WO2017032328A1 - 可插拔微型光无源器件 - Google Patents

可插拔微型光无源器件 Download PDF

Info

Publication number
WO2017032328A1
WO2017032328A1 PCT/CN2016/096691 CN2016096691W WO2017032328A1 WO 2017032328 A1 WO2017032328 A1 WO 2017032328A1 CN 2016096691 W CN2016096691 W CN 2016096691W WO 2017032328 A1 WO2017032328 A1 WO 2017032328A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
ceramic ferrule
housing
optical device
pluggable
Prior art date
Application number
PCT/CN2016/096691
Other languages
English (en)
French (fr)
Inventor
孙先胜
张璇
于农村
黄坚龙
Original Assignee
珠海保税区光联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海保税区光联通讯技术有限公司 filed Critical 珠海保税区光联通讯技术有限公司
Priority to US15/754,929 priority Critical patent/US11022759B2/en
Publication of WO2017032328A1 publication Critical patent/WO2017032328A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/2937In line lens-filtering-lens devices, i.e. elements arranged along a line and mountable in a cylindrical package for compactness, e.g. 3- port device with GRIN lenses sandwiching a single filter operating at normal incidence in a tubular package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3825Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3845Details of mounting fibres in ferrules; Assembly methods; Manufacture ferrules comprising functional elements, e.g. filters

Definitions

  • the present invention relates to an optical device for a fiber optic communication system, and more particularly to a pluggable miniature optical passive device.
  • wavelength division multiplexing technology has become the mainstream technology of optical layer networks as a multiplexing technology in the optical domain.
  • Wavelength division multiplexing mainly uses wavelength division multiplexing devices to split optical signals into multiple beams. Therefore, wavelength division multiplexing devices are important optical devices for implementing wavelength division multiplexing.
  • wavelength division multiplexing devices are also applied to the construction of data centers. Therefore, data centers are small, miniaturized, and plug-and-play wavelength divisions. Multiplexed devices have a large demand for expansion between cabinets.
  • the optical passive components or modules in the optical communication industry are mainly separated devices or cascaded modules. On the one hand, it is inconvenient to directly connect with the jumpers. On the other hand, the size of the devices is relatively large, and the data center is not suitable for the device. The need for miniaturization and miniaturization.
  • optical passive components such as wavelength division multiplexing, including the size of optical passive components, which needs to be basically the same or the same as conventional optical jumpers. Only when this condition is met can all the jumper tails on the chassis panel be exposed. The length is the same for easy wiring.
  • a pluggable optical fiber jumper as shown in FIG. 1 has been developed, and the optical fiber jumper has a pluggable micro wavelength division multiplexing device 10 for dividing an optical signal into two parts.
  • the two separate optical signals are incident on the pluggable optical passive components 12, 13, respectively.
  • the pluggable micro-wavelength division multiplexer 10 has a housing 15 including a connector plug housing 16, a jumper assembly 17, a package tube 18, and a protective tail sleeve 19, ceramic insert
  • the core 21 and the wavelength division multiplexer 24 are enclosed in a housing 15. Most of the ceramic ferrule 21 is covered by the connector plug housing 16, and one end of the ceramic ferrule 21 is extended outside the connector plug housing 16 and the other end is adjacent to the retaining member 22.
  • the bare ferrule 23 is connected between the ceramic ferrule 21 and the wavelength division multiplexer 24 via a bare fiber 23, and the bare fiber 23 is connected to one end of the wavelength division multiplexer 24.
  • a fiber optic head is required in the wavelength division multiplexer 24, and the fiber head is located near one end of the bare fiber 23.
  • the other end of the wavelength division multiplexer 24 is connected to two optical fibers 25, 26 through which the optical fibers 25, 26 are passed.
  • this pluggable micro wavelength division multiplexer 10 has the following problems: First, the device The size of the piece is large, 50% longer than the length of the industry standard jumper. When used, it will face the inconsistency of the length of the jumper on the chassis panel. Since the device is exposed to an excessively long tail, it is easily damaged by the collision, and at the same time, the side pull capability is reduced due to the lengthening of the arm.
  • the tail cable will generate a side pulling force due to the action of gravity. As the device grows, the side pulling arm becomes longer. It is difficult for the device to meet the requirements of the cable jumper side pull in the IEC specification, and the product has a short life.
  • the adaptive spring structure for buffering is eliminated due to structural factors, and only the pluggable micro-wavelength division multiplexer is left in the plugging process.
  • the spring buffer in the device on the other side of the 10 matching the buffering effect is deteriorated, resulting in excessive impact and damage of the plugging device, and also does not comply with the IEC specifications.
  • connection between the wavelength division multiplexer 24 and the ceramic ferrule 21 inside the device is realized by a fragile bare fiber 23 of 125 ⁇ m, and the bare fiber 23 needs to be pre-made independently when applied to the front ceramic ferrule 21.
  • the optical passive device is then stripped at the single-line transmission end of the device and penetrates into the ceramic ferrule 21.
  • the above operation is complicated and the glass fiber is easily broken during the fiber stripping process, which affects the yield of the product.
  • the finished device also undergoes slight displacement during the shock and vibration, resulting in damage and breakage of the bare fiber 23.
  • the pluggable micro-wavelength division multiplexer 10 uses more metal tubes or plastic tubes, the manufacturing cost of the device is increased.
  • Another object of the present invention is to provide a pluggable miniature optical passive device that is less susceptible to damage and that is less expensive to produce.
  • the present invention provides a pluggable miniature optical passive device comprising a housing having an optical device mounted therein, the first end of the optical device being provided with a first ceramic ferrule, first The ceramic ferrule is provided with at least one core, the first end of the first ceramic ferrule protrudes out of the casing, the second end of the first ceramic ferrule is located in the optical device, and the second end of the first ceramic ferrule is plated An antireflection film is disposed, the second end of the first ceramic ferrule is closely disposed with a lens, and the lens is located in the optical device; the optical device is further provided with at least one optical fiber, and the first end of the optical fiber is disposed adjacent to the lens and away from the On one side of the first ceramic ferrule, the light beam is incident on the optical fiber of the optical device through the ceramic ferrule and the lens.
  • the pluggable micro optical passive device of the present invention encapsulates the ceramic ferrule and the lens in the same optical device, and has an antireflection film at the second end of the ceramic ferrule, and then the ceramic ferrule The second end is placed close to the lens, so that there is no need to provide a bare fiber between the ceramic ferrule and the optical device, so that the size of the pluggable micro-optical passive device can be made small and can be matched with the industry standard jumper.
  • the length dimensions are matched, and after removing the bare fiber, there is no need to use more metal tubes or plastic tubes, and the manufacturing cost is lower.
  • the bare optical fiber is not disposed in the pluggable micro-optical passive device, the bare fiber breakage does not occur during the plugging and unplugging process, ensuring the yield of the product and ensuring the service life of the product.
  • the optical device is provided with a first retaining member at a position close to the first end, and a through hole is formed in a middle portion of the retaining member, and the first ceramic ferrule is inserted into the through hole.
  • a spring is disposed in the housing, the first end of the spring abuts against the end surface of the retaining member, and a peripheral portion of the housing is provided with a shoulder portion, and the second end of the spring abuts on the shoulder portion.
  • the pluggable micro-optical passive device buffers the impact force of the optical device through the spring during the plugging and unplugging process, and the optical device is easily damaged due to excessive impact force, thereby prolonging the pluggable miniature optical passive. The life of the device.
  • the second end of the housing is provided with a second ceramic ferrule
  • the second ceramic ferrule is located at the second end of the optical device
  • the second end of the optical device is provided with a second retaining member.
  • the housing includes a first connector plug housing that is sleeved outside the first ceramic ferrule, an adapter assembly that is wrapped around the optical device, and a sleeve that is sleeved outside the second ceramic ferrule. Second connector plug housing.
  • the housing includes a first connector plug housing that is sleeved outside the first ceramic ferrule, an adapter assembly that covers the exterior of the intermediate portion of the optical device, and a second package that covers the optical device.
  • a package cap outside the end, the end of the second ceramic ferrule extends out of the package cap and is wrapped in a flange.
  • the flange is provided at one end of the pluggable micro-optical passive device, which can meet the installation requirements of the pluggable micro-optical passive component in special occasions, and the use of the pluggable micro-passive device is more widely.
  • the ceramic ferrule has more than one core.
  • the core of the ceramic ferrule is two or three, a variety of different wavelength division multiplexing devices such as 2 ⁇ 4, 3 ⁇ 3, etc. can be formed, and the structure of the product is more flexible.
  • FIG. 1 is a structural diagram of a conventional pluggable optical fiber jumper.
  • FIG. 2 is an internal structural diagram of a conventional pluggable micro wavelength division multiplexer.
  • FIG 3 is a structural view of an optical device and a fiber-optic head of a conventional pluggable micro-wavelength division multiplexer.
  • Fig. 4 is a structural view showing a first embodiment of the present invention.
  • Figure 5 is an exploded perspective view showing the first embodiment of the present invention.
  • Fig. 6 is a view showing the internal structure of the first embodiment of the present invention.
  • Figure 7 is a structural view of an optical device in a first embodiment of the present invention.
  • Figure 8 is a cross-sectional view showing an optical device in a first embodiment of the present invention.
  • Figure 9 is a diagram showing the internal structure of a second embodiment of the present invention.
  • Figure 10 is a diagram showing the internal structure of a third embodiment of the present invention.
  • Figure 11 is a diagram showing the internal structure of a fourth embodiment of the present invention.
  • Figure 12 is a diagram showing the internal structure of a fifth embodiment of the present invention.
  • Figure 13 is a view showing the internal structure of a sixth embodiment of the present invention.
  • the pluggable miniature optical passive device of the present invention is used in a fiber optic system, and may be a different optical device such as a wavelength division multiplexing device, an optical isolator, an optical circulator, and an optical beam splitter.
  • the pluggable miniature optical passive device of the present embodiment can be used as a wavelength division multiplexing device having a housing 30 including a connector socket housing 31, a jumper assembly 32, and a protective tail sleeve 33.
  • the middle of the connector socket housing 31 is provided with a through hole 34 which penetrates both ends of the connector socket housing 31, and the connector socket housing 31 is provided with an elastic member 35.
  • a portion of the jumper assembly 32 is inserted into the connector receptacle housing 31 to effect a fixed connection of the jumper assembly 32 to the connector receptacle housing 31.
  • a stopper 36 is disposed on the outer wall of the jumper assembly 32, and the end of the elastic member 35 abuts the stop Below the piece 36.
  • the protective tail sleeve 33 is located on the side of the jumper assembly 32 remote from the connector socket housing 31, and the protective tail sleeve 33 is fixedly coupled to the jumper assembly 32.
  • a ceramic ferrule 43 and a wavelength division multiplexer 40 and a spring 47 as optical devices are disposed in the casing 30.
  • the inside of the ceramic ferrule 43 is provided with a core 432 and a ceramic ferrule 43.
  • One end 41 (or front end) projects forwardly out of the housing 30, and a majority of the ceramic ferrule 43 is located within the through hole 34 of the connector receptacle housing 31.
  • the second end 42 of the ceramic ferrule 43 is inserted into the first end of the wavelength division multiplexer 40, and a lens 45 is further disposed at the first end of the wavelength division multiplexer 40.
  • the second end 42 of the core 43 is disposed in close proximity of the end face of the lens 45.
  • a gap 422 is provided between the second end 42 of the ceramic ferrule 43 and the lens 45.
  • the size of the gap 422 can be determined according to the requirements of optical performance. Adjustments are generally between 0.15 mm and 0.2 mm.
  • the second end 42 of the ceramic ferrule 43 is coated with an anti-reflection film, in particular, an anti-reflection film is coated on the second end of the core 432 to improve the light transmittance of the core 432 and thereby reduce the loss of the beam.
  • the end surface 44 of the lens 45 adjacent to the ceramic ferrule 43 is a sloped surface, that is, the end surface 44 of the lens 45 adjacent to the ceramic ferrule 43 is inclined with the end surface of the second end 42 of the ceramic ferrule 43, so that the end surface 44 of the lens 45 can be blocked.
  • the reflected light is returned back to the core 432.
  • Lens 45 can act as a fiber collimator for collimating the beam and causing the beam to be incident into the fiber of wavelength division multiplexer 40.
  • An optical fiber is disposed in the wavelength division multiplexer 40.
  • One end of the optical fiber is adjacent to the end surface of the lens 45, and the light beam can be incident into the optical fiber of the wavelength division multiplexer 40 via the ceramic ferrule 43 and the lens 45.
  • a wavelength division multiplex film may be plated on the end surface of the lens 45 away from the ceramic ferrule 43.
  • the optical device 40 is not a wavelength division multiplexer, it is not necessary to plate the lens 45 with a wavelength division multiplexed film.
  • a retaining member 48 is disposed outside the first end of the wavelength division multiplexer 40. After the wavelength division multiplexer 40 is mounted to the housing 40, the retaining member 48 is wrapped within the connector receptacle housing 31. As can be seen from Figure 8, the central portion of the retaining member 48 is provided with a through hole through which the second end 42 of the ceramic ferrule 43 passes. Moreover, the inner wall of the jumper assembly 32 is provided with a shoulder portion 46, and the spring 47 is sleeved on the outer circumference of the first end of the wavelength division multiplexer 40, and both ends of the spring 47 abut against the end faces of the retaining member 48, respectively. On the shoulder portion 46.
  • the second end of the wavelength division multiplexer 40 is connected to an optical fiber 49, and the optical fiber 49 is wrapped in the protective tail sleeve 33, and the optical fiber 49 is divided into two optical fibers 51, 52 and protrudes from the protective tail sleeve 33.
  • a core 432 is disposed in the ceramic ferrule 43, so that the light beam is incident from the ceramic ferrule 43 and split into two beams by the wavelength division multiplexer 40 and respectively from the optical fiber. 51, 52 exit, to achieve beam splitting.
  • the second end 42 of the ceramic ferrule 43 and the retaining member 48 are wrapped outside the connector socket.
  • a majority of the wavelength division multiplexer 40 is wrapped within the jumper assembly 32, the spring 47 is wrapped within the connector receptacle housing 31 and the jumper assembly 32, and the second end of the wavelength division multiplexer 49
  • the optical fiber 49 is wrapped in the protective tail sleeve 33.
  • the wavelength division multiplexer 40 When the wavelength division multiplexer 40 is manufactured, it is necessary to plate an antireflection film on the second end 42 of the ceramic ferrule 43, and insert the ceramic ferrule 43 into the case where the lens 45 is mounted in the wavelength division multiplexer 40. Within the wavelength division multiplexer 40. After the pluggable micro-optical passive device is packaged, the first end 41 of the ceramic ferrule 43 is ground to obtain a final finished product.
  • the pluggable micro-optical passive device uses the ceramic ferrule 43 as a jumper ferrule and a common part of the fiber-optic head of the wavelength division multiplexer 40, it is not necessary to use bare fiber to connect in the pluggable micro-optical passive device.
  • Jumper ferrules and wavelength division multiplexer 40 the length of pluggable miniature optical passive components is small, and can match the length dimension of industry standard jumpers, meeting the industry's small size for pluggable miniature optical passive components The need for miniaturization and miniaturization.
  • the pluggable micro optical passive device does not have a bare optical fiber, the manufacturing process of the device is simple, and the short life of the device is not caused by the breakage of the bare optical fiber.
  • the size of the device is small, all of the materials for manufacturing the housing 30 are small, which can reduce the production cost and manufacturing difficulty of the device.
  • the plug-in micro-optical passive device is provided with a retaining member 48 and a spring 49, which can effectively buffer the damage of the optical device such as the wavelength division multiplexer during the insertion and removal of the device, and at the same time, avoid the optical fiber pair. Lateral adaptation in the quasi-process can extend the life of the device.
  • the pluggable micro-optical passive device of this embodiment may be a device for realizing functions such as optical isolation, and has a housing 60.
  • the housing 60 of the embodiment includes a connector socket housing 61 that is sequentially connected, and jumps.
  • the wire assembly 62 and the protective tail sleeve 63 are provided with a ceramic ferrule 65 and an optical device 64.
  • the first end of the ceramic ferrule 65 extends out of the connector socket housing 61, and the second end is located in the optical device 64, and The end surface of the second end is coated with an anti-reflection film.
  • a lens is provided in the optical device 64, and the lens is located on one side of the second end of the ceramic ferrule 65.
  • the first end of the optical device 64 is provided with a retaining member 66, and the first end of the optical device 64 is provided with a spring 67.
  • the inner wall of the jumper assembly 62 is provided with a shoulder portion 68, and the two ends of the spring 67 are respectively abutted. On the end face of the retaining member 66 and on the shoulder portion 68.
  • the protective tail sleeve 63 of the present embodiment only encloses an optical fiber 69, that is, the light beam is directly emitted from an optical fiber 69 after passing through the optical device, so the optical device 64 It can be an optical device such as an optical attenuator or an optical isolator.
  • the pluggable micro-optical passive device of this embodiment may be a device for implementing a wavelength division multiplexing function, and has a housing 70 including a connector socket housing 71, a jumper assembly 72, and a serially connected connector.
  • the tail sleeve 73 is protected.
  • the housing 70 is provided with a ceramic ferrule 75 and a wavelength division multiplexer 74.
  • the first end of the ceramic ferrule 75 extends out of the connector socket housing 71, and the second end is located in the wavelength division multiplexer 74.
  • the end surface of the second end is coated with an anti-reflection film.
  • a wavelength division multiplexer 74 is provided with a lens as a fiber collimator, and the lens is located on one side of the second end of the ceramic ferrule 75.
  • a retaining member 76 is disposed at a first end of the wavelength division multiplexer 74, and a first end of the optical device 74 is provided with a spring 77.
  • the inner wall of the jumper assembly 72 is provided with a shoulder portion, and the first end of the spring 77 Abutting on the end surface of the retaining member 76, the second end abuts on the shoulder portion.
  • the protective tail sleeve 73 of the embodiment is covered with three optical fibers 78, and the ceramic ferrule 75 is provided with three cores. Therefore, the pluggable miniature optical passive device of the embodiment is a 3 ⁇ 3 optical isolation device or light. Attenuation device.
  • the pluggable micro-optical passive device of this embodiment may also be a device for realizing a wavelength division multiplexing function, and has a housing 80 including a connector socket housing 81, a jumper assembly 82, and a serially connected connector.
  • the tail sleeve 83 is protected.
  • the housing 80 is provided with a ceramic ferrule 85 and a wavelength division multiplexer 84.
  • the first end of the ceramic ferrule 85 extends out of the connector socket housing 81, and the second end is located in the wavelength division multiplexer 84.
  • the end surface of the second end is coated with an anti-reflection film.
  • a wavelength division multiplexer 84 is provided with a lens, and the lens is located on one side of the second end of the ceramic ferrule 85.
  • a retaining member 86 is disposed at a first end of the wavelength division multiplexer 84, and a first end of the optical device 84 is provided with a spring 87.
  • the inner wall of the jumper assembly 82 is provided with a shoulder portion, and the first end of the spring 87 is provided. Abutting on the end surface of the retaining member 86, the second end abuts on the shoulder portion.
  • the protective tail sleeve 83 of the embodiment is covered with four optical fibers 88, and the ceramic ferrule 85 is provided with two cores. Therefore, the pluggable miniature optical passive device of the embodiment is 2 ⁇ 4 wave division. Use the device.
  • the present embodiment has a housing 90 including a connector socket housing 91, a adapter assembly 92, and a connector socket housing 93 which are sequentially connected, wherein the connector socket housing 91 is provided with an elastic member 94 for connection. Another elastic member 95 is provided on the socket housing 93.
  • the housing 90 is provided with an optical device 96, and the first end of the optical device 96 is provided with a ceramic ferrule 97, The other end is provided with another ceramic ferrule 101.
  • the first end of the ceramic ferrule 97 extends out of the connector socket housing 91, the second end is located in the optical device 96, and the optical device 96 is provided with an optical fiber for optical path communication. And as a lens of the fiber collimator, the lens is located on one side of the second end of the ceramic ferrule 97.
  • the first end of the optical device 96 is provided with a retaining member 98, and the first end of the optical device 96 is provided with a spring 99, and the inner wall of the adapter assembly 92 is provided with a shoulder portion 100, and the first end of the spring 99 abuts On the end face of the retaining member 98, the second end abuts on the shoulder portion 100.
  • the first end of the ceramic ferrule 101 extends out of the connector socket housing 93, the second end is located in the optical device 96, and the optical device 96 is located on the side of the second end of the ceramic ferrule 101 with another lens, at the optical device 96.
  • the second end is provided with a retaining member 102.
  • the first end of the optical device 96, the majority of the ceramic ferrule 97, and the retaining member 98 are wrapped in the connector socket housing 91, and the middle portion of the optical device 96 is wrapped in the adapter assembly 92.
  • the second end of the optical device 96, the majority of the ceramic ferrule 101, and the retaining member 102 are wrapped within the connector receptacle housing 93.
  • the present embodiment has a housing 110 including a connector socket housing 111, a adapter assembly 112, and a package cap 113 that are sequentially connected.
  • the connector socket housing 111 is provided with an elastic member 115, and a connector socket.
  • a through hole 116 is provided in a middle portion of the outer casing 111.
  • the housing 110 is provided with an optical device 117.
  • the first end of the optical device 117 is provided with a ceramic ferrule 118, and the second end is provided with another ceramic ferrule 121.
  • the first end of the ceramic ferrule 118 extends out of the connector socket.
  • the second end is located in the optical device 117, and the optical device 117 is provided with an optical fiber serving as an optical path and a lens as a fiber collimator.
  • the lens is located on the second end side of the ceramic ferrule 118.
  • the first end of the optical device 117 is provided with a retaining member 119, and the first end of the optical device 117 is jacketed with a spring 120, and the inner wall of the adapter assembly 112 is provided with a shoulder portion 123, and the first end of the spring 120 abuts On the end face of the retaining member 119, the second end abuts on the shoulder portion 123.
  • the first end of the ceramic ferrule 121 extends out of the connector socket housing 113, the second end is located in the optical device 117, and the optical device 117 is disposed on a side of the second end of the ceramic ferrule 121.
  • a retaining member 122 is disposed at a second end of the optical device 117, and a flange 114 is disposed on an outer side of the connector receptacle housing 113.
  • the first end of the ceramic ferrule 121 is wrapped within the flange 114.
  • the first end of the optical device 117, the majority of the ceramic ferrule 118, and the retaining member 119 are wrapped in the connector socket housing 111, and the middle portion of the optical device 117 is wrapped around the adapter assembly. 112, while the second end of the optical device 117, a small portion of the ceramic ferrule 121, and the retaining member 122 are wrapped in the connector socket housing 113, and the spring 120 is wrapped around the connector socket housing 111 and the adapter assembly 112. .
  • the pluggable micro-optical passive device of the fifth embodiment and the sixth embodiment are provided with ceramic ferrules at both ends thereof, which are two-head devices, and the pluggable micro-optical passive device of the structure can satisfy, for example, an optical isolator. Structural requirements for devices such as optical attenuators.
  • the above solution is only the preferred mode of the present invention, and more changes can be made in practical applications.
  • the shape of the ceramic ferrule and the lens can be changed according to the actual needs of the device; or, the ceramic ferrule
  • the number of inner cores and the number of optical fibers covered by the protective tail sleeve can also be changed according to actual use requirements, and these changes can achieve the object of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种可插拔微型光无源器件,包括壳体(30),壳体(30)内安装有光学器件(40),光学器件(40)的第一端设有第一陶瓷插芯(43)。第一陶瓷插芯(43)内设有至少一纤芯(432),第一陶瓷插芯(43)的第一端(41)伸出壳体(30)外,第一陶瓷插芯(43)的第二端(42)位于光学器件(40)内,且第一陶瓷插芯(43)的第二端(42)镀有增透膜。贴近第一陶瓷插芯(43)的第二端(42)设置有透镜(45),透镜(45)位于光学器件(40)内。光学器件(40)内还设有至少一根光纤,光纤的第一端设置在靠近透镜(45)且远离第一陶瓷插芯(43)的一侧,光束经第一陶瓷插芯(43)、透镜(45)入射到光学器件(40)的光纤中。该可插拔微型光无源器件体积小、制造成本低、使用寿命长。

Description

可插拔微型光无源器件 技术领域
本发明涉及一种用于光纤通信系统的光学器件,具体地说,是涉及一种可插拔微型光无源器件。
背景技术
随着光纤通讯技术的发展,波分复用技术作为一种在光域上的复用技术已经成为目前光层网络的主流技术。波分复用技术主要应用波分复用器件将光信号分成多束信号,因此,波分复用器件是实现波分复用技术的重要光学器件。
随着近年来大数据、云计算等高密度信息通讯技术的发展,波分复用器件也应用到数据中心的建设当中,因此,数据中心对小型化、微型化、即插即用的波分复用器件在机柜间扩展上有大量的需求。而目前光通讯行业的光无源器件或模块以分离器件或级联模块为主,一方面不方便与跳线直接连接,另一方面由于器件的尺寸都比较大,无法满足数据中心对器件小型化、微型化的需求。现在数据中心对波分复用等光无源器件的需求包括光无源器件的尺寸需要与常规的光学跳线基本一致或相同,只有满足这个条件下才能保证机箱面板上所有的跳线尾部露出长度相同,方便其布线。
为了解决上述问题,人们研发出一种如图1所示的可插拔的光纤跳线,该光纤跳线具有一个可插拔式微型波分复用器件10,用于将光信号分成两部分,分开的两部分光信号分别入射到可插拔式的光无源器件12、13中。
参见图2与图3,可插拔式的微型波分复用器10具有壳体15,壳体15包括连接器插头外壳16、跳线组件17、封装管18以及保护尾套19,陶瓷插芯21以及波分复用器24封装在壳体15内。陶瓷插芯21的大部分被连接器插头外壳16包套,且陶瓷插芯21的一端外伸到连接器插头外壳16外,另一端与止退件22邻接。在陶瓷插芯21与波分复用器24之间通过一根裸光纤23连接,裸光纤23连接到波分复用器24的一端。波分复用器24内需要设置光纤头,光纤头位于靠近裸光纤23的一端。波分复用器24的另一端连接有两根光纤25、26,光纤25、26从保护尾套19穿出。
然而,这种可插拔式的微型波分复用器10具有以下几个问题:首先,器 件的外形尺寸大,与行业标准跳线的长度尺寸相比长出50%,使用时会面临在机箱面板上跳线头外露长度高低不一致问题。由于这种器件露出过长的尾部容易被碰到造成损坏,同时由于力臂变长承受侧拉能力下降。
其次,由于这种器件相对于行业标准跳线的尺寸变长,这种器件插到面板上后尾部光缆由于重力的作用会产生侧拉的力,由于器件增长,侧拉的力臂变长,器件很难符合IEC规范中对光缆跳线侧拉的要求,产品寿命较短。
再次,将这种器件的陶瓷插芯21固定时,由于结构上的因素取消了用于缓冲的自适应弹簧结构,会造成插拔过程中只剩下与可插拔式微型波分复用器10相匹配的另外一侧的器件内的弹簧缓冲,缓冲效果变差,导致插拔器件冲击力过大且易损伤,同时也不符合IEC的规范。
此外,该器件内部的波分复用器24与陶瓷插芯21间的连接采用了脆弱的125微米的裸光纤23实现,裸光纤23在加到前端陶瓷插芯21上时需要预先制作一个独立的光无源器件,然后在器件的单线透射端进行剥纤并穿入陶瓷插芯21的操作,由于上述操作复杂而且玻璃光纤在剥纤过程中极易断裂,影响产品的合格率。同时,成品器件在冲击震动过程中也会发生轻微的位移导致裸光纤23受损断裂。
最后,由于这种可插拔式微型波分复用器10使用较多的金属管或塑料管,增加了器件的制造成本。
发明内容
本发明的主要目的是提供一种尺寸小且能够行业标准跳线的长度尺寸相匹配的可插拔微型光无源器件。
本发明的另一目的是提供一种不易损坏且生产成本较低的可插拔微型光无源器件。
为了实现上述的主要目的,本发明提供的一种可插拔微型光无源器件,包括一个壳体,壳体内安装有一光学器件,光学器件的第一端设有一第一陶瓷插芯,第一陶瓷插芯内设有至少一纤芯,第一陶瓷插芯的第一端伸出壳体外,第一陶瓷插芯的第二端位于光学器件内,且第一陶瓷插芯的第二端镀有一增透膜,第一陶瓷插芯的第二端贴近地设有一透镜,透镜位于光学器件内;光学器件内还设有至少一根光纤,光纤的第一端设置在靠近透镜且远离所述第一陶瓷插芯的一侧,光束经陶瓷插芯、透镜入射到光学器件的光纤。
由上述方案可见,本发明的可插拔微型光无源器件将陶瓷插芯以及透镜封装在同一光学器件内,并且在陶瓷插芯的第二端设有增透膜,再将陶瓷插芯的第二端与透镜贴近地设置在一起,从而不需要在陶瓷插芯与光学器件之间设置裸光纤,使可插拔微型光无源器件的尺寸可以做得很小,能够与行业标准跳线的长度尺寸相匹配,并且去除了裸光纤之后也不需要使用较多的金属管或者塑料管,制造成本较低。
此外,由于可插拔微型光无源器件内没有设置裸光纤,在插拔的过程中不会发生裸光纤断裂的情况,确保产品的合格率,也确保产品的使用寿命。
一个优选的方案是,光学器件在靠近第一端的位置处设有一第一止退件,且止退件的中部设有一通孔,第一陶瓷插芯插入到通孔内。并且,壳体内设有一弹簧,弹簧的第一端抵接在止退件的端面上,壳体内的周壁上设有一肩台部,弹簧的第二端抵接在肩台部上。
由此可见,可插拔微型光无源器件在插拔过程中通过弹簧来缓冲光学器件的冲击力,避免光学器件因受到过大的冲击力而容易损坏,从而延长可插拔微型光无源器件的使用寿命。
进一步的方案是,壳体的第二端设有一第二陶瓷插芯,第二陶瓷插芯位于光学器件的第二端,且光学器件的第二端设有一第二止退件。
可见,在壳体内设置两个陶瓷插芯从而形成双头器件,使可插拔微型光无源器件可以直接连接到两个不同的光学设备上,满足不同光学设备的连接需求。
更进一步的方案是,壳体包括包套在第一陶瓷插芯外的一第一连接器插头外壳、包套在光学器件外的一转接组件以及包套在第二陶瓷插芯外的一第二连接器插头外壳。
由此可见,使用两个不同的连接器插头外壳分别包套两个陶瓷插芯,可插拔微型光无源器件两端的外壳结构相同,方便可插拔微型光无源器件实现两端正反方向的连接。
可选的方案是,壳体包括包套在第一陶瓷插芯外的一第一连接器插头外壳、包套在光学器件中间区域的外部的一转接组件以及包套在光学器件的第二端外的一封装帽,第二陶瓷插芯的端部伸出封装帽并包套在一法兰内。
可见,在可插拔微型光无源器件的一端设置法兰,可以满足特殊场合下可插拔微型光无源器件的安装需求,使可插拔微型无源器件的使用场合更加 广泛。
更进一步的方案是,陶瓷插芯内具有一根以上的纤芯。在陶瓷插芯内的纤芯为两根或三根时可以形成2×4、3×3等多种不同规格的波分复用器件,产品的结构更加灵活。
附图说明
图1是现有可插拔光纤跳线的结构图。
图2是现有可插拔微型波分复用器的内部结构图。
图3是现有可插拔微型波分复用器的光学器件与光纤头的结构图。
图4是本发明第一实施例的结构图。
图5是本发明第一实施例的结构分解图。
图6是本发明第一实施例的内部结构图。
图7是本发明第一实施例中光学器件的结构图。
图8是本发明第一实施例中光学器件的剖视图。
图9是本发明第二实施例的内部结构图。
图10是本发明第三实施例的内部结构图。
图11是本发明第四实施例的内部结构图。
图12是本发明第五实施例的内部结构图。
图13是本发明第六实施例的内部结构图。
以下结合附图及实施例对本发明作进一步说明。
具体实施方式
本发明的可插拔微型光无源器件用在光纤系统中,可以是波分复用器件、光隔离器、光环形器、光分束器等不同的光学器件。
第一实施例:
参见图4,本实施例的可插拔微型光无源器件可以作为波分复用器件,其具有壳体30,壳体30包括连接器插座外壳31、跳线组件32以及保护尾套33,连接器插座外壳31的中部设有通孔34,通孔34贯穿连接器插座外壳31的两端,并且连接器插座外壳31上设有弹性件35。跳线组件32的一部分插入到连接器插座外壳31内,从而实现跳线组件32与连接器插座外壳31的固定连接。跳线组件32的外壁上设有止挡件36,弹性件35的端部抵接在止挡 件36的下方。保护尾套33位于跳线组件32远离连接器插座外壳31的一侧,且保护尾套33与跳线组件32固定连接在一起。
参见图5与图6,在壳体30内装有陶瓷插芯43以及作为光学器件的波分复用器40、弹簧47,陶瓷插芯43的内部设有一纤芯432,陶瓷插芯43的第一端41(或是说前端)向前伸出壳体30外,且陶瓷插芯43的大部分位于连接器插座外壳31的通孔34内。如图7与图8所示,陶瓷插芯43的第二端42插入到波分复用器40的第一端,在波分复用器40的第一端还设有一透镜45,陶瓷插芯43的第二端42贴近地设置在透镜45的端面前方,其中在陶瓷插芯43的第二端42与透镜45之间设有一间隙422,该间隙422的大小可以根据光学性能的需求进行调整,一般是介于0.15毫米至0.2毫米之间。优选地,陶瓷插芯43的第二端42上镀上一增透膜,特别是在纤芯432的第二端镀上增透膜,提高纤芯432的透光性从而可以减少光束的损耗,并且透镜45靠近陶瓷插芯43的端面44为斜面,也就是透镜45靠近陶瓷插芯43的端面44与陶瓷插芯43第二端42的端面呈倾斜设置,从而可以阻止透镜45的端面44的反射光反向返回纤芯432。透镜45可以作为光纤准直器,用于将光束准直并让光束入射到波分复用器40的光纤内。
波分复用器40内设有一光纤,光纤的一端靠近透镜45的端面,光束可以经陶瓷插芯43、透镜45入射到波分复用器40的光纤内。并且,透镜45远离陶瓷插芯43的端面上可以镀上波分复用膜。当然,如果光学器件40不是波分复用器,则无需在透镜45上镀上波分复用膜。
在波分复用器40的第一端外侧设有止退件48,波分复用器40安装到壳体40后,止退件48被包套在连接器插座外壳31内。从图8可见,止退件48的中部设有通孔,陶瓷插芯43的第二端42穿过该通孔内。并且,跳线组件32的内壁上设有肩台部46,弹簧47套在波分复用器40的第一端的外周,且弹簧47的两端分别抵接在止退件48的端面以及肩台部46上。波分复用器40的第二端连接有一光纤49,光纤49被包套在保护尾套33内,并且光纤49被分开成两根光纤51、52并从保护尾套33伸出。
参见图6,从陶瓷插芯43的横截面可见,陶瓷插芯43内设有一根纤芯432,因此光束从陶瓷插芯43入射后被波分复用器40分成两束光束并分别从光纤51、52出射,实现光束的分束。
本实施例中,陶瓷插芯43的第二端42、止退件48包套在连接器插座外 壳31内,波分复用器40的大部分包套在跳线组件32内,弹簧47包套在连接器插座外壳31及跳线组件32内,而波分复用器49的第二端、光纤49包套在保护尾套33内。
制造波分复用器40时,需要在陶瓷插芯43的第二端42上镀上增透膜,并且在波分复用器40内安装了透镜45的情况下将陶瓷插芯43插入到波分复用器40内。待可插拔微型光无源器件封装后,对陶瓷插芯43的第一端41进行研磨,得到最终的成品。
由于可插拔微型光无源器件使用陶瓷插芯43作为跳线插芯以及波分复用器40的光纤头的共用件,这样无需在可插拔微型光无源器件内使用裸光纤来连接跳线插芯以及波分复用器40,可插拔微型光无源器件的长度较小,能够与行业标准跳线的长度尺寸相匹配,满足行业对可插拔微型光无源器件体积小型化、微型化的需求。并且,由于可插拔微型光无源器件不设置裸光纤,器件的制造工艺简单,且不会因裸光纤断裂而造成器件的使用寿命较短等问题。此外,由于器件的尺寸较小,制造壳体30所有的材料较少,可以降低器件的生产成本和制作难度。
与此同时,可插拔微型光无源器件内设置止退件48以及弹簧49,在器件插拔过程中可以有效缓冲冲击力对波分复用器等光学器件的损伤,同时,避免光纤对准过程中的横向适配,可以延长器件的使用寿命。
第二实施例:
参见图9,本实施例的可插拔微型光无源器件可以是实现光隔离等功能的器件,其具有壳体60,本实施例的壳体60包括依次连接的连接器插座外壳61、跳线组件62以及保护尾套63,壳体60内装有陶瓷插芯65以及光学器件64,陶瓷插芯65的第一端伸出连接器插座外壳61,第二端位于光学器件64内,并且在第二端的端面上镀有增透膜。光学器件64内设有透镜,透镜位于陶瓷插芯65第二端的一侧。
在光学器件64的第一端设有止退件66,且光学器件64的第一端外套装有弹簧67,跳线组件62内壁上设有肩台部68,弹簧67的两端分别抵接在止退件66的端面上以及肩台部68上。这样,可插拔微型光无源器件插拔的时候弹簧67可以为器件缓冲冲击力,避免光学器件64的损伤。
与第一实施例不同的是,本实施例的保护尾套63内仅包套有一根光纤69,也就是光束经过光学器件后直接从一个光纤69出射,因此光学器件64 可以为光衰减器,光隔离器等光学器件。
第三实施例:
参见图10,本实施例可插拔微型光无源器件可以是实现波分复用功能的器件,其具有壳体70,壳体70包括依次连接的连接器插座外壳71、跳线组件72以及保护尾套73,壳体70内装有陶瓷插芯75以及波分复用器74,陶瓷插芯75的第一端伸出连接器插座外壳71外,第二端位于波分复用器74内,并且第二端的端面上镀有增透膜。波分复用器74内设有作为光纤准直器的透镜,透镜位于陶瓷插芯75第二端的一侧。
在波分复用器74的第一端设有止退件76,且光学器件74的第一端外套装有弹簧77,跳线组件72内壁上设有肩台部,弹簧77的第一端抵接在止退件76的端面上,第二端抵接在肩台部上。
本实施例的保护尾套73内包套有三根光纤78,且陶瓷插芯75内设有三根纤芯,因此本实施例的可插拔微型光无源器件为3×3的光隔离器件或光衰减器件。
第四实施例:
参见图11,本实施例可插拔微型光无源器件可以也是实现波分复用功能的器件,其具有壳体80,壳体80包括依次连接的连接器插座外壳81、跳线组件82以及保护尾套83,壳体80内装有陶瓷插芯85以及波分复用器84,陶瓷插芯85的第一端伸出连接器插座外壳81外,第二端位于波分复用器84内,并且第二端的端面上镀有增透膜。波分复用器84内设有透镜,透镜位于陶瓷插芯85第二端的一侧。
在波分复用器84的第一端设有止退件86,且光学器件84的第一端外套装有弹簧87,跳线组件82内壁上设有肩台部,弹簧87的第一端抵接在止退件86的端面上,第二端抵接在肩台部上。
本实施例的保护尾套83内包套有四根光纤88,且陶瓷插芯85内设有两根纤芯,因此本实施例的可插拔微型光无源器件为2×4的波分复用器件。
第五实施例:
参见图12,本实施例具有壳体90,壳体90包括依次连接的连接器插座外壳91、转接组件92以及连接器插座外壳93,其中连接器插座外壳91上设有弹性件94,连接器插座外壳93上设有另一个弹性件95。
壳体90内装有光学器件96,光学器件96的第一端设有陶瓷插芯97,第 二端设有另一根陶瓷插芯101,陶瓷插芯97的第一端伸出连接器插座外壳91外,第二端位于光学器件96内,且光学器件96内设有用作光路连通的光纤及作为光纤准直器的透镜,该透镜位于陶瓷插芯97的第二端的一侧。光学器件96的第一端设有止退件98,且光学器件96的第一端外套装有弹簧99,且转接组件92的内壁设有肩台部100,弹簧99的第一端抵接在止退件98的端面上,第二端抵接在肩台部100上。
陶瓷插芯101的第一端伸出连接器插座外壳93,第二端位于光学器件96内,且光学器件96位于陶瓷插芯101第二端的一侧设有另一个透镜,在光学器件96的第二端设有止退件102。
本实施例中,光学器件96的第一端、陶瓷插芯97的大部分以及止退件98包套在连接器插座外壳91内,光学器件96的中部包套在转接组件92内,而光学器件96的第二端、陶瓷插芯101的大部分以及止退件102包套在连接器插座外壳93内。这种封装的可插拔微型光无源器件可以满足特殊场合的使用需求。
第六实施例:
参见图13,本实施例具有壳体110,壳体110包括依次连接的连接器插座外壳111、转接组件112以及封装帽113,其中连接器插座外壳111上设有弹性件115,连接器插座外壳111的中部设有通孔116。
壳体110内装有光学器件117,光学器件117的第一端设有陶瓷插芯118,第二端设有另一根陶瓷插芯121,陶瓷插芯118的第一端伸出连接器插座外壳111外,第二端位于光学器件117内,且光学器件117内设有用作光路连通的光纤及作为光纤准直器的透镜,透镜位于陶瓷插芯118的第二端一侧。光学器件117的第一端设有止退件119,且光学器件117的第一端外套装有弹簧120,且转接组件112的内壁设有肩台部123,弹簧120的第一端抵接在止退件119的端面上,第二端抵接在肩台部123上。
陶瓷插芯121的第一端伸出连接器插座外壳113外,第二端位于光学器件117内,且光学器件117位于陶瓷插芯121第二端的一侧设有透镜。在光学器件117的第二端设有止退件122,并且连接器插座外壳113的外侧设有法兰114,陶瓷插芯121的第一端包套在法兰114内。
本实施例中,光学器件117的第一端、陶瓷插芯118的大部分以及止退件119包套在连接器插座外壳111内,光学器件117的中部包套在转接组件 112内,而光学器件117的第二端、陶瓷插芯121的小部分以及止退件122包套在连接器插座外壳113内,弹簧120包套在连接器插座外壳111以及转接组件112内。
第五实施例与第六实施例的可插拔微型光无源器件的两端均设有陶瓷插芯,为两头器件,这种结构的可插拔微型光无源器件可以满足诸如光隔离器、光衰减器等器件的结构要求。
当然,上述方案仅是本发明优选的上述方式,实际应用时还可以有更多的改变,例如,陶瓷插芯、透镜的形状可以根据器件的实际需要做出相应的改变;或者,陶瓷插芯内纤芯数量、保护尾套所包套的光纤的数量也可以根据实际使用需要改变,这些改变均可以实现本发明的目的。

Claims (11)

  1. 一种可插拔微型光无源器件,包括:
    一壳体,所述壳体内安装有一光学器件,所述光学器件的第一端设有一第一陶瓷插芯,所述第一陶瓷插芯内设有至少一纤芯,所述第一陶瓷插芯的第一端伸出所述壳体外;
    其特征在于:
    所述第一陶瓷插芯的第二端位于所述光学器件内,且所述第一陶瓷插芯的第二端镀有一增透膜,所述第一陶瓷插芯的第二端贴近地设有一透镜,所述透镜位于所述光学器件内;
    所述光学器件内还设有至少一根光纤,所述光纤的第一端设置在靠近所述透镜且远离所述第一陶瓷插芯的一侧,光束经所述陶瓷插芯、所述透镜入射到所述光学器件的所述光纤。
  2. 根据权利要求1所述的可插拔微型光无源器件,其特征在于:
    所述光学器件在靠近第一端的位置处设有一第一止退件,且所述止退件的中部设有一通孔,所述第一陶瓷插芯穿过所述通孔。
  3. 根据权利要求2所述的可插拔微型光无源器件,其特征在于:
    所述壳体内设有一弹簧,所述弹簧的第一端抵接在所述止退件的端面上,所述壳体内周壁上还设有一肩台部,所述弹簧的第二端抵接在所述肩台部上。
  4. 根据权利要求1至3任一项所述的可插拔微型光无源器件,其特征在于:
    所述透镜靠近所述陶瓷插芯的端面与所述第一陶瓷插芯第二端的端面呈倾斜设置。
  5. 根据权利要求3所述的可插拔微型光无源器件,其特征在于:
    所述壳体包括包套在所述第一陶瓷插芯外的一第一连接器插头外壳以及包套在所述光学器件外的一跳线组件,所述第一止退件装在所述第一连接器插头外壳内,所述弹簧装在所述第一连接器插头外壳及所述跳线组件内。
  6. 根据权利要求5所述的可插拔微型光无源器件,其特征在于:
    所述壳体还包括位于所述跳线组件远离所述第一连接器插头外壳一侧的一保护尾套,所述光纤的第二端穿过所述保护尾套并伸出所述壳体外。
  7. 根据权利要求1所述的可插拔微型光无源器件,其特征在于:
    所述壳体的第二端设有一第二陶瓷插芯,所述第二陶瓷插芯位于所述光学器件的第二端,且所述光学器件的第二端设有一第二止退件。
  8. 根据权利要求7所述的可插拔微型光无源器件,其特征在于:
    所述壳体包括包套在所述第一陶瓷插芯外的一第一连接器插头外壳、包套在所述光学器件外的一转接组件以及包套在所述第二陶瓷插芯外的一第二连接器插头外壳。
  9. 根据权利要求7所述的可插拔微型光无源器件,其特征在于:
    所述壳体包括包套在所述第一陶瓷插芯外的一第一连接器插头外壳、包套在所述光学器件中间区域的外部的一转接组件以及包套在所述光学器件的第二端外的一封装帽,所述第二陶瓷插芯的端部伸出所述封装帽并包套在一法兰内。
  10. 根据权利要求1至3任一项所述的可插拔微型光无源器件,其特征在于:
    所述第一陶瓷插芯的第二端与所述透镜之间具有一间隙。
  11. 根据权利要求10所述的可插拔微型光无源器件,其特征在于:
    所述间隙的大小是介于0.15毫米至0.2毫米之间。
PCT/CN2016/096691 2015-08-25 2016-08-25 可插拔微型光无源器件 WO2017032328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/754,929 US11022759B2 (en) 2015-08-25 2016-08-25 Pluggable miniature optical passive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510526702.8A CN105044848A (zh) 2015-08-25 2015-08-25 可插拔微型光无源器件
CN201510526702.8 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017032328A1 true WO2017032328A1 (zh) 2017-03-02

Family

ID=54451514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096691 WO2017032328A1 (zh) 2015-08-25 2016-08-25 可插拔微型光无源器件

Country Status (3)

Country Link
US (1) US11022759B2 (zh)
CN (1) CN105044848A (zh)
WO (1) WO2017032328A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044848A (zh) 2015-08-25 2015-11-11 珠海保税区光联通讯技术有限公司 可插拔微型光无源器件
CN108169852A (zh) * 2016-12-07 2018-06-15 福州高意光学有限公司 一种端面无损的光纤连接器制作方法
TWI766543B (zh) * 2021-01-14 2022-06-01 立佳興業股份有限公司 光學連接器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110322A1 (en) * 2000-06-22 2002-08-15 Brun Marc G. Six-port optical package and method of manufacturing
JP2006154242A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 光アイソレータ付き光ファイバおよびそれを用いた光部品
CN201133948Y (zh) * 2007-12-05 2008-10-15 珠海保税区光联通讯技术有限公司 插拔式光无源器件
CN201298091Y (zh) * 2008-10-29 2009-08-26 珠海保税区光联通讯技术有限公司 插拔式光无源器件
CN201331599Y (zh) * 2008-12-29 2009-10-21 飞康技术(深圳)有限公司 一种光纤连接装置
CN201804130U (zh) * 2010-08-24 2011-04-20 上海中科光纤通讯器件有限公司 插拔式光纤跳线隔离器
CN102841411A (zh) * 2012-09-05 2012-12-26 武汉隽龙科技有限公司 具有光滤波功能的sc型光纤连接器及其制造工艺
CN105044848A (zh) * 2015-08-25 2015-11-11 珠海保税区光联通讯技术有限公司 可插拔微型光无源器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083334B2 (en) * 2003-10-31 2006-08-01 Red Sky Subsea Ltd. Hermetically sealed optical fiber ferrule assembly supporting multiple optical fibers
US9383527B2 (en) * 2014-08-13 2016-07-05 Rolling River, LLC Optical connector suitable for field assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110322A1 (en) * 2000-06-22 2002-08-15 Brun Marc G. Six-port optical package and method of manufacturing
JP2006154242A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 光アイソレータ付き光ファイバおよびそれを用いた光部品
CN201133948Y (zh) * 2007-12-05 2008-10-15 珠海保税区光联通讯技术有限公司 插拔式光无源器件
CN201298091Y (zh) * 2008-10-29 2009-08-26 珠海保税区光联通讯技术有限公司 插拔式光无源器件
CN201331599Y (zh) * 2008-12-29 2009-10-21 飞康技术(深圳)有限公司 一种光纤连接装置
CN201804130U (zh) * 2010-08-24 2011-04-20 上海中科光纤通讯器件有限公司 插拔式光纤跳线隔离器
CN102841411A (zh) * 2012-09-05 2012-12-26 武汉隽龙科技有限公司 具有光滤波功能的sc型光纤连接器及其制造工艺
CN105044848A (zh) * 2015-08-25 2015-11-11 珠海保税区光联通讯技术有限公司 可插拔微型光无源器件

Also Published As

Publication number Publication date
US20200241210A1 (en) 2020-07-30
US11022759B2 (en) 2021-06-01
CN105044848A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
US10234642B2 (en) Method and system for a multi-fiber push-on/pull-off connector locking clip
JP5491440B2 (ja) マルチコアファイバ用ファンナウト部品
CN201331599Y (zh) 一种光纤连接装置
US9798089B2 (en) Fiber optic connector assemblies having windowed optical fibers and methods thereof
CN103890627B (zh) 具有逆向光纤环路的光纤连接器总成
US20130044978A1 (en) Method And System For A Multi-Core Fiber Connector
TWI503586B (zh) 光纖耦合連接器
NZ196073A (en) Optical fibre coupler:multilayer dichroic mirror beam splitter
CN105324693A (zh) 采用光学连接至表面可达的平面形板间光纤迹线的光学接口的电路板,以及相关连接器、组件和方法
WO2017032328A1 (zh) 可插拔微型光无源器件
BR102017011328A2 (pt) Acopladores divisores de sinal de entrada ópticos que têm um misturador óptico de recepção assimétrico
JP7396304B2 (ja) 光通信装置、光通信方法および光通信システム
CN102854579B (zh) 具有一体式外壳的光纤接入插头
US8985869B1 (en) Pluggable optical passive devices
CN203025388U (zh) 具有反射功能的光纤适配器及光纤传输设备
US8636426B2 (en) Photoelectric conversion system with optical transceive module
CN208506305U (zh) 一种多波长合波光学模块
US8002478B2 (en) Optical sub-assembly with glass member physically contact with external fiber
US8246257B2 (en) Optical fiber connector
US8783970B2 (en) Optical fiber module
CN102236135A (zh) 光纤耦合连接器
JP2002267881A (ja) 多心光コネクタ付光ファイバ分岐心線
CN214895926U (zh) 一种集成光缆的光模块
JP2015036755A (ja) 光コネクタ
CN218585041U (zh) 带lc插座的微型波分复用器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838586

Country of ref document: EP

Kind code of ref document: A1