WO2017030194A1 - Observation system - Google Patents

Observation system Download PDF

Info

Publication number
WO2017030194A1
WO2017030194A1 PCT/JP2016/074265 JP2016074265W WO2017030194A1 WO 2017030194 A1 WO2017030194 A1 WO 2017030194A1 JP 2016074265 W JP2016074265 W JP 2016074265W WO 2017030194 A1 WO2017030194 A1 WO 2017030194A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical path
unit
observation
observation object
Prior art date
Application number
PCT/JP2016/074265
Other languages
French (fr)
Japanese (ja)
Inventor
深 臼杵
智裕 ▲高▼田
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2017535578A priority Critical patent/JP6714917B2/en
Publication of WO2017030194A1 publication Critical patent/WO2017030194A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens

Definitions

  • the present invention relates to an observation system.
  • a modulated illumination microscopic method (SIM) is known.
  • SIM modulated illumination microscopic method
  • the modulated illumination microscope when observation such as measurement, appearance inspection, etc. is performed on an observation object, the observation object is irradiated with light having a light intensity distribution in a striped pattern (modulation illumination).
  • Information of spatial frequency higher than the diffraction limit of the optical microscope is shifted to the low frequency side.
  • an image distribution having the information is acquired by an optical microscope, and signal processing is performed on the image distribution to reproduce high-frequency information. In this way, a high resolution image can be obtained using the modulated illumination microscope.
  • Non-Patent Document 1 discloses a laser light source, an optical path for guiding a part of laser light emitted from the laser light source to the observation target, and the remainder of the laser light as the observation target.
  • An observation system is disclosed that includes another optical path that leads to an optical path and a stage that expands and contracts the optical path length of the optical path.
  • an interference fringe is generated on an observation object by causing a part and the remainder of the laser light to interfere, and the light scattered by the observation object is imaged, and the observation object is based on the captured image distribution. The shape distribution is calculated.
  • this observation system operates the stage to increase or decrease the optical path length difference between the optical paths in order to generate interference fringes having different phases.
  • this observation system uses a laser light source having a long coherent length as the light source, it is difficult to distinguish between the interference fringes and the interference fringes generated each time the phase shifts by one wavelength (wavelength). Uncertainty for each).
  • this observation system uses a piezo actuator to drive the stage so that the stage can be precisely driven with a small amount of displacement, and the phase of the interference fringes is accurately controlled to accurately detect the amount of phase shift. is doing.
  • the modulated illumination microscope method is an observation method using an optical microscope, it has the advantages that the time required for observation is shorter than other microscope methods and that non-destructive inspection is possible. Therefore, it is desired to be carried out, for example, at a factory production site.
  • disturbances such as vibrations and temperature changes are more likely to occur than in laboratories and the like.
  • the optical path difference of each optical path may fluctuate due to vibration, or a temperature drift may occur due to a temperature change.
  • the interference fringe and the observation object move relatively, and it becomes difficult to accurately detect the phase shift amount of the interference fringe due to the uncertainty for each wavelength. It becomes difficult to stably obtain a correct high-resolution image.
  • the modulated illumination microscopy is only performed in fluorescence observation in the biological field in laboratories where disturbances are unlikely to occur.
  • the modulation illumination microscope generally requires a high-precision positioning mechanism such as a piezo actuator in order to detect the phase of the interference fringes with high accuracy, so that it is generally expensive and is desired to be provided at a lower cost.
  • One embodiment of the present invention has been made in view of the above problems, and provides an observation system that is inexpensive and can stably obtain a correct high-resolution image even when a disturbance occurs. With the goal.
  • an observation system includes a light source having a coherent length in a predetermined range, a first light having a first optical path length and part of light emitted from the light source.
  • a first optical path that guides the light from the light source to the observation object, a second optical path that has a second optical path length and guides the second light that is the remainder of the light from the light source to the observation object, and the first light
  • an interference fringe generator for causing the second light to interfere with each other to generate a first interference fringe on the observation object, a first reflected light reflected by the observation object in the first light
  • a measuring unit that measures the light intensity distribution of the second interference fringe generated by the interference with the second reflected light reflected by the observation object of the two lights, and an arithmetic unit connected to the measuring unit,
  • the computing unit includes a phase in the first interference fringe based on the amount of displacement of the light intensity distribution in the second interference fringe. And calculates the shift amount.
  • the first light guided from the light source to the observation target by the first optical path and the second light guided from the light source to the observation target by the second optical path interfere with each other.
  • a first interference fringe is generated by interference by the fringe generation unit.
  • the first reflected light reflected by the observation object in the first light and the second reflected light reflected by the observation object in the second light interfere with each other to cause the second interference.
  • a fringe is generated, and the light intensity distribution of the second interference fringe is measured by the measurement unit. Since the light source has a coherent length in a predetermined range, the light intensity distribution of the second interference fringe has one peak in its envelope. The amount of displacement of the light intensity distribution of the second interference fringe is obtained by measuring the amount of displacement of the peak of the envelope.
  • the envelope in the light intensity distribution of the second interference fringe is not affected by the uncertainty of each wavelength in the first interference fringe.
  • the phase shift amount of the first interference fringes can be detected based on the displacement amount of the line peak. Further, even when a disturbance such as vibration or temperature change occurs, the phase shift amount of the first interference fringes can be detected with high accuracy. Thereby, the calculating part can calculate correctly the shape distribution of an observation object.
  • this observation system does not require a high-precision positioning mechanism such as a piezo actuator in order to accurately detect the phase shift amount of the first interference fringes, and as an example, a relatively high-speed actuator such as an actuator using a stepping motor. Since a positioning mechanism with low accuracy can be used, it is provided at low cost. As described above, an inexpensive system can stably obtain a correct high-resolution image even when a disturbance occurs.
  • an inexpensive system can stably obtain a correct high-resolution image even when a disturbance occurs.
  • FIG. 1 is a schematic configuration diagram showing an observation system according to an embodiment of the present invention
  • FIGS. 2 and 3 are schematic side views showing an interference fringe generation unit of FIG.
  • the observation system 1 is a modulation illumination microscope capable of obtaining a high-resolution image of the observation object S using a modulation illumination microscope.
  • the observation system 1 includes a light source 2, a first optical path 3 and a second optical path 4 that guide light emitted from the light source 2, and a first optical path length adjustment unit 5 provided in the middle of the second optical path 4.
  • the interference fringe generator 6 provided at the end of the first optical path 3 and the second optical path 4, the turntable 7 on which the observation object S is placed, and the observation object S placed on the turntable
  • the light source 2 is a low coherence light source.
  • Light (low coherence light) emitted from a low coherence light source has a wider spectral width and a shorter coherence distance (coherent length) than, for example, laser light. That is, the light source 2 is a light source having a short coherent length (for example, 1 ⁇ m or more and 100 ⁇ m or less) compared to a laser light source having a long (for example, about several tens of meters) coherent length.
  • the light source 2 can be, for example, an SLD (Super Luminescent Diode) light source, an LED (Light Emitting Diode) light source, or the like.
  • the light source 2 is an SLD having a wavelength of 669 nm, a full width at half maximum of 7 nm, and a coherent length of 32 ⁇ m.
  • the first optical path 3 is an optical path that has a first optical path length and guides the first light, which is a part of the light emitted from the light source 2, from the light source 2 to the observation object S.
  • the second optical path 4 has a second optical path length and is an optical path that guides the second light, which is the remainder of the light emitted from the light source 2, from the light source 2 to the observation object S.
  • the first light and the second light are emitted from the light source 2 and branched from each other by the beam splitter 20 provided on the optical path, and reach the interference fringe generation unit 6.
  • the first light and the second light have the same optical path between the light source 2 and the beam splitter 20 without being distinguished from each other.
  • the first light is light that passes through the beam splitter 20, and the second light is light that is reflected by the beam splitter 20.
  • the first optical path 3 and the second optical path 4 include a collimating lens 21 between the light source 2 and the beam splitter 20. Thereby, the first light and the second light traveling respectively in the first optical path 3 and the second optical path 4 are converted into parallel light by the collimating lens 21.
  • the first optical path 3 another beam splitter 22 is provided on the exit side of the beam splitter 20.
  • the first optical path 3 has an optical path 3 a of light reflected by the beam splitter 22 on the emission side of the beam splitter 22.
  • the first light traveling in the first optical path 3 is transmitted through the beam splitter 20, reflected by the beam splitter 22, and then input to the interference fringe generator 6.
  • the second light traveling in the second optical path 4 reaches the first optical path length adjustment unit 5 on the emission side of the beam splitter 20, is turned back by the first optical path length adjustment unit 5, and is again beam splitter 20.
  • the second optical path 4 has an optical path 4 a of the second light transmitted through the beam splitter 20 on the light output side of the folded beam of the beam splitter 20.
  • the second light traveling in the second optical path 4 is reflected once by the beam splitter 20, turned back by the first optical path length adjusting unit 5, then transmitted through the beam splitter 20, and then interfered. Input to the fringe generator 6.
  • the first light and the second light are both transmitted through the beam splitter and reflected once, when reaching the interference fringe generator 6, the light intensity is substantially equal to each other. Yes.
  • the first optical path length adjustment unit 5 includes a mirror 23 and a modulator 24 that moves the mirror 23.
  • the first optical path length adjustment unit 5 reflects the second light traveling in the second optical path 4 by the mirror 23 and folds it, and moves the mirror 23 by the modulator 24 to expand and contract the second optical path length.
  • the modulator 24 reciprocates the mirror 23 along the second optical path 4. As a result, the modulator 24 expands and contracts the distance between the beam splitter 20 and the mirror 23, and as a result, expands and contracts the second optical path length.
  • the modulator 24 is not limited to a modulator capable of controlling the displacement amount with extremely high accuracy, such as a piezo actuator, but may be an actuator using a stepping motor whose displacement control accuracy is lower than that of the piezo actuator or the like. it can.
  • the modulator 24 is not limited to an actuator using a stepping motor, and may be any mechanism that can move the mirror 23 along the second optical path 4.
  • the turntable 7 includes a stage that holds the observation object S, and is configured so that the stage is positioned in a horizontal plane (XY plane in the drawing).
  • the turntable 7 holds the observation object S on the stage so that the surface of the observation object S to be observed faces upward.
  • the turntable 7 allows the stage to rotate about the axis A in the vertical direction (Z-axis direction in the drawing). Therefore, the observation object S placed on the stage is held by the stage so as to be rotatable around the axis A in the vertical direction.
  • the axis A is not necessarily limited to the vertical direction, and may be any direction from the observation object S toward the imaging unit 8.
  • the turntable 7 may be arranged so that the stage is positioned on a plane perpendicular to the axis A and the surface of the observation object S to be observed faces the imaging unit 8 side.
  • the interference fringe generation unit 6 causes the first light and the second light to interfere with each other to generate a first interference fringe on the observation object S.
  • the first interference fringes generated by the interference fringe generator 6 are used as modulated illumination in the observation system 1 (that is, standing wave illumination using light interference).
  • FIG. 4 is a diagram showing the shape characteristics of the first interference fringes due to the low coherence light
  • FIG. 5 is a partially enlarged view of FIG.
  • the first interference fringes are generated in a range of about the coherent length of the low-coherence light source (for example, a range of about 30 ⁇ m) (see FIG. 4).
  • the intensity changes at a constant period (see FIG. 5).
  • the interference fringe generation unit 6 includes a first light projecting unit 30, a first light receiving unit 31, a second light projecting unit 32, and a second light receiving unit 33 arranged so as to surround the turntable 7.
  • the first light projecting unit 30 is provided at the end of the first optical path 3 and projects the first light to the observation object S from obliquely above.
  • the first light projecting unit 30 includes a mirror 30a and a mirror 30b.
  • the first light traveling in the substantially horizontal direction is reflected upward in the substantially vertical direction by the mirror 30a and then reflected obliquely downward by the mirror 30b.
  • And light is projected onto the observation object S.
  • the first light projecting unit 30 has an incident angle with respect to the observation object S (that is, an angle formed between the optical path of the first light projected onto the observation object S and the axis A).
  • the first light is projected so as to be 45 deg.
  • the lower limit of the incident angle of the first light is the smallest angle in a range where the optical path of the first light is not hindered by the objective lens 34.
  • the 1st light projection part 30 is not limited to the structure using a mirror, For example, the structure which light-projects from the diagonally upper direction with respect to the observation object S by bending the 1st optical path 3 with an optical fiber. It is good.
  • the first light receiving unit 31 is provided at the start end of a third optical path 9 (details will be described later), and the first reflected light reflected by the observation object S in the first light is used as an observation target. Light is received obliquely above the object S.
  • the first light receiving unit 31 is arranged at a position facing the first light projecting unit 30 with the observation object S interposed therebetween.
  • the first light receiving unit 31 includes a mirror 31a and a mirror 31b. After the first reflected light received from the observation object S is reflected downward in the substantially vertical direction by the mirror 31a, the first light receiving unit 31 is substantially horizontal by the mirror 31b. And output to the third optical path 9. Note that the first light receiving unit 31 is not limited to a configuration using a mirror.
  • the first light receiving unit 31 receives the first reflected light obliquely upward with respect to the observation object S, and bends it with an optical fiber, thereby forming the third light receiving unit 31. It is good also as a structure output to the optical path 9 of this.
  • the second light projecting unit 32 is provided at the end of the second optical path 4 and projects the second light to the observation object S from obliquely above.
  • the second light projecting unit 32 includes a mirror 32a and a mirror 32b.
  • the second light traveling in the substantially horizontal direction is reflected upward in the substantially vertical direction by the mirror 32a and then reflected obliquely downward by the mirror 32b.
  • And light is projected onto the observation object S.
  • the second light projecting unit 32 has an incident angle with respect to the observation object S (that is, an angle formed between the second light projected on the observation object S and the axis A) is 45 deg.
  • the second light is projected so as to be.
  • the lower limit of the incident angle of the second light is the minimum angle in a range where the optical path of the second light is not hindered by the objective lens 34.
  • the 2nd light projection part 32 is not limited to the structure using a mirror, For example, the structure which light-projects from the diagonally upper direction with respect to the observation object S by bending the 2nd optical path 4 with an optical fiber. It is good.
  • the second light receiving unit 33 is provided at the start end of the fourth optical path 10 (details will be described later), and the second reflected light reflected by the observation target S in the second light is used as the observation target. Light is received obliquely above the object S.
  • the second light receiving unit 33 is disposed at a position facing the second light projecting unit 32 with the observation object S interposed therebetween.
  • the second light receiving unit 33 includes a mirror 33a and a mirror 33b.
  • the second reflected light received from the observation object S is reflected substantially downward in the vertical direction by the mirror 33a, and then substantially horizontal by the mirror 33b. And output to the fourth optical path 10.
  • the second light receiving unit 33 is not limited to a configuration using a mirror.
  • the second light receiving unit 33 receives the second reflected light obliquely upward with respect to the observation object S, and bends it with an optical fiber. It is good also as a structure output to the optical path 10 of this.
  • a first direction in which the first light travels from the first light projecting unit 30 to the first light receiving unit 31 (X-axis direction in the drawing), and a second light projecting unit 32.
  • the second direction (Y-axis direction in the figure) in which the second light travels from the second light receiving unit 33 to the second light-receiving unit 33 is substantially perpendicular to the observation object S in a plan view (Z-axis direction view in the figure).
  • the mirrors 30a, 30b, 31a, 31b, 32a, 32b, 33a, 33b provided in each light projecting unit and each light receiving unit are movable, and the optimum position of the observation object S is set. In addition, it is possible to project the first light and the second light.
  • the first optical path 3 and the second optical path 4 have a first optical path length and a second optical path length, respectively, and the first interference fringes are the first optical path length and the second optical path length.
  • the phase differs depending on the optical path length difference. Accordingly, when the second optical path length is expanded and contracted by the operation of the first optical path length adjusting unit 5, the optical path length difference between the first optical path length and the second optical path length is expanded and contracted, and the phase of the first interference fringe is shifted. To do.
  • the imaging unit 8 captures an image distribution of light scattered by the observation object S in the first light and the second light presenting the first interference fringes.
  • the imaging unit 8 is disposed above the turntable 7 in the Z-axis direction, and images the observation object S from above.
  • the imaging unit 8 includes an objective lens 34 and an optical microscope 35 for enlarging an image of scattered light, and a detector 36 that detects the enlarged image of scattered light as an image distribution.
  • the objective lens 34 for example, an objective lens of 10 times (NA 0.28), 20 times (NA 0.28), 50 times (NA 0.42), 100 times (NA 0.55) or the like can be suitably used.
  • the detector 36 for example, a CCD camera or the like can be used.
  • the third optical path 9 has a third optical path length, and is an optical path that guides the first reflected light reflected by the observation object S in the first light to the measurement unit 12.
  • the fourth optical path 10 has a fourth optical path length, and is an optical path that guides the second reflected light reflected by the observation object S in the second light to the measurement unit 12.
  • a first light receiving portion 31 is provided at the start end, and a beam splitter 26 is provided on the exit side.
  • the third optical path 9 has an optical path 9 a for the first reflected light reflected by the beam splitter 26 on the emission side of the beam splitter 26.
  • the third optical path 9 is provided with another beam splitter 27 on the emission side of the beam splitter 26.
  • the third optical path 9 has an optical path of the first reflected light transmitted through the beam splitter 27 on the emission side of the beam splitter 27. As a result, the first reflected light traveling in the third optical path 9 is reflected by the beam splitter 26, passes through the beam splitter 27, and is then input to the measuring unit 12.
  • a second light receiving portion 33 is provided at the start end, and a beam splitter 27 is provided on the emission side.
  • the fourth optical path 10 has an optical path 10 a of second reflected light that has passed through the beam splitter 27 on the emission side of the beam splitter 27. Further, the second reflected light traveling in the fourth optical path 10 reaches the second optical path length adjustment unit 11 on the emission side of the beam splitter 27, is turned back by the second optical path length adjustment unit 11, and again. It reaches the beam splitter 27.
  • the fourth optical path 10 has an optical path of the second reflected light reflected by the beam splitter 27 on the light output side of the folded beam splitter 27.
  • the second reflected light traveling in the fourth optical path 10 is transmitted once through the beam splitter 27, turned back by the second optical path length adjusting unit 11, then reflected by the beam splitter 27, and then Are input to the measurement unit 12.
  • the light intensity is substantially equal to each other. Yes.
  • the second optical path length adjusting unit 11 has a movable mirror 25.
  • the second optical path length adjusting unit 11 is a mechanism for reflecting the second reflected light traveling in the fourth optical path 10 by the mirror 25 and turning it back, and moving the mirror 25 to expand and contract the fourth optical path length. is there.
  • the second optical path length adjusting unit 11 expands and contracts the distance between the beam splitter 27 and the mirror 25 by moving the mirror 25, and as a result, expands and contracts the fourth optical path length.
  • the second optical path length adjustment unit 11 may be configured to manually move the mirror 23 or may be configured to be electrically performed using an actuator using a stepping motor or the like.
  • the measurement unit 12 is provided at the end of the third optical path 9 and the fourth optical path 10, and measures the light intensity distribution of the second interference fringes generated by the interference of the first reflected light and the second reflected light. To do.
  • the measurement unit 12 is an area sensor that can two-dimensionally measure the light intensity distribution of the second interference fringes.
  • the second interference fringe has a light intensity according to the optical path difference between the optical path length from the light source 2 to the measurement unit 12 in the first light and the optical path length from the light source 2 to the measurement unit 12 in the second light.
  • the distribution is displaced in the phase direction (that is, the direction orthogonal to each stripe). Therefore, when a change occurs in the optical path difference between the optical path length from the light source 2 to the measurement unit 12 in the first light and the optical path length from the light source 2 to the measurement unit 12 in the second light, the amount of change Can be calculated based on the amount of displacement from the reference position of the light intensity distribution of the second interference fringes.
  • FIG. 6 is a diagram illustrating the light intensity distribution measured by the measurement unit.
  • 6 shows the displacement of the light intensity distribution of the second interference fringes when the second optical path length is expanded and contracted by the first optical path length adjustment unit 5.
  • 6A shows the light intensity distribution of the second interference fringes when the second optical path length is an arbitrary value (initial value).
  • FIG. 6B shows the second optical path length.
  • FIG. 6C shows the light intensity distribution of the second interference fringe when the first optical path length adjustment unit 5 is operated so that the optical path length changes by 0.1 ⁇ m from the initial value.
  • 2 shows the light intensity distribution of the second interference fringes when the first optical path length adjustment unit 5 is operated so that the optical path length changes by 0.2 ⁇ m from the initial value.
  • the optical paths having the first optical path length and the second optical path length based on the displacement amount of the light intensity distribution of the second interference fringes when the third optical path length and the fourth optical path length do not change, the optical paths having the first optical path length and the second optical path length based on the displacement amount of the light intensity distribution of the second interference fringes.
  • the change amount of the length difference can be calculated.
  • the phase of the first interference fringe is shifted according to the amount of change in the optical path length difference between the first optical path length and the second optical path length.
  • an accurate shift amount of the phase of the first interference fringe can be obtained by measuring the displacement amount of the light intensity distribution of the second interference fringe.
  • the calculation unit 13 is connected to the imaging unit 8 and the measurement unit 12 and acquires the image distribution captured by the imaging unit 8 and the light intensity distribution of the second interference fringe measured by the measurement unit 12. Then, the calculation unit 13 calculates the phase shift amount in the first interference fringe based on the displacement amount of the light intensity distribution in the second interference fringe.
  • the computing unit 13 also includes a phase corresponding to the calculated phase shift amount in the first interference fringe, and an observation target of the first light and the second light presenting the first interference fringe having the phase. Based on the image distribution of the light scattered by the object S, the shape distribution of the observation object S is calculated.
  • FIG. 7 is a diagram showing the passband of the microscope in the frequency space
  • FIG. 8 is a diagram showing the passband moved in three directions in the frequency space by the modulated illumination.
  • k x and k y are frequency space coordinate systems, and conceptually indicate that the inside of a circle is a frequency that can be resolved with a microscope.
  • FIG. 7A shows the pass band of the microscope at a spatial frequency, and shows that resolution can be performed up to a frequency separated by k 1 from the origin.
  • FIG. 7B shows the movement of the pass band due to the modulated illumination.
  • the passband is from the origin of the frequency space coordinate system in the image distribution of the light scattered by the observation object S. It has been moved to the k 2 apart position.
  • the resolution of the microscope while so that the resolution k 1 + k 2 in the arrow positive direction of k 2 is increased, resolution k 1 -k 2 in the arrow negative direction k 2 is lowered.
  • the pass band moves and a high-resolution image cannot be obtained as a whole. Therefore, as shown in FIG.
  • a stripe pattern in a plurality of directions (here, three directions) is used as the first interference fringe, and the pass band is moved in both positive and negative directions.
  • the passband is expanded in almost all directions in the frequency space coordinate system, and the resolution of the microscope is improved.
  • image reconstruction processing is performed by solving the following equation (1).
  • k is the spatial frequency
  • f m is the spatial frequency of the modulation lighting
  • ⁇ 1, ⁇ 2, ⁇ 3 are mutually different three phases of the modulation illumination
  • D (k) is an imaging zone
  • OFT (k) Represents an optical transfer function
  • S (k) represents an observation object band.
  • OFT (k) represents a point spread function determined by the objective lens 34 of the microscope, the light source wavelength, and the like in the frequency space by Fourier transform.
  • the measurement unit 12 continues to measure the light intensity distribution until the calculation unit 13 calculates the shift amounts of the first interference fringes corresponding to the three different phases ⁇ 1 , ⁇ 2 , and ⁇ 3 of the modulated illumination. Do (repeat). Thus, for example, even when a plurality of the three phases ⁇ 1 , ⁇ 2 , ⁇ 3 corresponding to the shift amounts calculated by the calculation unit 13 are in the same phase, the equation (1) is solved.
  • the measurement unit 12 continues to measure the light intensity distribution until three different phases necessary for the above are aligned.
  • FIG. 9 is a diagram showing an example of the observation object S.
  • the observation object S was observed using a group of square dots having two kinds of pitches.
  • This observation object S is obtained by periodically arranging protrusions on a flat plate.
  • Each protrusion has a cubic shape with one side indicated by L1, L2, etc. in the figure of 0.2 ⁇ m.
  • the protrusions form dot pairs (a pair of dots) whose pitch indicated by L3 in the figure is 0.4 ⁇ m, and these dot pairs have a pitch indicated by L4 and L5 in the figure of 2.2 ⁇ m. Are arranged.
  • an actuator using a stepping motor As the first optical path length adjustment unit 5, an actuator using a stepping motor was used.
  • An actuator using this stepping motor has one pulse of 2 ⁇ m and can be divided into pulses.
  • the pulse was divided into 20 to make one pulse 0.1 ⁇ m.
  • the wavelength ⁇ of the light source 2 was 669 nm, and the incident angle ⁇ was 45 deg.
  • the actuator using the stepping motor is operated so that the actuator using the stepping motor changes by one pulse (0.1 ⁇ m) and two pulses (0.2 ⁇ m) from the initial value
  • the first interference The operation value (indicated value) of the shift amount of the fringe phase was calculated as 1.33 rad and 2.66 rad, respectively.
  • the phase shift amounts of the first interference fringes detected based on the displacement amount of the light intensity distribution of the second interference fringes at this time were 6.33 rad and 4.98 rad, respectively.
  • the actual movement amount of the actuator using the stepping motor is different from the operation value.
  • the first optical path length and the second optical path length are increased. It can be seen that it is necessary to maintain accuracy and to eliminate disturbances such as vibration of the support table.
  • the phase of the first interference fringes when the image distribution of scattered light is captured can be calculated by the measurement unit 12. Therefore, in the observation system 1, if the imaging of the scattered light image distribution by the imaging unit 8 and the measurement of the light intensity distribution of the second interference fringe by the measurement unit 12 are synchronized, image reconstruction is performed. be able to.
  • “synchronization” means that the measurement unit 12 measures the light intensity distribution of the second interference fringes when the image distribution of the scattered light is imaged by the imaging unit 8. That is, the exposure (shutter) timing of the measurement unit 12 is aligned.
  • the observation system 1 does not require a high-precision positioning mechanism such as a piezo actuator in order to accurately detect the phase shift amount of the first interference fringes, and eliminates the influence of disturbance such as vibration and temperature change. Easy to do. As described above, the observation system 1 is inexpensive and can stably obtain a correct high-resolution image even when a disturbance occurs.
  • FIG. 10 is a diagram showing an image distribution imaged by the imaging unit.
  • FIG. 10 divides the low coherence light emitted from the light source 2 into a first light traveling in the first optical path 3 and a second light traveling in the second optical path 4, and an interference fringe generation unit 6 generates a first interference fringe on the observation object S, and captures an image distribution of the light scattered by the observation object S among the first light and the second light presenting the first interference fringe.
  • the image is taken by the unit 8.
  • FIG. 10A shows an image distribution when the second optical path length is an arbitrary value (initial value) (that is, the state of FIG. 6A).
  • FIG. 10B shows an image when the first optical path length adjustment unit 5 is operated so that the second optical path length changes by 0.1 ⁇ m from the initial value (that is, the state of FIG. 6B).
  • FIG. 10C shows an image when the first optical path length adjustment unit 5 is operated so that the second optical path length changes by 0.2 ⁇ m from the initial value (that is, the state of FIG. 6C). Distribution.
  • the dots can be partially resolved by the moire effect, but the overall resolution is not improved.
  • FIG. 11 is a diagram showing an image obtained by performing Fourier transform on the image distribution of FIG. (A) to (c) in FIG. 11 are images corresponding to (a) to (c) in FIG. 10, respectively.
  • FIG. 12 is a diagram illustrating an image obtained by performing frequency separation on the image of FIG. 11 based on interference system information. That is, FIG. 12 is calculated from the image distributions shown in FIG. 11 and the phase of the first interference fringes calculated based on the displacement amount of the light intensity distribution of the second interference fringes corresponding to these image distributions. These frequency separated images correspond to S (k), S (k ⁇ f m ), and S (k + f m ) in the above equation (1).
  • (A) to (c) in FIG. 12 are images corresponding to (a) to (c) in FIG. 11, respectively. Compared with the image of FIG. 11, the image of FIG. 12 is clearly observed with the high frequency components separated in FIGS. 12B and 12C, while the light intensity near the origin is reduced. .
  • FIG. 13 is a diagram showing a high-resolution image that has undergone image reconstruction. That is, the image of FIG. 13 is an image obtained by adding the images of (a), (b), and (c) of FIG. In the image of FIG. 13, for the observation object S shown in FIG. 9, the dot pairs indicated by L3 are correctly separated, and the pitches indicated by L4 and L5 are also correctly represented. Therefore, it can be seen that a correct high-resolution image was obtained.
  • FIG. 14 is a schematic configuration diagram showing a conventional observation system.
  • a laser light source having a long coherent length is used as the light source 102
  • the optical path length adjusting unit 105 that expands and contracts the optical path length of the second optical path 4 is used by the piezo actuator 124.
  • a mechanism for reciprocating the mirror 23 along the second optical path 4 is used.
  • the piezo actuator 124 is used for the optical path length adjustment unit 137 in order to accurately detect the phase shift amount of the first interference fringes.
  • disturbances such as vibrations and temperature changes are more likely to occur than in laboratories and the like.
  • optical path differences between optical paths may vary due to vibrations, and temperature drifts may occur due to temperature changes.
  • the interference fringe and the observation object move relatively, and it becomes difficult to detect the amount of phase shift of the interference fringe with high accuracy due to uncertainty for each wavelength. Therefore, it has been difficult for the conventional observation system to stably obtain a correct high-resolution image.
  • a light projecting unit 130 that projects the first light onto the observation object S and a position that faces the light projecting unit 130 via the observation object S are provided.
  • a mechanism provided with a light projecting unit 132 that is disposed and projects the second light onto the observation object S is used.
  • a mirror 128 and an optical path length adjusting unit 137 that expands and contracts the first optical path length are added to the first optical path 3 with respect to the observation system 1, and a mirror 129 is added to the second optical path 4.
  • the optical path length adjustment unit 137 is a mechanism that expands and contracts the first optical path length by moving the mirror 138.
  • the conventional observation system includes a fixed base for fixing and holding the observation object S instead of the turntable 7.
  • the first light guided from the light source 2 to the observation target S by the first optical path 3 and the second light path 4 from the light source 2 to the observation target S are guided.
  • the second light interferes with the interference fringe generation unit 6 to generate a first interference fringe.
  • the image distribution of the light scattered by the observation object S out of the first light and the second light presenting the first interference fringes is imaged by the imaging unit 8.
  • the first reflected light reflected by the observation object S in the first light and guided by the third optical path 9 is reflected by the observation object S in the second light and the fourth light.
  • the second reflected light guided by the optical path 10 interferes to generate a second interference fringe.
  • the light intensity distribution of the second interference fringe is measured by the measurement unit 12.
  • the phase of the first interference fringe is shifted and the light intensity distribution of the second interference fringe is displaced.
  • the light source 2 has a coherent length within a predetermined range
  • the light intensity distribution of the second interference fringe has one peak in its envelope.
  • the amount of displacement of the light intensity distribution of the second interference fringe is obtained by measuring the amount of displacement of the peak of the envelope. Therefore, even when the phase of the first interference fringe is shifted by one wavelength or more, the envelope in the light intensity distribution of the second interference fringe is not affected by the uncertainty of each wavelength in the first interference fringe.
  • the phase shift amount of the first interference fringes can be detected based on the displacement amount of the line peak. Further, even when a disturbance such as vibration or temperature change occurs, the phase shift amount of the first interference fringes can be detected with high accuracy. Thereby, the calculating part 13 can calculate the shape distribution of the observation object S correctly. Furthermore, the observation system 1 does not require a high-precision positioning mechanism such as a piezo actuator in order to accurately detect the phase shift amount of the first interference fringes, and as an example, a relatively high degree of actuator such as an actuator using a stepping motor. Since a positioning mechanism with low accuracy can be used, it is provided at low cost. As described above, it is possible to stably obtain a correct high-resolution image at low cost even when a disturbance occurs.
  • the calculation unit 13 calculates the shape distribution of the observation object S based on the three different phases and the three image distributions corresponding to the three first interference fringes each having these phases. As a result, the above equation (1) can be solved by the information on the three phases and the image distribution. As a result, in addition to information that can be resolved with a conventional optical microscope in the frequency space, information obtained by translating the band of the observation object S to the high frequency side by the spatial frequency of the first interference fringes can be acquired. Accordingly, the calculation unit 13 can correctly calculate the shape distribution of the observation object S.
  • one period of the first interference fringes is 2 ⁇ rad
  • three different phases can be set to 0 rad, 2 ⁇ / 3 rad, 4 ⁇ / 3 rad obtained by dividing 2 ⁇ into three equal parts, for example.
  • the three different phases are set to 0 rad, 2 ⁇ / 3 rad, 4 ⁇ / 3 rad.
  • the three phases different from each other do not necessarily divide 2 ⁇ into three equal parts as described above. The degree to which the shape distribution of the observation object S is correctly calculated (extracted) differs depending on these three phase values.
  • the measurement unit 12 continues to measure the light intensity distribution until the calculation unit 13 calculates shift amounts corresponding to at least three phases different from each other. For this reason, in the case where the shift amount of the first interference fringe is calculated a plurality of times by the calculation unit 13, even when a plurality of phases corresponding to each shift amount are the same phase, a predetermined simultaneous equation is solved. It is possible to prevent a lack of information on at least three phases and image distributions required for the above. Accordingly, the calculation unit 13 can correctly calculate the shape distribution of the observation object S.
  • the interference fringe generation unit 6 is provided at the end of the first optical path 3, and the first light projecting unit 30 that projects the first light onto the observation object S and the beginning of the third optical path 9.
  • the first light projecting unit 30 that projects the first light onto the observation object S and the beginning of the third optical path 9.
  • a second light projecting unit 32 that projects the second light onto the observation object S, and a second light projecting unit that is provided at the beginning of the fourth optical path 10 and that passes through the observation object S.
  • a second light receiving portion 33 that receives the second reflected light.
  • the first light and the second light can be reliably irradiated to appropriate positions on the observation object S, and the first reflected light and the second reflected light are respectively applied to the third optical path 9 and the fourth light path. Can be reliably output to the optical path 10.
  • the first light travels from the first light projecting unit 30 to the first light receiving unit 31 and the second light travels from the second light projecting unit 32 to the second light receiving unit 33.
  • the traveling second direction is substantially orthogonal to the observation object S in plan view. For this reason, since the 1st light projection part 30, the 1st light-receiving part 31, the 2nd light projection part 32, and the 2nd light-receiving part 33 can be arrange
  • a second optical path length adjusting unit 11 that expands or contracts the third optical path length or the fourth optical path length is further provided.
  • the second interference fringe is a light intensity distribution according to the optical path difference between the optical path length from the light source 2 to the measurement unit 12 in the first light and the optical path length from the light source 2 to the measurement unit 12 in the second light. Is displaced. For this reason, the second interference fringes need to be adjusted so that the peak of the envelope of the light intensity distribution approaches the center of the measurement range of the measurement unit 12 by adjusting the optical path length.
  • the displacement amount of the light intensity distribution of the second interference fringe can be reduced only by the expansion and contraction of the second optical path length by the first optical path length adjustment unit 5. It may be insufficient. Therefore, the second interference fringes can be sufficiently displaced by expanding and contracting the fourth optical path length by the second optical path length adjustment unit 11.
  • the operation of bringing the peak of the envelope of the light intensity distribution in the second interference fringe closer to the center of the measurement range of the measurement unit 12 is facilitated, so that the operability is improved.
  • the coherent length of the predetermined range is shorter than the coherent length of the laser light source. For this reason, the width of the peak of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, and it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
  • the coherent length in a predetermined range is 1 ⁇ m or more and 100 ⁇ m or less.
  • the width of the peak of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, and it is easy to measure the displacement amount of the peak.
  • the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
  • the light source 2 is an SLD light source. For this reason, the width of the peak of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, and it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
  • the observation system 1 includes a turntable 7 that holds the observation object S so as to be rotatable about an axis A from the observation object S toward the imaging unit 8.
  • this observation system 1 it is possible to calculate the shape distribution of the observation object S with higher resolution in the direction in which the phase of the first interference fringes is shifted compared to a conventional optical microscope. Therefore, by observing the observation object S and the first interference fringes in a plurality of relative angles obtained by relatively rotating around the axis A, the shape of the observation object S is obtained in each direction perpendicular to the axis A. A high-resolution image with a correct distribution can be obtained stably.
  • the operation of relatively rotating the observation object S and the first interference fringe around the axis A becomes easy, the operability is improved.
  • the observation system 1 uses the first interference fringes by the low coherence light as the modulated illumination to irradiate the observation object S.
  • the first interference fringes due to the low coherence light have a narrower range of interference fringes than the interference fringes due to the high coherence light. For this reason, in order to observe a wide range by the observation system 1, it is necessary to scan the first interference fringe on the observation object S.
  • the piezo actuator used in the conventional observation system has a short stroke, it is difficult to observe a wide range with the conventional observation system. Further, since the piezo actuator has a slow stroke speed, the conventional observation system requires a long time for observation.
  • the observation system 1 can use an actuator using a stepping motor having a longer stroke and a higher stroke speed than a piezo actuator. For this reason, the observation system 1 can easily observe a wide range in a short time compared to the conventional observation system.
  • the measurement unit 12 may be a line sensor that can measure the light intensity distribution of the second interference fringes one-dimensionally along the phase direction.
  • the measurement unit 12 can be a line sensor. In this case, when calculating the phase shift amount in the first interference fringe based on the displacement amount of the light intensity distribution in the second interference fringe, The amount of calculation in the calculating part 13 can be reduced.
  • the measurement unit 12 requires a higher frame rate than the imaging unit 8. Since the measurement unit 12 is a line sensor and easily increases the frame rate, a higher frame rate than that of the imaging unit 8 can be easily realized.
  • the 1st optical path length adjustment part 5 is provided in the middle of the 2nd optical path 4, and expands / contracts the 2nd optical path length, it is provided in the middle of the 1st optical path 3.
  • the first optical path length may be expanded and contracted.
  • the second optical path length adjustment unit 11 is provided in the middle of the fourth optical path 10 to expand and contract the fourth optical path length, but is provided in the middle of the third optical path 9.
  • the third optical path length may be expanded and contracted.
  • an observation system provides a light source having a coherent length within a predetermined range and a first light having a first optical path length and a part of light emitted from the light source.
  • a first optical path that leads to the observation object, a second optical path length, and a second optical path that guides the second light that is the remainder of the light from the light source to the observation object, and the first optical path length or the first optical path length A first optical path length adjustment unit that expands and contracts the optical path length of 2
  • an interference fringe generation unit that causes the first light and the second light to interfere with each other to generate a first interference fringe on the observation object, and a first An imaging unit that captures an image distribution of the light scattered by the observation object in the first light and the second light that exhibit the interference fringes, and a third optical path length, A third optical path for guiding the first reflected light reflected by the observation object, and a fourth optical path length, which are reflected by the observation object in the second light.
  • the phase shift amount in the interference fringes is calculated, and the shape distribution of the observation object is calculated based on the phase corresponding to the shift amount and the image distribution corresponding to the first interference fringe having the phase.
  • the first light guided from the light source to the observation target by the first optical path and the second light guided from the light source to the observation target by the second optical path interfere with each other.
  • a first interference fringe is generated by interference by the fringe generation unit.
  • the image distribution of the light scattered by the observation object in the first light and the second light presenting the first interference fringes is imaged by the imaging unit.
  • the second reflected light thus interfered to generate a second interference fringe.
  • the light intensity distribution of the second interference fringe is measured by the measurement unit.
  • the phase of the first interference fringe is shifted and the light intensity distribution of the second interference fringe is displaced.
  • the light intensity distribution of the second interference fringe Since the light source has a coherent length in a predetermined range, the light intensity distribution of the second interference fringe has one peak in its envelope. The amount of displacement of the light intensity distribution of the second interference fringe is obtained by measuring the amount of displacement of the peak of the envelope. Therefore, even when the phase of the first interference fringe is shifted by one wavelength or more, the envelope in the light intensity distribution of the second interference fringe is not affected by the uncertainty of each wavelength in the first interference fringe.
  • the phase shift amount of the first interference fringes can be detected based on the displacement amount of the line peak.
  • the phase shift amount of the first interference fringes can be detected with high accuracy.
  • the calculating part can calculate correctly the shape distribution of an observation object.
  • this observation system does not require a high-precision positioning mechanism such as a piezo actuator in order to accurately detect the phase shift amount of the first interference fringes, and as an example, a relatively high-speed actuator such as an actuator using a stepping motor. Since a positioning mechanism with low accuracy can be used, it is provided at low cost. As described above, an inexpensive system can stably obtain a correct high-resolution image even when a disturbance occurs.
  • the calculation unit calculates the shape distribution of the observation object based on at least three phases different from each other and at least three image distributions corresponding to at least three first interference fringes each having these phases. May be calculated. As a result, it is possible to solve a predetermined simultaneous equation based on information on at least three phases and image distributions. As a result, in addition to information that can be resolved with a conventional optical microscope in the frequency space, information obtained by translating the band of the observation object to the high frequency side by the spatial frequency of the first interference fringes can be acquired. Therefore, the calculation unit can correctly calculate the shape distribution of the observation object.
  • the measurement unit may continue measuring the light intensity distribution until shift amounts corresponding to at least three phases different from each other are calculated by the calculation unit.
  • the calculation unit can correctly calculate the shape distribution of the observation object.
  • the interference fringe generation unit is provided at the end of the first optical path, and is provided at the first light projecting unit for projecting the first light onto the observation target and the start end of the third optical path for observation.
  • the first light receiving unit that is disposed at a position facing the first light projecting unit via the object, receives the first reflected light, and is provided at the end of the second optical path, and observes the second light.
  • a second light projecting unit that projects light onto the object and a second reflected light that is provided at the start of the fourth optical path and that is disposed at a position facing the second light projecting unit through the observation object.
  • a second light receiving portion that receives light.
  • the first light and the second light can be reliably radiated to appropriate positions on the observation object, and the first reflected light and the second reflected light are respectively applied to the third optical path and the fourth optical path. Can be output reliably.
  • a first direction in which the first light travels from the first light projecting unit to the first light receiving unit and a second direction in which the second light travels from the second light projecting unit to the second light receiving unit.
  • These directions may be substantially orthogonal in a plan view with respect to the observation object.
  • the interference fringe generating unit since the first light projecting unit, the first light receiving unit, the second light projecting unit, and the second light receiving unit can be arranged at positions that do not interfere with each other, the interference fringe generating unit has a simple configuration. be able to.
  • a second optical path length adjustment unit that expands or contracts the third optical path length or the fourth optical path length may be further provided.
  • the operation of bringing the peak of the envelope of the light intensity distribution in the second interference fringe closer to the center of the measurement range of the measurement unit is facilitated, and the operability is improved.
  • the coherent length in the predetermined range may be shorter than the coherent length of the laser light source.
  • the peak width of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
  • the coherent length in a predetermined range may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the peak width of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
  • the light source may be an SLD light source or an LED light source.
  • the peak width of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
  • the measurement unit may be a line sensor.
  • a line sensor can be used as the measurement unit.
  • the measurement unit requires a higher frame rate than the imaging unit. Since the measurement unit is a line sensor, it is easy to increase the frame rate. Therefore, a higher frame rate than that of the imaging unit can be easily realized.
  • a turntable for holding the observation object so as to be rotatable around an axis line from the observation object to the imaging unit may be further provided.
  • this observation system it is possible to calculate the shape distribution of the observation object with higher resolution in the direction in which the phase of the first interference fringe is shifted compared to a conventional optical microscope. Therefore, by performing observation in a plurality of relative angle states in which the observation object and the first interference fringes are relatively rotated around the axis, the shape distribution of the observation object can be accurately increased in each direction perpendicular to the axis. A resolution image can be obtained stably.
  • an operation for relatively rotating the observation object and the first interference fringe around the axis is facilitated, so that the operability is improved.
  • One aspect of the present invention is that an observation system is used, and a low-cost system can stably obtain a correct high-resolution image even when a disturbance occurs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

The purpose of the present invention is to provide an inexpensive system whereby a correct high-resolution image can be stably obtained even when a disturbance occurs. The present invention is provided with a light source 2 having a coherence length in a predetermined range, first and second light paths 3, 4 leading first and second lights from the light source 2 to an observation object S, an interference fringe generating part 6 for generating a first interference fringe resulting from the first and second lights, a measurement part 12 for measuring the light intensity distribution of a second interference fringe resulting from first and second reflected lights reflected by the observation object S in the first and second lights, and a computation part 13 for calculating an amount of phase shift in the first interference fringe on the basis of an amount of displacement of the light intensity distribution of the second interference fringe.

Description

観察システムObservation system
 本発明は、観察システムに関する。 The present invention relates to an observation system.
 従来、光学顕微鏡を用いて高い空間分解能を実現する顕微法として、変調照明顕微法(SIM:Structured Illumination Microscopy)が知られている。変調照明顕微法では、観察対象物について計測、外観検査等といった観察を行う場合、縞模様の光強度分布を有する光(変調照明)を観察対象物へ照射し、これにより引き起こされるモアレ効果によって、光学顕微鏡の回折限界よりも高い空間周波数の情報を低周波側にシフトさせる。そして、その情報を有する像分布を光学顕微鏡により取得し、その像分布に対して信号処理を行うことで高周波の情報を再現する。このようにして、変調照明顕微法を用い高分解能画像を得ることができる。 Conventionally, as a microscopic method that realizes high spatial resolution using an optical microscope, a modulated illumination microscopic method (SIM) is known. In the modulated illumination microscope, when observation such as measurement, appearance inspection, etc. is performed on an observation object, the observation object is irradiated with light having a light intensity distribution in a striped pattern (modulation illumination). Information of spatial frequency higher than the diffraction limit of the optical microscope is shifted to the low frequency side. Then, an image distribution having the information is acquired by an optical microscope, and signal processing is performed on the image distribution to reproduce high-frequency information. In this way, a high resolution image can be obtained using the modulated illumination microscope.
 変調照明顕微法を用いた観察システムとして、例えば非特許文献1には、レーザ光源と、レーザ光源から発せられるレーザ光の一部を観察対象物へ導く光路と、レーザ光の残部を観察対象物へ導く別の光路と、上記光路の光路長を伸縮させるステージと、を備える観察システムが開示されている。この観察システムでは、レーザ光の一部及び残部を干渉させて観察対象物上に干渉縞を生成させ、観察対象物により散乱された光を撮像し、撮像された像分布に基づいて観察対象物の形状分布を算出している。 As an observation system using the modulated illumination microscope, for example, Non-Patent Document 1 discloses a laser light source, an optical path for guiding a part of laser light emitted from the laser light source to the observation target, and the remainder of the laser light as the observation target. An observation system is disclosed that includes another optical path that leads to an optical path and a stage that expands and contracts the optical path length of the optical path. In this observation system, an interference fringe is generated on an observation object by causing a part and the remainder of the laser light to interfere, and the light scattered by the observation object is imaged, and the observation object is based on the captured image distribution. The shape distribution is calculated.
 ところで、この観察システムは、互いに異なる位相を有する干渉縞を生成するために、ステージを動作させて各光路の光路長差を増減させる。しかしながら、この観察システムでは、光源としてコヒーレント長の長いレーザ光源を用いるため、干渉縞と、その位相が1波長シフトする毎に生成される干渉縞と、を外観上見分けることは困難である(波長毎の不確定性)。一方、観察対象物の形状分布を正しく算出するためには、干渉縞の位相のシフト量を精度良く検出する必要がある。そこで、この観察システムでは、ステージの駆動にピエゾアクチュエータを用いることで、ステージを微小な変位量で精密に駆動可能とし、干渉縞の位相を精度良く制御して当該位相のシフト量を精度良く検出している。 By the way, this observation system operates the stage to increase or decrease the optical path length difference between the optical paths in order to generate interference fringes having different phases. However, since this observation system uses a laser light source having a long coherent length as the light source, it is difficult to distinguish between the interference fringes and the interference fringes generated each time the phase shifts by one wavelength (wavelength). Uncertainty for each). On the other hand, in order to correctly calculate the shape distribution of the observation object, it is necessary to accurately detect the phase shift amount of the interference fringes. Therefore, this observation system uses a piezo actuator to drive the stage so that the stage can be precisely driven with a small amount of displacement, and the phase of the interference fringes is accurately controlled to accurately detect the amount of phase shift. is doing.
 ところで、変調照明顕微法は、光学顕微鏡を用いた観察方法であることから、他の顕微法に比較して観察に要する時間が短く、且つ、非破壊での検査が可能であるという利点を有しているため、例えば工場の生産現場等においても実施されることが望まれている。しかしながら、生産現場等では、実験室等に比較して振動や温度変化といった外乱が生じ易い。このため、上記の観察システムでは、例えば振動により各光路の光路差が変動したり、温度変化により温度ドリフトが生じたりする場合がある。このような場合、干渉縞と観察対象物とが相対的に移動してしまい、波長毎の不確定性のために干渉縞の位相のシフト量を精度良く検出することが困難となり、その結果、正しい高分解能画像を安定して得ることが難しくなる。このような事情から、変調照明顕微法は、外乱の生じ難い実験室等における生物学分野の蛍光観察においてのみ実施されている。 By the way, since the modulated illumination microscope method is an observation method using an optical microscope, it has the advantages that the time required for observation is shorter than other microscope methods and that non-destructive inspection is possible. Therefore, it is desired to be carried out, for example, at a factory production site. However, in production sites and the like, disturbances such as vibrations and temperature changes are more likely to occur than in laboratories and the like. For this reason, in the above observation system, for example, the optical path difference of each optical path may fluctuate due to vibration, or a temperature drift may occur due to a temperature change. In such a case, the interference fringe and the observation object move relatively, and it becomes difficult to accurately detect the phase shift amount of the interference fringe due to the uncertainty for each wavelength. It becomes difficult to stably obtain a correct high-resolution image. For these reasons, the modulated illumination microscopy is only performed in fluorescence observation in the biological field in laboratories where disturbances are unlikely to occur.
 また、変調照明顕微鏡は、干渉縞の位相を精度良く検出するためにピエゾアクチュエータ等の高精度な位置決め機構を必要とするため、一般に高価であり、より安価に提供されることが望まれている。 In addition, the modulation illumination microscope generally requires a high-precision positioning mechanism such as a piezo actuator in order to detect the phase of the interference fringes with high accuracy, so that it is generally expensive and is desired to be provided at a lower cost. .
 本発明の一形態は、上記課題に鑑みて為されたものであり、安価で、外乱が生じた場合であっても正しい高分解能画像を安定して得ることが可能な観察システムを提供することを目的とする。 One embodiment of the present invention has been made in view of the above problems, and provides an observation system that is inexpensive and can stably obtain a correct high-resolution image even when a disturbance occurs. With the goal.
 上記課題を解決するため、本発明の一側面の観察システムは、所定範囲のコヒーレント長を有する光源と、第1の光路長を有し、光源から発せられる光の一部である第1の光を光源から観察対象物へ導く第1の光路と、第2の光路長を有し、光の残部である第2の光を光源から観察対象物へ導く第2の光路と、第1の光及び第2の光を干渉させて観察対象物上に第1の干渉縞を生成させる干渉縞生成部と、第1の光の内の観察対象物によって反射された第1の反射光と、第2の光の内の観察対象物によって反射された第2の反射光との干渉によって生成される第2の干渉縞の光強度分布を測定する測定部と、測定部に接続された演算部と、を備え、演算部は、第2の干渉縞における光強度分布の変位量に基づいて第1の干渉縞における位相のシフト量を算出する。 In order to solve the above-described problem, an observation system according to one aspect of the present invention includes a light source having a coherent length in a predetermined range, a first light having a first optical path length and part of light emitted from the light source. A first optical path that guides the light from the light source to the observation object, a second optical path that has a second optical path length and guides the second light that is the remainder of the light from the light source to the observation object, and the first light And an interference fringe generator for causing the second light to interfere with each other to generate a first interference fringe on the observation object, a first reflected light reflected by the observation object in the first light, A measuring unit that measures the light intensity distribution of the second interference fringe generated by the interference with the second reflected light reflected by the observation object of the two lights, and an arithmetic unit connected to the measuring unit, The computing unit includes a phase in the first interference fringe based on the amount of displacement of the light intensity distribution in the second interference fringe. And calculates the shift amount.
 このような観察システムによれば、光源から観察対象物へ第1の光路によって導かれた第1の光、及び、光源から観察対象物へ第2の光路によって導かれた第2の光が干渉縞生成部によって干渉し第1の干渉縞が生成される。一方、第1の光の内の観察対象物によって反射された第1の反射光と、第2の光の内の観察対象物によって反射された第2の反射光とが干渉し第2の干渉縞が生成され、その第2の干渉縞の光強度分布が測定部によって測定される。光源は所定範囲のコヒーレント長を有するため、第2の干渉縞の光強度分布は、その包絡線に一つのピークを有している。第2の干渉縞の光強度分布の変位量は、包絡線のピークの変位量を測定することによって取得される。従って、第1の干渉縞の位相が1波長以上シフトした場合であっても、第1の干渉縞における波長毎の不確定性の影響を受けず、第2の干渉縞の光強度分布における包絡線のピークの変位量に基づいて第1の干渉縞の位相のシフト量を検出することができる。また、例えば振動や温度変化といった外乱が生じた場合であっても、第1の干渉縞の位相のシフト量を精度良く検出することができる。これにより、演算部は、観察対象物の形状分布を正しく算出できる。更に、この観察システムは、第1の干渉縞の位相のシフト量を精度良く検出するためにピエゾアクチュエータ等の高精度な位置決め機構を必要とせず、一例としてステッピングモータを利用したアクチュエータ等の比較的精度の低い位置決め機構を用いることが可能であるため、安価に提供される。以上により、安価なシステムによって、外乱が生じた場合であっても正しい高分解能画像を安定して得ることが可能となる。 According to such an observation system, the first light guided from the light source to the observation target by the first optical path and the second light guided from the light source to the observation target by the second optical path interfere with each other. A first interference fringe is generated by interference by the fringe generation unit. On the other hand, the first reflected light reflected by the observation object in the first light and the second reflected light reflected by the observation object in the second light interfere with each other to cause the second interference. A fringe is generated, and the light intensity distribution of the second interference fringe is measured by the measurement unit. Since the light source has a coherent length in a predetermined range, the light intensity distribution of the second interference fringe has one peak in its envelope. The amount of displacement of the light intensity distribution of the second interference fringe is obtained by measuring the amount of displacement of the peak of the envelope. Therefore, even when the phase of the first interference fringe is shifted by one wavelength or more, the envelope in the light intensity distribution of the second interference fringe is not affected by the uncertainty of each wavelength in the first interference fringe. The phase shift amount of the first interference fringes can be detected based on the displacement amount of the line peak. Further, even when a disturbance such as vibration or temperature change occurs, the phase shift amount of the first interference fringes can be detected with high accuracy. Thereby, the calculating part can calculate correctly the shape distribution of an observation object. Furthermore, this observation system does not require a high-precision positioning mechanism such as a piezo actuator in order to accurately detect the phase shift amount of the first interference fringes, and as an example, a relatively high-speed actuator such as an actuator using a stepping motor. Since a positioning mechanism with low accuracy can be used, it is provided at low cost. As described above, an inexpensive system can stably obtain a correct high-resolution image even when a disturbance occurs.
 本発明の一側面によれば、安価なシステムによって、外乱が生じた場合であっても正しい高分解能画像を安定して得ることができる。 According to one aspect of the present invention, an inexpensive system can stably obtain a correct high-resolution image even when a disturbance occurs.
本発明の実施形態に係る観察システムを示す概略構成図である。It is a schematic structure figure showing an observation system concerning an embodiment of the present invention. 図1の干渉縞生成部を示す概略側面図である。It is a schematic side view which shows the interference fringe production | generation part of FIG. 図1の干渉縞生成部を示す概略側面図である。It is a schematic side view which shows the interference fringe production | generation part of FIG. 低コヒーレンス光による第1の干渉縞の形状特性を示す図である。It is a figure which shows the shape characteristic of the 1st interference fringe by low coherence light. 図4の部分拡大図である。It is the elements on larger scale of FIG. 測定部によって測定された光強度分布を示す図である。It is a figure which shows the light intensity distribution measured by the measurement part. 周波数空間における顕微鏡の通過帯域を示す図である。It is a figure which shows the pass band of the microscope in frequency space. 変調照明により周波数空間において3方向へ移動した通過帯域を示す図である。It is a figure which shows the pass band which moved to 3 directions in the frequency space by modulated illumination. 観察対象物の一例を示す図である。It is a figure which shows an example of an observation target object. 撮像部によって撮像された像分布を示す図である。It is a figure which shows the image distribution imaged by the imaging part. 図10の像分布に対しフーリエ変換を行った画像を示す図である。It is a figure which shows the image which performed the Fourier-transform with respect to the image distribution of FIG. 図11の画像に対し干渉系情報による周波数分離を行った画像を示す図である。It is a figure which shows the image which frequency-separated by the interference type information with respect to the image of FIG. 画像再構成を行った高分解能画像を示す図である。It is a figure which shows the high-resolution image which performed image reconstruction. 従来の観察システムを示す概略構成図である。It is a schematic block diagram which shows the conventional observation system.
 以下、図面を参照しつつ本発明に係る観察システムの好適な実施形態について詳細に説明する。なお、図面の説明においては、同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the observation system according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の実施形態に係る観察システムを示す概略構成図、図2及び図3は、図1の干渉縞生成部を示す概略側面図である。図1に示すように、観察システム1は、変調照明顕微法を用い、観察対象物Sの高分解能画像を得ることが可能な変調照明顕微鏡である。観察システム1は、光源2と、光源2から発せられる光を導く第1の光路3及び第2の光路4と、第2の光路4の途中に設けられた第1の光路長調整部5と、第1の光路3及び第2の光路4の終端に設けられた干渉縞生成部6と、観察対象物Sが載置される回転台7と、回転台に載置された観察対象物Sを撮像する撮像部8と、干渉縞生成部6から出力される光を導く第3の光路9及び第4の光路10と、第4の光路10の途中に設けられた第2の光路長調整部11と、第3の光路9及び第4の光路10の終端に設けられた測定部12と、撮像部8及び測定部12からの情報に基づき観察対象物Sの形状分布を算出する演算部13と、を備えている。 FIG. 1 is a schematic configuration diagram showing an observation system according to an embodiment of the present invention, and FIGS. 2 and 3 are schematic side views showing an interference fringe generation unit of FIG. As shown in FIG. 1, the observation system 1 is a modulation illumination microscope capable of obtaining a high-resolution image of the observation object S using a modulation illumination microscope. The observation system 1 includes a light source 2, a first optical path 3 and a second optical path 4 that guide light emitted from the light source 2, and a first optical path length adjustment unit 5 provided in the middle of the second optical path 4. The interference fringe generator 6 provided at the end of the first optical path 3 and the second optical path 4, the turntable 7 on which the observation object S is placed, and the observation object S placed on the turntable The third optical path 9 and the fourth optical path 10 for guiding the light output from the interference fringe generator 6, and the second optical path length adjustment provided in the middle of the fourth optical path 10 Unit 11, measurement unit 12 provided at the end of third optical path 9 and fourth optical path 10, and calculation unit that calculates the shape distribution of observation object S based on information from imaging unit 8 and measurement unit 12 13.
 光源2は、低コヒーレンス光源である。低コヒーレンス光源から発せられる光(低コヒーレンス光)は、例えばレーザ光に比較してスペクトル幅が広く、可干渉距離(コヒーレント長)が短い。すなわち、光源2は、長い(例えば、数十m程度)コヒーレント長を有するレーザ光源に比較して短い(例えば、1μm以上100μm以下)コヒーレント長を有する光源である。光源2は、例えばSLD(Super Luminescent Diode)光源、LED(Light EmittingDiode)光源等とすることができる。本実施形態では、光源2は、波長669nm、スペクトル半値全幅7nm、コヒーレント長32μmのSLDである。 The light source 2 is a low coherence light source. Light (low coherence light) emitted from a low coherence light source has a wider spectral width and a shorter coherence distance (coherent length) than, for example, laser light. That is, the light source 2 is a light source having a short coherent length (for example, 1 μm or more and 100 μm or less) compared to a laser light source having a long (for example, about several tens of meters) coherent length. The light source 2 can be, for example, an SLD (Super Luminescent Diode) light source, an LED (Light Emitting Diode) light source, or the like. In the present embodiment, the light source 2 is an SLD having a wavelength of 669 nm, a full width at half maximum of 7 nm, and a coherent length of 32 μm.
 第1の光路3は、第1の光路長を有し、光源2から発せられる光の一部である第1の光を光源2から観察対象物Sへ導く光路である。第2の光路4は、第2の光路長を有し、光源2から発せられる光の残部である第2の光を光源2から観察対象物Sへ導く光路である。第1の光及び第2の光は、光源2から発せられ、光路上に設けられたビームスプリッタ20によって互いに分岐され、各々干渉縞生成部6に至る。第1の光及び第2の光は、光源2からビームスプリッタ20までの間においては、互いに区別なく同一の光路とされている。ここでは、第1の光はビームスプリッタ20を透過する光であり、第2の光はビームスプリッタ20により反射される光である。第1の光路3及び第2の光路4は、光源2からビームスプリッタ20までの間にコリメートレンズ21を備えている。これにより、第1の光路3及び第2の光路4を各々進行する第1の光及び第2の光は、コリメートレンズ21によって平行光とされる。 The first optical path 3 is an optical path that has a first optical path length and guides the first light, which is a part of the light emitted from the light source 2, from the light source 2 to the observation object S. The second optical path 4 has a second optical path length and is an optical path that guides the second light, which is the remainder of the light emitted from the light source 2, from the light source 2 to the observation object S. The first light and the second light are emitted from the light source 2 and branched from each other by the beam splitter 20 provided on the optical path, and reach the interference fringe generation unit 6. The first light and the second light have the same optical path between the light source 2 and the beam splitter 20 without being distinguished from each other. Here, the first light is light that passes through the beam splitter 20, and the second light is light that is reflected by the beam splitter 20. The first optical path 3 and the second optical path 4 include a collimating lens 21 between the light source 2 and the beam splitter 20. Thereby, the first light and the second light traveling respectively in the first optical path 3 and the second optical path 4 are converted into parallel light by the collimating lens 21.
 第1の光路3には、ビームスプリッタ20の出射側に別のビームスプリッタ22が設けられている。第1の光路3は、ビームスプリッタ22の出射側に、ビームスプリッタ22により反射された光の光路3aを有する。これにより、第1の光路3を進行する第1の光は、ビームスプリッタ20を透過した後、ビームスプリッタ22により反射され、その後、干渉縞生成部6に入力される。 In the first optical path 3, another beam splitter 22 is provided on the exit side of the beam splitter 20. The first optical path 3 has an optical path 3 a of light reflected by the beam splitter 22 on the emission side of the beam splitter 22. Thus, the first light traveling in the first optical path 3 is transmitted through the beam splitter 20, reflected by the beam splitter 22, and then input to the interference fringe generator 6.
 第2の光路4を進行する第2の光は、ビームスプリッタ20の出射側で第1の光路長調整部5に到達し、第1の光路長調整部5にて折り返されて再びビームスプリッタ20に到達する。第2の光路4は、ビームスプリッタ20の折り返された光の出射側に、ビームスプリッタ20を透過した第2の光の光路4aを有する。これにより、第2の光路4を進行する第2の光は、ビームスプリッタ20により一度反射され、第1の光路長調整部5にて折り返された後、ビームスプリッタ20を透過し、その後、干渉縞生成部6に入力される。このように、第1の光及び第2の光は、何れもビームスプリッタを一度透過し、且つ、一度反射されるため、干渉縞生成部6に至るときには、互いに略同等の光強度となっている。 The second light traveling in the second optical path 4 reaches the first optical path length adjustment unit 5 on the emission side of the beam splitter 20, is turned back by the first optical path length adjustment unit 5, and is again beam splitter 20. To reach. The second optical path 4 has an optical path 4 a of the second light transmitted through the beam splitter 20 on the light output side of the folded beam of the beam splitter 20. As a result, the second light traveling in the second optical path 4 is reflected once by the beam splitter 20, turned back by the first optical path length adjusting unit 5, then transmitted through the beam splitter 20, and then interfered. Input to the fringe generator 6. As described above, since the first light and the second light are both transmitted through the beam splitter and reflected once, when reaching the interference fringe generator 6, the light intensity is substantially equal to each other. Yes.
 第1の光路長調整部5は、ミラー23と、ミラー23を移動させるモジュレータ24と、を有している。第1の光路長調整部5は、第2の光路4を進行する第2の光をミラー23で反射させて折り返させると共に、モジュレータ24によりミラー23を移動させて第2の光路長を伸縮させる機構である。 The first optical path length adjustment unit 5 includes a mirror 23 and a modulator 24 that moves the mirror 23. The first optical path length adjustment unit 5 reflects the second light traveling in the second optical path 4 by the mirror 23 and folds it, and moves the mirror 23 by the modulator 24 to expand and contract the second optical path length. Mechanism.
 モジュレータ24は、ミラー23を第2の光路4に沿って往復移動させる。これにより、モジュレータ24は、ビームスプリッタ20とミラー23との間の距離を伸縮させ、その結果、第2の光路長を伸縮させる。モジュレータ24としては、ピエゾアクチュエータ等の極めて高精度に変位量を制御可能なモジュレータに限らず、ピエゾアクチュエータ等に比較して変位量の制御の精度が低いステッピングモータを利用したアクチュエータ等を用いることもできる。なお、モジュレータ24は、ステッピングモータを利用したアクチュエータ等に限定されず、ミラー23を第2の光路4に沿って移動可能な機構であればよい。 The modulator 24 reciprocates the mirror 23 along the second optical path 4. As a result, the modulator 24 expands and contracts the distance between the beam splitter 20 and the mirror 23, and as a result, expands and contracts the second optical path length. The modulator 24 is not limited to a modulator capable of controlling the displacement amount with extremely high accuracy, such as a piezo actuator, but may be an actuator using a stepping motor whose displacement control accuracy is lower than that of the piezo actuator or the like. it can. The modulator 24 is not limited to an actuator using a stepping motor, and may be any mechanism that can move the mirror 23 along the second optical path 4.
 回転台7は、観察対象物Sを保持するステージを含み、そのステージが水平面(図中のX-Y平面)内に位置するように配置されて構成される。回転台7は、観察対象物Sの観察しようとする面が上向きとなるように、観察対象物Sをステージ上に保持する。回転台7は、ステージを鉛直方向(図中のZ軸方向)の軸線A回りに回転可能とする。従って、ステージ上に載置された観察対象物Sは、ステージにより鉛直方向の軸線A回りに回転可能に保持される。なお、軸線Aは、必ずしも鉛直方向に限らず、観察対象物Sから撮像部8へ向かう方向であればよい。この場合、回転台7は、ステージが軸線Aに対する垂直平面上に位置し、観察対象物Sの観察しようとする面が撮像部8側を向くように配置されればよい。 The turntable 7 includes a stage that holds the observation object S, and is configured so that the stage is positioned in a horizontal plane (XY plane in the drawing). The turntable 7 holds the observation object S on the stage so that the surface of the observation object S to be observed faces upward. The turntable 7 allows the stage to rotate about the axis A in the vertical direction (Z-axis direction in the drawing). Therefore, the observation object S placed on the stage is held by the stage so as to be rotatable around the axis A in the vertical direction. Note that the axis A is not necessarily limited to the vertical direction, and may be any direction from the observation object S toward the imaging unit 8. In this case, the turntable 7 may be arranged so that the stage is positioned on a plane perpendicular to the axis A and the surface of the observation object S to be observed faces the imaging unit 8 side.
 干渉縞生成部6は、第1の光及び第2の光を干渉させて観察対象物S上に第1の干渉縞を生成させる。干渉縞生成部6によって生成された第1の干渉縞が、観察システム1における変調照明(すなわち、光の干渉を用いた定在波照明)として利用される。図4は、低コヒーレンス光による第1の干渉縞の形状特性を示す図、図5は、図4の部分拡大図である。ここでは、光源2として低コヒーレンス光源を用いているため、第1の干渉縞は、低コヒーレンス光源のコヒーレント長程度の範囲(例えば、30μm程度の範囲)で生成されており(図4参照)、一定の周期で強度が変化している(図5参照)。干渉縞生成部6は、回転台7を取り囲むように配置された第1の投光部30、第1の受光部31、第2の投光部32及び第2の受光部33を有する。 The interference fringe generation unit 6 causes the first light and the second light to interfere with each other to generate a first interference fringe on the observation object S. The first interference fringes generated by the interference fringe generator 6 are used as modulated illumination in the observation system 1 (that is, standing wave illumination using light interference). FIG. 4 is a diagram showing the shape characteristics of the first interference fringes due to the low coherence light, and FIG. 5 is a partially enlarged view of FIG. Here, since a low-coherence light source is used as the light source 2, the first interference fringes are generated in a range of about the coherent length of the low-coherence light source (for example, a range of about 30 μm) (see FIG. 4). The intensity changes at a constant period (see FIG. 5). The interference fringe generation unit 6 includes a first light projecting unit 30, a first light receiving unit 31, a second light projecting unit 32, and a second light receiving unit 33 arranged so as to surround the turntable 7.
 第1の投光部30は、第1の光路3の終端に設けられており、観察対象物Sに対し第1の光を斜め上方から投光する。第1の投光部30は、ミラー30a及びミラー30bを含み、略水平方向に進行する第1の光を、ミラー30aによって略鉛直方向の上方に反射させた後、ミラー30bによって斜め下方に反射させ、観察対象物Sに対し投光する。一例として、第1の投光部30は、観察対象物Sに対する入射角(すなわち、観察対象物Sに対して投光される第1の光の光路と、軸線Aと、のなす角度)が45degとなるように第1の光を投光する。なお、第1の光の入射角の下限は、対物レンズ34によって第1の光の光路が妨げられない範囲の最小の角度である。また、第1の投光部30は、ミラーを用いた構成に限定されず、例えば、第1の光路3を、光ファイバーによって屈曲させることによって、観察対象物Sに対し斜め上方から投光する構成としてもよい。 The first light projecting unit 30 is provided at the end of the first optical path 3 and projects the first light to the observation object S from obliquely above. The first light projecting unit 30 includes a mirror 30a and a mirror 30b. The first light traveling in the substantially horizontal direction is reflected upward in the substantially vertical direction by the mirror 30a and then reflected obliquely downward by the mirror 30b. And light is projected onto the observation object S. As an example, the first light projecting unit 30 has an incident angle with respect to the observation object S (that is, an angle formed between the optical path of the first light projected onto the observation object S and the axis A). The first light is projected so as to be 45 deg. The lower limit of the incident angle of the first light is the smallest angle in a range where the optical path of the first light is not hindered by the objective lens 34. Moreover, the 1st light projection part 30 is not limited to the structure using a mirror, For example, the structure which light-projects from the diagonally upper direction with respect to the observation object S by bending the 1st optical path 3 with an optical fiber. It is good.
 第1の受光部31は、第3の光路9(詳しくは後述)の始端に設けられており、第1の光の内の観察対象物Sによって反射された第1の反射光を、観察対象物Sに対し斜め上方にて受光する。第1の受光部31は、観察対象物Sを介して第1の投光部30と対向する位置に配置されている。第1の受光部31は、ミラー31a及びミラー31bを含み、観察対象物Sから受光した第1の反射光を、ミラー31aによって略鉛直方向の下方に反射させた後、ミラー31bによって略水平方向に反射させ、第3の光路9へ出力する。なお、第1の受光部31は、ミラーを用いた構成に限定されず、例えば、観察対象物Sに対し斜め上方にて第1の反射光を受光し、光ファイバーによって屈曲させることによって、第3の光路9へ出力する構成としてもよい。 The first light receiving unit 31 is provided at the start end of a third optical path 9 (details will be described later), and the first reflected light reflected by the observation object S in the first light is used as an observation target. Light is received obliquely above the object S. The first light receiving unit 31 is arranged at a position facing the first light projecting unit 30 with the observation object S interposed therebetween. The first light receiving unit 31 includes a mirror 31a and a mirror 31b. After the first reflected light received from the observation object S is reflected downward in the substantially vertical direction by the mirror 31a, the first light receiving unit 31 is substantially horizontal by the mirror 31b. And output to the third optical path 9. Note that the first light receiving unit 31 is not limited to a configuration using a mirror. For example, the first light receiving unit 31 receives the first reflected light obliquely upward with respect to the observation object S, and bends it with an optical fiber, thereby forming the third light receiving unit 31. It is good also as a structure output to the optical path 9 of this.
 第2の投光部32は、第2の光路4の終端に設けられており、観察対象物Sに対し第2の光を斜め上方から投光する。第2の投光部32は、ミラー32a及びミラー32bを含み、略水平方向に進行する第2の光を、ミラー32aによって略鉛直方向の上方に反射させた後、ミラー32bによって斜め下方に反射させ、観察対象物Sに対し投光する。一例として、第2の投光部32は、観察対象物Sに対する入射角(すなわち、観察対象物Sに対して投光される第2の光と、軸線Aと、のなす角度)が45degとなるように第2の光を投光する。なお、第2の光の入射角の下限は、対物レンズ34によって第2の光の光路が妨げられない範囲の最小の角度である。また、第2の投光部32は、ミラーを用いた構成に限定されず、例えば、第2の光路4を、光ファイバーによって屈曲させることによって、観察対象物Sに対し斜め上方から投光する構成としてもよい。 The second light projecting unit 32 is provided at the end of the second optical path 4 and projects the second light to the observation object S from obliquely above. The second light projecting unit 32 includes a mirror 32a and a mirror 32b. The second light traveling in the substantially horizontal direction is reflected upward in the substantially vertical direction by the mirror 32a and then reflected obliquely downward by the mirror 32b. And light is projected onto the observation object S. As an example, the second light projecting unit 32 has an incident angle with respect to the observation object S (that is, an angle formed between the second light projected on the observation object S and the axis A) is 45 deg. The second light is projected so as to be. Note that the lower limit of the incident angle of the second light is the minimum angle in a range where the optical path of the second light is not hindered by the objective lens 34. Moreover, the 2nd light projection part 32 is not limited to the structure using a mirror, For example, the structure which light-projects from the diagonally upper direction with respect to the observation object S by bending the 2nd optical path 4 with an optical fiber. It is good.
 第2の受光部33は、第4の光路10(詳しくは後述)の始端に設けられており、第2の光の内の観察対象物Sによって反射された第2の反射光を、観察対象物Sに対し斜め上方にて受光する。第2の受光部33は、観察対象物Sを介して第2の投光部32と対向する位置に配置されている。第2の受光部33は、ミラー33a及びミラー33bを含み、観察対象物Sから受光した第2の反射光を、ミラー33aによって略鉛直方向の下方に反射させた後、ミラー33bによって略水平方向に反射させ、第4の光路10へ出力する。なお、第2の受光部33は、ミラーを用いた構成に限定されず、例えば、観察対象物Sに対し斜め上方にて第2の反射光を受光し、光ファイバーによって屈曲させることによって、第4の光路10へ出力する構成としてもよい。 The second light receiving unit 33 is provided at the start end of the fourth optical path 10 (details will be described later), and the second reflected light reflected by the observation target S in the second light is used as the observation target. Light is received obliquely above the object S. The second light receiving unit 33 is disposed at a position facing the second light projecting unit 32 with the observation object S interposed therebetween. The second light receiving unit 33 includes a mirror 33a and a mirror 33b. The second reflected light received from the observation object S is reflected substantially downward in the vertical direction by the mirror 33a, and then substantially horizontal by the mirror 33b. And output to the fourth optical path 10. Note that the second light receiving unit 33 is not limited to a configuration using a mirror. For example, the second light receiving unit 33 receives the second reflected light obliquely upward with respect to the observation object S, and bends it with an optical fiber. It is good also as a structure output to the optical path 10 of this.
 干渉縞生成部6において、第1の投光部30から第1の受光部31へ第1の光が進行する第1の方向(図中のX軸方向)と、第2の投光部32から第2の受光部33へ第2の光が進行する第2の方向(図中のY軸方向)と、は観察対象物Sに対する平面視(図中のZ軸方向視)において略直交する。また、干渉縞生成部6において、各投光部及び各受光部に設けられたミラー30a,30b,31a,31b,32a,32b,33a,33bは可動とされ、観察対象物Sの最適な位置に第1の光及び第2の光を投光可能である。 In the interference fringe generation unit 6, a first direction in which the first light travels from the first light projecting unit 30 to the first light receiving unit 31 (X-axis direction in the drawing), and a second light projecting unit 32. The second direction (Y-axis direction in the figure) in which the second light travels from the second light receiving unit 33 to the second light-receiving unit 33 is substantially perpendicular to the observation object S in a plan view (Z-axis direction view in the figure). . In the interference fringe generator 6, the mirrors 30a, 30b, 31a, 31b, 32a, 32b, 33a, 33b provided in each light projecting unit and each light receiving unit are movable, and the optimum position of the observation object S is set. In addition, it is possible to project the first light and the second light.
 第1の投光部30及び第2の投光部32によって各々観察対象物S上に投光される第1の光及び第2の光は、観察対象物S上において第1の干渉縞を生成する。第1の光路3及び第2の光路4は、各々第1の光路長及び第2の光路長を有しており、第1の干渉縞は、これら第1の光路長及び第2の光路長の光路長差に応じて位相が異なる。従って、第1の光路長調整部5の動作によって第2の光路長が伸縮すると、第1の光路長及び第2の光路長の光路長差が伸縮し、第1の干渉縞の位相がシフトする。 The first light and the second light projected onto the observation object S by the first light projecting unit 30 and the second light projecting unit 32 respectively cause the first interference fringes on the observation object S. Generate. The first optical path 3 and the second optical path 4 have a first optical path length and a second optical path length, respectively, and the first interference fringes are the first optical path length and the second optical path length. The phase differs depending on the optical path length difference. Accordingly, when the second optical path length is expanded and contracted by the operation of the first optical path length adjusting unit 5, the optical path length difference between the first optical path length and the second optical path length is expanded and contracted, and the phase of the first interference fringe is shifted. To do.
 撮像部8は、第1の干渉縞を呈する第1の光及び第2の光の内の観察対象物Sによって散乱された光の像分布を撮像する。撮像部8は、回転台7のZ軸方向上方に配置され、観察対象物Sを上方から撮像する。撮像部8は、散乱光の像を拡大するための対物レンズ34及び光学顕微鏡35と、拡大された散乱光の像を像分布として検出する検出器36と、を備えている。対物レンズ34としては、例えば10倍(NA0.28)、20倍(NA0.28)、50倍(NA0.42)、100倍(NA0.55)等の対物レンズを好適に用いることができる。また、検出器36としては、例えばCCDカメラ等を用いることができる。 The imaging unit 8 captures an image distribution of light scattered by the observation object S in the first light and the second light presenting the first interference fringes. The imaging unit 8 is disposed above the turntable 7 in the Z-axis direction, and images the observation object S from above. The imaging unit 8 includes an objective lens 34 and an optical microscope 35 for enlarging an image of scattered light, and a detector 36 that detects the enlarged image of scattered light as an image distribution. As the objective lens 34, for example, an objective lens of 10 times (NA 0.28), 20 times (NA 0.28), 50 times (NA 0.42), 100 times (NA 0.55) or the like can be suitably used. As the detector 36, for example, a CCD camera or the like can be used.
 第3の光路9は、第3の光路長を有し、第1の光の内の観察対象物Sによって反射された第1の反射光を測定部12へ導く光路である。第4の光路10は、第4の光路長を有し、第2の光の内の観察対象物Sによって反射された第2の反射光を測定部12へ導く光路である。 The third optical path 9 has a third optical path length, and is an optical path that guides the first reflected light reflected by the observation object S in the first light to the measurement unit 12. The fourth optical path 10 has a fourth optical path length, and is an optical path that guides the second reflected light reflected by the observation object S in the second light to the measurement unit 12.
 第3の光路9には、その始端に第1の受光部31が設けられ、その出射側にビームスプリッタ26が設けられている。第3の光路9は、ビームスプリッタ26の出射側に、ビームスプリッタ26により反射された第1の反射光の光路9aを有する。また、第3の光路9には、ビームスプリッタ26の出射側に別のビームスプリッタ27が設けられている。第3の光路9は、ビームスプリッタ27の出射側に、ビームスプリッタ27を透過した第1の反射光の光路を有する。これにより、第3の光路9を進行する第1の反射光は、ビームスプリッタ26により反射された後、ビームスプリッタ27を透過し、その後、測定部12へ入力される。 In the third optical path 9, a first light receiving portion 31 is provided at the start end, and a beam splitter 26 is provided on the exit side. The third optical path 9 has an optical path 9 a for the first reflected light reflected by the beam splitter 26 on the emission side of the beam splitter 26. The third optical path 9 is provided with another beam splitter 27 on the emission side of the beam splitter 26. The third optical path 9 has an optical path of the first reflected light transmitted through the beam splitter 27 on the emission side of the beam splitter 27. As a result, the first reflected light traveling in the third optical path 9 is reflected by the beam splitter 26, passes through the beam splitter 27, and is then input to the measuring unit 12.
 第4の光路10には、その始端に第2の受光部33が設けられ、その出射側にビームスプリッタ27が設けられている。第4の光路10は、ビームスプリッタ27の出射側に、ビームスプリッタ27を透過した第2の反射光の光路10aを有する。また、第4の光路10を進行する第2の反射光は、ビームスプリッタ27の出射側で第2の光路長調整部11に到達し、第2の光路長調整部11にて折り返されて再びビームスプリッタ27に到達する。第4の光路10は、ビームスプリッタ27の折り返された光の出射側に、ビームスプリッタ27により反射された第2の反射光の光路を有する。これにより、第4の光路10を進行する第2の反射光は、ビームスプリッタ27を一度透過し、第2の光路長調整部11にて折り返された後、ビームスプリッタ27にて反射され、その後、測定部12に入力される。このように、第1の反射光及び第2の反射光は、何れもビームスプリッタを一度透過し、且つ、一度反射されるため、測定部12に至るときには、互いに略同等の光強度となっている。 In the fourth optical path 10, a second light receiving portion 33 is provided at the start end, and a beam splitter 27 is provided on the emission side. The fourth optical path 10 has an optical path 10 a of second reflected light that has passed through the beam splitter 27 on the emission side of the beam splitter 27. Further, the second reflected light traveling in the fourth optical path 10 reaches the second optical path length adjustment unit 11 on the emission side of the beam splitter 27, is turned back by the second optical path length adjustment unit 11, and again. It reaches the beam splitter 27. The fourth optical path 10 has an optical path of the second reflected light reflected by the beam splitter 27 on the light output side of the folded beam splitter 27. As a result, the second reflected light traveling in the fourth optical path 10 is transmitted once through the beam splitter 27, turned back by the second optical path length adjusting unit 11, then reflected by the beam splitter 27, and then Are input to the measurement unit 12. As described above, since both the first reflected light and the second reflected light are once transmitted through the beam splitter and reflected once, when reaching the measurement unit 12, the light intensity is substantially equal to each other. Yes.
 第2の光路長調整部11は、可動式のミラー25を有している。第2の光路長調整部11は、第4の光路10を進行する第2の反射光をミラー25で反射させて折り返させると共に、ミラー25を移動させて第4の光路長を伸縮させる機構である。第2の光路長調整部11は、ミラー25を移動させることによりビームスプリッタ27とミラー25との間の距離を伸縮させ、その結果、第4の光路長を伸縮させる。なお、第2の光路長調整部11は、ミラー23の移動を手動で行う構成としてもよく、或いは、ステッピングモータを利用したアクチュエータ等を用いて電動で行う構成としてもよい。 The second optical path length adjusting unit 11 has a movable mirror 25. The second optical path length adjusting unit 11 is a mechanism for reflecting the second reflected light traveling in the fourth optical path 10 by the mirror 25 and turning it back, and moving the mirror 25 to expand and contract the fourth optical path length. is there. The second optical path length adjusting unit 11 expands and contracts the distance between the beam splitter 27 and the mirror 25 by moving the mirror 25, and as a result, expands and contracts the fourth optical path length. Note that the second optical path length adjustment unit 11 may be configured to manually move the mirror 23 or may be configured to be electrically performed using an actuator using a stepping motor or the like.
 測定部12は、第3の光路9及び第4の光路10の終端に設けられ、第1の反射光及び第2の反射光の干渉によって生成される第2の干渉縞の光強度分布を測定する。測定部12は、本実施形態においては、第2の干渉縞の光強度分布を2次元的に測定可能なエリアセンサである。 The measurement unit 12 is provided at the end of the third optical path 9 and the fourth optical path 10, and measures the light intensity distribution of the second interference fringes generated by the interference of the first reflected light and the second reflected light. To do. In the present embodiment, the measurement unit 12 is an area sensor that can two-dimensionally measure the light intensity distribution of the second interference fringes.
 第2の干渉縞は、第1の光における光源2から測定部12までの光路長と、第2の光における光源2から測定部12までの光路長と、の光路差に応じて、光強度分布が位相方向(すなわち、各縞に直交する方向)に変位する。このため、第1の光における光源2から測定部12までの光路長と、第2の光における光源2から測定部12までの光路長と、の光路差に変化が生じた場合、その変化量は、第2の干渉縞の光強度分布の基準位置からの変位量に基づいて算出可能である。図6は、測定部によって測定された光強度分布を示す図である。図6では、第1の光路長調整部5により第2の光路長を伸縮させたときの第2の干渉縞の光強度分布の変位を示している。図6の(a)は、第2の光路長を任意の値(初期値)としたときの第2の干渉縞の光強度分布を示しており、図6の(b)は、第2の光路長が初期値から0.1μm変化するように第1の光路長調整部5を操作したときの第2の干渉縞の光強度分布を示しており、図6の(c)は、第2の光路長が初期値から0.2μm変化するように第1の光路長調整部5を操作したときの第2の干渉縞の光強度分布を示している。 The second interference fringe has a light intensity according to the optical path difference between the optical path length from the light source 2 to the measurement unit 12 in the first light and the optical path length from the light source 2 to the measurement unit 12 in the second light. The distribution is displaced in the phase direction (that is, the direction orthogonal to each stripe). Therefore, when a change occurs in the optical path difference between the optical path length from the light source 2 to the measurement unit 12 in the first light and the optical path length from the light source 2 to the measurement unit 12 in the second light, the amount of change Can be calculated based on the amount of displacement from the reference position of the light intensity distribution of the second interference fringes. FIG. 6 is a diagram illustrating the light intensity distribution measured by the measurement unit. FIG. 6 shows the displacement of the light intensity distribution of the second interference fringes when the second optical path length is expanded and contracted by the first optical path length adjustment unit 5. 6A shows the light intensity distribution of the second interference fringes when the second optical path length is an arbitrary value (initial value). FIG. 6B shows the second optical path length. FIG. 6C shows the light intensity distribution of the second interference fringe when the first optical path length adjustment unit 5 is operated so that the optical path length changes by 0.1 μm from the initial value. 2 shows the light intensity distribution of the second interference fringes when the first optical path length adjustment unit 5 is operated so that the optical path length changes by 0.2 μm from the initial value.
 上述したように、第3の光路長及び第4の光路長が変化しない場合、第2の干渉縞の光強度分布の変位量に基づいて、第1の光路長及び第2の光路長の光路長差の変化量を算出可能である。また、第1の光路長及び第2の光路長の光路長差の変化量に応じて、第1の干渉縞の位相がシフトする。以上により、第2の干渉縞の光強度分布の変位量を測定することにより、第1の干渉縞の位相の正確なシフト量を得ることが可能である。 As described above, when the third optical path length and the fourth optical path length do not change, the optical paths having the first optical path length and the second optical path length based on the displacement amount of the light intensity distribution of the second interference fringes. The change amount of the length difference can be calculated. Further, the phase of the first interference fringe is shifted according to the amount of change in the optical path length difference between the first optical path length and the second optical path length. As described above, an accurate shift amount of the phase of the first interference fringe can be obtained by measuring the displacement amount of the light intensity distribution of the second interference fringe.
 演算部13は、撮像部8及び測定部12に接続され、撮像部8によって撮像された像分布と、測定部12によって測定された第2の干渉縞の光強度分布と、を取得する。そして、演算部13は、第2の干渉縞における光強度分布の変位量に基づいて第1の干渉縞における位相のシフト量を算出する。また、演算部13は、算出した第1の干渉縞における位相のシフト量に応じた位相と、当該位相を有する第1の干渉縞を呈する第1の光及び第2の光の内の観察対象物Sによって散乱された光の像分布と、に基づいて観察対象物Sの形状分布を算出する。 The calculation unit 13 is connected to the imaging unit 8 and the measurement unit 12 and acquires the image distribution captured by the imaging unit 8 and the light intensity distribution of the second interference fringe measured by the measurement unit 12. Then, the calculation unit 13 calculates the phase shift amount in the first interference fringe based on the displacement amount of the light intensity distribution in the second interference fringe. The computing unit 13 also includes a phase corresponding to the calculated phase shift amount in the first interference fringe, and an observation target of the first light and the second light presenting the first interference fringe having the phase. Based on the image distribution of the light scattered by the object S, the shape distribution of the observation object S is calculated.
 具体的には、演算部13は、変調照明顕微法に基づき、観察対象物Sの形状分布を算出するために以下の処理を行う。図7は、周波数空間における顕微鏡の通過帯域を示す図、図8は、変調照明により周波数空間において3方向へ移動した通過帯域を示す図である。図7においてk及びkは周波数空間座標系であり、円の内側が顕微鏡で解像できる周波数であることを概念的に表している。図7の(a)は、空間周波数における顕微鏡の通過帯域を表し、原点からk離れた周波数まで解像できることを表している。図7の(b)は、変調照明による通過帯域の移動を表している。観察対象物Sに対し干渉縞生成部6によって生成された第1の干渉縞が照射されると、観察対象物Sによって散乱された光の像分布では、通過帯域が周波数空間座標系の原点からkだけ離れた位置に移動している。これにより、顕微鏡の分解能は、kの矢印正方向においてk+kに分解能が向上することとなる一方、kの矢印負方向においてk-kに分解能が低下することとなる。このように、第1の干渉縞として一方向の縞模様のみを用いた場合には、通過帯域が移動するのみであり全体として高分解能画像を得ることはできない。そこで、図8に示すように、観察システム1では、第1の干渉縞として複数方向(ここでは、3方向)の縞模様を用い、且つ、各々正負両方向に通過帯域を移動させている。これにより、周波数空間座標系における略全方向へ通過帯域が拡張され、顕微鏡の分解能が向上することとなる。 Specifically, the calculation unit 13 performs the following process to calculate the shape distribution of the observation object S based on the modulated illumination microscope. FIG. 7 is a diagram showing the passband of the microscope in the frequency space, and FIG. 8 is a diagram showing the passband moved in three directions in the frequency space by the modulated illumination. In FIG. 7, k x and k y are frequency space coordinate systems, and conceptually indicate that the inside of a circle is a frequency that can be resolved with a microscope. FIG. 7A shows the pass band of the microscope at a spatial frequency, and shows that resolution can be performed up to a frequency separated by k 1 from the origin. FIG. 7B shows the movement of the pass band due to the modulated illumination. When the first interference fringe generated by the interference fringe generation unit 6 is irradiated onto the observation object S, the passband is from the origin of the frequency space coordinate system in the image distribution of the light scattered by the observation object S. It has been moved to the k 2 apart position. Thus, the resolution of the microscope, while so that the resolution k 1 + k 2 in the arrow positive direction of k 2 is increased, resolution k 1 -k 2 in the arrow negative direction k 2 is lowered. As described above, when only a striped pattern in one direction is used as the first interference fringe, only the pass band moves and a high-resolution image cannot be obtained as a whole. Therefore, as shown in FIG. 8, in the observation system 1, a stripe pattern in a plurality of directions (here, three directions) is used as the first interference fringe, and the pass band is moved in both positive and negative directions. As a result, the passband is expanded in almost all directions in the frequency space coordinate system, and the resolution of the microscope is improved.
 ただし、このようにして得られる像分布は、モアレ効果により得られたモアレ信号であり、この像分布から直接高周波成分を得ることはできない。そこで、下記式(1)を解いて画像の再構成処理を行う。ここで、kは空間周波数、fは変調照明の空間周波数、θ,θ,θは変調照明の互いに異なる3つの位相であり、D(k)は結像帯域、OFT(k)は光学的伝達関数、S(k)は観察対象物帯域を表す。OFT(k)は、顕微鏡の対物レンズ34や光源波長等により定められる点像分布関数を、フーリエ変換により周波数空間で表したものである。下記式(1)によれば、観察対象物帯域を高周波側に±fだけ平行移動させた情報が得られる。下記式(1)は、S(k),S(k-f),S(k+f)の3つの未知数が含まれているため、3つの変調照明に対応した3つの像分布を取得することによりD(k),D(k),D(k)を得て、3つの方程式を連立させるものである。このようにして得られたS(k),S(k-f),S(k+f)を適切な重みづけを行い足し合わせることで、数値計算により高分解能画像が再構成される。以上より、変調照明顕微法を用いて高分解能画像を得るためには、第1の干渉縞(変調照明)の位相を正しく検出することが必要であることがわかる。
Figure JPOXMLDOC01-appb-M000001
 
However, the image distribution obtained in this way is a moire signal obtained by the moire effect, and a high-frequency component cannot be obtained directly from this image distribution. Therefore, image reconstruction processing is performed by solving the following equation (1). Here, k is the spatial frequency, f m is the spatial frequency of the modulation lighting, θ 1, θ 2, θ 3 are mutually different three phases of the modulation illumination, D (k) is an imaging zone, OFT (k) Represents an optical transfer function, and S (k) represents an observation object band. OFT (k) represents a point spread function determined by the objective lens 34 of the microscope, the light source wavelength, and the like in the frequency space by Fourier transform. According to the following formula (1), information of the observation target band was translated by ± f m to the high frequency side is obtained. Since the following equation (1) includes three unknowns S (k), S (k−f m ), and S (k + f m ), three image distributions corresponding to the three modulated illuminations are acquired. Thus, D 1 (k), D 2 (k), and D 3 (k) are obtained, and the three equations are simultaneous. By appropriately weighting and adding S (k), S (k−f m ), and S (k + f m ) thus obtained, a high resolution image is reconstructed by numerical calculation. From the above, it can be seen that it is necessary to correctly detect the phase of the first interference fringe (modulated illumination) in order to obtain a high resolution image using the modulated illumination microscope.
Figure JPOXMLDOC01-appb-M000001
 上述したように、上記式(1)を解くためには、変調照明の互いに異なる3つの位相θ,θ,θが必要である。測定部12は、変調照明の互いに異なる3つの位相θ,θ,θに対応する第1の干渉縞のシフト量が、演算部13によって算出されるまで、光強度分布の測定を継続する(繰り返す)。これにより、例えば演算部13によって算出されたシフト量に応じた3つの位相θ,θ,θの内の複数が、互いに同じ位相であったときでも、上記式(1)を解くために必要となる互いに異なる3つの位相が揃うまで、測定部12は、光強度分布の測定を継続することとなる。 As described above, in order to solve the above equation (1), three different phases θ 1 , θ 2 , and θ 3 of the modulated illumination are necessary. The measurement unit 12 continues to measure the light intensity distribution until the calculation unit 13 calculates the shift amounts of the first interference fringes corresponding to the three different phases θ 1 , θ 2 , and θ 3 of the modulated illumination. Do (repeat). Thus, for example, even when a plurality of the three phases θ 1 , θ 2 , θ 3 corresponding to the shift amounts calculated by the calculation unit 13 are in the same phase, the equation (1) is solved. The measurement unit 12 continues to measure the light intensity distribution until three different phases necessary for the above are aligned.
 続いて、観察システム1による観察対象物Sの観察結果の具体例を説明する。 Subsequently, a specific example of the observation result of the observation object S by the observation system 1 will be described.
 図9は、観察対象物Sの一例を示す図である。図9に示すように、観察対象物Sとして、二種のピッチを有するスクエアドット群を用いて観察を行った。この観察対象物Sは、平板上に周期的に突起を配列したものである。各突起は、図中のL1,L2等で示す一辺が0.2μmの立方体状を呈する。突起は、図中のL3で示すピッチが0.4μmであるドットペア(一対のドット)を形成しており、これらドットペアは、図中のL4,L5で示すピッチが2.2μmとなるように配列している。 FIG. 9 is a diagram showing an example of the observation object S. As shown in FIG. 9, the observation object S was observed using a group of square dots having two kinds of pitches. This observation object S is obtained by periodically arranging protrusions on a flat plate. Each protrusion has a cubic shape with one side indicated by L1, L2, etc. in the figure of 0.2 μm. The protrusions form dot pairs (a pair of dots) whose pitch indicated by L3 in the figure is 0.4 μm, and these dot pairs have a pitch indicated by L4 and L5 in the figure of 2.2 μm. Are arranged.
 第1の光路長調整部5としては、ステッピングモータを利用したアクチュエータを用いた。このステッピングモータを利用したアクチュエータは、1パルス2μmであり、且つ、パルス分割可能である。ここでは、パルスを20分割して1パルス0.1μmとした。また、光源2の波長λを669nm、入射角θを45degとした。以上により、ステッピングモータを利用したアクチュエータが初期値から1パルス分(0.1μm)及び2パルス分(0.2μm)変化するように当該ステッピングモータを利用したアクチュエータを操作したとき、第1の干渉縞の位相のシフト量の操作値(指示値)は、それぞれ1.33rad、2.66radと算出された。一方、このとき第2の干渉縞の光強度分布の変位量に基づいて検出した第1の干渉縞の位相のシフト量は、それぞれ6.33rad、4.98radであった。このように、ステッピングモータを利用したアクチュエータの実際の移動量は、操作値とは異なっていることが確認された。 As the first optical path length adjustment unit 5, an actuator using a stepping motor was used. An actuator using this stepping motor has one pulse of 2 μm and can be divided into pulses. Here, the pulse was divided into 20 to make one pulse 0.1 μm. The wavelength λ of the light source 2 was 669 nm, and the incident angle θ was 45 deg. As described above, when the actuator using the stepping motor is operated so that the actuator using the stepping motor changes by one pulse (0.1 μm) and two pulses (0.2 μm) from the initial value, the first interference The operation value (indicated value) of the shift amount of the fringe phase was calculated as 1.33 rad and 2.66 rad, respectively. On the other hand, the phase shift amounts of the first interference fringes detected based on the displacement amount of the light intensity distribution of the second interference fringes at this time were 6.33 rad and 4.98 rad, respectively. Thus, it was confirmed that the actual movement amount of the actuator using the stepping motor is different from the operation value.
 画像再構成を行うためには、撮像部8により散乱光の像分布を撮像する際における第1の干渉縞の位相が分かればよい。しかし、第1の光路長調整部5の操作値に基づいて第1の干渉縞の位相の正しいシフト量を安定して算出するためには、第1の光路長及び第2の光路長を高精度に維持し、且つ、支持台等の振動といった外乱も排除する必要があることがわかる。 In order to perform image reconstruction, it is only necessary to know the phase of the first interference fringes when the imaging unit 8 captures the image distribution of scattered light. However, in order to stably calculate the correct shift amount of the phase of the first interference fringe based on the operation value of the first optical path length adjustment unit 5, the first optical path length and the second optical path length are increased. It can be seen that it is necessary to maintain accuracy and to eliminate disturbances such as vibration of the support table.
 一方、観察システム1では、散乱光の像分布を撮像する際における第1の干渉縞の位相を測定部12によって算出できる。このため、観察システム1では、撮像部8による散乱光の像分布の撮像と、測定部12による第2の干渉縞の光強度分布の測定と、が同期していれば、画像再構成を行うことができる。ここでいう「同期」とは、撮像部8による散乱光の像分布の撮像した時の第2の干渉縞の光強度分布を、測定部12によって測定することであり、例えば、撮像部8と測定部12の露光(シャッタ)タイミングを揃えるということである。 On the other hand, in the observation system 1, the phase of the first interference fringes when the image distribution of scattered light is captured can be calculated by the measurement unit 12. Therefore, in the observation system 1, if the imaging of the scattered light image distribution by the imaging unit 8 and the measurement of the light intensity distribution of the second interference fringe by the measurement unit 12 are synchronized, image reconstruction is performed. be able to. Here, “synchronization” means that the measurement unit 12 measures the light intensity distribution of the second interference fringes when the image distribution of the scattered light is imaged by the imaging unit 8. That is, the exposure (shutter) timing of the measurement unit 12 is aligned.
 従って、観察システム1では、第1の干渉縞の位相のシフト量を精度良く検出するためにピエゾアクチュエータ等の高精度な位置決め機構を必要とせず、また、振動や温度変化といった外乱の影響を排除し易い。以上により、観察システム1では、安価で、外乱が生じた場合であっても正しい高分解能画像を安定して得ることが可能となる。 Therefore, the observation system 1 does not require a high-precision positioning mechanism such as a piezo actuator in order to accurately detect the phase shift amount of the first interference fringes, and eliminates the influence of disturbance such as vibration and temperature change. Easy to do. As described above, the observation system 1 is inexpensive and can stably obtain a correct high-resolution image even when a disturbance occurs.
 図10は、撮像部によって撮像された像分布を示す図である。図10は、光源2から発せられる低コヒーレンス光を、第1の光路3を進行する第1の光と、第2の光路4を進行する第2の光と、に分岐させ、干渉縞生成部6により観察対象物S上に第1の干渉縞を生成させ、第1の干渉縞を呈する第1の光及び第2の光の内の観察対象物Sによって散乱された光の像分布を撮像部8によって撮像したものである。図10の(a)は、第2の光路長を任意の値(初期値)としたとき(すなわち、図6の(a)の状態)の像分布である。図10の(b)は、第2の光路長が初期値から0.1μm変化するように第1の光路長調整部5を操作したとき(すなわち、図6の(b)の状態)の像分布である。図10の(c)は、第2の光路長が初期値から0.2μm変化するように第1の光路長調整部5を操作したとき(すなわち、図6の(c)の状態)の像分布である。なお、図10においてはモアレ効果によりドットが部分的に解像できるが、全体として分解能が向上したものではない。図11は、図10の像分布に対しフーリエ変換を行った画像を示す図である。図11の(a)~(c)は、それぞれ図10の(a)~(c)に対応する画像である。 FIG. 10 is a diagram showing an image distribution imaged by the imaging unit. FIG. 10 divides the low coherence light emitted from the light source 2 into a first light traveling in the first optical path 3 and a second light traveling in the second optical path 4, and an interference fringe generation unit 6 generates a first interference fringe on the observation object S, and captures an image distribution of the light scattered by the observation object S among the first light and the second light presenting the first interference fringe. The image is taken by the unit 8. FIG. 10A shows an image distribution when the second optical path length is an arbitrary value (initial value) (that is, the state of FIG. 6A). FIG. 10B shows an image when the first optical path length adjustment unit 5 is operated so that the second optical path length changes by 0.1 μm from the initial value (that is, the state of FIG. 6B). Distribution. FIG. 10C shows an image when the first optical path length adjustment unit 5 is operated so that the second optical path length changes by 0.2 μm from the initial value (that is, the state of FIG. 6C). Distribution. In FIG. 10, the dots can be partially resolved by the moire effect, but the overall resolution is not improved. FIG. 11 is a diagram showing an image obtained by performing Fourier transform on the image distribution of FIG. (A) to (c) in FIG. 11 are images corresponding to (a) to (c) in FIG. 10, respectively.
 図12は、図11の画像に対し干渉系情報による周波数分離を行った画像を示す図である。すなわち、図12は、図11に示す像分布と、これらの像分布に対応する第2の干渉縞の光強度分布の変位量に基づいて算出された第1の干渉縞の位相と、から算出された周波数分離画像であり、上記式(1)におけるS(k),S(k-f),S(k+f)に対応する。図12の(a)~(c)は、それぞれ図11の(a)~(c)に対応する画像である。図12の画像は、図11の画像に比較して、図12の(b),(c)において高周波成分が分離されて明瞭に観察される一方で、原点付近の光強度は低下している。 FIG. 12 is a diagram illustrating an image obtained by performing frequency separation on the image of FIG. 11 based on interference system information. That is, FIG. 12 is calculated from the image distributions shown in FIG. 11 and the phase of the first interference fringes calculated based on the displacement amount of the light intensity distribution of the second interference fringes corresponding to these image distributions. These frequency separated images correspond to S (k), S (k−f m ), and S (k + f m ) in the above equation (1). (A) to (c) in FIG. 12 are images corresponding to (a) to (c) in FIG. 11, respectively. Compared with the image of FIG. 11, the image of FIG. 12 is clearly observed with the high frequency components separated in FIGS. 12B and 12C, while the light intensity near the origin is reduced. .
 図13は、画像再構成を行った高分解能画像を示す図である。すなわち、図13の画像は、図12の(a),(b),(c)の画像を足し合わせ、逆フーリエ変換した画像である。図13の画像は、図9に示す観察対象物Sについて、L3で示す各ドットペアが正しく分離され、且つ、L4,L5で示すピッチについても正しく表されている。従って、正しい高分解能画像が得られたことがわかる。 FIG. 13 is a diagram showing a high-resolution image that has undergone image reconstruction. That is, the image of FIG. 13 is an image obtained by adding the images of (a), (b), and (c) of FIG. In the image of FIG. 13, for the observation object S shown in FIG. 9, the dot pairs indicated by L3 are correctly separated, and the pitches indicated by L4 and L5 are also correctly represented. Therefore, it can be seen that a correct high-resolution image was obtained.
 ここで、従来の観察システムについて説明する。図14は、従来の観察システムを示す概略構成図である。図14に示すように、従来の観察システムは、光源102として、コヒーレント長の長いレーザ光源を用いると共に、第2の光路4の光路長を伸縮させる光路長調整部105として、ピエゾアクチュエータ124により第2の光路4に沿ってミラー23を往復移動させる機構を用いている。 Here, a conventional observation system will be described. FIG. 14 is a schematic configuration diagram showing a conventional observation system. As shown in FIG. 14, in the conventional observation system, a laser light source having a long coherent length is used as the light source 102, and the optical path length adjusting unit 105 that expands and contracts the optical path length of the second optical path 4 is used by the piezo actuator 124. A mechanism for reciprocating the mirror 23 along the second optical path 4 is used.
 このような従来の観察システムでは、第1の干渉縞の位相のシフト量を精度よく検出するために、光路長調整部137にピエゾアクチュエータ124を用いている。しかしながら、生産現場等では、実験室等に比較して振動や温度変化といった外乱が生じ易く、例えば振動により各光路の光路差が変動したり、温度変化により温度ドリフトが生じたりする場合がある。この場合、干渉縞と観察対象物とが相対的に移動してしまい、波長毎の不確定性のために干渉縞の位相のシフト量を精度良く検出することが困難となる。従って、従来の観察システムでは、正しい高分解能画像を安定して得ることが難しかった。 In such a conventional observation system, the piezo actuator 124 is used for the optical path length adjustment unit 137 in order to accurately detect the phase shift amount of the first interference fringes. However, in production sites and the like, disturbances such as vibrations and temperature changes are more likely to occur than in laboratories and the like. For example, optical path differences between optical paths may vary due to vibrations, and temperature drifts may occur due to temperature changes. In this case, the interference fringe and the observation object move relatively, and it becomes difficult to detect the amount of phase shift of the interference fringe with high accuracy due to uncertainty for each wavelength. Therefore, it has been difficult for the conventional observation system to stably obtain a correct high-resolution image.
 なお、従来の観察システムは、干渉縞生成部106として、第1の光を観察対象物Sに投光する投光部130と、観察対象物Sを介して投光部130に対向する位置に配置され、第2の光を観察対象物Sに投光する投光部132と、を備えた機構を用いている。また、従来の観察システムは、観察システム1に対し、第1の光路3にミラー128及び第1の光路長を伸縮させる光路長調整部137が追加されると共に、第2の光路4にミラー129が追加されている。光路長調整部137は、ミラー138を移動させることにより第1の光路長を伸縮させる機構である。また、従来の観察システムは、回転台7の代わりに、観察対象物Sを固定して保持する固定台を備えている。 In the conventional observation system, as the interference fringe generation unit 106, a light projecting unit 130 that projects the first light onto the observation object S and a position that faces the light projecting unit 130 via the observation object S are provided. A mechanism provided with a light projecting unit 132 that is disposed and projects the second light onto the observation object S is used. Further, in the conventional observation system, a mirror 128 and an optical path length adjusting unit 137 that expands and contracts the first optical path length are added to the first optical path 3 with respect to the observation system 1, and a mirror 129 is added to the second optical path 4. Has been added. The optical path length adjustment unit 137 is a mechanism that expands and contracts the first optical path length by moving the mirror 138. Further, the conventional observation system includes a fixed base for fixing and holding the observation object S instead of the turntable 7.
 本実施形態に係る観察システム1では、光源2から観察対象物Sへ第1の光路3によって導かれた第1の光、及び、光源2から観察対象物Sへ第2の光路4によって導かれた第2の光が干渉縞生成部6によって干渉し第1の干渉縞が生成される。そして、第1の干渉縞を呈する第1の光及び第2の光の内の観察対象物Sによって散乱された光の像分布が撮像部8によって撮像される。一方、第1の光の内の観察対象物Sによって反射され第3の光路9によって導かれた第1の反射光、及び、第2の光の内の観察対象物Sによって反射され第4の光路10によって導かれた第2の反射光が干渉し第2の干渉縞が生成される。そして、第2の干渉縞の光強度分布が測定部12によって測定される。ここで、第1の光路長調整部5により第2の光路長が伸縮されると、第1の干渉縞の位相がシフトすると共に第2の干渉縞の光強度分布が変位する。光源2は所定範囲のコヒーレント長を有するため、第2の干渉縞の光強度分布は、その包絡線に一つのピークを有している。第2の干渉縞の光強度分布の変位量は、包絡線のピークの変位量を測定することによって取得される。従って、第1の干渉縞の位相が1波長以上シフトした場合であっても、第1の干渉縞における波長毎の不確定性の影響を受けず、第2の干渉縞の光強度分布における包絡線のピークの変位量に基づいて第1の干渉縞の位相のシフト量を検出することができる。また、例えば振動や温度変化といった外乱が生じた場合であっても、第1の干渉縞の位相のシフト量を精度良く検出することができる。これにより、演算部13は、観察対象物Sの形状分布を正しく算出できる。更に、観察システム1は、第1の干渉縞の位相のシフト量を精度良く検出するためにピエゾアクチュエータ等の高精度な位置決め機構を必要とせず、一例としてステッピングモータを利用したアクチュエータ等の比較的精度の低い位置決め機構を用いることが可能であるため、安価に提供される。以上により、安価で、外乱が生じた場合であっても正しい高分解能画像を安定して得ることが可能となる。 In the observation system 1 according to the present embodiment, the first light guided from the light source 2 to the observation target S by the first optical path 3 and the second light path 4 from the light source 2 to the observation target S are guided. The second light interferes with the interference fringe generation unit 6 to generate a first interference fringe. Then, the image distribution of the light scattered by the observation object S out of the first light and the second light presenting the first interference fringes is imaged by the imaging unit 8. On the other hand, the first reflected light reflected by the observation object S in the first light and guided by the third optical path 9 is reflected by the observation object S in the second light and the fourth light. The second reflected light guided by the optical path 10 interferes to generate a second interference fringe. Then, the light intensity distribution of the second interference fringe is measured by the measurement unit 12. Here, when the second optical path length is expanded or contracted by the first optical path length adjusting unit 5, the phase of the first interference fringe is shifted and the light intensity distribution of the second interference fringe is displaced. Since the light source 2 has a coherent length within a predetermined range, the light intensity distribution of the second interference fringe has one peak in its envelope. The amount of displacement of the light intensity distribution of the second interference fringe is obtained by measuring the amount of displacement of the peak of the envelope. Therefore, even when the phase of the first interference fringe is shifted by one wavelength or more, the envelope in the light intensity distribution of the second interference fringe is not affected by the uncertainty of each wavelength in the first interference fringe. The phase shift amount of the first interference fringes can be detected based on the displacement amount of the line peak. Further, even when a disturbance such as vibration or temperature change occurs, the phase shift amount of the first interference fringes can be detected with high accuracy. Thereby, the calculating part 13 can calculate the shape distribution of the observation object S correctly. Furthermore, the observation system 1 does not require a high-precision positioning mechanism such as a piezo actuator in order to accurately detect the phase shift amount of the first interference fringes, and as an example, a relatively high degree of actuator such as an actuator using a stepping motor. Since a positioning mechanism with low accuracy can be used, it is provided at low cost. As described above, it is possible to stably obtain a correct high-resolution image at low cost even when a disturbance occurs.
 また、演算部13は、互いに異なる3つの位相と、これらの位相をそれぞれ有する3つの第1の干渉縞に対応した3つの像分布と、に基づいて観察対象物Sの形状分布を算出する。これにより、3つの位相及び像分布の情報によって上記式(1)を解くことが可能となる。その結果、周波数空間において、従来の光学顕微鏡で解像できる情報に加えて、観察対象物Sの帯域を第1の干渉縞の空間周波数分だけ高周波側に平行移動させた情報を取得できる。従って、演算部13は、観察対象物Sの形状分布を正しく算出可能となる。なお、第1の干渉縞の1周期は2πradであるため、互いに異なる3つの位相としては、例えば2πを3等分した0rad、2π/3rad、4π/3radとすることができる。上記式(1)を解く際の計算の安定化のためには、これら3つの位相同士の差が大きいほど良く、このため、互いに異なる3つの位相を0rad、2π/3rad、4π/3radとしたときに最も良く画像再構成を行うことが可能である。ただし、互いに異なる3つの位相は、必ずしも上記のように2πを3等分しなくてもよい。これら3つの位相の値によって、観察対象物Sの形状分布が正しく算出される(抽出される)度合いが異なる。 In addition, the calculation unit 13 calculates the shape distribution of the observation object S based on the three different phases and the three image distributions corresponding to the three first interference fringes each having these phases. As a result, the above equation (1) can be solved by the information on the three phases and the image distribution. As a result, in addition to information that can be resolved with a conventional optical microscope in the frequency space, information obtained by translating the band of the observation object S to the high frequency side by the spatial frequency of the first interference fringes can be acquired. Accordingly, the calculation unit 13 can correctly calculate the shape distribution of the observation object S. Since one period of the first interference fringes is 2π rad, three different phases can be set to 0 rad, 2π / 3 rad, 4π / 3 rad obtained by dividing 2π into three equal parts, for example. In order to stabilize the calculation when solving the above equation (1), the larger the difference between these three phases, the better. For this reason, the three different phases are set to 0 rad, 2π / 3 rad, 4π / 3 rad. Sometimes it is possible to best perform image reconstruction. However, the three phases different from each other do not necessarily divide 2π into three equal parts as described above. The degree to which the shape distribution of the observation object S is correctly calculated (extracted) differs depending on these three phase values.
 また、測定部12は、互いに異なる少なくとも3つの位相に対応するシフト量が演算部13によって算出されるまで、光強度分布の測定を継続する。このため、演算部13によって第1の干渉縞のシフト量が複数回算出された場合において、各シフト量に応じた複数の位相が互いに同じ位相であったときでも、所定の連立方程式を解くために必要となる少なくとも3つの位相及び像分布の情報が不足することを防止することができる。従って、演算部13は、観察対象物Sの形状分布を正しく算出可能となる。 Further, the measurement unit 12 continues to measure the light intensity distribution until the calculation unit 13 calculates shift amounts corresponding to at least three phases different from each other. For this reason, in the case where the shift amount of the first interference fringe is calculated a plurality of times by the calculation unit 13, even when a plurality of phases corresponding to each shift amount are the same phase, a predetermined simultaneous equation is solved. It is possible to prevent a lack of information on at least three phases and image distributions required for the above. Accordingly, the calculation unit 13 can correctly calculate the shape distribution of the observation object S.
 また、干渉縞生成部6は、第1の光路3の終端に設けられ、第1の光を観察対象物S上へ投光する第1の投光部30と、第3の光路9の始端に設けられ、観察対象物Sを介して第1の投光部30と対向する位置に配置され、第1の反射光を受光する第1の受光部31と、第2の光路4の終端に設けられ、第2の光を観察対象物S上へ投光する第2の投光部32と、第4の光路10の始端に設けられ、観察対象物Sを介して第2の投光部32と対向する位置に配置され、第2の反射光を受光する第2の受光部33と、を有する。このため、第1の光及び第2の光を観察対象物S上の適切な位置に確実に照射できると共に、第1の反射光及び第2の反射光をそれぞれ第3の光路9及び第4の光路10へ確実に出力することができる。 The interference fringe generation unit 6 is provided at the end of the first optical path 3, and the first light projecting unit 30 that projects the first light onto the observation object S and the beginning of the third optical path 9. Provided at a position facing the first light projecting unit 30 via the observation object S, and a first light receiving unit 31 that receives the first reflected light, and at the end of the second optical path 4 A second light projecting unit 32 that projects the second light onto the observation object S, and a second light projecting unit that is provided at the beginning of the fourth optical path 10 and that passes through the observation object S. And a second light receiving portion 33 that receives the second reflected light. For this reason, the first light and the second light can be reliably irradiated to appropriate positions on the observation object S, and the first reflected light and the second reflected light are respectively applied to the third optical path 9 and the fourth light path. Can be reliably output to the optical path 10.
 また、第1の投光部30から第1の受光部31へ第1の光が進行する第1の方向と、第2の投光部32から第2の受光部33へ第2の光が進行する第2の方向と、が観察対象物Sに対する平面視において略直交する。このため、第1の投光部30、第1の受光部31、第2の投光部32及び第2の受光部33を互いに干渉しない位置に配置可能であるため、干渉縞生成部6を簡素な構成とすることができる。 Further, the first light travels from the first light projecting unit 30 to the first light receiving unit 31 and the second light travels from the second light projecting unit 32 to the second light receiving unit 33. The traveling second direction is substantially orthogonal to the observation object S in plan view. For this reason, since the 1st light projection part 30, the 1st light-receiving part 31, the 2nd light projection part 32, and the 2nd light-receiving part 33 can be arrange | positioned in the position which does not mutually interfere, the interference fringe production | generation part 6 is provided. A simple configuration can be obtained.
 また、第3の光路長又は第4の光路長を伸縮させる第2の光路長調整部11を更に備える。第2の干渉縞は、第1の光における光源2から測定部12までの光路長と、第2の光における光源2から測定部12までの光路長と、の光路差に応じて光強度分布が変位する。このため、第2の干渉縞は、光路長の調整により、その光強度分布の包絡線のピークが測定部12の測定レンジの中央に近づくようにされる必要がある。しかし、第2の干渉縞を測定部12の測定レンジに収めるには、第1の光路長調整部5による第2の光路長の伸縮だけでは第2の干渉縞の光強度分布の変位量が不十分である場合がある。そこで、第2の光路長調整部11により第4の光路長を伸縮させることで、第2の干渉縞を十分に変位させることができる。このように、観察を行う準備段階において、第2の干渉縞における光強度分布の包絡線のピークを測定部12の測定レンジの中央に近づける操作が容易となるため、操作性が向上する。 Further, a second optical path length adjusting unit 11 that expands or contracts the third optical path length or the fourth optical path length is further provided. The second interference fringe is a light intensity distribution according to the optical path difference between the optical path length from the light source 2 to the measurement unit 12 in the first light and the optical path length from the light source 2 to the measurement unit 12 in the second light. Is displaced. For this reason, the second interference fringes need to be adjusted so that the peak of the envelope of the light intensity distribution approaches the center of the measurement range of the measurement unit 12 by adjusting the optical path length. However, in order to fit the second interference fringe in the measurement range of the measurement unit 12, the displacement amount of the light intensity distribution of the second interference fringe can be reduced only by the expansion and contraction of the second optical path length by the first optical path length adjustment unit 5. It may be insufficient. Therefore, the second interference fringes can be sufficiently displaced by expanding and contracting the fourth optical path length by the second optical path length adjustment unit 11. Thus, in the preparation stage for observation, the operation of bringing the peak of the envelope of the light intensity distribution in the second interference fringe closer to the center of the measurement range of the measurement unit 12 is facilitated, so that the operability is improved.
 また、所定範囲のコヒーレント長は、レーザ光源のコヒーレント長より短い。このため、第2の干渉縞の光強度分布における包絡線のピークの幅が十分に狭く、当該ピークの変位量を測定することが容易である。このため、第2の干渉縞の光強度分布の変位量を容易に取得できることから、第1の干渉縞の位相のシフト量を精度良く検出することが容易となる。 Also, the coherent length of the predetermined range is shorter than the coherent length of the laser light source. For this reason, the width of the peak of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, and it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
 また、所定範囲のコヒーレント長は、1μm以上100μm以下である。このため、第2の干渉縞の光強度分布における包絡線のピークの幅が十分に狭く、当該ピークの変位量を測定することが容易である。このため、第2の干渉縞の光強度分布の変位量を容易に取得できることから、第1の干渉縞の位相のシフト量を精度良く検出することが容易となる。 Further, the coherent length in a predetermined range is 1 μm or more and 100 μm or less. For this reason, the width of the peak of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, and it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
 また、光源2は、SLD光源である。このため、第2の干渉縞の光強度分布における包絡線のピークの幅が十分に狭く、当該ピークの変位量を測定することが容易である。このため、第2の干渉縞の光強度分布の変位量を容易に取得できることから、第1の干渉縞の位相のシフト量を精度良く検出することが容易となる。 The light source 2 is an SLD light source. For this reason, the width of the peak of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, and it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
 また、観察システム1は、観察対象物Sから撮像部8へ向かう軸線A回りに回転可能に観察対象物Sを保持する回転台7を備える。この観察システム1では、第1の干渉縞の位相をシフトさせる方向について、従来の光学顕微鏡に比較して観察対象物Sの形状分布をより高分解能で算出することが可能である。そこで、観察対象物Sと第1の干渉縞とを軸線A回りに相対回転させた複数の相対角度の状態において観察を行うことにより、軸線Aに垂直な各方向について、観察対象物Sの形状分布の正しい高分解能画像を安定して得ることが可能となる。ここで、上記構成とした場合、観察対象物Sと第1の干渉縞とを軸線A回りに相対回転させる操作が容易となるため、操作性が向上する。 Further, the observation system 1 includes a turntable 7 that holds the observation object S so as to be rotatable about an axis A from the observation object S toward the imaging unit 8. In this observation system 1, it is possible to calculate the shape distribution of the observation object S with higher resolution in the direction in which the phase of the first interference fringes is shifted compared to a conventional optical microscope. Therefore, by observing the observation object S and the first interference fringes in a plurality of relative angles obtained by relatively rotating around the axis A, the shape of the observation object S is obtained in each direction perpendicular to the axis A. A high-resolution image with a correct distribution can be obtained stably. Here, in the case of the above configuration, since the operation of relatively rotating the observation object S and the first interference fringe around the axis A becomes easy, the operability is improved.
 このように、観察システム1は、観察対象物Sへ照射する変調照明として低コヒーレンス光による第1の干渉縞を用いている。低コヒーレンス光による第1の干渉縞は、高コヒーレンス光による干渉縞に比較して、干渉縞が生成する範囲が狭い。このため、観察システム1によって広い範囲を観察するためには、第1の干渉縞を観察対象物S上でスキャンする必要がある。しかし、従来の観察システムにおいて用いられているピエゾアクチュエータはストロークが短いため、従来の観察システムでは広い範囲を観察することは困難である。また、ピエゾアクチュエータはストロークの速度が遅いため、従来の観察システムでは観察に長時間を要する。これに対し、観察システム1では、ピエゾアクチュエータに比較してストロークが長く、且つ、ストロークの速度が速いステッピングモータを利用したアクチュエータ等を用いることができる。このため、観察システム1では、従来の観察システムに比較して、容易に且つ短時間で広い範囲の観察をすることができる。 As described above, the observation system 1 uses the first interference fringes by the low coherence light as the modulated illumination to irradiate the observation object S. The first interference fringes due to the low coherence light have a narrower range of interference fringes than the interference fringes due to the high coherence light. For this reason, in order to observe a wide range by the observation system 1, it is necessary to scan the first interference fringe on the observation object S. However, since the piezo actuator used in the conventional observation system has a short stroke, it is difficult to observe a wide range with the conventional observation system. Further, since the piezo actuator has a slow stroke speed, the conventional observation system requires a long time for observation. On the other hand, the observation system 1 can use an actuator using a stepping motor having a longer stroke and a higher stroke speed than a piezo actuator. For this reason, the observation system 1 can easily observe a wide range in a short time compared to the conventional observation system.
 なお、本発明は上述した実施形態に限定されるものではない。例えば、測定部12は、第2の干渉縞の光強度分布を、その位相方向に沿って1次元的に測定可能なラインセンサであってもよい。第2の干渉縞の光強度分布における包絡線のピークの変位量の測定においては、必ずしも第2の干渉縞を2次元的に測定する必要はなく、第2の干渉縞を、その位相方向に沿って1次元的に測定できればよい。従って、測定部12をラインセンサとすることが可能であり、この場合、第2の干渉縞における光強度分布の変位量に基づいて第1の干渉縞における位相のシフト量を算出する際に、演算部13における演算量を削減できる。また、測定部12は、撮像部8よりも高いフレームレートを必要とする。測定部12は、ラインセンサとされることによりフレームレートを高くし易いため、撮像部8よりも高いフレームレートを容易に実現することができる。 Note that the present invention is not limited to the embodiment described above. For example, the measurement unit 12 may be a line sensor that can measure the light intensity distribution of the second interference fringes one-dimensionally along the phase direction. In the measurement of the displacement amount of the envelope peak in the light intensity distribution of the second interference fringes, it is not always necessary to measure the second interference fringes two-dimensionally. It only needs to be able to measure one-dimensionally along. Therefore, the measurement unit 12 can be a line sensor. In this case, when calculating the phase shift amount in the first interference fringe based on the displacement amount of the light intensity distribution in the second interference fringe, The amount of calculation in the calculating part 13 can be reduced. Further, the measurement unit 12 requires a higher frame rate than the imaging unit 8. Since the measurement unit 12 is a line sensor and easily increases the frame rate, a higher frame rate than that of the imaging unit 8 can be easily realized.
 また、上記実施形態では、第1の光路長調整部5は、第2の光路4の途中に設けられて第2の光路長を伸縮させているが、第1の光路3の途中に設けられて第1の光路長を伸縮させてもよい。 Moreover, in the said embodiment, although the 1st optical path length adjustment part 5 is provided in the middle of the 2nd optical path 4, and expands / contracts the 2nd optical path length, it is provided in the middle of the 1st optical path 3. The first optical path length may be expanded and contracted.
 また、上記実施形態では、第2の光路長調整部11は、第4の光路10の途中に設けられて第4の光路長を伸縮させているが、第3の光路9の途中に設けられて第3の光路長を伸縮させてもよい。 In the above embodiment, the second optical path length adjustment unit 11 is provided in the middle of the fourth optical path 10 to expand and contract the fourth optical path length, but is provided in the middle of the third optical path 9. The third optical path length may be expanded and contracted.
 ここで、本発明の他の側面の観察システムは、所定範囲のコヒーレント長を有する光源と、第1の光路長を有し、光源から発せられる光の一部である第1の光を光源から観察対象物へ導く第1の光路と、第2の光路長を有し、光の残部である第2の光を光源から観察対象物へ導く第2の光路と、第1の光路長又は第2の光路長を伸縮させる第1の光路長調整部と、第1の光及び第2の光を干渉させて観察対象物上に第1の干渉縞を生成させる干渉縞生成部と、第1の干渉縞を呈する第1の光及び第2の光の内の観察対象物によって散乱された光の像分布を撮像する撮像部と、第3の光路長を有し、第1の光の内の観察対象物によって反射された第1の反射光を導く第3の光路と、第4の光路長を有し、第2の光の内の観察対象物によって反射された第2の反射光を導く第4の光路と、第3の光路及び第4の光路の終端に設けられ、第1の反射光及び第2の反射光の干渉によって生成される第2の干渉縞の光強度分布を測定する測定部と、撮像部及び測定部に接続された演算部と、を備え、演算部は、第2の干渉縞における光強度分布の変位量に基づいて第1の干渉縞における位相のシフト量を算出し、シフト量に応じた位相と、当該位相を有する第1の干渉縞に対応した像分布と、に基づいて観察対象物の形状分布を算出する。 Here, an observation system according to another aspect of the present invention provides a light source having a coherent length within a predetermined range and a first light having a first optical path length and a part of light emitted from the light source. A first optical path that leads to the observation object, a second optical path length, and a second optical path that guides the second light that is the remainder of the light from the light source to the observation object, and the first optical path length or the first optical path length A first optical path length adjustment unit that expands and contracts the optical path length of 2, an interference fringe generation unit that causes the first light and the second light to interfere with each other to generate a first interference fringe on the observation object, and a first An imaging unit that captures an image distribution of the light scattered by the observation object in the first light and the second light that exhibit the interference fringes, and a third optical path length, A third optical path for guiding the first reflected light reflected by the observation object, and a fourth optical path length, which are reflected by the observation object in the second light. A fourth optical path that guides the second reflected light, and a third optical path that is provided at the end of the third optical path and the fourth optical path, and that is generated by interference between the first reflected light and the second reflected light. A measurement unit that measures the light intensity distribution of the interference fringes, and a calculation unit connected to the imaging unit and the measurement unit, wherein the calculation unit is based on the amount of displacement of the light intensity distribution in the second interference fringes. The phase shift amount in the interference fringes is calculated, and the shape distribution of the observation object is calculated based on the phase corresponding to the shift amount and the image distribution corresponding to the first interference fringe having the phase.
 このような観察システムによれば、光源から観察対象物へ第1の光路によって導かれた第1の光、及び、光源から観察対象物へ第2の光路によって導かれた第2の光が干渉縞生成部によって干渉し第1の干渉縞が生成される。そして、第1の干渉縞を呈する第1の光及び第2の光の内の観察対象物によって散乱された光の像分布が撮像部によって撮像される。一方、第1の光の内の観察対象物によって反射され第3の光路によって導かれた第1の反射光、及び、第2の光の内の観察対象物によって反射され第4の光路によって導かれた第2の反射光が干渉し第2の干渉縞が生成される。そして、第2の干渉縞の光強度分布が測定部によって測定される。ここで、第1の光路長調整部により第1の光路長又は第2の光路長が伸縮されると、第1の干渉縞の位相がシフトすると共に第2の干渉縞の光強度分布が変位する。光源は所定範囲のコヒーレント長を有するため、第2の干渉縞の光強度分布は、その包絡線に一つのピークを有している。第2の干渉縞の光強度分布の変位量は、包絡線のピークの変位量を測定することによって取得される。従って、第1の干渉縞の位相が1波長以上シフトした場合であっても、第1の干渉縞における波長毎の不確定性の影響を受けず、第2の干渉縞の光強度分布における包絡線のピークの変位量に基づいて第1の干渉縞の位相のシフト量を検出することができる。また、例えば振動や温度変化といった外乱が生じた場合であっても、第1の干渉縞の位相のシフト量を精度良く検出することができる。これにより、演算部は、観察対象物の形状分布を正しく算出できる。更に、この観察システムは、第1の干渉縞の位相のシフト量を精度良く検出するためにピエゾアクチュエータ等の高精度な位置決め機構を必要とせず、一例としてステッピングモータを利用したアクチュエータ等の比較的精度の低い位置決め機構を用いることが可能であるため、安価に提供される。以上により、安価なシステムによって、外乱が生じた場合であっても正しい高分解能画像を安定して得ることが可能となる。 According to such an observation system, the first light guided from the light source to the observation target by the first optical path and the second light guided from the light source to the observation target by the second optical path interfere with each other. A first interference fringe is generated by interference by the fringe generation unit. Then, the image distribution of the light scattered by the observation object in the first light and the second light presenting the first interference fringes is imaged by the imaging unit. On the other hand, the first reflected light reflected by the observation target in the first light and guided by the third optical path, and the first reflected light reflected by the observation target in the second light and guided by the fourth optical path. The second reflected light thus interfered to generate a second interference fringe. Then, the light intensity distribution of the second interference fringe is measured by the measurement unit. Here, when the first optical path length or the second optical path length is expanded or contracted by the first optical path length adjusting unit, the phase of the first interference fringe is shifted and the light intensity distribution of the second interference fringe is displaced. To do. Since the light source has a coherent length in a predetermined range, the light intensity distribution of the second interference fringe has one peak in its envelope. The amount of displacement of the light intensity distribution of the second interference fringe is obtained by measuring the amount of displacement of the peak of the envelope. Therefore, even when the phase of the first interference fringe is shifted by one wavelength or more, the envelope in the light intensity distribution of the second interference fringe is not affected by the uncertainty of each wavelength in the first interference fringe. The phase shift amount of the first interference fringes can be detected based on the displacement amount of the line peak. Further, even when a disturbance such as vibration or temperature change occurs, the phase shift amount of the first interference fringes can be detected with high accuracy. Thereby, the calculating part can calculate correctly the shape distribution of an observation object. Furthermore, this observation system does not require a high-precision positioning mechanism such as a piezo actuator in order to accurately detect the phase shift amount of the first interference fringes, and as an example, a relatively high-speed actuator such as an actuator using a stepping motor. Since a positioning mechanism with low accuracy can be used, it is provided at low cost. As described above, an inexpensive system can stably obtain a correct high-resolution image even when a disturbance occurs.
 上記実施形態において、演算部は、互いに異なる少なくとも3つの位相と、これらの位相をそれぞれ有する少なくとも3つの第1の干渉縞に対応した少なくとも3つの像分布と、に基づいて観察対象物の形状分布を算出してもよい。これにより、少なくとも3つの位相及び像分布の情報によって所定の連立方程式を解くことが可能となる。その結果、周波数空間において、従来の光学顕微鏡で解像できる情報に加えて、観察対象物の帯域を第1の干渉縞の空間周波数分だけ高周波側に平行移動させた情報を取得できる。従って、演算部は、観察対象物の形状分布を正しく算出可能となる。 In the above-described embodiment, the calculation unit calculates the shape distribution of the observation object based on at least three phases different from each other and at least three image distributions corresponding to at least three first interference fringes each having these phases. May be calculated. As a result, it is possible to solve a predetermined simultaneous equation based on information on at least three phases and image distributions. As a result, in addition to information that can be resolved with a conventional optical microscope in the frequency space, information obtained by translating the band of the observation object to the high frequency side by the spatial frequency of the first interference fringes can be acquired. Therefore, the calculation unit can correctly calculate the shape distribution of the observation object.
 また、測定部は、互いに異なる少なくとも3つの位相に対応するシフト量が演算部によって算出されるまで、光強度分布の測定を継続してもよい。この場合、演算部によって第1の干渉縞のシフト量が複数回算出された場合において、各シフト量に応じた複数の位相が互いに同じ位相であったときでも、所定の連立方程式を解くために必要となる少なくとも3つの位相及び像分布の情報が不足することを防止することができる。従って、演算部は、観察対象物の形状分布を正しく算出可能となる。 Further, the measurement unit may continue measuring the light intensity distribution until shift amounts corresponding to at least three phases different from each other are calculated by the calculation unit. In this case, when the shift amount of the first interference fringe is calculated a plurality of times by the calculation unit, even when a plurality of phases corresponding to each shift amount are the same phase, in order to solve a predetermined simultaneous equation It is possible to prevent a shortage of necessary information on at least three phases and image distributions. Therefore, the calculation unit can correctly calculate the shape distribution of the observation object.
 また、干渉縞生成部は、第1の光路の終端に設けられ、第1の光を観察対象物上へ投光する第1の投光部と、第3の光路の始端に設けられ、観察対象物を介して第1の投光部と対向する位置に配置され、第1の反射光を受光する第1の受光部と、第2の光路の終端に設けられ、第2の光を観察対象物上へ投光する第2の投光部と、第4の光路の始端に設けられ、観察対象物を介して第2の投光部と対向する位置に配置され、第2の反射光を受光する第2の受光部と、を有してもよい。この場合、第1の光及び第2の光を観察対象物上の適切な位置に確実に照射できると共に、第1の反射光及び第2の反射光をそれぞれ第3の光路及び第4の光路へ確実に出力することができる。 The interference fringe generation unit is provided at the end of the first optical path, and is provided at the first light projecting unit for projecting the first light onto the observation target and the start end of the third optical path for observation. The first light receiving unit that is disposed at a position facing the first light projecting unit via the object, receives the first reflected light, and is provided at the end of the second optical path, and observes the second light. A second light projecting unit that projects light onto the object and a second reflected light that is provided at the start of the fourth optical path and that is disposed at a position facing the second light projecting unit through the observation object. And a second light receiving portion that receives light. In this case, the first light and the second light can be reliably radiated to appropriate positions on the observation object, and the first reflected light and the second reflected light are respectively applied to the third optical path and the fourth optical path. Can be output reliably.
 また、第1の投光部から第1の受光部へ第1の光が進行する第1の方向と、第2の投光部から第2の受光部へ第2の光が進行する第2の方向と、が観察対象物に対する平面視において略直交してもよい。この場合、第1の投光部、第1の受光部、第2の投光部及び第2の受光部を互いに干渉しない位置に配置可能であるため、干渉縞生成部を簡素な構成とすることができる。 In addition, a first direction in which the first light travels from the first light projecting unit to the first light receiving unit, and a second direction in which the second light travels from the second light projecting unit to the second light receiving unit. These directions may be substantially orthogonal in a plan view with respect to the observation object. In this case, since the first light projecting unit, the first light receiving unit, the second light projecting unit, and the second light receiving unit can be arranged at positions that do not interfere with each other, the interference fringe generating unit has a simple configuration. be able to.
 また、第3の光路長又は第4の光路長を伸縮させる第2の光路長調整部を更に備えてもよい。この場合、観察を行う準備段階において、第2の干渉縞における光強度分布の包絡線のピークを測定部の測定レンジの中央に近づける操作が容易となるため、操作性が向上する。 Further, a second optical path length adjustment unit that expands or contracts the third optical path length or the fourth optical path length may be further provided. In this case, in the preparatory stage for observation, the operation of bringing the peak of the envelope of the light intensity distribution in the second interference fringe closer to the center of the measurement range of the measurement unit is facilitated, and the operability is improved.
 また、所定範囲のコヒーレント長は、レーザ光源のコヒーレント長より短くてもよい。この場合、第2の干渉縞の光強度分布における包絡線のピークの幅が十分に狭いため、当該ピークの変位量を測定することが容易である。このため、第2の干渉縞の光強度分布の変位量を容易に取得できることから、第1の干渉縞の位相のシフト量を精度良く検出することが容易となる。 Further, the coherent length in the predetermined range may be shorter than the coherent length of the laser light source. In this case, since the peak width of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
 また、所定範囲のコヒーレント長は、1μm以上100μm以下であってもよい。この場合、第2の干渉縞の光強度分布における包絡線のピークの幅が十分に狭いため、当該ピークの変位量を測定することが容易である。このため、第2の干渉縞の光強度分布の変位量を容易に取得できることから、第1の干渉縞の位相のシフト量を精度良く検出することが容易となる。 Further, the coherent length in a predetermined range may be 1 μm or more and 100 μm or less. In this case, since the peak width of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
 また、前記光源は、SLD光源又はLED光源であってもよい。この場合、第2の干渉縞の光強度分布における包絡線のピークの幅が十分に狭いため、当該ピークの変位量を測定することが容易である。このため、第2の干渉縞の光強度分布の変位量を容易に取得できることから、第1の干渉縞の位相のシフト量を精度良く検出することが容易となる。 The light source may be an SLD light source or an LED light source. In this case, since the peak width of the envelope in the light intensity distribution of the second interference fringes is sufficiently narrow, it is easy to measure the displacement amount of the peak. For this reason, since the displacement amount of the light intensity distribution of the second interference fringe can be easily obtained, it is easy to detect the shift amount of the phase of the first interference fringe with high accuracy.
 また、測定部は、ラインセンサであってもよい。第2の干渉縞の光強度分布における包絡線のピークの変位量の測定においては、必ずしも第2の干渉縞を2次元的に測定する必要はなく、第2の干渉縞を、その位相方向に沿って1次元的に測定できればよい。すなわち、測定部としてラインセンサを用いることが可能である。この場合、第2の干渉縞における光強度分布の変位量に基づいて第1の干渉縞における位相のシフト量を算出する際に、演算部における演算量を削減できる。また、測定部は、撮像部よりも高いフレームレートを必要とする。測定部は、ラインセンサとされることによりフレームレートを高くし易いため、撮像部よりも高いフレームレートを容易に実現することができる。 Further, the measurement unit may be a line sensor. In the measurement of the displacement amount of the envelope peak in the light intensity distribution of the second interference fringes, it is not always necessary to measure the second interference fringes two-dimensionally. It only needs to be able to measure one-dimensionally along. That is, a line sensor can be used as the measurement unit. In this case, when calculating the amount of phase shift in the first interference fringe based on the amount of displacement of the light intensity distribution in the second interference fringe, the amount of computation in the computing unit can be reduced. Further, the measurement unit requires a higher frame rate than the imaging unit. Since the measurement unit is a line sensor, it is easy to increase the frame rate. Therefore, a higher frame rate than that of the imaging unit can be easily realized.
 また、観察対象物から撮像部へ向かう軸線回りに回転可能に観察対象物を保持する回転台を更に備えてもよい。この観察システムでは、第1の干渉縞の位相をシフトさせる方向について、従来の光学顕微鏡に比較して観察対象物の形状分布をより高分解能で算出することが可能である。そこで、観察対象物と第1の干渉縞とを軸線回りに相対回転させた複数の相対角度の状態において観察を行うことにより、軸線に垂直な各方向について、観察対象物の形状分布の正しい高分解能画像を安定して得ることが可能となる。ここで、上記構成とした場合、観察対象物と第1の干渉縞とを軸線回りに相対回転させる操作が容易となるため、操作性が向上する。 Further, a turntable for holding the observation object so as to be rotatable around an axis line from the observation object to the imaging unit may be further provided. In this observation system, it is possible to calculate the shape distribution of the observation object with higher resolution in the direction in which the phase of the first interference fringe is shifted compared to a conventional optical microscope. Therefore, by performing observation in a plurality of relative angle states in which the observation object and the first interference fringes are relatively rotated around the axis, the shape distribution of the observation object can be accurately increased in each direction perpendicular to the axis. A resolution image can be obtained stably. Here, in the case of the above configuration, an operation for relatively rotating the observation object and the first interference fringe around the axis is facilitated, so that the operability is improved.
 本発明の一側面は、観察システムを使用用途とし、安価なシステムによって、外乱が生じた場合であっても正しい高分解能画像を安定して得ることができるものである。 One aspect of the present invention is that an observation system is used, and a low-cost system can stably obtain a correct high-resolution image even when a disturbance occurs.
 1…観察システム、2…光源、3…第1の光路、4…第2の光路、5…第1の光路長調整部、6…干渉縞生成部、7…回転台、8…撮像部、9…第3の光路、10…第4の光路、11…第2の光路長調整部、12…測定部、13…演算部、30…第1の投光部、31…第1の受光部、32…第2の投光部、33…第2の受光部、A…軸線、S…観察対象物。 DESCRIPTION OF SYMBOLS 1 ... Observation system, 2 ... Light source, 3 ... 1st optical path, 4 ... 2nd optical path, 5 ... 1st optical path length adjustment part, 6 ... Interference fringe production | generation part, 7 ... Turntable, 8 ... Imaging part, DESCRIPTION OF SYMBOLS 9 ... 3rd optical path, 10 ... 4th optical path, 11 ... 2nd optical path length adjustment part, 12 ... Measurement part, 13 ... Calculation part, 30 ... 1st light projection part, 31 ... 1st light-receiving part 32 ... 2nd light projection part, 33 ... 2nd light-receiving part, A ... axis line, S ... observation object.

Claims (12)

  1.  所定範囲のコヒーレント長を有する光源と、
     第1の光路長を有し、前記光源から発せられる光の一部である第1の光を前記光源から観察対象物へ導く第1の光路と、
     第2の光路長を有し、前記光の残部である第2の光を前記光源から前記観察対象物へ導く第2の光路と、
     前記第1の光及び前記第2の光を干渉させて前記観察対象物上に第1の干渉縞を生成させる干渉縞生成部と、
     前記第1の光の内の前記観察対象物によって反射された第1の反射光と、前記第2の光の内の前記観察対象物によって反射された第2の反射光との干渉によって生成される第2の干渉縞の光強度分布を測定する測定部と、
     前記測定部に接続された演算部と、
    を備え、
     前記演算部は、
     前記第2の干渉縞における前記光強度分布の変位量に基づいて前記第1の干渉縞における位相のシフト量を算出する、
    観察システム。
    A light source having a coherent length in a predetermined range;
    A first optical path having a first optical path length and guiding the first light, which is a part of the light emitted from the light source, from the light source to the observation object;
    A second optical path having a second optical path length and guiding the second light, which is the remainder of the light, from the light source to the observation object;
    An interference fringe generator that causes the first light and the second light to interfere with each other to generate a first interference fringe on the observation object;
    It is generated by the interference between the first reflected light reflected by the observation object in the first light and the second reflected light reflected by the observation object in the second light. A measurement unit for measuring the light intensity distribution of the second interference fringes,
    A calculation unit connected to the measurement unit;
    With
    The computing unit is
    Calculating a phase shift amount in the first interference fringe based on a displacement amount of the light intensity distribution in the second interference fringe;
    Observation system.
  2.  前記第1の光路長又は前記第2の光路長を伸縮させる第1の光路長調整部と、
     前記第1の干渉縞を呈する前記第1の光及び前記第2の光の内の前記観察対象物によって散乱された光の像分布を撮像する撮像部と、
     第3の光路長を有し、前記第1の反射光を導く第3の光路と、
     第4の光路長を有し、前記第2の反射光を導く第4の光路と、をさらに備え、
     前記測定部は、前記第3の光路及び前記第4の光路の終端に設けられ、
     前記演算部は、前記撮像部にも接続され、前記シフト量に応じた前記位相と、当該位相を有する前記第1の干渉縞に対応した前記像分布と、に基づいて前記観察対象物の形状分布を算出する、
    請求項1記載の観察システム。
    A first optical path length adjustment unit that expands or contracts the first optical path length or the second optical path length;
    An imaging unit that captures an image distribution of the light scattered by the observation object in the first light and the second light presenting the first interference fringes;
    A third optical path having a third optical path length and guiding the first reflected light;
    A fourth optical path having a fourth optical path length and guiding the second reflected light, and
    The measurement unit is provided at the end of the third optical path and the fourth optical path,
    The computing unit is also connected to the imaging unit, and the shape of the observation object is based on the phase according to the shift amount and the image distribution corresponding to the first interference fringe having the phase. Calculate the distribution,
    The observation system according to claim 1.
  3.  前記演算部は、
     互いに異なる少なくとも3つの前記位相と、これらの前記位相をそれぞれ有する少なくとも3つの前記第1の干渉縞に対応した少なくとも3つの前記像分布と、に基づいて前記観察対象物の形状分布を算出する、
    請求項2記載の観察システム。
    The computing unit is
    Calculating the shape distribution of the observation object based on at least three different phases from each other and at least three image distributions corresponding to the at least three first interference fringes each having the phases.
    The observation system according to claim 2.
  4.  前記測定部は、互いに異なる少なくとも3つの前記位相に対応する前記シフト量が前記演算部によって算出されるまで、前記光強度分布の測定を継続する、請求項3記載の観察システム。 The observation system according to claim 3, wherein the measurement unit continues the measurement of the light intensity distribution until the shift amounts corresponding to at least three different phases are calculated by the calculation unit.
  5.  前記干渉縞生成部は、
     前記第1の光路の終端に設けられ、前記第1の光を前記観察対象物上へ投光する第1の投光部と、
     前記第3の光路の始端に設けられ、前記観察対象物を介して前記第1の投光部と対向する位置に配置され、前記第1の反射光を受光する第1の受光部と、
     前記第2の光路の終端に設けられ、前記第2の光を前記観察対象物上へ投光する第2の投光部と、
     前記第4の光路の始端に設けられ、前記観察対象物を介して前記第2の投光部と対向する位置に配置され、前記第2の反射光を受光する第2の受光部と、
    を有する、
    請求項2~4の何れか一項記載の観察システム。
    The interference fringe generator is
    A first light projecting unit provided at an end of the first optical path and projecting the first light onto the object to be observed;
    A first light receiving unit that is provided at a start end of the third optical path, is disposed at a position facing the first light projecting unit via the observation object, and receives the first reflected light;
    A second light projecting unit provided at an end of the second optical path and projecting the second light onto the object to be observed;
    A second light receiving unit that is provided at a start end of the fourth optical path, is disposed at a position facing the second light projecting unit via the observation object, and receives the second reflected light;
    Having
    The observation system according to any one of claims 2 to 4.
  6.  前記第1の投光部から前記第1の受光部へ前記第1の光が進行する第1の方向と、前記第2の投光部から前記第2の受光部へ前記第2の光が進行する第2の方向と、が前記観察対象物に対する平面視において略直交する、
    請求項5記載の観察システム。
    The first light travels from the first light projecting unit to the first light receiving unit, and the second light travels from the second light projecting unit to the second light receiving unit. The traveling second direction is substantially perpendicular to the observation object in plan view,
    The observation system according to claim 5.
  7.  前記第3の光路長又は前記第4の光路長を伸縮させる第2の光路長調整部を更に備える、
    請求項2~6の何れか一項記載の観察システム。
    A second optical path length adjustment unit that expands or contracts the third optical path length or the fourth optical path length;
    The observation system according to any one of claims 2 to 6.
  8.  前記所定範囲のコヒーレント長は、レーザ光源のコヒーレント長より短い、
    請求項1~7の何れか一項記載の観察システム。
    The coherent length of the predetermined range is shorter than the coherent length of the laser light source,
    The observation system according to any one of claims 1 to 7.
  9.  前記所定範囲のコヒーレント長は、1μm以上100μm以下である、
    請求項1~8の何れか一項記載の観察システム。
    The coherent length of the predetermined range is 1 μm or more and 100 μm or less,
    The observation system according to any one of claims 1 to 8.
  10.  前記光源は、SLD光源又はLED光源である、
    請求項1~9の何れか一項記載の観察システム。
    The light source is an SLD light source or an LED light source.
    The observation system according to any one of claims 1 to 9.
  11.  前記測定部は、ラインセンサである、
    請求項1~10の何れか一項記載の観察システム。
    The measurement unit is a line sensor.
    The observation system according to any one of claims 1 to 10.
  12.  前記観察対象物から前記撮像部へ向かう軸線回りに回転可能に前記観察対象物を保持する回転台を更に備える、請求項2~7の何れか一項記載の観察システム。 The observation system according to any one of claims 2 to 7, further comprising a turntable that holds the observation object so as to be rotatable about an axis from the observation object toward the imaging unit.
PCT/JP2016/074265 2015-08-19 2016-08-19 Observation system WO2017030194A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017535578A JP6714917B2 (en) 2015-08-19 2016-08-19 Observation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015161758 2015-08-19
JP2015-161758 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017030194A1 true WO2017030194A1 (en) 2017-02-23

Family

ID=58051145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074265 WO2017030194A1 (en) 2015-08-19 2016-08-19 Observation system

Country Status (2)

Country Link
JP (1) JP6714917B2 (en)
WO (1) WO2017030194A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086428A (en) * 2005-09-22 2007-04-05 Fujinon Corp Confocal microscope apparatus
JP2008111726A (en) * 2006-10-30 2008-05-15 Olympus Corp Three-dimensional phase measurement method, and differential interference microscope used for same
JP2014137501A (en) * 2013-01-17 2014-07-28 Nikon Corp Structured illumination device and structured illumination microscope device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086428A (en) * 2005-09-22 2007-04-05 Fujinon Corp Confocal microscope apparatus
JP2008111726A (en) * 2006-10-30 2008-05-15 Olympus Corp Three-dimensional phase measurement method, and differential interference microscope used for same
JP2014137501A (en) * 2013-01-17 2014-07-28 Nikon Corp Structured illumination device and structured illumination microscope device

Also Published As

Publication number Publication date
JP6714917B2 (en) 2020-07-01
JPWO2017030194A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP7233745B2 (en) lidar sensing device
JP5149486B2 (en) Interferometer, shape measurement method
US9297991B2 (en) Lighting method and microscopic observation device
CN104797903A (en) Optical measuring method and measuring device having a measuring head for capturing a surface topography by calibrating the orientation of the measuring head
JP5954979B2 (en) Measuring device with multi-wavelength interferometer
JP6508764B2 (en) Non-contact surface shape measuring method and apparatus using white light interferometer optical head
CN105318845A (en) Method for measuring high accuracy height map of test surface
JP7082137B2 (en) Radius of curvature measurement by spectral control interferometry
JP4987359B2 (en) Surface shape measuring device
US9631924B2 (en) Surface profile measurement method and device used therein
CN110869696B (en) Vibration-resistant white light interference microscope and vibration influence removing method thereof
CN114502912B (en) Hybrid 3D inspection system
JP2003519786A (en) Apparatus and method for surface contour measurement
CN112729135B (en) Area array frequency sweep distance measuring/thickness measuring device and method with active optical anti-shake function
JP5281837B2 (en) Method and apparatus for measuring radius of curvature
JPWO2020017017A1 (en) Optical measuring device and sample observation method
CN110487219A (en) A kind of detection system and its detection method of movement mechanism straightness
JP2012002619A (en) Laser interference bump measuring instrument
JP4880519B2 (en) Interference measurement device
WO2017030194A1 (en) Observation system
CN112731345B (en) Vibration-resistant type area array sweep frequency distance measurement/thickness measurement device and method with active optical anti-shake function
JP5675382B2 (en) Shearing interference measuring device
JP2009069075A (en) Oblique incidence interferometer and method for calibrating the same
JP2009145068A (en) Surface profile measuring method and interferometer
WO2024202243A1 (en) Interference observation device and optical adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837183

Country of ref document: EP

Kind code of ref document: A1