WO2017033431A1 - Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, and nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, and nonaqueous secondary battery Download PDF

Info

Publication number
WO2017033431A1
WO2017033431A1 PCT/JP2016/003706 JP2016003706W WO2017033431A1 WO 2017033431 A1 WO2017033431 A1 WO 2017033431A1 JP 2016003706 W JP2016003706 W JP 2016003706W WO 2017033431 A1 WO2017033431 A1 WO 2017033431A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
functional layer
aqueous secondary
composition
diffraction
Prior art date
Application number
PCT/JP2016/003706
Other languages
French (fr)
Japanese (ja)
Inventor
裕美 高松
雄輝 大久保
裕次郎 豊田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201680046766.0A priority Critical patent/CN107925038B/en
Priority to KR1020187004341A priority patent/KR20180039080A/en
Priority to JP2017536212A priority patent/JP6915538B2/en
Publication of WO2017033431A1 publication Critical patent/WO2017033431A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Separator substrate Although it does not specifically limit as a separator base material, Known separator base materials, such as an organic separator base material, are mentioned.
  • the organic separator substrate is a porous member made of an organic material. Examples of the organic separator substrate include microporous membranes or nonwoven fabrics containing polyolefin resins such as polyethylene and polypropylene, aromatic polyamide resins, and the like, and polyethylene microporous membranes and nonwoven fabrics are preferred because of excellent strength.
  • the electrode active material in the electrode mixture layer is not particularly limited as long as it can reversibly insert and release ions that contribute to the battery reaction by applying a potential in the electrolyte, and an inorganic compound or an organic compound can be used.
  • the negative electrode active material examples include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; and conductive polymers such as polyacene.
  • carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers
  • conductive polymers such as polyacene.
  • metals such as silicon, tin, zinc, manganese, iron and nickel and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys;
  • metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, Li—Sn—Cd; lithium transition metal nitride; silicon and the like can also be used.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • the amount of transition metal ions in the functional layer ( Mass ppm) was calculated, and the obtained value was defined as the amount of transition metal ion trapping in the functional layer for a non-aqueous secondary battery. It shows that the transition metal ion capture
  • An organic separator made of polyethylene, thickness 12 ⁇ m, Gurley value 150 s / 100 cc made of a polyethylene porous substrate was prepared.
  • the functional layer composition described above was applied to one side of the prepared organic separator and dried at 50 ° C. for 3 minutes. Thereby, an organic separator provided with a functional layer having a thickness of 3 ⁇ m on one side was obtained.
  • This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing.
  • the negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode mixture layer thickness of 80 ⁇ m.
  • NMC LiNi 1/3 Mn 1/3 Co 1/3 O 2
  • Example 4 Various evaluations were performed in the same manner as in Example 1 except that hydrotalcite having a composition of (Mg 0.75 Al 0.25 O 1.15 ) was used as the inorganic substance. The results are shown in Table 1. In addition, each XRD diffraction intensity of this hydrotalcite was as showing in Table 1, respectively.

Abstract

Provided is a nonaqueous secondary battery functional layer composition capable of improving electrical characteristics of a secondary battery. The nonaqueous secondary battery functional layer composition according to the present invention contains an inorganic substance. When the diffraction intensity and the diffraction angle 2θ obtained through a X-ray diffraction method performed on the inorganic substance are respectively represented by the vertical axis and the horizontal axis, and when the total integrated sum of the diffraction intensity within diffraction angle 2θ = 3° to 90° in the X-ray diffraction pattern is defined as 100%, the interplanar spacings corresponding to 2θ are 0.1-0.4 nm and 0.15-0.70 nm at positions where the total integrated sum of the integrated sum of the diffraction intensity integrated from the high diffraction angle side becomes 50% and 80%, respectively.

Description

非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
 本発明は、非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池に関し、特に、無機物を含む非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池に関するものである。 The present invention relates to a non-aqueous secondary battery functional layer composition, a non-aqueous secondary battery functional layer, and a non-aqueous secondary battery, and in particular, a non-aqueous secondary battery functional layer composition containing an inorganic substance, a non-aqueous system. The present invention relates to a functional layer for a secondary battery and a non-aqueous secondary battery.
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、非水系二次電池は、一般に、正極、負極、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。 Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small and light, having high energy density, and capable of repeated charge and discharge. Yes, it is used for a wide range of purposes. The non-aqueous secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode.
 ここで、二次電池においては、電池部材に所望の性能を付与する機能層を備えた電池部材が使用されている。具体的には、例えば、セパレータ基材上に機能層を形成してなるセパレータや、集電体上に電極合材層を設けてなる電極基材の上に機能層を形成してなる電極が、電池部材として使用されている。 Here, in the secondary battery, a battery member having a functional layer that imparts desired performance to the battery member is used. Specifically, for example, a separator in which a functional layer is formed on a separator base material, or an electrode in which a functional layer is formed on an electrode base material in which an electrode mixture layer is provided on a current collector It is used as a battery member.
 そして、近年、二次電池の更なる高性能化を目的として、機能層の改良が盛んに行われている。例えば、電極基材上に水分やフッ化水素(HF)を捕捉する性能を有する機能層を形成してなる電極(例えば、特許文献1参照)が提案されている。特許文献1に記載の機能層は、所定のBET比表面積を有する無機粒子を含有してなり、かかる無機粒子により二次電池内の水分とフッ化水素とをトラップすることにより二次電池のレート特性及びサイクル特性を向上させている。 In recent years, functional layers have been actively improved for the purpose of further improving the performance of secondary batteries. For example, an electrode (see, for example, Patent Document 1) in which a functional layer having a performance of capturing moisture and hydrogen fluoride (HF) on an electrode base material has been proposed. The functional layer described in Patent Document 1 contains inorganic particles having a predetermined BET specific surface area, and traps moisture and hydrogen fluoride in the secondary battery with the inorganic particles to thereby rate the secondary battery. The characteristics and cycle characteristics are improved.
特開2011-210413号公報JP 2011-210413 A
 しかし、近年、二次電池について一層の高性能化が求められており、特許文献1に記載の機能層を備える二次電池の電気的特性(例えば、高温サイクル特性及び低温出力特性)には改善の余地があった。特に、近年では、高容量化の観点から、二次電池に遷移金属を含む正極活物質が採用されることがある。ところが、二次電池では、電池内で発生したフッ化水素などにより正極活物質から遷移金属が溶出し、溶出した遷移金属が負極上で析出することで二次電池の電気的特性が低下してしまう虞があった。 However, in recent years, there has been a demand for higher performance of secondary batteries, and the electrical characteristics (for example, high temperature cycle characteristics and low temperature output characteristics) of secondary batteries having a functional layer described in Patent Document 1 are improved. There was room for. In particular, in recent years, a positive electrode active material containing a transition metal may be employed in a secondary battery from the viewpoint of increasing capacity. However, in the secondary battery, the transition metal is eluted from the positive electrode active material due to hydrogen fluoride generated in the battery, and the eluted transition metal is deposited on the negative electrode, so that the electrical characteristics of the secondary battery are deteriorated. There was a risk of it.
 そこで、本発明は、二次電池の電気的特性を向上させることが可能な、非水系二次電池機能層用組成物を提供することを目的とする。更に、本発明は、二次電池の電気的特性を向上させることが可能な非水系二次電池用機能層を提供することを目的とする。また、本発明は、当該非水系二次電池用機能層を用いた、良好な電気的特性を有する非水系二次電池を提供することを目的とする。 Therefore, an object of the present invention is to provide a composition for a non-aqueous secondary battery functional layer that can improve the electrical characteristics of the secondary battery. Furthermore, an object of this invention is to provide the functional layer for non-aqueous secondary batteries which can improve the electrical property of a secondary battery. Another object of the present invention is to provide a non-aqueous secondary battery having good electrical characteristics using the functional layer for a non-aqueous secondary battery.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の性状を有する無機物を二次電池の機能層用組成物に配合することで、二次電池の電気的特性を向上させ得ることを見出し、本願発明を完成させた。 The present inventor has intensively studied for the purpose of solving the above problems. And this inventor discovered that the electrical property of a secondary battery could be improved by mix | blending the inorganic substance which has a predetermined property with the composition for functional layers of a secondary battery, and completed this invention. .
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池機能層用組成物は、無機物を含む非水系二次電池機能層用組成物であって、前記無機物は、X線回折法により得た、回折強度を縦軸とし、回折角度2θを横軸とするX線回折パターンの、回折角度2θ=3°~90°における前記回折強度の全積算累計を100%としたとき、高回折角度側から積算した前記回折強度の積算累計が前記全積算累計の50%になる位置の2θに対応する面間隔が0.1nm以上0.4nm以下であると共に、80%になる位置の2θに対応する面間隔が0.15nm以上0.70nm以下であることを特徴とする。このような無機物を含む非水系二次電池機能層用組成物を用いて形成した機能層によれば、二次電池の電気的特性を向上させることができる。
 ここで、本発明において、無機物のX線回折パターンは、測定温度25℃でCu-Kα線をX線源としたX線回折により取得することができる。
That is, this invention aims at solving the said subject advantageously, The composition for non-aqueous secondary battery functional layers of this invention is a composition for non-aqueous secondary battery functional layers containing an inorganic substance. The inorganic substance is an X-ray diffraction pattern obtained by an X-ray diffraction method, the diffraction intensity being 2θ = 3 ° to 90 ° of the X-ray diffraction pattern having the diffraction intensity 2θ as the vertical axis and the diffraction angle 2θ as the horizontal axis. When the total cumulative total of 100% is 100%, the surface interval corresponding to 2θ at a position where the cumulative total of the diffraction intensities integrated from the high diffraction angle side becomes 50% of the total cumulative total is 0.1 nm or more and 0.4 nm. In addition, the surface spacing corresponding to 2θ at a position of 80% is 0.15 to 0.70 nm. According to the functional layer formed using such a composition for a non-aqueous secondary battery functional layer containing an inorganic substance, the electrical characteristics of the secondary battery can be improved.
Here, in the present invention, an X-ray diffraction pattern of an inorganic substance can be obtained by X-ray diffraction using a Cu—Kα ray as an X-ray source at a measurement temperature of 25 ° C.
 ここで、本発明の非水系二次電池機能層用組成物は、全固形分に対する前記無機物の割合が、85質量%以上であることが好ましい。かかる機能層用組成物を用いて形成した機能層によれば、二次電池の電気的特性を向上させることができる。 Here, in the composition for a non-aqueous secondary battery functional layer of the present invention, the ratio of the inorganic substance to the total solid content is preferably 85% by mass or more. According to the functional layer formed using such a functional layer composition, the electrical characteristics of the secondary battery can be improved.
 また、本発明の非水系二次電池機能層用組成物は、前記無機物が、ハイドロタルサイト及び/又はゼオライトであることが好ましい。ハイドロタルサイト及びゼオライトを含む機能層用組成物を用いて機能層を形成すれば、当該機能層を備える二次電池の高温サイクル特性を一層向上させることができるからである。 In the composition for a non-aqueous secondary battery functional layer of the present invention, the inorganic substance is preferably hydrotalcite and / or zeolite. This is because if the functional layer is formed using a composition for a functional layer containing hydrotalcite and zeolite, the high-temperature cycle characteristics of the secondary battery including the functional layer can be further improved.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用機能層は、上記何れかの非水系二次電池機能層用組成物を用いて形成したことを特徴とする。このような機能層は、かかる機能層を備える二次電池に優れた低温出力特性及び高温サイクル特性を発揮させることができる。 Moreover, this invention aims at solving the said subject advantageously, The functional layer for non-aqueous secondary batteries of this invention is the composition for non-aqueous secondary battery functional layers in any one of said. It was formed using. Such a functional layer can exhibit excellent low-temperature output characteristics and high-temperature cycle characteristics in a secondary battery including such a functional layer.
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用機能層を備えることを特徴とする。このような非水系二次電池は、低温出力特性及び高温サイクル特性に優れる。 Furthermore, the present invention aims to solve the above-mentioned problem advantageously, and the non-aqueous secondary battery of the present invention is characterized by comprising the above-described functional layer for a non-aqueous secondary battery. Such a non-aqueous secondary battery is excellent in low temperature output characteristics and high temperature cycle characteristics.
 ここで、本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備え、前記セパレータは上述の非水系二次電池用機能層を備えることが好ましい。上記機能層を備えるセパレータを使用すれば、二次電池の電気的特性を一層向上させることができるからである。 Here, the non-aqueous secondary battery of the present invention preferably includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the separator preferably includes the above-described functional layer for a non-aqueous secondary battery. This is because the electrical characteristics of the secondary battery can be further improved by using a separator having the functional layer.
 ここで、本発明の非水系二次電池は、前記正極が、Co、Mn、Fe、及びNiの何れか一種以上を含有する正極活物質を含むことが好ましい。上記機能層を備える二次電池では、Co、Mn、Fe、及びNiの何れかを含有する正極活物質を使用した場合であっても、Co、Mn、Fe、及びNiなどの溶出に起因した二次電池の電気的特性の低下を十分に抑制することができる。 Here, in the nonaqueous secondary battery of the present invention, it is preferable that the positive electrode includes a positive electrode active material containing any one or more of Co, Mn, Fe, and Ni. In the secondary battery including the functional layer, even when a positive electrode active material containing any one of Co, Mn, Fe, and Ni is used, it is caused by elution of Co, Mn, Fe, Ni, and the like. A reduction in the electrical characteristics of the secondary battery can be sufficiently suppressed.
 本発明によれば、二次電池の電気的特性を向上させることが可能な、非水系二次電池機能層用組成物を提供することができる。また、本発明によれば、二次電池の電気的特性を向上させることが可能な、非水系二次電池用機能層を提供することができる。さらに、本発明によれば、電気的特性に優れる非水系二次電池を提供することができる。 According to the present invention, it is possible to provide a composition for a non-aqueous secondary battery functional layer capable of improving the electrical characteristics of the secondary battery. Moreover, according to this invention, the functional layer for non-aqueous secondary batteries which can improve the electrical property of a secondary battery can be provided. Furthermore, according to the present invention, a nonaqueous secondary battery having excellent electrical characteristics can be provided.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池機能層用組成物は、本発明の非水系二次電池用機能層を調製する際の材料として用いられる。そして、本発明の非水系二次電池用機能層は、本発明の非水系二次電池機能層用組成物を用いて形成される。また、本発明の非水系二次電池は、少なくとも本発明の非水系二次電池用機能層を備えるものである。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the composition for non-aqueous secondary battery functional layers of the present invention is used as a material for preparing the functional layer for non-aqueous secondary batteries of the present invention. And the functional layer for non-aqueous secondary batteries of this invention is formed using the composition for non-aqueous secondary battery functional layers of this invention. Moreover, the nonaqueous secondary battery of this invention is provided with the functional layer for nonaqueous secondary batteries of this invention at least.
(非水系二次電池機能層用組成物)
 本発明の非水系二次電池機能層用組成物は、無機物と、任意の結着材とを含み、有機溶媒などを分散媒としたスラリー組成物である。具体的には、本発明の非水系二次電池機能層用組成物は、X線回折法により得た、回折強度を縦軸とし、回折角度2θを横軸とするX線回折パターンの、回折角度2θ=3°~90°における回折強度の全積算累計を100%としたとき、高回折角度側から積算した回折強度の積算累計が全積算累計の50%になる位置の2θに対応する面間隔が0.1nm以上0.4nm以下であると共に、80%になる位置の2θに対応する面間隔が0.15nm以上0.7nm以下である無機物を含むことを特徴とする。
(Composition for functional layer of non-aqueous secondary battery)
The composition for a non-aqueous secondary battery functional layer of the present invention is a slurry composition containing an inorganic substance and an optional binder and using an organic solvent or the like as a dispersion medium. Specifically, the composition for a non-aqueous secondary battery functional layer according to the present invention is a diffraction pattern of an X-ray diffraction pattern obtained by an X-ray diffraction method with the diffraction intensity as the vertical axis and the diffraction angle 2θ as the horizontal axis. Surface corresponding to 2θ at a position where the cumulative total of diffraction intensities integrated from the high diffraction angle side is 50% of the total cumulative total, where the total cumulative total of diffraction intensities at angles 2θ = 3 ° to 90 ° is 100%. It includes an inorganic substance having an interval of 0.1 nm or more and 0.4 nm or less and a plane interval corresponding to 2θ at a position of 80% of 0.15 nm or more and 0.7 nm or less.
 そして、本発明の非水系二次電池機能層用組成物は、無機物の結晶構造中の原子網面間の面間隔が上記条件を満たすため、当該非水系二次電池機能層用組成物を用いて形成した機能層を備える二次電池の電気的特性を向上させることができる。
 ここで、上記無機物を含む非水系二次電池機能層用組成物を使用することで二次電池の電気的特性を向上させることができる理由は、明らかではないが、以下の通りであると推察される。即ち、二次電池、特に遷移金属を含有する正極活物質を用いた二次電池においては、通常、二次電池中において生じるフッ化水素(以下、「フッ酸」ともいう)により正極活物質から遷移金属などの金属が溶出し、遷移金属イオンなどの金属イオンが生じる。そして、生成された金属イオンは、電解液中を移動して負極へと到達すると、負極にて還元されて析出する。更に、金属イオンは、例えばエチレンカーボネートのようなカーボネート類を含む電解液と反応して、一酸化炭素や二酸化炭素のようなガスを発生させて二次電池の電気的特性を劣化させる。しかし、上記所定の結晶構造を有する無機物は、遷移金属イオンなどの金属イオンを、結晶構造における原子網面間の間隙内に効率的に捕捉するとともに、捕捉した金属イオンを放出しにくくすることができる。さらに、上述した無機物は、遷移金属イオンなどの金属イオンを捕捉しつつ、電池反応に寄与するイオンが二次電池内を移動することは妨げにくい。なお、「電池反応に寄与するイオン」は、通常は一価のイオンであり、例えば、二次電池がリチウムイオン二次電池である場合には、リチウムイオン(Li+)である。このように、上記無機物を含有する非水系二次電池機能層用組成物を用いて形成した機能層を使用すれば、正極で発生した金属イオンを、負極へと到達する前に捕捉し、二次電池内におけるガス発生を抑制することができるので、高温サイクル特性及び低温出力特性といった二次電池の電気的特性を向上させることができる。
The composition for a non-aqueous secondary battery functional layer of the present invention uses the composition for a non-aqueous secondary battery functional layer because the interplanar spacing in the crystal structure of the inorganic material satisfies the above conditions. Thus, the electrical characteristics of the secondary battery including the functional layer formed can be improved.
Here, the reason why the electrical characteristics of the secondary battery can be improved by using the composition for a non-aqueous secondary battery functional layer containing the inorganic substance is not clear, but is presumed to be as follows. Is done. That is, in a secondary battery, in particular, a secondary battery using a positive electrode active material containing a transition metal, normally, hydrogen fluoride generated in the secondary battery (hereinafter, also referred to as “hydrofluoric acid”) is removed from the positive electrode active material. Metals such as transition metals are eluted, and metal ions such as transition metal ions are generated. And when the produced | generated metal ion moves in an electrolyte solution and arrives at a negative electrode, it will reduce | restore and precipitate at a negative electrode. Further, the metal ions react with an electrolytic solution containing carbonates such as ethylene carbonate to generate a gas such as carbon monoxide or carbon dioxide, thereby degrading the electrical characteristics of the secondary battery. However, the inorganic substance having the predetermined crystal structure efficiently captures metal ions such as transition metal ions in the gaps between the atomic network surfaces in the crystal structure and makes it difficult to release the captured metal ions. it can. Furthermore, the inorganic substance mentioned above does not easily prevent ions that contribute to the battery reaction from moving in the secondary battery while capturing metal ions such as transition metal ions. The “ion that contributes to the battery reaction” is usually a monovalent ion. For example, when the secondary battery is a lithium ion secondary battery, it is lithium ion (Li + ). As described above, if a functional layer formed using the composition for a non-aqueous secondary battery functional layer containing the inorganic substance is used, metal ions generated at the positive electrode are captured before reaching the negative electrode, Since gas generation in the secondary battery can be suppressed, the electrical characteristics of the secondary battery such as high temperature cycle characteristics and low temperature output characteristics can be improved.
<無機物>
―無機物の結晶構造―
 ここで、非水系二次電池機能層用組成物に配合する上記無機物は、X線回折法により得た、回折強度を縦軸とし、回折角度2θを横軸とするX線回折パターンの、回折角度2θ=3°~90°の範囲における前記回折強度の全積算累計を100%としたとき、高回折角度側から積算した回折強度の積算累計が全積算累計50%になる位置の2θに対応する面間隔が、0.10nm以上0.40nm以下であることが必要であり、0.12nm以上であることが好ましく、0.15nm以上であることがより好ましく、0.30nm以下であることが好ましく、0.25nm以下であることがより好ましい。X線回折法により得た回折パターンの高回折角度側(即ち、面間隔が狭い側)から積算した回折強度の積算累計が全積算累計の50%になる位置の2θに対応する面間隔が0.10nm以上であれば、遷移金属イオンなどの金属イオン(正極活物質に由来する金属イオン)が無機物の結晶構造中に入り易くなり、無機物中に捕捉される金属の量を増加させることができるので、二次電池の高温サイクル特性を向上させることができる。また、X線回折法により得た回折パターンの高回折角度側から積算した回折強度の積算累計が全積算累計の50%になる位置の2θに対応する面間隔が0.40nm以下であれば、捕捉された金属イオンが無機物の結晶構造から脱離しにくくなって金属捕捉量が増加すると共に、捕捉された金属イオンが脱離した場所に電池反応に寄与するイオンが捕捉されるのを抑制することができる(即ち、電池反応に寄与するイオンの移動が阻害されるのを抑制することができる)ので、二次電池の低温出力特性及び高温サイクル特性を向上させることができる。
<Inorganic material>
―Crystal structure of inorganic matter―
Here, the inorganic substance to be blended in the composition for a non-aqueous secondary battery functional layer is a diffraction pattern of an X-ray diffraction pattern obtained by the X-ray diffraction method with the diffraction intensity as the vertical axis and the diffraction angle 2θ as the horizontal axis. Corresponding to 2θ at a position where the cumulative total of diffraction intensities accumulated from the high diffraction angle side is 50% when the total cumulative total of the diffraction intensities in the range of angle 2θ = 3 ° to 90 ° is 100%. The interplanar spacing needs to be 0.10 nm or more and 0.40 nm or less, preferably 0.12 nm or more, more preferably 0.15 nm or more, and 0.30 nm or less. Preferably, it is 0.25 nm or less. The plane spacing corresponding to 2θ at a position where the cumulative total of diffraction intensities integrated from the high diffraction angle side (that is, the side where the plane spacing is narrow) of the diffraction pattern obtained by the X-ray diffraction method becomes 50% of the total cumulative total is 0. When the thickness is 10 nm or more, metal ions such as transition metal ions (metal ions derived from the positive electrode active material) can easily enter the crystal structure of the inorganic material, and the amount of metal trapped in the inorganic material can be increased. Therefore, the high temperature cycle characteristics of the secondary battery can be improved. In addition, if the plane interval corresponding to 2θ at a position where the cumulative total of diffraction intensities integrated from the high diffraction angle side of the diffraction pattern obtained by the X-ray diffraction method becomes 50% of the total cumulative total is 0.40 nm or less, The trapped metal ions are less likely to be desorbed from the inorganic crystal structure, increasing the amount of captured metal ions, and suppressing the capture of ions contributing to the battery reaction at the location where the trapped metal ions are desorbed. (That is, inhibition of movement of ions contributing to the battery reaction can be suppressed), so that the low temperature output characteristics and high temperature cycle characteristics of the secondary battery can be improved.
 さらに、上記無機物は、X線回折法により得た回折パターンの高回折角度側から積算した回折強度の積算累計が全積算累計の80%になる位置の2θに対応する面間隔が、0.15nm以上0.70nm以下であることが必要であり、0.16nm以上であることが好ましく、0.18nm以上であることがより好ましく、0.60nm以下であることが好ましく、0.50nm以下であることがより好ましい。なお、80%になる位置の2θに対応する面間隔は、50%になる位置の2θに対応する面間隔よりも大きい値となる。X線回折法により得た回折パターンの高回折角度側(即ち、面間隔が狭い側)から積算した回折強度の積算累計が全積算累計の80%になる位置の2θに対応する面間隔が0.15nm以上であれば、イオン半径の比較的小さい、電池反応に寄与するイオンが捕捉されやすい結晶部分(面間隔の小さい部分)の割合を低減して電池反応に寄与するイオンが結晶構造内に捕捉されるのを抑制し、二次電池の出力特性を向上させることができる。また、X線回折法により得た回折パターンの高回折角度側から積算した回折強度の積算累計が全積算累計の80%になる位置の2θに対応する面間隔が0.70nm以下であれば、無機物の結晶構造内に捕捉された金属イオンが結晶構造内から脱離しにくくなり、金属捕捉量を増加させることができるので、二次電池のサイクル特性を向上させることができる。
 ここで、組成物中における無機粒子の「X線回折パターン」は、組成物に配合する材料としての無機粒子をX線回折して得られる回折パターンと同一である。
Further, the inorganic material has a surface interval corresponding to 2θ at a position where the cumulative total of diffraction intensities integrated from the high diffraction angle side of the diffraction pattern obtained by the X-ray diffraction method is 80% of the total cumulative total, is 0.15 nm. It must be 0.70 nm or less, preferably 0.16 nm or more, more preferably 0.18 nm or more, preferably 0.60 nm or less, and 0.50 nm or less. It is more preferable. It should be noted that the surface interval corresponding to 2θ at the position of 80% is larger than the surface interval corresponding to 2θ at the position of 50%. The plane spacing corresponding to 2θ at a position where the cumulative total of diffraction intensities integrated from the high diffraction angle side (that is, the side where the plane spacing is narrow) of the diffraction pattern obtained by the X-ray diffraction method becomes 80% of the total cumulative total is 0. If it is 15 nm or more, the proportion of crystal parts (parts having a small interplanar spacing) where ions contributing to the battery reaction are relatively small and the ions contributing to the battery reaction are reduced in the crystal structure. It is possible to suppress the trapping and improve the output characteristics of the secondary battery. In addition, if the plane distance corresponding to 2θ at a position where the cumulative total of diffraction intensities integrated from the high diffraction angle side of the diffraction pattern obtained by the X-ray diffraction method becomes 80% of the total cumulative total is 0.70 nm or less, Since the metal ions trapped in the crystal structure of the inorganic substance are not easily desorbed from the crystal structure, and the amount of the metal trap can be increased, the cycle characteristics of the secondary battery can be improved.
Here, the “X-ray diffraction pattern” of the inorganic particles in the composition is the same as the diffraction pattern obtained by X-ray diffraction of the inorganic particles as a material to be blended in the composition.
 そして、無機物は、層状構造を有する無機化合物であることが好ましい。ここで、層状構造とは、例えば、原子が面状に並んで成る構造を複数積層してなる構造である。面間隔が特定範囲にある層状構造を有する無機物を非水系二次電池機能層用組成物に配合することで、層間に遷移金属イオンを良好に捕捉することができる。従って、電気的特性に優れる二次電池を提供することができる。 The inorganic substance is preferably an inorganic compound having a layered structure. Here, the layered structure is, for example, a structure in which a plurality of structures in which atoms are arranged in a plane are stacked. By blending an inorganic substance having a layered structure with a face spacing in a specific range into the composition for a non-aqueous secondary battery functional layer, transition metal ions can be captured well between the layers. Accordingly, it is possible to provide a secondary battery having excellent electrical characteristics.
―無機物の導電性―
 なお、無機物は、通常、非導電性であり、具体的には、体積抵抗率(Ω・cm)が105以上であることが好ましく、1010以上であることがより好ましい。
―Conductivity of inorganic matter―
The inorganic substance is usually non-conductive, and specifically, the volume resistivity (Ω · cm) is preferably 10 5 or more, and more preferably 10 10 or more.
―無機物の体積平均粒子径―
 また、無機物の体積平均粒子径は、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、5.0μm以下であることが好ましく、3.0μm以下であることがより好ましい。無機物の体積平均粒子径が0.1μm以上であれば、本発明による機能層用組成物を用いて形成した機能層の持ち込み水分量を低減し、機能層を有する二次電池の高温サイクル特性を一層向上させることができる。また、無機物の体積平均粒子径が5.0μm以下であれば、本発明による非水系二次電池機能層用組成物を用いて形成した機能層の厚みが増大して機能層の体積抵抗が増大することを抑制し、機能層を備える二次電池の低温出力特性を向上させることができる。
―Volume average particle size of inorganic matter―
The volume average particle diameter of the inorganic substance is preferably 0.1 μm or more, more preferably 0.2 μm or more, preferably 5.0 μm or less, and more preferably 3.0 μm or less. preferable. If the volume average particle size of the inorganic substance is 0.1 μm or more, the amount of moisture brought into the functional layer formed using the functional layer composition according to the present invention is reduced, and the high temperature cycle characteristics of the secondary battery having the functional layer are reduced. This can be further improved. Moreover, if the volume average particle diameter of the inorganic substance is 5.0 μm or less, the thickness of the functional layer formed using the composition for a non-aqueous secondary battery functional layer according to the present invention increases and the volume resistance of the functional layer increases. It is possible to improve the low-temperature output characteristics of the secondary battery including the functional layer.
―無機物の種類―
 例えば、無機物は、層状複水酸化物又はゼオライトでありうる。層状複水酸化物としては、例えば、ハイドロタルサイト、モツコレアイト(Motukoreaite)、マナセアイト(Manasseite)、スティヒタイト(Stichtite)、バーバトナイト(Barbertonite)、パイロオーロ(Pyroaurite)、ショグレナイト(Sjogrenite)、アイオワイト(Iowaite)、クロロマガルミナイト(Chlormagaluminite)、ハイドロカルマイト(Hydrocalmite)、グリーンラスト1(Greem Rust 1)、ベルチェリン(Berthierine)、タコバイト(Takovite)、リーベサイト(Reevesite)、ホネサイト(Honessite)、イヤードライト(Eardlyte)、メイキセネライト(Meixnerite)が挙げられる。さらには、無機物として、例えば、層状複水酸化物であるハイドロタルサイトを焼成することで生成しうる層状構造の無機物であるマグネシウム・アルミニウム系固溶体が挙げられる。なお、本明細書では、かかる固溶体も、広義には「ハイドロタルサイト」の一種であるとして記載する。
 一方、無機物として本発明の非水系二次電池機能層用組成物に含有させるゼオライトとしては、ケイ酸塩鉱物に加えて、国際ゼロライト学会(IZA:International Zeolite Association)の定義に従う各種骨格構造を有するゼオライトが挙げられる。なお、IZAの定義によれば、ゼオライトとは、「開かれた3次元ネットワークを形成する組成ABn(n≒2)の化合物で、Aが4本、Bが2本の結合を持ち、骨格密度(1nm3中の原子数)が20.5以下の物質」である。
 これらの無機物は一種で、又は二種以上を混合して本発明の非水系二次電池機能層用組成物に配合することができる。中でも、本発明の非水系二次電池機能層用組成物は、無機物としてハイドロタルサイト及び/又はゼオライトを含有することが好ましい。ハイドロタルサイト及びゼオライトは、金属イオンの捕捉能に優れ、機能層用組成物を用いて形成した機能層を備える二次電池の高温サイクル特性を一層向上させることができるからである。さらに、本発明の非水系二次電池機能層用組成物は、無機物としてハイドロタルサイトを含有することが特に好ましい。ハイドロタルサイトは、二次電池内にて生成されるフッ酸により腐食しにくいため、機能層を備える二次電池の高温サイクル特性及び低温出力特性をより一層向上させることができるからである。
―Types of inorganic matter―
For example, the inorganic substance can be a layered double hydroxide or a zeolite. Examples of layered double hydroxides include hydrotalcite, Motukoreaite, Manasseite, Stichtite, Barbertonite, Pyroaurite, Sjogrenite, and Iowaite. , Chlormagaluminite, Hydrocalmite, Greem Rust 1, Berthierine, Takovite, Reevesite, Honessite, Eardlyte ), Meixnerite. Furthermore, as an inorganic substance, the magnesium-aluminum solid solution which is an inorganic substance of the layered structure which can be produced | generated by baking the hydrotalcite which is a layered double hydroxide is mentioned, for example. In this specification, such a solid solution is also described as a kind of “hydrotalcite” in a broad sense.
On the other hand, as a zeolite contained in the composition for a non-aqueous secondary battery functional layer of the present invention as an inorganic substance, in addition to a silicate mineral, various skeletal structures according to the definition of the International Zeolite Association (IZA) are used. The zeolite which has is mentioned. According to the definition of IZA, zeolite is “a compound of a composition AB n (n≈2) that forms an open three-dimensional network, A having 4 bonds and B having 2 bonds, A substance having a density (number of atoms in 1 nm 3 ) of 20.5 or less.
These inorganic materials can be used alone or in combination of two or more in the composition for a non-aqueous secondary battery functional layer of the present invention. Especially, it is preferable that the composition for non-aqueous secondary battery functional layers of this invention contains a hydrotalcite and / or a zeolite as an inorganic substance. This is because hydrotalcite and zeolite are excellent in metal ion scavenging ability and can further improve the high-temperature cycle characteristics of a secondary battery including a functional layer formed using the functional layer composition. Furthermore, the composition for a non-aqueous secondary battery functional layer of the present invention particularly preferably contains hydrotalcite as an inorganic substance. This is because hydrotalcite is unlikely to be corroded by hydrofluoric acid generated in the secondary battery, so that the high-temperature cycle characteristics and low-temperature output characteristics of the secondary battery including the functional layer can be further improved.
 なお、X線回折パターンの形状および回折強度の積算累計における面間隔の大きさは、無機物の種類および組成、並びに無機物に対して加熱処理を施すことにより調整することができる。加熱処理により調整する場合には、加熱時間及び加熱温度等を変更することにより、所望のX線回折パターンの形状および回折強度の積算累計における面間隔の大きさの無機物を得ることができる。 Note that the shape of the X-ray diffraction pattern and the size of the interplanar spacing in the cumulative total of diffraction intensities can be adjusted by subjecting the inorganic material to the type and composition of the inorganic material and heat treatment. In the case of adjusting by heat treatment, an inorganic substance having a surface spacing in the cumulative total of the desired X-ray diffraction pattern shape and diffraction intensity can be obtained by changing the heating time and the heating temperature.
―無機物の配合量―
 本発明の非水系二次電池機能層用組成物は、組成物中の全固形分に対する無機物の割合が、85.0質量%以上であることが好ましく、90.0質量%以上であることがより好ましく、95.0質量%以上であることが特に好ましく、99.5質量%以下であることが好ましい。組成物中の全固形分に対する無機物の割合を85.0質量%以上とする事により、機能層のガーレー値が上昇することを抑制し、機能層を備える二次電池に優れた低温出力特性を発揮させることができ、さらに、金属イオンの補足量を増加させて、二次電池の高温サイクル特性を一層向上させることができる。
―Mixed amount of inorganic matter―
In the composition for a non-aqueous secondary battery functional layer of the present invention, the ratio of the inorganic substance to the total solid content in the composition is preferably 85.0% by mass or more, and preferably 90.0% by mass or more. More preferably, it is particularly preferably 95.0% by mass or more, and more preferably 99.5% by mass or less. By making the ratio of the inorganic substance with respect to the total solid content in the composition 85.0% by mass or more, the Gurley value of the functional layer is suppressed from increasing, and the low temperature output characteristics excellent in the secondary battery including the functional layer are obtained. In addition, the high-temperature cycle characteristics of the secondary battery can be further improved by increasing the supplemental amount of metal ions.
<結着材>
 なお、本発明の非水系二次電池機能層用組成物は、特に限定されることなく、既知の結着材を含有することができる。具体的には結着材としては、共役ジエン系重合体およびアクリル系重合体が好ましく、アクリル系重合体がより好ましい。そして、これらの重合体は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<Binder>
In addition, the composition for non-aqueous secondary battery functional layers of this invention is not specifically limited, A known binder can be contained. Specifically, the binder is preferably a conjugated diene polymer or an acrylic polymer, and more preferably an acrylic polymer. And these polymers may be used individually by 1 type, and may be used in combination of 2 or more types.
 結着材として好ましく使用しうる共役ジエン系重合体は、共役ジエン単量体単位を含む重合体である。そして、共役ジエン系重合体の具体例としては、特に限定されることなく、スチレン-ブタジエン共重合体(SBR)等の芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位を含む共重合体、ブタジエンゴム(BR)、アクリルゴム(NBR)(アクリロニトリル単位およびブタジエン単位を含む共重合体)、並びに、それらの水素化物などが挙げられる。 The conjugated diene polymer that can be preferably used as the binder is a polymer containing a conjugated diene monomer unit. A specific example of the conjugated diene polymer is not particularly limited, and is a copolymer containing an aromatic vinyl monomer unit such as a styrene-butadiene copolymer (SBR) and an aliphatic conjugated diene monomer unit. Examples thereof include a polymer, butadiene rubber (BR), acrylic rubber (NBR) (a copolymer containing acrylonitrile units and butadiene units), and hydrides thereof.
 また、結着材として好ましく使用しうるアクリル系重合体は、(メタ)アクリル酸エステル単量体単位を含むアクリル系重合体を用いることが好ましい。ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、2-エチルヘキシルアクリレート等の(メタ)アクリル酸アルキルエステルを用いることができる。なお、本発明において、(メタ)アクリルとは、アクリルおよび/またはメタクリルを意味する。
 そして、アクリル系重合体は、(メタ)アクリル酸エステル単量体単位以外に、(メタ)アクリロニトリル単量体単位及び酸基含有単量体単位の少なくとも一方を含有することが好ましく、双方を含有することがより好ましい。なお、本発明において、(メタ)アクリロニトリルとは、アクリロニトリルおよび/またはメタクリロニトリルを意味する。また、酸基含有単量体単位を形成し得る酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、および、リン酸基を有する単量体を有する単量体が挙げられる。
The acrylic polymer that can be preferably used as the binder is preferably an acrylic polymer containing a (meth) acrylic acid ester monomer unit. Here, as the (meth) acrylic acid ester monomer capable of forming a (meth) acrylic acid ester monomer unit, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, 2 -Alkyl esters of (meth) acrylic acid such as ethylhexyl acrylate can be used. In the present invention, (meth) acryl means acryl and / or methacryl.
The acrylic polymer preferably contains at least one of a (meth) acrylonitrile monomer unit and an acid group-containing monomer unit in addition to the (meth) acrylic acid ester monomer unit. More preferably. In the present invention, (meth) acrylonitrile means acrylonitrile and / or methacrylonitrile. Moreover, as an acid group-containing monomer that can form an acid group-containing monomer unit, a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, And a monomer having a monomer having a phosphate group.
 そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 更に、リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味し、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid. Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid. Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
Furthermore, examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate. Etc.
In the present invention, “(meth) allyl” means allyl and / or methallyl, and “(meth) acryloyl” means acryloyl and / or methacryloyl.
 これらの中でも、酸基含有単量体としては、カルボン酸基を有する単量体が好ましく、モノカルボン酸がより好ましく、(メタ)アクリル酸が更に好ましい。
 また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among these, the acid group-containing monomer is preferably a monomer having a carboxylic acid group, more preferably a monocarboxylic acid, and still more preferably (meth) acrylic acid.
Moreover, an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 さらに、二次電池がリチウムイオン二次電池である場合には、結着材として好ましく使用し得るアクリル系重合体は、不飽和酸のリチウム塩を含むことが好ましい。不飽和酸のリチウム塩としては、特に限定されず、不飽和カルボン酸のリチウム塩、不飽和スルホン酸のリチウム塩、不飽和ホスホン酸のリチウム塩などが挙げられる。これらの中でも、不飽和酸のリチウム塩としては、不飽和カルボン酸のリチウム塩、不飽和スルホン酸のリチウム塩を用いるのが好ましい。不飽和カルボン酸のリチウム塩および不飽和スルホン酸のリチウム塩は、リチウムイオンの解離度が高いため、これらのリチウム塩を使用すれば、リチウムイオン二次電池の低温出力特性を一層向上させることができるからである。
 ここで、前記不飽和カルボン酸のリチウム塩としては、アクリル酸、メタクリル酸、クロトン酸などのα,β-不飽和モノカルボン酸のリチウム塩;マレイン酸、フマル酸、イタコン酸などのα,β-不飽和ジカルボン酸のリチウム塩;マレイン酸モノメチル、イタコン酸モノエチルなどのα,β-不飽和多価カルボン酸の部分エステル化物のリチウム塩;オレイン酸、リノール酸、リノレン酸、ルーメン酸などの不飽和脂肪酸のリチウム塩などが挙げられる。
 また、前記不飽和スルホン酸のリチウム塩としては、ビニルスルホン酸、o-スチレンスルホン酸、m-スチレンスルホン酸、p-スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)などのリチウム塩、並びに、これらの各種置換体などが挙げられる。
 更に、前記不飽和ホスホン酸のリチウム塩としては、ビニルホスホン酸、o-スチレンホスホン酸、m-スチレンホスホン酸、p-スチレンホスホン酸などのリチウム塩、並びに、これらの各種置換体などが挙げられる。
Furthermore, when the secondary battery is a lithium ion secondary battery, the acrylic polymer that can be preferably used as the binder preferably contains a lithium salt of an unsaturated acid. The lithium salt of the unsaturated acid is not particularly limited, and examples thereof include an unsaturated carboxylic acid lithium salt, an unsaturated sulfonic acid lithium salt, and an unsaturated phosphonic acid lithium salt. Among these, as the lithium salt of an unsaturated acid, it is preferable to use a lithium salt of an unsaturated carboxylic acid or a lithium salt of an unsaturated sulfonic acid. Since the lithium salt of unsaturated carboxylic acid and lithium salt of unsaturated sulfonic acid has a high degree of dissociation of lithium ions, the use of these lithium salts can further improve the low-temperature output characteristics of lithium ion secondary batteries. Because it can.
Here, as the lithium salt of the unsaturated carboxylic acid, lithium salt of α, β-unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid or crotonic acid; α, β such as maleic acid, fumaric acid or itaconic acid -Lithium salt of unsaturated dicarboxylic acid; lithium salt of partially esterified product of α, β-unsaturated polyvalent carboxylic acid such as monomethyl maleate and monoethyl itaconate; unresolved such as oleic acid, linoleic acid, linolenic acid, rumenic acid Examples include lithium salts of saturated fatty acids.
Examples of the lithium salt of unsaturated sulfonic acid include vinyl sulfonic acid, o-styrene sulfonic acid, m-styrene sulfonic acid, p-styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and the like. Examples thereof include lithium salts and various substitutes thereof.
Further, examples of the lithium salt of unsaturated phosphonic acid include lithium salts such as vinylphosphonic acid, o-styrenephosphonic acid, m-styrenephosphonic acid, and p-styrenephosphonic acid, and various substitutes thereof. .
 そして、非水系二次電池機能層用組成物中の結着材の含有量は、機能層用組成物中の全固形分量を100質量%とした場合に0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、15.0質量%以下であることが好ましく、10.0質量%以下であることがより好ましい。機能層用組成物中の結着材の含有量を全固形分量に対して0.5質量%以上とすることで、十分な接着性を発揮することができ、無機物が機能層から脱落するのを抑制すると共に、機能層と基材との接着力も向上させて、機能層を備える二次電池の高温サイクル特性を向上させることができる。また、機能層用組成物中の結着材の含有量を全固形分量に対して15.0質量%以下とすることで、機能層のガーレー値が上昇することを抑制して、機能層のイオン伝導性が低下して機能層の体積抵抗が増大することを抑制し、機能層を備える二次電池の低温出力特性を向上させることができる。 And content of the binder in the composition for non-aqueous secondary battery functional layers is 0.5 mass% or more when the total solid content in the composition for functional layers is 100 mass%. Preferably, it is 1.0 mass% or more, more preferably 15.0 mass% or less, and even more preferably 10.0 mass% or less. By setting the content of the binder in the functional layer composition to 0.5% by mass or more with respect to the total solid content, sufficient adhesiveness can be exerted, and the inorganic substance falls off from the functional layer. In addition, the adhesive strength between the functional layer and the base material can be improved, and the high-temperature cycle characteristics of the secondary battery including the functional layer can be improved. Moreover, by suppressing the content of the binder in the composition for the functional layer to 15.0% by mass or less with respect to the total solid content, the Gurley value of the functional layer is suppressed from increasing, It can suppress that the ion conductivity falls and the volume resistance of a functional layer increases, and can improve the low temperature output characteristic of a secondary battery provided with a functional layer.
 なお、結着材として使用し得る上述した重合体の製造方法としては、例えば、溶液重合法、懸濁重合法、乳化重合法などが挙げられる。 In addition, as a manufacturing method of the polymer mentioned above which can be used as a binder, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method etc. are mentioned, for example.
<分散媒>
 なお、本発明の非水系二次電池機能層用組成物の分散媒としては、特に限定されることなく、既知の分散媒を使用することができる。例えば、使用可能な分散媒として、水;N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド等のアミド化合物;シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素化合物;トルエン、キシレン等の芳香族炭化水素化合物;アセトン、エチルメチルケトン、シクロヘキサノン等のケトン化合物;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル化合物;アセトニトリル、プロピオニトリル等のニトリル化合物;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル化合物;メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール化合物などが挙げられる。
<Dispersion medium>
In addition, as a dispersion medium of the composition for non-aqueous secondary battery functional layers of this invention, a known dispersion medium can be used, without being specifically limited. For example, usable dispersion medium is water; amide compounds such as N-methylpyrrolidone (NMP) and N, N-dimethylformamide; cycloaliphatic hydrocarbon compounds such as cyclopentane and cyclohexane; aromatics such as toluene and xylene Hydrocarbon compounds; ketone compounds such as acetone, ethyl methyl ketone and cyclohexanone; ester compounds such as ethyl acetate, butyl acetate, γ-butyrolactone and ε-caprolactone; nitrile compounds such as acetonitrile and propionitrile; tetrahydrofuran, ethylene glycol diethyl ether Ether compounds such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether, and the like.
<添加剤>
 なお、非水系二次電池機能層用組成物は、上述した成分以外にも、任意のその他の成分を含んでいてもよい。前記その他の成分は、電池反応に影響を及ぼさないものであれば特に限られず、公知のものを使用することができる。また、これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
 前記その他の成分としては、例えば、分散剤、粘度調整剤、濡れ剤などの既知の添加剤が挙げられる。
<Additives>
In addition, the composition for non-aqueous secondary battery functional layers may contain arbitrary other components in addition to the components described above. The other components are not particularly limited as long as they do not affect the battery reaction, and known components can be used. Moreover, these other components may be used individually by 1 type, and may be used in combination of 2 or more types.
Examples of the other components include known additives such as a dispersant, a viscosity modifier, and a wetting agent.
(非水系二次電池機能層用組成物の製造方法)
 上述した本発明の非水系二次電池機能層用組成物は、特に限定されることなく、上述した無機物と、任意の結着材および添加剤とを、N-メチルピロリドンなどの分散媒の存在下で混合して得ることができる。
(Method for producing composition for functional layer of non-aqueous secondary battery)
The composition for a functional layer of a non-aqueous secondary battery of the present invention described above is not particularly limited, and the presence of a dispersion medium such as N-methylpyrrolidone is combined with the above-described inorganic substance and optional binders and additives. Can be obtained by mixing below.
 ここで、上述した成分の混合方法は特に制限されないが、各成分を効率よく分散させるべく、混合装置として分散機を用いて混合を行うことが好ましい。そして、分散機は、上記成分を均一に分散および混合できる装置が好ましい。分散機としては、メディアレス分散機、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。
 また、上述した成分の混合順序も特に制限はされず、例えば、上述した成分を一段階で混合しても良いし、無機物を分散媒中に分散させたところに結着材を添加してさらに分散させても良い。
 無機物を配合した混合液を分散処理するにあたり、混合液の固形分濃度は、30質量%以上60質量%以下であることが好ましい。得られた非水系二次電池機能層用組成物中における無機物の分散性を向上させることができるからである。また、得られた非水系二次電池機能層用組成物のB型粘度計による粘度は25℃、60rpmで25mPa・s以上85mPa・s以下であることが好ましい。
Here, although the mixing method of the component mentioned above is not restrict | limited in particular, In order to disperse | distribute each component efficiently, it is preferable to mix using a disperser as a mixing apparatus. The disperser is preferably an apparatus capable of uniformly dispersing and mixing the above components. Examples of the disperser include a medialess disperser, a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer.
Further, the mixing order of the above-described components is not particularly limited, and for example, the above-described components may be mixed in one step, or a binder is added to a place where an inorganic substance is dispersed in a dispersion medium. It may be dispersed.
In carrying out the dispersion treatment of the mixed liquid containing the inorganic substance, the solid content concentration of the mixed liquid is preferably 30% by mass or more and 60% by mass or less. It is because the dispersibility of the inorganic substance in the obtained composition for a non-aqueous secondary battery functional layer can be improved. Moreover, it is preferable that the viscosity by the B-type viscometer of the obtained composition for non-aqueous secondary battery functional layers is 25 mPa * s or more and 85 mPa * s or less at 25 degreeC and 60 rpm.
(非水系二次電池用機能層)
 本発明の非水系二次電池用機能層は、上述した非水系二次電池機能層用組成物から形成されたものである。例えば、本発明の非水系二次電池用機能層は、上述した機能層用組成物を適切な基材の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより、形成することができる。即ち、本発明の非水系二次電池用機能層は、上述した非水系二次電池機能層用組成物の乾燥物よりなる。そして、本発明の非水系二次電池用機能層は、通常、X線回折法により得た、回折強度を縦軸とし、回折角度2θを横軸とするX線回折パターンの、回折角度2θ=3°~90°における回折強度の全積算累計を100%としたとき、高回折角度側から積算した回折強度の積算累計が全積算累計の50%になる位置の2θに対応する面間隔が0.1nm以上0.4nm以下であると共に、80%のときに、面間隔が0.15nm以上0.70nm以下である無機物を含有する。さらに、本発明の非水系二次電池用機能層は、上述の無機物に加えて、結着材を含有することが好ましい。
(Functional layer for non-aqueous secondary batteries)
The functional layer for a non-aqueous secondary battery of the present invention is formed from the above-described composition for a non-aqueous secondary battery functional layer. For example, the functional layer for a non-aqueous secondary battery of the present invention is formed by coating the functional layer composition described above on the surface of an appropriate substrate to form a coating film, and then drying the formed coating film. Can be formed. That is, the functional layer for a non-aqueous secondary battery of the present invention is composed of a dried product of the above-described composition for a non-aqueous secondary battery functional layer. The functional layer for a non-aqueous secondary battery of the present invention usually has a diffraction angle 2θ = of an X-ray diffraction pattern obtained by an X-ray diffraction method with the diffraction intensity as the vertical axis and the diffraction angle 2θ as the horizontal axis. When the total cumulative total of diffraction intensities from 3 ° to 90 ° is 100%, the surface interval corresponding to 2θ at the position where the cumulative total of diffraction intensities integrated from the high diffraction angle side becomes 50% of the total cumulative total is 0. In addition, it contains an inorganic substance having a surface interval of 0.15 nm or more and 0.70 nm or less at 80% when it is 1 nm or more and 0.4 nm or less. Furthermore, it is preferable that the functional layer for non-aqueous secondary batteries of this invention contains a binder in addition to the above-mentioned inorganic substance.
 そして、本発明の非水系二次電池用機能層は、上述した非水系二次電池機能層用組成物を用いて形成しており、上述した無機物を含有している。このため、本発明の非水系二次電池用機能層は、遷移金属イオンなどの金属イオンを捕捉し、当該機能層を備える二次電池に優れた低温出力特性及び高温サイクル特性を発揮させることができる。 And the functional layer for non-aqueous secondary batteries of this invention is formed using the composition for non-aqueous secondary battery functional layers mentioned above, and contains the inorganic substance mentioned above. For this reason, the functional layer for a non-aqueous secondary battery of the present invention captures metal ions such as transition metal ions and can exhibit excellent low-temperature output characteristics and high-temperature cycle characteristics in a secondary battery including the functional layer. it can.
 さらに、本発明の非水系二次電池用機能層は厚みが1.5μm以上3.5μm以下であることが好ましい。機能層の厚みを上記下限値以上とすることで、機能層における金属捕捉量を十分に高めることができ、機能層を備える二次電池のサイクル特性を向上させることができる。また、機能層の厚みを上記上限値以下とすることで、機能層のガーレー値が過度に高くなることを回避し、機能層の体積抵抗の増大を抑制して、機能層を備える二次電池の出力特性を向上させることができる。
 なお、本発明において、機能層の厚みは、機能層の任意の10箇所において測定した層厚の平均値を指す。
Furthermore, it is preferable that the functional layer for non-aqueous secondary batteries of this invention is 1.5 micrometers or more and 3.5 micrometers or less in thickness. By setting the thickness of the functional layer to the above lower limit value or more, the amount of metal captured in the functional layer can be sufficiently increased, and the cycle characteristics of a secondary battery including the functional layer can be improved. Further, by making the thickness of the functional layer not more than the above upper limit value, it is possible to avoid an excessive increase in the Gurley value of the functional layer, suppress an increase in volume resistance of the functional layer, and a secondary battery including the functional layer Output characteristics can be improved.
In addition, in this invention, the thickness of a functional layer points out the average value of the layer thickness measured in arbitrary 10 places of a functional layer.
<基材>
 ここで、機能層用組成物を塗布する基材に制限は無く、例えば離型基材の表面に機能層用組成物の塗膜を形成し、その塗膜を乾燥して機能層を形成し、機能層から離型基材を剥がすようにしてもよい。このように、離型基材から剥がされた機能層を自立膜として二次電池の電池部材の形成に用いることもできる。具体的には、離型基材から剥がした機能層をセパレータ基材の上に積層して機能層を備えるセパレータを形成してもよいし、離型基材から剥がした機能層を電極基材の上に積層して機能層を備える電極を形成してもよい。
 しかし、機能層を剥がす工程を省略して電池部材の製造効率を高める観点からは、基材としてセパレータ基材または電極基材を用いることが好ましい。セパレータ基材および電極基材上に設けられた機能層は、金属捕捉能を発揮するだけでなく、セパレータおよび電極の耐熱性や強度などを向上させる保護層として好適に使用することができる。
<Base material>
Here, there is no limitation on the substrate on which the functional layer composition is applied. For example, a functional layer composition coating film is formed on the surface of a release substrate, and the coating film is dried to form a functional layer. The release substrate may be peeled off from the functional layer. Thus, the functional layer peeled off from the release substrate can be used as a self-supporting film for forming a battery member of a secondary battery. Specifically, the functional layer peeled off from the release substrate may be laminated on the separator substrate to form a separator having the functional layer, or the functional layer peeled off from the release substrate may be used as the electrode substrate. An electrode provided with a functional layer may be formed by stacking on the substrate.
However, from the viewpoint of improving the production efficiency of the battery member by omitting the step of peeling off the functional layer, it is preferable to use a separator substrate or an electrode substrate as the substrate. The functional layer provided on the separator base material and the electrode base material can be suitably used as a protective layer that not only exhibits a metal capturing ability but also improves the heat resistance and strength of the separator and the electrode.
[セパレータ基材]
 セパレータ基材としては、特に限定されないが、有機セパレータ基材などの既知のセパレータ基材が挙げられる。有機セパレータ基材は、有機材料からなる多孔性部材である。有機セパレータ基材としては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微多孔膜または不織布などが挙げられ、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。
[Separator substrate]
Although it does not specifically limit as a separator base material, Known separator base materials, such as an organic separator base material, are mentioned. The organic separator substrate is a porous member made of an organic material. Examples of the organic separator substrate include microporous membranes or nonwoven fabrics containing polyolefin resins such as polyethylene and polypropylene, aromatic polyamide resins, and the like, and polyethylene microporous membranes and nonwoven fabrics are preferred because of excellent strength.
[電極基材]
 電極基材(正極基材および負極基材)としては、特に限定されないが、集電体上に電極合材層が形成された電極基材が挙げられる。ここで、集電体および電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)、並びに、集電体上への電極合材層の形成方法は、既知のものを用いることができ、例えば特開2013-145763号公報に記載のものが挙げられる。
[Electrode substrate]
Although it does not specifically limit as an electrode base material (a positive electrode base material and a negative electrode base material), The electrode base material with which the electrode compound-material layer was formed on the electrical power collector is mentioned. Here, the current collector and the binding material for the electrode composite material layer (the binding material for the positive electrode composite material layer, the binding material for the negative electrode composite material layer), and the method for forming the electrode composite material layer on the current collector Known ones can be used, for example, those described in JP2013-145663A.
[電極活物質]
 電極合材層中の電極活物質としては、電解質中で電位をかけることにより可逆的に電池反応に寄与するイオンを挿入放出できるものであればよく、無機化合物でも有機化合物でも用いることができる。
[Electrode active material]
The electrode active material in the electrode mixture layer is not particularly limited as long as it can reversibly insert and release ions that contribute to the battery reaction by applying a potential in the electrolyte, and an inorganic compound or an organic compound can be used.
 正極活物質としては、無機化合物からなるものを使用することができる。例えば、リチウムイオン二次電池では、無機化合物からなる正極活物質として、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などの遷移金属を含有する正極活物質が使用可能である。上記の遷移金属としては、二価以上の遷移金属が好ましく、Co、Mn、Fe、及びNiの何れかがより好ましい。正極活物質としてCo、Mn、Fe、Niなどの遷移金属を含有する正極活物質を使用することで二次電池の容量を更に高めることができる。なお、本発明による機能層を使用すれば、遷移金属を含有する正極活物質を使用した場合であっても、遷移金属の溶出に起因して二次電池の電気的特性が低下するのを抑制することができる。 As the positive electrode active material, one made of an inorganic compound can be used. For example, in a lithium ion secondary battery, a positive electrode active material containing a transition metal such as a transition metal oxide, a composite oxide of lithium and a transition metal, or a transition metal sulfide can be used as a positive electrode active material made of an inorganic compound. It is. The transition metal is preferably a divalent or higher valent transition metal, and more preferably one of Co, Mn, Fe, and Ni. By using a positive electrode active material containing a transition metal such as Co, Mn, Fe, or Ni as the positive electrode active material, the capacity of the secondary battery can be further increased. In addition, if the functional layer according to the present invention is used, even if a positive electrode active material containing a transition metal is used, the electrical characteristics of the secondary battery are prevented from being deteriorated due to the elution of the transition metal. can do.
 正極活物質に使用される無機化合物の具体例としては、LiCoO2、LiNiO2、LiMnO2、LiMn24、LiNi1/3Mn1/3Co1/32(NMC)、LiFePO4、LiFeVO4等のリチウム含有複合金属酸化物;TiS2、TiS3、非晶質MoS2等の遷移金属硫化物;Cu223、非晶質V2O-P25、MoO3、V25、V613等の遷移金属酸化物などが挙げられる。
 中でも、正極活物質としてLiCoO2やLiNi1/3Mn1/3Co1/32を用いることが好ましく、特に、LiNi1/3Mn1/3Co1/32が好ましい。
 なお、これらの正極活物質は、1種類だけを用いてもよく、2種類以上を組み合わせて用いてもよい。また、前述の無機化合物と、ポリアセチレン、ポリ-p-フェニレンなどの導電性重合体のような有機化合物との混合物を正極活物質として用いてもよい。
Specific examples of the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC), LiFePO 4 , Lithium-containing composite metal oxides such as LiFeVO 4 ; transition metal sulfides such as TiS 2 , TiS 3 , and amorphous MoS 2 ; Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , Transition metal oxides such as V 2 O 5 and V 6 O 13 .
Among them, it is preferable to use LiCoO 2 or LiNi 1/3 Mn 1/3 Co 1/3 O 2 as the positive electrode active material, particularly preferably LiNi 1/3 Mn 1/3 Co 1/3 O 2.
In addition, these positive electrode active materials may use only 1 type, and may be used in combination of 2 or more types. Further, a mixture of the above-described inorganic compound and an organic compound such as a conductive polymer such as polyacetylene or poly-p-phenylene may be used as the positive electrode active material.
 負極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性重合体;などが挙げられる。また、ケイ素、錫、亜鉛、マンガン、鉄およびニッケル等の金属並びにこれらの合金;前記金属または合金の酸化物;前記金属または合金の硫酸塩;なども挙げられる。また、金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等も使用できる。なお、これらの負極活物質は、1種類だけを用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the negative electrode active material include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; and conductive polymers such as polyacene. In addition, metals such as silicon, tin, zinc, manganese, iron and nickel and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys; Further, metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, Li—Sn—Cd; lithium transition metal nitride; silicon and the like can also be used. These negative electrode active materials may be used alone or in combination of two or more.
<非水系二次電池用機能層の形成方法>
 上述したセパレータ基材、電極基材などの基材上に機能層を形成する方法としては、以下の方法が挙げられる。
1)本発明の非水系二次電池機能層用組成物をセパレータ基材または電極基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)本発明の非水系二次電池機能層用組成物にセパレータ基材または電極基材を浸漬後、これを乾燥する方法;
3)本発明の非水系二次電池機能層用組成物を離型基材上に塗布し、乾燥して機能層を製造し、得られた機能層をセパレータ基材または電極基材の表面に転写する方法;
 これらの中でも、前記1)の方法が、機能層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、機能層用組成物を基材上に塗布する工程(塗布工程)と、基材上に塗布された機能層用組成物を乾燥させて機能層を形成する工程(機能層形成工程)を含む。
<Method for forming functional layer for non-aqueous secondary battery>
Examples of the method for forming a functional layer on a substrate such as the separator substrate and electrode substrate described above include the following methods.
1) The composition for a non-aqueous secondary battery functional layer of the present invention is applied to the surface of a separator substrate or electrode substrate (in the case of an electrode substrate, the surface on the electrode mixture layer side, the same shall apply hereinafter), and then dried. Method;
2) A method of drying the separator substrate or electrode substrate after immersing the separator substrate or electrode substrate in the composition for a non-aqueous secondary battery functional layer of the present invention;
3) The composition for a non-aqueous secondary battery functional layer of the present invention is applied onto a release substrate, dried to produce a functional layer, and the obtained functional layer is applied to the surface of a separator substrate or an electrode substrate. A method of transcription;
Among these, the method 1) is particularly preferable because the layer thickness of the functional layer can be easily controlled. Specifically, the method 1) includes a step of applying a functional layer composition on a substrate (application step) and a functional layer formed by drying the functional layer composition applied on the substrate. Step (functional layer forming step).
[塗布工程]
 そして、塗布工程において、機能層用組成物を基材上に塗布する方法としては、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。
[Coating process]
In the coating process, the method for coating the functional layer composition on the substrate is not particularly limited. For example, the doctor blade method, the reverse roll method, the direct roll method, the gravure method, the extrusion method, the brush coating The method of the method etc. is mentioned.
[機能層形成工程]
 また、機能層形成工程において、基材上の機能層用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは50~150℃で、乾燥時間は好ましくは3~30分である。
[Functional layer formation process]
In the functional layer forming step, the method for drying the composition for the functional layer on the substrate is not particularly limited, and a known method can be used, for example, drying with hot air, hot air, low-humidity air, or vacuum drying. And a drying method by irradiation with infrared rays or electron beams. The drying conditions are not particularly limited, but the drying temperature is preferably 50 to 150 ° C., and the drying time is preferably 3 to 30 minutes.
(機能層を備える電池部材)
 本発明の機能層を備える電池部材(セパレータおよび電極)は、本発明の効果を著しく損なわない限り、セパレータ基材または電極基材と、本発明の機能層との他に、上述した本発明の機能層以外の構成要素を備えていてもよい。
(Battery member having a functional layer)
The battery member (separator and electrode) provided with the functional layer of the present invention is not limited to the separator base or electrode base and the functional layer of the present invention as long as the effects of the present invention are not significantly impaired. You may provide components other than a functional layer.
 ここで、本発明の機能層以外の構成要素としては、本発明の機能層に該当しないものであれば特に限定されることなく、本発明の機能層上に設けられて電池部材同士の接着に用いられる接着層などが挙げられる。 Here, the constituent elements other than the functional layer of the present invention are not particularly limited as long as they do not correspond to the functional layer of the present invention, and are provided on the functional layer of the present invention for bonding between battery members. Examples thereof include an adhesive layer used.
(非水系二次電池)
 本発明の非水系二次電池は、上述した本発明の非水系二次電池用機能層を備えるものである。より具体的には、本発明の非水系二次電池は、正極、負極、セパレータ、および電解液を備え、上述した非水系二次電池用機能層が、電池部材である正極、負極およびセパレータの少なくとも一つに含まれる。好ましくは、本発明の非水系二次電池用機能層は、セパレータに含まれる。正極活物質由来の金属イオンを一層高効率で捕捉することができ、かかるセパレータを備える二次電池の電気的特性(例えば、低温出力特性及び高温サイクル特性)を一層向上させることができるからである。そして、本発明の非水系二次電池は、本発明の非水系二次電池機能層用組成物から得られる機能層を備えているので、例えば上述した遷移金属を含有する正極活物質を用いた場合であっても、優れた電気的特性(例えば、低温出力特性及び高温サイクル特性)を発揮する。
(Non-aqueous secondary battery)
The non-aqueous secondary battery of the present invention includes the above-described functional layer for a non-aqueous secondary battery of the present invention. More specifically, the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolyte solution, and the functional layer for the non-aqueous secondary battery described above is a battery member of the positive electrode, the negative electrode, and the separator. Included in at least one. Preferably, the functional layer for a non-aqueous secondary battery of the present invention is included in the separator. This is because metal ions derived from the positive electrode active material can be captured with higher efficiency, and electrical characteristics (for example, low temperature output characteristics and high temperature cycle characteristics) of the secondary battery including such a separator can be further improved. . And since the non-aqueous secondary battery of this invention is equipped with the functional layer obtained from the composition for non-aqueous secondary battery functional layers of this invention, the positive electrode active material containing the transition metal mentioned above, for example was used. Even in this case, excellent electrical characteristics (for example, low temperature output characteristics and high temperature cycle characteristics) are exhibited.
<正極、負極およびセパレータ>
 本発明の二次電池に用いる正極、負極およびセパレータは、少なくとも一つが本発明の機能層を含む。具体的には、機能層を有する正極および負極としては、集電体上に電極合材層を形成してなる電極基材の上に本発明の機能層を設けてなる電極を用いることができる。また、機能層を有するセパレータとしては、セパレータ基材の上に本発明の機能層を設けてなるセパレータを用いることができる。なお、電極基材およびセパレータ基材としては、「非水系二次電池用機能層」の項で挙げたものと同様のものを用いることができる。
 また、機能層を有さない正極、負極およびセパレータとしては、特に限定されることなく、上述した電極基材よりなる電極および上述したセパレータ基材よりなるセパレータを用いることができる。
<Positive electrode, negative electrode and separator>
At least one of the positive electrode, the negative electrode, and the separator used for the secondary battery of the present invention includes the functional layer of the present invention. Specifically, as a positive electrode and a negative electrode having a functional layer, an electrode in which the functional layer of the present invention is provided on an electrode substrate formed by forming an electrode mixture layer on a current collector can be used. . Moreover, as a separator which has a functional layer, the separator which provides the functional layer of this invention on a separator base material can be used. In addition, as an electrode base material and a separator base material, the thing similar to what was mentioned by the term of the "functional layer for non-aqueous secondary batteries" can be used.
Moreover, as a positive electrode, a negative electrode, and a separator which do not have a functional layer, it does not specifically limit, The electrode which consists of an electrode base material mentioned above, and the separator which consists of a separator base material mentioned above can be used.
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used. As the supporting electrolyte, for example, a lithium salt is used in a lithium ion secondary battery. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Among these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation. In addition, electrolyte may be used individually by 1 type and may be used in combination of 2 or more types. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
The organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. For example, in a lithium ion secondary battery, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC). Carbonates such as propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC), vinylene carbonate (VC); esters such as γ-butyrolactone and methyl formate; 1,2-dimethoxyethane, tetrahydrofuran, etc. Ethers; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are preferably used. Moreover, you may use the liquid mixture of these solvents. Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Usually, the lower the viscosity of the solvent used, the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted depending on the type of solvent.
The concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Moreover, you may add a known additive to electrolyte solution.
(非水系二次電池の製造方法)
 上述した本発明の非水系二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、これを必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造することができる。なお、正極、負極、セパレータのうち、少なくとも一つの部材を機能層付きの部材とする。また、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
(Method for producing non-aqueous secondary battery)
In the non-aqueous secondary battery of the present invention described above, for example, a positive electrode and a negative electrode are overlapped via a separator, and this is placed in a battery container by winding or folding as necessary. It can be manufactured by pouring and sealing. Of the positive electrode, the negative electrode, and the separator, at least one member is a member with a functional layer. In addition, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like may be placed in the battery container to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、無機物のX線回折強度及び体積平均粒子径、機能層の遷移金属イオン捕捉量及びイオン伝導性(ガーレー値増加率)、並びに二次電池の高温サイクル特性及び低温出力特性は、下記の方法で測定および評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the X-ray diffraction intensity and volume average particle diameter of inorganic substances, the amount of transition metal ions trapped and ion conductivity (Gurley value increase rate) of the functional layer, and the high-temperature cycle characteristics and low-temperature output characteristics of secondary batteries Were measured and evaluated by the following methods.
<無機物のX線回折強度>
 実施例、比較例における無機物のX線回折強度は、X線回折装置(製品名:RINT2500、リガク社製)を用いて、Cu管球によるCu-Kα線をX線源として、温度25℃、加速電圧40kV、散乱スリット1°、受光スリット0.3mm、回折角度2θを3°~90°とした測定により求めた。
 さらに、得られた回折強度を回折角度2θの高角度側(即ち2θ=90°)から積算した全積算累計を100%としたとき、無機層状化合物の回折強度の積算累計が50%のときの2θに対応する面間隔の値、および80%のときの2θに対応する面間隔の値をそれぞれ算出した。
<X-ray diffraction intensity of inorganic material>
The X-ray diffraction intensities of the inorganic substances in the examples and comparative examples were measured using an X-ray diffractometer (product name: RINT2500, manufactured by Rigaku Corporation), using Cu—Kα rays from a Cu tube as an X-ray source at a temperature of 25 ° C. It was determined by measurement with an acceleration voltage of 40 kV, a scattering slit of 1 °, a light receiving slit of 0.3 mm, and a diffraction angle 2θ of 3 ° to 90 °.
Furthermore, when the total cumulative total obtained by integrating the obtained diffraction intensities from the higher angle side of the diffraction angle 2θ (ie, 2θ = 90 °) is 100%, the cumulative total diffraction intensity of the inorganic layered compound is 50%. A face spacing value corresponding to 2θ and a face spacing value corresponding to 2θ at 80% were calculated.
<無機物の体積平均粒子径>
 実施例、比較例に用いた無機物の体積平均粒子径(D50)は、体積基準の粒度分布で積算値が50%の時の粒子径の値であり、イオン交換水を供給したフローセル内に、実施例、比較例にて使用した無機物を散乱強度が50%程度になるよう添加し、超音波分散した後、レーザー回折式粒度分布測定装置(島津製作所社製「SALD-7100」)により散乱光を測定することにより求めた。
<Volume average particle diameter of inorganic substance>
The volume average particle diameter (D50) of the inorganic substance used in Examples and Comparative Examples is a value of the particle diameter when the integrated value is 50% in the volume-based particle size distribution, and in the flow cell supplied with ion-exchanged water, The inorganic substances used in the examples and comparative examples were added so that the scattering intensity was about 50%, and after ultrasonic dispersion, the scattered light was scattered by a laser diffraction particle size distribution analyzer (“SALD-7100” manufactured by Shimadzu Corporation). It was calculated | required by measuring.
<機能層の遷移金属イオン捕捉量>
 実施例、比較例で作製した非水系二次電池用機能層の遷移金属捕捉量を測定するにあたり、まず、非水系二次電池機能層用組成物を塗工したセパレータを面積100cm2の大きさに打ち抜き、試験片とし、遷移金属イオンを捕捉する前の試験片の質量(A)を測定した。次いで、非水系二次電池機能層用組成物を塗工していないセパレータ基材を面積100cm2の大きさに打ち抜き、その質量を(B)を測定した。質量(A)から質量(B)を差し引いた値を、遷移金属イオンを捕捉する前の機能層質量とした。
 次いで、溶媒(エチルメチルカーボネート:エチレンカーボネート=70:30(質量比))に支持電解質としてのLiPF6を1モル/リットルの濃度で溶解させて得た電解液に、遷移金属イオン源として、塩化コバルト(無水)(CoCl2)、塩化ニッケル(無水)(NiCl2)、塩化マンガン(無水)(MnCl2)を溶解し、各金属イオン濃度が20質量ppmとなるよう電解液を調製し、非水系二次電池内のように、遷移金属イオンが所定割合で存在している状態を創出した。次に、前述の試験片をガラス容器に入れ、前述の塩化コバルト、塩化マンガン、塩化ニッケルを溶解した電解液15gを入れ、試験片を浸漬させ、25℃で5日間静置した。その後、試験片を取り出し、ジエチルカーボネートで試験片を十分に洗浄し、試験片表面に付着したジエチルカーボネートを十分に拭き取った。その後、試験片をテフロン(登録商標)製ビーカーに入れ、硫酸および硝酸(硫酸:硝酸=0.1:2(体積比))を添加し、ホットプレートで試験片が炭化するまで加温した。さらに、硝酸および過塩素酸(硝酸:過塩素酸=2:0.2(体積比))を添加した後、過塩素酸およびフッ化水素酸(過塩素酸:フッ化水素酸=2:0.2(体積比))を添加し、白煙が出るまで加温した。次いで、硝酸および超純水(硝酸:超純水=0.5:10(体積比))を20ml添加し、加温した。放冷後、超純水を総量が100mlとなるように加え、遷移金属イオンを含有する遷移金属イオン溶液を得た。ICP質量分析計(PerkinElmer社製、「ELAN DRS II」)を用いて、得られた遷移金属イオン溶液中のコバルト、ニッケル、マンガン量を測定した。そして、遷移金属イオン溶液中のコバルト、ニッケル、マンガン量の総量を、上述のようにして求めた遷移金属イオンを捕捉する前の機能層質量で割ることで、機能層中の遷移金属イオン量(質量ppm)を算出し、得られた値を非水系二次電池用機能層の遷移金属イオン捕捉量とした。この遷移金属イオン捕捉量が多いほど、非水系二次電池用機能層の単位質量あたりの遷移金属イオン捕捉能が高いことを示す。
 A:遷移金属イオン捕捉量が1000ppm以上
 B:遷移金属イオン捕捉量が500ppm以上1000ppm未満
 C:遷移金属イオン捕捉量が100ppm以上500ppm未満
 D:遷移金属イオン捕捉量が100ppm未満
<Capture amount of transition metal ions in functional layer>
In measuring the amount of transition metal trapped in the functional layer for non-aqueous secondary battery prepared in Examples and Comparative Examples, first, the separator coated with the composition for non-aqueous secondary battery functional layer is 100 cm 2 in size. The mass (A) of the test piece before capturing the transition metal ions was measured. Next, a separator base material not coated with the composition for a non-aqueous secondary battery functional layer was punched out to a size of 100 cm 2 , and the mass (B) was measured. The value obtained by subtracting the mass (B) from the mass (A) was defined as the functional layer mass before capturing the transition metal ion.
Next, in the electrolyte obtained by dissolving LiPF 6 as a supporting electrolyte in a solvent (ethyl methyl carbonate: ethylene carbonate = 70: 30 (mass ratio)) at a concentration of 1 mol / liter, a chloride as a transition metal ion source is obtained. Cobalt (anhydrous) (CoCl 2 ), nickel chloride (anhydrous) (NiCl 2 ), manganese chloride (anhydrous) (MnCl 2 ) is dissolved, and an electrolyte is prepared so that the concentration of each metal ion is 20 mass ppm. As in the water-based secondary battery, a state in which transition metal ions are present at a predetermined ratio was created. Next, the above-mentioned test piece was put in a glass container, 15 g of the electrolytic solution in which the above-described cobalt chloride, manganese chloride, and nickel chloride were dissolved was put, the test piece was immersed, and allowed to stand at 25 ° C. for 5 days. Thereafter, the test piece was taken out, thoroughly washed with diethyl carbonate, and diethyl carbonate adhering to the surface of the test piece was sufficiently wiped off. Then, the test piece was put into a Teflon (registered trademark) beaker, sulfuric acid and nitric acid (sulfuric acid: nitric acid = 0.1: 2 (volume ratio)) were added, and the test piece was heated on a hot plate until carbonized. Furthermore, after adding nitric acid and perchloric acid (nitric acid: perchloric acid = 2: 0.2 (volume ratio)), perchloric acid and hydrofluoric acid (perchloric acid: hydrofluoric acid = 2: 0) .2 (volume ratio)) was added and warmed until white smoke appeared. Next, 20 ml of nitric acid and ultrapure water (nitric acid: superpure water = 0.5: 10 (volume ratio)) were added and heated. After standing to cool, ultrapure water was added so that the total amount was 100 ml, and a transition metal ion solution containing transition metal ions was obtained. The amounts of cobalt, nickel and manganese in the obtained transition metal ion solution were measured using an ICP mass spectrometer (PerkinElmer, “ELAN DRS II”). Then, by dividing the total amount of cobalt, nickel, and manganese in the transition metal ion solution by the functional layer mass before capturing the transition metal ions determined as described above, the amount of transition metal ions in the functional layer ( Mass ppm) was calculated, and the obtained value was defined as the amount of transition metal ion trapping in the functional layer for a non-aqueous secondary battery. It shows that the transition metal ion capture | acquisition capacity per unit mass of the functional layer for non-aqueous secondary batteries is so high that this transition metal ion capture | acquisition amount is large.
A: Transition metal ion trapping amount is 1000 ppm or more B: Transition metal ion trapping amount is 500 ppm or more and less than 1000 ppm C: Transition metal ion trapping amount is 100 ppm or more and less than 500 ppm D: Transition metal ion trapping amount is less than 100 ppm
<機能層のイオン伝導性(ガーレー増加率)>
 非水系二次電池用機能層付きセパレータおよび機能層を形成する前のセパレータ基材について、デジタル型王研式透気度・平滑度試験機(旭精工株式会社製、「EYO-5-1M-R」)を用いてガーレー値(秒/100cc)を測定した。具体的には、機能層形成前の「セパレータ基材」のガーレー値G0と、機能層形成後の「機能層付きセパレータ」のガーレー値G1とから、ガーレー値の増加率ΔG(=(G1/G0)×100(%))を求めて、以下の基準で評価した。このガーレー値の増加率ΔGが小さいほど、非水系二次電池用機能層のイオン伝導性が優れていることを示す。
 A:ΔGが130%未満である。
 B:ΔGが130%以上200%未満である
<Ionic conductivity of functional layer (Gurley increase rate)>
Regarding the separator with the functional layer for the non-aqueous secondary battery and the separator base material before the functional layer is formed, a digital type Oken air permeability / smoothness tester (manufactured by Asahi Seiko Co., Ltd., “EYO-5-1M-”) R ") was used to measure Gurley values (seconds / 100 cc). Specifically, from the Gurley value G0 of the “separator substrate” before forming the functional layer and the Gurley value G1 of the “separator with functional layer” after forming the functional layer, the increase rate ΔG (= (G1 / G1 / G0) × 100 (%)) was determined and evaluated according to the following criteria. It shows that the ion conductivity of the functional layer for non-aqueous secondary batteries is excellent, so that this increase rate (DELTA) G of a Gurley value is small.
A: ΔG is less than 130%.
B: ΔG is 130% or more and less than 200%
<二次電池の高温サイクル特性>
 放電容量800mAhの捲回型ラミネートセルを45℃雰囲気下、0.5Cの定電流法によって4.35Vに充電し、3Vまで放電する充放電を200サイクル繰り返し、放電容量を測定した。5セルの平均値を測定値とし、3サイクル終了時の放電容量に対する200サイクル終了時の放電容量の割合を百分率で算出して充放電容量保持率を求め、以下の基準で評価した。この値が高いほど、二次電池が高温サイクル特性に優れることを示す。
 A:充放電容量保持率が80%以上である。
 B:充放電容量保持率が70%以上80%未満である。
 C:充放電容量保持率が60%以上70%未満である。
 D:充放電容量保持率が60%未満である。
<High-temperature cycle characteristics of secondary batteries>
A wound laminate cell having a discharge capacity of 800 mAh was charged to 4.35 V by a constant current method of 0.5 C in a 45 ° C. atmosphere, and charging / discharging to 3 V was repeated 200 cycles, and the discharge capacity was measured. Using the average value of 5 cells as a measured value, the ratio of the discharge capacity at the end of 200 cycles to the discharge capacity at the end of 3 cycles was calculated as a percentage to obtain the charge / discharge capacity retention rate, and evaluated according to the following criteria. It shows that a secondary battery is excellent in high temperature cycling characteristics, so that this value is high.
A: The charge / discharge capacity retention is 80% or more.
B: The charge / discharge capacity retention is 70% or more and less than 80%.
C: The charge / discharge capacity retention is 60% or more and less than 70%.
D: The charge / discharge capacity retention is less than 60%.
<二次電池の低温出力特性>
 放電容量800mAhの捲回型のリチウムイオン二次電池を、25℃の環境下で24時間静置した後、25℃の環境下で、4.35V、0.1Cの充電レートで5時間の充電の操作を行い、その時の電圧V0を測定した。その後、-10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始から15秒後の電圧V1を測定した。そして、電圧変化ΔV(=V0-V1)を求め、以下の基準で評価した。この電圧変化ΔVの値が小さいほど、二次電池が低温出力特性に優れていることを示す。
 A:電圧変化ΔVが350mV未満
 B:電圧変化ΔVが350mV以上500mV未満
 C:電圧変化ΔVが500mV以上
<Low temperature output characteristics of secondary battery>
A wound type lithium ion secondary battery with a discharge capacity of 800 mAh is allowed to stand for 24 hours in an environment at 25 ° C., and then charged for 5 hours at a charge rate of 4.35 V and 0.1 C in an environment at 25 ° C. The voltage V0 at that time was measured. Thereafter, a discharge operation was performed at a discharge rate of 1 C in an environment of −10 ° C., and the voltage V1 15 seconds after the start of discharge was measured. A voltage change ΔV (= V0−V1) was obtained and evaluated according to the following criteria. It shows that a secondary battery is excellent in low temperature output characteristics, so that the value of this voltage change (DELTA) V is small.
A: Voltage change ΔV is less than 350 mV B: Voltage change ΔV is 350 mV or more and less than 500 mV C: Voltage change ΔV is 500 mV or more
(実施例1)
<結着材の作製>
  攪拌機付き5MPa耐圧容器に、(メタ)アクリル酸エステル単量体であるアクリル酸ブチル30部、(メタ)アクリロニトリル単量体であるアクリロニトリル35部、不飽和スルホン酸のリチウム塩であるスチレンスルホン酸リチウム30部、カルボン酸基を有する単量体であるメタクリル酸5部、反応性界面活性剤としてポリオキシアルキレナルケニルエーテル硫酸アンモニウム1.0部、イオン交換水400部、および重合開始剤として過硫酸カリウム1.0部を入れ、十分に攪拌した後、65℃に加温して重合した。重合転化率が96%になった時点で冷却し反応を停止して、結着材の前駆体(水分散液)を得た。
 結着材の前駆体100部(固形分:24.75部)に対し、N-メチルピロリドン(NMP)350部を加え、減圧下で水を蒸発させると共にNMPを40.62部蒸発させて、結着材を含む分散液(固形分濃度:8%)を得た。
Example 1
<Production of binder>
In a 5 MPa pressure vessel equipped with a stirrer, 30 parts of butyl acrylate as a (meth) acrylic acid ester monomer, 35 parts of acrylonitrile as a (meth) acrylonitrile monomer, lithium styrene sulfonate as a lithium salt of unsaturated sulfonic acid 30 parts, 5 parts of methacrylic acid as a monomer having a carboxylic acid group, 1.0 part of polyoxyalkylenalkenyl ether ammonium sulfate as a reactive surfactant, 400 parts of ion-exchanged water, and potassium persulfate as a polymerization initiator After adding 1.0 part and stirring sufficiently, it heated and polymerized at 65 degreeC. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a binder precursor (aqueous dispersion).
To 100 parts of the binder precursor (solid content: 24.75 parts), 350 parts of N-methylpyrrolidone (NMP) was added to evaporate water under reduced pressure and evaporate 40.62 parts of NMP. A dispersion liquid (solid content concentration: 8%) containing the binder was obtained.
<非水系二次電池機能層用組成物の調製>
 無機物としてのハイドロタルサイト(協和化学工業社製、「KW2000」、組成:Mg0.7Al0.31.15)を97質量部、前述の結着材を固形分相当で3質量部、および固形分濃度が40質量%となるようにNMPを添加した。次いで、メディアレス分散装置(アシザワファインテック社製、「LMZ-015」)で、直径0.4mmのビーズを用いて、周速6m/秒、流量0.3L/分にて無機物を分散させ、スラリー状の非水系二次電池機能層用組成物を調製した。
 調製した機能層用組成物の粘度を、25℃で、B型粘度計(東機産業株式会社製、「TVB-10M」)を使用して測定したところ、60rpmで32mPa・sであった。
<Preparation of non-aqueous secondary battery functional layer composition>
Hydrotalcite (Kyowa Chemical Industry Co., Ltd., “KW2000”, composition: Mg 0.7 Al 0.3 O 1.15 ) as an inorganic substance is 97 parts by mass, the above-mentioned binder is 3 parts by mass equivalent to solids, and the solids concentration is NMP was added so that it might become 40 mass%. Next, with a medialess dispersion apparatus (manufactured by Ashizawa Finetech Co., Ltd., “LMZ-015”), inorganic substances are dispersed using beads having a diameter of 0.4 mm at a peripheral speed of 6 m / sec and a flow rate of 0.3 L / min. A slurry-like composition for a non-aqueous secondary battery functional layer was prepared.
The viscosity of the prepared functional layer composition was measured at 25 ° C. using a B-type viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.) and found to be 32 mPa · s at 60 rpm.
<二次電池用セパレータの作製>
  ポリエチレン製の多孔基材からなる有機セパレータ(ポリエチレン製、厚み12μm、ガーレー値150s/100cc)を準備した。用意した有機セパレータの片面に、上述の機能層用組成物を塗布し、50℃で3分間乾燥させた。これにより、片面厚み3μmの機能層を備える有機セパレータを得た。
<Preparation of separator for secondary battery>
An organic separator (made of polyethylene, thickness 12 μm, Gurley value 150 s / 100 cc) made of a polyethylene porous substrate was prepared. The functional layer composition described above was applied to one side of the prepared organic separator and dried at 50 ° C. for 3 minutes. Thereby, an organic separator provided with a functional layer having a thickness of 3 μm on one side was obtained.
<負極の作製>
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33.5部、イタコン酸3.5部、スチレン62部、2-ヒドロキシエチルアクリレート1部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、結着材(SBR)を含む混合物を得た。かかる結着材(SBR)を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の結着材(SBR)を含む水分散液を得た。
 次に、負極活物質としての人造黒鉛(体積平均粒子径:15.6μm)100部、及び増粘剤としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製、「MAC350HC」)の2%水溶液を固形分相当で1部に対して、イオン交換水を固形分濃度が68%になるように添加した後、25℃で60分間混合した。イオン交換水で固形分濃度が62%となるように調整した後、さらに25℃で15分間混合して混合液を得た。得られた混合液に、上記の結着材(SBR)を固形分相当量で1.5質量部添加し、イオン交換水で最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い二次電池負極用スラリー組成物を得た。
 そして、得られた負極用スラリー組成物を、集電体である厚さ20μmの銅箔の上に、コンマコーターを用いて乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た。
<Production of negative electrode>
In a 5 MPa pressure vessel with a stirrer, 33.5 parts of 1,3-butadiene, 3.5 parts of itaconic acid, 62 parts of styrene, 1 part of 2-hydroxyethyl acrylate, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, ion exchange After adding 150 parts of water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a binder (SBR). After adding 5% aqueous sodium hydroxide solution to the mixture containing the binder (SBR) and adjusting to pH 8, the unreacted monomer is removed by heating under reduced pressure, and then cooled to 30 ° C or lower. An aqueous dispersion containing the desired binder (SBR) was obtained.
Next, 100 parts of artificial graphite (volume average particle diameter: 15.6 μm) as a negative electrode active material and a 2% aqueous solution of carboxymethylcellulose sodium salt (“Nippon Paper Industries Co., Ltd.,“ MAC350HC ”) as a thickener are solid content. Correspondingly to 1 part, ion-exchanged water was added so that the solid concentration was 68%, and then mixed at 25 ° C. for 60 minutes. After adjusting the solid content concentration to 62% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution. To the obtained mixed solution, 1.5 parts by mass of the above-mentioned binder (SBR) in an amount corresponding to the solid content is added, and the final solid content concentration is adjusted to 52% with ion-exchanged water, and further for 10 minutes. Mixed. This was defoamed under reduced pressure to obtain a slurry composition for a secondary battery negative electrode having good fluidity.
And the obtained slurry composition for negative electrodes was apply | coated so that the film thickness after drying might be set to about 150 micrometers using a comma coater on the copper foil of thickness 20 micrometers which is a collector. . This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode mixture layer thickness of 80 μm.
<正極>
 正極活物質として体積平均粒子径12μmのLiNi1/3Mn1/3Co1/32(NMC)を100部、導電材としてアセチレンブラック(電気化学工業社製、「HS-100」)を2部、及び正極用結着材としてPVDF(クレハ社製、「#7208」)を固形分相当で2部に対して、NMPを全固形分濃度が70%となるように添加し、混合液を得た。得られた混合液をプラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。
 得られた正極用スラリー組成物を、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように、コンマコーターを使用して塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極合材層の厚みが80μmのプレス後の正極を得た。
<Positive electrode>
100 parts of LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) having a volume average particle size of 12 μm as the positive electrode active material, and acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) as the conductive material 2 parts, and PVDF (“# 7208”, manufactured by Kureha Co., Ltd.) as a positive electrode binder is added to 2 parts in a solid content equivalent, and NMP is added so that the total solid content concentration becomes 70%. Got. The obtained mixed liquid was mixed with a planetary mixer to prepare a positive electrode slurry composition.
The obtained positive electrode slurry composition was applied on a current collector aluminum foil having a thickness of 20 μm using a comma coater so that the film thickness after drying was about 150 μm, and dried. . This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode after pressing with a positive electrode mixture layer thickness of 80 μm.
<二次電池>
 得られたプレス後の正極を49cm×5cmに切り出して、正極合材層側の表面が上側になるように置き、その上に55cm×5.5cmに切り出した機能層つきセパレータを正極合材層と機能層とが対向するように配置した。さらに、得られたプレス後の負極を、50cm×5.2cmの正方形に切り出し、これをセパレータ上に、負極合材層側の表面がセパレータに向かい合うよう配置した。これを捲回機により、捲回し、捲回体を得た。この捲回体を60℃、0.5MPaでプレスし、扁平体とし、電池の外装としてのアルミ包材外装で包み、電解液(溶媒:EC/DEC/VC=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入し、さらに、アルミ包材外装の開口を密封するために、150℃のヒートシールをしてアルミ包材外装を閉口し、放電容量800mAhの捲回型リチウムイオン二次電池を製造した。
 そして、二次電池の高温サイクル特性及び低温出力特性を評価した。結果を表1に示す。
<Secondary battery>
The obtained positive electrode after pressing was cut out to 49 cm × 5 cm, placed so that the surface on the positive electrode mixture layer side was on the upper side, and a separator with a functional layer cut out to 55 cm × 5.5 cm was placed on the positive electrode mixture layer And the functional layer are arranged to face each other. Further, the obtained negative electrode after pressing was cut into a 50 cm × 5.2 cm square, and this was placed on the separator so that the surface on the negative electrode mixture layer side faces the separator. This was wound with a winding machine to obtain a wound body. The wound body is pressed at 60 ° C. and 0.5 MPa to form a flat body, and is wrapped with an aluminum packaging outer casing as a battery outer casing, and an electrolytic solution (solvent: EC / DEC / VC = 68.5 / 30/1. 5 (volume ratio), electrolyte: LiPF 6 with a concentration of 1M) is injected so that air does not remain, and heat sealing at 150 ° C. is performed to seal the opening of the aluminum packaging material exterior. Was closed to produce a wound lithium ion secondary battery having a discharge capacity of 800 mAh.
And the high-temperature cycle characteristic and low-temperature output characteristic of the secondary battery were evaluated. The results are shown in Table 1.
(実施例2)
 機能層用組成物の調製時に、無機物のハイドロタルサイトを88質量部、結着材を12質量部とした以外は実施例1と同様にして、結着材、機能層用組成物、セパレータ、負極、正極および二次電池を製造した。調製した機能層用組成物の粘度を、25℃で、B型粘度計(東機産業株式会社製、「TVB-10M」)を使用して測定したところ、60rpmで80mPa・s であった。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(Example 2)
During the preparation of the functional layer composition, the binder, the functional layer composition, the separator, in the same manner as in Example 1, except that the inorganic hydrotalcite was 88 parts by mass and the binder was 12 parts by mass. A negative electrode, a positive electrode, and a secondary battery were manufactured. The viscosity of the prepared composition for the functional layer was measured at 25 ° C. using a B-type viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.) and found to be 80 mPa · s at 60 rpm. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
 無機物として、組成が(Mg0.6Al0.41.15)あるハイドロタルサイトを用いた以外は、実施例1と同様にして各種評価を行った。結果を表1に示す。なお、かかるハイドロタルサイトの各XRD回折強度は、それぞれ表1に示す通りであった。
(Example 3)
Various evaluations were performed in the same manner as in Example 1 except that hydrotalcite having a composition of (Mg 0.6 Al 0.4 O 1.15 ) was used as the inorganic substance. The results are shown in Table 1. In addition, each XRD diffraction intensity of this hydrotalcite was as showing in Table 1, respectively.
(実施例4)
 無機物として、組成が(Mg0.75Al0.251.15)であるハイドロタルサイトを用いた以外は、実施例1と同様にして各種評価を行った。結果を表1に示す。なお、かかるハイドロタルサイトの各XRD回折強度は、それぞれ表1に示す通りであった。
Example 4
Various evaluations were performed in the same manner as in Example 1 except that hydrotalcite having a composition of (Mg 0.75 Al 0.25 O 1.15 ) was used as the inorganic substance. The results are shown in Table 1. In addition, each XRD diffraction intensity of this hydrotalcite was as showing in Table 1, respectively.
(実施例5)
 無機物として、ハイドロタルサイト「KW2000」を800℃で1時間加熱して得たハイドロタルサイトを使用した以外は、実施例1と同様にして各種評価を行った。結果を表1に示す。なお、かかるハイドロタルサイトの各XRD回折強度は、それぞれ表1に示す通りであった。
(Example 5)
Various evaluations were performed in the same manner as in Example 1 except that hydrotalcite “KW2000” obtained by heating at 800 ° C. for 1 hour was used as the inorganic substance. The results are shown in Table 1. In addition, each XRD diffraction intensity of this hydrotalcite was as showing in Table 1, respectively.
(実施例6)
 無機物として、ハイドロタルサイト「KW2000」を1200℃で1時間加熱して得たハイドロタルサイトを使用した以外は、実施例1と同様にして各種評価を行った。結果を表1に示す。なお、かかるハイドロタルサイトの各XRD回折強度は、それぞれ表1に示す通りであった。
(Example 6)
Various evaluations were performed in the same manner as in Example 1 except that hydrotalcite “KW2000” obtained by heating at 1200 ° C. for 1 hour was used as the inorganic substance. The results are shown in Table 1. In addition, each XRD diffraction intensity of this hydrotalcite was as showing in Table 1, respectively.
(実施例7)
 無機物を、高回折角度側から積算した回折強度の積算累計が全積算累計の50%になる位置の2θに対応する面間隔が0.32nmであり、80%になる位置の2θに対応する面間隔が0.61nmであるゼオライト(東亜合成株式会社製、「IXEPLAS-A1」)に変更した以外は実施例1と同様にして、結着材、機能層用組成物、セパレータ、負極、正極および二次電池を製造した。調製した機能層用組成物の粘度を、25℃で、B型粘度計(東機産業株式会社製、「TVB-10M」)を使用して測定したところ、60rpmで55mPa・s であった。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(Example 7)
A surface corresponding to 2θ at a position where the cumulative total of diffraction intensities obtained by integrating inorganic substances from the high diffraction angle side becomes 50% of the total cumulative total is 0.32 nm, and corresponding to 2θ at a position where it becomes 80%. A binder, a functional layer composition, a separator, a negative electrode, a positive electrode, and a binder were obtained in the same manner as in Example 1 except that the interval was changed to zeolite having a spacing of 0.61 nm (“IXEPLAS-A1” manufactured by Toagosei Co., Ltd.). A secondary battery was manufactured. The viscosity of the prepared composition for the functional layer was measured at 25 ° C. using a B-type viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.) and found to be 55 mPa · s at 60 rpm. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 無機物を、高回折角度側から積算した回折強度の積算累計が全積算累計の50%になる位置の2θに対応する面間隔が0.6nmであり、80%になる位置の2θに対応する面間隔が0.9nmであるゼオライト(東亜合成株式会社製、「IXE-300」)に変更した以外は実施例1と同様にして、結着材、機能層用組成物、セパレータ、負極、正極および二次電池を製造した。調製した機能層用組成物の粘度を、25℃で、B型粘度計(東機産業株式会社製、「TVB-10M」)を使用して測定したところ、60rpmで70mPa・s であった。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(Comparative Example 1)
The surface corresponding to 2θ at a position where the cumulative total of diffraction intensities obtained by integrating inorganic substances from the high diffraction angle side becomes 50% of the total cumulative total is 0.6 nm, and the surface corresponding to 2θ at a position of 80%. A binder, a functional layer composition, a separator, a negative electrode, a positive electrode, and a binder were prepared in the same manner as in Example 1 except that the interval was changed to zeolite with a spacing of 0.9 nm (“IXE-300” manufactured by Toagosei Co., Ltd.). A secondary battery was manufactured. The viscosity of the prepared functional layer composition was measured at 25 ° C. using a B-type viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.) and found to be 70 mPa · s at 60 rpm. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 無機物を、高回折角度側から積算した回折強度の積算累計が全積算累計の50%になる位置の2θに対応する面間隔が0.5nmであり、80%になる位置の2θに対応する面間隔が0.7nmであるハイドロタルサイト(協和化学工業株式会社製、「DHT-4A-2」、組成:Mg4.3Al2(OH)12.6CO3・mH2O)に変更した以外は実施例1と同様にして、結着材、機能層用組成物、セパレータ、負極、正極および二次電池を製造した。調製した機能層用組成物の粘度を、25℃で、B型粘度計(東機産業株式会社製、「TVB-10M」)を使用して測定したところ、60rpmで68mPa・s であった。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(Comparative Example 2)
Surface corresponding to 2θ at a position corresponding to 2θ at a position where the cumulative total of diffraction intensities obtained by integrating inorganic substances from the high diffraction angle side is 50% of the total cumulative total, and corresponding to 2θ at a position where it is 80% Except for changing to hydrotalcite (Kyowa Chemical Industry Co., Ltd., “DHT-4A-2”, composition: Mg 4.3 Al 2 (OH) 12.6 CO 3 · mH 2 O) with an interval of 0.7 nm. In the same manner as in Example 1, a binder, a functional layer composition, a separator, a negative electrode, a positive electrode, and a secondary battery were produced. The viscosity of the prepared functional layer composition was measured at 25 ° C. using a B-type viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.) and found to be 68 mPa · s at 60 rpm. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例3)
 無機物を、高回折角度側から積算した回折強度の積算累計が全積算累計の50%になる位置の2θに対応する面間隔が0.38nmであり、80%になる位置の2θに対応する面間隔が0.72nmであるハイドロタルサイトに変更した以外は実施例1と同様にして、結着材、機能層用組成物、セパレータ、負極、正極および二次電池を製造した。調製した機能層用組成物の粘度を、25℃で、B型粘度計(東機産業株式会社製、「TVB-10M」)を使用して測定したところ、60rpmで70mPa・s であった。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。
(Comparative Example 3)
The surface corresponding to 2θ at a position where the cumulative total of diffraction intensities obtained by integrating inorganic substances from the high diffraction angle side is 50% of the total cumulative total is 0.38 nm, and the surface corresponding to 2θ at a position where it is 80%. A binder, a functional layer composition, a separator, a negative electrode, a positive electrode, and a secondary battery were produced in the same manner as in Example 1 except that the distance was changed to hydrotalcite having a spacing of 0.72 nm. The viscosity of the prepared functional layer composition was measured at 25 ° C. using a B-type viscometer (“TVB-10M” manufactured by Toki Sangyo Co., Ltd.) and found to be 70 mPa · s at 60 rpm. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、所定の面間隔を有する無機物を含有する機能層用組成物を用いた実施例1~7では、二次電池に優れた高温サイクル特性及び低温出力特性を発揮させ得る機能層を形成できることが分かる。
 また、表1より、所定の面間隔を有さない無機物を含有する機能層用組成物を用いた比較例1~3による機能層では、二次電池に優れた高温サイクル特性及び低温出力特性を発揮させることができない。
From Table 1, in Examples 1 to 7 using the composition for a functional layer containing an inorganic substance having a predetermined face spacing, a functional layer capable of exhibiting excellent high-temperature cycle characteristics and low-temperature output characteristics is formed in the secondary battery. I understand that I can do it.
Further, from Table 1, the functional layers according to Comparative Examples 1 to 3 using the composition for the functional layer containing an inorganic substance having no predetermined interplanar spacing have excellent high temperature cycle characteristics and low temperature output characteristics for secondary batteries. It cannot be demonstrated.
 本発明によれば、二次電池の電気的特性を向上させることが可能な、非水系二次電池機能層用組成物を提供することができる。
 また、本発明によれば、二次電池の電気的特性を向上させることが可能な非水系二次電池用機能層を提供することができる。
 更に、本発明によれば、低温出力特性及び高温サイクル特性などの電気的特性に優れる非水系二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the composition for non-aqueous secondary battery functional layers which can improve the electrical property of a secondary battery can be provided.
Moreover, according to this invention, the functional layer for non-aqueous secondary batteries which can improve the electrical property of a secondary battery can be provided.
Furthermore, according to the present invention, it is possible to provide a non-aqueous secondary battery excellent in electrical characteristics such as low temperature output characteristics and high temperature cycle characteristics.

Claims (7)

  1.  無機物を含む非水系二次電池機能層用組成物であって、
     前記無機物は、
     X線回折法により得た、回折強度を縦軸とし、回折角度2θを横軸とするX線回折パターンの、回折角度2θ=3°~90°における前記回折強度の全積算累計を100%としたとき、
     高回折角度側から積算した前記回折強度の積算累計が前記全積算累計の50%になる位置の2θに対応する面間隔が0.1nm以上0.4nm以下であると共に、80%になる位置の2θに対応する面間隔が0.15nm以上0.70nm以下である非水系二次電池機能層用組成物。
    A composition for a non-aqueous secondary battery functional layer containing an inorganic substance,
    The inorganic substance is
    The total cumulative total of the diffraction intensities at the diffraction angle 2θ = 3 ° to 90 ° of the X-ray diffraction pattern with the vertical axis representing the diffraction intensity and the horizontal axis representing the diffraction angle 2θ obtained by the X-ray diffraction method is 100%. When
    The surface spacing corresponding to 2θ at a position where the cumulative total of the diffraction intensities integrated from the high diffraction angle side is 50% of the total cumulative total is 0.1 nm to 0.4 nm and 80%. A composition for a functional layer of a non-aqueous secondary battery, wherein a face spacing corresponding to 2θ is 0.15 nm or more and 0.70 nm or less.
  2.  全固形分に対する前記無機物の割合が、85質量%以上である請求項1に記載の非水系二次電池機能層用組成物。 The composition for a non-aqueous secondary battery functional layer according to claim 1, wherein the ratio of the inorganic substance to the total solid content is 85% by mass or more.
  3.  前記無機物が、ハイドロタルサイト及び/又はゼオライトである請求項1または2に記載の非水系二次電池機能層用組成物。 The composition for a non-aqueous secondary battery functional layer according to claim 1 or 2, wherein the inorganic substance is hydrotalcite and / or zeolite.
  4.  請求項1~3のいずれか一項に記載の非水系二次電池機能層用組成物を用いて形成した非水系二次電池用機能層。 A functional layer for a non-aqueous secondary battery formed using the composition for a non-aqueous secondary battery functional layer according to any one of claims 1 to 3.
  5.  請求項4に記載の非水系二次電池用機能層を備える、非水系二次電池。 A non-aqueous secondary battery comprising the functional layer for a non-aqueous secondary battery according to claim 4.
  6.  正極と、負極と、電解液と、セパレータとを備え、前記セパレータが前記非水系二次電池用機能層を備える、請求項5に記載の非水系二次電池。 The nonaqueous secondary battery according to claim 5, comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, wherein the separator includes the functional layer for the nonaqueous secondary battery.
  7.  前記正極が、Co、Mn、Fe、及びNiの何れか一種以上を含有する正極活物質を含む請求項5又は6に記載の非水系二次電池。 The non-aqueous secondary battery according to claim 5 or 6, wherein the positive electrode includes a positive electrode active material containing any one or more of Co, Mn, Fe, and Ni.
PCT/JP2016/003706 2015-08-24 2016-08-10 Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, and nonaqueous secondary battery WO2017033431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680046766.0A CN107925038B (en) 2015-08-24 2016-08-10 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, and nonaqueous secondary battery
KR1020187004341A KR20180039080A (en) 2015-08-24 2016-08-10 A composition for a non-aqueous secondary battery functional layer, a functional layer for a non-aqueous secondary battery, and a non-
JP2017536212A JP6915538B2 (en) 2015-08-24 2016-08-10 Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer, and non-aqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015165031 2015-08-24
JP2015-165031 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017033431A1 true WO2017033431A1 (en) 2017-03-02

Family

ID=58099739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003706 WO2017033431A1 (en) 2015-08-24 2016-08-10 Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, and nonaqueous secondary battery

Country Status (4)

Country Link
JP (1) JP6915538B2 (en)
KR (1) KR20180039080A (en)
CN (1) CN107925038B (en)
WO (1) WO2017033431A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208343A (en) * 2016-05-17 2017-11-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. Separation membrane for secondary battery and lithium secondary battery including the same
JP2019079701A (en) * 2017-10-25 2019-05-23 日立化成株式会社 Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
CN114243215A (en) * 2021-12-17 2022-03-25 蜂巢能源科技股份有限公司 Coating slurry, preparation method thereof, composite diaphragm and lithium ion battery
CN115020914A (en) * 2022-05-19 2022-09-06 江南大学 Spike-structured ceramic composite diaphragm interlayer for lithium/sodium-sulfur battery and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216373A (en) * 2005-02-03 2006-08-17 Sony Corp Battery
JP2008251527A (en) * 2007-03-02 2008-10-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011210413A (en) * 2010-03-29 2011-10-20 Konica Minolta Holdings Inc Separator for electrochemical element and nonaqueous electrolyte secondary battery
WO2013073594A1 (en) * 2011-11-15 2013-05-23 日立化成株式会社 Lithium-ion rechargeable battery material and use thereof
WO2014103755A1 (en) * 2012-12-25 2014-07-03 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362152B2 (en) * 1997-08-28 2009-11-11 昭和電工株式会社 Non-aqueous secondary battery
JP3748995B2 (en) * 1997-09-10 2006-02-22 昭和電工株式会社 Polymer solid electrolyte and use thereof
US9023204B2 (en) * 2009-12-17 2015-05-05 Entegris, Inc. Purifier for removing hydrogen fluoride from electrolytic solution
KR20220150439A (en) * 2012-11-08 2022-11-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216373A (en) * 2005-02-03 2006-08-17 Sony Corp Battery
JP2008251527A (en) * 2007-03-02 2008-10-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011210413A (en) * 2010-03-29 2011-10-20 Konica Minolta Holdings Inc Separator for electrochemical element and nonaqueous electrolyte secondary battery
WO2013073594A1 (en) * 2011-11-15 2013-05-23 日立化成株式会社 Lithium-ion rechargeable battery material and use thereof
WO2014103755A1 (en) * 2012-12-25 2014-07-03 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208343A (en) * 2016-05-17 2017-11-24 三星エスディアイ株式会社Samsung SDI Co., Ltd. Separation membrane for secondary battery and lithium secondary battery including the same
US11312871B2 (en) 2016-05-17 2022-04-26 Samsung Sdi Co., Ltd. Separator for secondary battery and lithium secondary battery comprising same
JP7097674B2 (en) 2016-05-17 2022-07-08 三星エスディアイ株式会社 Separation membrane for secondary battery and lithium secondary battery containing it
US11584861B2 (en) 2016-05-17 2023-02-21 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable lithium battery including the same
JP2019079701A (en) * 2017-10-25 2019-05-23 日立化成株式会社 Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
CN114243215A (en) * 2021-12-17 2022-03-25 蜂巢能源科技股份有限公司 Coating slurry, preparation method thereof, composite diaphragm and lithium ion battery
CN115020914A (en) * 2022-05-19 2022-09-06 江南大学 Spike-structured ceramic composite diaphragm interlayer for lithium/sodium-sulfur battery and preparation method thereof

Also Published As

Publication number Publication date
JPWO2017033431A1 (en) 2018-06-14
CN107925038B (en) 2021-07-06
CN107925038A (en) 2018-04-17
KR20180039080A (en) 2018-04-17
JP6915538B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6954118B2 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP7054623B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
TWI706588B (en) Anode structure with binders for silicon and stabilized lithium metal powder
RU2333574C1 (en) Active electrode material with oxide layers on multielement base and method of production thereof
KR101819067B1 (en) Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
US9118075B2 (en) Cathode active material for lithium secondary battery
CN110383546B (en) Conductive material dispersion for electrochemical element electrode, slurry composition and method for producing same, electrode, and electrochemical element
JP5079291B2 (en) Nonaqueous electrolyte secondary battery
KR102232551B1 (en) Binder for use in electrochemical device electrodes, particle composite for use in electrochemical device electrodes, electrochemical device electrode, electrochemical device, and electrochemical device electrode manufacturing method
KR102255281B1 (en) Binder composition for lithium-ion secondary battery electrodes, slurry composition for lithium-ion secondary battery electrodes, lithium-ion secondary battery electrode, and lithium-ion secondary battery
JP6915538B2 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
WO2017029813A1 (en) Binder composition for nonaqueous secondary batteries, composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6645101B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4984422B2 (en) Method for manufacturing electrode for secondary battery
Choudhury et al. Effect of fibrous separators on the performance of lithium–sulfur batteries
WO2015151525A1 (en) Binder composition for use in secondary battery electrode, slurry composition for use in secondary battery electrode, secondary battery electrode, and secondary battery
KR101551682B1 (en) Electrode and method of manufacturing an active material for the electrode
JP5564872B2 (en) Nonaqueous electrolyte secondary battery
JP2014149989A (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
TW202042429A (en) Method for producing positive electrode active material for lithium ion secondary batteries
JP2020514954A (en) Method for producing positive electrode active material, positive electrode active material using the same, and lithium secondary battery
WO2022138004A1 (en) Composition for electrochemical element positive electrodes, slurry composition for electrochemical element positive electrodes, positive electrode for electrochemical elements, and electrochemical element
JP2017004817A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536212

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187004341

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838782

Country of ref document: EP

Kind code of ref document: A1