WO2017033554A1 - Mold coil - Google Patents

Mold coil Download PDF

Info

Publication number
WO2017033554A1
WO2017033554A1 PCT/JP2016/068674 JP2016068674W WO2017033554A1 WO 2017033554 A1 WO2017033554 A1 WO 2017033554A1 JP 2016068674 W JP2016068674 W JP 2016068674W WO 2017033554 A1 WO2017033554 A1 WO 2017033554A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding conductor
conductor layer
coil
mold
support
Prior art date
Application number
PCT/JP2016/068674
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 陦
正治 久保田
Original Assignee
東芝産業機器システム株式会社
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝産業機器システム株式会社, 株式会社 東芝 filed Critical 東芝産業機器システム株式会社
Priority to JP2017536651A priority Critical patent/JP6833696B2/en
Priority to CN201680047582.6A priority patent/CN108292560B/en
Publication of WO2017033554A1 publication Critical patent/WO2017033554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings

Definitions

  • Embodiment of this invention is related with the mold coil used for a static mold apparatus.
  • each section of the mold coil is divided into section coils so that cooling air passes inside the mold coil.
  • a duct is provided between them to cool the mold coil and insulate the section coils.
  • This duct is configured, for example, by placing a corrugated support between each section coil. The end face of the support is usually arranged so as to align with the end face of the section coil.
  • an object of the embodiment of the present invention is to provide a molded coil excellent in creeping insulation performance, air layer insulation performance, and cooling performance.
  • the molded coil according to the present embodiment has a winding conductor layer, a plurality of cylindrical section coils whose surroundings are covered with a resin mold are provided concentrically, and a support is interposed between the section coils. With a duct configured. The position of the end portion of the support is present at a position retreated from the end surface of the resin mold and the end portion of the winding conductor layer.
  • Partially perspective sectional view showing a schematic configuration example of a molded coil according to the first embodiment Partially perspective sectional view showing a schematic configuration example of a molded coil according to the second embodiment
  • FIG. 1 is a partial perspective sectional view showing a schematic configuration example of a molded coil 10 according to the first embodiment.
  • the molded coil 10 is formed such that a plurality of cylindrical section coils 10a are stacked concentrically.
  • a direction orthogonal to the radial direction of the molded coil 10 is referred to as an axial direction, and the axial direction is expressed as a vertical direction.
  • the winding conductor 12 has a configuration in which a winding conductor layer 12d and a crossover 12c are formed from the winding conductor inlet 12a of the molded coil 10 and connected to the winding conductor outlet 12b. These winding conductor layers 12d are U-connected by a jumper 12c.
  • the winding conductor layer 12 d is covered with an insulating material, and constitutes a resin mold 18.
  • the resin mold 18 including the winding conductor layer 12d is formed as follows.
  • the winding conductor layer 12d is covered with a nonwoven fabric or the like, and the support 16 is disposed so as to provide a predetermined space between the winding conductor layers 12d.
  • an epoxy resin is impregnated and then cured.
  • the resin mold 18 having the winding conductor layer 12d therein is formed. That is, the section coil 10a is configured such that the winding conductor 12 (winding conductor layer 12d) wound in a cylindrical shape is covered with an insulator (for example, epoxy resin).
  • the support 16 is, for example, a corrugated resin structure.
  • a duct 14 having a passage extending in the axial direction of the molded coil 10 is formed between the section coils 10a by interposing the support 16 between the adjacent section coils 10a.
  • the support 16 is made of, for example, an epoxy resin, and therefore the support 16 has a high dielectric constant.
  • the passage through which air flows is formed by the duct 14, and the mold coil 10 can be cooled by the air flowing through the passage.
  • the distance between the section coils 10 a is defined by the support 16.
  • the distance between the section coils 10a is manufactured in consideration of creeping insulation performance, cooling performance, and air layer insulation performance between the section coils 10a.
  • the edge part of the support body 16 is called the support body end surface 16a.
  • a crossover wire 12c is provided between the winding conductor layers 12d of the section coil 10a, and these have a U connection, that is, a shape in which U shapes are joined in a staggered manner in the cross section, and the periphery thereof is covered with the resin mold 18. It is configured as follows. Here, the end of the winding conductor layer 12d on the opposite side as viewed from the side to which the connecting wire 12c is connected is referred to as a winding conductor layer end 12e. These winding conductor layers 12d, the crossover wires 12c, and the resin mold 18 are integrated to form the molded coil 10.
  • the position of the support end surface 16a of the support 16 is the internal direction of the mold coil 10 structure (section) from the resin mold end surface 18a.
  • the coil 10a exists in a position retracted by the retracting length L1 in the axial direction.
  • the position of the support end surface 16a exists at a position retracted inward from the winding conductor layer end 12e.
  • the end insulating portion 20 indicates from the resin mold end surface 18a to the winding conductor layer end portion 12e of the resin mold 18, and the end insulating portion length from the resin mold end surface 18a toward the inside of the molded coil 10 structure.
  • the winding conductor layer end 12e exists at a distance L2.
  • L2 "relationship.
  • End insulating portions 20 are provided on the upper and lower portions of the molded coil 10 so as to be connected to the winding conductor layer 12d.
  • the mold coil 10 (section coil 10a) has a resin mold end surface 18a.
  • the resin mold 18 has a resin mold corner 18b at the corner of the resin mold end surface 18a.
  • the resin mold corner 18b is a place where the electric field related to the mold coil 10 is concentrated. If an electrical path such as the support end surface 16a exists in the vicinity of the resin mold corner 18b, a discharge is generated through this. It becomes easy.
  • the winding conductor 12 has a winding conductor corner 12f at the winding conductor layer end 12e.
  • the winding conductor corner portion 12f is a place where the electric field tends to concentrate.
  • an electrical surface such as the support end surface 16a. If there is a path, electric discharge tends to occur through the path.
  • the positions of the support end surface 16a of the support 16 exists at a position retracted from the resin mold end surface 18a. That is, the support end surface 16a and the resin mold end surface 18a do not form the same plane. For this reason, since the resin mold corner 18b where the electric field concentration occurs and the support end surface 16a are not close to each other, bridging between the section coils 10a is suppressed, and deterioration of the creeping insulation performance of the end surface of the section coil 10a can be suppressed. it can. Thereby, in the lightning impulse test, it is possible to suppress the occurrence of distortion exceeding the standard of the lightning impulse waveform starting from creeping dielectric breakdown between the section coils 10a.
  • the position of the support end surface 16a of the support 16 is configured to be present at a position retracted inward from the end surface of the section coil 10a (that is, the resin mold end surface 18a) and the winding conductor layer end portion 12e. Yes. That is, the support end surface 16a exists at a position retracted inward from the resin mold end surface 18a by a distance equal to or longer than the receding length L1. As a result, the support end surface 16a is not close to the resin mold corner 18b but also not to the strong electric field 18c on the surface of the resin mold 18 nearest to the winding conductor corner 12f where the electric field is concentrated.
  • the voltage shared by the air layer of the duct 14 is increased due to the presence of the support 16 having a high dielectric constant.
  • the position of the support end surface 16a is positioned at the resin mold. It is comprised so that it may become a position retreated from the end surface 18a. Thereby, the partial discharge performance in the resin mold corner 18b can be improved.
  • the cooling area of the mold coil 10 can be increased, and the pressure loss of the air passing through the duct 14 can be reduced. Thereby, the cooling performance of the mold coil 10 can be improved.
  • FIG. 2 is a partial perspective sectional view showing a schematic configuration example of the molded coil 10 according to the second embodiment.
  • one section coil 10a and the support 16 are extracted and shown.
  • the tape-type nonwoven fabric 22, the end nonwoven fabric 24, and the clip 26 are shown so that the state before the molded coil 10 is impregnated with resin and integrated can be understood.
  • the molded coil 10 is arranged so that the end nonwoven fabric 24 is connected to the upper end portion of the winding conductor 12 wound in a cylindrical shape, that is, the winding conductor layer 12d, and these are wound together with the tape-type nonwoven fabric 22 and gathered together. It is fixed to. Furthermore, in order to prevent the wound tape-type nonwoven fabric 22 from unwinding and collapsing the assembled shape, the end nonwoven fabric 24 and the tape-type nonwoven fabric 22 are overlapped and fixed by clips 26. . In addition, the position of the support end surface 16a of the support 16 exists at a position that is recessed inward from the resin mold end surface 18a and the winding conductor layer end 12e.
  • the end non-woven fabric 24, the tape-type non-woven fabric 22 around which the end non-woven fabric 24 is wound, and the clip 26 constitute the end insulating portion 20.
  • the support end surface 16a exists at a position retracted inward from the resin mold end surface 18a and the winding conductor layer end 12e, that is, a receding length L1 which is a distance from the resin mold end surface 18a to the support end surface 16a. Is larger than the end insulating portion length L2, as in the first embodiment.
  • the molded coil 10 is impregnated with the resin as the integral part of the winding conductor 12 and the end nonwoven fabric 24 that are wound around the tape-type nonwoven fabric 22 and sandwiched and fixed by the clip 26. Are integrally formed by curing.
  • the support 16 and the winding conductor layer 12d are alternately arranged in a concentric cylindrical shape in a mold (not shown), and the winding conductor layer 12d is wound around the tape-type nonwoven fabric 22.
  • the clip 26 is fitted to the upper and lower ends of the winding conductor layer 12d wound with the tape-type nonwoven fabric 22 to fix the tape-type nonwoven fabric 22 so as not to collapse.
  • the resin is impregnated and then cured.
  • the molded coil 10 is formed, in which the winding conductor layer 12d, the tape-type nonwoven fabric 22, and the clip 26 are integrally cured with the resin.
  • the tape-type nonwoven fabric 22 wound around the winding conductor layer 12d is fixed with the clip 26, so that the resin is impregnated and cured. Therefore, the tape-type nonwoven fabric is usually provided without a spacer disposed on the support 16. The nonwoven fabric 22 does not break and collapse.
  • the effects of the molded coil 10 according to the second embodiment are summarized as follows. According to the molded coil 10 which concerns on 2nd Embodiment, there exists an effect similar to 1st Embodiment. In addition, by adopting such a configuration, even when the support end surface 16a is disposed at a position retracted from the resin mold end surface 18a, it is possible to suppress the collapse of the assembled shape due to the unfolding of the tape-type nonwoven fabric 22. . As a result, it is possible to realize the mold coil 10 configured such that the position of the support end surface 16a exists at a position retracted from the resin mold end surface 18a.
  • FIG. 3 is a partial perspective sectional view showing a schematic configuration example of the molded coil according to the third embodiment.
  • FIG. 3 shows one section coil 10a and support 16 extracted.
  • the sheet-type nonwoven fabric 32 and the end nonwoven fabric 24 are shown so that the state before the molded coil 10 is impregnated with resin and integrated can be understood.
  • a self-supporting sheet-type non-woven fabric 32 that is not necessarily unfastened without being fixed by the clip 26 is used.
  • the molded coil 10 is arranged so that the end nonwoven fabric 24 is placed on the upper end portion of the winding conductor 12 wound in a cylindrical shape, that is, the winding conductor layer 12d, and these are wound around the sheet type nonwoven fabric 32. It is fixed to cover.
  • the sheet-type nonwoven fabric 32 has such a strength as to have a so-called waist so that the shape can be maintained by itself. Furthermore, you may clamp and fix the winding conductor layer edge part 12e, the edge part insulation part 20, and the sheet-type nonwoven fabric 32 using the clip 26 demonstrated in 2nd Embodiment.
  • the end nonwoven fabric 24 and the sheet type nonwoven fabric 32 around which the end nonwoven fabric 24 is wound constitute the end insulating portion 20.
  • the position of the support end surface 16a exists at a position retracted inward from the resin mold end surface 18a and the winding conductor layer end portion 12e, that is, a receding that is a distance from the resin mold end surface 18a to the support end surface 16a.
  • the length L1 is larger than the end insulating portion length L2, as in the first and second embodiments.
  • the molded coil 10 is integrally configured by impregnating a resin with the winding conductor 12 and the end nonwoven fabric 24 wound by the sheet-type nonwoven fabric 32 as a unit. ing.
  • the effects of the molded coil 10 according to the third embodiment are summarized as follows. According to the molded coil 10 which concerns on 3rd Embodiment, there exists an effect similar to 1st Embodiment. Further, since the winding conductor 12 is wound using the sheet-type nonwoven fabric 32 that can be self-supporting and can retain its shape, the support end surface 16a is retracted from the resin mold end surface 18a toward the inside of the mold coil 10 structure. Even if they are arranged in the same shape, the assembled shape can be maintained, so that an effect of excellent productivity is achieved.
  • FIG. 4 shows a schematic configuration of a molded transformer 100 that is a molded static induction device.
  • the mold transformer 100 includes a mold transformer content 32 constituting the content of the mold type static induction device, a sealed container 33 in which the mold transformer content 32 is stored, and an outer side surface of the sealed container 33 (left and right in the figure).
  • the heat exchanger 34 provided in the.
  • the molded transformer contents 32 are configured by combining the mold coil 10 whose surface is covered with a resin or an insulating material containing a resin and an iron core 36.
  • the molded coil 10 includes a section coil 10a mounted on the outer periphery of the iron core 36, and a section coil 10a disposed on the outer periphery of the section coil 10a.
  • the molded coil 10 is the molded coil 10 according to the first, second, or third embodiment.
  • the mold coil 10 is configured such that the position of the support end surface 16a (not shown in FIG. 4) is a position retracted from the resin mold end surface 18a.
  • the sealed container 33 air 37 having a pressure exceeding the atmospheric pressure is enclosed in a state where the contents 32 of the mold transformer are accommodated.
  • the sealed container 33 and the left and right heat exchangers 34 are connected by an upper connection path 38 and a lower connection path 39, respectively.
  • the upper connection path 38 is connected to the upper part of the sealed container 33, and the lower connection path 39 is connected to the lower part of the sealed container 33.
  • a partition plate 40 is provided in the sealed container 33 so as to be positioned above the lower connection path 39 and below the upper connection path 38.
  • the partition plate 40 is provided in a fixed state on the inner surface of the sealed container 33.
  • a circular flow hole 40 a along the outer periphery of the mold coil 10 is formed in a portion adjacent to the outer periphery of the mold coil 10.
  • the contents of the mold transformer 32 when the operation of the mold transformer 100 is started, the contents of the mold transformer 32 generate heat, and accordingly, the temperature of the air 37 in the sealed container 33 rises. As shown by arrows in FIG. 4, the air 37 whose temperature has risen rises in the sealed container 33, and then flows to the heat exchanger 34 side through the upper connection path 38 to be cooled.
  • the air 37 cooled by the heat exchanger 34 circulates so as to be returned into the sealed container 33 through the lower connection path 39.
  • the air 37 in the sealed container 33 circulates through the heat exchanger 34, whereby the air 37 in the sealed container 33 is cooled, and the mold transformer contents 32 are cooled.
  • a part of the air 37 circulating in the sealed container 33 passes through a gap between the flow hole 40a of the partition plate 40 and the outer peripheral portion of the mold coil 10 to cool the mold coil 10 from the outer peripheral portion.
  • the cooling effect can be enhanced.
  • the duct 14 is formed by the support 16 between the adjacent section coils 10a, a part of the air 37 circulating in the sealed container 33 also enters the duct 14, and the molded coil 10 is also inserted from the inside. Cooling. Thereby, the cooling effect of the mold coil 10 can be further enhanced.
  • the mold transformer contents 32 are accommodated in the sealed container 33 in which the air 37 having a pressure exceeding the atmospheric pressure is sealed, so that the section coil 10a of the mold coil 10 is It is possible to improve the withstand voltage of the air 37 involved in the insulation between the molded coil 10 and the member having a ground potential such as the iron core 36.
  • the insulation withstand voltage of the molded transformer contents 32 alone is set to the standard operating voltage (ordinary voltage) or more, and the overall withstand voltage when the air 37 having a pressure exceeding the atmospheric pressure is stored in the sealed container 33 is as follows.
  • the test voltage commercial frequency voltage, impulse voltage, etc. specified by the standard or higher shall be used.
  • the withstand voltage of the molded transformer contents 32 alone is equal to or higher than the standard operating voltage.
  • the withstand voltage when the atmospheric air 37 is stored in the sealed container 33 is equal to or higher than the standard operating voltage. The same effect can be obtained by setting as above.
  • the heat exchanger 34 for increasing the density of the air 37 in the sealed container 33 and cooling the air 37 is provided, the cooling performance can be improved.
  • a molded transformer 100 having a higher voltage and a larger capacity that exceeds the upper limit of the voltage and capacity of a conventional mold transformer that relies on air at atmospheric pressure for its insulating function and cooling function. It becomes possible.
  • the support end surface 16a of the support 16 is disposed at a position retracted inside the end surface of the section coil 10a (that is, the resin mold end surface 18a) and the winding conductor layer end 12e.
  • the cooling effect can be further improved in the retracted portion.
  • the air blowing resistance around the support 16 is lowered by the amount of the retraction, the cooling effect by the air 37 circulating between the section coils 10a can be improved.
  • section coils 10a are arranged in a plurality of layers and concentrically, the section coils 10a may be supported and overlapped by the support 16 so as to be spaced apart from each other by a concentric shape.
  • the cross section of the mold coil 10 may not be circular but may be rectangular or elliptical.
  • the support 16 for forming the duct 14 that defines the interval between the section coils 10a has been described using the support 16 having a corrugated plate in the above embodiment, it is not intended to be limited to this shape.
  • a support 16 having a rectangular wave cross section may be used, or a support 16 that is a plurality of rod-shaped spacers may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)
  • Transformer Cooling (AREA)

Abstract

A mold coil comprises a plurality of tubular section coils which include winding conductor layers and of which the peripheries are covered with resin mold, the tubular section coils being disposed in a concentrically overlapping manner, with ducts provided between the section coils via a support material. The position of an end of the support material is present at a position withdrawn from an end face of the resin mold and the end of the winding conductor layer.

Description

モールドコイルMolded coil
 本発明の実施形態は、静止型モールド機器に用いられるモールドコイルに関する。 Embodiment of this invention is related with the mold coil used for a static mold apparatus.
 電力用や産業用の静止型モールド機器、例えばモールド変圧器やモールドリアクトル等に用いられるモールドコイルでは、冷却用の空気がモールドコイル内部を通るように、セクションコイルに分割されたモールドコイルの各セクション間にダクトを設け、これによりモールドコイルの冷却やセクションコイル間の絶縁を行っている。このダクトは、例えば各セクションコイル間に波板状の支持物を挟むように配置することで構成されている。支持物の端面は、通常はセクションコイルの端面に揃うように配置される。 For molded coils used in electric power and industrial static mold equipment, such as mold transformers and mold reactors, each section of the mold coil is divided into section coils so that cooling air passes inside the mold coil. A duct is provided between them to cool the mold coil and insulate the section coils. This duct is configured, for example, by placing a corrugated support between each section coil. The end face of the support is usually arranged so as to align with the end face of the section coil.
特開平8-8121号公報JP-A-8-8121
 従来のモールドコイルを、例えば、受電電圧(一次電圧)が高いモールド変圧器に用いた場合、コイル端面における沿面絶縁性能が低下したり、コイルセクション間空気層の分担電圧が増加することにより空気層の絶縁性能が低下したり、あるいはセクションコイル間の冷却性能が低下したりするなどの課題が顕在化してきた。 When a conventional molded coil is used in, for example, a molded transformer having a high received voltage (primary voltage), the creeping insulation performance at the coil end face is reduced, or the shared voltage of the air layer between the coil sections is increased. Problems such as a decrease in insulation performance or a decrease in cooling performance between section coils have become apparent.
 そこで、本発明の実施形態は、沿面絶縁性能、空気層の絶縁性能、及び冷却性能に優れたモールドコイルを提供することを目的とする。 Therefore, an object of the embodiment of the present invention is to provide a molded coil excellent in creeping insulation performance, air layer insulation performance, and cooling performance.
 本実施形態に係るモールドコイルは、巻線導体層を有し、周囲が樹脂モールドにより覆われた複数の筒状のセクションコイルを同心円状に重ねて設け、前記セクションコイル間に支持物を介在して構成されるダクトを備える。前記支持物の端部の位置が、前記樹脂モールド端面と前記巻線導体層端部よりも後退した位置に存在している。 The molded coil according to the present embodiment has a winding conductor layer, a plurality of cylindrical section coils whose surroundings are covered with a resin mold are provided concentrically, and a support is interposed between the section coils. With a duct configured. The position of the end portion of the support is present at a position retreated from the end surface of the resin mold and the end portion of the winding conductor layer.
第1実施形態に係るモールドコイルの概略構成例を示す一部斜視断面図Partially perspective sectional view showing a schematic configuration example of a molded coil according to the first embodiment 第2実施形態に係るモールドコイルの概略構成例を示す一部斜視断面図Partially perspective sectional view showing a schematic configuration example of a molded coil according to the second embodiment 第3実施形態に係るモールドコイルの概略構成例を示す一部斜視断面図Partially perspective sectional view showing a schematic configuration example of a molded coil according to a third embodiment 第4実施形態に係るモールド変圧器の概略構成を示す縦断面図A longitudinal sectional view showing a schematic configuration of the molded transformer according to the fourth embodiment
 以下、実施形態について図面に基づいて説明する。実施形態の説明において実質的に同一の構成部位には同一の符号を付し、説明を省略する。
 (第1実施形態)
 図1は、第1実施形態に係るモールドコイル10の概略構成例を示す一部斜視断面図である。モールドコイル10は、筒状のセクションコイル10aが複数層、同心円状に重ねられるようにして形成されている。なお、以下の説明において、モールドコイル10の径方向に直交する方向を軸方向とし、軸方向を上下方向と表現する。
Hereinafter, embodiments will be described with reference to the drawings. In the description of the embodiment, substantially the same components are denoted by the same reference numerals, and description thereof is omitted.
(First embodiment)
FIG. 1 is a partial perspective sectional view showing a schematic configuration example of a molded coil 10 according to the first embodiment. The molded coil 10 is formed such that a plurality of cylindrical section coils 10a are stacked concentrically. In the following description, a direction orthogonal to the radial direction of the molded coil 10 is referred to as an axial direction, and the axial direction is expressed as a vertical direction.
 巻線導体12は、モールドコイル10の巻線導体入口12aから、巻線導体層12d及び渡り線12cを構成して、巻線導体出口12bに接続する構成を備えている。これら巻線導体層12dは渡り線12cによりU接続されている。巻線導体層12dは絶縁物により覆われ、樹脂モールド18を構成している。 The winding conductor 12 has a configuration in which a winding conductor layer 12d and a crossover 12c are formed from the winding conductor inlet 12a of the molded coil 10 and connected to the winding conductor outlet 12b. These winding conductor layers 12d are U-connected by a jumper 12c. The winding conductor layer 12 d is covered with an insulating material, and constitutes a resin mold 18.
 巻線導体層12dを内部に含む樹脂モールド18は以下のようにして形成される。巻線導体層12dを不織布等で覆い、巻線導体層12d間に所定のスペースを設けるように支持物16を配置し、この状態で例えばエポキシ樹脂を含浸させた後に硬化させる。このようにして、内部に巻線導体層12dを備えた樹脂モールド18が形成される。すなわち、セクションコイル10aは、筒状に巻回された巻線導体12(巻線導体層12d)が絶縁物(例えばエポキシ樹脂)によりその周囲を覆われるように構成されている。 The resin mold 18 including the winding conductor layer 12d is formed as follows. The winding conductor layer 12d is covered with a nonwoven fabric or the like, and the support 16 is disposed so as to provide a predetermined space between the winding conductor layers 12d. In this state, for example, an epoxy resin is impregnated and then cured. In this manner, the resin mold 18 having the winding conductor layer 12d therein is formed. That is, the section coil 10a is configured such that the winding conductor 12 (winding conductor layer 12d) wound in a cylindrical shape is covered with an insulator (for example, epoxy resin).
 支持物16は例えば波板状の樹脂構造物である。支持物16が隣接するセクションコイル10a間に介在することによりモールドコイル10の軸方向に延伸した通路を備えるダクト14がセクションコイル10a間に形成される。支持物16は例えばエポキシ樹脂により形成されており、そのため支持物16の誘電率は高いものとなっている。 The support 16 is, for example, a corrugated resin structure. A duct 14 having a passage extending in the axial direction of the molded coil 10 is formed between the section coils 10a by interposing the support 16 between the adjacent section coils 10a. The support 16 is made of, for example, an epoxy resin, and therefore the support 16 has a high dielectric constant.
 ダクト14により空気が流れる通路が形成され、通路中を空気が流れることによりモールドコイル10の冷却が可能となる。セクションコイル10a間の距離は支持物16により規定される。セクションコイル10a間の距離は、セクションコイル10a間の沿面絶縁性能、冷却性能、及び空気層の絶縁性能を考慮して製造される。なお、支持物16の端部は支持物端面16aという。 The passage through which air flows is formed by the duct 14, and the mold coil 10 can be cooled by the air flowing through the passage. The distance between the section coils 10 a is defined by the support 16. The distance between the section coils 10a is manufactured in consideration of creeping insulation performance, cooling performance, and air layer insulation performance between the section coils 10a. In addition, the edge part of the support body 16 is called the support body end surface 16a.
 セクションコイル10aの巻線導体層12d間には渡り線12cを備えており、これらはU接続、すなわち断面においてU形を上下互い違いに結合させた形状を呈し、その周囲が樹脂モールド18に覆われるように構成されている。ここで、巻線導体層12dにおける渡り線12cが接続する側から見て反対側の端部は、巻線導体層端部12eという。これら巻線導体層12d、渡り線12c、及び樹脂モールド18が一体化してモールドコイル10が構成されている。 A crossover wire 12c is provided between the winding conductor layers 12d of the section coil 10a, and these have a U connection, that is, a shape in which U shapes are joined in a staggered manner in the cross section, and the periphery thereof is covered with the resin mold 18. It is configured as follows. Here, the end of the winding conductor layer 12d on the opposite side as viewed from the side to which the connecting wire 12c is connected is referred to as a winding conductor layer end 12e. These winding conductor layers 12d, the crossover wires 12c, and the resin mold 18 are integrated to form the molded coil 10.
 上記U接続されたモールドコイル10の、渡り線12cが接続する側とは反対側において、支持物16の支持物端面16aの位置は、樹脂モールド端面18aよりモールドコイル10構造物の内部方向(セクションコイル10aを軸方向に短縮させる方向)に後退長さL1だけ後退した位置に存在している。支持物端面16aの位置は、巻線導体層端部12eより内部方向に後退した位置に存在している。 On the side of the U-connected mold coil 10 opposite to the side to which the crossover 12c is connected, the position of the support end surface 16a of the support 16 is the internal direction of the mold coil 10 structure (section) from the resin mold end surface 18a. The coil 10a exists in a position retracted by the retracting length L1 in the axial direction. The position of the support end surface 16a exists at a position retracted inward from the winding conductor layer end 12e.
 端部絶縁部20は、樹脂モールド18のうち樹脂モールド端面18aから巻線導体層端部12eまでを示し、樹脂モールド端面18aから、モールドコイル10構造物の内部方向に向かって端部絶縁部長さL2の距離には、巻線導体層端部12eが存在している。上述のように、支持物端面16aの位置は、巻線導体層端部12eより内部方向に後退した位置に存在しているため、後退長さL1と端部絶縁部長さL2は、「L1>L2」の関係を持つ。 The end insulating portion 20 indicates from the resin mold end surface 18a to the winding conductor layer end portion 12e of the resin mold 18, and the end insulating portion length from the resin mold end surface 18a toward the inside of the molded coil 10 structure. The winding conductor layer end 12e exists at a distance L2. As described above, since the position of the support end surface 16a exists at a position retracted inward from the winding conductor layer end 12e, the receding length L1 and the end insulating portion length L2 are “L1>”. L2 "relationship.
 モールドコイル10の上下部には、巻線導体層12dに接続するようにして端部絶縁部20が設けられている。端部絶縁部20端面において、モールドコイル10(セクションコイル10a)は樹脂モールド端面18aを有している。 End insulating portions 20 are provided on the upper and lower portions of the molded coil 10 so as to be connected to the winding conductor layer 12d. At the end surface of the end insulating portion 20, the mold coil 10 (section coil 10a) has a resin mold end surface 18a.
 樹脂モールド18は樹脂モールド端面18aの角部に樹脂モールド角部18bを有している。樹脂モールド角部18bは、モールドコイル10に係る電界が集中する場所であり、樹脂モールド角部18bの近傍に、例えば支持物端面16aなどの電気的パスが存在すると、これを介して放電が生じやすくなる。 The resin mold 18 has a resin mold corner 18b at the corner of the resin mold end surface 18a. The resin mold corner 18b is a place where the electric field related to the mold coil 10 is concentrated. If an electrical path such as the support end surface 16a exists in the vicinity of the resin mold corner 18b, a discharge is generated through this. It becomes easy.
 また、巻線導体12の巻線導体層端部12eに、巻線導体角部12fを有している。巻線導体角部12fは電界が集中しやすい場所であり、巻線導体角部12fに最も近接する樹脂モールド18の表面である強電界部18cの近傍に、例えば支持物端面16aなどの電気的パスが存在すると、これを介して放電が生じやすくなる。 The winding conductor 12 has a winding conductor corner 12f at the winding conductor layer end 12e. The winding conductor corner portion 12f is a place where the electric field tends to concentrate. In the vicinity of the strong electric field portion 18c, which is the surface of the resin mold 18 closest to the winding conductor corner portion 12f, for example, an electrical surface such as the support end surface 16a. If there is a path, electric discharge tends to occur through the path.
 第1実施形態に係るモールドコイル10の効果をまとめると以下のようになる。
 第1実施形態に係るモールドコイル10によれば、支持物16の支持物端面16aの位置が、樹脂モールド端面18aから後退した位置に存在している。すなわち、支持物端面16aと樹脂モールド端面18aが同一平面を形成していない。このため、電界集中が生じる樹脂モールド角部18bと支持物端面16aが近接していないため、セクションコイル10a間の橋絡が抑制され、セクションコイル10a端面の沿面絶縁性能の低下を抑制することができる。また、これにより、雷インパルス試験において、セクションコイル10a間の沿面絶縁破壊を起点に雷インパルス波形の規格を超える変歪を生じさせることを抑制することが可能となる。
The effects of the molded coil 10 according to the first embodiment are summarized as follows.
According to the mold coil 10 according to the first embodiment, the position of the support end surface 16a of the support 16 exists at a position retracted from the resin mold end surface 18a. That is, the support end surface 16a and the resin mold end surface 18a do not form the same plane. For this reason, since the resin mold corner 18b where the electric field concentration occurs and the support end surface 16a are not close to each other, bridging between the section coils 10a is suppressed, and deterioration of the creeping insulation performance of the end surface of the section coil 10a can be suppressed. it can. Thereby, in the lightning impulse test, it is possible to suppress the occurrence of distortion exceeding the standard of the lightning impulse waveform starting from creeping dielectric breakdown between the section coils 10a.
 また、支持物16の支持物端面16aの位置を、セクションコイル10aの端面(すなわち樹脂モールド端面18a)及び巻線導体層端部12eよりも内部に後退させた位置に存在するように構成されている。すなわち、支持物端面16aは、樹脂モールド端面18aから後退長さL1以上の距離だけ内部に後退した位置に存在している。これにより、支持物端面16aは、樹脂モールド角部18bに近接しないだけでなく、電界が集中する巻線導体角部12fに最も近傍の樹脂モールド18表面の強電界部18cにも近接しない。この構成を採ることにより、セクションコイル10a間の橋絡が抑制され、樹脂モールド端面18a(樹脂モールド角部18b)での沿面絶縁性能の低下を抑制することができる。また、これにより、雷インパルス試験において、セクションコイル10a間の沿面絶縁破壊を起点に雷インパルス波形の規格を超える変歪を生じさせることを抑制することが可能となる。 Further, the position of the support end surface 16a of the support 16 is configured to be present at a position retracted inward from the end surface of the section coil 10a (that is, the resin mold end surface 18a) and the winding conductor layer end portion 12e. Yes. That is, the support end surface 16a exists at a position retracted inward from the resin mold end surface 18a by a distance equal to or longer than the receding length L1. As a result, the support end surface 16a is not close to the resin mold corner 18b but also not to the strong electric field 18c on the surface of the resin mold 18 nearest to the winding conductor corner 12f where the electric field is concentrated. By adopting this configuration, bridging between the section coils 10a can be suppressed, and deterioration of the creeping insulation performance at the resin mold end surface 18a (resin mold corner 18b) can be suppressed. Thereby, in the lightning impulse test, it is possible to suppress the occurrence of distortion exceeding the standard of the lightning impulse waveform starting from creeping dielectric breakdown between the section coils 10a.
 また、従来は誘電率の高い支持物16が存在することによりダクト14の空気層が分担する電圧を増加させていたところ、第1実施形態によれば、支持物端面16aの位置が、樹脂モールド端面18aから後退させた位置になるように構成されている。これにより、樹脂モールド角部18bにおける部分放電性能を向上させることができる。 Conventionally, the voltage shared by the air layer of the duct 14 is increased due to the presence of the support 16 having a high dielectric constant. According to the first embodiment, the position of the support end surface 16a is positioned at the resin mold. It is comprised so that it may become a position retreated from the end surface 18a. Thereby, the partial discharge performance in the resin mold corner 18b can be improved.
 また、この構成により、ダクト14において支持物16が存在しない領域が多くなり、モールドコイル10の冷却面積を増加させ、ダクト14を通過する空気の圧力損失を減少させることができる。これによりモールドコイル10の冷却性能を向上させることができる。 Also, with this configuration, the area where the support 16 does not exist in the duct 14 increases, the cooling area of the mold coil 10 can be increased, and the pressure loss of the air passing through the duct 14 can be reduced. Thereby, the cooling performance of the mold coil 10 can be improved.
 (第2実施形態)
 次に第2実施形態について説明する。図2は第2実施形態に係るモールドコイル10の概略構成例を示す一部斜視断面図である。図2では一つのセクションコイル10a及び支持物16を抜き出して示している。図2においてはモールドコイル10を樹脂に含浸させ一体化させる前の状態が理解できるように、テープ型不織布22、端部不織布24及びクリップ26を示している。
(Second Embodiment)
Next, a second embodiment will be described. FIG. 2 is a partial perspective sectional view showing a schematic configuration example of the molded coil 10 according to the second embodiment. In FIG. 2, one section coil 10a and the support 16 are extracted and shown. In FIG. 2, the tape-type nonwoven fabric 22, the end nonwoven fabric 24, and the clip 26 are shown so that the state before the molded coil 10 is impregnated with resin and integrated can be understood.
 モールドコイル10は、筒状に巻回された巻線導体12、すなわち巻線導体層12dの上端部に端部不織布24を接続するように配置し、これらをテープ型不織布22で巻回してひとまとめに固定している。さらに巻回したテープ型不織布22が解けて、ひとまとめに組み上げた形状が崩れることを防止するため、クリップ26により、端部不織布24及びテープ型不織布22を重ねて挟持してこれらを固定している。その他、支持物16の支持物端面16aの位置が、樹脂モールド端面18a及び巻線導体層端部12eよりも内部に後退した位置に存在している。 The molded coil 10 is arranged so that the end nonwoven fabric 24 is connected to the upper end portion of the winding conductor 12 wound in a cylindrical shape, that is, the winding conductor layer 12d, and these are wound together with the tape-type nonwoven fabric 22 and gathered together. It is fixed to. Furthermore, in order to prevent the wound tape-type nonwoven fabric 22 from unwinding and collapsing the assembled shape, the end nonwoven fabric 24 and the tape-type nonwoven fabric 22 are overlapped and fixed by clips 26. . In addition, the position of the support end surface 16a of the support 16 exists at a position that is recessed inward from the resin mold end surface 18a and the winding conductor layer end 12e.
 第2実施形態においては、端部不織布24、これを巻回するテープ型不織布22及びクリップ26部が端部絶縁部20を構成している。支持物端面16aは樹脂モールド端面18a及び巻線導体層端部12eよりも内部に後退した位置に存在していること、すなわち樹脂モールド端面18aから支持物端面16aまでの距離である後退長さL1は、端部絶縁部長さL2よりも大きいことは第1実施形態と同様である。 In the second embodiment, the end non-woven fabric 24, the tape-type non-woven fabric 22 around which the end non-woven fabric 24 is wound, and the clip 26 constitute the end insulating portion 20. The support end surface 16a exists at a position retracted inward from the resin mold end surface 18a and the winding conductor layer end 12e, that is, a receding length L1 which is a distance from the resin mold end surface 18a to the support end surface 16a. Is larger than the end insulating portion length L2, as in the first embodiment.
 第2実施形態において、モールドコイル10は、上記のように、テープ型不織布22により巻回され、クリップ26により挟持固定された巻線導体12及び端部不織布24を、これら一体として樹脂に含浸して硬化させることにより一体的に構成されている。 In the second embodiment, as described above, the molded coil 10 is impregnated with the resin as the integral part of the winding conductor 12 and the end nonwoven fabric 24 that are wound around the tape-type nonwoven fabric 22 and sandwiched and fixed by the clip 26. Are integrally formed by curing.
 次に、第2実施形態のモールドコイル10の製造方法について説明する。図示しないモールド型内に、支持物16と巻線導体層12dが、交互に同心円状の筒状となるように配置し、巻線導体層12dをテープ型不織布22で巻き付けた状態にする。次に、巻線導体層12dがテープ型不織布22により巻き付けられた状態のものの上下端部に、クリップ26を嵌めて、テープ型不織布22が崩れないように固定する。次に、樹脂に含浸させた後に硬化させる。これにより、巻線導体層12d、テープ型不織布22及びクリップ26が、樹脂により一体的に硬化されて構成されたモールドコイル10が形成される。 Next, a method for manufacturing the molded coil 10 of the second embodiment will be described. The support 16 and the winding conductor layer 12d are alternately arranged in a concentric cylindrical shape in a mold (not shown), and the winding conductor layer 12d is wound around the tape-type nonwoven fabric 22. Next, the clip 26 is fitted to the upper and lower ends of the winding conductor layer 12d wound with the tape-type nonwoven fabric 22 to fix the tape-type nonwoven fabric 22 so as not to collapse. Next, the resin is impregnated and then cured. As a result, the molded coil 10 is formed, in which the winding conductor layer 12d, the tape-type nonwoven fabric 22, and the clip 26 are integrally cured with the resin.
 このように、巻線導体層12dに巻き付けたテープ型不織布22をクリップ26で固定した状態で、樹脂に含浸、硬化させるため、通常は支持物16上部に配置するスペーサを設けなくてもテープ型不織布22が解けて崩れることがない。 In this way, the tape-type nonwoven fabric 22 wound around the winding conductor layer 12d is fixed with the clip 26, so that the resin is impregnated and cured. Therefore, the tape-type nonwoven fabric is usually provided without a spacer disposed on the support 16. The nonwoven fabric 22 does not break and collapse.
 第2実施形態に係るモールドコイル10の効果をまとめると以下のようになる。
 第2実施形態に係るモールドコイル10によれば、第1実施形態と同様の効果を奏する。また、このような構成を採用することによって、支持物端面16aを樹脂モールド端面18aより後退した位置に配置させても、テープ型不織布22が解けて組み上げた形状が崩れることを抑制することができる。これにより、支持物端面16aの位置が、樹脂モールド端面18aより後退させた位置に存在するように構成されたモールドコイル10を実現することが可能となる。
The effects of the molded coil 10 according to the second embodiment are summarized as follows.
According to the molded coil 10 which concerns on 2nd Embodiment, there exists an effect similar to 1st Embodiment. In addition, by adopting such a configuration, even when the support end surface 16a is disposed at a position retracted from the resin mold end surface 18a, it is possible to suppress the collapse of the assembled shape due to the unfolding of the tape-type nonwoven fabric 22. . As a result, it is possible to realize the mold coil 10 configured such that the position of the support end surface 16a exists at a position retracted from the resin mold end surface 18a.
 (第3実施形態)
 次に第3実施形態について説明する。図3は第3実施形態に係るモールドコイルの概略構成例を示す一部斜視断面図である。図3は一つのセクションコイル10a及び支持物16を抜き出して示している。図3においては、図2と同様に、モールドコイル10を樹脂に含浸させ一体化させる前の状態が理解できるように、シート型不織布32及び端部不織布24を示している。
(Third embodiment)
Next, a third embodiment will be described. FIG. 3 is a partial perspective sectional view showing a schematic configuration example of the molded coil according to the third embodiment. FIG. 3 shows one section coil 10a and support 16 extracted. In FIG. 3, as in FIG. 2, the sheet-type nonwoven fabric 32 and the end nonwoven fabric 24 are shown so that the state before the molded coil 10 is impregnated with resin and integrated can be understood.
 第3実施形態においては、必ずしもクリップ26によって固定しなくても解けることがない自立可能なシート型不織布32を使用する。
 モールドコイル10は、筒状に巻回された巻線導体12、すなわち巻線導体層12dの上端部に端部不織布24が載置されるように配置し、これらをシート型不織布32で巻回して覆うように固定している。シート型不織布32はそれ自体で形状を保持しうるような、いわゆる腰を有する程度の強度を有している。さらに第2実施形態において説明したクリップ26を使用して、巻線導体層端部12e、端部絶縁部20及びシート型不織布32を挟持固定してもよい。
In the third embodiment, a self-supporting sheet-type non-woven fabric 32 that is not necessarily unfastened without being fixed by the clip 26 is used.
The molded coil 10 is arranged so that the end nonwoven fabric 24 is placed on the upper end portion of the winding conductor 12 wound in a cylindrical shape, that is, the winding conductor layer 12d, and these are wound around the sheet type nonwoven fabric 32. It is fixed to cover. The sheet-type nonwoven fabric 32 has such a strength as to have a so-called waist so that the shape can be maintained by itself. Furthermore, you may clamp and fix the winding conductor layer edge part 12e, the edge part insulation part 20, and the sheet-type nonwoven fabric 32 using the clip 26 demonstrated in 2nd Embodiment.
 第2実施形態においては、端部不織布24、及びこれを巻回するシート型不織布32が端部絶縁部20を構成している。支持物端面16aの位置は、樹脂モールド端面18a及び巻線導体層端部12eよりも内部に後退した位置に存在していること、すなわち樹脂モールド端面18aから支持物端面16aまでの距離である後退長さL1は、端部絶縁部長さL2よりも大きいことは第1及び第2実施形態と同様である。 In the second embodiment, the end nonwoven fabric 24 and the sheet type nonwoven fabric 32 around which the end nonwoven fabric 24 is wound constitute the end insulating portion 20. The position of the support end surface 16a exists at a position retracted inward from the resin mold end surface 18a and the winding conductor layer end portion 12e, that is, a receding that is a distance from the resin mold end surface 18a to the support end surface 16a. The length L1 is larger than the end insulating portion length L2, as in the first and second embodiments.
 第2実施形態において、モールドコイル10は、上記のように、シート型不織布32により巻回された巻線導体12及び端部不織布24を、これら一体として樹脂に含浸することにより一体的に構成されている。 In the second embodiment, as described above, the molded coil 10 is integrally configured by impregnating a resin with the winding conductor 12 and the end nonwoven fabric 24 wound by the sheet-type nonwoven fabric 32 as a unit. ing.
 第3実施形態に係るモールドコイル10の効果をまとめると以下のようになる。
 第3実施形態に係るモールドコイル10によれば、第1実施形態と同様の効果を奏する。また、自身で自立でき、形状を保持可能なシート型不織布32を用いて巻線導体12を巻回したため、支持物端面16aを樹脂モールド端面18aからモールドコイル10構造物の内部方向に後退した位置に配置させても、ひとまとめに組み上げた形状を保持することができるため、生産性に優れるという作用効果を奏する。
The effects of the molded coil 10 according to the third embodiment are summarized as follows.
According to the molded coil 10 which concerns on 3rd Embodiment, there exists an effect similar to 1st Embodiment. Further, since the winding conductor 12 is wound using the sheet-type nonwoven fabric 32 that can be self-supporting and can retain its shape, the support end surface 16a is retracted from the resin mold end surface 18a toward the inside of the mold coil 10 structure. Even if they are arranged in the same shape, the assembled shape can be maintained, so that an effect of excellent productivity is achieved.
 (第4実施形態)
 次に第4実施形態について説明する。図4には、モールド形静止誘導機器であるモールド変圧器100の概略構成が示されている。このモールド変圧器100は、モールド形静止誘導機器中身を構成するモールド変圧器中身32と、このモールド変圧器中身32を収納した密閉容器33と、この密閉容器33の外側の側面(図中左右)に設けられた熱交換器34と、を備えている。
(Fourth embodiment)
Next, a fourth embodiment will be described. FIG. 4 shows a schematic configuration of a molded transformer 100 that is a molded static induction device. The mold transformer 100 includes a mold transformer content 32 constituting the content of the mold type static induction device, a sealed container 33 in which the mold transformer content 32 is stored, and an outer side surface of the sealed container 33 (left and right in the figure). The heat exchanger 34 provided in the.
 このうち、モールド変圧器中身32は、表面が樹脂または樹脂を含んだ絶縁材にて覆われたモールドコイル10と、鉄心36を組み合わせて構成されている。モールドコイル10は、鉄心36の外周に装着されたセクションコイル10aと、このセクションコイル10aの外周に配置されたセクションコイル10aを備えている。ここで、モールドコイル10は、第1、第2又は第3実施形態に係るモールドコイル10である。モールドコイル10は、図4には図示しない支持物端面16aの位置が、樹脂モールド端面18aから後退させた位置になるように構成されている。 Among these, the molded transformer contents 32 are configured by combining the mold coil 10 whose surface is covered with a resin or an insulating material containing a resin and an iron core 36. The molded coil 10 includes a section coil 10a mounted on the outer periphery of the iron core 36, and a section coil 10a disposed on the outer periphery of the section coil 10a. Here, the molded coil 10 is the molded coil 10 according to the first, second, or third embodiment. The mold coil 10 is configured such that the position of the support end surface 16a (not shown in FIG. 4) is a position retracted from the resin mold end surface 18a.
 密閉容器33内には、モールド変圧器中身32を収納した状態で、大気圧を上回る圧力の空気37が封入されている。この密閉容器33と左右の各熱交換器34は、それぞれ上部接続路38および下部接続路39により接続されている。上部接続路38は密閉容器33の上部に接続され、下部接続路39は密閉容器33の下部に接続されている。 In the sealed container 33, air 37 having a pressure exceeding the atmospheric pressure is enclosed in a state where the contents 32 of the mold transformer are accommodated. The sealed container 33 and the left and right heat exchangers 34 are connected by an upper connection path 38 and a lower connection path 39, respectively. The upper connection path 38 is connected to the upper part of the sealed container 33, and the lower connection path 39 is connected to the lower part of the sealed container 33.
 密閉容器33内には、図4に示すように、下部接続路39より上方かつ上部接続路38より下方に位置させて、仕切板40を設けている。この仕切板40は、密閉容器33の内面に固定状態に設けられている。仕切板40には、モールドコイル10の外周部に隣接する部位に当該モールドコイル10の外周部に沿った円形の流通孔40aが形成されている。 As shown in FIG. 4, a partition plate 40 is provided in the sealed container 33 so as to be positioned above the lower connection path 39 and below the upper connection path 38. The partition plate 40 is provided in a fixed state on the inner surface of the sealed container 33. In the partition plate 40, a circular flow hole 40 a along the outer periphery of the mold coil 10 is formed in a portion adjacent to the outer periphery of the mold coil 10.
 上記構成において、モールド変圧器100の運転が始まると、モールド変圧器中身32が発熱し、これに伴い密閉容器33内の空気37の温度が上昇する。温度上昇した空気37は、図4に矢印で示すように、密閉容器33内を上昇した後、上部接続路38を通して熱交換器34側に流れて冷却される。 In the above configuration, when the operation of the mold transformer 100 is started, the contents of the mold transformer 32 generate heat, and accordingly, the temperature of the air 37 in the sealed container 33 rises. As shown by arrows in FIG. 4, the air 37 whose temperature has risen rises in the sealed container 33, and then flows to the heat exchanger 34 side through the upper connection path 38 to be cooled.
 熱交換器34にて冷却された空気37は、下部接続路39を通して密閉容器33内に戻されるというように循環する。このように密閉容器33内の空気37が熱交換器34を通して循環することで、密閉容器33内の空気37が冷却され、ひいてはモールド変圧器中身32が冷却される。 The air 37 cooled by the heat exchanger 34 circulates so as to be returned into the sealed container 33 through the lower connection path 39. Thus, the air 37 in the sealed container 33 circulates through the heat exchanger 34, whereby the air 37 in the sealed container 33 is cooled, and the mold transformer contents 32 are cooled.
 この場合、密閉容器33内を循環する空気37の一部は、仕切板40の流通孔40aとモールドコイル10の外周部との間の隙間を通り、モールドコイル10を外周部から冷却する。このとき、モールドコイル10の外周部を流通する空気37は、モールドコイル10に近い場所を流通するため、冷却効果を高めることが可能となる。また、隣接するセクションコイル10aの間に、支持物16によりダクト14が形成されているため、密閉容器33内を循環する空気37の一部はダクト14にも入り込み、モールドコイル10を内部からも冷却する。これにより、モールドコイル10の冷却効果を一層高めることが可能となる。 In this case, a part of the air 37 circulating in the sealed container 33 passes through a gap between the flow hole 40a of the partition plate 40 and the outer peripheral portion of the mold coil 10 to cool the mold coil 10 from the outer peripheral portion. At this time, since the air 37 that circulates around the outer periphery of the mold coil 10 circulates in a place close to the mold coil 10, the cooling effect can be enhanced. Further, since the duct 14 is formed by the support 16 between the adjacent section coils 10a, a part of the air 37 circulating in the sealed container 33 also enters the duct 14, and the molded coil 10 is also inserted from the inside. Cooling. Thereby, the cooling effect of the mold coil 10 can be further enhanced.
 ここで、空気の絶縁耐力はその絶対圧力にほぼ比例するため、大気圧の空気に対してゲージ圧1気圧(絶対圧力2気圧)の空気はほぼ2倍の耐力を有する。また、気体は密度が高くなるほど熱運搬能力が増し、大気圧の空気に対してゲージ圧1気圧(絶対圧力2気圧)の空気は、流速を一定に保てば約2倍の冷却能力を有する。 Here, since the dielectric strength of air is almost proportional to its absolute pressure, air with a gauge pressure of 1 atm (absolute pressure of 2 atm) has almost twice the yield with respect to atmospheric air. In addition, as the density of gas increases, the heat carrying capacity increases, and air with a gauge pressure of 1 atm (absolute pressure of 2 atm) has a cooling capacity about twice that of atmospheric air if the flow rate is kept constant. .
 上記した実施形態のモールド変圧器100によれば、モールド変圧器中身32を、大気圧を上回る圧力の空気37を密閉した密閉容器33内に収納することで、モールドコイル10のセクションコイル10a間や鉄心36などの大地電位にある部材とモールドコイル10との間の絶縁に関与する空気37の絶縁耐圧を向上させることができる。 According to the mold transformer 100 of the above-described embodiment, the mold transformer contents 32 are accommodated in the sealed container 33 in which the air 37 having a pressure exceeding the atmospheric pressure is sealed, so that the section coil 10a of the mold coil 10 is It is possible to improve the withstand voltage of the air 37 involved in the insulation between the molded coil 10 and the member having a ground potential such as the iron core 36.
 この場合、モールド変圧器中身32単独での絶縁耐圧を標準使用電圧(常規電圧)以上とし、大気圧を上回る圧力の空気37が密閉された密閉容器33内に収納する場合の全体の絶縁耐圧を規格等で定められた試験電圧(商用周波電圧、インパルス電圧等)以上とする。このように絶縁耐圧を設定することで、密閉容器33から空気が排出された場合でも定常時は比較的安全に運用することが可能となる。 In this case, the insulation withstand voltage of the molded transformer contents 32 alone is set to the standard operating voltage (ordinary voltage) or more, and the overall withstand voltage when the air 37 having a pressure exceeding the atmospheric pressure is stored in the sealed container 33 is as follows. The test voltage (commercial frequency voltage, impulse voltage, etc.) specified by the standard or higher shall be used. By setting the withstand voltage in this way, even when air is discharged from the hermetic container 33, it can be operated relatively safely during normal times.
 また、上記ではモールド変圧器中身32単独での絶縁耐圧を標準使用電圧以上としたが、大気圧の空気37が密閉された密閉容器33内に収納する場合の絶縁耐圧を標準使用電圧以上となるよう設定することでも同様の効果が得られる。 Further, in the above description, the withstand voltage of the molded transformer contents 32 alone is equal to or higher than the standard operating voltage. However, the withstand voltage when the atmospheric air 37 is stored in the sealed container 33 is equal to or higher than the standard operating voltage. The same effect can be obtained by setting as above.
 また、密閉容器33内の空気37の密度を上げかつその空気37を冷却するための熱交換器34を設けたため、冷却性能も向上させることができる。この構成の結果、絶縁機能や冷却機能を大気圧の空気に依存していた従来のモールド変圧器の電圧や容量の上限を超えて、高電圧化および大容量化したモールド変圧器100を提供することが可能となる。 Further, since the heat exchanger 34 for increasing the density of the air 37 in the sealed container 33 and cooling the air 37 is provided, the cooling performance can be improved. As a result of this configuration, there is provided a molded transformer 100 having a higher voltage and a larger capacity that exceeds the upper limit of the voltage and capacity of a conventional mold transformer that relies on air at atmospheric pressure for its insulating function and cooling function. It becomes possible.
 また、モールドコイル10において、支持物16の支持物端面16aをセクションコイル10aの端面(すなわち樹脂モールド端面18a)及び巻線導体層端部12eよりも内部に後退した位置に配置させている。このため、モールドコイル10が、大気圧を上回る圧力の空気37が密閉された密閉容器33内に封入されているため、当該後退させた部分では、より冷却効果を向上させることができる。また、当該後退させた分だけ支持物16の周辺の送風抵抗が低下するため、セクションコイル10a間を循環する空気37による冷却効果を向上させることができる。 Further, in the molded coil 10, the support end surface 16a of the support 16 is disposed at a position retracted inside the end surface of the section coil 10a (that is, the resin mold end surface 18a) and the winding conductor layer end 12e. For this reason, since the mold coil 10 is enclosed in the airtight container 33 in which the air 37 having a pressure exceeding the atmospheric pressure is sealed, the cooling effect can be further improved in the retracted portion. Further, since the air blowing resistance around the support 16 is lowered by the amount of the retraction, the cooling effect by the air 37 circulating between the section coils 10a can be improved.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 例えば、セクションコイル10aは複数層、同心円状に重ねて配置しているが、同心円状でなくとも、支持物16によって所定の間隔を空けるように支持されて重ねていれば良い。また、モールドコイル10の断面は円形でなくとも、矩形・楕円形でも良い。 For example, although the section coils 10a are arranged in a plurality of layers and concentrically, the section coils 10a may be supported and overlapped by the support 16 so as to be spaced apart from each other by a concentric shape. Moreover, the cross section of the mold coil 10 may not be circular but may be rectangular or elliptical.
 なお、セクションコイル10aの間隔を規定するダクト14を形成するための支持物16は、上記実施形態では断面が波板状の支持物16を用いて説明したがこの形状に限定する意図はない。例えば、断面が矩形波形状の支持物16を用いてもよいし、複数の棒状スペーサたる支持物16を用いてもよい。 In addition, although the support 16 for forming the duct 14 that defines the interval between the section coils 10a has been described using the support 16 having a corrugated plate in the above embodiment, it is not intended to be limited to this shape. For example, a support 16 having a rectangular wave cross section may be used, or a support 16 that is a plurality of rod-shaped spacers may be used.

Claims (4)

  1.  巻線導体層を有し、周囲が樹脂モールドにより覆われた複数の筒状のセクションコイルを同心円状に重ねて設け、前記セクションコイル間に支持物を介在して構成されるダクトを備えるモールドコイルにおいて、
     前記支持物の端部の位置が、前記樹脂モールド端面と前記巻線導体層端部よりも後退した位置に存在しているモールドコイル。
    A molded coil comprising a duct having a winding conductor layer, a plurality of cylindrical section coils whose surroundings are covered with a resin mold, concentrically stacked, and a support interposed between the section coils In
    The mold coil in which the position of the end portion of the support exists at a position that is recessed from the end surface of the resin mold and the end portion of the winding conductor layer.
  2.  巻線導体層を有し、周囲が樹脂モールドにより覆われた複数の筒状のセクションコイルを同心円状に重ねて設け、前記セクションコイル間に支持物を介在して構成されるダクトを備えるモールドコイルにおいて、
     さらに、前記巻線導体層に接続するようにして配置される端部絶縁部を有し、
     前記支持物の端部の位置が、前記樹脂モールド端面よりも、前記端部絶縁部長さ以上後退した位置に存在しているモールドコイル。
    A molded coil comprising a duct having a winding conductor layer, a plurality of cylindrical section coils whose surroundings are covered with a resin mold, concentrically stacked, and a support interposed between the section coils In
    Furthermore, it has an end insulating portion arranged to connect to the winding conductor layer,
    The mold coil in which the position of the end part of the support is present at a position retracted more than the end insulating part length from the end face of the resin mold.
  3.  前記巻線導体層の上端部に配置された端部絶縁部と、前記巻線導体層と前記端部絶縁部をひとまとめに巻回するテープ型不織布と、前記巻線導体層と端部絶縁部とこれらを巻回するテープ型不織布を挟持するクリップとを備え、
     この状態で樹脂に含浸することにより、前記巻線導体層、前記端部絶縁部、テープ型不織布、及びこれらを挟持する前記クリップ一体的に形成したものである請求項1または2に記載のモールドコイル。
    An end insulating portion disposed at the upper end of the winding conductor layer, a tape-type nonwoven fabric that collectively winds the winding conductor layer and the end insulating portion, and the winding conductor layer and the end insulating portion And a clip for sandwiching a tape-type nonwoven fabric for winding them,
    3. The mold according to claim 1, wherein the winding conductor layer, the end insulating portion, the tape-type nonwoven fabric, and the clip for sandwiching these are integrally formed by impregnating the resin in this state. coil.
  4.  前記巻線導体層の上端部に配置された端部絶縁部と、前記巻線導体層と前記端部絶縁部を巻回するシート型不織布とを備え、
     この状態で樹脂に含浸することにより、前記巻線導体層、前記端部絶縁部及び前記シート型不織布一体的に形成したものである請求項1または2に記載のモールドコイル。
    An end insulating portion disposed at the upper end of the winding conductor layer, and a sheet-type nonwoven fabric wound around the winding conductor layer and the end insulating portion,
    3. The molded coil according to claim 1, wherein the coiled conductor layer, the end insulating portion, and the sheet-type nonwoven fabric are integrally formed by impregnating a resin in this state.
PCT/JP2016/068674 2015-08-21 2016-06-23 Mold coil WO2017033554A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017536651A JP6833696B2 (en) 2015-08-21 2016-06-23 Molded coil
CN201680047582.6A CN108292560B (en) 2015-08-21 2016-06-23 It is molded coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-163709 2015-08-21
JP2015163709 2015-08-21

Publications (1)

Publication Number Publication Date
WO2017033554A1 true WO2017033554A1 (en) 2017-03-02

Family

ID=58099847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068674 WO2017033554A1 (en) 2015-08-21 2016-06-23 Mold coil

Country Status (3)

Country Link
JP (1) JP6833696B2 (en)
CN (1) CN108292560B (en)
WO (1) WO2017033554A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195666A (en) * 2017-05-16 2018-12-06 東芝産業機器システム株式会社 Coil and manufacturing method of coil
WO2019181152A1 (en) * 2018-03-22 2019-09-26 株式会社日立製作所 Stationary induction apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193760U (en) * 1982-02-02 1982-12-08
JPH06120049A (en) * 1992-10-09 1994-04-28 Toshiba Corp Transformer
JPH06176939A (en) * 1992-12-08 1994-06-24 Toshiba Corp Mold coil and its assembly method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577823U (en) * 1978-10-26 1980-05-29
JPS55133519A (en) * 1979-04-05 1980-10-17 Mitsubishi Electric Corp Formation of duct for molded coil
JPS5996812U (en) * 1982-12-21 1984-06-30 富士電機株式会社 Winding structure of gas insulated induction appliances
JPS60207325A (en) * 1984-03-31 1985-10-18 Toshiba Corp Manufacture of resin molded coil
JPS60210829A (en) * 1984-04-04 1985-10-23 Toshiba Corp Manufacture of transformer
JP2695027B2 (en) * 1990-02-07 1997-12-24 株式会社東芝 Mold coil
JP5663322B2 (en) * 2011-01-21 2015-02-04 株式会社日立産機システム Resin molded coil and molded transformer using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193760U (en) * 1982-02-02 1982-12-08
JPH06120049A (en) * 1992-10-09 1994-04-28 Toshiba Corp Transformer
JPH06176939A (en) * 1992-12-08 1994-06-24 Toshiba Corp Mold coil and its assembly method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195666A (en) * 2017-05-16 2018-12-06 東芝産業機器システム株式会社 Coil and manufacturing method of coil
WO2019181152A1 (en) * 2018-03-22 2019-09-26 株式会社日立製作所 Stationary induction apparatus
JP2019169502A (en) * 2018-03-22 2019-10-03 株式会社日立製作所 Stationary induction apparatus

Also Published As

Publication number Publication date
JP6833696B2 (en) 2021-02-24
CN108292560A (en) 2018-07-17
JPWO2017033554A1 (en) 2018-07-05
CN108292560B (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP5861805B2 (en) Transformer, power supply device, and method of manufacturing transformer
WO2017033554A1 (en) Mold coil
JP2015050451A (en) Transformer
JP6552779B1 (en) Stationary inductor
JP2013074250A (en) Shield of mold transformer
TWI523051B (en) Ground induction electrical appliances
KR20130111922A (en) Insert for a transformer coil, coil comprising such an insert, active portion and transformer comprising such an active portion
US9099238B2 (en) High voltage insulation system and a high voltage inductive device comprising such an insulation system
JP5177231B2 (en) Transformer used for arc welding machine and assembly method of transformer used for arc welding machine
KR20140005166U (en) Power transformaer
US20200350114A1 (en) Fluid cooled magnetic element
JP2013055279A (en) Stationary induction apparatus
JP5885898B1 (en) Stationary induction equipment
JP5932515B2 (en) Oil-filled static induction machine
KR102135202B1 (en) Transformer
CN104575988B (en) High-tension transformer
EP2992536B1 (en) Bobbin and transformer employing the same
USRE14891E (en) Qjt pittsfield
JP5097498B2 (en) Transformer equipment
KR102108119B1 (en) A Dry Air Transformer Using Mixed Air
JP2002033219A (en) Gas insulating transformer
JP2018195666A (en) Coil and manufacturing method of coil
JP2012119640A (en) Stationary induction electrical apparatus
KR20220130083A (en) Method and conductor structure for manufacturing electrical windings of electromagnetic induction devices
JP6341684B2 (en) High frequency transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838901

Country of ref document: EP

Kind code of ref document: A1