure, the position of the power receiving unit 30C with respect to the power feeding unit 30D is obtained from the value of the induced current obtained in the first procedure. In the third procedure, a current is supplied to the power feeding unit 30D based on the position of the power receiving unit 30C obtained in the second procedure. In addition, the method of supplying power to the power receiving unit 30C returns to the first procedure when the induced current generated in the power receiving unit 30C becomes smaller than a predetermined value. For this reason, in the power feeding method to the power receiving unit 30C, it is not necessary to obtain the position on the circumference of the power receiving unit 30C around the rotating shaft 10G with another sensor. In addition, if the position of the power receiving unit 30C with respect to the power feeding unit 30D can be specified, power supply to the power feeding unit 30D can be performed with good timing according to the position of the power receiving unit 30C with respect to the power feeding unit 30D. Power consumption can be reduced.
<実施形態2>
 実施形態2のミキサ車は、図5(A)、(B)に示すように、給電部30Dが1つである点、ミキサドラム10が受電側蓄電池14を有している点、及び、ミキサ10Jに取り付けられた受電部30Cの位置特定方法及び給電方法が実施形態1と異なる。他の構成は実施形態1と同様であり、実施形態1と同一の構成は同一の符号を付して詳細な説明は省略する。
<Embodiment 2>
As shown in FIGS. 5 (A) and 5 (B), the mixer vehicle of the second embodiment has one power supply unit 30D, the mixer drum 10 has a power storage battery 14, and the mixer 10J. The position specifying method and the power feeding method of the power receiving unit 30C attached to the battery are different from those of the first embodiment. Other configurations are the same as those of the first embodiment, and the same configurations as those of the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
 給電部30Dは円環状の一端側を隠蔽部30Bの内周面に当接して1つ取り付けられている(図5(B)参照)。給電部30Dは金属線の両端が長く引き出されて給電側制御部30Eに電気的に接続されている(図5(B)参照)。受電側蓄電池14はミキサドラム10の外周面に設けられて、スランプセンサ16の制御部15に隣り合い取り付けられている。受電側蓄電池14は制御部15に電気的に接続されている。 One feeding portion 30D is attached with one end of the annular shape coming into contact with the inner peripheral surface of the concealing portion 30B (see FIG. 5B). In the power feeding unit 30D, both ends of the metal wire are drawn out long and are electrically connected to the power feeding side control unit 30E (see FIG. 5B). The power receiving side storage battery 14 is provided on the outer peripheral surface of the mixer drum 10, and is attached adjacent to the control unit 15 of the slump sensor 16. The power receiving side storage battery 14 is electrically connected to the control unit 15.
 次に、このミキサ車のミキサ10Jの動作について説明する。給電側制御部30Eは給電側蓄電池30Fから供給された直流電流を交流電流に変換して給電部30Dに供給する。すると、給電部30Dの周囲に交流磁界が発生する。受電部30C及びスランプセンサ16はミキサドラム10と共にミキサドラム10の回転軸10Gを中心にした円周上を回転して給電部30Dに周期的に対峙する。つまり、このミキサ10Jは受電部30Cと給電部30Dとが対峙している間、給電部30Dから受電部30Cに給電することができる。つまり、このミキサ10Jは給電部30Dから受電部30Cに常時的に給電されない。 Next, the operation of the mixer 10J of this mixer vehicle will be described. The power supply side control unit 30E converts the direct current supplied from the power supply side storage battery 30F into an alternating current and supplies the alternating current to the power supply unit 30D. Then, an alternating magnetic field is generated around the power feeding unit 30D. The power receiving unit 30C and the slump sensor 16 rotate together with the mixer drum 10 on a circumference around the rotation shaft 10G of the mixer drum 10 to periodically face the power feeding unit 30D. That is, the mixer 10J can feed power from the power feeding unit 30D to the power receiving unit 30C while the power receiving unit 30C and the power feeding unit 30D are facing each other. That is, the mixer 10J is not constantly supplied with power from the power supply unit 30D to the power reception unit 30C.
 このミキサ10Jは給電部30Dから受電部30Cに給電している間、受電部30Cから制御部15を介して受電側蓄電池14にも給電して充電を行う。こうして、このミキサ10Jは、給電部30Dから受電部30Cに給電していない間、受電側蓄電池14に蓄電された電力を使ってスランプセンサ16を動作させることができる。この場合、受電側蓄電池14が蓄電できる容量は、ミキサドラム10が1回転する間にスランプセンサ16が消費する電力より大きくなければならない。また、給電部30Dと受電部30Cとが1回対峙して受電側蓄電池14に給電して充電する量は、ミキサドラム10が1回転する間にスランプセンサ16が消費する電力より大きくなければならない。 The mixer 10J supplies power to the power-receiving-side storage battery 14 from the power receiving unit 30C via the control unit 15 while charging the power receiving unit 30C from the power supplying unit 30D. Thus, the mixer 10J can operate the slump sensor 16 using the electric power stored in the power receiving side storage battery 14 while the power receiving unit 30D is not supplying power to the power receiving unit 30C. In this case, the capacity that can be stored by the power storage battery 14 must be larger than the power consumed by the slump sensor 16 while the mixer drum 10 rotates once. Further, the amount that the power feeding unit 30D and the power receiving unit 30C confront each other to feed and charge the power receiving side storage battery 14 must be larger than the power consumed by the slump sensor 16 while the mixer drum 10 rotates once.
 次に、ミキサ10Jに取り付けられた受電部30Cの位置特定方法及び給電方法について説明する。図6に示すフローチャートは所定の時間毎に繰り返して制御部15で実行される。制御部15は電流センサ(図示せず)を具備している。これにより、制御部15は受電部30Cで発生した誘導電流の値を所定の時間毎に繰り返して電流センサが検知している。 Next, the position specifying method and power feeding method of the power receiving unit 30C attached to the mixer 10J will be described. The flowchart shown in FIG. 6 is repeatedly executed by the control unit 15 at predetermined time intervals. The control unit 15 includes a current sensor (not shown). Thereby, the control unit 15 repeats the value of the induced current generated in the power receiving unit 30C at every predetermined time, and is detected by the current sensor.
 まず、受電部30Cの位置を特定するために、特定完了フラグが0かどうか判定する(ステップS11)。詳しくは、受電部30Cの位置の特定が完了している場合に1がセットされ、受電部30Cの位置の特定が完了していない場合に0がセットされる特定完了フラグを設ける。この特定完了フラグに0がセットされている場合、ステップS12に移行する。また、この特定完了フラグに1がセットされている場合、ステップS14に移行する。この特定完了フラグは、ミキサ車のエンジンの駆動を開始する毎に0がセットされる。 First, in order to specify the position of the power receiving unit 30C, it is determined whether or not the specific completion flag is 0 (step S11). Specifically, a specific completion flag is set in which 1 is set when the position of the power receiving unit 30C is completed, and 0 is set when the position of the power receiving unit 30C is not completed. If 0 is set in the specific completion flag, the process proceeds to step S12. If 1 is set in the specific completion flag, the process proceeds to step S14. This specific completion flag is set to 0 every time the engine of the mixer vehicle is started.
≪位置特定方法≫
 ステップS12に移行すると、受電部30Cと給電部30Dとが対向している状態を特定して、その際の状態を保存する。ミキサ10Jに取り付けられた受電部30Cの位置特定方法は、給電部30Dに交流電流を供給したままミキサドラム10を1回転させて、受電部30Cで発生する誘導電流の値が最大になる状態を求める。つまり、受電部30Cで発生する誘導電流の値が最大になる状態が受電部30Cと給電部30Dとが対向している状態である。詳しくは、誘導電流の値が所定の値より大きいか判定する(所定の値は予め制御部15に保存されている)。誘導電流の値が所定の値より大きいと判定すると、誘導電流の値が上昇を続けた後に下降を開始したかを判定する。誘導電流の値が下降を開始したと判定すると、下降を開始した直前の状態(最大値)が受電部30Cと給電部30Dとが対向している状態であると判定し、このときの受電部30Cの位置を制御部15に保存する。そして、特定完了フラグに1をセットして、受電部30Cの位置の特定が完了したことを示し、給電部30Dへの交流電流の供給を停止する(ステップS13)。
≪Location identification method≫
When the process proceeds to step S12, the state where the power receiving unit 30C and the power feeding unit 30D are opposed to each other is specified, and the state at that time is stored. The method for specifying the position of the power receiving unit 30C attached to the mixer 10J is to obtain a state in which the value of the induced current generated in the power receiving unit 30C is maximized by rotating the mixer drum 10 once with the alternating current supplied to the power feeding unit 30D. . That is, the state where the value of the induced current generated in the power receiving unit 30C is the maximum is the state where the power receiving unit 30C and the power feeding unit 30D face each other. Specifically, it is determined whether the value of the induced current is larger than a predetermined value (the predetermined value is stored in the control unit 15 in advance). If it is determined that the value of the induced current is greater than the predetermined value, it is determined whether the induced current value has continued to increase and then started to decrease. When it is determined that the value of the induced current has started to decrease, it is determined that the state (maximum value) immediately before starting the decrease is a state in which the power receiving unit 30C and the power feeding unit 30D face each other, and the power receiving unit at this time The position of 30C is stored in the control unit 15. Then, 1 is set in the identification completion flag to indicate that the identification of the position of the power receiving unit 30C is completed, and the supply of the alternating current to the power feeding unit 30D is stopped (step S13).
≪給電方法≫
 次に、ステップS12で特定された受電部30Cの位置に基づいて、ミキサドラムが回転している際に受電部30Cが給電部30Dに対峙しているかを判定する(ステップS14)。詳しくは、ステップS12で制御部15に保存された給電部30Dと受電部30Cとが対向する位置の近傍であるかを判定する。給電部30Dと受電部30Cとが対向する位置の近傍である場合、ステップS15に移行する。また、給電部30Dと受電部30Cとが対向する位置の近傍でない場合、ステップS16に移行する。
≪Power supply method≫
Next, based on the position of the power receiving unit 30C specified in step S12, it is determined whether the power receiving unit 30C is facing the power feeding unit 30D when the mixer drum is rotating (step S14). Specifically, it is determined whether or not the power feeding unit 30D and the power receiving unit 30C stored in the control unit 15 are in the vicinity of the position facing each other in step S12. When the power feeding unit 30D and the power receiving unit 30C are in the vicinity of the facing position, the process proceeds to step S15. When the power feeding unit 30D and the power receiving unit 30C are not in the vicinity of the facing position, the process proceeds to step S16.
 ステップS15に移行すると、給電部30Dへ交流電流の供給を開始する。こうして、給電部30Dから受電部30Cに給電する。そして、再び制御部15はフローチャートをステップS11から実行する。 When the process proceeds to step S15, supply of alternating current to the power feeding unit 30D is started. In this way, power is supplied from the power supply unit 30D to the power reception unit 30C. And the control part 15 performs a flowchart again from step S11.
 ステップS16に移行すると、給電部30Dへの交流電流の供給を停止する。詳しくは、給電部30Dと受電部30Cとが対峙していないと、給電部30Dから受電部30Cに給電することができないため、給電部30Dへの交流電流の供給を停止して無用な電力の消費を抑える。そして、再び制御部15はフローチャートをステップS11から実行する。 When the process proceeds to step S16, the supply of the alternating current to the power feeding unit 30D is stopped. Specifically, if the power feeding unit 30D and the power receiving unit 30C are not confronted with each other, power cannot be supplied from the power feeding unit 30D to the power receiving unit 30C. Reduce consumption. And the control part 15 performs a flowchart again from step S11.
 このように、このミキサ車のミキサ10Jも、前支持部11F側に取り付けられた給電部30Dと、ミキサドラム10側に取り付けられた受電部30Cとの間に所定の間隔を空けている。これにより、このミキサ10Jはミキサドラム10がレディミクストコンクリート等を攪拌する際に回転しても給電部30Dと受電部30Cとが接触することがない。このため、このミキサ10Jは受電部30Cが給電部30Dに一時的に対峙する。この際、給電部30Dは受電部30Cへ給電することができる。つまり、このミキサ10Jは前支持部11F側からミキサドラム10側に取り付けられたスランプセンサ16へ電力線を介して給電を行う必要がなく、簡単な回路でスランプセンサ16へ給電することができる。さらに、このミキサ10Jは、太陽光発電機のように時間帯及び天気等の周囲の環境から影響を受けることがないため、ミキサドラム10に取り付けられたスランプセンサ16に安定的に給電することができる。 Thus, the mixer 10J of this mixer vehicle also has a predetermined gap between the power feeding unit 30D attached to the front support portion 11F side and the power receiving unit 30C attached to the mixer drum 10 side. Thereby, even if this mixer 10J rotates when the mixer drum 10 stirs ready-mixed concrete etc., the electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 10J, the power receiving unit 30C temporarily opposes the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C. That is, the mixer 10J does not need to supply power to the slump sensor 16 attached to the mixer drum 10 side from the front support portion 11F side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 10J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, power can be stably supplied to the slump sensor 16 attached to the mixer drum 10. .
 したがって、実施形態2のミキサ車のミキサ10Jも、ミキサドラム10に取り付けられてミキサドラム10と共に回転するスランプセンサ16に良好に給電することができる。 Therefore, the mixer 10J of the mixer vehicle of the second embodiment can also supply power to the slump sensor 16 attached to the mixer drum 10 and rotating together with the mixer drum 10.
 また、このミキサ10Jにおいて、前支持部11Fはミキサドラム10の駆動軸10Bの周囲を覆うように駆動軸10Bに同軸に設けられた円筒状の隠蔽部30Bを有している。また、電力伝送部130は、受電部30Cがミキサドラム10の駆動軸10Bの外周面に設けられ、給電部30Dは隠蔽部30Bの内周面に設けられている。このため、このミキサ10Jは電力伝送部130をミキサドラム10の駆動軸10Bの外周部に配置するため、電力伝送部130を小型化することができる。 Further, in this mixer 10J, the front support portion 11F has a cylindrical concealment portion 30B provided coaxially with the drive shaft 10B so as to cover the periphery of the drive shaft 10B of the mixer drum 10. In the power transmission unit 130, the power receiving unit 30C is provided on the outer peripheral surface of the drive shaft 10B of the mixer drum 10, and the power feeding unit 30D is provided on the inner peripheral surface of the concealing unit 30B. For this reason, since this mixer 10J arrange | positions the electric power transmission part 130 in the outer peripheral part of the drive shaft 10B of the mixer drum 10, the electric power transmission part 130 can be reduced in size.
 また、ミキサ10Jに取り付けられた受電部30Cへの給電方法は、第1手順~第3手順を備えている。第1手順は給電部30Dから受電部30Cに給電された電力に応じた誘導電流の値を得る。第2手順は第1手段で得られた誘導電流の値から給電部30Dに対する受電部30Cの位置を求める。第3手順は第2手順で求めた受電部30Cの位置に基づいて給電部30Dに電流を供給する。また、この受電部30Cへの給電方法は受電部30Cで発生する誘導電流が所定の値より小さくなった場合、第1手順に戻る。このため、この受電部30Cへの給電方法は回転軸10Gを中心にした受電部30Cの円周上の位置を別のセンサで求めなくて済む。また、給電部30Dに対する受電部30Cの位置を特定することができると、受電部30Cの給電部30Dに対する位置によって給電部30Dへの電力の供給をタイミングよく行うことができるため、無用な電力の消費を抑えることができる。 In addition, the method for supplying power to the power receiving unit 30C attached to the mixer 10J includes a first procedure to a third procedure. In the first procedure, an induced current value corresponding to the power supplied from the power supply unit 30D to the power reception unit 30C is obtained. In the second procedure, the position of the power receiving unit 30C with respect to the power feeding unit 30D is obtained from the value of the induced current obtained by the first means. In the third procedure, a current is supplied to the power feeding unit 30D based on the position of the power receiving unit 30C obtained in the second procedure. In addition, the method of supplying power to the power receiving unit 30C returns to the first procedure when the induced current generated in the power receiving unit 30C becomes smaller than a predetermined value. For this reason, in the power feeding method to the power receiving unit 30C, it is not necessary to obtain the position on the circumference of the power receiving unit 30C around the rotating shaft 10G with another sensor. In addition, if the position of the power receiving unit 30C with respect to the power feeding unit 30D can be specified, the power can be supplied to the power feeding unit 30D with good timing depending on the position of the power receiving unit 30C with respect to the power feeding unit 30D. Consumption can be suppressed.
 また、このミキサ10Jは、給電部30D及び受電部30Cをそれぞれ1つずつ具備している。受電部30Cはミキサドラム10と共に回転して、給電部30Dに周期的に対峙する。このため、このミキサ10Jは、周期的に変化する受電部30Cで発生した誘導電流の値を基にしてミキサドラム10の回転速度を求めることができる。 Further, this mixer 10J includes one power feeding unit 30D and one power receiving unit 30C. The power receiving unit 30C rotates together with the mixer drum 10 and periodically faces the power feeding unit 30D. Therefore, the mixer 10J can determine the rotation speed of the mixer drum 10 based on the value of the induced current generated in the power receiving unit 30C that periodically changes.
<実施形態3>
 実施形態3のミキサ車は、図7(A)、(B)に示すように、給電支持部材30Jを有している点、給電支持部材30Jに6個の給電部30Dを配置している点、ミキサドラム10に受電部30Cを配置する位置が実施形態1及び2と異なる。実施形態1及び2と同一の構成は同一の符号を付して詳細な説明は省略する。
<Embodiment 3>
As shown in FIGS. 7A and 7B, the mixer vehicle of the third embodiment has a power supply support member 30J, and has six power supply portions 30D arranged on the power supply support member 30J. The positions at which the power receiving unit 30C is arranged on the mixer drum 10 are different from those in the first and second embodiments. The same configurations as those of the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 電力伝送部230は、給電支持部材30Jを有している。給電支持部材30Jは半円筒状をなしている。給電支持部材30Jは、ミキサドラム10の外周面の中間部の下部を覆うようにミキサドラム10に同軸に設けられ、架台50Fの上に固定されている。つまり、給電支持部材30Jはミキサドラム10の周方向に沿って伸びている。 The power transmission unit 230 includes a power supply support member 30J. The power supply support member 30J has a semi-cylindrical shape. The power supply support member 30J is provided coaxially with the mixer drum 10 so as to cover the lower portion of the intermediate portion of the outer peripheral surface of the mixer drum 10, and is fixed on the gantry 50F. That is, the power supply support member 30 </ b> J extends along the circumferential direction of the mixer drum 10.
 給電支持部材30Jとミキサドラム10との間は所定の間隔を空けている。各給電部30Dは円環状の一端側を給電支持部材30Jの半円筒状の内周面に当接して、給電支持部材30Jの周方向に互いの間の寸法を等間隔にして1列に配置されている。受電部30Cは円環状の一端側をミキサドラム10の外周面に当接して取り付けられている。 A predetermined gap is provided between the power supply support member 30J and the mixer drum 10. Each of the power supply portions 30D is arranged in a row with one end side of the annular shape abutting on the semi-cylindrical inner peripheral surface of the power supply support member 30J and with the same distance between each other in the circumferential direction of the power supply support member 30J. Has been. The power receiving unit 30 </ b> C is attached such that one end of the annular shape is in contact with the outer peripheral surface of the mixer drum 10.
 受電部30Cは、ミキサドラム10と共に回転し、円環状の他端側を各給電部30Dの円環状の他端側に一時的に対峙する。受電部30Cは、各給電部30Dとの間に所定の間隔を開けた状態でミキサドラム10と共に回転し、各給電部30Dに接触することはない。 The power receiving unit 30C rotates together with the mixer drum 10 and temporarily confronts the other end of the ring with the other end of the ring of each power feeding unit 30D. The power receiving unit 30C rotates together with the mixer drum 10 with a predetermined gap between each power feeding unit 30D and does not come into contact with each power feeding unit 30D.
 このように、このミキサ車のミキサ10Jも、給電支持部材30J側に取り付けられた給電部30Dと、ミキサドラム10側に取り付けられた受電部30Cとの間に所定の間隔を空けている。これにより、このミキサ10Jはミキサドラム10がレディミクストコンクリート等を攪拌する際に回転しても給電部30Dと受電部30Cとが接触することがない。このため、このミキサ10Jは受電部30Cが給電部30Dに一時的に対峙する。この際、給電部30Dは受電部30Cへ給電することができる。つまり、このミキサ10Jは給電支持部材30J側からミキサドラム10側に取り付けられたスランプセンサ16へ電力線を介して給電を行う必要がなく、簡単な回路でスランプセンサ16へ給電することができる。さらに、このミキサ10Jは、太陽光発電機のように時間帯及び天気等の周囲の環境から影響を受けることがないため、ミキサドラム10に取り付けられたスランプセンサ16に安定的に給電することができる。 As described above, the mixer 10J of this mixer vehicle also has a predetermined gap between the power feeding unit 30D attached to the power feeding support member 30J side and the power receiving unit 30C attached to the mixer drum 10 side. Thereby, even if this mixer 10J rotates when the mixer drum 10 stirs ready-mixed concrete etc., the electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 10J, the power receiving unit 30C temporarily opposes the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C. That is, the mixer 10J does not need to supply power to the slump sensor 16 attached to the mixer drum 10 side from the power supply support member 30J side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 10J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, power can be stably supplied to the slump sensor 16 attached to the mixer drum 10. .
 したがって、実施形態3のミキサ車のミキサ10Jも、ミキサドラム10に取り付けられてミキサドラム10と共に回転するスランプセンサ16に良好に給電することができる。 Therefore, the mixer 10J of the mixer truck of the third embodiment can also supply power to the slump sensor 16 attached to the mixer drum 10 and rotating together with the mixer drum 10.
 また、このミキサ10Jにおいて、電力伝送部230は、受電部30Cがミキサドラム10の外周面に設けられている。また、電力伝送部230は、ミキサドラム10の周方向に沿って伸びて、給電部30Dが受電部30Cに一時的に対峙する位置に配置した給電支持部材30Jを有している。このため、このミキサ10Jはミキサドラム10が回転した場合、駆動軸10Bの周囲に給電部30Dを設け、駆動軸の外周面に受電部30Cを設けた場合に比べて、給電部30Dに対して受電部30Cを速く通過させることができる。電磁誘導によって給電部30Dから受電部30Cに給電する場合、給電部30Dの周囲に発生した交流磁界の中を受電部30Cが速く通過すると、受電部30Cを貫通する磁束の量が速く変化するため、受電部30Cで発生する誘導電流が多くなる。このため、このミキサ10Jの電力伝送部230は給電部30Dから受電部30Cに、より多く給電することができる。 In the mixer 10J, the power transmission unit 230 includes a power receiving unit 30C provided on the outer peripheral surface of the mixer drum 10. In addition, the power transmission unit 230 includes a power supply support member 30J that extends along the circumferential direction of the mixer drum 10 and is disposed at a position where the power supply unit 30D temporarily faces the power reception unit 30C. For this reason, when the mixer drum 10 rotates, the mixer 10J receives power from the power feeding unit 30D compared to the case where the power feeding unit 30D is provided around the drive shaft 10B and the power receiving unit 30C is provided on the outer peripheral surface of the drive shaft. The part 30C can be passed quickly. When power is supplied from the power feeding unit 30D to the power receiving unit 30C by electromagnetic induction, the amount of magnetic flux penetrating the power receiving unit 30C changes rapidly when the power receiving unit 30C passes through the AC magnetic field generated around the power feeding unit 30D. The induced current generated in the power receiving unit 30C increases. For this reason, the power transmission unit 230 of the mixer 10J can supply more power from the power feeding unit 30D to the power receiving unit 30C.
 また、このミキサ10Jにおいて、電力伝送部230は給電部30Dを複数有している。このため、このミキサ10Jの電力伝送部230は、受電部30C及び給電部30Dが1つずつ設けられた場合に比べて、給電部30Dから受電部30Cに、より多く給電することができる。 Further, in this mixer 10J, the power transmission unit 230 has a plurality of power feeding units 30D. For this reason, the power transmission unit 230 of the mixer 10J can supply more power from the power feeding unit 30D to the power receiving unit 30C than when one power receiving unit 30C and one power feeding unit 30D are provided.
<実施形態4>
 実施形態4のミキサ車は、図8に示すように、給電部30Dを配置する位置、受電部30Cを配置する位置が実施形態1~3と異なる。実施形態1~3と同一の構成は同一の符号を付して詳細な説明は省略する。
<Embodiment 4>
As shown in FIG. 8, the mixer vehicle of the fourth embodiment is different from the first to third embodiments in the position where the power feeding unit 30D is disposed and the position where the power receiving unit 30C is disposed. The same components as those in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 ミキサドラム110は駆動軸110Bの前端部を減速機70に連結している。減速機70は第1歯車70A、及び第2歯車70Bを具備している。第1歯車70A及び第2歯車70Bは平歯車である。第1歯車70Aは駆動軸110Bに同軸に駆動軸110Bの先端が挿入されている。第2歯車70Bは第1歯車70Aにかみ合って第1歯車70Aの下側に配置されている。第2歯車70Bは外径が第1歯車70Aの外形より小さい。また、第2歯車70Bは油圧モーター71の出力軸72に同軸に連結している。 The mixer drum 110 connects the front end of the drive shaft 110B to the speed reducer 70. The speed reducer 70 includes a first gear 70A and a second gear 70B. The first gear 70A and the second gear 70B are spur gears. In the first gear 70A, the tip of the drive shaft 110B is inserted coaxially with the drive shaft 110B. The second gear 70B meshes with the first gear 70A and is disposed below the first gear 70A. The second gear 70B has an outer diameter smaller than that of the first gear 70A. The second gear 70 </ b> B is coaxially connected to the output shaft 72 of the hydraulic motor 71.
 給電部30Dは円環状の一端側を前支持部111Fの後端面に当接して取り付けられている。給電部30Dはミキサドラム110の回転軸10Gに同軸上に配置されている。給電部30Dは、金属線の両端が長く引き出されて、前支持部11Fの内部に敷設されて、給電側制御部30Eに電気的に接続している。 The power feeding unit 30D is attached such that one end side of the annular shape is in contact with the rear end surface of the front support unit 111F. The power feeding unit 30 </ b> D is disposed coaxially with the rotation shaft 10 </ b> G of the mixer drum 110. The power supply unit 30D has both ends of the metal wire drawn out long, is laid inside the front support unit 11F, and is electrically connected to the power supply side control unit 30E.
 受電部30Cは円環状の一端側を駆動軸110Bの前端面に当接して取り付けられている。受電部30Cはミキサドラム110の回転軸10Gに同軸上に配置されている。受電部30Cは円環状の他端側を給電部30Dの円環状の他端側に対向している。受電部30Cは、金属線の両端が長く引き出されて、駆動軸110Bの内部、及びミキサドラム110の外側面に敷設されて、スランプセンサ16の制御部15に電気的に接続している。 The power receiving unit 30C is attached such that one end of the annular shape comes into contact with the front end surface of the drive shaft 110B. The power receiving unit 30 </ b> C is disposed coaxially with the rotation shaft 10 </ b> G of the mixer drum 110. In the power receiving unit 30C, the other end of the ring is opposed to the other end of the ring of the power feeding unit 30D. The power receiving unit 30 </ b> C has both ends of the metal wire drawn out long, is laid on the inside of the drive shaft 110 </ b> B and the outer surface of the mixer drum 110, and is electrically connected to the control unit 15 of the slump sensor 16.
 受電部30Cはミキサドラム110の駆動軸110Bと共に回転軸10Gを中心にして回転する。ミキサドラム110の駆動軸110Bと共に回転する受電部30Cは給電部30Dに接触することはない。このミキサ110Jはミキサドラム110が回転しても受電部30Cと給電部30Dとが常時的に対向している。このため、このミキサ110Jは交流電流が供給された給電部30Dの周囲に発生する交流磁界の中に受電部30Cが常に位置する。こうして、このミキサ110Jは常に給電部30Dから受電部30Cに給電することができる。 The power receiving unit 30 </ b> C rotates around the rotation shaft 10 </ b> G together with the drive shaft 110 </ b> B of the mixer drum 110. The power receiving unit 30C that rotates together with the drive shaft 110B of the mixer drum 110 does not contact the power feeding unit 30D. In the mixer 110J, even when the mixer drum 110 rotates, the power receiving unit 30C and the power feeding unit 30D are always opposed to each other. For this reason, in this mixer 110J, the power receiving unit 30C is always located in the AC magnetic field generated around the power feeding unit 30D to which the AC current is supplied. Thus, the mixer 110J can always supply power from the power supply unit 30D to the power reception unit 30C.
 このように、このミキサ車のミキサ110Jも、前支持部111F側に取り付けられた給電部30Dと、ミキサドラム110側に取り付けられた受電部30Cとの間に所定の間隔を空けている。これにより、このミキサ110Jはミキサドラム110がレディミクストコンクリート等を攪拌する際に回転しても給電部30Dと受電部30Cとが接触することがない。このため、このミキサ110Jは受電部30Cが給電部30Dに常時的に対向する。この際、給電部30Dは受電部30Cへ給電することができる。つまり、このミキサ110Jは前支持部111F側からミキサドラム110側に取り付けられたスランプセンサ16へ電力線を介して給電を行う必要がなく、簡単な回路でスランプセンサ16へ給電することができる。さらに、このミキサ110Jは、太陽光発電機のように時間帯及び天気等の周囲の環境から影響を受けることがないため、ミキサドラム110に取り付けられたスランプセンサ16に安定的に給電することができる。 Thus, the mixer 110J of this mixer vehicle also has a predetermined interval between the power feeding unit 30D attached to the front support portion 111F side and the power receiving unit 30C attached to the mixer drum 110 side. Thereby, even if this mixer 110J rotates when the mixer drum 110 agitates ready mixed concrete etc., the electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 110J, the power receiving unit 30C always faces the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C. That is, the mixer 110J does not need to supply power to the slump sensor 16 attached to the mixer drum 110 side from the front support portion 111F via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 110J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, it can stably supply power to the slump sensor 16 attached to the mixer drum 110. .
 したがって、実施形態4のミキサ車のミキサ110Jも、ミキサドラム110に取り付けられてミキサドラム110と共に回転するスランプセンサ16に良好に給電することができる。 Therefore, the mixer 110J of the mixer vehicle of the fourth embodiment can also supply power to the slump sensor 16 attached to the mixer drum 110 and rotating together with the mixer drum 110.
<実施形態5>
 実施形態5のミキサ車は、図9(A)、(B)に示すように、ミキサドラム210の開口部110Eの構成、給電部30Dを配置する位置、受電部30Cを配置する位置が実施形態1~4と異なる。実施形態1~4と同一の構成は同一の符号を付して詳細な説明は省略する。
<Embodiment 5>
As shown in FIGS. 9A and 9B, in the mixer vehicle of the fifth embodiment, the configuration of the opening 110E of the mixer drum 210, the position where the power feeding unit 30D is disposed, and the position where the power receiving unit 30C is disposed are the first embodiment. Different from ~ 4. The same components as those in the first to fourth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 ミキサドラム210は開口部材10Hを有している。開口部材10Hはミキサドラム210の開口部110Eと同じ直径の円筒状で、両端が開口して連通している。開口部材10Hは開口した一端をミキサドラム210の開口部110Eに当接して固定されている。給電支持部材130Jは円筒状をなして両端が開口して連通している。給電支持部材130Jは、開口部材10Hの周囲を覆うようにミキサドラム210に同軸に設けられ、後支持部11Bに取り付けられている。給電支持部材130Jと開口部材10Hとの間は所定の間隔を空けている。 The mixer drum 210 has an opening member 10H. The opening member 10H has a cylindrical shape having the same diameter as the opening 110E of the mixer drum 210, and both ends are open and communicated. The opening member 10 </ b> H is fixed by contacting one end of the opening member 10 </ b> E with the opening 110 </ b> E of the mixer drum 210. The power supply support member 130J has a cylindrical shape, and both ends are open and communicated. The power supply support member 130J is provided coaxially with the mixer drum 210 so as to cover the periphery of the opening member 10H, and is attached to the rear support portion 11B. A predetermined interval is provided between the power supply support member 130J and the opening member 10H.
 10個の給電部30Dは、円環状の一端側を給電支持部材130Jの内周面に当接して、給電支持部材130Jの周方向に互いの間の寸法を等間隔にして1列に取り付けられている。各給電部30Dは、金属線の両端が長く引き出されて、後支持部11B、及び架台50Fに敷設されて、給電側制御部30Eに電気的に接続している(図示せず)。受電部30Cは円環状の一端側をミキサドラム210の開口部材10Hの外周面に当接している。受電部30Cは、金属線の両端が長く引き出されて、ミキサドラム210の外側面に敷設されて、スランプセンサ16の制御部15に電気的に接続している。 The ten power supply portions 30D are attached in a row with one end of the annular shape abutting against the inner peripheral surface of the power supply support member 130J and with the same distance between each other in the circumferential direction of the power supply support member 130J. ing. Each power supply section 30D has both ends of the metal wire drawn out long, is laid on the rear support section 11B and the gantry 50F, and is electrically connected to the power supply side control section 30E (not shown). The power receiving unit 30 </ b> C abuts one end of the annular shape on the outer peripheral surface of the opening member 10 </ b> H of the mixer drum 210. The power receiving unit 30 </ b> C has both ends of the metal wire drawn out long, is laid on the outer surface of the mixer drum 210, and is electrically connected to the control unit 15 of the slump sensor 16.
 受電部30Cは、ミキサドラム210と共に回転し、円環状の他端側を各給電部30Dの円環状の他端側に一時的に対峙する。受電部30Cは、各給電部30Dとの間に所定の間隔を開けた状態でミキサドラム210と共に回転し、各給電部30Dに接触することはない。 The power receiving unit 30C rotates together with the mixer drum 210 and temporarily confronts the other end of the ring with the other end of the ring of each power feeding unit 30D. The power receiving unit 30C rotates together with the mixer drum 210 with a predetermined gap between each power feeding unit 30D and does not come into contact with each power feeding unit 30D.
 このように、このミキサ車のミキサ210Jも、後支持部11Bに取り付けられた給電支持部材130J側に取り付けられた給電部30Dと、ミキサドラム210側に取り付けられた受電部30Cとの間に所定の間隔を空けている。これにより、このミキサ210Jはミキサドラム210がレディミクストコンクリート等を攪拌する際に回転しても給電部30Dと受電部30Cとが接触することがない。このため、このミキサ210Jは受電部30Cが給電部30Dに一時的に対峙する。この際、給電部30Dは受電部30Cへ給電することができる。つまり、このミキサ210Jは後支持部11B側からミキサドラム210側に取り付けられたスランプセンサ16へ電力線を介して給電を行う必要がなく、簡単な回路でスランプセンサ16へ給電することができる。さらに、このミキサ210Jは、太陽光発電機のように時間帯及び天気等の周囲の環境から影響を受けることがないため、ミキサドラム210に取り付けられたスランプセンサ16に安定的に給電することができる。 As described above, the mixer 210J of this mixer vehicle is also provided with a predetermined gap between the power feeding portion 30D attached to the power feeding support member 130J attached to the rear support portion 11B and the power receiving portion 30C attached to the mixer drum 210 side. There is an interval. Thereby, even if this mixer 210J rotates when the mixer drum 210 agitates ready mixed concrete etc., the electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 210J, the power receiving unit 30C temporarily opposes the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C. That is, the mixer 210J does not need to supply power to the slump sensor 16 attached to the mixer drum 210 side from the rear support portion 11B side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Further, since this mixer 210J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, it can stably supply power to the slump sensor 16 attached to the mixer drum 210. .
 したがって、実施形態5のミキサ車のミキサ210Jも、ミキサドラム210に取り付けられてミキサドラム210と共に回転するスランプセンサ16に良好に給電することができる。 Therefore, the mixer 210J of the mixer truck of the fifth embodiment can also supply power to the slump sensor 16 attached to the mixer drum 210 and rotating together with the mixer drum 210.
 また、このミキサ210Jにおいて、電力伝送部330は、受電部30Cがミキサドラム210の外周面である開口部110Eに設けられている。また、電力伝送部330は、ミキサドラム210の開口部材10Hの周方向に沿って伸びて、給電部30Dが受電部30Cに一時的に対峙する位置に配置した給電支持部材130Jを有している。このため、このミキサ210Jはミキサドラム210が回転した場合、駆動軸10Bの周囲に給電部30Dを設け、駆動軸10Bの外周面に受電部30Cを設けた場合に比べて、給電部30Dに対して受電部30Cを速く通過させることができる。電磁誘導によって給電部30Dから受電部30Cに給電する場合、給電部30Dの周囲に発生した交流磁界の中を受電部30Cが速く通過すると、受電部30Cを貫通する磁束の量が速く変化するため、受電部30Cで発生する誘導電流が多くなる。このため、このミキサ210Jの電力伝送部330は給電部30Dから受電部30Cに、より多く給電することができる。 Further, in this mixer 210J, the power transmission unit 330 is provided in the opening 110E in which the power receiving unit 30C is the outer peripheral surface of the mixer drum 210. In addition, the power transmission unit 330 includes a power supply support member 130J that extends along the circumferential direction of the opening member 10H of the mixer drum 210 and is disposed at a position where the power supply unit 30D temporarily faces the power reception unit 30C. For this reason, the mixer 210J has a power feeding unit 30D around the drive shaft 10B when the mixer drum 210 rotates, and the power feeding unit 30D compared to the case where the power receiving unit 30C is provided on the outer peripheral surface of the drive shaft 10B. The power receiving unit 30C can be passed quickly. When power is supplied from the power feeding unit 30D to the power receiving unit 30C by electromagnetic induction, the amount of magnetic flux penetrating the power receiving unit 30C changes rapidly when the power receiving unit 30C passes through the AC magnetic field generated around the power feeding unit 30D. The induced current generated in the power receiving unit 30C increases. For this reason, the power transmission unit 330 of the mixer 210J can supply more power from the power feeding unit 30D to the power receiving unit 30C.
 また、このミキサ車のミキサ210Jにおいて、電力伝送部330は、給電部30Dを複数有している。このため、このミキサ210Jの電力伝送部330は受電部30C及び給電部30Dが1つずつ設けられた場合に比べて、給電部30Dから受電部30Cに、より多く給電することができる。 Further, in the mixer 210J of this mixer vehicle, the power transmission unit 330 has a plurality of power feeding units 30D. For this reason, the power transmission unit 330 of the mixer 210J can supply more power from the power feeding unit 30D to the power receiving unit 30C than when one power receiving unit 30C and one power feeding unit 30D are provided.
<実施形態6>
 実施形態6のミキサ車は、図10(A)、(B)、図11に示すように、ミキサドラム310の開口部210Eの構成、給電部30Dを配置する位置、受電部30Cを配置する位置が実施形態1~5と異なる。実施形態1~5と同一の構成は同一の符号を付して詳細な説明は省略する。
<Embodiment 6>
As shown in FIGS. 10A, 10B, and 11, the mixer vehicle of the sixth embodiment includes the configuration of the opening 210E of the mixer drum 310, the position where the power feeding unit 30D is disposed, and the position where the power receiving unit 30C is disposed. Different from the first to fifth embodiments. The same components as those in the first to fifth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 ミキサドラム310は開口部210Eに受電支持部材10Kを有している。受電支持部材10Kは、円盤状の受電支持部本体10L、及び長く伸びた円筒状の3つの受電連結部10Mを具備している。受電支持部本体10Lはミキサドラム310の開口部210Eの中央に設けられている。受電支持部本体10Lは中心軸を回転軸10Gの同軸上に配置されている。 The mixer drum 310 has a power receiving support member 10K at the opening 210E. The power receiving support member 10K includes a disk-shaped power receiving support portion main body 10L and three cylindrical power receiving connection portions 10M that are elongated. The power receiving support body 10L is provided at the center of the opening 210E of the mixer drum 310. The power receiving support portion main body 10L is arranged so that the central axis is coaxial with the rotation shaft 10G.
 各受電連結部10Mは一端が受電支持部本体10Lの外周部に互いのなす角度を120度にして連結されている。また、各受電連結部10Mは他端がミキサドラム310の一端部である開口部210Eの内周面に連結されている。また、ミキサドラム310は、受電支持部本体10Lから上方向に伸びる受電連結部10Mの他端が連結された場所に貫通した貫通孔10Nが設けられている。この貫通孔10Nは受電支持部本体10Lから上方向に伸びる受電連結部10Mの他端に連通している。 Each power receiving connecting portion 10M is connected at one end to the outer peripheral portion of the power receiving supporting portion main body 10L at an angle of 120 degrees. Each power receiving connection portion 10 </ b> M is connected to the inner peripheral surface of the opening 210 </ b> E that is one end portion of the mixer drum 310 at the other end. Further, the mixer drum 310 is provided with a through-hole 10N that penetrates at a place where the other end of the power receiving connecting portion 10M extending upward from the power receiving supporting body 10L is connected. The through hole 10N communicates with the other end of the power receiving connecting portion 10M extending upward from the power receiving supporting portion main body 10L.
 受電部30Cは、円環状の一端側を受電支持部本体10Lの円盤状の後面に当接して取り付けられている。受電部30Cはミキサドラム310の回転軸10Gに同軸上に配置されている。受電部30Cは金属線の両端が長く引き出されてスランプセンサ16の制御部15に電気的に接続している。引き出された金属線は、受電支持部本体10Lから上方向に伸びる受電連結部10Mの内側、ミキサドラム310の貫通孔10N、及びミキサドラム310の外側面に敷設されている。また、ローラリング10Dは内周の1部分に溝10Pが設けられている。受電部30Cから引き出された金属線は溝10Pを通っている。 The power receiving unit 30C is attached such that one end of the ring shape comes into contact with the disk-shaped rear surface of the power receiving support main body 10L. The power receiving unit 30 </ b> C is disposed coaxially with the rotation shaft 10 </ b> G of the mixer drum 310. The power receiving unit 30C is electrically connected to the control unit 15 of the slump sensor 16 with both ends of the metal wire drawn out long. The drawn metal wire is laid on the inner side of the power receiving connection portion 10M extending upward from the power receiving support portion main body 10L, the through hole 10N of the mixer drum 310, and the outer surface of the mixer drum 310. Further, the roller ring 10D is provided with a groove 10P in one portion of the inner periphery. The metal wire drawn out from the power receiving unit 30C passes through the groove 10P.
 ホッパ150Cは給電支持部材230Jを有している。給電支持部材230Jは、円盤状の給電支持部本体230K、及び長く延びた円筒状の2つの給電連結部230Lを具備している。給電支持部本体230Kはホッパ150Cの下端に前方下方向に開口して形成された排出口150Gの中央部に配置されている。給電支持部本体230Kは中心軸をミキサドラム310の回転軸10Gの同軸上に配置されている。 The hopper 150C has a power supply support member 230J. The power supply support member 230J includes a disk-shaped power supply support portion main body 230K and two long cylindrical power supply connection portions 230L. The power supply support portion main body 230K is disposed at the center of a discharge port 150G formed by opening in the front lower direction at the lower end of the hopper 150C. The power supply support body 230K is arranged so that the central axis is coaxial with the rotation shaft 10G of the mixer drum 310.
 各給電連結部230Lは、給電支持部本体230Kを挟み一直線上に、一端が給電支持部本体230Kの外周部に連結されている。また、各給電連結部230Lは他端がホッパ150Cの左側壁150L及び右側壁150R(左右は図11における左右である。)の下部にそれぞれ連結されている。また、ホッパ150Cの左側壁150Lは、給電連結部230Lが連結されている場所に貫通した貫通孔150Dが設けられている。この貫通孔150Dはホッパ150Cの左側壁150Lの他端が連結されている給電連結部230Lの他端と連通している。 Each power supply connecting portion 230L is connected to the outer peripheral portion of the power supply support portion main body 230K on a straight line with the power supply support portion main body 230K interposed therebetween. Further, the other end of each power supply connecting portion 230L is connected to the lower part of the left side wall 150L and the right side wall 150R (left and right in FIG. 11) of the hopper 150C. Further, the left side wall 150L of the hopper 150C is provided with a through hole 150D penetrating in a place where the power feeding connecting portion 230L is connected. The through hole 150D communicates with the other end of the power feeding connecting portion 230L to which the other end of the left side wall 150L of the hopper 150C is connected.
 給電部30Dは円環状の一端側を給電支持部本体230Kの前面に当接して取り付けられている。給電部30Dはミキサドラム310の回転軸10Gに同軸上に配置されている。給電部30Dは金属線の両端が長く引き出されて、給電側制御部(図示せず)に電気的に接続されている。引き出された金属線は、一つの給電連結部230Lの内部、ホッパ150Cの貫通孔150D、後支持部11B、及び架台50Fに敷設されている。 The power feeding unit 30D is attached with one end of the annular shape coming into contact with the front surface of the power feeding support body 230K. The power feeding unit 30 </ b> D is disposed coaxially with the rotation shaft 10 </ b> G of the mixer drum 310. The power supply unit 30D is electrically connected to a power supply side control unit (not shown) with both ends of the metal wire drawn out long. The drawn metal wire is laid on the inside of one power supply connecting portion 230L, the through hole 150D of the hopper 150C, the rear support portion 11B, and the mount 50F.
 受電部30Cはミキサドラム310と共に回転軸10Gを中心にして回転する。ミキサドラム310と共に回転する受電部30Cは給電部30Dに接触することはない。このミキサ310Jはミキサドラム310が回転しても受電部30Cと給電部30Dとが常時的に対向している。このため、このミキサ310Jは交流電流が供給された給電部30Dの周囲に発生する交流磁界の中に受電部30Cが常に位置する。こうして、このミキサ310Jは常に給電部30Dから受電部30Cに給電することができる。 The power receiving unit 30C rotates around the rotating shaft 10G together with the mixer drum 310. The power receiving unit 30C that rotates together with the mixer drum 310 does not come into contact with the power feeding unit 30D. In the mixer 310J, the power receiving unit 30C and the power feeding unit 30D are always opposed to each other even when the mixer drum 310 rotates. For this reason, in this mixer 310J, the power receiving unit 30C is always located in the AC magnetic field generated around the power feeding unit 30D to which the AC current is supplied. Thus, the mixer 310J can always supply power from the power supply unit 30D to the power reception unit 30C.
 このように、このミキサ車のミキサ310Jも、ホッパ150Cを介して後支持部11Bに取り付けられた給電支持部材230J側に取り付けられた給電部30Dと、ミキサドラム310側に取り付けられた受電部30Cとの間に所定の間隔を空けている。これにより、このミキサ310Jはミキサドラム310がレディミクストコンクリート等を攪拌する際に回転しても給電部30Dと受電部30Cとが接触することがない。このため、このミキサ310Jは受電部30Cが給電部30Dに常時的に対向する。この際、給電部30Dは受電部30Cへ給電することができる。つまり、このミキサ310Jは後支持部11B側からミキサドラム310側に取り付けられたスランプセンサ16へ電力線を介して給電を行う必要がなく、簡単な回路でスランプセンサ16へ給電することができる。さらに、このミキサ310Jは、太陽光発電機のように時間帯及び天気等の周囲の環境から影響を受けることがないため、ミキサドラム310に取り付けられたスランプセンサ16に安定的に給電することができる。 As described above, the mixer 310J of this mixer vehicle also includes a power feeding unit 30D attached to the power feeding support member 230J attached to the rear support unit 11B via the hopper 150C, and a power receiving unit 30C attached to the mixer drum 310 side. There is a predetermined interval between the two. Thereby, even if this mixer 310J rotates when the mixer drum 310 agitates ready mixed concrete etc., the electric power feeding part 30D and the electric power receiving part 30C do not contact. For this reason, in the mixer 310J, the power receiving unit 30C always faces the power feeding unit 30D. At this time, the power feeding unit 30D can feed power to the power receiving unit 30C. That is, the mixer 310J does not need to supply power to the slump sensor 16 attached to the mixer drum 310 side from the rear support portion 11B side via the power line, and can supply power to the slump sensor 16 with a simple circuit. Furthermore, since this mixer 310J is not affected by the surrounding environment such as time zone and weather unlike a solar power generator, it can stably supply power to the slump sensor 16 attached to the mixer drum 310. .
 したがって、実施形態6のミキサ車のミキサ310Jも、ミキサドラム310に取り付けられてミキサドラム310と共に回転するスランプセンサ16に良好に給電することができる。 Therefore, the mixer 310J of the mixer vehicle of the sixth embodiment can also supply power to the slump sensor 16 attached to the mixer drum 310 and rotating together with the mixer drum 310.
<他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態1~6に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)実施形態1~6では、給電部及び受電部に金属線を同軸に複数回巻いて円環状にして束ねたコイルを用いているが、これに限らず、金属線を4角形状で複数回巻いて4角環状にして束ねたコイルを給電部及び受電部に用いてもよい。この場合、複数の給電部を配置する場合、各給電部の間を隙間なく配置することができるため、受電部が隣り合う給電部の中間に位置した場合の受電部に給電される量を多くすることができる。
(2)実施形態1~6では、給電部に金属線を所定の範囲の直径で同軸に複数回巻いて円環状にして束ねたコイルを用いているが、これに限らず、給電部に磁石を用いてもよい。
(3)実施形態1~6では、電磁誘導によって給電部から受電部に給電しているが、これに限らず、磁界共鳴方式等によって給電部から受電部に給電してもよい。
(4)実施形態1~6では、受電部が1つであるが、これに限らず、受電部も複数設けてもよい。この場合、いずれかの給電部と受電部とを常に対向させることができる。これにより、スランプセンサに、より安定的に給電することができる。
<Other embodiments>
The present invention is not limited to the first to sixth embodiments described with reference to the above description and the drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the first to sixth embodiments, the power supply unit and the power reception unit use a coil in which a metal wire is coaxially wound a plurality of times and bundled into an annular shape. However, the present invention is not limited to this, and the metal wire has a rectangular shape. A coil that is wound a plurality of times and bundled into a quadrangular ring shape may be used for the power feeding unit and the power receiving unit. In this case, when a plurality of power feeding units are arranged, the power feeding units can be arranged without gaps, so that a large amount of power is supplied to the power receiving unit when the power receiving unit is located in the middle of adjacent power feeding units. can do.
(2) In the first to sixth embodiments, a coil in which a metal wire is coaxially wound a plurality of times with a diameter in a predetermined range and bundled into an annular shape is used for the power supply unit. May be used.
(3) In the first to sixth embodiments, power is supplied from the power feeding unit to the power receiving unit by electromagnetic induction. However, the present invention is not limited thereto, and power may be supplied from the power feeding unit to the power receiving unit by a magnetic resonance method or the like.
(4) In the first to sixth embodiments, there is one power receiving unit. However, the present invention is not limited to this, and a plurality of power receiving units may be provided. In this case, any one of the power feeding units and the power receiving unit can always face each other. Thereby, it is possible to supply power to the slump sensor more stably.
(5)実施形態1,3,5では、複数の給電部を隠蔽部又は給電支持部材の内周面の周方向に1列に並べているが、これに限らず、各給電部を隠蔽部又は給電支持部材の内周面の周方向に2列以上並べてもよい。この場合、隣り合う列の給電部をミキサドラムの回転軸に平行にならないように配置し、受電部をそれぞれの給電部の列に1つずつ、それぞれの列に対峙するように配置する。この際、隣り合う受電部をミキサドラムの回転軸に平行に配置する。こうすることで、隣り合う列で給電部と受電部との対峙する量を変えることができる。これにより、スランプセンサに、より安定的に給電することができる。
(6)実施形態1及び2では、給電部を受電部の外側に配置しているが、これに限らず、受電部を給電部の外側に配置してもよい。また、給電部と受電部とは駆動軸に対して垂直方向に対峙しているが、駆動軸と平行、もしくは駆動軸に対して所定の角度を付けて対峙させるようにしても良い。例えば、ミキサドラムの前端部又は後端部の円錐台状に形成された外周面に受電部を設けても良い。
(7)実施形態1では、動力源であるエンジンから得た回転力をミキサドラムに伝達して用いているが、動力源はエンジンでなくてもよく、電動モーター等から得た回転力を動力源として用いてもよい。
(8)実施形態1~6では、ミキサ車であったが、これに限らず、作業現場等に前支持部及び後支持部を設置してミキサドラムを回転自在に搭載したミキサであってもよい。この場合、ミキサドラムを回転する回転力を電動モーター等から得てもよい。
(5) In the first, third, and fifth embodiments, the plurality of power feeding units are arranged in a line in the circumferential direction of the inner peripheral surface of the concealing unit or the power feeding support member. Two or more rows may be arranged in the circumferential direction of the inner peripheral surface of the power supply support member. In this case, the power feeding units in adjacent rows are arranged so as not to be parallel to the rotation axis of the mixer drum, and the power receiving units are arranged one by one in each power feeding unit row so as to face each row. At this time, adjacent power receiving units are arranged in parallel to the rotation axis of the mixer drum. By doing so, the amount of the power feeding unit and the power receiving unit facing each other can be changed in adjacent rows. Thereby, it is possible to supply power to the slump sensor more stably.
(6) In Embodiments 1 and 2, the power feeding unit is disposed outside the power receiving unit. However, the configuration is not limited thereto, and the power receiving unit may be disposed outside the power feeding unit. Further, although the power feeding unit and the power receiving unit are opposed to each other in the direction perpendicular to the drive axis, they may be opposed to each other in parallel with the drive axis or at a predetermined angle with respect to the drive axis. For example, the power receiving unit may be provided on the outer peripheral surface formed in a truncated cone shape at the front end or rear end of the mixer drum.
(7) In the first embodiment, the rotational force obtained from the engine as the power source is transmitted to the mixer drum, but the power source may not be the engine, and the rotational force obtained from the electric motor or the like is used as the power source. It may be used as
(8) In the first to sixth embodiments, the mixer vehicle is used. However, the present invention is not limited to this, and a mixer in which a front support portion and a rear support portion are installed at a work site and the mixer drum is rotatably mounted may be used. . In this case, the rotational force for rotating the mixer drum may be obtained from an electric motor or the like.
(9)実施形態1~6では、スランプセンサが1つであるが、スランプセンサの数が1つでなくてもよく2つ以上であってもよい。
(10)実施形態1では、ミキサドラムでレディミクストコンクリートを攪拌しているが、これに限らず、ミキサドラムでさまざまな粉粒体や液体等の攪拌又は混練を行ってもよい。
(11)実施形態1~6では、スランプセンサをミキサドラムの内周面及び外周面に設けているが、これに限らず、スランプセンサをミキサドラムの内側面及び外側面であればどこに設けてもよい。
(12)実施形態1~6では、ミキサドラムにスランプセンサを設けているが、スランプセンサでなくてもよく、ミキサドラムに回転計等の他の電気機器を設けてもよい。
(13)実施形態1~6では、給電側蓄電池を設けているが、これに限らず、車体のバッテリーを給電側蓄電池として用いてもよい。
(14)実施形態2では、受電側蓄電池を設けているが、大容量コンデンサ(condenser)等を受電側蓄電池として用いてもよい。
(15)実施形態1~6では、電力伝送部の構成要素を別々に組み付けているが、これら構成要素をユニット(unit)化してもよい。
(9) In the first to sixth embodiments, the number of slump sensors is one, but the number of slump sensors may not be one and may be two or more.
(10) In Embodiment 1, the ready-mixed concrete is agitated by the mixer drum. However, the present invention is not limited to this, and various agglomerates and liquids may be agitated or kneaded by the mixer drum.
(11) In the first to sixth embodiments, the slump sensor is provided on the inner peripheral surface and the outer peripheral surface of the mixer drum. However, the present invention is not limited to this, and the slump sensor may be provided anywhere on the inner surface and the outer surface of the mixer drum. .
(12) In the first to sixth embodiments, the slump sensor is provided on the mixer drum. However, the slump sensor may not be provided, and another electric device such as a tachometer may be provided on the mixer drum.
(13) In the first to sixth embodiments, the power supply side storage battery is provided. However, the present invention is not limited to this, and a vehicle body battery may be used as the power supply side storage battery.
(14) Although the power receiving side storage battery is provided in the second embodiment, a large-capacity capacitor or the like may be used as the power receiving side storage battery.
(15) In the first to sixth embodiments, the components of the power transmission unit are separately assembled, but these components may be unitized.
(16)実施形態1では、0番目~5番目の給電部に対する受電部の位置を求めているが、これに限らず、0番目~5番目の給電部に対する受電部の位置と共にミキサドラムの回転速度も併せて求め、給電部への電力供給のタイミング制御を行っても良い。詳しくは、先ず、受電部が隣り合う給電部の一方に対向した位置情報を制御部に保存する。次に、受電部が隣り合う給電部の一方に対向した位置から他方に対向する位置に到達するまでに要した時間を求めて制御部に保存する。次に、受電部が隣り合う給電部の他方に対向した位置情報を制御部に保存する。そして、受電部が隣り合う給電部の一方及び他方それぞれに対向した際の位置情報の差を受電部が隣り合う給電部の一方に対向した状態から他方に対向した状態になるまでに要した時間で除し、ミキサドラムの回転速度を求める。こうして求めたミキサドラムの回転速度を基にし、0番目~5番目の給電部に供給する交流電流を切り替えることによって、常に受電部が対峙する給電部に交流電流を供給することができる。このとき、ミキサドラムの回転速度に変化がなければ、0番目~5番目の給電部に対する受電部の位置を再び求める必要がない。 (16) In the first embodiment, the position of the power receiving unit with respect to the 0th to 5th power feeding units is obtained. Also, the timing control of the power supply to the power feeding unit may be performed. Specifically, first, the position information of the power receiving unit facing one of the adjacent power feeding units is stored in the control unit. Next, the time required for the power receiving unit to reach the position facing the other side from the position facing one of the adjacent power feeding units is obtained and stored in the control unit. Next, the position information of the power receiving unit facing the other of the adjacent power feeding units is stored in the control unit. The time required for the power receiving unit to change from the state facing one of the adjacent power feeding units to the state facing the other when the power receiving unit is opposed to one and the other of the adjacent power feeding units. Divide by to find the rotation speed of the mixer drum. By switching the AC current supplied to the 0th to 5th power feeding units based on the rotation speed of the mixer drum thus obtained, the AC current can be always supplied to the power feeding unit facing the power receiving unit. At this time, if there is no change in the rotation speed of the mixer drum, it is not necessary to obtain the position of the power receiving unit with respect to the 0th to 5th power feeding units again.
(17)実施形態1、2では、給電部に対する受電部の位置を受電部で発生する誘導電流の大きさを基にして特定しているが、これに限らず、2軸加速度センサ等を用いて給電部に対する受電部の位置を特定しても良い。この場合、2軸加速度センサはミキサドラムの外周面に設けられてミキサドラムと共に回転する。2軸加速度センサはミキサドラムと共に回転し、2軸加速度センサの位置に応じた値を出力値として出力して制御部に与える。つまり、ミキサドラムと共に回転する受電部で発生する誘導電流の値が最大となるときの2軸加速度センサの出力値を制御部に保存する。そして、この制御部に保存した出力値と現在の2軸加速度センサの位置に応じた出力値とを比較することによって、給電部30Dと受電部30Cとが対向する位置の近傍であるかを判定する。 (17) In the first and second embodiments, the position of the power receiving unit with respect to the power feeding unit is specified based on the magnitude of the induced current generated in the power receiving unit. However, the present invention is not limited to this, and a biaxial acceleration sensor or the like is used. Then, the position of the power receiving unit with respect to the power feeding unit may be specified. In this case, the biaxial acceleration sensor is provided on the outer peripheral surface of the mixer drum and rotates together with the mixer drum. The biaxial acceleration sensor rotates with the mixer drum, outputs a value corresponding to the position of the biaxial acceleration sensor as an output value, and gives it to the control unit. That is, the output value of the biaxial acceleration sensor when the value of the induced current generated in the power receiving unit rotating with the mixer drum is maximized is stored in the control unit. Then, by comparing the output value stored in the control unit with the output value corresponding to the current position of the biaxial acceleration sensor, it is determined whether the power feeding unit 30D and the power receiving unit 30C are in the vicinity of the facing position. To do.
(18)実施形態1では、0番目~5番目の給電部に対する受電部の位置を制御部で特定しているが、これに限らず、誘導電流の値を制御部から給電側制御部へ送信し、給電側制御部で0番目~5番目の給電部に対する受電部の位置を特定しても良い。 (18) In the first embodiment, the position of the power receiving unit with respect to the 0th to 5th power feeding units is specified by the control unit. However, the present invention is not limited to this, and the value of the induced current is transmitted from the control unit to the power feeding side control unit. Then, the position of the power receiving unit with respect to the 0th to 5th power feeding units may be specified by the power feeding side control unit.
 10,110,210,310…ミキサドラム、10B,110B…駆動軸、11F,111F…前支持部(支持部)、11B…後支持部(支持部)、16…スランプセンサ(電気機器)、30C…受電部、30D…給電部、30,130,230,330…電力伝送部、30B…隠蔽部、30J,130J…給電支持部材 10, 110, 210, 310 ... mixer drum, 10B, 110B ... drive shaft, 11F, 111F ... front support part (support part), 11B ... rear support part (support part), 16 ... slump sensor (electric equipment), 30C ... Power receiving unit, 30D ... Power feeding unit, 30, 130, 230, 330 ... Power transmission unit, 30B ... Concealing unit, 30J, 130J ... Power feeding support member

Claims (5)

  1.  支持部と、
     前記支持部に回転自在に軸支された駆動軸を有し、前記駆動軸を中心に回転するミキサドラムと、
     前記ミキサドラムに取り付けられる電気機器と、
     前記ミキサドラムに取り付けられて前記電気機器へ電力を供給する受電部、及び前記支持部に取り付けられ、前記受電部との間に所定の間隔を空けた状態で前記受電部に一時的又は常時的に対峙して受電部へ給電する給電部を有した電力伝送部と、
     を備えていることを特徴とするミキサ。
    A support part;
    A mixer drum having a drive shaft rotatably supported by the support portion, and rotating about the drive shaft;
    Electrical equipment attached to the mixer drum;
    A power receiving unit that is attached to the mixer drum and supplies electric power to the electric device, and a power receiving unit that is attached to the support unit and is temporarily or constantly attached to the power receiving unit with a predetermined space between the power receiving unit and the power receiving unit. A power transmission unit having a power feeding unit facing and feeding the power receiving unit;
    A mixer characterized by comprising.
  2.  前記支持部は前記ミキサドラムの前記駆動軸の周囲を覆うように前記駆動軸に同軸に設けられた円筒状の隠蔽部を有しており、
     前記電力伝送部は、
     前記受電部が前記ミキサドラムの前記駆動軸の外周面に設けられ、
     前記給電部は前記隠蔽部の内周面に設けられていることを特徴とする請求項1記載のミキサ。
    The support portion has a cylindrical concealing portion provided coaxially with the drive shaft so as to cover the periphery of the drive shaft of the mixer drum,
    The power transmission unit is
    The power receiving unit is provided on an outer peripheral surface of the drive shaft of the mixer drum;
    The mixer according to claim 1, wherein the power feeding unit is provided on an inner peripheral surface of the concealing unit.
  3.  前記電力伝送部は、
     前記受電部が前記ミキサドラムの外周面に設けられ、
     前記ミキサドラムの周方向に沿って伸びて、前記給電部が前記受電部に一時的に対峙する位置に配置した給電支持部材を有していることを特徴とする請求項1記載のミキサ。
    The power transmission unit is
    The power receiving unit is provided on an outer peripheral surface of the mixer drum;
    2. The mixer according to claim 1, further comprising a power supply support member that extends along a circumferential direction of the mixer drum and that is disposed at a position where the power supply unit temporarily faces the power reception unit.
  4.  前記電力伝送部は、
     少なくとも前記受電部又は前記給電部のいずれか一方を複数有していることを特徴とする請求項1乃至3のいずれか1項記載のミキサ。
    The power transmission unit is
    4. The mixer according to claim 1, wherein the mixer includes at least one of the power receiving unit and the power feeding unit. 5.
  5.  請求項1乃至3のいずれか1項記載のミキサに取り付けられた受電部への給電方法であって、
     前記給電部から前記受電部に給電された電力に応じた電気特性値を得る第1手順と、
     前記電気特性値から前記給電部に対する前記受電部の位置を求める第2手順と、
     前記第2手順で求めた前記受電部の位置に、基づいて前記給電部に電流を供給する第3手順と、
     を備えており、
     前記電気特性値が所定の値より小さくなった場合、前記第1手順に戻ることを特徴とするミキサに取り付けられた受電部への給電方法。
    A method for feeding power to a power receiving unit attached to the mixer according to any one of claims 1 to 3,
    A first procedure for obtaining an electrical characteristic value corresponding to the power fed from the power feeding unit to the power receiving unit;
    A second procedure for determining a position of the power receiving unit with respect to the power feeding unit from the electrical characteristic value;
    A third procedure for supplying current to the power supply unit based on the position of the power receiving unit obtained in the second procedure;
    With
    When the electrical characteristic value becomes smaller than a predetermined value, the method returns to the first procedure.
PCT/JP2016/070021 2015-08-25 2016-07-06 Mixer and method for supplying power to power receiving section attached to mixer WO2017033585A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NZ735881A NZ735881A (en) 2015-08-25 2016-07-06 Mixer and method of feeding power reception part attached thereto
AU2016312442A AU2016312442A1 (en) 2015-08-25 2016-07-06 Mixer and method for supplying power to power receiving section attached to mixer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-165694 2015-08-25
JP2015165694A JP6067072B1 (en) 2015-08-25 2015-08-25 Mixer and method for supplying power to power receiving unit attached to mixer

Publications (1)

Publication Number Publication Date
WO2017033585A1 true WO2017033585A1 (en) 2017-03-02

Family

ID=57890442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070021 WO2017033585A1 (en) 2015-08-25 2016-07-06 Mixer and method for supplying power to power receiving section attached to mixer

Country Status (4)

Country Link
JP (1) JP6067072B1 (en)
AU (1) AU2016312442A1 (en)
NZ (1) NZ735881A (en)
WO (1) WO2017033585A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121724A1 (en) * 2016-11-14 2018-05-17 Hamm Ag Construction machinery
WO2020129525A1 (en) * 2018-12-21 2020-06-25 ヤンマー株式会社 Electric construction machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032918B2 (en) * 2017-12-11 2022-03-09 Kyb株式会社 Mixer truck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123520A (en) * 1977-04-04 1978-10-28 Shin Meiwa Ind Co Ltd Concrete mixer
JP2008100407A (en) * 2006-10-18 2008-05-01 Sumitomo Osaka Cement Co Ltd Remaining water reporting system for concrete mixer truck
WO2012128092A1 (en) * 2011-03-24 2012-09-27 カヤバ工業株式会社 Mixer drum driving device
JP2012201145A (en) * 2011-03-24 2012-10-22 Kyb Co Ltd Mixer drum driving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123520A (en) * 1977-04-04 1978-10-28 Shin Meiwa Ind Co Ltd Concrete mixer
JP2008100407A (en) * 2006-10-18 2008-05-01 Sumitomo Osaka Cement Co Ltd Remaining water reporting system for concrete mixer truck
WO2012128092A1 (en) * 2011-03-24 2012-09-27 カヤバ工業株式会社 Mixer drum driving device
JP2012201145A (en) * 2011-03-24 2012-10-22 Kyb Co Ltd Mixer drum driving device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121724A1 (en) * 2016-11-14 2018-05-17 Hamm Ag Construction machinery
WO2018087265A1 (en) * 2016-11-14 2018-05-17 Hamm Ag Construction machine
US10883231B2 (en) 2016-11-14 2021-01-05 Hamm Ag Construction machine
WO2020129525A1 (en) * 2018-12-21 2020-06-25 ヤンマー株式会社 Electric construction machine
JP2020100997A (en) * 2018-12-21 2020-07-02 ヤンマーパワーテクノロジー株式会社 Electric construction machine

Also Published As

Publication number Publication date
JP6067072B1 (en) 2017-01-25
AU2016312442A1 (en) 2017-10-19
NZ735881A (en) 2018-10-26
JP2017042960A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2017033585A1 (en) Mixer and method for supplying power to power receiving section attached to mixer
CN105756979A (en) Oscillating mechanism of household appliance and household appliance
JP6650741B2 (en) Transmission arrangements such as for energy and / or signal transmission
EP3385089B1 (en) Rolling bearing unit for drive wheel support
CN102570722B (en) There is the EPS motor of steering angle sensor
CN107107954B (en) Torque sensor module and steering angle sensing device including the same
JP2023015122A (en) Motor and motor-driven steering apparatus having the same
CN107336790B (en) Driving unit and electrically assisted bicycle
US20180223973A1 (en) Electric actuator
KR20120025801A (en) A welding wire feeder which has multi function
CN102023023B (en) Method of using band sensor for determining position inside container
KR20150009453A (en) Rotor and manufacturing method thereof
US20220243517A1 (en) Inductive sensor for power sliding doors
CN107615012A (en) Rotary transformer, electric rotating machine and elevator hoist
CN101803154B (en) Motor
JP2013162730A (en) Rotary electric machine
JP2003097582A (en) Bearing device with sensor
CN106537737A (en) Method for producing direct drive motor, and jig
JP2020012824A (en) Flow information communication device
CN109341913A (en) A kind of torque measuring device
CN106687784A (en) Temperature sensing device
JP7405273B2 (en) Vehicle drive system
CN111022829A (en) Fluid energy-taking speed-adjustable leather cup type pipeline robot power device
JP5990304B1 (en) Mixer
JP7101791B2 (en) How to operate the centrifuge and the centrifuge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016312442

Country of ref document: AU

Date of ref document: 20160706

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838932

Country of ref document: EP

Kind code of ref document: A1