WO2017029944A1 - Radiation resistant lens optical system and radiation environment monitoring camera equipped with same - Google Patents

Radiation resistant lens optical system and radiation environment monitoring camera equipped with same Download PDF

Info

Publication number
WO2017029944A1
WO2017029944A1 PCT/JP2016/071530 JP2016071530W WO2017029944A1 WO 2017029944 A1 WO2017029944 A1 WO 2017029944A1 JP 2016071530 W JP2016071530 W JP 2016071530W WO 2017029944 A1 WO2017029944 A1 WO 2017029944A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
radiation
optical system
glass
lens optical
Prior art date
Application number
PCT/JP2016/071530
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 堀本
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2017029944A1 publication Critical patent/WO2017029944A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/08Structural combination of reactor core or moderator structure with viewing means, e.g. with television camera, periscope, window
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/06Ceramics; Glasses; Refractories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a radiation-resistant lens optical system and a radiation environment monitoring camera including the same.
  • a monitoring camera has been used for monitoring and observing an object (for example, “Patent Document 1” and “Patent Document 2”).
  • a lens constituting a lens optical system is generally made of lead-free glass.
  • a CCD (Charge Coupled Devices) type image sensor, a CID (Charge Injection Device) type image sensor, and a CMOS (Complementary Metal Oxide Semiconductor) type image sensor can be cited. .
  • Patent Document 1 discloses a camera device for monitoring in a radiation environment using a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor that can suppress radiation deterioration of the camera.
  • a lens serving as an objective lens for an object to be monitored a camera that captures an image of the object to be monitored through this lens, and a lens that connects an image through the lens to the image sensor of this camera.
  • a long relay lens that optically connects the camera and the image sensor of the camera.
  • Patent Document 2 discloses a surveillance camera including a lens unit having a lens for condensing passing light on an image sensor and a lens holder for holding the lens.
  • a general-purpose monitoring camera as disclosed in “Patent Document 2” is accommodated in a housing made of a radiation shielding member. It becomes the composition.
  • the image sensor may be affected by radiation such as gamma rays and neutrons that have passed through the lens, causing motion picture noise or causing the image sensor itself to fail (deteriorate).
  • a radiation shielding glass is installed as a cover glass on the front surface of the camera.
  • the radiation shielding glass installed as a cover glass has a larger thickness of the glass in order to shield the radiation as the radiation dose rate increases. There is a problem that the viewing angle becomes narrow due to the depth.
  • the present invention has been made in view of the above-described current problems, and is intended to reduce the size of the camera, secure a viewing angle, and suppress the influence of radiation on the image sensor. It is another object of the present invention to provide a radiation environment monitoring camera including the same.
  • the radiation-resistant lens optical system according to the present invention is a radiation-resistant lens optical system in which a plurality of lenses are disposed along the optical axis direction on the object side of the imaging device, and at least of the plurality of lenses.
  • One is made of lead-containing glass.
  • the radiation resistant lens optical system having such a configuration, radiation shielding performance can be improved by forming at least one of the plurality of lenses from lead-containing glass. Therefore, by using lead-containing glass for the lens, radiation can be shielded, moving image noise due to the influence of radiation can be reduced, and deterioration and failure of the image sensor can be suppressed. Therefore, by using lead-containing glass as part of the lens in the conventional lens optical system of the camera, the radiation shielding performance of the camera is improved, so a cover glass made of transparent radiation shielding glass is placed on the front of the camera. Even when the cover glass is used, the thickness of the cover glass can be made thinner than before, so that the camera can be downsized and the viewing angle can be secured, thereby suppressing the influence of radiation on the image sensor.
  • the lens located closest to the object among the plurality of lenses is made of glass containing cerium oxide.
  • the glass when lead-containing glass is used in a radiation environment, the glass may be colored (browning) when irradiated with radiation such as ⁇ rays or X-rays.
  • the glass is colored even when the glass is irradiated with radiation such as ⁇ -rays or X-rays, by containing cerium oxide, which is a component that suppresses the radiation-induced coloring while shielding the radiation. The amount of transmitted radiation can be reduced while suppressing this. Therefore, by using glass containing cerium oxide as the lens located closest to the object side in the lens optical system, even if a lens made of lead-containing glass is used as the lens on the imaging element side, ⁇ rays, X-rays, etc. Coloring due to radiation can be suppressed.
  • At least one of the plurality of lenses has a non-planar shape in which the width dimension in the optical axis direction increases as the distance from the optical axis increases.
  • a thin glass portion is formed in the outer peripheral portion of the lens, and radiation is likely to pass therethrough, which may cause the imaging device to be affected by the radiation.
  • the radiation-resistant lens optical system according to the present invention by making the lens a non-planar shape in which the width dimension in the optical axis direction is increased, the thickness of the glass can be increased at the outer periphery of the lens, thereby shielding radiation. It becomes easy. Therefore, the influence of radiation on the image sensor can be suppressed.
  • At least one of the plurality of lenses is made of a resin.
  • the shielding effect of a neutron beam can be acquired. Therefore, for example, even when the imaging element or the like contains a substance that reacts with a neutron beam, the reaction with the neutron beam can be suppressed.
  • At least one of the plurality of lenses is a cemented lens.
  • the thickness of the lens increases, and the radiation shielding effect can be further improved.
  • a radiation environment monitoring camera includes: an imaging apparatus including the lens optical system; an imaging element that converts an optical image formed by the lens optical system into an electrical signal; and a radiation shielding member. It is comprised, The casing which accommodates the said imaging device is provided, It is characterized by the above-mentioned.
  • the influence of radiation on the image sensor can be suppressed.
  • a cover glass made of glass having a transparent radiation shielding performance is provided on the object side of the lens optical system.
  • the amount of radiation entering the camera can be reduced by the cover glass made of glass having radiation shielding performance. Therefore, the surveillance camera can be protected from radiation even in a high radiation environment.
  • the cover glass is preferably made of at least one of lead-containing glass and glass containing cerium oxide.
  • the radiation shielding performance can be improved, and the amount of radiation entering the camera can be further reduced. Therefore, the surveillance camera can be protected from radiation even in a place exposed to a higher radiation dose.
  • the casing has a waterproof structure.
  • imaging in water becomes possible by making a casing into a waterproof structure. Therefore, for example, it is possible to monitor a target object by disposing a monitoring camera in high radiation dose water such as a fuel pool in a nuclear power plant.
  • the glass which has a radiation shielding ability as used in the field of this invention means that it is a glass whose lead equivalent is 0.03 mmPb / mm or more with respect to the X-ray with a tube voltage of 150 kV.
  • the following effects can be obtained. That is, according to the present invention, it is possible to reduce the size of the camera, secure a viewing angle, and suppress the influence of radiation on the image sensor.
  • the lens optical system according to the present embodiment will be described with reference to the drawings.
  • the broken arrow direction (forward in the optical axis direction) in FIGS. 1 to 4 is defined as the object side
  • the opposite direction is defined as the image side.
  • the object side in the camera means the subject side.
  • the image side in the camera means the image sensor side.
  • a plurality of lenses are arranged along the optical axis direction on the object side of the image sensor as shown in FIGS. It has been done.
  • at least one of the plurality of lenses is made of lead-containing glass.
  • the lens optical system As described above, it is possible to shield radiation with lead-containing glass even in a radiation environment. Therefore, moving image noise due to the influence of radiation can be reduced, and deterioration and failure of the image sensor can be suppressed. As a result, better resolution can be ensured and the life of the image sensor can be extended than a lens optical system composed of lead-free lenses.
  • lead-containing glass generally has a higher refractive index than lead-free glass lenses and the like, the length dimension of the lens optical system in the optical axis direction can be made shorter. As a result, the optical depth can be reduced and the viewing angle can be increased.
  • the lead-containing glass constituting the radiation-resistant lens optical system of the present invention is, for example, PbO 15 to 45%, SiO 2 40 to 60%, B 2 O 3 0 to 10%, Na 2 O in mass percentage.
  • a glass (glass B) having a composition of 30 to 10%, Na 2 O 0 to 10%, K 2 O 0 to 10% can be used.
  • each glass has various components such as TiO 2 up to 5% to prevent coloring by ultraviolet rays, and SrO, BaO, ZnO, ZrO 2 to improve radiation shielding performance.
  • Etc. may be added up to a total amount of 20%
  • As 2 O 3 , Sb 2 O 3 , Cl, etc. as a clarifier may be added up to a total amount of 3%.
  • the lens located closest to the object side is a glass containing cerium oxide which is a component that blocks radiation and suppresses coloring due to radiation.
  • a glass containing cerium oxide which is a component that blocks radiation and suppresses coloring due to radiation.
  • it is configured.
  • the glass containing cerium oxide is irradiated with radiation such as ⁇ -rays or X-rays, the radiation dose to be transmitted can be reduced while suppressing the coloring of the glass.
  • the glass containing cerium oxide constituting the lens located closest to the object side substantially does not contain PbO, and has a mass percentage of SiO 2 40 ⁇ 70%, CeO 2 0.1-3%, Al 2 O 3 0-4%, BaO 7-27%, ZnO 0-20%, ZrO 2 0-3%, Na 2 O 0-12%, K 2 Glass having a composition of 0 to 12% (glass C) can be used.
  • various components such as TiO 2 up to 5% to prevent coloring by ultraviolet rays, SrO up to 10% to improve radiation shielding performance, As 2 O 3 as a clarifier. , Sb 2 O 3 , Cl, etc. may be added up to 3% in total.
  • the glass A, B, and C described above are prepared by preparing glass raw materials so as to have the above composition, melting at a predetermined temperature, and then molding the glass into a predetermined shape by a mold press method or the like. Can be made into a lens.
  • the glasses A, B, and C can be appropriately selected and used in accordance with the coloring suppression function and radiation shielding function of the glass optical system described later.
  • At least one of a plurality of lenses may be a plastic lens made of resin.
  • a neutron shielding effect can be obtained with a resin containing light elements such as hydrogen, oxygen, and carbon.
  • a lens optical system including a plastic lens made of resin is configured, for example, even when a substance that reacts with a neutron beam is included in an imaging element or the like, the reaction with the neutron beam can be suppressed. it can.
  • the lens optical system of this embodiment has a non-planar shape in which the width dimension in the optical axis direction increases as at least one of the plurality of lenses moves away from the optical axis.
  • a concave lens can be used as such a non-planar lens.
  • the thickness of the lens can be increased at the outer peripheral portion of the lens, and radiation can be easily shielded. Therefore, the influence of radiation on the image sensor can be suppressed.
  • the lens optical system according to the present embodiment only needs to have two or more lenses, and the number of lenses can be appropriately selected depending on the radiation dose.
  • FIG. 1 shows a configuration of a lens optical system 10 according to the first embodiment of the present invention.
  • the lens optical system 10 is disposed on the object side of the image sensor 7.
  • the lens optical system 10 is an optical system in which four lenses are arranged in order from the object side to the image side of the image sensor 7.
  • the lens optical system 10 includes three positive lenses 1, 3, and 4 (a lens whose lens central portion is thicker than a lens peripheral portion) and one negative lens 2 (the lens peripheral portion has a lens central portion having a lens center thickness). The lens is larger than the thickness of the part.
  • the lens optical system 10 is a four-group lens optical system disposed in order from the object side to the image side, and includes a first lens 1, a second lens 2, a third lens 3, and a fourth lens 4. have.
  • the first lens 1 is a convex lens formed in a meniscus shape that is convex on the object side (front).
  • the second lens 2 is a biconcave lens formed in a biconcave shape.
  • the third lens 3 is a convex lens formed in a meniscus shape convex toward the object side.
  • the fourth lens 4 is a convex lens formed in a meniscus shape that is convex on the object side.
  • the image sensor 7 is, for example, a CCD image sensor, a CID image sensor, or a CMOS image sensor.
  • the imaging element 7 has an imaging surface 6 on the front surface and a cover glass 5 in front of the imaging surface 6.
  • FIG. 2 shows the configuration of the lens optical system 30 according to the second embodiment of the present invention.
  • the lens optical system 30 is disposed on the object side of the image sensor 7.
  • the lens optical system 30 is an optical system in which ten lenses are arranged in order from the object side to the image side of the image sensor 7.
  • the lens optical system 30 includes six positive lenses 12, 13, 14, 17, 18, and 20, and four negative lenses 11, 15, 16, and 19.
  • a part of the lens optical system 30 includes a cemented lens 31.
  • the first lens 11 is a concave lens formed in a meniscus shape that is convex on the object side (front).
  • the second lens 12 is a convex lens formed in a meniscus shape convex toward the object side.
  • the third lens 13 is a biconvex lens formed in a biconvex shape.
  • the fourth lens 14 is a concave lens formed in a meniscus shape convex toward the object side.
  • the fifth lens is a concave lens convex on the object side.
  • the sixth lens 16 is a biconcave lens formed in a biconcave shape.
  • the seventh lens 17 is a biconvex lens formed in a biconvex shape.
  • the eighth lens 18 is a biconvex lens formed in a biconvex shape.
  • the ninth lens 19 is a concave lens formed in a meniscus shape convex toward the object side.
  • the tenth lens 20 is a plano-convex lens in which the object side is convex and the image side is flat.
  • the sixth lens 16 and the seventh lens 17 form a cemented lens 31 by bonding the image-side concave surface of the sixth lens 16 and the object-side convex surface of the seventh lens 17 facing the image-side concave surface with a resin adhesive. ing.
  • the cemented lens 31 can suppress chromatic aberration.
  • At least one of the plurality of lenses is constituted by the cemented lens 31.
  • the cemented lens 31 is a combination of the sixth lens 16 that is a concave lens and the seventh lens 17 that is a convex lens, the total thickness of the lens can be increased, and the radiation shielding effect can be improved.
  • cemented lens 31 is not an essential component, and may be used when high optical performance is desired by correcting chromatic aberration.
  • the resin adhesive used when the above-described plastic lens or cemented lens is joined is easily colored by radiation or ultraviolet rays.
  • the lens optical system 30 by disposing a lens made of glass containing cerium oxide on the object side (front) of the plastic lens or the cemented lens 31, deterioration of the lens due to coloring can be suppressed.
  • FIG. 3 shows a configuration of the lens optical system 40 in the third embodiment of the present invention.
  • the lens optical system 40 is disposed on the object side of the image sensor 7.
  • the lens optical system 40 is an optical system in which seven lenses are arranged in order from the object side to the image side of the image sensor 7.
  • the lens optical system 40 includes one positive lens 24 and six negative lenses 21, 22, 23, 25, 26, and 27.
  • the lens optical system 40 is a lens optical system including seven lenses arranged in order from the object side to the image side, and includes a second lens 22 and a fourth lens 24 that are rod lenses having a substantially cylindrical shape. is doing.
  • the first lens 21 is a concave lens formed in a meniscus shape that is convex on the object side (front).
  • the second lens 22 is a biconcave lens having a substantially cylindrical shape and formed in a biconcave shape.
  • the second lens 22 is a rod-shaped rod lens having a length in the optical axis direction longer than a diameter.
  • the third lens 23 is a convex lens formed in a meniscus shape that is convex on the image side.
  • the fourth lens 24 is a biconvex lens that has a substantially cylindrical shape and is formed in a biconvex shape.
  • the fourth lens 24 is a long rod-shaped rod lens having a length dimension in the optical axis direction longer than a diameter dimension.
  • the fifth lens 25, the sixth lens 26, and the seventh lens 27 are concave lenses that have the same shape and are formed in a meniscus shape that is convex toward the object side.
  • the fifth lens 25, the sixth lens 26, and the seventh lens 27 constitute a rod lens-shaped cemented lens 31.
  • the second lens 22, the fourth lens 24, and the cemented lens 31 are rod lenses, the thickness of the lens in the optical axis direction is large, and a path through which the radiation passes can be secured. The effect can be enhanced. Further, in the case of an aspheric lens used as a wide-angle lens such as the first lens 21, the lens peripheral portion is thick, and the amount of radiation transmitted from the lens peripheral portion can be reduced.
  • lens optical systems 10, 30, and 40 4 to 10 lenses are arranged along the optical axis direction, but there is no particular limitation.
  • the number of lenses constituting the lens optical system may be two or more.
  • the lens optical system 30 when configured to have a larger number of lenses than the lens optical system 10, since radiation is continuously shielded every time it passes through the lens, In the case of the same lens composition, the lens optical system 30 can ensure higher radiation shielding performance than the lens optical system 10.
  • At least one of the plurality of lenses is any one of glass A and glass B that is lead-containing glass.
  • the lens located in the most object side (front) among several lenses is glass (glass C) containing a cerium oxide.
  • the number of lenses made of glass A having radiation shielding ability and the number of lenses made of glass B having radiation shielding ability higher than that of glass A are used. By increasing the value, radiation resistance can be improved even in a high radiation environment.
  • the lens optical systems 10, 30, and 40 of this embodiment can perform focusing and zooming by moving all or part of the optical system in the optical axis direction.
  • FIG. 4 is a block diagram showing the surveillance camera 400.
  • the monitoring camera 400 mainly includes an imaging device 200 and a casing 210 that houses the imaging device 200.
  • the imaging apparatus 200 includes an imaging unit 50 having an imaging function, a camera signal processing unit 60 that performs signal processing such as analog-digital conversion of a captured image signal, and an image processing unit 70 that performs recording and reproduction processing of the image signal. have. Further, the imaging apparatus 200 includes an LCD (Liquid Crystal Display) 80 that displays captured images and the like, a CPU (Central Processing Unit) 90 that controls the entire imaging apparatus 200, and an input in which a user performs a required operation. A lens driving control unit 110 that controls driving of a lens disposed in the imaging unit 50, a recording interface 120, and a memory 130.
  • LCD Liquid Crystal Display
  • CPU Central Processing Unit
  • the monitoring camera 400 can be electrically connected to a PC (personal computer) 300 as an external device.
  • the CPU 90 is connected to the PC 300 in electrical connection.
  • the imaging unit 50 is mainly configured by an imaging system 7 such as an optical system including the lens optical system 10 (30, 40), a CCD (Charge Coupled Device), or a CMOS (Complementary Metal-Oxide Semiconductor).
  • an imaging system 7 such as an optical system including the lens optical system 10 (30, 40), a CCD (Charge Coupled Device), or a CMOS (Complementary Metal-Oxide Semiconductor).
  • the image sensor 7 converts the optical image formed by the lens optical system 10 (30, 40) into an electrical signal.
  • the camera signal processing unit 60 performs various signal processing such as conversion of the output signal from the image sensor 7 into a digital signal, noise removal, image quality correction, and conversion into a luminance / color difference signal.
  • the image processing unit 70 performs various image signal conversion processes on the digital image data.
  • the LCD 80 has a function of displaying various data such as an operation state of the user input unit 100 and a photographed image.
  • the recording interface unit 120 has a connector (not shown).
  • a recording medium such as a memory card is connected to the connector, and data is written to and read from the connected recording medium.
  • the CPU 90 controls an operation performed by the monitoring camera 400 by executing a program stored in a ROM (not shown).
  • the CPU 90 functions as a control processing unit that controls each circuit block provided in the monitoring camera 400 and controls each circuit block based on an instruction input signal from the input unit 100.
  • the CPU 90 performs, for example, AF (autofocus) operation control, AE (automatic exposure) operation control, auto white balance control, and the like.
  • the memory 130 records a series of image data that has undergone image processing.
  • the input unit 100 outputs, for example, an instruction input signal corresponding to an operation related to imaging by the user to the CPU 90. Settings for moving image shooting and still image shooting are set by the input unit 100.
  • the lens drive control unit 110 controls a motor (not shown) that drives each lens of the lens optical system 10 (30, 40) based on a control signal from the CPU 90.
  • the casing 210 is a casing made of a radiation shielding member, and includes an imaging unit 50, a camera signal processing unit 60, an image processing unit 70, an LCD 80, a CPU 90, an input unit 100, a lens drive control unit 110, a recording interface unit 120, The memory 130 and the like are accommodated.
  • the casing 210 is formed in a waterproof structure so that water does not enter the inside.
  • the casing 210 has a window 220 formed of a transparent member such as glass on the object side of the lens optical system 10 (30, 40).
  • the imaging device 200 can capture an image of an imaging object through the window 220.
  • the surveillance camera 400 can also include a cover glass 230 made of glass having a transparent radiation shielding performance on the object side of the lens optical system 10 (30, 40).
  • cover glass 230 for example, glass having a composition of glass A, glass B, or glass C can be used singly or in combination.
  • the cover glass 230 By providing the cover glass 230, the amount of radiation entering the surveillance camera 400 can be reduced. Therefore, the surveillance camera can be protected from radiation even in a higher radiation dose environment.
  • the lens optical system according to the present embodiment is applied to the camera as compared with the conventional lens optical system of the camera.
  • the shielding performance is improved. Therefore, the thickness of the cover glass on the front surface of the camera can be made thinner than before, so that the camera can be miniaturized and the viewing angle can be secured, and the influence of radiation on the image sensor can be suppressed.
  • the surveillance camera 400 is not only installed and used in a place where humans cannot enter due to a strong radiation dose, such as in a nuclear power plant, but also mounted on a work moving body such as a robot or a multicopter, The location can be monitored.
  • the surveillance camera 400 has a high radiation shielding ability in the lens optical system, so that the weight of the work moving body can be reduced, the work time of the work moving body can be increased, and the closer to the radiation source. You can expect effects such as being able to confirm.
  • the radiation-resistant lens optical system according to the present invention and the radiation environment monitoring camera including the same are used as a technique for a radiation environment monitoring camera used in a radiation handling facility such as a nuclear power plant, a radiation medical facility, and a research institution. Is done.
  • Imaging device 10 30, 40 Lens optical system 200 Imaging device 210 Casing 400 Surveillance camera

Abstract

Provided are: a radiation resistant lens optical system with which it is possible to achieve reduction in camera size while maintaining the view angle, and suppress the effect of radiation on imaging elements; and a radiation environment monitoring camera equipped with the radiation resistant lens optical system. A radiation resistant lens optical system 10 includes a plurality of lenses arranged along the optical axis toward the object side of an imaging element 7. At least one of the plurality of lenses comprises a lead-containing glass. The lens nearest to the object among the plurality of lenses comprises glass containing cerium oxide.

Description

耐放射線レンズ光学系及びそれを備える放射線環境用監視カメラRadiation-resistant lens optical system and monitoring camera for radiation environment including the same
 本発明は、耐放射線レンズ光学系及びそれを備える放射線環境用監視カメラに関する。 The present invention relates to a radiation-resistant lens optical system and a radiation environment monitoring camera including the same.
 従来より、原子力発電所、放射線医療施設及び研究機関などの放射線取扱施設では、被対象物の監視や観察のために監視カメラが用いられている(例えば、「特許文献1」及び「特許文献2」を参照)。
 放射線取扱施設で使用される従来の監視カメラには、一般的に、無鉛ガラスによって、レンズ光学系を構成するレンズが作製されている。
 なお、この種のカメラに使用される撮像素子としては、CCD(Charge Coupled Devices)型イメージセンサ、CID(Charge Injection Device)型イメージセンサ、及びCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサなどが挙げられる。
Conventionally, in a radiation handling facility such as a nuclear power plant, a radiation medical facility, and a research institution, a monitoring camera has been used for monitoring and observing an object (for example, “Patent Document 1” and “Patent Document 2”). ).
In a conventional surveillance camera used in a radiation handling facility, a lens constituting a lens optical system is generally made of lead-free glass.
In addition, as an image pick-up element used for this kind of camera, a CCD (Charge Coupled Devices) type image sensor, a CID (Charge Injection Device) type image sensor, and a CMOS (Complementary Metal Oxide Semiconductor) type image sensor can be cited. .
 ここで、「特許文献1」には、カメラの放射線劣化を抑えることが出来る、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子を使用した放射線環境下監視用カメラ装置が開示されている。
 具体的には、「特許文献1」には、監視物に対する対物レンズとなるレンズと、このレンズを通して監視物の画像を撮影するカメラと、このカメラの撮像素子にレンズを通して画像を結ぶようにレンズとカメラの撮像素子とを光学的に接続する長尺なリレーレンズとを有することを特徴とする放射線環境下監視用カメラ装置が開示されている。
Here, “Patent Document 1” discloses a camera device for monitoring in a radiation environment using a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor that can suppress radiation deterioration of the camera. .
Specifically, in “Patent Document 1”, a lens serving as an objective lens for an object to be monitored, a camera that captures an image of the object to be monitored through this lens, and a lens that connects an image through the lens to the image sensor of this camera. And a long relay lens that optically connects the camera and the image sensor of the camera.
 また、「特許文献2」には、通過する光を撮像素子に集光するレンズと、当該レンズを保持するレンズホルダとを有するレンズユニットを備えた監視カメラが開示されている。 In addition, “Patent Document 2” discloses a surveillance camera including a lens unit having a lens for condensing passing light on an image sensor and a lens holder for holding the lens.
特開2012-172976号公報JP 2012-172976 A 特開2013-120300号公報JP 2013-120300 A
 ところで、放射線取扱施設で使用される放射線環境用の監視カメラは、放射線から保護するために、「特許文献2」に開示されるような汎用の監視カメラを放射線遮蔽部材からなる筐体に収容された構成となっている。
 また、放射線環境下では、撮像素子がレンズを透過したガンマ線や中性子線等の放射線の影響を受け、動画のノイズの原因となったり、撮像素子自体が故障(劣化)したりすることがあるため、放射線から撮像素子を保護するために放射線遮蔽ガラスがカバーガラスとしてカメラの前面に設置されている。
 しかしながら、カバーガラスとして設置される放射線遮蔽ガラスは、放射線の線量率が高くなるほど、放射線を遮蔽するためにガラスの厚みを大きくしなければならないため、カメラが大型化するだけでなく、光学的な奥行きが生じて視野角が狭くなってしまうという問題があった。
By the way, in order to protect the radiation environment monitoring camera used in the radiation handling facility from radiation, a general-purpose monitoring camera as disclosed in “Patent Document 2” is accommodated in a housing made of a radiation shielding member. It becomes the composition.
Also, in a radiation environment, the image sensor may be affected by radiation such as gamma rays and neutrons that have passed through the lens, causing motion picture noise or causing the image sensor itself to fail (deteriorate). In order to protect the image sensor from radiation, a radiation shielding glass is installed as a cover glass on the front surface of the camera.
However, the radiation shielding glass installed as a cover glass has a larger thickness of the glass in order to shield the radiation as the radiation dose rate increases. There is a problem that the viewing angle becomes narrow due to the depth.
 本発明は、以上に示した現状の問題点を鑑みてなされたものであり、カメラの小型化を図るとともに視野角を確保し、撮像素子に対する放射線の影響を抑えることができる耐放射線レンズ光学系及びそれを備える放射線環境用監視カメラを提供することを課題とする。 The present invention has been made in view of the above-described current problems, and is intended to reduce the size of the camera, secure a viewing angle, and suppress the influence of radiation on the image sensor. It is another object of the present invention to provide a radiation environment monitoring camera including the same.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 即ち、本発明に係る耐放射線レンズ光学系は、撮像素子の物体側に複数のレンズが光軸方向に沿って配置される、耐放射線レンズ光学系であって、前記複数のレンズのうち、少なくとも一つが鉛含有ガラスからなることを特徴とする。 That is, the radiation-resistant lens optical system according to the present invention is a radiation-resistant lens optical system in which a plurality of lenses are disposed along the optical axis direction on the object side of the imaging device, and at least of the plurality of lenses. One is made of lead-containing glass.
 このような構成からなる耐放射線レンズ光学系によれば、複数のレンズのうち、少なくとも一つが鉛含有ガラスからなることにより、放射線の遮蔽性能を向上させることができる。
 よって、レンズに鉛含有ガラスを用いることにより放射線を遮蔽して、放射線の影響による動画ノイズを低減するとともに、撮像素子の劣化や故障を抑えることができる。
 従って、従来のカメラのレンズ光学系においてレンズの一部に鉛含有ガラスを用いることで、当該カメラの放射線の遮蔽性能が向上するため、カメラの前面に透明な放射線遮蔽ガラスからなるカバーガラスを配置する場合でも、カバーガラスの厚さを従来よりも薄くすることができ、カメラの小型化を図るとともに視野角を確保し、撮像素子に対する放射線の影響を抑えることができる。
According to the radiation resistant lens optical system having such a configuration, radiation shielding performance can be improved by forming at least one of the plurality of lenses from lead-containing glass.
Therefore, by using lead-containing glass for the lens, radiation can be shielded, moving image noise due to the influence of radiation can be reduced, and deterioration and failure of the image sensor can be suppressed.
Therefore, by using lead-containing glass as part of the lens in the conventional lens optical system of the camera, the radiation shielding performance of the camera is improved, so a cover glass made of transparent radiation shielding glass is placed on the front of the camera. Even when the cover glass is used, the thickness of the cover glass can be made thinner than before, so that the camera can be downsized and the viewing angle can be secured, thereby suppressing the influence of radiation on the image sensor.
 また、本発明に係る耐放射線レンズ光学系においては、前記複数のレンズのうち、最も物体側に位置するレンズが、酸化セリウムを含有するガラスからなることがより好ましい。 In the radiation-resistant lens optical system according to the present invention, it is more preferable that the lens located closest to the object among the plurality of lenses is made of glass containing cerium oxide.
 即ち、例えば、放射線環境下において、鉛含有ガラスを使用した場合、γ線やX線等の放射線が照射されることにより、ガラスが着色(ブラウニング)することがある。
 しかし、本発明では、放射線を遮蔽しつつ、放射線による着色を抑える成分である酸化セリウムをガラス中に含有させることによって、当該ガラスにγ線やX線等の放射線が照射されてもガラスが着色するのを抑えつつ、透過する放射線量を低減させることができる。
 従って、レンズ光学系のうち最も物体側に位置するレンズとして、酸化セリウムを含有するガラスを用いることにより、撮像素子側のレンズに鉛含有ガラスからなるレンズを用いても、γ線やX線等の放射線による着色を抑えることができる。
That is, for example, when lead-containing glass is used in a radiation environment, the glass may be colored (browning) when irradiated with radiation such as γ rays or X-rays.
However, in the present invention, the glass is colored even when the glass is irradiated with radiation such as γ-rays or X-rays, by containing cerium oxide, which is a component that suppresses the radiation-induced coloring while shielding the radiation. The amount of transmitted radiation can be reduced while suppressing this.
Therefore, by using glass containing cerium oxide as the lens located closest to the object side in the lens optical system, even if a lens made of lead-containing glass is used as the lens on the imaging element side, γ rays, X-rays, etc. Coloring due to radiation can be suppressed.
 また、本発明に係る耐放射線レンズ光学系においては、前記複数のレンズのうち、少なくとも一つが光軸から離れるに従って光軸方向の幅寸法が大きくなる非平面形状を有することがより好ましい。 In the radiation-resistant lens optical system according to the present invention, it is more preferable that at least one of the plurality of lenses has a non-planar shape in which the width dimension in the optical axis direction increases as the distance from the optical axis increases.
 即ち、例えば、複数の凸レンズのみでレンズ光学系を構成すると、レンズ外周部分において、ガラスの厚みが薄い部分が形成され、放射線が透過しやすくなり、撮像素子に放射線による影響が出るおそれがある。
 しかし、本発明に係る耐放射線レンズ光学系のように、レンズを光軸方向の幅寸法が大きくなる非平面形状にすることにより、レンズ外周部分において、ガラスの厚みを大きくできるため放射線を遮蔽しやすくなる。
 従って、撮像素子に対する放射線の影響を抑えることができる。
That is, for example, when a lens optical system is configured with only a plurality of convex lenses, a thin glass portion is formed in the outer peripheral portion of the lens, and radiation is likely to pass therethrough, which may cause the imaging device to be affected by the radiation.
However, as in the radiation-resistant lens optical system according to the present invention, by making the lens a non-planar shape in which the width dimension in the optical axis direction is increased, the thickness of the glass can be increased at the outer periphery of the lens, thereby shielding radiation. It becomes easy.
Therefore, the influence of radiation on the image sensor can be suppressed.
 また、本発明に係る耐放射線レンズ光学系においては、前記複数のレンズのうち、少なくとも一つが樹脂からなることがより好ましい。 In the radiation-resistant lens optical system according to the present invention, it is more preferable that at least one of the plurality of lenses is made of a resin.
 これにより、中性子線の遮蔽効果を得ることができる。
 従って、例えば、撮像素子等に中性子線と反応する物質が含まれている場合であっても、中性子線との反応を抑えることができる。
Thereby, the shielding effect of a neutron beam can be acquired.
Therefore, for example, even when the imaging element or the like contains a substance that reacts with a neutron beam, the reaction with the neutron beam can be suppressed.
 また、本発明に係る耐放射線レンズ光学系においては、前記複数のレンズのうち、少なくとも一つが接合レンズである、ことがより好ましい。 In the radiation-resistant lens optical system according to the present invention, it is more preferable that at least one of the plurality of lenses is a cemented lens.
 このように、接合レンズを備えることにより、レンズの厚さが大きくなり、放射線の遮蔽効果をより向上させることができる。 Thus, by providing a cemented lens, the thickness of the lens increases, and the radiation shielding effect can be further improved.
 また、本発明に係る放射線環境用監視カメラは、前記レンズ光学系と、前記レンズ光学系によって形成された光学像を電気的信号に変換する撮像素子と、を有する撮像装置と、放射線遮蔽部材で構成され、前記撮像装置を収容するケーシングを備えることを特徴とする。 A radiation environment monitoring camera according to the present invention includes: an imaging apparatus including the lens optical system; an imaging element that converts an optical image formed by the lens optical system into an electrical signal; and a radiation shielding member. It is comprised, The casing which accommodates the said imaging device is provided, It is characterized by the above-mentioned.
 このような構成からなる放射線環境用監視カメラによれば、撮像素子に対する放射線の影響を抑えることができる。 According to the radiation environment monitoring camera having such a configuration, the influence of radiation on the image sensor can be suppressed.
 また、本発明に係る放射線環境用監視カメラにおいては、前記レンズ光学系の物体側に透明な放射線遮蔽性能を有するガラスからなるカバーガラスを備えることが好ましい。 In the radiation environment monitoring camera according to the present invention, it is preferable that a cover glass made of glass having a transparent radiation shielding performance is provided on the object side of the lens optical system.
 このような構成からなる放射線環境用監視カメラによれば、放射線遮蔽性能を有するガラスからなるカバーガラスによりカメラ内に入る放射線量を低減することができる。
 よって、高放射線環境下においても監視カメラを放射線から保護することができる。
According to the radiation environment monitoring camera having such a configuration, the amount of radiation entering the camera can be reduced by the cover glass made of glass having radiation shielding performance.
Therefore, the surveillance camera can be protected from radiation even in a high radiation environment.
 また、本発明に係る放射線環境用監視カメラにおいては、前記カバーガラスは、鉛含有ガラス、酸化セリウムを含有するガラスのうち少なくとも何れかからなることが好ましい。 In the radiation environment monitoring camera according to the present invention, the cover glass is preferably made of at least one of lead-containing glass and glass containing cerium oxide.
 このように、カバーガラスを鉛含有ガラス、酸化セリウムを含有するガラスのうち少なくとも何れかとすることで、放射線遮蔽性能を向上させることができ、カメラ内に入る放射線量をより低減することができる。
 よって、より高い放射線量に曝される場所においても監視カメラを放射線から保護することができる。
Thus, by using at least one of lead-containing glass and glass containing cerium oxide as the cover glass, the radiation shielding performance can be improved, and the amount of radiation entering the camera can be further reduced.
Therefore, the surveillance camera can be protected from radiation even in a place exposed to a higher radiation dose.
 また、本発明に係る放射線環境用監視カメラにおいては、前記ケーシングは、防水構造であることが好ましい。 In the surveillance camera for radiation environment according to the present invention, it is preferable that the casing has a waterproof structure.
 このように、ケーシングを防水構造とすることで、水中での撮像が可能となる。
 よって、例えば、原子力発電所内にある燃料プール等の高放射線量の水中に監視カメラを配置して対象物を監視することが可能となる。
Thus, imaging in water becomes possible by making a casing into a waterproof structure.
Therefore, for example, it is possible to monitor a target object by disposing a monitoring camera in high radiation dose water such as a fuel pool in a nuclear power plant.
 なお、本発明でいう放射線遮蔽能を有するガラスとは、管電圧150kVのX線に対して鉛当量が0.03mmPb/mm以上であるガラスであることを意味する。 In addition, the glass which has a radiation shielding ability as used in the field of this invention means that it is a glass whose lead equivalent is 0.03 mmPb / mm or more with respect to the X-ray with a tube voltage of 150 kV.
 本発明の効果として、以下に示すような効果を奏する。
 即ち、本発明によれば、カメラの小型化を図るとともに視野角を確保し、撮像素子に対する放射線の影響を抑えることができる。
As effects of the present invention, the following effects can be obtained.
That is, according to the present invention, it is possible to reduce the size of the camera, secure a viewing angle, and suppress the influence of radiation on the image sensor.
第1実施形態のレンズ光学系の構成を示した概念図。The conceptual diagram which showed the structure of the lens optical system of 1st Embodiment. 第2実施形態のレンズ光学系の構成を示した概念図。The conceptual diagram which showed the structure of the lens optical system of 2nd Embodiment. 第3実施形態のレンズ光学系の構成を示した概念図。The conceptual diagram which showed the structure of the lens optical system of 3rd Embodiment. 監視カメラを示すブロック図。The block diagram which shows a surveillance camera.
 次に、発明の実施の形態を説明する。 Next, an embodiment of the invention will be described.
 [レンズ光学系(ガラス組成)]
 先ず、本実施形態に係るレンズ光学系について、図を用いて説明する。
 なお、以下の説明に関しては、図1乃至図4の破線矢印方向(光軸方向の前方)を物体側、その反対方向(光軸方向の後方)を像側と定義する。また、カメラにおける物体側とは、被写体側を意味する。カメラにおける像側とは、撮像素子側を意味する。
[Lens optical system (glass composition)]
First, the lens optical system according to the present embodiment will be described with reference to the drawings.
In the following description, the broken arrow direction (forward in the optical axis direction) in FIGS. 1 to 4 is defined as the object side, and the opposite direction (rear in the optical axis direction) is defined as the image side. The object side in the camera means the subject side. The image side in the camera means the image sensor side.
 本実施形態の耐放射線レンズ光学系(後述するレンズ光学系10、30、40)は、図1乃至図3に示すように、撮像素子の物体側に複数のレンズが光軸方向に沿って配置されたものである。
 また、複数のレンズのうち、少なくとも一つのレンズが鉛含有ガラスからなるものである。
In the radiation-resistant lens optical system (lens optical systems 10, 30, and 40 described later) of this embodiment, a plurality of lenses are arranged along the optical axis direction on the object side of the image sensor as shown in FIGS. It has been done.
In addition, at least one of the plurality of lenses is made of lead-containing glass.
 上記のようなレンズ光学系を構成することにより、放射線環境下の場合においても、鉛含有ガラスにより放射線を遮蔽することが可能となる。
 そのため、放射線の影響による動画ノイズを低減したり、撮像素子の劣化や故障を抑えることができる。
 ひいては、無鉛レンズから構成されるレンズ光学系よりも、良好な解像度を確保し、撮像素子の長寿命化を図ることができる。
By configuring the lens optical system as described above, it is possible to shield radiation with lead-containing glass even in a radiation environment.
Therefore, moving image noise due to the influence of radiation can be reduced, and deterioration and failure of the image sensor can be suppressed.
As a result, better resolution can be ensured and the life of the image sensor can be extended than a lens optical system composed of lead-free lenses.
 また、鉛含有ガラスは、一般的に、無鉛ガラスレンズ等に比べて屈折率が高いため、レンズ光学系の光軸方向の長さ寸法を短く構成することができる。
 その結果、光学的な奥行きを小さくすることができ、視野角を大きくすることが可能となる。
In addition, since lead-containing glass generally has a higher refractive index than lead-free glass lenses and the like, the length dimension of the lens optical system in the optical axis direction can be made shorter.
As a result, the optical depth can be reduced and the viewing angle can be increased.
 なお、本発明の耐放射線レンズ光学系を構成する鉛含有ガラスとしては、例えば、質量百分率で、PbO 15~45%、SiO 40~60%、B 0~10%、NaO 0~10%、KO 0~10%、CeO 0~3%の組成を有するガラス(ガラスA)や、質量百分率で、PbO 45~80%、SiO 10~40%、B 0~10%、NaO 0~10%、KO 0~10%の組成を有するガラス(ガラスB)を使用することができる。 The lead-containing glass constituting the radiation-resistant lens optical system of the present invention is, for example, PbO 15 to 45%, SiO 2 40 to 60%, B 2 O 3 0 to 10%, Na 2 O in mass percentage. Glass (glass A) having a composition of 0 to 10%, K 2 O 0 to 10%, CeO 2 0 to 3%, PbO 45 to 80%, SiO 2 10 to 40%, B 2 O by mass percentage A glass (glass B) having a composition of 30 to 10%, Na 2 O 0 to 10%, K 2 O 0 to 10% can be used.
 また、各ガラスには、上記の成分に加えて、種々の成分、例えば、紫外線による着色を防止するためにTiOを5%まで、放射線遮蔽性能を高めるためにSrO、BaO、ZnO、ZrO等を合量で20%まで、清澄剤としてAs、Sb、Cl等を合量で3%まで添加しても良い。 In addition to the above components, each glass has various components such as TiO 2 up to 5% to prevent coloring by ultraviolet rays, and SrO, BaO, ZnO, ZrO 2 to improve radiation shielding performance. Etc. may be added up to a total amount of 20%, and As 2 O 3 , Sb 2 O 3 , Cl, etc. as a clarifier may be added up to a total amount of 3%.
 また、本実施形態のレンズ光学系にあっては、複数のレンズのうち、最も物体側に位置するレンズが、放射線を遮蔽しつつ、放射線による着色を抑える成分である酸化セリウムを含有するガラスで構成されることが好ましい。
 これにより、酸化セリウムを含有するガラスにγ線やX線等の放射線が照射されてもガラスが着色するのを抑えつつ、透過する放射線量を低減させることができる。
In the lens optical system of the present embodiment, among the plurality of lenses, the lens located closest to the object side is a glass containing cerium oxide which is a component that blocks radiation and suppresses coloring due to radiation. Preferably, it is configured.
Thereby, even if the glass containing cerium oxide is irradiated with radiation such as γ-rays or X-rays, the radiation dose to be transmitted can be reduced while suppressing the coloring of the glass.
 その結果、撮像素子側のレンズに鉛含有ガラスからなるレンズを用いても、γ線やX線等の放射線による着色を抑えることができる。 As a result, even when a lens made of lead-containing glass is used as the lens on the imaging element side, coloring due to radiation such as γ rays and X rays can be suppressed.
 なお、本発明の耐放射線レンズ光学系において、最も物体側に位置するレンズを構成する酸化セリウムを含有するガラスとしては、例えば、実質的にPbOを含有せず、質量百分率で、SiO 40~70%、CeO 0.1~3%、Al 0~4%、BaO 7~27%、ZnO 0~20%、ZrO 0~3%、NaO 0~12%、KO 0~12%の組成を有するガラス(ガラスC)を用いることができる。 In the radiation-resistant lens optical system of the present invention, the glass containing cerium oxide constituting the lens located closest to the object side, for example, substantially does not contain PbO, and has a mass percentage of SiO 2 40˜ 70%, CeO 2 0.1-3%, Al 2 O 3 0-4%, BaO 7-27%, ZnO 0-20%, ZrO 2 0-3%, Na 2 O 0-12%, K 2 Glass having a composition of 0 to 12% (glass C) can be used.
 また、上記の成分に加えて、種々の成分、例えば、紫外線による着色を防止するためにTiOを5%まで、放射線遮蔽性能を高めるためにSrOを10%まで、清澄剤としてAs、Sb、Cl等を合量で3%まで添加しても良い。 In addition to the above components, various components such as TiO 2 up to 5% to prevent coloring by ultraviolet rays, SrO up to 10% to improve radiation shielding performance, As 2 O 3 as a clarifier. , Sb 2 O 3 , Cl, etc. may be added up to 3% in total.
 なお、上述したガラスA、B、Cは、上記組成となるようにガラス原料を調合し、所定温度で溶融した後、モールドプレス法等により所定の形状に成形し、必要に応じて、研磨加工を施すことでレンズとすることができる。 The glass A, B, and C described above are prepared by preparing glass raw materials so as to have the above composition, melting at a predetermined temperature, and then molding the glass into a predetermined shape by a mold press method or the like. Can be made into a lens.
 また、ガラスA、B、Cは、後述するレンズ光学系において、それぞれが有する着色抑制や放射線遮蔽の機能に応じて適宜選択して使用することができる。 Further, the glasses A, B, and C can be appropriately selected and used in accordance with the coloring suppression function and radiation shielding function of the glass optical system described later.
 なお、本実施形態のレンズ光学系にあっては、複数のレンズのうち、少なくとも一つが樹脂からなるプラスチック製レンズであってもよい。
 具体的には、水素、酸素及び炭素等の軽元素を含む樹脂により、中性子線の遮蔽効果を得ることができる。
 また、樹脂からなるプラスチック製レンズを含むレンズ光学系を構成した場合、例えば、撮像素子等に中性子線と反応する物質が含まれている場合であっても、中性子線との反応を抑えることができる。
In the lens optical system of the present embodiment, at least one of a plurality of lenses may be a plastic lens made of resin.
Specifically, a neutron shielding effect can be obtained with a resin containing light elements such as hydrogen, oxygen, and carbon.
In addition, when a lens optical system including a plastic lens made of resin is configured, for example, even when a substance that reacts with a neutron beam is included in an imaging element or the like, the reaction with the neutron beam can be suppressed. it can.
 [レンズ光学系(形状)]
 本実施形態のレンズ光学系は、前記複数のレンズのうち、少なくとも一つが光軸から離れるに従って光軸方向の幅寸法が大きくなる非平面形状を有するものである。
[Lens optical system (shape)]
The lens optical system of this embodiment has a non-planar shape in which the width dimension in the optical axis direction increases as at least one of the plurality of lenses moves away from the optical axis.
 例えば、詳細は後述するが、このような非平面形状のレンズとして、凹レンズを用いることができる。 For example, although details will be described later, a concave lens can be used as such a non-planar lens.
 このように、レンズを光軸方向の幅寸法が大きくなる非平面形状にすることにより、レンズ外周部分において、レンズの厚みを大きくすることができ、放射線を遮蔽しやすくなる。
 従って、撮像素子に対する放射線の影響を抑えることができる。
Thus, by making the lens a non-planar shape in which the width dimension in the optical axis direction is increased, the thickness of the lens can be increased at the outer peripheral portion of the lens, and radiation can be easily shielded.
Therefore, the influence of radiation on the image sensor can be suppressed.
 [レンズ光学系の構成例]
 本実施形態に係るレンズ光学系は、2枚以上のレンズを有していればよく、レンズの構成枚数は放射線量により適宜選択することができる。
[Configuration example of lens optical system]
The lens optical system according to the present embodiment only needs to have two or more lenses, and the number of lenses can be appropriately selected depending on the radiation dose.
 <第1実施形態>
 図1は、本発明の第1実施形態におけるレンズ光学系10の構成を示している。
 レンズ光学系10は、撮像素子7の物体側に配置される。
 レンズ光学系10は、4枚のレンズを撮像素子7の物体側から像側へ順に配置した光学系である。
<First Embodiment>
FIG. 1 shows a configuration of a lens optical system 10 according to the first embodiment of the present invention.
The lens optical system 10 is disposed on the object side of the image sensor 7.
The lens optical system 10 is an optical system in which four lenses are arranged in order from the object side to the image side of the image sensor 7.
 レンズ光学系10は、3枚の正レンズ1、3、4(レンズ中心部の厚みがレンズ周縁部の厚みよりも大きいレンズ)と、1枚の負レンズ2(レンズ周縁部の厚みがレンズ中心部の厚みよりも大きいレンズ)とで構成されている。
 また、レンズ光学系10は、物体側から像側へ順に配置された4群のレンズ光学系であって、第1レンズ1と、第2レンズ2と、第3レンズ3と、第4レンズ4を有している。
The lens optical system 10 includes three positive lenses 1, 3, and 4 (a lens whose lens central portion is thicker than a lens peripheral portion) and one negative lens 2 (the lens peripheral portion has a lens central portion having a lens center thickness). The lens is larger than the thickness of the part.
The lens optical system 10 is a four-group lens optical system disposed in order from the object side to the image side, and includes a first lens 1, a second lens 2, a third lens 3, and a fourth lens 4. have.
 第1レンズ1は、物体側(前方)に凸のメニスカス形状に形成される凸レンズである。 The first lens 1 is a convex lens formed in a meniscus shape that is convex on the object side (front).
 第2レンズ2は、両凹形状に形成される両凹レンズである。 The second lens 2 is a biconcave lens formed in a biconcave shape.
 第3レンズ3は、物体側に凸のメニスカス形状に形成される凸レンズである。 The third lens 3 is a convex lens formed in a meniscus shape convex toward the object side.
 第4レンズ4は、物体側に凸のメニスカス形状に形成される凸レンズである。 The fourth lens 4 is a convex lens formed in a meniscus shape that is convex on the object side.
 撮像素子7は、例えば、CCD型イメージセンサ、CID型イメージセンサ及びCMOS型イメージセンサである。
 また、撮像素子7は、前面に撮像面6を有し、該撮像面6の前方にカバーガラス5を有している。
The image sensor 7 is, for example, a CCD image sensor, a CID image sensor, or a CMOS image sensor.
The imaging element 7 has an imaging surface 6 on the front surface and a cover glass 5 in front of the imaging surface 6.
 <第2実施形態>
 図2は、本発明の第2実施形態におけるレンズ光学系30の構成を示している。
 レンズ光学系30は、撮像素子7の物体側に配置される。
 レンズ光学系30は、10枚のレンズを撮像素子7の物体側から像側へ順に配置した光学系である。
Second Embodiment
FIG. 2 shows the configuration of the lens optical system 30 according to the second embodiment of the present invention.
The lens optical system 30 is disposed on the object side of the image sensor 7.
The lens optical system 30 is an optical system in which ten lenses are arranged in order from the object side to the image side of the image sensor 7.
 レンズ光学系30は、6枚の正レンズ12、13、14、17、18、20と、4枚の負レンズ11、15、16、19とで構成されている。
 また、レンズ光学系30の一部は、接合レンズ31を有している。
The lens optical system 30 includes six positive lenses 12, 13, 14, 17, 18, and 20, and four negative lenses 11, 15, 16, and 19.
A part of the lens optical system 30 includes a cemented lens 31.
 第1レンズ11は、物体側(前方)に凸のメニスカス形状に形成された凹レンズである。 The first lens 11 is a concave lens formed in a meniscus shape that is convex on the object side (front).
 第2レンズ12は、物体側に凸のメニスカス形状に形成された凸レンズである。 The second lens 12 is a convex lens formed in a meniscus shape convex toward the object side.
 第3レンズ13は、両凸形状に形成される両凸レンズである。 The third lens 13 is a biconvex lens formed in a biconvex shape.
 第4レンズ14は、物体側に凸のメニスカス形状に形成された凹レンズである。 The fourth lens 14 is a concave lens formed in a meniscus shape convex toward the object side.
 第5レンズは、物体側に凸の凹レンズである。 The fifth lens is a concave lens convex on the object side.
 第6レンズ16は、両凹形状に形成される両凹レンズである。 The sixth lens 16 is a biconcave lens formed in a biconcave shape.
 第7レンズ17は、両凸形状に形成される両凸レンズである。 The seventh lens 17 is a biconvex lens formed in a biconvex shape.
 第8レンズ18は、両凸形状に形成される両凸レンズである。 The eighth lens 18 is a biconvex lens formed in a biconvex shape.
 第9レンズ19は、物体側に凸のメニスカス形状に形成された凹レンズである。 The ninth lens 19 is a concave lens formed in a meniscus shape convex toward the object side.
 第10レンズ20は、物体側が凸で像側が平面に形成された平凸レンズである。 The tenth lens 20 is a plano-convex lens in which the object side is convex and the image side is flat.
 第6レンズ16と第7レンズ17は、第6レンズ16の像側凹面と該像側凹面に対向する第7レンズ17の物体側凸面が樹脂接着剤で貼り合わされて、接合レンズ31を形成している。
 なお、接合レンズ31は、色収差を抑えることができる。
The sixth lens 16 and the seventh lens 17 form a cemented lens 31 by bonding the image-side concave surface of the sixth lens 16 and the object-side convex surface of the seventh lens 17 facing the image-side concave surface with a resin adhesive. ing.
The cemented lens 31 can suppress chromatic aberration.
 このように、本実施形態のレンズ光学系30にあっては、複数のレンズのうち、少なくとも一つが接合レンズ31で構成されている。凹レンズである第6レンズ16と、凸レンズである第7レンズ17との組み合わせからなる接合レンズを備えることにより、レンズの総厚さを大きくでき、放射線の遮蔽効果を向上させることができる。 As described above, in the lens optical system 30 of the present embodiment, at least one of the plurality of lenses is constituted by the cemented lens 31. By providing a cemented lens that is a combination of the sixth lens 16 that is a concave lens and the seventh lens 17 that is a convex lens, the total thickness of the lens can be increased, and the radiation shielding effect can be improved.
 なお、接合レンズ31は、必須の構成ではなく、色収差を補正して、高い光学性能を得たい場合に用いればよい。 It should be noted that the cemented lens 31 is not an essential component, and may be used when high optical performance is desired by correcting chromatic aberration.
 上述したプラスチック製レンズや接合レンズの接合の際に使用される樹脂接着剤は、放射線や紫外線により着色しやすい。
 例えば、レンズ光学系30において、プラスチック製レンズや接合レンズ31の物体側(前方)に酸化セリウムを含有するガラスからなるレンズを配置することで、着色によるレンズの劣化を抑えることができる。
The resin adhesive used when the above-described plastic lens or cemented lens is joined is easily colored by radiation or ultraviolet rays.
For example, in the lens optical system 30, by disposing a lens made of glass containing cerium oxide on the object side (front) of the plastic lens or the cemented lens 31, deterioration of the lens due to coloring can be suppressed.
 <第3実施形態>
 図3は、本発明の第3実施形態におけるレンズ光学系40の構成を示している。
 レンズ光学系40は、撮像素子7の物体側に配置される。
 レンズ光学系40は、7枚のレンズを撮像素子7の物体側から像側へ順に配置した光学系である。
<Third Embodiment>
FIG. 3 shows a configuration of the lens optical system 40 in the third embodiment of the present invention.
The lens optical system 40 is disposed on the object side of the image sensor 7.
The lens optical system 40 is an optical system in which seven lenses are arranged in order from the object side to the image side of the image sensor 7.
 レンズ光学系40は、1枚の正レンズ24と、6枚の負レンズ21、22、23、25、26、27とで構成されている。
 また、レンズ光学系40は、物体側から像側へ順に配置された7枚のレンズからなるレンズ光学系であって、略円柱形状のロッドレンズである第2レンズ22、第4レンズ24を有している。
The lens optical system 40 includes one positive lens 24 and six negative lenses 21, 22, 23, 25, 26, and 27.
The lens optical system 40 is a lens optical system including seven lenses arranged in order from the object side to the image side, and includes a second lens 22 and a fourth lens 24 that are rod lenses having a substantially cylindrical shape. is doing.
 第1レンズ21は、物体側(前方)に凸のメニスカス形状に形成された凹レンズである。 The first lens 21 is a concave lens formed in a meniscus shape that is convex on the object side (front).
 第2レンズ22は、略円柱状であって、両凹形状に形成される両凹レンズである。
 また、第2レンズ22は、直径寸法よりも光軸方向の長さ寸法が長い、寸胴型のロッドレンズである。
The second lens 22 is a biconcave lens having a substantially cylindrical shape and formed in a biconcave shape.
The second lens 22 is a rod-shaped rod lens having a length in the optical axis direction longer than a diameter.
 第3レンズ23は、像側に凸のメニスカス形状に形成された凸レンズである。 The third lens 23 is a convex lens formed in a meniscus shape that is convex on the image side.
 第4レンズ24は、略円柱状であって、両凸形状に形成される両凸レンズである。
 また、第4レンズ24は、直径寸法よりも光軸方向の長さ寸法が長い、長棒状のロッドレンズである。
The fourth lens 24 is a biconvex lens that has a substantially cylindrical shape and is formed in a biconvex shape.
The fourth lens 24 is a long rod-shaped rod lens having a length dimension in the optical axis direction longer than a diameter dimension.
 第5レンズ25、第6レンズ26及び第7レンズ27は、それぞれ同一形状であって、物体側に凸のメニスカス形状に形成された凹レンズである。
 また、第5レンズ25、第6レンズ26及び第7レンズ27によって、ロッドレンズ状の接合レンズ31が構成されている。
The fifth lens 25, the sixth lens 26, and the seventh lens 27 are concave lenses that have the same shape and are formed in a meniscus shape that is convex toward the object side.
The fifth lens 25, the sixth lens 26, and the seventh lens 27 constitute a rod lens-shaped cemented lens 31.
 例えば、第2レンズ22、第4レンズ24や接合レンズ31は、ロッドレンズであるため、光軸方向におけるレンズの肉厚が厚く、放射線が通過する経路を確保することができるため、放射線の遮蔽効果を高めることができる。
 また、第1レンズ21のような広角レンズとして用いられる非球面レンズの場合、レンズ周縁部の肉厚が厚く、レンズ周縁部から透過する放射線量を低減することができる。
For example, since the second lens 22, the fourth lens 24, and the cemented lens 31 are rod lenses, the thickness of the lens in the optical axis direction is large, and a path through which the radiation passes can be secured. The effect can be enhanced.
Further, in the case of an aspheric lens used as a wide-angle lens such as the first lens 21, the lens peripheral portion is thick, and the amount of radiation transmitted from the lens peripheral portion can be reduced.
 なお、本実施形態に係るレンズ光学系10、30、40では、4~10枚のレンズを光軸方向に沿って配置して構成しているが、特に限定するものではない。
 例えば、レンズ光学系を構成するレンズ数としては、2枚以上の複数であればよい。
In the lens optical systems 10, 30, and 40 according to the present embodiment, 4 to 10 lenses are arranged along the optical axis direction, but there is no particular limitation.
For example, the number of lenses constituting the lens optical system may be two or more.
 また、本実施形態に係るレンズ光学系30のように、例えば、レンズ光学系10よりもレンズ数が多くなるように構成した場合、放射線がレンズを通過するごとに連続的に遮蔽されるので、同じレンズ組成の場合、レンズ光学系30はレンズ光学系10よりも高い放射線遮蔽性能を確保することができる。 Further, as in the lens optical system 30 according to the present embodiment, for example, when configured to have a larger number of lenses than the lens optical system 10, since radiation is continuously shielded every time it passes through the lens, In the case of the same lens composition, the lens optical system 30 can ensure higher radiation shielding performance than the lens optical system 10.
 上述した各レンズ光学系10、30、40においては、複数のレンズのうち、少なくとも一つが鉛含有ガラスであるガラスA、ガラスBの何れかであることが好ましい。
 これにより、放射線を効率的に遮蔽し、動画のノイズ防止、撮像素子7の長寿命化が期待できる。
In each of the lens optical systems 10, 30, and 40 described above, it is preferable that at least one of the plurality of lenses is any one of glass A and glass B that is lead-containing glass.
As a result, radiation can be effectively shielded, noise in moving images can be prevented, and the life of the image sensor 7 can be expected to be extended.
 また、上述した各レンズ光学系10、30、40においては、複数のレンズのうち、最も物体側(前方)に位置するレンズは、酸化セリウムを含有するガラス(ガラスC)であることが好ましい。
 これにより、γ線やX線等の放射線が照射されてもガラスCが着色するのを抑えつつ、透過する放射線量を低減させることができる。
Moreover, in each lens optical system 10, 30, and 40 mentioned above, it is preferable that the lens located in the most object side (front) among several lenses is glass (glass C) containing a cerium oxide.
Thereby, even if radiations, such as a gamma ray and an X-ray, are irradiated, the radiation amount which permeate | transmits can be reduced, suppressing that the glass C colors.
 その結果、撮像素子側のレンズに鉛含有ガラス(ガラスA、ガラスB)からなるレンズを用いても、γ線やX線等の放射線による着色を抑えることができる。 As a result, even when a lens made of lead-containing glass (glass A, glass B) is used as the lens on the image sensor side, coloring due to radiation such as γ rays and X rays can be suppressed.
 上述した各レンズ光学系10、30、40においては、複数のレンズのうち、放射線遮蔽能を有するガラスAからなるレンズや、ガラスAよりも高い放射線遮蔽能力を備えるガラスBからなるレンズの使用枚数を増やすことで、高放射線環境下においても耐放射線性能を向上させることができる。 In each of the lens optical systems 10, 30, and 40 described above, among a plurality of lenses, the number of lenses made of glass A having radiation shielding ability and the number of lenses made of glass B having radiation shielding ability higher than that of glass A are used. By increasing the value, radiation resistance can be improved even in a high radiation environment.
 従って、高放射線量環境下において、カメラ前面に放射線遮蔽ガラスからなるカバーガラスを配置する場合でも、カバーガラスの厚さを薄くすることが可能となり、カメラの小型化を図るとともに視野角を確保し、撮像素子に対する放射線の影響を抑えることができる。 Therefore, even when a cover glass made of radiation shielding glass is placed in front of the camera in a high radiation dose environment, it is possible to reduce the thickness of the cover glass, thereby reducing the size of the camera and ensuring a viewing angle. The influence of radiation on the image sensor can be suppressed.
 なお、本実施形態のレンズ光学系10、30、40は、光学系の全系又は一部を光軸方向へ移動させることによりフォーカシングやズームを行うことも可能である。 It should be noted that the lens optical systems 10, 30, and 40 of this embodiment can perform focusing and zooming by moving all or part of the optical system in the optical axis direction.
 [監視カメラの実施形態]
 次に、放射線環境用監視カメラ400(以下、監視カメラ400とも呼ぶ)の構成について、図4を用いて説明する。
 図4は監視カメラ400を示すブロック図である。
[Embodiment of surveillance camera]
Next, the configuration of the radiation environment monitoring camera 400 (hereinafter also referred to as the monitoring camera 400) will be described with reference to FIG.
FIG. 4 is a block diagram showing the surveillance camera 400.
 監視カメラ400は、主に撮像装置200と、該撮像装置200を収容するケーシング210とにより構成される。 The monitoring camera 400 mainly includes an imaging device 200 and a casing 210 that houses the imaging device 200.
 撮像装置200は、撮像機能を有する撮像部50と、撮影された画像信号のアナログ-デジタル変換等の信号処理を行うカメラ信号処理部60と、画像信号の記録再生処理を行う画像処理部70とを有している。
 また、撮像装置200は、撮影された画像等を表示するLCD(Liquid Crystal Display)80と、撮像装置200の全体を制御するCPU(Central Processing Unit)90と、ユーザーによって所要の操作が行われる入力部100と、撮像部50に配置されたレンズの駆動を制御するレンズ駆動制御部110と、記録インターフェイス120と、メモリー130を備えている。
The imaging apparatus 200 includes an imaging unit 50 having an imaging function, a camera signal processing unit 60 that performs signal processing such as analog-digital conversion of a captured image signal, and an image processing unit 70 that performs recording and reproduction processing of the image signal. have.
Further, the imaging apparatus 200 includes an LCD (Liquid Crystal Display) 80 that displays captured images and the like, a CPU (Central Processing Unit) 90 that controls the entire imaging apparatus 200, and an input in which a user performs a required operation. A lens driving control unit 110 that controls driving of a lens disposed in the imaging unit 50, a recording interface 120, and a memory 130.
 監視カメラ400は、外部機器のPC(パーソナルコンピュータ)300との電気的接続が可能となっている。
 本実施形態では、CPU90がPC300と電気的接続に接続されてなる。
The monitoring camera 400 can be electrically connected to a PC (personal computer) 300 as an external device.
In the present embodiment, the CPU 90 is connected to the PC 300 in electrical connection.
 なお、LCD80、入力部100の各機能については、外部機器のPC300を操作することも代用可能である。 It should be noted that the functions of the LCD 80 and the input unit 100 can be substituted by operating the PC 300 as an external device.
 撮像部50は、レンズ光学系10(30、40)を含む光学系や、CCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)等の撮像素子7によって主に構成されてなる。 The imaging unit 50 is mainly configured by an imaging system 7 such as an optical system including the lens optical system 10 (30, 40), a CCD (Charge Coupled Device), or a CMOS (Complementary Metal-Oxide Semiconductor).
 撮像素子7は、レンズ光学系10(30、40)によって形成された光学像を電気的信号に変換する。 The image sensor 7 converts the optical image formed by the lens optical system 10 (30, 40) into an electrical signal.
 カメラ信号処理部60は、撮像素子7からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行う。 The camera signal processing unit 60 performs various signal processing such as conversion of the output signal from the image sensor 7 into a digital signal, noise removal, image quality correction, and conversion into a luminance / color difference signal.
 画像処理部70は、デジタル画像データに対して、各種の画像信号の変換処理等を行う。 The image processing unit 70 performs various image signal conversion processes on the digital image data.
 LCD80は、ユーザーの入力部100に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。 The LCD 80 has a function of displaying various data such as an operation state of the user input unit 100 and a photographed image.
 記録インターフェイス部120は、図示しないコネクタを有し、該コネクタにメモリカード等の記録媒体が接続され、接続された記録媒体に対して、データの書き込みや、記録媒体からのデータの読み込みを行う。 The recording interface unit 120 has a connector (not shown). A recording medium such as a memory card is connected to the connector, and data is written to and read from the connected recording medium.
 CPU90は、図示しないROMに格納されたプログラムを実行することによって、監視カメラ400が行う動作を制御する。
 また、CPU90は、監視カメラ400に設けられた各回路ブロックを制御する制御処理部として機能し、入力部100からの指示入力信号等に基づいて各回路ブロックを制御する。
The CPU 90 controls an operation performed by the monitoring camera 400 by executing a program stored in a ROM (not shown).
The CPU 90 functions as a control processing unit that controls each circuit block provided in the monitoring camera 400 and controls each circuit block based on an instruction input signal from the input unit 100.
 CPU90は、例えば、AF(オートフォーカス)動作制御、AE(自動露出)動作制御、オートホワイトバランス制御等を行う。
 また、メモリー130は、画像処理した一連の画像データを記録する。
The CPU 90 performs, for example, AF (autofocus) operation control, AE (automatic exposure) operation control, auto white balance control, and the like.
The memory 130 records a series of image data that has undergone image processing.
 入力部100は、例えば、ユーザーによる撮像に関する操作に応じた指示入力信号をCPU90に対して出力する。動画撮影や静止画撮影の設定は、該入力部100により設定される。 The input unit 100 outputs, for example, an instruction input signal corresponding to an operation related to imaging by the user to the CPU 90. Settings for moving image shooting and still image shooting are set by the input unit 100.
 レンズ駆動制御部110は、CPU90からの制御信号に基づいてレンズ光学系10(30、40)の各レンズを駆動する図示しないモータ等を制御する。 The lens drive control unit 110 controls a motor (not shown) that drives each lens of the lens optical system 10 (30, 40) based on a control signal from the CPU 90.
 ケーシング210は、放射線遮蔽部材で構成される筐体であり、撮像部50、カメラ信号処理部60、画像処理部70、LCD80、CPU90、入力部100、レンズ駆動制御部110、記録インターフェイス部120、メモリー130等を収容するものである。 The casing 210 is a casing made of a radiation shielding member, and includes an imaging unit 50, a camera signal processing unit 60, an image processing unit 70, an LCD 80, a CPU 90, an input unit 100, a lens drive control unit 110, a recording interface unit 120, The memory 130 and the like are accommodated.
 ケーシング210は、内部に水が侵入しないように防水構造に形成されている。
 また、ケーシング210は、レンズ光学系10(30、40)の物体側にガラス等の透明部材で形成された窓部220を有している。
The casing 210 is formed in a waterproof structure so that water does not enter the inside.
The casing 210 has a window 220 formed of a transparent member such as glass on the object side of the lens optical system 10 (30, 40).
 撮像装置200は、窓部220を介して撮像対象物を撮像可能である。 The imaging device 200 can capture an image of an imaging object through the window 220.
 また、監視カメラ400は、レンズ光学系10(30、40)の物体側に透明な放射線遮蔽性能を有するガラスからなるカバーガラス230を備えることもできる。 The surveillance camera 400 can also include a cover glass 230 made of glass having a transparent radiation shielding performance on the object side of the lens optical system 10 (30, 40).
 カバーガラス230としては、例えば、ガラスA、ガラスB、ガラスCの組成を有するガラスを単一もしくは組み合わせて用いることができる。 As the cover glass 230, for example, glass having a composition of glass A, glass B, or glass C can be used singly or in combination.
 このように、カバーガラス230を備えることで、監視カメラ400内に入る放射線量を低減することができる。
 よって、より高い放射線量環境下においても監視カメラを放射線から保護することができる。
Thus, by providing the cover glass 230, the amount of radiation entering the surveillance camera 400 can be reduced.
Therefore, the surveillance camera can be protected from radiation even in a higher radiation dose environment.
 また、監視カメラの前面にカバーガラス230を備える場合であっても、従来からあるカメラのレンズ光学系に比べて、本実施形態に係るレンズ光学系をカメラに適用することで、当該カメラの放射線の遮蔽性能が向上する。
 そのため、カメラの前面のカバーガラスの厚さを従来よりも薄くすることができ、カメラの小型化を図るとともに視野角を確保し、撮像素子に対する放射線の影響を抑えることができる。
Further, even when the cover glass 230 is provided on the front surface of the surveillance camera, the lens optical system according to the present embodiment is applied to the camera as compared with the conventional lens optical system of the camera. The shielding performance is improved.
Therefore, the thickness of the cover glass on the front surface of the camera can be made thinner than before, so that the camera can be miniaturized and the viewing angle can be secured, and the influence of radiation on the image sensor can be suppressed.
 本実施形態に係る監視カメラ400は、原子力発電所内などの放射線量が強くて人が立ち入ることができない箇所に設置して使用するだけでなくロボットやマルチコプターなどの作業移動体に搭載して、当該箇所を監視することができる。 The surveillance camera 400 according to the present embodiment is not only installed and used in a place where humans cannot enter due to a strong radiation dose, such as in a nuclear power plant, but also mounted on a work moving body such as a robot or a multicopter, The location can be monitored.
 さらに、監視カメラ400は、レンズ光学系が高い放射線遮蔽能を有しているため、作業移動体の軽量化や、作業移動体の作業時間を増やすことができるとともに、さらにより線源に近いところまで確認できるなどの効果が期待できる。 Furthermore, the surveillance camera 400 has a high radiation shielding ability in the lens optical system, so that the weight of the work moving body can be reduced, the work time of the work moving body can be increased, and the closer to the radiation source. You can expect effects such as being able to confirm.
 本発明に係る耐放射線レンズ光学系及びそれを備える放射線環境用監視カメラは、例えば原子力発電所、放射線医療施設及び研究機関などの放射線取扱施設で使用される放射線環境用の監視カメラの技術として利用される。 The radiation-resistant lens optical system according to the present invention and the radiation environment monitoring camera including the same are used as a technique for a radiation environment monitoring camera used in a radiation handling facility such as a nuclear power plant, a radiation medical facility, and a research institution. Is done.
 7  撮像素子
 10、30、40  レンズ光学系
 200  撮像装置
 210  ケーシング
 400  監視カメラ
7 Imaging device 10, 30, 40 Lens optical system 200 Imaging device 210 Casing 400 Surveillance camera

Claims (9)

  1.  撮像素子の物体側に複数のレンズが光軸方向に沿って配置される、耐放射線レンズ光学系であって、
     前記複数のレンズのうち、少なくとも一つが鉛含有ガラスからなる、
     ことを特徴とする耐放射線レンズ光学系。
    A radiation-resistant lens optical system in which a plurality of lenses are arranged along the optical axis direction on the object side of the image sensor,
    Of the plurality of lenses, at least one is made of lead-containing glass.
    A radiation-resistant lens optical system.
  2.  前記複数のレンズのうち、最も物体側に位置するレンズが、酸化セリウムを含有するガラスからなる、
     ことを特徴とする請求項1に記載の耐放射線レンズ光学系。
    Of the plurality of lenses, the lens located closest to the object side is made of glass containing cerium oxide.
    The radiation-resistant lens optical system according to claim 1.
  3.  前記複数のレンズのうち、少なくとも一つが光軸から離れるに従って光軸方向の幅寸法が大きくなる非平面形状を有する、
     ことを特徴とする請求項1または2に記載の耐放射線レンズ光学系。
    Of the plurality of lenses, at least one has a non-planar shape in which the width dimension in the optical axis direction increases as the distance from the optical axis increases
    The radiation-resistant lens optical system according to claim 1 or 2.
  4.  前記複数のレンズのうち、少なくとも一つが樹脂からなる、
     ことを特徴とする請求項1~3の何れか一項に記載の耐放射線レンズ光学系。
    Of the plurality of lenses, at least one is made of resin.
    The radiation-resistant lens optical system according to any one of claims 1 to 3, wherein:
  5.  前記複数のレンズのうち、少なくとも一つが接合レンズである、
     ことを特徴とする請求項1~4の何れか一項に記載の耐放射線レンズ光学系。
    At least one of the plurality of lenses is a cemented lens.
    The radiation-resistant lens optical system according to any one of claims 1 to 4, wherein:
  6.  請求項1~5の何れか一項に記載のレンズ光学系と、前記レンズ光学系によって形成された光学像を電気的信号に変換する撮像素子と、を有する撮像装置と、
     放射線遮蔽部材で構成され、前記撮像装置を収容するケーシングを備える、
     ことを特徴とする放射線環境用監視カメラ。
    An imaging apparatus comprising: the lens optical system according to any one of claims 1 to 5; and an imaging element that converts an optical image formed by the lens optical system into an electrical signal;
    It is composed of a radiation shielding member, and includes a casing that houses the imaging device.
    A radiation environment surveillance camera.
  7.  前記レンズ光学系の物体側に透明な放射線遮蔽性能を有するガラスからなるカバーガラスを備える、
     ことを特徴とする、請求項6に記載の放射線環境用監視カメラ。
    Provided with a cover glass made of glass having a transparent radiation shielding performance on the object side of the lens optical system,
    The surveillance camera for radiation environment according to claim 6, wherein:
  8.  前記カバーガラスは、鉛含有ガラス、酸化セリウムを含有するガラスのうち少なくとも何れかからなる、
     ことを特徴とする請求項7に記載の放射線環境用監視カメラ。
    The cover glass is composed of at least one of lead-containing glass and glass containing cerium oxide.
    The radiation environment monitoring camera according to claim 7.
  9.  前記ケーシングは、防水構造に形成される、
     ことを特徴とする前記請求項6~8の何れか一項に記載の放射線環境用監視カメラ。
     
    The casing is formed in a waterproof structure,
    The radiation environment monitoring camera according to any one of claims 6 to 8, wherein the monitoring camera is a radiation environment.
PCT/JP2016/071530 2015-08-20 2016-07-22 Radiation resistant lens optical system and radiation environment monitoring camera equipped with same WO2017029944A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-162815 2015-08-20
JP2015162815A JP2017040807A (en) 2015-08-20 2015-08-20 Anti-radiation lens optical system and radiation environmental monitoring camera including the same

Publications (1)

Publication Number Publication Date
WO2017029944A1 true WO2017029944A1 (en) 2017-02-23

Family

ID=58052135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071530 WO2017029944A1 (en) 2015-08-20 2016-07-22 Radiation resistant lens optical system and radiation environment monitoring camera equipped with same

Country Status (2)

Country Link
JP (1) JP2017040807A (en)
WO (1) WO2017029944A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112571406A (en) * 2020-11-30 2021-03-30 山东大学日照智能制造研究院 Electro-hydraulic hybrid drive special robot and control method
CN114153049A (en) * 2021-12-06 2022-03-08 杭州径上科技有限公司 Fixed-focus radiation-proof lens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146098A (en) * 1977-05-25 1978-12-19 Kyowa Gas Chem Ind Co Ltd Radiation protector
JPS6060591A (en) * 1983-09-14 1985-04-08 株式会社日立製作所 Mobile type reactor containing vessel inside inspection device
JPH06222263A (en) * 1993-01-22 1994-08-12 Olympus Optical Co Ltd Endoscopic objective lens
JPH07270594A (en) * 1994-03-28 1995-10-20 Nuclear Fuel Ind Ltd Radiation resistant underwater camera
JP2002350547A (en) * 2001-05-30 2002-12-04 Konica Corp Radiation image detector and formation system
JP2008046032A (en) * 2006-08-18 2008-02-28 Mitsubishi Heavy Ind Ltd Camera checking system and checking camera of reprocessing facility
JP2013117425A (en) * 2011-12-02 2013-06-13 Nuclear Fuel Ind Ltd Underwater television camera apparatus for fuel assembly inspection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146098A (en) * 1977-05-25 1978-12-19 Kyowa Gas Chem Ind Co Ltd Radiation protector
JPS6060591A (en) * 1983-09-14 1985-04-08 株式会社日立製作所 Mobile type reactor containing vessel inside inspection device
JPH06222263A (en) * 1993-01-22 1994-08-12 Olympus Optical Co Ltd Endoscopic objective lens
JPH07270594A (en) * 1994-03-28 1995-10-20 Nuclear Fuel Ind Ltd Radiation resistant underwater camera
JP2002350547A (en) * 2001-05-30 2002-12-04 Konica Corp Radiation image detector and formation system
JP2008046032A (en) * 2006-08-18 2008-02-28 Mitsubishi Heavy Ind Ltd Camera checking system and checking camera of reprocessing facility
JP2013117425A (en) * 2011-12-02 2013-06-13 Nuclear Fuel Ind Ltd Underwater television camera apparatus for fuel assembly inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112571406A (en) * 2020-11-30 2021-03-30 山东大学日照智能制造研究院 Electro-hydraulic hybrid drive special robot and control method
CN114153049A (en) * 2021-12-06 2022-03-08 杭州径上科技有限公司 Fixed-focus radiation-proof lens

Also Published As

Publication number Publication date
JP2017040807A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5582905B2 (en) Imaging optical system and imaging apparatus using the same
JP6895046B2 (en) Imaging optical system and imaging device
JP6633075B2 (en) Zoom lens and imaging device having the same
JP5631856B2 (en) Inner focus lens system and image pickup apparatus including the same
JP2010186011A (en) Wide angle optical system and image pickup apparatus using the same
JP6374713B2 (en) Wide angle lens and imaging apparatus having the same
JP6558824B2 (en) Telephoto lens and imaging apparatus having the same
JP2015108814A (en) Single focal length lens system and image capturing device having the same
EP2857883A1 (en) Zooming optical system, imaging optical device, and digital device
JP2016065906A (en) Imaging lens and imaging apparatus
JP2016090746A (en) Zoom lens and imaging apparatus
JP2012230209A (en) Zoom lens having macro mode
US10107992B2 (en) Telephoto lens and image pickup apparatus using the same
JP2017215491A (en) Optical system and imaging apparatus including the same
CN109597190B (en) Variable power optical system and imaging apparatus having the same
JP2017062318A (en) Zoom lens and imaging apparatus including the same
WO2017029944A1 (en) Radiation resistant lens optical system and radiation environment monitoring camera equipped with same
JP2016110007A (en) Image capturing lens
JP2016148699A (en) Telephoto lens and imaging apparatus including the same
JP6124028B2 (en) Zoom lens and imaging device
EP3136147B1 (en) Imaging lens system, imaging optical device, and digital appliance
JP5886378B2 (en) Imaging optical system and imaging apparatus using the same
US8755125B2 (en) Zoom lens unit and imaging apparatus incorporating the same
JP2020052350A (en) Image capturing lens and image capturing device
JP6559104B2 (en) Imaging lens and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836935

Country of ref document: EP

Kind code of ref document: A1