WO2017032162A1 - 一种数据传输方法、装置、系统及onu、olt - Google Patents

一种数据传输方法、装置、系统及onu、olt Download PDF

Info

Publication number
WO2017032162A1
WO2017032162A1 PCT/CN2016/086915 CN2016086915W WO2017032162A1 WO 2017032162 A1 WO2017032162 A1 WO 2017032162A1 CN 2016086915 W CN2016086915 W CN 2016086915W WO 2017032162 A1 WO2017032162 A1 WO 2017032162A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
olt
data
transmission paths
information
Prior art date
Application number
PCT/CN2016/086915
Other languages
English (en)
French (fr)
Inventor
张伟良
耿丹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017032162A1 publication Critical patent/WO2017032162A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present application relates to, but is not limited to, the field of passive optical networks, and in particular, to a data transmission method, device, system, and optical network unit (ONU), and optical line terminal (OLT).
  • ONU optical network unit
  • OLT optical line terminal
  • PON Passive Optical Network
  • OLT optical line terminal
  • ONU optical network unit
  • the OLT communicates with the ONU through a wavelength pair.
  • the OLT opens a quiet window on the downstream wavelength and requests the identity information of the ONU.
  • the ONU reports the identity information on the upstream wavelength. After the OLT obtains the identity information of the ONU, it is again opened on the downstream wavelength.
  • the quiet window sends a ranging request, the ONU replies to the ranging response on the upstream wavelength, and the OLT completes the ranging.
  • the OLT sends data to the ONU according to the downlink service condition, and allocates bandwidth to the ONU according to the uplink service condition of the ONU or the bandwidth request of the ONU.
  • the ONU sends upstream data within the bandwidth allocated to itself.
  • TDM Time Division Multiplexing
  • OFDM-PON Orthogonal Frequency Division Multiplexing PON
  • TWDM-PON TDM & WDM PON, Time Division Multiplexing & Wavelength Division Multiplexing PON, time division multiplexed wavelength division multiplexing hybrid PON
  • the OLT side increases the wavelength dimension, each ONU can only work in one At the wavelength, but the device complexity is high and deployment is difficult.
  • the embodiments of the present invention provide a data transmission method, device, system, and ONU and OLT, which solve the network capacity problem of a passive optical network.
  • the embodiment of the invention provides a data transmission method, which is applied to an ONU, and the ONU communicates with the OLT on multiple transmission paths.
  • the method includes:
  • the ONU transmits information that interacts with the OLT on any one or more of the plurality of transmission paths; wherein the information includes at least one of registration information, ranging information, bandwidth allocation, and data service information.
  • the registration information that the ONU transmits to interact with the OLT on any one or more of the multiple transmission paths includes:
  • the ONU acquires and responds to the identity request information of the ONU sent by the OLT in a quiet window opened on any one or more of the plurality of transmission paths, and is in any one or more of the multiple transmission paths.
  • the identity information of the ONU is sent to the OLT on the transmission path.
  • the ranging information that the ONU transmits to interact with the OLT on any one or more transmission paths of the multiple transmission paths includes:
  • the ONU acquires and responds to the ranging request sent by the OLT in a quiet window opened on any one or more of the plurality of transmission paths, and according to any one or more of the multiple transmission paths of the ONU
  • the ranging response returned on the transmission path acquires the ranging result completed by the OLT.
  • the bandwidth allocation of the ONU to the OLT on any one or more of the multiple transmission paths includes:
  • the data service information that the ONU exchanges with the OLT on any one or more transmission paths of the multiple transmission paths includes:
  • the ONU transmits an uplink data service on any one or more of the multiple transmission paths according to the bandwidth allocation result.
  • the data service information that the ONU exchanges with the OLT on any one or more transmission paths of the multiple transmission paths further includes:
  • the ONU receives downlink data services transmitted by the OLT on any one or more of the multiple transmission paths.
  • the transmitting, by the ONU, the uplink data service on any one or more of the multiple transmission paths according to the bandwidth allocation result includes:
  • the uplink data service is transmitted on a transmission path.
  • the transmitting, by the ONU, the uplink data service on any one or more of the multiple transmission paths according to the bandwidth allocation result further includes:
  • the uplink data is transmitted on the plurality of transmission paths according to the segmentation result and the bandwidth allocation result allocated by each ONU.
  • the segmentation result is obtained by dividing the uplink service data into:
  • the uplink data is transmitted on the multiple transmission paths according to the segmentation result and the bandwidth allocation result allocated by each ONU, including:
  • each data block having the identifier is transmitted to the OLT on multiple transmission paths, so that the OLT splices all the data blocks into one complete data block according to the identifier of each data block.
  • the plurality of transmission paths include: a single-core optical fiber connected between the OLT and the plurality of ONUs. a plurality of pairs of wavelengths, and the single-core optical fiber is connected to each ONU via an optical splitter; wherein the single-core optical fiber supports transmission of multiple pairs of wavelengths; each ONU can pass each pair of wavelengths of the single-core optical fiber Connected to the OLT.
  • the plurality of transmission paths include: a plurality of optical fibers connected between the OLT and the plurality of ONUs; and each of the plurality of optical fibers is connected to each ONU through an optical splitter; and each The ONU can be communicatively coupled to the OLT through each of the plurality of fibers.
  • the plurality of transmission paths include: a plurality of pairs of optical fibers connected between the OLT and the plurality of ONUs; wherein the plurality of optical fibers are composed of a plurality of single-core optical fibers, and each of the plurality of optical fibers Single-core fibers are connected to each ONU via an optical splitter; and each of the plurality of optical fibers supports multiple pairs of wavelength transmissions, each of the ONUs passing through each of the plurality of optical fibers Multiple pairs of wavelengths of a single core fiber are connected to the OLT.
  • the plurality of optical fibers include: a multi-core optical fiber and a plurality of single-core optical fibers; wherein the multi-core optical fiber is composed of a plurality of single-core optical fibers in a unified package.
  • the multiple pairs of wavelengths further include: multiple pairs of subcarriers, subcarrier groups, or pairs of bands.
  • the multiple transmission paths include: a weakening mode of multiple transmission paths connected between the OLT and the multiple ONUs;
  • the weakening mode refers to that each ONU is connected to the OLT through a partial transmission path among multiple transmission paths supported by the OLT.
  • the embodiment of the invention further provides a data transmission device, which is applied to an ONU, and includes:
  • the first transmission module is configured to transmit information that interacts with the OLT on any one or more of the plurality of transmission paths; wherein the information includes at least registration information, ranging information, bandwidth allocation, and data service information. one.
  • An embodiment of the present invention further provides an ONU, including the data transmission device according to the foregoing embodiment.
  • the embodiment of the present invention further provides a data transmission method, which is applied to an OLT, where the OLT is connected to an ONU in multiple transmission paths, and the method includes:
  • the OLT transmits information that interacts with the ONU on any one or more of the plurality of transmission paths; wherein the information includes at least one of registration information, ranging information, bandwidth allocation, and data service information. .
  • the registration information that the OLT transmits to interact with the ONU on any one or more of the multiple transmission paths includes:
  • the OLT sends the identity request information of the ONU in a quiet window that is open on any one or more of the multiple transmission paths, and acquires the ONU on any one or more transmission paths in the multiple transmission paths.
  • the identity information of the sent ONU is not limited to the identity of the sent ONU.
  • the ranging information that the OLT transmits to interact with the ONU on any one or more of the multiple transmission paths includes:
  • the OLT sends a ranging request to the ONU in a quiet window opened on any one or more of the plurality of transmission paths, and completes ranging of the ONU, and locally applies the ranging result or The ranging result is sent to the ONU.
  • the bandwidth allocation of the OLT to the ONU on any one or more of the multiple transmission paths includes:
  • the OLT determines, according to the uplink service of the ONU or the bandwidth request of the ONU, and allocates bandwidth to the ONU through any one or more of the multiple transmission paths.
  • the bandwidth allocation of the OLT to the ONU on any one or more of the multiple transmission paths further includes:
  • the OLT locally schedules downlink bandwidth to the ONU according to the downlink data service sent to the ONU.
  • the data service information that the OLT exchanges with the ONU on any one or more of the multiple transmission paths includes:
  • the OLT transmits downlink data services on any one or more of the multiple transmission paths according to the downlink bandwidth of the local scheduling to the ONU.
  • the data service information that the OLT exchanges with the ONU on any one or more transmission paths of the multiple transmission paths further includes:
  • the OLT receives an uplink data service that is transmitted by the ONU on any one or more of the multiple transmission paths.
  • the OLT transmits the downlink data service on any one or more of the multiple transmission paths according to the downlink bandwidth of the local scheduling to the ONU, including:
  • the OLT transmits the downlink data service on any one or more of the multiple transmission paths according to the downlink bandwidth of the local scheduling to the ONU, and the OLT further includes:
  • the downlink data is transmitted on the multiple transmission paths according to the segmentation result and the downlink bandwidth that the OLT locally schedules for each ONU.
  • the downlink service data is segmented, and the segmentation result is obtained by:
  • the transmitting the downlink data on the multiple transmission paths according to the segmentation result and the downlink bandwidth that the OLT locally schedules for each ONU includes:
  • each data block having the identifier is transmitted to the ONU on multiple transmission paths, so that the ONU splices all the data blocks into one complete data block according to the identifier of each data block.
  • the plurality of transmission paths include: a plurality of pairs of wavelengths of a single-core fiber connected between the OLT and the plurality of ONUs, and the single-core fiber is connected to each ONU via an optical splitter; wherein the single-core optical fiber Supporting transmission of multiple pairs of wavelengths; the OLT can be in communication with each ONU via each pair of wavelengths of the single-core fiber.
  • the plurality of transmission paths include: a plurality of optical fibers connected between the OLT and the plurality of ONUs; and each of the plurality of optical fibers is connected to each ONU via an optical splitter; and The OLT can be in communication with each of the ONUs via each of the plurality of fibers.
  • the plurality of transmission paths include: a plurality of pairs of optical fibers connected between the OLT and the plurality of ONUs; wherein the plurality of optical fibers are composed of a plurality of single-core optical fibers, and each of the plurality of optical fibers Single-core fibers are connected to each ONU via an optical splitter; and each of the plurality of optical fibers supports multiple pairs of wavelength transmissions, and the OLT can pass each of the plurality of optical fibers The multiple pairs of wavelengths of the fiber are connected to each ONU.
  • the plurality of optical fibers comprise: a multi-core optical fiber and a plurality of single-core optical fibers; wherein the multi-core The optical fiber is composed of a plurality of single-core optical fibers in a unified package.
  • the multiple pairs of wavelengths further include: multiple pairs of subcarriers, subcarrier groups, or pairs of bands.
  • the multiple transmission paths include: a weakening mode of multiple transmission paths connected between the OLT and the multiple ONUs;
  • the weakening mode refers to that each ONU is connected to the OLT through a partial transmission path among multiple transmission paths supported by the OLT.
  • the embodiment of the invention further provides a data transmission device, which is applied to an OLT, and includes:
  • a second transmission module configured to transmit information that interacts with the ONU on any one or more of the plurality of transmission paths; wherein the information includes at least registration information, ranging information, bandwidth allocation, and data service information.
  • An embodiment of the present invention further provides an OLT, including the data transmission device according to the foregoing embodiment.
  • the embodiment of the present invention further provides a data transmission system, including: an OLT, a plurality of transmission paths, and an ONU, wherein the OLT is the OLT described in the foregoing embodiment, and the ONU is the ONU described in the foregoing embodiment.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which implement a data transmission method on the ONU side when the computer executable instructions are executed.
  • the embodiment of the invention further provides a computer readable storage medium, which stores computer executable instructions, and when the computer executable instructions are executed, implements a data transmission method on the OLT side.
  • data between the OLT and the ONU can be transmitted on multiple transmission paths, and the multiple transmission paths are independent of each other, and the transmission path of the data in the transmission process can be The same or different data can be run on each transmission path.
  • the OLT and the ONU cooperate with each other to coordinate these transmission paths and implement these transmission paths as a larger path group, thereby increasing the bandwidth between the OLT and the ONU. Increased network capacity of passive optical networks.
  • FIG. 1 is a schematic diagram of a passive optical network system architecture in the related art
  • FIG. 2 is a schematic diagram of basic steps of applying a data transmission method to an ONU according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a structure of a data transmission device applied to an ONU according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of basic steps of applying a data transmission method to an OLT according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of basic steps of a data transmission method applied to an OLT according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a plurality of transmission paths being a plurality of pairs of wavelengths of a single-core optical fiber according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of connection of multiple optical fibers to multiple optical fibers according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of connection of multiple transmission paths to multiple optical fibers with multiple pairs of wavelengths according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a connection in which multiple transmission paths are weakened according to an embodiment of the present invention.
  • the embodiment of the present invention provides a data transmission method, device, system, and ONU for the problem that the data transmission needs to increase the network bandwidth in the passive optical network of the related art, but the transmission path is single, which makes the network capacity difficult to improve.
  • OLT data can be transmitted on multiple transmission paths, and the multiple transmission paths are independent of each other, and the transmission path of the data is optional during the transmission process, and the same or different data can be run on each transmission path, and the OLT and the ONU are mutually Cooperate to coordinate these transmission paths and implement these transmission paths as a larger path group, thereby increasing the bandwidth between the OLT and the ONU and increasing the network capacity of the passive optical network.
  • an embodiment of the present invention provides a data transmission method, which is applied to an optical network unit (ONU).
  • the ONU is in communication with an optical line terminal (OLT) on multiple transmission paths.
  • the method in this embodiment includes the following. step:
  • Step 11 The ONU transmits information that interacts with the OLT on any one or more transmission paths of the multiple transmission paths, where the information includes at least registration information, ranging information, bandwidth allocation, and data services. One of the information.
  • data can be transmitted on multiple transmission paths, and
  • the multiple transmission paths are independent of each other, and the transmission paths of the data are optional during the transmission process, and the same or different data can be run on each transmission path, which increases the network capacity of the passive optical network.
  • the step 11 further includes:
  • Step 111 The ONU acquires and responds to the identity request information of the ONU sent by the OLT in a quiet window opened on any one or more of the multiple transmission paths, and is in multiple transmission paths.
  • the identity information of the ONU is sent to the OLT on any one or more transmission paths.
  • step 11 further includes :
  • Step 112 The ONU acquires and responds to a ranging request sent by the OLT in a quiet window opened on any one or more of the multiple transmission paths, and according to any one of the multiple transmission paths of the ONU. Or the ranging response replied on the plurality of transmission paths acquires the ranging result completed by the OLT.
  • the step 11 further includes:
  • Step 113 The ONU acquires a bandwidth allocation result that is determined by the OLT according to the uplink service of the ONU or the bandwidth request of the ONU, and is allocated by using any one or more transmission paths of the multiple transmission paths.
  • step 11 further includes :
  • Step 114 The ONU transmits an uplink data service on any one or more of the multiple transmission paths according to the bandwidth allocation result.
  • step 11 further includes:
  • Step 115 The ONU receives downlink data services transmitted by the OLT on any one or more of the multiple transmission paths.
  • the step 114 may include :
  • Step 1141 Transmit the uplink data service on a transmission path.
  • step 114 may further include:
  • Step 1142 Send a service simultaneously on multiple transmission paths, and divide the uplink service data to obtain a segmentation result.
  • Step 1143 Transmit uplink data on multiple transmission paths according to the segmentation result and the bandwidth allocation result allocated by each ONU.
  • a service is simultaneously sent on multiple transmission paths, and the uplink service data is segmented to obtain a segmentation result, including:
  • Step 1142-1 dividing the uplink service data into multiple data blocks
  • step 1142-2 an identifier is assigned to each data block.
  • the uplink data is transmitted on the multiple transmission paths according to the segmentation result and the bandwidth allocation result allocated by each ONU, including:
  • Step 1143-1 According to the allocated bandwidth of each ONU, each data block having the identifier is transmitted to the OLT on multiple transmission paths, so that the OLT splicing all the data blocks into one complete according to the identifier of each data block. data block.
  • the multiple transmission paths described in the foregoing method steps of the embodiment of the present invention include: a plurality of pairs of wavelengths of a single-core optical fiber connected between the OLT and the plurality of ONUs, and the single-core optical fiber passes through the optical splitter and Each ONU is connected; wherein the single-core fiber supports transmission of multiple pairs of wavelengths; each ONU can communicate with the OLT through each pair of wavelengths of the single-core fiber.
  • the multiple transmission paths in the foregoing method steps of the embodiment of the present invention further include: a plurality of optical fibers connected between the OLT and the plurality of ONUs; and each of the plurality of optical fibers An optical splitter is connected to each ONU; and each ONU can communicate with the OLT through each of the plurality of optical fibers.
  • the multiple transmission paths described in the foregoing method steps of the embodiment of the present invention further include: a plurality of pairs of optical fibers connected to each other between the OLT and the plurality of ONUs;
  • the multi-core optical fiber is composed of a plurality of single optical fibers, and each of the plurality of optical fibers is connected to each ONU via an optical splitter; and each of the plurality of optical fibers is single-core
  • the fiber supports multiple pairs of wavelength transmissions, each of which can be communicatively coupled to the OLT through a plurality of pairs of wavelengths of each of the plurality of fibers.
  • the multiple optical fibers described in the foregoing method of the present invention include: a multi-core optical fiber and a plurality of single-core optical fibers; wherein the multi-core optical fiber is composed of a plurality of single-core optical fibers in a unified package.
  • the multiple pairs of wavelengths in the foregoing method of the embodiment of the present invention further include: multiple pairs of subcarriers, subcarrier groups, or pairs of bands.
  • the multiple transmission paths in the foregoing method steps of the embodiment of the present invention further include: a weakening mode of multiple transmission paths of the connection between the OLT and the multiple ONUs;
  • the weakening mode refers to that each ONU communicates with the OLT through a part of the multiple transmission paths supported by the OLT, and does not need to be connected to each transmission path supported by the OLT.
  • the weakening mode may be that each ONU may be connected to the OLT through one or more pairs of wavelengths; or, each ONU may be connected to the OLT through one or more single-core optical fibers; The ONUs can be connected to the OLT through one or more pairs of one or more single core fibers.
  • data may be transmitted on multiple transmission paths, and the multiple transmission paths are independent of each other, and data transmission paths are selectable during transmission, and the same or different data may be run on each transmission path.
  • these transmission paths are coordinated, and these transmission paths are implemented as a larger path group, thereby increasing the bandwidth between the OLT and the ONU and increasing the network capacity of the passive optical network.
  • an embodiment of the present invention further provides a data transmission apparatus, which is applied to an optical network unit (ONU), and includes:
  • the first transmission module 21 is configured to transmit information that interacts with the OLT on any one or more of the plurality of transmission paths; wherein the information includes at least registration information, ranging information, bandwidth allocation, and data services. One of the information.
  • the first transmission module 21 described in the foregoing embodiment of the present application may include:
  • a first acquisition execution submodule configured to acquire and respond to the identity request information of the ONU sent by the OLT in a quiet window opened on any one or more of the plurality of transmission paths, and in the multiple transmission paths The identity information of the ONU is sent to the OLT on any one or more transmission paths.
  • the first transmission module 21 described in the foregoing embodiment of the present application further includes:
  • a second acquisition execution submodule configured to acquire and respond to the ranging request sent by the OLT in a quiet window opened on any one or more of the plurality of transmission paths, and according to the ONU in the multiple transmission paths The ranging response replied on any one or more transmission paths acquires the ranging result completed by the OLT.
  • the first transmission module 21 described in the foregoing embodiment of the present application further includes:
  • a third obtaining sub-module configured to acquire, according to the uplink service of the ONU or the bandwidth request of the ONU, the bandwidth allocation allocated by using one or more transmission paths of the multiple transmission paths result.
  • the first transmission module 21 described in the foregoing embodiment of the present application further includes:
  • the first uplink transmission submodule is configured to transmit an uplink data service on any one or more of the plurality of transmission paths according to the bandwidth allocation result.
  • the first transmission module 21 described in the foregoing embodiment of the present application further includes:
  • the first downlink transmission submodule is configured to receive downlink data services transmitted by the OLT on any one or more of the multiple transmission paths.
  • the first uplink transmission submodule in the first transmission module 21 in the foregoing embodiment of the present application includes:
  • the first uplink transmission unit is configured to transmit the uplink data service on a transmission path.
  • the first uplink transmission submodule in the first transmission module 21 in the foregoing embodiment of the present application further includes:
  • the first dividing unit is configured to simultaneously send a service on multiple transmission paths, and divide the uplink service data to obtain a segmentation result;
  • the second uplink transmission unit is configured to transmit uplink data on the plurality of transmission paths according to the segmentation result and the bandwidth allocation result allocated by each ONU.
  • the first dividing unit of the first transmission module 21 in the foregoing embodiment of the present application includes:
  • a first split subunit configured to split uplink service data into multiple data blocks
  • the first identifier subunit is set to: assign an identifier to each data block.
  • the second uplink transmission unit of the first uplink transmission submodule in the first transmission module 21 in the foregoing embodiment of the present application includes:
  • the second uplink transmission subunit is configured to transmit, according to the bandwidth allocated by each ONU, each data block having the identifier to the OLT on the plurality of transmission paths, so that the OLT performs all the data according to the identifier of each data block.
  • the blocks are spliced into a complete block of data.
  • the multiple transmission paths described in the foregoing embodiment of the present application include: a plurality of pairs of wavelengths of a single-core optical fiber connected between the OLT and the plurality of ONUs, and the single-core optical fiber passes through the optical splitter and each The ONU is connected; wherein the single-core fiber supports transmission of multiple pairs of wavelengths; each of the ONUs can communicate with the OLT through each pair of wavelengths of the single-core fiber.
  • the multiple transmission paths described in the foregoing embodiments of the present application include: a plurality of optical fibers connected between the OLT and the plurality of ONUs; and each of the plurality of optical fibers is optically split.
  • the device is connected to each ONU; and each ONU can communicate with the OLT through each of the plurality of optical fibers.
  • the multiple transmission paths described in the foregoing embodiment of the present application include: multiple pairs of optical fibers connected between the OLT and the multiple ONUs,
  • the plurality of optical fibers are composed of a plurality of single-core optical fibers, and each of the plurality of optical fibers is connected to each ONU via an optical splitter; and each of the plurality of optical fibers Core fiber branch Holding multiple pairs of wavelengths, each of the ONUs can be communicatively coupled to the OLT through pairs of wavelengths of each of the plurality of fibers.
  • the multiple optical fibers described in the foregoing embodiments of the present application include: a multi-core optical fiber and a plurality of single-core optical fibers; wherein the multi-core optical fiber is composed of a plurality of single-core optical fibers in a unified package.
  • the multiple pairs of wavelengths described in the foregoing embodiments of the present application further include: multiple pairs of subcarriers, subcarrier groups, or pairs of bands.
  • the multiple transmission paths described in the foregoing embodiment of the present application include: a weakening mode of multiple transmission paths connected between the OLT and the multiple ONUs;
  • the weakening mode refers to that each ONU communicates with the OLT through a part of the multiple transmission paths supported by the OLT, and does not need to be connected to each transmission path supported by the OLT.
  • the weakening mode may be that each ONU may be connected to the OLT through one or more pairs of wavelengths; or, each ONU may be connected to the OLT through one or more single-core optical fibers; The ONUs can be connected to the OLT through one or more pairs of one or more single core fibers.
  • the device is a device corresponding to the above method, and all implementation embodiments of the above method are applicable to the embodiment of the device, and the same technical effects can be achieved.
  • An embodiment of the present invention further provides an ONU, including the data transmission device according to the foregoing embodiment.
  • an embodiment of the present invention further provides a data transmission method, which is applied to an optical line terminal (OLT), and the OLT is communicably connected to an optical network unit (ONU) on multiple transmission paths.
  • the method includes the following steps:
  • Step 31 The OLT transmits information that interacts with the ONU on any one or more transmission paths of the multiple transmission paths, where the information includes at least registration information, ranging information, bandwidth allocation, and data services. One of the information.
  • data may be transmitted on multiple transmission paths, and the multiple transmission paths are independent of each other, and data transmission paths are selectable during transmission, and each transmission path may run the same or different Data increases the network capacity of passive optical networks.
  • step 31 includes:
  • Step 311 The OLT sends the identity request information of the ONU in a quiet window that is open on any one or more of the multiple transmission paths, and acquires any one or more of the multiple transmission paths of the ONU.
  • the identity information of the ONU sent on the transmission path.
  • the step 31 further includes:
  • Step 312 The OLT sends a ranging request to the ONU in a quiet window opened on any one or more of the multiple transmission paths, and completes ranging of the ONU, and applies the measurement locally. From the result or sending the ranging result to the ONU.
  • the step 31 may include:
  • Step 313 The OLT determines, according to the uplink service of the ONU or the bandwidth request of the ONU, and allocates bandwidth to the ONU through any one or more transmission paths of the multiple transmission paths.
  • the step 31 may further include:
  • Step 314 The OLT locally schedules downlink bandwidth to the ONU according to the downlink data service sent to the ONU.
  • the step 31 may include:
  • Step 315 The OLT transmits downlink data services on any one or more of the multiple transmission paths according to the downlink bandwidth of the local scheduling to the ONU.
  • the step 31 may further include:
  • Step 316 the OLT receives any one or more of the ONUs in multiple transmission paths.
  • Step 315 also includes:
  • Step 3151 transmitting the downlink data service on a transmission path.
  • step 315 in the foregoing embodiment of the present application further includes:
  • Step 3152 When a service is simultaneously sent on multiple transmission paths, the downlink service data is divided to obtain a segmentation result.
  • Step 3153 Transmit downlink data on multiple transmission paths according to the segmentation result and the downlink bandwidth that the OLT locally schedules for each ONU.
  • step 3152 the downlink service data is segmented to obtain a segmentation result, including:
  • Step 3152-1 dividing the downlink service data into multiple data blocks
  • Step 3152-2 assigning an identifier to each data block.
  • step 3153 according to the segmentation result, and the downlink bandwidth that is locally scheduled by the OLT to each ONU, downlink data is transmitted on multiple transmission paths, including:
  • Step 3153-1 According to the downlink bandwidth allocated by the OLT to each ONU, each data block having the identifier is transmitted to the ONU on multiple transmission paths, so that the ONU will all the data blocks according to the identifier of each data block. Stitch into a complete block of data.
  • the multiple transmission paths described in the foregoing method steps of the embodiment of the present invention include: a plurality of pairs of wavelengths of a single-core optical fiber connected between the OLT and the plurality of ONUs, and the single-core optical fiber passes through the optical splitter and Each ONU is connected; wherein the single-core fiber supports transmission of multiple pairs of wavelengths; each ONU can communicate with the OLT through each pair of wavelengths of the single-core fiber.
  • the multiple transmission paths in the foregoing method steps of the embodiment of the present invention further include: a plurality of optical fibers connected between the OLT and the plurality of ONUs; and each of the plurality of optical fibers is An optical splitter is coupled to each of the ONUs; and each of the ONUs is communicably coupled to the OLT through each of the plurality of optical fibers.
  • the multiple transmission paths in the foregoing method steps of the embodiment of the present invention further include: Multiple pairs of optical fibers connected between the OLT and multiple ONUs,
  • the plurality of optical fibers are composed of a plurality of single-core optical fibers, and each of the plurality of optical fibers is connected to each ONU via an optical splitter; and each of the plurality of optical fibers
  • the core fiber supports multiple pairs of wavelength transmissions, each of which can be communicatively coupled to the OLT through a plurality of pairs of wavelengths of each of the plurality of fibers.
  • the multiple optical fibers in the embodiment of the present invention include: a multi-core optical fiber and a plurality of single-core optical fibers; wherein the multi-core optical fiber is composed of a plurality of single-core optical fibers and a unified package.
  • the multiple pairs of wavelengths in the embodiment of the present invention further include: multiple pairs of subcarriers, subcarrier groups, or pairs of bands.
  • the multiple transmission paths in the foregoing method steps of the embodiment of the present invention further include: a weakening mode of multiple transmission paths connected between the OLT and the multiple ONUs;
  • the weakening mode refers to that each ONU communicates with the OLT through a part of the multiple transmission paths supported by the OLT, and does not need to be connected to each transmission path supported by the OLT.
  • the weakening mode may be that each ONU may be connected to the OLT through one or more pairs of wavelengths; or, each ONU may be connected to the OLT through one or more single-core optical fibers; The ONUs can be connected to the OLT through one or more pairs of one or more single core fibers.
  • data may be transmitted on multiple transmission paths, and the multiple transmission paths are independent of each other, and data transmission paths are selectable during transmission, and the same or different data may be run on each transmission path.
  • these transmission paths are coordinated, and these transmission paths are implemented as a larger path group, thereby increasing the bandwidth between the OLT and the ONU and increasing the network capacity of the passive optical network.
  • an embodiment of the present invention further provides a data transmission apparatus, which is applied to an optical network unit (OLT), and includes:
  • the second transmission module 41 is configured to transmit information that interacts with the ONU on any one or more of the multiple transmission paths, where the information includes at least registration information, ranging information, bandwidth allocation, and data services. One of the information.
  • the second transmission module 41 described in the foregoing embodiment of the present application may include:
  • the information request acquisition submodule is configured to send the identity request information of the ONU in a quiet window opened on any one or more of the plurality of transmission paths, and acquire the ONU in any one of the multiple transmission paths or The identity information of the ONU sent on multiple transmission paths.
  • the second transmission module 41 described in the foregoing embodiment of the present application further includes:
  • Sending a processing submodule configured to send a ranging request to the ONU in a quiet window opened on any one or more of the plurality of transmission paths, and complete ranging of the ONU, and locally apply the The ranging result or the ranging result is sent to the ONU.
  • the second transmission module 41 described in the foregoing embodiment of the present application further includes:
  • the bandwidth allocation submodule is configured to allocate bandwidth to the ONU according to the uplink service of the ONU or the bandwidth request of the ONU, and allocate bandwidth to any one or more of the multiple transmission paths.
  • the second transmission module 41 described in the foregoing embodiment of the present application further includes:
  • the bandwidth scheduling sub-module is configured to locally schedule the downlink bandwidth to the ONU according to the downlink data service sent to the ONU.
  • the second transmission module 41 described in the foregoing embodiment of the present application further includes:
  • the second downlink transmission sub-module is configured to transmit downlink data services on any one or more of the multiple transmission paths according to the downlink bandwidth of the local scheduling to the ONU.
  • the second transmission module 41 described in the foregoing embodiment of the present application further includes:
  • the second uplink transmission submodule is configured to receive an uplink data service that is transmitted by the ONU on any one or more of the multiple transmission paths.
  • the second downlink transmission submodule in the second transmission module 41 in the foregoing embodiment of the present application includes:
  • the first downlink transmission unit is configured to transmit the downlink data service on a transmission path.
  • the second downlink transmission submodule in the second transmission module 41 in the foregoing embodiment of the present application further includes:
  • the second splitting unit is configured to simultaneously send a service on multiple transmission paths, and the next industry Divide the data to obtain the segmentation result;
  • the second downlink transmission unit is configured to transmit downlink data on the multiple transmission paths according to the segmentation result and the downlink bandwidth that the OLT locally schedules for each ONU.
  • the second splitting unit of the second transmission module 41 in the foregoing embodiment of the present application includes:
  • a second split subunit configured to split downlink service data into multiple data blocks
  • the second identifier subunit is set to: assign an identifier to each data block.
  • the second downlink transmission unit in the second downlink transmission submodule in the second transmission module 41 in the foregoing embodiment of the present application includes:
  • the second downlink transmission sub-unit is configured to transmit, according to the downlink bandwidth of each ONU by the OLT, each data block having the identifier is transmitted to the ONU on the multiple transmission paths, so that the ONU is based on the identifier of each data block. All data blocks are spliced into one complete data block.
  • the multiple transmission paths described in the foregoing embodiment of the present application include: a plurality of pairs of wavelengths of a single-core optical fiber connected between the OLT and the plurality of ONUs, and the single-core optical fiber passes through the optical splitter and each The ONU is connected; wherein the single-core fiber supports transmission of multiple pairs of wavelengths; each of the ONUs can communicate with the OLT through each pair of wavelengths of the single-core fiber.
  • the multiple transmission paths described in the foregoing embodiments of the present application include: a plurality of optical fibers connected between the OLT and the plurality of ONUs; and each of the plurality of optical fibers is optically split.
  • the device is connected to each ONU; and each ONU can communicate with the OLT through each of the plurality of optical fibers.
  • the multiple transmission paths described in the foregoing embodiment of the present application include: a plurality of pairs of optical fibers of a connection between the OLT and the plurality of ONUs;
  • the plurality of optical fibers are composed of a plurality of single-core optical fibers, and each of the plurality of optical fibers is connected to each ONU via an optical splitter; and each of the plurality of optical fibers
  • the core fiber supports multiple pairs of wavelength transmissions, each of which can be communicatively coupled to the OLT through a plurality of pairs of wavelengths of each of the plurality of fibers.
  • the multiple optical fibers in the foregoing embodiment of the present application include: a multi-core optical fiber and a plurality of single-core optical fibers; wherein the multi-core optical fiber is composed of a plurality of single-core optical fibers in a unified package.
  • the multiple pairs of wavelengths in the foregoing embodiments of the present application further include: multiple pairs of subcarriers, subcarrier groups, or pairs of bands.
  • the multiple transmission paths in the foregoing embodiment of the present application include: a weakening mode of multiple transmission paths connected between the OLT and the multiple ONUs;
  • the weakening mode refers to that each ONU communicates with the OLT through a part of the multiple transmission paths supported by the OLT, and does not need to be connected to each transmission path supported by the OLT.
  • the weakening mode may be that each ONU may be connected to the OLT through one or more pairs of wavelengths; or, each ONU may be connected to the OLT through one or more single-core optical fibers; The ONUs can be connected to the OLT through one or more pairs of one or more single core fibers.
  • the device is a device corresponding to the above method, and all implementation embodiments of the above method are applicable to the embodiment of the device, and the same technical effects can be achieved.
  • An embodiment of the present invention further provides an OLT, including the data transmission device according to the foregoing embodiment.
  • the embodiment of the present invention further provides a data transmission system, including: an OLT, a plurality of transmission paths, and an ONU, wherein the OLT is an OLT as described in the foregoing embodiment, and the ONU is an ONU as described in the foregoing embodiment.
  • FIG. 6 is a schematic diagram showing a plurality of transmission paths of a single-core optical fiber with multiple pairs of wavelengths according to an embodiment of the present invention.
  • the OLT and the ONU are connected by a single optical fiber, that is, a single-core optical fiber.
  • the single-core optical fiber is connected to each ONU through an optical splitter; wherein the single-core optical fiber supports transmission of multiple pairs of wavelengths.
  • two of the pair of wavelengths are used for the uplink data and the downlink data, respectively.
  • the optical module on the OLT side supports multiple pairs of wavelengths
  • the optical modules on the ONU side support multiple pairs of wavelengths.
  • the single-core fiber supports transmission of three pairs of wavelengths, and the first wavelength, the third wavelength, and the fifth wavelength are respectively connected to each ONU.
  • the ONU transmits the identity information of the ONU on the first wavelength, the third wavelength, and the fifth wavelength of the single-core fiber;
  • the OLT sends a ranging request in a quiet window that is open at the first wavelength, the third wavelength, and the fifth wavelength of the single-core fiber;
  • the OLT completes the ranging of the ONU, and applies the ranging result locally or sends the ranging result to the ONU.
  • the OLT locally schedules the downlink bandwidth to each ONU through the first wavelength, the third wavelength, and the fifth wavelength according to the downlink data service sent to the ONU;
  • the downlink data is divided into multiple data blocks according to the downlink bandwidth of the three ONUs, and the OLT allocates an identifier for each data block. ID), and assign a number to each segment after segmentation;
  • the OLT When the OLT sends the divided data blocks, the IDs of the respective IDs, numbers, and divided data are simultaneously transmitted;
  • each ONU When each ONU receives the data with the ID, the data block is collected according to the number of copies of the divided data, and the data sent by the OLT is restored according to the number.
  • the OLT sends the identity request information of the ONU in a quiet window that is open at the second wavelength, the fourth wavelength, and the sixth wavelength of the single-core fiber;
  • the ONU transmits the identity information of the ONU on the second wavelength, the fourth wavelength, and the sixth wavelength of the single-core fiber;
  • the OLT sends a ranging request in a quiet window that is open at the second wavelength, the fourth wavelength, and the sixth wavelength of the single-core fiber;
  • the OLT completes the ranging of the ONU, and applies the ranging result locally or sends the ranging result to the ONU.
  • the OLT determines, according to the uplink service of the ONU or the uplink bandwidth request of the ONU, and allocates the uplink bandwidth to the ONU by using the second wavelength, the fourth wavelength, and the sixth wavelength.
  • the uplink data is divided into multiple data blocks according to the uplink bandwidth allocated to the three ONUs, and the ONU allocates an ID for each data block, and divides the data.
  • Each data block after it is assigned a number;
  • the IDs of the respective IDs, numbers, and divided data are simultaneously transmitted;
  • the OLT When the OLT receives the data with the ID, it collects the data block according to the number of copies of the divided data, and restores the data sent by the ONU according to the number.
  • the first wavelength and the second wavelength are a pair of wavelengths
  • the third wavelength and the fourth wavelength are a pair of wavelengths
  • the fifth wavelength and the sixth wavelength are a pair of wavelengths.
  • the multiple pairs of wavelengths described in this embodiment may refer to multiple pairs of subcarriers, subcarrier groups, or pairs of bands in OFDM (Orthogonal Frequency Division Multiplexing).
  • the transmitting side converts the digital signal into an analog signal, and then applies OFDM modulation to the analog signal, and transmits it to the receiving side on different bands, subcarrier groups or subcarriers, and the receiving side according to different waves. Receive data on the band, on the subcarrier group, or on the subcarriers.
  • FIG. 7 is a schematic diagram showing the connection of multiple optical fibers in a plurality of optical fibers according to an embodiment of the present invention.
  • the OLT and the ONU are connected by multiple optical fibers, and each of the plurality of optical fibers is optically split.
  • the device is connected to each ONU; each ONU can communicate with the OLT through each of the plurality of fibers.
  • the OLT sends the identity request information of the ONU in a quiet window that is open on the first single-core fiber, the second single-core fiber, and the third single-core fiber of the plurality of optical fibers;
  • the ONU transmits the identity information of the ONU on the first single-core fiber, the second single-core fiber, and the third single-core fiber of the single-core fiber;
  • the OLT sends a ranging request in a quiet window that is open on the first single-core fiber, the second single-core fiber, and the third single-core fiber of the single-core fiber;
  • the OLT completes the ranging of the ONU, and applies the ranging result locally or sends the ranging result to the ONU.
  • the OLT locally allocates downlink bandwidth to each ONU through the first single-core fiber, the second single-core fiber, and the third single-core fiber according to the downlink data service sent to the ONU;
  • the downlink data is divided into multiple data blocks according to the downlink bandwidth of the three ONUs, and the OLT allocates an ID for each data block. And assigning a number to each of the divided data blocks;
  • the OLT When the OLT sends the divided data blocks, the IDs of the respective IDs, numbers, and divided data are simultaneously transmitted;
  • each ONU When each ONU receives the data with the ID, the data block is collected according to the number of copies of the divided data, and the data sent by the OLT is restored according to the number.
  • the process of transmitting the uplink data is similar to that of the first embodiment, and details are not described herein again.
  • the plurality of optical fibers described in this embodiment include: a multi-core optical fiber and a plurality of single-core optical fibers;
  • the difference between a plurality of single-core fibers and multi-core fibers is that the multi-core fibers are uniformly packaged and the lengths are the same, and the plurality of single-core fibers are independent of each other, and the length of each is not guaranteed.
  • FIG. 8 is a schematic diagram showing a plurality of transmission paths of a plurality of optical fibers and multiple pairs of wavelengths according to an embodiment of the present invention.
  • the OLT and the ONU are connected by a plurality of optical fibers, wherein the plurality of optical fibers are composed of a plurality of single-core optical fibers.
  • each of the plurality of optical fibers is connected to each ONU via an optical splitter; and the plurality of single-core optical fibers support transmission of multiple pairs of wavelengths.
  • Each ONU can be communicatively coupled to the OLT through each of the plurality of fibers.
  • the OLT transmits the identity request information of the ONU in a quiet window in which three wavelengths of the first single-core fiber of the plurality of fibers, three wavelengths of the second single-core fiber, and three wavelengths of the third single-core fiber are open;
  • the ONU transmits the identity information of the ONU at three wavelengths of the first single-core fiber, three wavelengths of the second single-core fiber, and three wavelengths of the third single-core fiber;
  • the OLT sends a ranging request at a quiet window in which three wavelengths of the first single-core fiber, three wavelengths of the second single-core fiber, and three wavelengths of the third single-core fiber are open;
  • the OLT completes the ranging of the ONU, and applies the ranging result locally or sends the ranging result to the ONU.
  • the OLT locally schedules the downlink bandwidth to each ONU according to the downlink data service sent to the ONU through three wavelengths of the first single-core fiber, three wavelengths of the second single-core fiber, and three wavelengths of the third single-core fiber;
  • the downlink data is divided into multiple data blocks according to the downlink bandwidth of the three ONUs, and the OLT is used for each.
  • the data block is assigned an ID and a number is assigned to each of the divided data blocks;
  • the OLT When the OLT sends the divided data blocks, the IDs of the respective IDs, numbers, and divided data are simultaneously transmitted;
  • each ONU When each ONU receives the data with the ID, the data block is collected according to the number of copies of the divided data, and the data sent by the OLT is restored according to the number.
  • the process of transmitting the uplink data is similar to that of the first embodiment, and details are not described herein again.
  • the plurality of optical fibers described in this embodiment include: a multi-core optical fiber and a plurality of single-core optical fibers;
  • the difference between a plurality of single-core fibers and multi-core fibers is that the multi-core fibers are uniformly packaged and the lengths are the same, and the plurality of single-core fibers are independent of each other, and the length of each is not guaranteed.
  • the multiple pairs of wavelengths described in this embodiment may refer to multiple pairs of subcarriers, subcarrier groups, or pairs of bands in OFDM.
  • the transmitting side converts the digital signal into an analog signal, and then applies OFDM modulation to the analog signal, and transmits it to the receiving side on different bands, subcarrier groups or subcarriers, and the receiving side according to different waves. Receive data on the band, on the subcarrier group, or on the subcarriers.
  • FIG. 9 is a schematic diagram of a connection in which multiple transmission paths are weakened according to an embodiment of the present invention.
  • the weakening mode means that each ONU is connected to an OLT through a part of multiple transmission paths, and is not necessarily connected to each transmission path. . It may be that each ONU may be connected to the OLT through one or more pairs of wavelengths; or, each ONU may be connected to the OLT through one or more single-core fibers; or each ONU may pass one or more One or more pairs of wavelengths in a single core fiber OLT connection.
  • the data transmission method in the weakening mode is the same as the data transmission method in the foregoing embodiment, and details are not described herein again.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which implement a data transmission method on the ONU side when the computer executable instructions are executed.
  • the embodiment of the invention further provides a computer readable storage medium, which stores computer executable instructions, and when the computer executable instructions are executed, implements a data transmission method on the OLT side.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program in a storage memory by a processor/ Instructions to achieve their corresponding functions.
  • the embodiments of the present application are not limited to any particular form of combination of hardware and software.
  • the embodiment of the present invention provides a data transmission method, device, and system.
  • the OLT and the ONU cooperate with each other to coordinate a transmission path, and implement the transmission path as a path group with a larger capacity, thereby increasing the bandwidth between the OLT and the ONU, and increasing the bandwidth.
  • the network capacity of the passive optical network is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to coordinate a transmission path, and implement the transmission path as a path group with a larger capacity, thereby increasing the bandwidth between the OLT and the ONU, and increasing the bandwidth.
  • the network capacity of the passive optical network is a data transmission method, device, and system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

一种数据传输方法,包括:光网络单元ONU在多条传输路径中的任意一条或多条传输路径上传输与光线路终端OLT进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。通过该方法数据可在多条传输路径上传输,且所述多条传输路径相互独立,数据在传输过程中传输路径可选,从而提升OLT和ONU之间的带宽,增加了无源光网络的网络容量。

Description

一种数据传输方法、装置、系统及ONU、OLT 技术领域
本申请涉及但不限于无源光网络领域,特别涉及一种数据传输方法、装置、系统及光网络单元(ONU,Optical Network Unit)、光线路终端(OLT,Optical Line Terminal)。
背景技术
随着宽带业务的迅猛发展,用户对接入网络带宽的需求大幅增长,PON(Passive Optical Network,无源光网络)是目前用户接入的一种重要技术手段。如图1所示,PON系统中,光线路终端(OLT,Optical Line Terminal)通过主干光纤与光分路器连接,光分路器通过分支光纤与多个光网络单元(ONU,Optical Network Unit)连接,OLT和ONU通过一个波长对进行通信,OLT在下行波长上开放安静窗口并请求ONU的身份信息,ONU在上行波长上报告身份信息,OLT获得ONU的身份信息后,再次在下行波长上开放安静窗口并发送测距请求,ONU在上行波长上答复测距响应,OLT完成测距,OLT根据下行业务情况给ONU发送数据,并根据ONU的上行业务情况或者ONU的带宽请求为ONU分配带宽,ONU在分配给自己的带宽内发送上行数据。传统的PON技术如GPON(Gigabit PON,千兆无源光网络)、EPON(Ethernet PON,以太网PON)、XG-PON1(10 Gigabit PON)、10GEPON(10Gbps EPON)采用TDM(Time Division Multiplexing,时分复用)/TDMA(Time Division Multiplexing Access,时分复用接入)技术,为TDM-PON(Time Division Multiplexing PON,时分复用PON),但是单一波长速率达到10Gbps后很难再提升。目前PON宽带提升有几个发展方向,一是OFDM-PON(Orthogonal Frequency Division Multiplexing PON,正交频分复用PON),采用波长调制技术,提升单波长带宽,但是实现复杂度较高,存在器件实现难度,并且成本较高;二是TWDM-PON(TDM&WDM PON,Time Division Multiplexing&Wavelength Division Multiplexing PON,时分复用波分复用混合PON),OLT侧增加波长维度,每个ONU只能工作在一个 波长上,但是器件复杂度高且部署较难。
如何通过简单有效的手段,迅速提高PON网络容量是亟待解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种数据传输方法、装置、系统及ONU、OLT,解决了无源光网络的网络容量问题。
本发明实施例提供一种数据传输方法,应用于ONU,ONU在多条传输路径上与OLT通信连接,该方法包括:
所述ONU在多条传输路径中的任意一条或多条传输路径上传输与OLT进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
其中,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与OLT进行交互的注册信息包括:
所述ONU获取并响应所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送的ONU的身份请求信息,并在多条传输路径中的任意一条或多条传输路径上向所述OLT发送ONU的身份信息。
其中,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的测距信息包括:
所述ONU获取并响应所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送的测距请求,并根据ONU在多条传输路径中的任意一条或多条传输路径上回复的测距响应获取所述OLT完成的测距结果。
其中,所述ONU在多条传输路径中的任意一条或多条传输路径上与所述OLT进行带宽分配包括:
所述ONU获取所述OLT根据所述ONU的上行业务或所述ONU的带宽请求而确定的、且通过多条传输路径中的任意一条或多条传输路径而分配的 带宽分配结果。
其中,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的数据业务信息包括:
所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务。
其中,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的数据业务信息还包括:
所述ONU接收所述OLT在多条传输路径中的任意一条或多条传输路径上传输的下行数据业务。
其中,所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务包括:
在一条传输路径上传输所述上行数据业务。
其中,所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务还包括:
在多条传输路径上同时发送一份业务,将上行业务数据进行分割,得到分割结果;
根据所述分割结果,以及每个ONU被分配的带宽分配结果,在多条传输路径上传输上行数据。
其中,将上行业务数据进行分割,得到分割结果包括:
将上行业务数据分割成多个数据块;
为每个数据块分配一个标识。
其中,根据所述分割结果,以及每个ONU被分配的带宽分配结果,在多条传输路径上传输上行数据,包括:
按照每个ONU被分配的带宽,将具有标识的每个数据块,在多条传输路径上传输给OLT,使OLT根据每个数据块的标识,将所有数据块拼接成一完整数据块。
其中,所述多条传输路径包括:OLT与多个ONU之间连接的单芯光纤 多对波长,且所述单芯光纤经光分路器与每个ONU相连;其中,所述单芯光纤支持多对波长的传输;每一个ONU均可通过所述单芯光纤的每对波长与OLT通信连接。
其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条光纤;且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且每个ONU均可通过所述多条光纤中的每个单芯光纤与OLT通信连接。
其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条光纤多对波长;其中,所述多条光纤由多个单芯光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述多条光纤中的每个单芯光纤支持多对波长传输,所述每个ONU均可通过所述多条光纤中的每个单芯光纤的多对波长与OLT通信连接。
其中,所述多条光纤包括:多芯光纤和多条单芯光纤;其中,所述多芯光纤由多个单芯光纤统一封装组成。
其中,所述多对波长还包括:多对子载波、子载波群或多对波带。
其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条传输路径的弱化模式;
其中,所述弱化模式是指每个ONU通过与OLT所支持的多条传输路径中的部分传输路径与OLT通信相连。
本发明实施例还提供一种数据传输装置,应用于ONU,包括:
第一传输模块,设置为在多条传输路径中的任意一条或多条传输路径上传输与OLT进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
本发明实施例还提供一种ONU,包括如上述实施例所述的数据传输装置。
本发明实施例还提供一种数据传输方法,应用于OLT,所述OLT在多条传输路径上与ONU通信连接,该方法包括:
所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
其中,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与ONU进行交互的注册信息包括:
所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送ONU的身份请求信息,并获取所述ONU在多条传输路径中的任意一条或多条传输路径上发送的ONU的身份信息。
其中,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与ONU进行交互的测距信息包括:
所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内向所述ONU发送测距请求,并完成对所述ONU的测距,且在本地应用该测距结果或者将该测距结果发送到所述ONU。
其中,所述OLT在多条传输路径中的任意一条或多条传输路径上与所述ONU进行带宽分配包括:
所述的OLT根据所述ONU的上行业务或所述ONU的带宽请求而确定的、且通过多条传输路径中的任意一条或多条传输路径分配带宽给所述ONU。
其中,所述OLT在多条传输路径中的任意一条或多条传输路径上与所述ONU进行带宽分配还包括:
所述OLT根据发送给所述ONU的下行数据业务,本地调度下行带宽给所述ONU。
其中,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的数据业务信息包括:
所述OLT根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务。
其中,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的数据业务信息还包括:
所述OLT接收所述ONU在多条传输路径中的任意一条或多条传输路径上传输的上行数据业务。
其中,所述OLT根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务包括:
在一条传输路径上传输所述下行数据业务。
其中,所述OLT根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务还包括:
在多条传输路径上同时发送一份业务,将下行业务数据进行分割,得到分割结果;
根据所述分割结果,以及OLT本地调度给每个ONU的下行带宽,在多条传输路径上传输下行数据。
其中,将下行业务数据进行分割,得到分割结果包括:
将下行业务数据分割成多个数据块;
为每个数据块分配一个标识。
其中,根据所述分割结果,以及OLT本地调度给每个ONU的下行带宽,在多条传输路径上传输下行数据包括:
按照OLT本地调度给每个ONU的下行带宽,将具有标识的每个数据块,在多条传输路径上传输给ONU,使ONU根据每个数据块的标识,将所有数据块拼接成一完整数据块。
其中,所述多条传输路径包括:OLT与多个ONU之间连接的单芯光纤多对波长,且所述单芯光纤经光分路器与每个ONU相连;其中,所述单芯光纤支持多对波长的传输;所述OLT可通过所述单芯光纤的每对波长与每一个ONU通信连接。
其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条光纤;且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述OLT可通过所述多条光纤中的每个单芯光纤与每个ONU通信连接。
其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条光纤多对波长;其中,所述多条光纤由多个单芯光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述多条光纤中的每个单芯光纤支持多对波长传输,所述OLT可通过所述多条光纤中的每个单芯光纤的多对波长与每个ONU通信连接。
其中,所述多条光纤包括:多芯光纤和多条单芯光纤;其中,所述多芯 光纤由多个单芯光纤统一封装组成。
其中,所述多对波长还包括:多对子载波、子载波群或多对波带。
其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条传输路径的弱化模式;
其中,所述弱化模式指每个ONU通过与OLT所支持的多条传输路径中的部分传输路径与OLT通信相连。
本发明实施例还提供一种数据传输装置,应用于OLT,包括:
第二传输模块,设置为在多条传输路径中的任意一条或多条传输路径上传输与ONU进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
本发明实施例还提供一种OLT,包括如上述实施例所述的数据传输装置。
本发明实施例还提供一种数据传输系统,包括:OLT、多条传输路径及ONU,所述OLT为上述实施例所述的OLT,所述ONU为上述实施例所述的ONU。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现ONU侧的数据传输方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现OLT侧的数据传输方法。
本发明实施例的上述技术方案的有益效果如下:
本发明实施例的方案,通过在无源光网络系统中,OLT与ONU之间的数据可在多条传输路径上传输,且所述多条传输路径相互独立,数据在传输过程中传输路径可选,每条传输路径上可以运行相同或不同数据,通过OLT和ONU互相配合,协调这些传输路径,把这些传输路径实现为一个容量更大的路径群,从而提升OLT和ONU之间的带宽,增加了无源光网络的网络容量。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术中无源光网络系统架构的示意图;
图2为本发明实施例的数据传输方法应用于ONU的基本步骤示意图;
图3为本发明实施例的数据传输装置应用于ONU的组成结构示意图;
图4为本发明实施例的数据传输方法应用于OLT的基本步骤示意图;
图5为本发明实施例的数据传输方法应用于OLT的基本步骤示意图;
图6为本发明实施例的多条传输路径为单芯光纤多对波长的连接示意图;
图7为本发明实施例的多条传输路径为多条光纤的连接示意图;
图8为本发明实施例的多条传输路径为多条光纤多对波长的连接示意图;
图9为本发明实施例的多条传输路径为弱化模式的连接示意图。
本发明的实施方式
下面将结合附图及具体实施例进行详细描述。
本发明实施例针对相关技术的无源光网络中数据传输对网络带宽的需求增大,但其传输路径单一,导致网络容量难以提高的问题,提供了一种数据传输方法、装置、系统及ONU、OLT,数据可在多条传输路径上传输,且所述多条传输路径相互独立,数据在传输过程中传输路径可选,每条传输路径上可以运行相同或不同数据,通过OLT和ONU互相配合,协调这些传输路径,把这些传输路径实现为一个容量更大的路径群,从而提升OLT和ONU之间的带宽,增加了无源光网络的网络容量。
如图2所示,本发明实施例提供一种数据传输方法,应用于光网络单元(ONU),ONU在多条传输路径上与光线路终端(OLT)通信连接,本实施例的方法包括以下步骤:
步骤11,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
本发明实施例的数据传输方法中,数据可在多条传输路径上传输,且所 述多条传输路径相互独立,数据在传输过程中传输路径可选,每条传输路径上可以运行相同或不同数据,增加了无源光网络的网络容量。
可选地,本申请的上述实施例中提供的所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的注册信息的方法中,步骤11还包括:
步骤111,所述ONU获取并响应所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送的ONU的身份请求信息,并在并在多条传输路径中的任意一条或多条传输路径上向所述OLT发送ONU的身份信息。
可选地,本申请的上述实施例中提供的所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的测距信息的方法中,步骤11还包括:
步骤112,所述ONU获取并响应所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送的测距请求,并根据ONU在多条传输路径中的任意一条或多条传输路径上回复的测距响应获取所述OLT完成的测距结果。
可选地,本申请的上述实施例中提供的所述ONU在多条传输路径中的任意一条或多条传输路径上与所述OLT进行带宽分配的方法中,步骤11还包括:
步骤113,所述ONU获取所述OLT根据所述ONU的上行业务或所述ONU的带宽请求而确定的、且通过多条传输路径中的任意一条或多条传输路径而分配的带宽分配结果。
可选地,本申请的上述实施例中提供的所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的数据业务信息的方法中,步骤11还包括:
步骤114,所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务。
可选地,本申请的上述实施例中提供的所述ONU在多条传输路径中的 任意一条或多条传输路径上传输与所述OLT进行交互的数据业务信息的方法中,步骤11还包括:
步骤115,所述ONU接收所述OLT在多条传输路径中的任意一条或多条传输路径上传输的下行数据业务。
可选地,本申请的上述实施例中提供的所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务的方法中,步骤114可以包括:
步骤1141,在一条传输路径上传输所述上行数据业务。
可选地,本申请的上述实施例中提供的所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务的方法中,步骤114还可以包括:
步骤1142,在多条传输路径上同时发送一份业务,将上行业务数据进行分割,得到分割结果;
步骤1143,根据所述分割结果,以及每个ONU被分配的带宽分配结果,在多条传输路径上传输上行数据。
可选地,步骤1142中在多条传输路径上同时发送一份业务,将上行业务数据进行分割,得到分割结果,包括:
步骤1142-1,将上行业务数据分割成多个数据块;
步骤1142-2,为每个数据块分配一个标识。
可选地,步骤1143中根据所述分割结果,以及每个ONU被分配的带宽分配结果,在多条传输路径上传输上行数据,包括:
步骤1143-1,按照每个ONU被分配的带宽,将具有标识的每个数据块,在多条传输路径上传输给OLT,使OLT根据每个数据块的标识,将所有数据块拼接成一完整数据块。
可选地,本发明实施例的上述方法步骤中所述的多条传输路径包括:OLT与多个ONU之间连接的单芯光纤多对波长,且所述单芯光纤经光分路器与每个ONU相连;其中,所述单芯光纤支持多对波长的传输;每一个ONU均可通过所述单芯光纤的每对波长与OLT通信连接。
可选地,本发明实施例的上述方法步骤中所述的多条传输路径还包括:OLT与多个ONU之间的连接的多条光纤;且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且每个ONU均可通过所述多条光纤中的每个单芯光纤与OLT通信连接。
可选地,本发明实施例的上述方法步骤中所述的多条传输路径还包括:OLT与多个ONU之间连接的多条光纤多对波长;
其中,所述多芯光纤由多个单条光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述多条光纤中的每个单芯光纤支持多对波长传输,所述每个ONU均可通过所述多条光纤中的每个单芯光纤的多对波长与OLT通信连接。
可选地,本发明实施例上述方法中所述的多条光纤包括:多芯光纤和多条单芯光纤;其中,所述多芯光纤由多个单芯光纤统一封装组成。
可选地,本发明实施例的上述方法中所述的多对波长还包括:多对子载波、子载波群或多对波带。
可选地,本发明实施例的上述方法步骤中所述的多条传输路径还包括:OLT与多个ONU之间的连接的多条传输路径的弱化模式;
其中,所述弱化模式是指每个ONU通过与OLT所支持的多条传输路径中的部分传输路径与OLT通信相连,不必与OLT所支持的每一条传输路径相连。
可选地,所述弱化模式可以是,每个ONU可以通过一对或多对波长与OLT连接;也可以是,每个ONU可以通过一个或多个单芯光纤与OLT连接;也可以是每个ONU可以通过一个或多个单芯光纤中的一对或多对波长与OLT连接。
本发明实施例的上述方法中,数据可在多条传输路径上传输,且所述多条传输路径相互独立,数据在传输过程中传输路径可选,每条传输路径上可以运行相同或不同数据,通过OLT和ONU互相配合,协调这些传输路径,把这些传输路径实现为一个容量更大的路径群,从而提升OLT和ONU之间的带宽,增加了无源光网络的网络容量。
如图3所示,本发明实施例还提供一种数据传输装置,应用于光网络单元(ONU),包括:
第一传输模块21,设置为在多条传输路径中的任意一条或多条传输路径上传输与OLT进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
可选地,本申请的上述实施例中所述的第一传输模块21可以包括:
第一获取执行子模块,设置为获取并响应所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送的ONU的身份请求信息,并在多条传输路径中的任意一条或多条传输路径上向所述OLT发送ONU的身份信息。
可选地,本申请的上述实施例中所述的第一传输模块21还包括:
第二获取执行子模块,设置为获取并响应所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送的测距请求,并根据ONU在多条传输路径中的任意一条或多条传输路径上回复的测距响应获取所述OLT完成的测距结果。
可选地,本申请的上述实施例中所述的第一传输模块21还包括:
第三获取子模块,设置为获取所述OLT根据所述ONU的上行业务或所述ONU的带宽请求而确定的、且通过多条传输路径中的任意一条或多条传输路径而分配的带宽分配结果。
可选地,本申请的上述实施例中所述的第一传输模块21还包括:
第一上行传输子模块,设置为根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务。
可选地,本申请的上述实施例中所述的第一传输模块21还包括:
第一下行传输子模块,设置为接收所述OLT在多条传输路径中的任意一条或多条传输路径上传输的下行数据业务。
可选地,本申请的上述实施例中所述的第一传输模块21中的第一上行传输子模块包括:
第一上行传输单元,设置为在一条传输路径上传输所述上行数据业务。
可选地,本申请的上述实施例中所述的第一传输模块21中的第一上行传输子模块还包括:
第一分割单元,设置为在多条传输路径上同时发送一份业务,将上行业务数据进行分割,得到分割结果;
第二上行传输单元,设置为根据所述分割结果,以及每个ONU被分配的带宽分配结果,在多条传输路径上传输上行数据。
可选地,本申请的上述实施例中所述的第一传输模块21的第一分割单元包括:
第一分割子单元,设置为将上行业务数据分割成多个数据块;
第一标识子单元,设置为:为每个数据块分配一个标识。
可选地,本申请的上述实施例中所述的第一传输模块21中的第一上行传输子模块中的第二上行传输单元包括:
第二上行传输子单元,设置为按照每个ONU被分配的带宽,将具有标识的每个数据块,在多条传输路径上传输给OLT,使OLT根据每个数据块的标识,将所有数据块拼接成一完整数据块。
可选地,本申请的上述实施例中所述的多条传输路径包括:OLT与多个ONU之间连接的单芯光纤多对波长,且所述单芯光纤经光分路器与每个ONU相连;其中,所述单芯光纤支持多对波长的传输;每一个ONU均可通过所述单芯光纤的每对波长与OLT通信连接。
可选地,本申请的上述实施例中所述的多条传输路径包括:OLT与多个ONU之间连接的多条光纤;且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且每个ONU均可通过所述多条光纤中的每个单芯光纤与OLT通信连接。
可选地,本申请的上述实施例中所述的多条传输路径包括:OLT与多个ONU之间连接的多条光纤多对波长,
其中,所述多条光纤由多个单芯光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述多条光纤中的每个单芯光纤支 持多对波长传输,所述每个ONU均可通过所述多条光纤中的每个单芯光纤的多对波长与OLT通信连接。
可选地,本申请的上述实施例中所述的多条光纤包括:多芯光纤和多条单芯光纤;其中,所述多芯光纤由多个单芯光纤统一封装组成。
可选地,本申请的上述实施例中所述的多对波长还包括:多对子载波、子载波群或多对波带。
可选地,本申请的上述实施例中所述的多条传输路径包括:OLT与多个ONU之间连接的多条传输路径的弱化模式;
其中,所述弱化模式是指每个ONU通过与OLT所支持的多条传输路径中的部分传输路径与OLT通信相连,不必与OLT所支持的每一条传输路径相连。
可选地,所述弱化模式可以是,每个ONU可以通过一对或多对波长与OLT连接;也可以是,每个ONU可以通过一个或多个单芯光纤与OLT连接;也可以是每个ONU可以通过一个或多个单芯光纤中的一对或多对波长与OLT连接。
需要说明的是:该装置是与上述方法对应的装置,上述方法的所有实现实施例均适用于该装置的实施例中,也能达到相同的技术效果。
本发明实施例还提供一种ONU,包括如上述实施例所述的数据传输装置。
如图4所示,本发明实施例还提供一种数据传输方法,应用于光线路终端(OLT),所述OLT在多条传输路径上与光网络单元(ONU)通信连接,本实施例的方法包括以下步骤:
步骤31,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
本发明实施例的数据传输方法中,数据可在多条传输路径上传输,且所述多条传输路径相互独立,数据在传输过程中传输路径可选,每条传输路径上可以运行相同或不同数据,增加了无源光网络的网络容量。
可选地,本申请的上述实施例中提供的所述OLT在多条传输路径上传输 与所述ONU进行交互的注册信息的方法中,步骤31包括:
步骤311,所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送ONU的身份请求信息,并获取所述ONU在多条传输路径中的任意一条或多条传输路径上发送的ONU的身份信息。
可选地,本申请的上述实施例中提供的所述OLT在多条传输路径上传输与所述ONU进行交互的测距信息的方法中,步骤31还包括:
步骤312,所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内向所述ONU发送测距请求,并完成对所述ONU的测距,且在本地应用该测距结果或者将该测距结果发送到所述ONU。
可选地,本申请的上述实施例中提供的OLT在多条传输路径中的任意一条或多条传输路径上与所述ONU进行带宽分配的方法中,步骤31可以包括:
步骤313,所述OLT根据所述ONU的上行业务或所述ONU的带宽请求而确定的、且通过多条传输路径中的任意一条或多条传输路径分配带宽给所述ONU。
可选地,本申请的上述实施例中提供的OLT在多条传输路径中的任意一条或多条传输路径上与所述ONU进行带宽分配的方法中,步骤31还可以包括:
步骤314,所述OLT根据发送给所述ONU的下行数据业务,本地调度下行带宽给所述ONU。
可选地,本申请的上述实施例中提供的OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的数据业务信息的方法中,步骤31可以包括:
步骤315,所述OLT根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务。
可选地,本申请的上述实施例中提供的OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的数据业务信息的方法中,步骤31还可以包括:
步骤316,所述OLT接收所述ONU在多条传输路径中的任意一条或多 条传输路径上传输的上行数据业务。
可选地,本申请的上述实施例中所述OLT根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务的方法中,步骤315还包括:
步骤3151,在一条传输路径上传输所述下行数据业务。
可选地,本申请的上述实施例中步骤315还包括:
步骤3152,在多条传输路径上同时发送一份业务时,将下行业务数据进行分割,得到分割结果;
步骤3153,根据所述分割结果,以及OLT本地调度给每个ONU的下行带宽,在多条传输路径上传输下行数据。
可选地,步骤3152中将下行业务数据进行分割,得到分割结果,包括:
步骤3152-1,将下行业务数据分割成多个数据块;
步骤3152-2,为每个数据块分配一个标识。
可选地,步骤3153中根据所述分割结果,以及OLT本地调度给每个ONU的下行带宽,在多条传输路径上传输下行数据,包括:
步骤3153-1,按照OLT本地调度给每个ONU的下行带宽,将具有标识的每个数据块,在多条传输路径上传输给ONU,使ONU根据每个数据块的标识,将所有数据块拼接成一完整数据块。
可选地,本发明实施例的上述方法步骤中所述的多条传输路径包括:OLT与多个ONU之间连接的单芯光纤多对波长,且所述单芯光纤经光分路器与每个ONU相连;其中,所述单芯光纤支持多对波长的传输;每一个ONU均可通过所述单芯光纤的每对波长与OLT通信连接。
可选地,本发明实施例的上述方法步骤中所述的多条传输路径还包括:OLT与多个ONU之间连接的多条光纤;且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且每个ONU均可通过所述多条光纤中的每个单芯光纤与OLT通信连接。
可选地,本发明实施例的上述方法步骤中所述的多条传输路径还包括: OLT与多个ONU之间连接的多条光纤多对波长,
其中,所述多条光纤由多个单芯光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述多条光纤中的每个单芯光纤支持多对波长传输,所述每个ONU均可通过所述多条光纤中的每个单芯光纤的多对波长与OLT通信连接。
可选地,本发明实施例中所述多条光纤包括:多芯光纤和多条单芯光纤;其中,所述多芯光纤由多个单芯光纤统一封装组成。
可选地,本发明实施例中所述多对波长还包括:多对子载波、子载波群或多对波带。
可选地,本发明实施例的上述方法步骤中所述的多条传输路径还包括:OLT与多个ONU之间连接的多条传输路径的弱化模式;
其中,所述弱化模式是指每个ONU通过与OLT所支持的多条传输路径中的部分传输路径与OLT通信相连,不必与OLT所支持的每一条传输路径相连。
可选地,所述弱化模式可以是,每个ONU可以通过一对或多对波长与OLT连接;也可以是,每个ONU可以通过一个或多个单芯光纤与OLT连接;也可以是每个ONU可以通过一个或多个单芯光纤中的一对或多对波长与OLT连接。
本发明实施例的上述方法中,数据可在多条传输路径上传输,且所述多条传输路径相互独立,数据在传输过程中传输路径可选,每条传输路径上可以运行相同或不同数据,通过OLT和ONU互相配合,协调这些传输路径,把这些传输路径实现为一个容量更大的路径群,从而提升OLT和ONU之间的带宽,增加了无源光网络的网络容量。
如图5所示,本发明实施例还提供一种数据传输装置,应用于光网络单元(OLT),包括:
第二传输模块41,设置为在多条传输路径中的任意一条或多条传输路径上传输与ONU进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
可选地,本申请的上述实施例中所述的第二传输模块41可以包括:
信息请求获取子模块,设置为在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送ONU的身份请求信息,并获取所述ONU在多条传输路径中的任意一条或多条传输路径上发送的ONU的身份信息。
可选地,本申请的上述实施例中所述的第二传输模块41还包括:
发送处理子模块,设置为在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内向所述ONU发送测距请求,并完成对所述ONU的测距,且在本地应用该测距结果或者将该测距结果发送到所述ONU。
可选地,本申请的上述实施例中所述的第二传输模块41还包括:
带宽分配子模块,设置为将根据所述ONU的上行业务或所述ONU的带宽请求而确定的、且通过多条传输路径中的任意一条或多条传输路径分配带宽给所述ONU。
可选地,本申请的上述实施例中所述的第二传输模块41还包括:
带宽调度子模块,设置为根据发送给所述ONU的下行数据业务,本地调度下行带宽给所述ONU。
可选地,本申请的上述实施例中所述的第二传输模块41还包括:
第二下行传输子模块,设置为根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务。
可选地,本申请的上述实施例中所述的第二传输模块41还包括:
第二上行传输子模块,设置为接收所述ONU在多条传输路径中的任意一条或多条传输路径上传输的上行数据业务。
可选地,本申请的上述实施例中所述的第二传输模块41中的第二下行传输子模块包括:
第一下行传输单元,设置为在一条传输路径上传输所述下行数据业务。
可选地,本申请的上述实施例中所述的第二传输模块41中的第二下行传输子模块还包括:
第二分割单元,设置为在多条传输路径上同时发送一份业务,将下行业 务数据进行分割,得到分割结果;
第二下行传输单元,设置为根据所述分割结果,以及OLT本地调度给每个ONU的下行带宽,在多条传输路径上传输下行数据。
可选地,本申请的上述实施例中所述的第二传输模块41的第二分割单元包括:
第二分割子单元,设置为将下行业务数据分割成多个数据块;
第二标识子单元,设置为:为每个数据块分配一个标识。
可选地,本申请的上述实施例中所述的第二传输模块41中的第二下行传输子模块中的第二下行传输单元包括:
第二下行传输子单元,设置为按照OLT本地调度给每个ONU的下行带宽,将具有标识的每个数据块,在多条传输路径上传输给ONU,使ONU根据每个数据块的标识,将所有数据块拼接成一完整数据块。
可选地,本申请的上述实施例中所述的多条传输路径包括:OLT与多个ONU之间连接的单芯光纤多对波长,且所述单芯光纤经光分路器与每个ONU相连;其中,所述单芯光纤支持多对波长的传输;每一个ONU均可通过所述单芯光纤的每对波长与OLT通信连接。
可选地,本申请的上述实施例中所述的多条传输路径包括:OLT与多个ONU之间连接的多条光纤;且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且每个ONU均可通过所述多条光纤中的每个单芯光纤与OLT通信连接。
可选地,本申请的上述实施例中所述的多条传输路径包括:OLT与多个ONU之间的连接的多条光纤多对波长;
其中,所述多条光纤由多个单芯光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述多条光纤中的每个单芯光纤支持多对波长传输,所述每个ONU均可通过所述多条光纤中的每个单芯光纤的多对波长与OLT通信连接。
可选地,本申请的上述实施例中所述多条光纤包括:多芯光纤和多条单芯光纤;其中,所述多芯光纤由多个单芯光纤统一封装组成。
可选地,本申请的上述实施例中所述多对波长还包括:多对子载波、子载波群或多对波带。
可选地,本申请的上述实施例中述的多条传输路径包括:OLT与多个ONU之间连接的多条传输路径的弱化模式;
其中,所述弱化模式是指每个ONU通过与OLT所支持的多条传输路径中的部分传输路径与OLT通信相连,不必与OLT所支持的每一条传输路径相连。
可选地,所述弱化模式可以是,每个ONU可以通过一对或多对波长与OLT连接;也可以是,每个ONU可以通过一个或多个单芯光纤与OLT连接;也可以是每个ONU可以通过一个或多个单芯光纤中的一对或多对波长与OLT连接。
需要说明的是:该装置是与上述方法对应的装置,上述方法的所有实现实施例均适用于该装置的实施例中,也能达到相同的技术效果。
本发明实施例还提供一种OLT,包括如上述实施例所述的数据传输装置。
本发明实施例还提供一种数据传输系统,包括:OLT、多条传输路径及ONU,所述OLT为如上述实施例所述的OLT,所述ONU为如上述实施例所述的ONU。
下面结合具体的实施例来更清楚地描述本申请中的数据传输方法。
实施例一
图6所示为本发明实施例的多条传输路径为单芯光纤多对波长的连接示意图,OLT和ONU之间通过单根光纤连接,即单芯光纤。且所述单芯光纤经光分路器与每个ONU相连;其中,单芯光纤支持多对波长的传输。这里说的一对波长中的2个波长用于分别上行数据和下行数据。而且OLT侧的光模块支持多对波长,ONU侧的光模块支持多对波长。
在传输下行数据时,本实施例的数据传输方法的说明如下:
该单芯光纤支持三对波长的传输,第一波长、第三波长及第五波长分别与每个ONU相连。
OLT在单芯光纤的第一波长、第三波长及第五波长上均开放的安静窗口 内发送ONU的身份请求信息;
ONU在单芯光纤的第一波长、第三波长及第五波长上发送ONU的身份信息;
OLT在单芯光纤的第一波长、第三波长及第五波长上均开放的安静窗口内发送测距请求;
OLT完成对ONU的测距,并在本地应用该测距结果或者将该测距结果发送到ONU。
OLT根据发送给ONU的下行数据业务,通过第一波长、第三波长及第五波长本地调度下行带宽给每个ONU;
当OLT在所述三个波长上发送同一下行数据给每个ONU时,根据本地调度给三个ONU的下行带宽,将下行数据分割成多个数据块,OLT为每个数据块分配一个标识(ID),并对分割后的每个数据块分配一个编号;
OLT发送分割后的数据块时,同时发送各自的ID、编号和分割的数据的份数;
每个ONU接收到带有ID的数据时,按照分割的数据的份数收集数据块,并按照编号恢复OLT发送的数据。
在传输上行数据时,本实施例的数据传输方法的说明如下:
OLT在单芯光纤的第二波长、第四波长及第六波长上均开放的安静窗口内发送ONU的身份请求信息;
ONU在单芯光纤的第二波长、第四波长及第六波长上发送ONU的身份信息;
OLT在单芯光纤的第二波长、第四波长及第六波长上均开放的安静窗口发送测距请求;
OLT完成对ONU的测距,并在本地应用该测距结果或者将该测距结果发送到ONU。
OLT根据所述ONU的上行业务或ONU的上行带宽请求而确定的、且通过第二波长、第四波长及第六波长分配上行带宽给所述ONU。
当ONU在所述三个波长上发送同一上行数据给OLT时,根据分配给三个ONU的上行带宽,将上行数据分割成多个数据块,ONU为每个数据块分配一个ID,并对分割后的每个数据块分配一个编号;
ONU发送分割后的数据块时,同时发送各自的ID、编号和分割的数据的份数;
OLT接收到带有ID的数据时,按照分割的数据的份数收集数据块,并按照编号恢复ONU发送的数据。
这里需要说明的是:第一波长和第二波长为一对波长,第三波长和第四波长为一对波长,第五波长和第六波长为一对波长。
本实施例中所述的多对波长可以是指OFDM(正交频分复用)中多对子载波、子载波群或多对波带。
在OFDM-PON中,发送侧将数字信号转换成模拟信号,然后对模拟信号采用OFDM调制,在不同的波带上、子载波群上或子载波上发送给接收侧,接收侧根据不同的波带上、子载波群上或子载波上接收数据。
实施例二
图7所示为本发明实施例的多条传输路径为多条光纤的连接示意图,OLT与ONU之间通过多条光纤连接,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;每个ONU均可通过所述多条光纤中的每个单芯光纤与OLT通信连接。
以传输下行数据为例,该数据传输方法的说明如下:
OLT在多条光纤的第一单芯光纤、第二单芯光纤及第三单芯光纤上均开放的安静窗口内发送ONU的身份请求信息;
ONU在单芯光纤的第一单芯光纤、第二单芯光纤及第三单芯光纤上发送ONU的身份信息;
OLT在单芯光纤的第一单芯光纤、第二单芯光纤及第三单芯光纤上均开放的安静窗口内发送测距请求;
OLT完成对ONU的测距,并在本地应用该测距结果或者将该测距结果发送到ONU。
OLT根据发送给ONU的下行数据业务,通过第一单芯光纤、第二单芯光纤及第三单芯光纤本地调度下行带宽给每个ONU;
当OLT在所述三根单芯光纤上发送同一下行数据给每个ONU时,根据本地调度给三个ONU的下行带宽,将下行数据分割成多个数据块,OLT为每个数据块分配一个ID,并对分割后的每个数据块分配一个编号;
OLT发送分割后的数据块时,同时发送各自的ID、编号和分割的数据的份数;
每个ONU接收到带有ID的数据时,按照分割的数据的份数收集数据块,并按照编号恢复OLT发送的数据。
传输上行数据时,其过程与实施例一类似,在此不再赘述。
本实施例中所述的多条光纤包括:多芯光纤和多条单芯光纤;其中,
多条单芯光纤和多芯光纤的区别是:多芯光纤是统一封装的,长度是一样的,而多条单芯光纤是相互独立的,彼此的长度无法保证一样。
实施例三
图8所示为本发明实施例的多条传输路径为多条光纤多对波长的连接示意图,OLT与ONU之间通过多条光纤连接,其中,所述多条光纤由多个单芯光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;同时所述多个单芯光纤均支持多对波长的传输。每个ONU均可通过所述多条光纤中的每个单芯光纤与OLT通信连接。
以传输下行数据为例,该数据传输方法的说明如下:
OLT在多条光纤的第一单芯光纤的三个波长、第二单芯光纤的三个波长及第三单芯光纤的三个波长上均开放的安静窗口内发送ONU的身份请求信息;
ONU在第一单芯光纤的三个波长、第二单芯光纤的三个波长及第三单芯光纤的三个波长上发送ONU的身份信息;
OLT在的第一单芯光纤的三个波长、第二单芯光纤的三个波长及第三单芯光纤的三个波长上均开放的安静窗口发送测距请求;
OLT完成对ONU的测距,并在本地应用该测距结果或者将该测距结果发送到ONU。
OLT根据发送给ONU的下行数据业务,通过第一单芯光纤的三个波长、第二单芯光纤的三个波长及第三单芯光纤的三个波长本地调度下行带宽给每个ONU;
当OLT在所述三根单芯光纤上的三个波长上发送同一下行数据给每个ONU时,根据本地调度给三个ONU的下行带宽,将下行数据分割成多个数据块,OLT为每个数据块分配一个ID,并对分割后的每个数据块分配一个编号;
OLT发送分割后的数据块时,同时发送各自的ID、编号和分割的数据的份数;
每个ONU接收到带有ID的数据时,按照分割的数据的份数收集数据块,并按照编号恢复OLT发送的数据。
传输上行数据时,其过程与实施例一类似,在此不再赘述。
本实施例中所述的多条光纤包括:多芯光纤和多条单芯光纤;其中,
多条单芯光纤和多芯光纤的区别是:多芯光纤是统一封装的,长度是一样的,而多条单芯光纤是相互独立的,彼此的长度无法保证一样。
本实施例中所述的多对波长可以是指OFDM中多对子载波、子载波群或多对波带。
在OFDM-PON中,发送侧将数字信号转换成模拟信号,然后对模拟信号采用OFDM调制,在不同的波带上、子载波群上或子载波上发送给接收侧,接收侧根据不同的波带上、子载波群上或子载波上接收数据。
实施例四
图9所示为本发明实施例的多条传输路径为弱化模式的连接示意图,所述弱化模式是指每个ONU通过多条传输路径中的部分与OLT通信相连,不必与每一条传输路径相连。可以是,每个ONU可以通过一对或多对波长与OLT连接;也可以是,每个ONU可以通过一个或多个单芯光纤与OLT连接;也可以是每个ONU可以通过一个或多个单芯光纤中的一对或多对波长与 OLT连接。所述弱化模式下的数据传输方法与上述实施例中的数据传输方法步骤一样,此处不再赘述。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现ONU侧的数据传输方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现OLT侧的数据传输方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储存储器中的程序/指令来实现其相应功能。本申请实施例不限制于任何特定形式的硬件和软件的结合。
以上所述是本申请的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
工业实用性
本申请实施例提供一种数据传输方法、装置及系统,通过OLT和ONU互相配合,协调传输路径,把传输路径实现为一个容量更大的路径群,从而提升OLT和ONU之间的带宽,增加了无源光网络的网络容量。

Claims (38)

  1. 一种数据传输方法,应用于光网络单元ONU,ONU在多条传输路径上与光线路终端OLT通信连接,所述方法包括:
    所述ONU在所述多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
  2. 根据权利要求1所述的数据传输方法,其中,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的注册信息包括:
    所述ONU获取并响应所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送的ONU的身份请求信息,并在多条传输路径中的任意一条或多条传输路径上向所述OLT发送ONU的身份信息。
  3. 根据权利要求1所述的数据传输方法,其中,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的测距信息包括:
    所述ONU获取并响应所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送的测距请求,并根据ONU在多条传输路径中的任意一条或多条传输路径上回复的测距响应获取所述OLT完成的测距结果。
  4. 根据权利要求1所述的数据传输方法,其中,所述ONU在多条传输路径中的任意一条或多条传输路径上与所述OLT进行带宽分配包括:
    所述ONU获取所述OLT根据所述ONU的上行业务或所述ONU的带宽请求而确定的、且通过多条传输路径中的任意一条或多条传输路径而分配的带宽分配结果。
  5. 根据权利要求4所述的数据传输方法,其中,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的数据业务信息包括:
    所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多 条传输路径上传输上行数据业务。
  6. 根据权利要求5所述的数据传输方法,其中,所述ONU在多条传输路径中的任意一条或多条传输路径上传输与所述OLT进行交互的数据业务信息还包括:
    所述ONU接收所述OLT在多条传输路径中的任意一条或多条传输路径上传输的下行数据业务。
  7. 根据权利要求5所述的数据传输方法,其中,所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务包括:
    在一条传输路径上传输所述上行数据业务。
  8. 根据权利要求5所述的数据传输方法,其中,所述ONU根据所述带宽分配结果,在多条传输路径中的任意一条或多条传输路径上传输上行数据业务还包括:
    在多条传输路径上同时发送一份业务,将上行业务数据进行分割,得到分割结果;
    根据所述分割结果,以及每个ONU被分配的带宽分配结果,在多条传输路径上传输上行数据。
  9. 根据权利要求8所述的数据传输方法,其中,所述将上行业务数据进行分割,得到分割结果包括:
    将上行业务数据分割成多个数据块;
    为每个数据块分配一个标识。
  10. 根据权利要求9所述的数据传输方法,其中,所述根据所述分割结果,以及每个ONU被分配的带宽分配结果,在多条传输路径上传输上行数据包括:
    按照每个ONU被分配的带宽,将具有标识的每个数据块,在多条传输路径上传输给OLT,使OLT根据每个数据块的标识,将所有数据块拼接成一完整数据块。
  11. 根据权利要求1所述的数据传输方法,其中,所述多条传输路径包括:OLT与多个ONU之间连接的单芯光纤多对波长,且所述单芯光纤经光分路器与每个ONU相连;其中,所述单芯光纤支持多对波长的传输;每一个ONU均可通过所述单芯光纤的每对波长与OLT通信连接。
  12. 根据权利要求1所述的数据传输方法,其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条光纤;且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且每个ONU均可通过所述多条光纤中的每个单芯光纤与OLT通信连接。
  13. 根据权利要求1所述的数据传输方法,其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条光纤多对波长,
    其中,所述多条光纤由多个单芯光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;
    且所述多条光纤中的每个单芯光纤支持多对波长传输,所述每个ONU均可通过所述多条光纤中的每个单芯光纤的多对波长与OLT通信连接。
  14. 根据权利要求12或13所述的数据传输方法,其中,所述多条光纤包括:多芯光纤和多条单芯光纤;其中,所述多芯光纤由多个单芯光纤统一封装组成。
  15. 根据权利要求11或13所述的数据传输方法,其中,所述多对波长还包括:多对子载波、子载波群或多对波带。
  16. 根据权利要求1所述的数据传输方法,其中,所述多条传输路径包括:OLT与多个ONU之间连接的多条传输路径的弱化模式;
    其中,所述弱化模式是指每个ONU通过与OLT所支持的多条传输路径中的部分传输路径与OLT通信相连。
  17. 一种数据传输装置,应用于光网络单元ONU,包括:
    第一传输模块,设置为在多条传输路径中的任意一条或多条传输路径上传输与OLT进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
  18. 一种光网络单元ONU,包括如权利要求17所述的无源光网络系统 中的数据传输装置。
  19. 一种数据传输方法,应用于光线路终端OLT,所述OLT在多条传输路径上与光网络单元ONU通信连接,所述方法包括:
    所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的信息;其中,所述信息至少包括注册信息、测距信息、带宽分配和数据业务信息之一。
  20. 根据权利要求19所述数据传输方法,其中,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的注册信息包括:
    所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内发送ONU的身份请求信息,并获取所述ONU在多条传输路径中的任意一条或多条传输路径上发送的ONU的身份信息。
  21. 根据权利要求19所述的数据传输方法,其中,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的测距信息包括:
    所述OLT在多条传输路径中的任意一条或多条传输路径上开放的安静窗口内向所述ONU发送测距请求,并完成对所述ONU的测距,且在本地应用该测距结果或者将该测距结果发送到所述ONU。
  22. 根据权利要求19所述的数据传输方法,其中,所述OLT在多条传输路径中的任意一条或多条传输路径上与所述ONU进行带宽分配包括:
    所述的OLT根据所述ONU的上行业务或所述ONU的带宽请求而确定的、且通过多条传输路径中的任意一条或多条传输路径分配带宽给所述ONU。
  23. 根据权利要求19所述的数据传输方法,其中,所述OLT在多条传输路径中的任意一条或多条传输路径上与所述ONU进行带宽分配还包括:
    所述OLT根据发送给所述ONU的下行数据业务,本地调度下行带宽给所述ONU。
  24. 根据权利要求23所述的数据传输方法,其中,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的数据业 务信息包括:
    所述OLT根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务。
  25. 根据权利要求24所述的数据传输方法,其中,所述OLT在多条传输路径中的任意一条或多条传输路径上传输与所述ONU进行交互的数据业务信息还包括:
    所述OLT接收所述ONU在多条传输路径中的任意一条或多条传输路径上传输的上行数据业务。
  26. 根据权利要求24所述的数据传输方法,其中,所述OLT根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务包括:
    在一条传输路径上传输所述下行数据业务。
  27. 根据权利要求24所述的数据传输方法,其中,所述OLT根据所述本地调度给所述ONU的下行带宽,在多条传输路径中的任意一条或多条传输路径上传输下行数据业务还包括:
    在多条传输路径上同时发送一份业务,将下行业务数据进行分割,得到分割结果;
    根据所述分割结果,以及OLT本地调度给每个ONU的下行带宽,在多条传输路径上传输下行数据。
  28. 根据权利要求27所述的数据传输方法,其中,所述将下行业务数据进行分割,得到分割结果包括:
    将下行业务数据分割成多个数据块;
    为每个数据块分配一个标识。
  29. 根据权利要求28所述的数据传输方法,其中,所述根据所述分割结果,以及OLT本地调度给每个ONU的下行带宽,在多条传输路径上传输下行数据包括:
    按照OLT本地调度给每个ONU的下行带宽,将具有标识的每个数据块, 在多条传输路径上传输给ONU,使ONU根据每个数据块的标识,将所有数据块拼接成一完整数据块。
  30. 根据权利要求19所述的数据传输方法,其中,所述多条传输路径包括:
    OLT与多个ONU之间的连接的单芯光纤多对波长,且所述单芯光纤经光分路器与每个ONU相连;其中所述单芯光纤支持多对波长的传输;所述OLT可通过所述单芯光纤的每对波长与每一个ONU通信连接。
  31. 根据权利要求19所述的数据传输方法,其中,所述多条传输路径包括:
    OLT与多个ONU之间的连接的多条光纤;且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述OLT可通过所述多条光纤中的每个单芯光纤与每个ONU通信连接。
  32. 根据权利要求19所述的数据传输方法,其中,所述多条传输路径包括:
    OLT与多个ONU之间连接的多条光纤多对波长,
    其中,所述多条光纤由多个单芯光纤组成,且所述多条光纤中的每个单芯光纤经光分路器与每个ONU相连;且所述多条光纤中的每个单芯光纤支持多对波长传输,所述OLT可通过所述多条光纤中的每个单芯光纤的多对波长与每个ONU通信连接。
  33. 根据权利要求31或32所述的数据传输方法,其中,所述多条光纤包括:多芯光纤和多条单芯光纤;其中,所述多芯光纤由多个单芯光纤统一封装组成。
  34. 根据权利要求30或32所述的数据传输方法,其中,所述多对波长还包括:多对子载波、子载波群或多对波带。
  35. 根据权利要求19所述的数据传输方法,其中,所述多条传输路径包括:
    OLT与多个ONU之间连接的多条传输路径的弱化模式;
    其中,所述弱化模式指每个ONU通过与OLT所支持的多条传输路径中 的部分传输路径与OLT通信相连。
  36. 一种数据传输装置,应用于光线路终端OLT,包括:
    第二传输模块,设置为在多条传输路径中的任意一条或多条传输路径上传输与ONU进行交互的信息;其中,所述信息至少包括注册信息、测距信息和数据业务信息之一。
  37. 一种光线路终端OLT,包括如权利要求36所述的数据传输装置。
  38. 一种数据传输系统,包括:光线路终端OLT、多条传输路径及光网络单元ONU,所述OLT为如权利要求37所述的OLT,所述ONU为如权利要求18所述的ONU。
PCT/CN2016/086915 2015-08-24 2016-06-23 一种数据传输方法、装置、系统及onu、olt WO2017032162A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510522203.1A CN106488345B (zh) 2015-08-24 2015-08-24 一种数据传输方法、装置、系统及onu、olt
CN201510522203.1 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017032162A1 true WO2017032162A1 (zh) 2017-03-02

Family

ID=58099510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086915 WO2017032162A1 (zh) 2015-08-24 2016-06-23 一种数据传输方法、装置、系统及onu、olt

Country Status (2)

Country Link
CN (1) CN106488345B (zh)
WO (1) WO2017032162A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943783A (zh) * 2018-09-25 2020-03-31 中兴通讯股份有限公司 光网络的测距方法、olt、onu、光网络系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574888B (zh) * 2017-03-14 2021-01-22 中兴通讯股份有限公司 Pon的通道建立方法、onu、olt及系统
KR102318021B1 (ko) 2017-04-21 2021-10-27 삼성전자 주식회사 이동 통신 네트워크 내 다중 링크 상에서의 패킷 분배 방법 및 장치
CN109429118B (zh) * 2017-09-04 2022-03-01 中兴通讯股份有限公司 带宽分配方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102497228A (zh) * 2011-12-08 2012-06-13 上海市共进通信技术有限公司 Pon系统中olt与onu间实现动态多通道omci消息传输的方法
CN103220588A (zh) * 2012-01-18 2013-07-24 中兴通讯股份有限公司 一种光网络单元的注册方法及系统
CN103281604A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103518381A (zh) * 2011-05-17 2014-01-15 瑞典爱立信有限公司 对光纤接入网络的保护

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452679C (zh) * 2002-12-31 2009-01-14 北京邮电大学 以太网无源光网络系统中弹性保护倒换的方法和设备
CN100473053C (zh) * 2005-12-23 2009-03-25 真宽通信技术(苏州)有限公司 以太网无源光网络上行链路数据分组传输的方法
US8050561B2 (en) * 2006-08-11 2011-11-01 Futurewei Technologies, Inc. Asymmetrical PON with multiple return channels
CN1921357A (zh) * 2006-09-21 2007-02-28 杭州华为三康技术有限公司 一种全光纤保护装置及其方法
CN102088329B (zh) * 2010-12-28 2013-07-17 上海大学 一种波分复用无源光网络实现广播业务传输的系统和方法
CN102821029B (zh) * 2011-06-08 2015-11-11 上海贝尔股份有限公司 一种以太网无源光网络中的多业务带宽分配方法及其装置
CN103391487B (zh) * 2012-05-11 2017-12-01 中兴通讯股份有限公司 一种在多逻辑链路标识模式下传输业务的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103518381A (zh) * 2011-05-17 2014-01-15 瑞典爱立信有限公司 对光纤接入网络的保护
CN102497228A (zh) * 2011-12-08 2012-06-13 上海市共进通信技术有限公司 Pon系统中olt与onu间实现动态多通道omci消息传输的方法
CN103220588A (zh) * 2012-01-18 2013-07-24 中兴通讯股份有限公司 一种光网络单元的注册方法及系统
CN103281604A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943783A (zh) * 2018-09-25 2020-03-31 中兴通讯股份有限公司 光网络的测距方法、olt、onu、光网络系统

Also Published As

Publication number Publication date
CN106488345B (zh) 2020-06-16
CN106488345A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
US10389472B2 (en) Optical line terminal communication method and device with data structure
EP2122878B1 (en) Backward compatible pon coexistence
US7738790B2 (en) WDM type passive optical network
WO2017032162A1 (zh) 一种数据传输方法、装置、系统及onu、olt
US10110979B2 (en) Passive optical network receiving and transmitting frame using multiple lanes
JP4006475B2 (ja) Wdm型ponシステム
CN109075863B (zh) 带宽分配的方法、光线路终端、光网络单元及系统
US10652635B2 (en) Passive optical network communications method and apparatus, and system
CN107079204A (zh) 一种光口自协商的方法、光模块、局端设备及终端设备
JP5040695B2 (ja) Pon局側装置、pon上り回線通信方法、pon上り回線通信プログラムおよびプログラム記録媒体
CN113973239A (zh) 用于通信的方法、装置、光网络单元、光线路终端和介质
WO2013189321A1 (zh) 一种无源光网络中的波长调谐方法、系统及设备
KR20170104788A (ko) 프레임의 순서를 정렬하는 이더넷 수동형 광 가입자망
JP2016523043A (ja) 光ネットワークユニットの波長を再構成するための方法および装置
JP6459588B2 (ja) アクセス制御システム、アクセス制御方法、親局装置及び子局装置
WO2016106573A1 (zh) 一种无源光网络波长配置的方法、设备和系统
JP5327804B2 (ja) 光通信システム及び光通信方法
JP5846007B2 (ja) 加入者側装置登録方法及び光ネットワークシステム
KR101069977B1 (ko) 통신 장치 및 통신 방법
WO2017028623A1 (zh) 信道配置方法和装置
CN109286580A (zh) 一种无源光网络上行带宽分配方法和装置
Horvath et al. Modified GIANT dynamic bandwidth allocation algorithm of NG-PON
JP5466321B2 (ja) 光通信システム及び光通信方法
CN116722948A (zh) 一种pon系统和信号传输方法
JP2014011606A (ja) 帯域割当方法、帯域割当装置、局側終端装置及び受動光ネットワークシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16838422

Country of ref document: EP

Kind code of ref document: A1