WO2017031694A1 - Alimentation électrique de compteur d'énergie électrique électronique monophasé - Google Patents

Alimentation électrique de compteur d'énergie électrique électronique monophasé Download PDF

Info

Publication number
WO2017031694A1
WO2017031694A1 PCT/CN2015/088037 CN2015088037W WO2017031694A1 WO 2017031694 A1 WO2017031694 A1 WO 2017031694A1 CN 2015088037 W CN2015088037 W CN 2015088037W WO 2017031694 A1 WO2017031694 A1 WO 2017031694A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
voltage
switch
output
Prior art date
Application number
PCT/CN2015/088037
Other languages
English (en)
Chinese (zh)
Inventor
嵇成龙
龙代文
Original Assignee
深圳市思达仪表有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市思达仪表有限公司 filed Critical 深圳市思达仪表有限公司
Priority to PCT/CN2015/088037 priority Critical patent/WO2017031694A1/fr
Publication of WO2017031694A1 publication Critical patent/WO2017031694A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the invention belongs to the field of electronic measuring instrument manufacturing, and in particular relates to a single-phase electronic energy meter power supply.
  • the power supply circuit of the existing single-phase electronic energy meter mostly adopts a power frequency transformer and a linear voltage stabilization circuit (as shown in FIG. 1 ), and the working range is between 85V and 280V.
  • This circuit or similar circuit is widely used in single-phase electronic energy meters because it does not use a switching power supply and is relatively reliable.
  • this kind of circuit has high requirements on the power grid. In the backward areas where the power grid fluctuates greatly, single-phase electronic energy meters using such circuits often cannot work, resulting in the loss of electricity costs.
  • one of the solutions is to adopt a switching power supply scheme, such as the patent number disclosed in the Chinese utility model patent: 02271250.X, the technical solution named "switching power supply with a wide input voltage range", disclosed by the switching power supply
  • the circuit structure is mainly composed of a control chip, a transformer, an electronic switch, a start circuit of a control chip, a voltage feedback circuit, a rectification filter circuit, and a voltage stabilization circuit.
  • the power meter of the switching power supply is used, and the working range of the electric energy meter is expanded.
  • the capacitor of the starting circuit needs to be intermittently charged and discharged to operate the control chip, thereby controlling the on and off of the electronic switch, so the reliability is lowered.
  • the second scheme is to improve on the voltage regulator circuit. After the power frequency transformer is stepped down, the TPIC74100 chip is used to stabilize the voltage. This technology uses MOS tube to realize the buck-boost topology switching. The circuit design allows the energy meter to also Achieving operating voltages below 85V, but the TPIC74100 chip is expensive and inconvenient to promote.
  • the working range of the electric energy meter is much lower than 85V, can reach 40V or less, and the production cost is low.
  • Single-phase electronic energy meter power supply comprising power frequency transformer T1, rectifier circuit D1, filter circuit C1, sampling control circuit, switch circuit SW1, step-down DC/DC circuit and step-up DC/DC circuit, power frequency alternating current Vin
  • the DC voltage terminal V1 is obtained through the rectifier circuit D1 and the filter circuit C1.
  • the V1 terminal is directly connected to the input terminal of the step-down DC/DC circuit, and the step-down DC/DC circuit outputs the DC power V2 to the booster.
  • the DC/DC circuit, the output terminal V3 of the step-up DC/DC circuit provides a stable working power to the CPU and the metering chip of the electric energy meter; one end of the sampling control circuit is connected to the V1 end, and the other end is connected to the control end of the switch circuit SW1, the switch
  • the input and output ends of the circuit SW1 are respectively connected to the input and output ends of the step-down DC/DC circuit; wherein, when the voltage of the V1 terminal satisfies the normal input voltage of the step-down DC/DC circuit, the sampling control circuit outputs a control signal to make the switch circuit SW1 is disconnected; when the voltage of the V1 terminal is lower than the normal input voltage of the step-down DC/DC circuit, the sampling control circuit outputs a control signal to trigger the switch circuit SW1 to be closed, the step-down DC/DC circuit is short-circuited, and the voltage of the V1 terminal passes through the switch circuit.
  • S W1 is connected to the step-up DC/DC circuit to keep the V3 power supply
  • the switch circuit SW1 is composed of a resistor, a triode, a clamp resistor and a switch tube. One end of the resistor is connected to the output end of the sampling control circuit, and the other end is connected to the base of the triode. The emitter of the triode is connected to the output end of the step-up DC/DC circuit.
  • the electrodes are respectively connected to one end of the switch tube and the clamp resistor, and the other end of the clamp resistor is connected to the input end of the step-up DC/DC circuit, and the other end of the switch tube is connected to the input end of the step-down DC/DC circuit.
  • a switching circuit SW1 is connected in parallel to the input and output terminals of the step-down DC/DC circuit, and the switching circuit SW1 controls its on/off through the sampling control circuit.
  • V2 is the normal working voltage of the step-down DC/DC circuit
  • the step-down DC/ The DC circuit works, and the V1 is stepped down and then boosted by the step-up DC/DC circuit to obtain a stable power supply operating power.
  • the sampling control circuit outputs a control signal to trigger the triode of the switch circuit SW1.
  • the collector of the triode When turned on, the collector of the triode triggers the switch to conduct, so that the step-down DC/DC circuit is short-circuited, and the V1 terminal is directly connected to the step-up DC/DC circuit to make the V3 power supply stable.
  • the circuit After testing, the circuit can meet the power requirements of the single-phase electronic energy meter AC40-400V, and the overall solution cost is not high, the reliability is high, and the power supply voltage can be freely set.
  • Figure 1 is a block diagram showing the operation of a power supply using a linear regulator circuit
  • FIG. 2 is a block diagram showing the working principle of a single-phase electronic energy meter power supply according to the present invention
  • FIG. 3 is a circuit diagram of a single-phase electronic energy meter power supply of the present invention.
  • Figure 1 shows the circuit diagram of the commonly used single-phase electronic energy meter power supply, which is mainly composed of a power frequency transformer T1, a rectifier circuit D1, a filter capacitor C1, C2 and a three-terminal voltage regulator circuit.
  • the power supply circuit of the structure is very structured. Simple, but the grid requirements are very high, the normal working range can only be between 85V-280V, however, some users who use single-phase electronic energy meter metering are still working below 85V, which causes the loss of electricity costs. .
  • FIG. 2 is a block diagram showing the working principle of the single-phase electronic energy meter power supply of the present invention, the main power frequency circuit transformer T1, the full bridge rectifier circuit D1, the filter circuit C1, the sampling control circuit, the switch circuit SW1, the step-down DC/DC circuit.
  • the secondary winding of the power frequency transformer T1 is connected to the rectifier bridge D1, after being filtered by the capacitor C1, one is connected with the sampling control circuit, and the sampling control circuit controls the switch
  • the circuit SW1 is turned on and off, and the two ends of the switch circuit SW1 are respectively electrically connected to the input end and the output end of the step-down DC/DC circuit; the other end of the C1 output is directly connected to the step-down DC/DC circuit, and the step-down DC/DC is stepped down.
  • the circuit outputs to the step-up DC/DC circuit.
  • Vin is AC power, input from power frequency transformer T1, after D1 rectification, C1 filtering, the voltage is V1, V1 voltage is monitored by the sampling control circuit, and the monitoring voltage is the normal output V2 of the step-down DC/DC circuit.
  • the minimum required input voltage varies depending on the selected step-down DC/DC circuit.
  • the integrated chip of the step-down DC/DC circuit adopts DS34063 (consistent with the drawing).
  • V2 is 12V
  • the sampling control circuit selects 13V as the monitoring voltage value.
  • Vin is lowered, V1 is lowered.
  • the sampling control circuit When the voltage of V1 is lower than the normal operating voltage of the step-down DC/DC circuit, the sampling control circuit operates, the control SW1 is closed, and the step-down DC/DC circuit is short-circuited to make it inoperative. At this time, only the booster circuit works.
  • Vin is reduced to 40V, V1 is already low, but after the booster circuit, the output voltage V3 can still be stabilized, and the output current of the V3 terminal is proportional to the instantaneous voltage of the V3 terminal.
  • FIG. 3 is a detailed circuit configuration diagram of the circuit.
  • the power supply realizes two isolated power supplies 5V and 12V, 5V is to supply power to the metering chip, 12V is to supply power to the CPU, of course, only one set of power supply can be used, and 5V can be obtained by dividing the voltage on the 12V power supply.
  • the 5V power supply the primary winding of the power frequency transformer TR401 is connected to the external power grid, the input end of the rectifier bridge BR101 is connected to a set of secondary windings of the power frequency transformer TR401, and the output end of the rectifier bridge BR101 is filtered by two capacitors C101 and C102 connected in parallel.
  • the integrated circuit block of the sampling control circuit adopts S-80825, the switch circuit SW1 is composed of a resistor R103, a triode T101, a clamp resistor R107 and a switch tube T102, and the switch tube T102 uses an N-channel MOS transistor A03400, wherein the resistor R103 is connected to one end of the sample.
  • the output end of the control circuit is connected to the base of the transistor T101, the emitter of the transistor T101 is connected to the output end of the step-up DC/DC circuit, and the collector is respectively connected to the end of the switch tube T102 and the clamp resistor R107, and the clamp resistor
  • the other end of the R107 is connected to the input end of the step-up DC/DC circuit, and the other end of the switch tube T102 is connected to the input end of the step-down DC/DC circuit.
  • the integrated chip of the step-down DC/DC circuit adopts DS34063; the integrated chip of the step-up DC/DC circuit adopts HT7750, and the output of the step-up DC/DC circuit is 5V VCC DC.
  • the input terminal of the rectifier bridge BR401 is connected to another set of secondary windings of the power frequency transformer TR401.
  • the output end of the rectifier bridge BR401 is filtered by two capacitors C403 and C403 connected in parallel, and the integrated circuit block of the sampling control circuit adopts S- 80860, the switch circuit SW1 is composed of a resistor R453, a triode T401, a clamp resistor R457 and a switch tube T402.
  • the switch tube T402 uses an N-channel MOS transistor A03400, wherein one end of the resistor R453 is connected to the output end of the sampling integrated circuit, and the other end is connected to the triode T401.
  • the base of the transistor T401 is connected to the output of the step-up DC/DC circuit, the collector is connected to one end of the switch tube T402 and the clamp resistor R457, and the other end of the clamp resistor R457 is connected to the input of the step-up DC/DC circuit.
  • the other end of the switch tube T402 is connected to the input end of the step-down DC/DC circuit.
  • the integrated chip of the step-down DC/DC circuit adopts MC34063; the integrated chip of the step-up DC/DC circuit adopts SC4501, and the output of the step-up DC/DC circuit is 12V VDD DC.
  • the power-frequency transformer TR401 used above has a primary to secondary ratio of 220:15:15, that is, the output of both secondary sides is 15V when the AC 220V input is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne une alimentation électrique d'un compteur d'énergie électrique électronique monophasé, comprenant un transformateur à fréquence industrielle (T1), un circuit redresseur (D1), un circuit filtrant (C1), un circuit de commande d'échantillonnage, un circuit de commutation (SW1), un circuit continu-continu abaisseur de tension et un circuit continu-continu élévateur de tension. Un courant alternatif à fréquence industrielle Vin, après avoir été soumis à un abaissement de tension par l'intermédiaire du transformateur à fréquence industrielle, passe par le circuit redresseur et le circuit filtrant et produit une tension continue V1 au niveau d'une extrémité de tension continue ; l'extrémité de tension continue est directement connectée à une extrémité d'entrée du circuit continu-continu abaisseur de tension ; le circuit continu-continu abaisseur de tension fournit en sortie une tension continue V2 et la fournit en entrée au circuit continu-continu élévateur de tension ; et une extrémité de sortie du circuit continu-continu élévateur de tension fournit une alimentation de travail stable à une unité centrale et à une puce de mesure du compteur d'énergie électrique. Une extrémité du circuit de commande d'échantillonnage est connectée à l'extrémité de tension continue, et l'autre extrémité est connectée à une extrémité de commande du circuit de commutation ; et une extrémité d'entrée ainsi qu'une extrémité de sortie du circuit de commutation sont respectivement connectées à l'extrémité d'entrée et à une extrémité de sortie du circuit continu-continu abaisseur de tension. La tension continue V1 peut être connectée au circuit continu-continu élévateur de tension par l'intermédiaire du circuit de commutation pour permettre à une tension de sortie V3 de l'extrémité de sortie du circuit continu-continu élévateur de tension de rester stable ; et un courant fourni en sortie par l'extrémité de sortie du circuit continu-continu élévateur de tension est proportionnel à une tension instantanée fournie en sortie par l'extrémité de sortie du circuit continu-continu élévateur de tension.
PCT/CN2015/088037 2015-08-25 2015-08-25 Alimentation électrique de compteur d'énergie électrique électronique monophasé WO2017031694A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088037 WO2017031694A1 (fr) 2015-08-25 2015-08-25 Alimentation électrique de compteur d'énergie électrique électronique monophasé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088037 WO2017031694A1 (fr) 2015-08-25 2015-08-25 Alimentation électrique de compteur d'énergie électrique électronique monophasé

Publications (1)

Publication Number Publication Date
WO2017031694A1 true WO2017031694A1 (fr) 2017-03-02

Family

ID=58099406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088037 WO2017031694A1 (fr) 2015-08-25 2015-08-25 Alimentation électrique de compteur d'énergie électrique électronique monophasé

Country Status (1)

Country Link
WO (1) WO2017031694A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422457A1 (pl) * 2017-08-07 2019-02-11 APATOR Spółka Akcyjna Układ zasilający, zwłaszcza w licznikach energii elektrycznej
CN110083447A (zh) * 2019-04-26 2019-08-02 宁波三星医疗电气股份有限公司 一种中断处理方法及系统
CN110793010A (zh) * 2019-12-03 2020-02-14 广东顺德海珀科技有限公司 一种蒸汽发生器及手持式挂烫机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562403A (zh) * 2008-04-17 2009-10-21 深圳市思达仪表有限公司 一种单相电子式电能表电源
CN202160098U (zh) * 2011-07-08 2012-03-07 江苏林洋电子股份有限公司 一种三相智能电能表用开关电源电路
CN202443066U (zh) * 2012-02-16 2012-09-19 南车株洲电力机车有限公司 一种直流双向计量电能表
CN102798756A (zh) * 2012-06-27 2012-11-28 华立仪表集团股份有限公司 一种智能电表的电源电路及三相智能电表
US9110108B2 (en) * 2012-05-04 2015-08-18 Landis+Gyr, Inc. Power management arrangement and method in a utility meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562403A (zh) * 2008-04-17 2009-10-21 深圳市思达仪表有限公司 一种单相电子式电能表电源
CN202160098U (zh) * 2011-07-08 2012-03-07 江苏林洋电子股份有限公司 一种三相智能电能表用开关电源电路
CN202443066U (zh) * 2012-02-16 2012-09-19 南车株洲电力机车有限公司 一种直流双向计量电能表
US9110108B2 (en) * 2012-05-04 2015-08-18 Landis+Gyr, Inc. Power management arrangement and method in a utility meter
CN102798756A (zh) * 2012-06-27 2012-11-28 华立仪表集团股份有限公司 一种智能电表的电源电路及三相智能电表

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422457A1 (pl) * 2017-08-07 2019-02-11 APATOR Spółka Akcyjna Układ zasilający, zwłaszcza w licznikach energii elektrycznej
CN110083447A (zh) * 2019-04-26 2019-08-02 宁波三星医疗电气股份有限公司 一种中断处理方法及系统
CN110793010A (zh) * 2019-12-03 2020-02-14 广东顺德海珀科技有限公司 一种蒸汽发生器及手持式挂烫机

Similar Documents

Publication Publication Date Title
CN103428969B (zh) 一种线性恒流led驱动电路及led灯具
CN105992435B (zh) 抗干扰led过压保护模块以及抗干扰led过压保护系统
CN101562403B (zh) 一种单相电子式电能表电源
CN101873068A (zh) 线性电源实现高效率的通用性和集成化技术
CN103052240A (zh) 高功率因数发光二极管驱动电路结构
CN104578843A (zh) 一种ac/dc开关变换器的滤波电路
CN104302053A (zh) Led恒流源输出检测控制电路及其控制方法
CN102957324A (zh) 电源检测电路
WO2017031694A1 (fr) Alimentation électrique de compteur d'énergie électrique électronique monophasé
CN104578729A (zh) 一种输入滤波方法及使用该方法的ac/dc开关变换器
CN104159355A (zh) Led驱动电路及其控制电路以及控制方法
CN203883691U (zh) 电流过零点检测电路、驱动电路以及开关电源
CN204794736U (zh) 一种新型半波整流电路
CN103138606A (zh) 一种节能式开关电源
CN203102061U (zh) 一种带自耦变压器的稳压装置
CN203645895U (zh) 非隔离式led驱动电路的负载采样电路
CN204068742U (zh) 小功率电源适配器驱动电路
CN106405204A (zh) 一种用于计算机的电压报警电路
CN106714385A (zh) 一种led驱动电源的内部降压电路结构
CN104348351B (zh) 一种pfc用的同步开关电路
CN106992698B (zh) 一种具有双重模式的模块供电电路
CN206433226U (zh) 一种led驱动电源的内部降压电路
CN203554763U (zh) 一种整合boost和flyback的led电源
CN202488366U (zh) 用于带电子电路的插头插座的节能超小型开关电源
TWI416127B (zh) 輸入功率之效率量測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901965

Country of ref document: EP

Kind code of ref document: A1