WO2017029909A1 - 無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法 - Google Patents

無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法 Download PDF

Info

Publication number
WO2017029909A1
WO2017029909A1 PCT/JP2016/070507 JP2016070507W WO2017029909A1 WO 2017029909 A1 WO2017029909 A1 WO 2017029909A1 JP 2016070507 W JP2016070507 W JP 2016070507W WO 2017029909 A1 WO2017029909 A1 WO 2017029909A1
Authority
WO
WIPO (PCT)
Prior art keywords
session
context
user
management entity
mobility management
Prior art date
Application number
PCT/JP2016/070507
Other languages
English (en)
French (fr)
Inventor
敬 輿水
イルファン アリ
サイアド フセイン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2017535296A priority Critical patent/JP6751717B2/ja
Priority to EP16836901.5A priority patent/EP3340730A4/en
Priority to CN201680046496.3A priority patent/CN107852767A/zh
Publication of WO2017029909A1 publication Critical patent/WO2017029909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/32Release of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/24Interfaces between hierarchically similar devices between backbone network devices

Definitions

  • the present invention relates to a wireless communication system, a gateway device, a mobility management entity, and a communication control method that are compatible with Cellular Internet of Things (CIoT).
  • CCIoT Cellular Internet of Things
  • Non-Patent Document 1 In 3rd Generation Partnership Project (3GPP), Cellular Internet of Things (CIoT) optimized for connection of not only conventional mobile communication terminals such as Machine Type Communications (MTC) terminals but also various types of user equipment (UE) Technical studies for realizing the above are underway (for example, Non-Patent Document 1).
  • 3GPP 3rd Generation Partnership Project
  • MTC Machine Type Communications
  • UE user equipment
  • the C-plane and CIoT plane are connected via the interface (S1) between the CIoT radio access network (CIoT RAT) and the CIoT core network (CIoT CN). It has been proposed to send and receive U-plane information. According to such a proposal, it is considered that the compatibility with the existing core network is high and the transition to CIoT is easy.
  • the context for session management of the UE specifically Specifically, the EPS Session Management (ESM) context remains in the Serving Gateway / Packet Data Network Gateway (SGW / PGW) for a certain period without being deleted.
  • ESM EPS Session Management
  • SGW / PGW is a C It would be preferable to eliminate -plane processing and specialize in U-plane processing.
  • An object of the present invention is to provide a wireless communication system, a gateway device, a mobility management entity, and a communication control method capable of realizing a quick return from an idle state to a connected state even when connected to a network.
  • a wireless communication system includes a gateway device that routes packet data transmitted or received by a user device, and a mobility management entity that manages mobility of the user device.
  • the gateway device receives a session deletion request for deleting a session for the user device from the mobility management entity, the gateway device sends a session deletion response (Delete Session Response) including the management context of the session to the mobility management entity.
  • a session management unit for transmission is provided.
  • the mobility management entity is held by the context holding unit that holds the management context included in the session deletion response, and the context holding unit in response to the start of the process in which the user apparatus returns from the idle state to the connected state.
  • a session control unit that transmits a session generation request including the management context to the gateway device.
  • the session management unit resets the session based on the management context included in the session generation request received from the mobility management entity.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the eNB 100.
  • FIG. 3 is a functional block configuration diagram of the MME 200.
  • FIG. 4 is a functional block configuration diagram of the S / PGW 300.
  • FIG. 5 is a functional block configuration diagram of the UE 20.
  • FIG. 6 is a diagram illustrating an AS Context processing sequence when the UE 20 transitions from the connected state to the idle state.
  • FIG. 7 is a diagram illustrating an AS Context processing sequence when the UE 20 returns from the idle state to the connected state.
  • FIG. 8 is an explanatory diagram (Operation Example 1) of the holding state of the AS Context when the UE 20 transitions from the connected state to the idle state and then returns to the connected state.
  • FIG. 9 is a diagram illustrating a processing sequence of ESM ⁇ ⁇ ⁇ ⁇ ⁇ Context when UE 20 transitions from a connected state to an idle state.
  • FIG. 10 is a diagram illustrating an ESM ⁇ Context processing sequence when the UE 20 returns from the idle state to the connected state.
  • FIG. 11 is an explanatory diagram (operation example 2) of the ESM Context holding state when the UE 20 transitions from the connected state to the idle state and then returns to the connected state.
  • FIG. 12 is an explanatory diagram (operation example 3) of the holding state of the AS Context and the ESM Context when the UE 20 transitions from the connected state to the idle state and then returns to the connected state.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the UE 20, the eNB 100, the MME 200, and the S / PGW 300.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the wireless communication system 10 is compliant with specifications defined by the 3rd Generation partnership Project (3GPP) (for example, Long Term Evolution (LTE)).
  • 3GPP 3rd Generation partnership Project
  • LTE Long Term Evolution
  • the wireless communication system 10 corresponds to Cellular Internet Things (CIoT) optimized for connection of various types of user devices 20 (hereinafter referred to as UE20).
  • CIoT Cellular Internet Things
  • UE20 User Equipment
  • MTC MachineMType Communications
  • the UE 20 such as an MTC terminal is characterized by transmitting a small amount of data.
  • a radio communication system 10 includes a UE 20, a radio base station 100 (hereinafter, eNB100), a mobility management entity 200 (hereinafter, MME200), and a Serving-Gateway / PacketwayData Network-Gateway 300 (hereinafter, S). / PGW300).
  • eNB100 radio base station 100
  • MME200 mobility management entity 200
  • S PacketwayData Network-Gateway 300
  • PGW300 PacketwayData Network-Gateway
  • UE20 performs radio communication with eNB100 according to radio access technology (RAT) such as LTE. Specifically, the UE 20 performs radio communication with the eNB 100 via an access layer (AccessatumStratum (AS)) that is a functional layer between the UE 20 and the eNB 100.
  • RAT radio access technology
  • AS AccessatumStratum
  • the eNB 100 also performs wireless communication according to the RAT, that is, wireless communication with the UE 20 via the AS.
  • the UE 20 is various types of terminals including MTC terminals and smartphones, and a large number of UEs 20 are connected to the radio communication system 10 to perform communication.
  • MME200 manages UE20 mobility. Specifically, the MME 200 accommodates the eNB 100 via the S1-MME interface, and executes mobility management, authentication (security control) of the UE 20, setting processing of a user data transfer path, and the like.
  • SGW300 is a serving packet gateway that routes packet data (user data) transmitted or received by UE20.
  • the S / PGW 300 (SGW) transmits / receives the user data to / from the eNB 100 and sets a communication path for each external packet network (PDN) to be connected.
  • PDN packet network
  • S / PGW300 connects to the Internet 30 and executes IP address assignment and the like.
  • the S / PGW 300 serves as a user data transfer switching point when the UE 20 moves from the wireless communication system 10 compliant with the 3GPP specification to a non-3GPP wireless communication system (such as a wireless LAN).
  • FIG. 2 is a functional block configuration diagram of the eNB 100. As illustrated in FIG. 2, the eNB 100 includes a state control unit 110 and an AS context transfer unit 120.
  • the state control unit 110 controls the state of the UE 20. Specifically, the state control unit 110 controls the UE 20 to an idle state or a connected state.
  • the idle state is a state in which the UE 20 does not have a Data Bearer (DRB, data radio bearer) and is not connected to the radio network by the data radio bearer.
  • a connection state is a state which has a data radio bearer via eNB100, and is connected with the radio network by the data radio bearer.
  • the radio network means a radio access network and a core network that the radio communication system 10 configures.
  • the idle state is a state in which the setting in the AS is released because there is no data radio bearer.
  • the connection state is a state where the connection setting of AS is completed because it has a data radio bearer, that is, a state where AS Context is also provided.
  • the state control unit 110 can receive the AS Context of the UE 20 transmitted from the MME 200.
  • the state control unit 110 returns the UE 20 to a connected state, specifically, a connected state where user data can be communicated, using the received AS Context.
  • the AS Context is an AS context between the UE 20 and the eNB 100, and includes a key, algorithm, sequence number, and the like used for establishing security for data communication in the AS part.
  • the AS context transfer unit 120 transfers the AS Context of the UE 20 to the MME 200. Specifically, the AS context transfer unit 120 transfers the AS Context of the UE 20 to the MME 200 when the UE 20 transitions from the connected state to the idle state.
  • the AS context transfer unit 120 includes the AS Context of the UE 20 in the message (UE Context Release Complete) indicating that the release of the context (UE Context) related to the UE 20 is completed, so that the AS Context is included in the MME 200. Forward.
  • FIG. 3 is a functional block configuration diagram of the MME 200.
  • the MME 200 includes an AS context holding unit 210, an AS context transmission unit 220, an ESM context holding unit 230, and a session control unit 240.
  • the AS context holding unit 210 holds the UE 20 AS Context transferred from the eNB 100. Specifically, the AS context holding unit 210 holds the transferred AS Context of the UE 20 in association with the identifier of the UE 20 (for example, S-TMSI (Temporary Mobile Subscriber Identity)).
  • S-TMSI Temporary Mobile Subscriber Identity
  • the AS context holding unit 210 may delete the held AS Context after the AS context transmitting unit 220 transmits the AS Context to the eNB 100.
  • the AS context transmission unit 220 transmits the AS ⁇ ⁇ Context held in the AS context holding unit 210 to the eNB100.
  • the AS context transmission unit 220 transmits the AS20Context of the UE 20 to the eNB 100 by including the AS Context in the message (Initial Context Setup Request) for requesting the UE ⁇ Context setting of the UE 20.
  • the ESM context holding unit 230 holds the session management context for UE20. Specifically, the ESM context holding unit 230 holds the ESM Context included in the session deletion response (Delete Session Response) transmitted from the S / PGW 300.
  • the ESM Context is the EPS Session Management (ESM) context.
  • the ESM Context is related to the core bearer, specifically, the EPS bearer and session establishment that are set between the UE20 and the S / PGW300 (PGW). Information etc. are included.
  • the ESM context holding unit 230 may erase the held ESMESContext when the UE 20 returns from the idle state to the connected state.
  • Session control unit 240 controls a session for UE20. Specifically, the session control unit 240 controls the session for the UE 20 based on the ESM.
  • the session control unit 240 generates a session generation request (Create Session Request) including the ESM Context of the UE20 held by the ESM context holding unit 230 in response to the start of the process in which the UE20 returns from the idle state to the connected state. Send to S / PGW300.
  • a session generation request (Create Session Request) including the ESM Context of the UE20 held by the ESM context holding unit 230 in response to the start of the process in which the UE20 returns from the idle state to the connected state.
  • the session control unit 240 can transmit a Create Session Request including the ESM Context of the UE 20 and a device identifier that is an identifier of the UE 20 to the S / PGW 300.
  • a device identifier for example, Globally Unique Temporary ID (GUTI) can be used.
  • GUI Globally Unique Temporary ID
  • FIG. 4 is a functional block configuration diagram of the S / PGW 300.
  • the S / PGW 300 includes a session management unit 310 and a user device information holding unit 320.
  • Session management unit 310 manages a session for UE20. Specifically, when the session management unit 310 receives a session deletion request (Delete Session Request) requesting deletion of a session for UE20 from the MME200, a session deletion response (Delete Session Response) including the ESM Context of the session Is sent to MME200.
  • a session deletion request Delete Session Request
  • a session deletion response Delete Session Response
  • the session management unit 310 resets the session for UE 20 corresponding to the ESM Context based on the ESM Context included in the session generation request (Create Session Request) received from the MME200.
  • the session management unit 310 when the session management unit 310 receives a Delete Session Request including the device identifier (GUTI) of the UE 20, the device management unit 310 holds the device identifier held by the user device information holding unit 320 and the IP address assigned to the UE 20. Based on this, the session can be reset.
  • GUI device identifier
  • User device information holding unit 320 holds information related to UE20. Specifically, user apparatus information holding section 320 holds the apparatus identifier (GUTI) of UE 20 and the IP address assigned to UE 20 in association with each other.
  • GUI apparatus identifier
  • the user device information holding unit 320 provides the GUTI and IP address of the UE 20 to the session management unit 310 based on a request from the session management unit 310.
  • the user device information holding unit 320 may delete the held GUTI and IP address.
  • FIG. 5 is a functional block configuration diagram of the UE 20. As shown in FIG. 5, the UE 20 includes a connection control unit 21 and an AS context holding unit 23.
  • the connection control unit 21 controls the connection between the UE 20 and the wireless network. Specifically, the connection control unit 21 controls the UE 20 to a connected state or an idle state.
  • connection control unit 21 when returning the UE 20 from the idle state to the connected state, the connection control unit 21 returns the UE 20 to the connected state using the AS Context of the UE 20 held in the AS context holding unit 23.
  • the AS context holding unit 23 holds the AS Context of UE20. Specifically, the AS context holding unit 23 holds the AS Context of the UE 20 when the connection control unit 21 causes the UE 20 to transition from the connected state to the idle state.
  • the AS context holding unit 23 may erase the held AS Context when the UE 20 returns from the idle state to the connected state.
  • FIG. 6 shows an AS Context processing sequence (S1 interface radio access bearer release procedure) when UE 20 transitions from a connected state to an idle state.
  • FIG. 7 shows an AS Context processing sequence (service request procedure) when the UE 20 returns from the idle state to the connected state.
  • UE 20 is assumed to be an MTC terminal that transmits a small amount of data.
  • FIGS. 8A to 8C are explanatory diagrams of the holding state of the AS Context when the UE 20 transitions from the connected state to the idle state and then returns to the connected state.
  • eNB 100 determines to transition UE 20 to the idle state (steps). 1). Note that reasons for determining that UE 20 is to be shifted to the idle state include that user data transmitted / received by UE 20 has not occurred for a certain period of time, and that it is based on a request from UE 20 or the core network side.
  • ENB100 transmits / receives a command related to the release of MME200 and UE Context (steps 2 to 4). Such processing is defined in 3GPP TS23.401 Section 5.3.5.
  • UE Context Release Complete that eNB100 transmits to MME200 includes AS20Context of UE20.
  • AS Context is a key, algorithm, sequence number, and the like used for establishing security in the AS.
  • ENB100 will perform the release procedure of UE20 and RRC
  • the MME 200 executes a radio access bearer release procedure for the UE 20 (steps 6 and 7). Such processing is also defined in 3GPP3TS23.401 Section 5.3.5.
  • the UE 20 transitions from the connected state to the idle state.
  • the UE 20 holds and stores the AS Context at the time of completion (step 8a).
  • the MME 200 also holds and stores the AS ⁇ Context of the UE 20 at the time of completion (step 8b).
  • the UE 20 when the UE 20 is in a connected state, the UE 20 holds the NAS Context, the AS Context, and the ESM Context of the UE20.
  • AS100Context of UE20 is held.
  • the MME 200 holds the NAS 20 Context of the UE 20
  • the S / PGW 300 holds the ESM Context of the UE 20.
  • the AS Context held in the eNB 100 is transferred to the MME 200 as shown in FIG.
  • the MME 200 holds, that is, stores and stores the transferred AS Context.
  • the UE 20 determines to transmit a small amount of data, or , It decides to respond to paging (calling) to UE 20 (step 1). Specifically, the NAS of the UE 20 requests the AS connection setting for the AS.
  • UE 20 executes a random access procedure with eNB 100 (step 2, 3). Moreover, UE20 transmits RRC
  • Step 4 the UE 20 executes the Service Request procedure by transmitting a NAS Service request message to the eNB 100.
  • the message includes UE20 S-TMSI, AS sequence number (Seq #), security signature, and the like, and the NAS message is signed with information included in the AS Context held in UE20. .
  • ENB100 selects a corresponding MME based on S-TMSI received from UE20.
  • MME200 is selected.
  • the eNB 100 transmits an Initial UE message (NAS message) to the MME 200 (Step 5).
  • NAS message Initial UE message
  • the MME 200 determines the validity of the Initial UE message by confirming the signature information included in the Initial UE message. When the Initial UE message is valid, the MME 200 transmits an Initial Context Setup Request including the AS Context of the UE 20 to the eNB 100 (step 6).
  • the AS Context transmitted in step 6 is basically the same as the AS Context transmitted by the eNB 100 to the MME 200. However, the MME 200 may update the contents of the AS Context as necessary.
  • the MME 200 may update the content of the AS Context in order to prevent the security from being threatened.
  • MME200 may update the content of AS Context.
  • ENB100 confirms the validity of RRC ConnectionRequest received from UE20 based on the received ASContext. If the RRC Connection Request is valid, the eNB 100 sets the RRC Connection with the UE 20 (steps 7 and 8).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • AS Context for UE20.
  • NAS of UE20 also changes to the EMM connection state (EMM Connected).
  • Steps 9 to 12 are the same as those specified in 3GPP TS23.401 Section 5.3.4.1.
  • the bearer (communication path) for UE 20 is reset, and transfer of data in the uplink direction or the downlink direction is started.
  • the MME 200 may delete the AS Context after returning the AS Context.
  • FIG. 9 shows an ESM Context processing sequence (S1 interface radio access bearer release procedure) when UE 20 transitions from the connected state to the idle state.
  • FIG. 10 shows an ESM Context processing sequence (service request procedure) when the UE 20 returns from the idle state to the connected state. Even in the processing sequence, the UE 20 assumes an MTC terminal that transmits a small amount of data.
  • FIGS. 11A to 11C are explanatory diagrams of the ESM ⁇ Context holding state when the UE 20 transitions from the connected state to the idle state and then returns to the connected state.
  • the MME 200 transmits a Delete Session Request including the Globally Unique Temporary ID (GUTI) of the UE 20 to the S / PGW 300 (Step 6).
  • the S / PGW 300 that received the Delete Session Request is associated with the UE20, that is, the GTP-C (GPRS Tunneling Protocol-Control Plane) session and GTP-U (GPRS Tunneling Protocol-User Plane) session for the UE20. delete.
  • GTP-C GPRS Tunneling Protocol-Control Plane
  • GTP-U GPRS Tunneling Protocol-User Plane
  • S / PGW300 When S / PGW300 deletes the GTP-C session and GTP-U session, S / PGW300 transmits Delete Session Response including ESM Context of UE20 to MME200 (step 7).
  • S / PGW300 deletes the ESM Context.
  • the S / PGW 300 holds only the association (mapping) of the GUTI and IP address of the UE 20 (step 8).
  • MME200 holds and stores the ESM Context included in the received Delete Session Response. (Step 9).
  • FIG. 11 (a) is the same as FIG. 8 (a). That is, when the UE 20 is in a connected state, the UE 20 holds the NAS Context, the AS Context, and the ESM Context of the UE20. In eNB100, AS100Context of UE20 is held. Furthermore, the MME 200 holds the NAS 20 Context of the UE 20, and the S / PGW 300 holds the ESM Context of the UE 20.
  • the ESM ⁇ Context held in the S / PGW 300 is transferred to the MME 200 as shown in FIG.
  • the MME 200 holds, that is, stores and stores the transferred ESM Context.
  • S / PGW 300 receives the downlink IP packet addressed to UE 20 (step 1). As described above, the S / PGW 300 deletes the ESM Context of the UE 20 after sending Delete Session Response, and holds only the association between the GUTI and IP address of the UE 20. Therefore, the S / PGW 300 selects an MME that should transmit Downlink Data Notification based on the GUTI. Here, it is assumed that MME200 is selected.
  • S / PGW 300 transmits Downlink Data Notification including GUTI to MME 200 (step 2).
  • a default GTP-C session set between the MME 200 and the S / PGW 300 can be used for transmission of Downlink Data Notification.
  • the MME 200 transmits Downlink Data Notification Ack, which is an affirmative response to Downlink Data Notification, to the S / PGW 300 (Step 3). Further, the MME 200 performs paging for the UE 20 based on the received Downlink Data Notification (step 4).
  • Steps 5 to 8 are the same as those specified in 3GPP TS23.401 Section 5.3.4.1.
  • the MME 200 that has received the Initial Context Setup Complete transmits a Create Session Request that requests setting of a session for the UE 20 to the S / PGW 300 (step 9).
  • Create Session Request includes ESM context, UE20 IMSI (International Mobile Subscriber Identity) and GUTI.
  • the GUTI is used by the S / PGW 300 to specify a user apparatus that should update the UE Context.
  • S / PGW 300 sends Create Session Response, which is a response to Create Session Request, to MME 200 (Step 10). Also, the S / PGW 300 reconfigures the GTP-C session (tunnel) for the UE 20 with the MME 200 based on the association between the ESM Context and the GUTI and the IP address assigned to the UE 20, and for the UE 20 The GTP-U session (tunnel) is reconfigured with eNB100 (steps 11 and 12).
  • the ESM Context held in the MME 200 is returned to the S / PGW 300.
  • the MME 200 may delete the S / PGW 300 after the S / PGW 300 is returned.
  • Operation example 3 This operation example is a combination of the above-described operation example 1 and operation example 2. That is, the AS Context processing sequence shown in FIGS. 6 to 7 and the ESM Context processing sequence shown in FIGS. 9 to 10 are executed in parallel.
  • 12 (a) to 12 (c) are explanatory diagrams of the holding state of the AS Context and ESM Context when the UE 20 transitions from the connected state to the idle state and then returns to the connected state.
  • FIG. 12 (a) is the same as FIG. 8 (a) and FIG. 11 (a). That is, when the UE 20 is in a connected state, the UE 20 holds the NAS Context, the AS Context, and the ESM Context of the UE20. In eNB100, AS100Context of UE20 is held. Furthermore, the MME 200 holds the NAS 20 Context of the UE 20, and the S / PGW 300 holds the ESM Context of the UE 20.
  • the AS Context held by the eNB 100 is transferred to the MME 200 as shown in FIG. Also, the ESM Context held in the S / PGW 300 is also transferred to the MME 200.
  • the AS Context is held in the MME 200, even when the eNB that is the connection destination when the UE 20 returns to the connected state is different from the eNB when the UE transitions to the idle state, the AS Context is When returning, it can be immediately provided to the eNB that is the connection destination. Thereby, even when a huge number of UEs are connected to the wireless network like CIoT, it is possible to quickly and surely return the idle UEs to the connected state.
  • the storage capacity for AS Context required in the eNB100 can be greatly reduced. Furthermore, it is preferable from the viewpoint of improving security to prevent the eNB 100 from storing information related to security such as AS Context.
  • the MME 200 having a larger equipment scale than the eNB 100 is generally more reliable than the eNB 100, and thus is preferable to the eNB 100 as a device that holds the AS Context.
  • the AS Context is included in UE Context Release Complete and Initial Context Setup Request. For this reason, it is possible to quickly and surely return the idle UE to the connected state while utilizing the existing procedure defined in 3GPP.
  • the ESM Context of the UE 20 is transferred from the S / PGW 300 to the MME 200.
  • the ESM ⁇ ⁇ Context is returned from the MME 200 to the S / PGW 300.
  • S / PGW300 is a C-plane such as session management. Although it is preferable to eliminate the processing and specialize in U-plane processing, according to the operation example 2, such function separation can be realized.
  • the MME 200 centrally holds and manages UE Context (AS Context and ESM Context) related to the UE20. For this reason, it is possible to reduce the need to manage UE Context in a plurality of devices in a distributed manner, which can contribute to flexibility in adapting to future wireless network architectures.
  • UE Context AS Context and ESM Context
  • the existing S1 interface is continuously used, the C-plane processing is concentrated on the MME 200, and the U-plane processing is concentrated on the S / PGW 300. Since it can be implemented, it is considered to be highly compatible with the future (5G) network concept that will develop in the future.
  • the UE 20 AS Context is included in the UE Context Release Complete and Initial Context Setup Request, but such an operation is not essential.
  • the AS Context may be included in messages other than UE Context Release Complete and Initial Context Setup Request specified in 3GPP, or a new message for transferring the AS Context may be defined. Also good.
  • the S / PGW 300 holds the association (mapping) of the GUTI and IP address of the UE 20, but such an operation is not essential.
  • the S / PGW 300 may be configured such that information capable of realizing the association is provided from another device.
  • the wireless communication system 10 has been described as compliant with the specification defined by the 3rd Generation Generation Partnership Project (3GPP) (for example, LTE).
  • 3GPP 3rd Generation Generation Partnership Project
  • LTE Long Term Evolution
  • the wireless communication system 10 does not necessarily have such a specification. It does not matter if it does not comply with.
  • each functional block is realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by the plurality of devices.
  • FIG. 13 is a diagram illustrating an example of a hardware configuration of the UE 20, the eNB 100, the MME 200, and the S / PGW 30.
  • the UE 20, eNB 100, MME 200, and S / PGW 30 are configured as computer devices including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Also good.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the memory 1002 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code) that can execute the method according to the above-described embodiment, a software module, and the like.
  • the storage 1003 is a computer-readable recording medium such as an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (eg a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the above-described storage medium may be, for example, a database, a server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, or the like) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC signaling, MAC (Medium Access Control) signaling, broadcast information (MIB ( Master (Information Block), SIB (System Information Block)), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, eg, RRC Connection Connection message, RRC It may be a Connection ⁇ ⁇ Reconfiguration message.
  • RRC messages eg, RRC Connection Connection message, RRC It may be a Connection ⁇ ⁇ Reconfiguration message.
  • input / output information may be stored in a specific location (for example, a memory) or may be managed by a management table.
  • the input / output information can be overwritten, updated, or appended.
  • the output information may be deleted.
  • the input information may be transmitted to other devices.
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • system and “network” may be used interchangeably.
  • the parameters described above may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • ENB 100 can accommodate one or a plurality of (for example, three) cells (also referred to as sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, indoor small base station RRH: Remote Radio Head) can also provide communication services.
  • a base station subsystem eg, indoor small base station RRH: Remote Radio Head
  • cell refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
  • base station eNB
  • cell ector
  • a base station may also be referred to in terms such as a fixed station (fixed station), NodeB, eNodeB (eNB), access point (access point), femto cell, small cell, and the like.
  • UE20 is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal by those skilled in the art , Remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • One aspect of the present invention includes a radio base station (eNB100) that performs radio communication with a user apparatus (UE20) via an access layer (AS), a mobility management entity (MME200) that manages mobility of the user apparatus, A wireless communication system (wireless communication system 10), wherein the wireless base station controls a state control unit (state control unit 110) that controls the user device to a connected state or an idle state, and the user device connects to the connection A context transfer unit (AS context transfer unit 120) that transfers an AS context, which is a context of the access layer between the user apparatus and the radio base station, to the mobility management entity when the state transits to the idle state
  • the mobility management entity includes a context holding unit (AS coordinator) that holds the AS context transferred from the radio base station.
  • AS coordinator context holding unit
  • AS context a context transmission unit that transmits the AS context held in the context holding unit to the radio base station in response to the AS context acquisition request from the radio base station.
  • state control unit uses the AS context transmitted from the mobility management entity to return the user apparatus to the connected state.
  • the context transfer unit includes the AS context in the message (UE Context Release Complete) indicating that the release of the context related to the user apparatus is completed, thereby including the AS context in the mobility management entity. You may forward to.
  • the context transmission unit transmits the AS context to the radio base station by including the AS context in a message (Initial Context Setup Request) for requesting setting of a context regarding the user apparatus. May be.
  • One aspect of the present invention is a radio base station that performs radio communication with a user apparatus via an access layer, the state control unit controlling the user apparatus to a connection state or an idle state, and the user apparatus Context transfer that transfers an AS context that is a context of the access layer between the user equipment and the radio base station to a mobility management entity that manages mobility of the user equipment when transitioning from a state to the idle state And the state control unit returns the user apparatus to the connected state using the AS context transmitted from the mobility management entity.
  • One aspect of the present invention is a mobility management entity that manages mobility of a user apparatus that performs radio communication with a radio base station via an access layer, the access between the user apparatus and the radio base station.
  • An AS context that is a layer context, the context holding unit holding the AS context transferred from the radio base station, and the context holding unit in response to the AS context acquisition request from the radio base station and a context transmission unit that transmits the AS context held in the radio base station to the radio base station.
  • One aspect of the present invention is a user apparatus (UE20) that performs radio communication with a radio base station via an access layer, and a connection control unit (connection control unit 21) that controls the user apparatus to a connected state or an idle state ) And a context that holds an AS context that is a context of the access layer between the user apparatus and the radio base station when the user apparatus transitions from the connected state to the idle state by the connection control unit
  • the gist is to include a holding unit (AS context holding unit 23).
  • connection control unit when the connection control unit returns the user device from the idle state to the connection state, the connection control unit uses the AS context held in the context holding unit to The gist is to return to the connected state.
  • One aspect of the present invention is a communication control method using a radio base station that performs radio communication with a user apparatus via an access layer, and a mobility management entity that manages mobility of the user apparatus.
  • the radio base station transfers an AS context that is a context of the access layer between the user apparatus and the radio base station to the mobility management entity;
  • the mobility management entity transmits the AS context to the radio base station in response to the AS context acquisition request from the radio base station, and the radio base station is transmitted from the mobility management entity.
  • Using the AS context to return the user equipment to the connected state. And effect.
  • One aspect of the present invention is a radio including a gateway device (S / PGW300) that routes packet data transmitted or received by a user apparatus (UE20), and a mobility management entity (MME200) that manages mobility of the user apparatus.
  • the gateway device receives a session deletion request (Delete Session Request) requesting deletion of a session for the user device from the mobility management entity
  • the gateway device manages A session management unit (session management unit 310) that transmits a session deletion response (Delete Session Response) including a context (ESM Context) to the mobility management entity
  • the mobility management entity includes the management included in the session deletion response Context holder that holds the context (ESM And a session generation request (Create Session Request) including the management context held by the context holding unit in response to the start of the process in which the user apparatus returns from the idle state to the connected state.
  • a session control unit (session control unit 240) for transmitting to the gateway device, wherein the session management unit retransmits the
  • the gateway device stores a user information holding unit (user device information holding unit 320) that holds a device identifier that is an identifier of the user device and an IP address assigned to the user device in association with each other.
  • the session management unit receives the session deletion request including the device identifier, and the session control unit transmits the session generation request including the management context and the device identifier to the gateway device, The session management unit may reset the session based on the device identifier and the IP address held by the user information holding unit.
  • One aspect of the present invention is a gateway device that routes packet data transmitted or received by a user apparatus, and manages the mobility of the user apparatus for a session deletion request that requests deletion of a session for the user apparatus.
  • a gist is provided with a session management unit that, when received from the mobility management entity, transmits a session deletion response including the management context of the session to the mobility management entity.
  • a user information holding unit that holds a device identifier that is an identifier of the user device and an IP address assigned to the user device in association with each other, and the session management unit includes the device identifier
  • the session management unit may reset the session based on the device identifier and the IP address held by the user information holding unit.
  • One aspect of the present invention is a mobility management entity that manages the mobility of a user device, the context holding unit holding a session management context for the user device, and the user device returning from an idle state to a connected state
  • a session control unit that transmits a session generation request including the management context held by the context holding unit to a gateway device that routes packet data transmitted or received by the user device in response to the start of processing to be performed.
  • the management context may be included in a session deletion response that is a response from the gateway device to a session deletion request for requesting deletion of a session for the user device.
  • the session control unit may transmit the session generation request including the management context and a device identifier that is an identifier of the user device to the gateway device.
  • One aspect of the present invention is a communication control method using a gateway device that routes packet data transmitted or received by a user device and a mobility management entity that manages mobility of the user device, the gateway device comprising: And a step of transmitting a session deletion response including a management context of the session to the mobility management entity when a session deletion request for requesting deletion of the session for the user equipment is received from the mobility management entity; Transmitting a session generation request including the management context to the gateway device in response to the start of processing for the user device to return from an idle state to a connected state; and the gateway device receives from the mobility management entity Before Based on the management context included in the session creation request, and summarized in that comprising the step of resetting the session.
  • the session deletion request includes a device identifier that is an identifier of the user device
  • the session generation request includes the management context and the device identifier
  • the gateway device includes the device identifier and Further comprising the step of associating an IP address assigned to the user device, wherein in the step of resetting the session, the gateway device resets the session based on the device identifier and the IP address. Also good.
  • the gateway device According to the wireless communication system, the gateway device, the mobility management entity, and the communication control method described above, a large number of user devices (UEs) such as CIoT can be obtained while ensuring flexibility in supporting a future wireless network architecture. Even when connected to a wireless network, a quick return from an idle state to a connected state can be realized.
  • UEs user devices
  • Wireless communication system 20 UE 21 Connection control unit 23 AS context holding unit 30 Internet 100 eNB 110 Status control unit 120 AS context transfer unit 200 MME 210 AS context holding unit 220 AS context sending unit 230 ESM context holding unit 240 Session control unit 300 S / PGW 310 Session management unit 320 User device information storage unit

Abstract

将来の無線ネットワークアーキテクチャへの対応の柔軟性を確保しつつ、CIoTのように膨大な数のユーザ装置(UE)が無線ネットワークに接続される場合でも、迅速なアイドル状態から接続状態への復帰を実現し得る無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法を提供する。通信制御方法は、S/PGWが、UE用のセッションの削除を要求するセッション削除要求をMMEから受信した場合、セッションのESM Contextを含むセッション削除応答をMMEに送信するステップと、MMEが、UEがアイドル状態から接続状態に復帰する処理の開始に応じて、ESM Contextを含むセッション生成要求をS/PGWに送信するステップと、S/PGWが、MMEから受信したセッション生成要求に含まれるESM Contextに基づいて、セッションを再設定するステップとを含む。

Description

無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法
 本発明は、Cellular Internet of Things(CIoT)に対応可能な無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法に関する。
 3rd Generation Partnership Project(3GPP)では、Machine Type Communications(MTC)端末など、従来の移動通信端末だけでなく、様々な種類のユーザ装置(UE)の接続に最適化されたCellular Internet of Things(CIoT)を実現するための技術検討が進められている(例えば、非特許文献1)。
 このような技術検討の中で、CIoT用の無線アクセスネットワーク(CIoT RAT)と、CIoT用のコアネットワーク(CIoT CN)とのインターフェイス(S1)を介して、これまでと同様に、C-plane及びU-planeの情報を送受信することが提案されている。このような提案によれば、既存のコアネットワークとの親和性が高く、CIoTへの移行も容易であると考えられている。
3GPP TR 23.720 V0.1.0 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements for Cellular Internet of Things; (Release 13)、3GPP、2015年7月
 上述したように、CIoTには、膨大な数のUE(CIoT UE)が接続されることが想定されている。このため、現状のLong Term Evolution(LTE)の仕様を踏襲した場合、次のような問題が生じる。
 すなわち、UEが、無線ネットワーク(無線アクセスネットワーク及びコアネットワーク)と接続された接続状態から、当該無線ネットワークと接続されていないアイドル状態に遷移した場合でも、当該UEのセッション管理のためのコンテキスト、具体的には、EPS Session Management(ESM)コンテキストは、消去されずにServing Gateway/Packet Data Network Gateway(SGW/PGW)に一定期間残存する。
 このため、CIoTのように、膨大な数のUEが接続される場合には、ESM Contextを保持及び管理するため、SGW/PGWの設備規模を大幅に増強しなければならない。一方で、SGW/PGWの主な機能がパケットデータのルーティングであること、及び将来の無線ネットワーク(例えば、5G)アーキテクチャへの対応の柔軟性を考慮すると、SGW/PGWは、セッション管理などのC-planeの処理を排除し、U-planeの処理に特化することが好ましいと考えられる。
 勿論、UEがアイドル状態に遷移した場合には、当該UE用のESM Contextを削除することも考えられるが、当該UEが接続状態に復帰する際にセッションの再設定に長い時間を要するようになる別の問題を引き起こす。
 そこで、本発明は、このような状況に鑑みてなされたものであり、将来の無線ネットワークアーキテクチャへの対応の柔軟性を確保しつつ、CIoTのように膨大な数のユーザ装置(UE)が無線ネットワークに接続される場合でも、迅速なアイドル状態から接続状態への復帰を実現し得る無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法の提供を目的とする。
 本発明の一態様に係わる無線通信システムは、ユーザ装置が送信または受信するパケットデータをルーティングするゲートウェイ装置と、前記ユーザ装置の移動性を管理する移動管理エンティティとを含む。前記ゲートウェイ装置は、前記ユーザ装置用のセッションの削除を要求するセッション削除要求を前記移動管理エンティティから受信した場合、前記セッションの管理コンテキストを含むセッション削除応答(Delete Session Response)を前記移動管理エンティティに送信するセッション管理部を備える。前記移動管理エンティティは、前記セッション削除応答に含まれる前記管理コンテキストを保持するコンテキスト保持部と、前記ユーザ装置がアイドル状態から接続状態に復帰する処理の開始に応じて、前記コンテキスト保持部によって保持されている前記管理コンテキストを含むセッション生成要求を前記ゲートウェイ装置に送信するセッション制御部とを備える。前記セッション管理部は、前記移動管理エンティティから受信した前記セッション生成要求に含まれる前記管理コンテキストに基づいて、前記セッションを再設定する。
図1は、無線通信システム10の全体概略構成図である。 図2は、eNB100の機能ブロック構成図である。 図3は、MME200の機能ブロック構成図である。 図4は、S/PGW300の機能ブロック構成図である。 図5は、UE20の機能ブロック構成図である。 図6は、UE20が接続状態からアイドル状態に遷移した場合におけるAS Contextの処理シーケンスを示す図である。 図7は、UE20がアイドル状態から接続状態に復帰する場合におけるAS Contextの処理シーケンスを示す図である。 図8は、UE20が接続状態からアイドル状態に遷移し、その後接続状態に復帰した場合におけるAS Contextの保持状態の説明図(動作例1)である。 図9は、UE20が接続状態からアイドル状態に遷移した場合におけるESM Contextの処理シーケンスを示す図である。 図10は、UE20がアイドル状態から接続状態に復帰する場合におけるESM Contextの処理シーケンスを示す図である。 図11は、UE20が接続状態からアイドル状態に遷移し、その後接続状態に復帰した場合におけるESM Contextの保持状態の説明図(動作例2)である。 図12は、図12は、UE20が接続状態からアイドル状態に遷移し、その後接続状態に復帰した場合におけるAS Context及びESM Contextの保持状態の説明図(動作例3)である。 図13は、UE20、eNB100、MME200及びS/PGW300のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、3rd Generation partnership Project(3GPP)によって規定される仕様に準拠(例えば、Long Term Evolution(LTE))している。
 特に、本実施形態では、無線通信システム10は、様々な種類のユーザ装置20(以下、UE20)の接続に最適化されたCellular Internet of Things(CIoT)に対応する。CIoTでは、Machine Type Communications(MTC)端末など、膨大な数のUE20が、無線通信システム10によって構成される無線ネットワークに接続されることを前提としている。MTC端末などのUE20は、少量のデータを送信することが特徴である。
 図1に示すように、無線通信システム10は、UE20、無線基地局100(以下、eNB100)、移動管理エンティティ200(以下、MME200)、及びServing-Gateway/Packet Data Network-Gateway 300(以下、S/PGW300)を含む。
 UE20は、LTEなどの無線アクセス技術(RAT)に従った無線通信をeNB100と実行する。具体的には、UE20は、UE20とeNB100との間における機能レイヤであるアクセス層(Access Stratum(AS))を介してeNB100と無線通信を実行する。
 eNB100も、当該RATに従った無線通信、つまり、ASを介してUE20と無線通信を実行する。上述したように、UE20は、MTC端末やスマートフォンなどを含む様々な種類の端末であり、多数のUE20が無線通信システム10に接続して通信を実行する。
 MME200は、UE20の移動性を管理する。具体的には、MME200は、S1-MMEインターフェイスを介してeNB100を収容し、UE20の移動性管理、認証(セキュリティ制御)及びユーザデータの転送経路の設定処理などを実行する。
 S/PGW300(SGW)は、UE20が送信または受信するパケットデータ(ユーザデータ)をルーティングする在圏(サービング)パケットゲートウェイである。S/PGW300(SGW)は、eNB100との間で当該ユーザデータを送受信するとともに、接続する外部パケットネットワーク(PDN)単位の通信経路を設定する。
 また、S/PGW300(PGW)は、インターネット30と接続し、IPアドレスの割り当てなどを実行する。S/PGW300(PGW)は、UE20が、3GPPの仕様に準拠した無線通信システム10から非3GPP無線通信システム(無線LANなど)に移動する場合におけるユーザデータ転送の切替ポイントとなる。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、eNB100、MME200、S/PGW300及びUE20の機能ブロック構成について説明する。
 (2.1)eNB100
 図2は、eNB100の機能ブロック構成図である。図2に示すように、eNB100は、状態制御部110及びASコンテキスト転送部120を備える。
 状態制御部110は、UE20の状態を制御する。具体的には、状態制御部110は、UE20をアイドル状態または接続状態に制御する。アイドル状態とは、UE20がData Radio Bearer(DRB、データ無線ベアラ)を有さず、当該データ無線ベアラによって無線ネットワークと接続していない状態である。また、接続状態とは、eNB100を介してデータ無線ベアラを有し、当該データ無線ベアラによって無線ネットワークと接続している状態である。無線ネットワークとは、無線通信システム10が構成する無線アクセスネットワーク及びコアネットワークを意味する。
 具体的には、アイドル状態とは、データ無線ベアラを有しないため、ASにおける設定が解放されている状態である。一方、接続状態とは、データ無線ベアラを有するため、ASの接続設定が完了している状態、つまり、AS Contextも有している状態である。
 また、状態制御部110は、MME200から送信されたUE20のAS Contextを受信することができる。状態制御部110は、受信した当該AS Contextを用いて、UE20を接続状態、具体的には、ユーザデータの通信可能な接続状態に復帰させる。
 AS Contextとは、UE20~eNB100間におけるASのコンテキストであり、AS部分におけるデータ通信用のセキュリティ確立に用いられる鍵、アルゴリズム及びシーケンス番号などである。
 ASコンテキスト転送部120は、UE20のAS ContextをMME200に転送する。具体的には、ASコンテキスト転送部120は、UE20が接続状態からアイドル状態に遷移した場合、UE20のAS ContextをMME200に転送する。
 具体的には、ASコンテキスト転送部120は、UE20に関するコンテキスト(UE Context)の解放が完了したことを示すメッセージ(UE Context Release Complete)にUE20のAS Contextを含めることによって、当該AS ContextをMME200に転送する。
 (2.2)MME200
 図3は、MME200の機能ブロック構成図である。図3に示すように、MME200は、ASコンテキスト保持部210、ASコンテキスト送信部220、ESMコンテキスト保持部230及びセッション制御部240を備える。
 ASコンテキスト保持部210は、eNB100から転送されたUE20のAS Contextを保持する。具体的には、ASコンテキスト保持部210は、転送されたUE20のAS Contextを当該UE20の識別子(例えば、S-TMSI(Temporary Mobile Subscriber Identity)と対応付けて保持する。
 なお、ASコンテキスト保持部210は、ASコンテキスト送信部220がAS ContextをeNB100に送信した後、保持していたAS Contextを消去してもよい。
 ASコンテキスト送信部220は、eNB100からのAS Contextの取得要求に応じて、ASコンテキスト保持部210に保持されているAS ContextをeNB100に送信する。
 具体的には、ASコンテキスト送信部220は、UE20のUE Contextの設定を要求するメッセージ(Initial Context Setup Request)にAS Contextを含めることによって、UE20のAS ContextをeNB100に送信する。
 ESMコンテキスト保持部230は、UE20用のセッションの管理コンテキストを保持する。具体的には、ESMコンテキスト保持部230は、S/PGW300から送信されるセッション削除応答(Delete Session Response)に含まれるESM Contextを保持する。
 ESM Contextとは、EPS Session Management(ESM)のコンテキストであり、ESM Contextには、コアネットワーク、具体的には、UE20とS/PGW300(PGW)との間において設定されるEPSベアラやセッション確立に関する情報などが含まれる。
 なお、ESMコンテキスト保持部230は、UE20がアイドル状態から接続状態に復帰した場合、保持していたESM Contextを消去してもよい。
 セッション制御部240は、UE20用のセッションを制御する。具体的には、セッション制御部240は、ESMに基づいてUE20用のセッションを制御する。
 特に、セッション制御部240は、UE20がアイドル状態から接続状態に復帰する処理の開始に応じて、ESMコンテキスト保持部230によって保持されているUE20のESM Contextを含むセッション生成要求(Create Session Request)をS/PGW300に送信する。
 具体的には、セッション制御部240は、UE20のESM Context、及びUE20の識別子である装置識別子を含むCreate Session RequestをS/PGW300に送信することができる。装置識別子(端末識別子)しては、例えば、Globally Unique Temporary ID(GUTI)を用いることができる。
 (2.3)S/PGW300
 図4は、S/PGW300の機能ブロック構成図である。図4に示すように、S/PGW300は、セッション管理部310及びユーザ装置情報保持部320を備える。
 セッション管理部310は、UE20用のセッションを管理する。具体的には、セッション管理部310は、UE20用のセッションの削除を要求するセッション削除要求(Delete Session Request)をMME200から受信した場合、当該セッションのESM Contextを含むセッション削除応答(Delete Session Response)をMME200に送信する。
 また、セッション管理部310は、MME200から受信したセッション生成要求(Create Session Request)に含まれるESM Contextに基づいて、当該ESM Contextと対応するUE20用のセッションを再設定する。
 また、セッション管理部310は、UE20の装置識別子(GUTI)を含むDelete Session Requestを受信した場合、ユーザ装置情報保持部320によって保持されている装置識別子と、UE20に割り当てられているIPアドレスとに基づいて当該セッションを再設定することができる。
 ユーザ装置情報保持部320は、UE20に関する情報を保持する。具体的には、ユーザ装置情報保持部320は、UE20の装置識別子(GUTI)とUE20に割り当てられているIPアドレスとを対応付けて保持する。
 ユーザ装置情報保持部320は、セッション管理部310からの要求に基づいて、UE20のGUTI及びIPアドレスをセッション管理部310に提供する。
 なお、ユーザ装置情報保持部320は、UE20がアイドル状態から接続状態に復帰した場合、保持していたGUTI及びIPアドレスを消去してもよい。
 (2.4)UE20
 図5は、UE20の機能ブロック構成図である。図5に示すように、UE20は、接続制御部21及びASコンテキスト保持部23を備える。
 接続制御部21は、UE20と無線ネットワークとの接続を制御する。具体的には、接続制御部21は、UE20を接続状態またはアイドル状態に制御する。
 より具体的には、接続制御部21は、UE20をアイドル状態から接続状態に復帰させる場合、ASコンテキスト保持部23に保持されているUE20のAS Contextを用いて、UE20を接続状態に復帰させる。
 ASコンテキスト保持部23は、UE20のAS Contextを保持する。具体的には、ASコンテキスト保持部23は、接続制御部21によって、UE20が接続状態からアイドル状態に遷移した場合、UE20のAS Contextを保持する。
 なお、ASコンテキスト保持部23は、UE20がアイドル状態から接続状態に復帰した場合、保持していたAS Contextを消去してもよい。
 (3)無線通信システムの動作
 次に、上述した無線通信システム10の動作について説明する。具体的には、UE20が接続状態からアイドル状態に遷移した場合、及びその後接続状態に復帰した場合におけるAS Context及びESM Contextの処理に関する動作について説明する。
 (3.1)動作例1
 図6は、UE20が接続状態からアイドル状態に遷移した場合におけるAS Contextの処理シーケンス(S1インターフェイスの無線アクセスベアラ解放手順)を示す。また、図7は、UE20がアイドル状態から接続状態に復帰する場合におけるAS Contextの処理シーケンス(サービスリクエスト手順)を示す。なお、当該処理シーケンスでは、UE20は、少量のデータを送信するMTC端末などを想定している。
 図8(a)~(c)は、UE20が接続状態からアイドル状態に遷移し、その後接続状態に復帰した場合におけるAS Contextの保持状態の説明図である。
 (3.1.1)接続状態からアイドル状態への遷移時
 図6に示すように、UE20が無線ネットワークと接続した接続状態において、eNB100は、UE20をアイドル状態に遷移させることを決定する(ステップ1)。なお、UE20をアイドル状態に遷移させることを決定する理由としては、UE20が送受信するユーザデータが一定期間発生していないことや、UE20またはコアネットワーク側からのからの要求に基づくことが挙げられる。
 eNB100は、MME200とUE Contextの解放に関するコマンドを送受信する(ステップ2~4)。なお、このような処理は、3GPP TS23.401 Section 5.3.5に規定されている。
 この中で、eNB100がMME200に送信するUE Context Release Completeには、UE20のAS Contextが含まれる。なお、上述したように、AS Contextとは、ASにおけるセキュリティ確立に用いられる鍵、アルゴリズム及びシーケンス番号などである。
 eNB100は、MME200とのUE Contextの解放に関する処理が完了すると、UE20とRRC Connectionの解放手順を実行する(ステップ5)。
 また、MME200は、UE20に関する無線アクセスベアラの解放手順を実行する(ステップ6, 7)。なお、このような処理も、3GPP TS23.401 Section 5.3.5に規定されている。
 このような処理によって、UE20は、接続状態からアイドル状態に遷移する。UE20は、RRC Connectionの解放手順が完了すると、完了時点のAS Contextを保持し、格納する(ステップ8a)。
 同様に、MME200も、無線アクセスベアラの解放手順が完了すると、完了時点のUE20のAS Contextを保持し、格納する(ステップ8b)。
 図8(a)に示すように、UE20が接続状態の場合、UE20では、UE20のNAS Context、AS Context及びESM Contextが保持されている。また、eNB100では、UE20のAS Contextが保持されている。さらに、MME200では、UE20のNAS Contextが保持され、S/PGW300では、UE20のESM Contextが保持されている。
 UE20が接続状態からアイドル状態に遷移した場合、図8(b)に示すように、eNB100で保持されていた当該AS Contextは、MME200に転送される。MME200は、転送された当該AS Contextを保持、つまり、記憶して格納する。
 (3.1.2)アイドル状態から接続状態への復帰時
 図7に示すように、UE20が無線ネットワークと接続していないアイドル状態において、UE20は、少量のデータを送信することを決定、或いは、UE20に対するページング(呼び出し)に応答することを決定する(ステップ1)。具体的には、UE20のNASは、ASに対してAS connectionの設定を要求する。
 UE20は、eNB100とランダムアクセス手順を実行する(ステップ2, 3)。また、UE20は、RRC Connection RequestをeNB100に送信する(ステップ4)。
 ステップ4において、UE20は、NAS Service requestメッセージをeNB100に送信することによってService Request手順を実行する。当該メッセージには、UE20のS-TMSI、及びASのシーケンス番号(Seq#)、セキュリティシグネチャーなどが含まれるとともに、当該NASメッセージは、UE20に保持されたAS Contextに含まれる情報で署名されている。
 eNB100は、UE20から受信したS-TMSIに基づいて、該当するMMEを選択する。ここでは、MME200が選択されたものとする。eNB100は、Initial UE message(NAS message)をMME200に送信する(ステップ5)。このような処理は、3GPP TS23.401 Section 5.3.4.1に規定されている。
 MME200は、Initial UE messageに含まれる署名情報を確認することによって、当該Initial UE messageの正当を判定する。当該Initial UE messageが正当である場合、MME200は、UE20のAS Contextを含むInitial Context Setup RequestをeNB100に送信する(ステップ6)。
 ステップ6において送信されるAS Contextは、基本的に、eNB100がMME200に送信したAS Contextと同一である。但し、MME200は、必要に応じてAS Contextの内容を更新してもよい。
 例えば、一定時間以上、ASのセキュリティに関するコンテキストが変更されていない場合に、当該セキュリティが脅かされることを防止するために、MME200は、AS Contextの内容を更新してもよい。或いは、eNBが変更される際、当該eNBに新たな鍵を提供すると決定した場合、MME200は、AS Contextの内容を更新してもよい。
 eNB100は、受信したAS Contextに基づいて、UE20から受信したRRC Connection Requestの正当性を確認する。当該RRC Connection Requestが正当である場合、eNB100は、UE20とRRC Connectionを設定する(ステップ7, 8)。
 これにより、UE20用のSignaling Radio Bearer(SRB)、Data Radio Bearer(DRB)及びAS Contextが設定される。また、UE20のNASもEMM接続状態(EMM Connected)に遷移する。
 ステップ9~12は、3GPP TS23.401 Section 5.3.4.1に規定されている内容と同様である。このような処理によってUE20用のベアラ(通信路)が再設定され、上り方向または下り方向のデータの転送が開始される。
 また、図8(c)に示すように、UE20がアイドル状態から接続状態へ復帰した場合、MME200で保持されていたAS Contextは、eNB100に返送される。なお、MME200は、AS Contextの返送後、当該AS Contextを消去してもよい。
 (3.2)動作例2
 図9は、UE20が接続状態からアイドル状態に遷移した場合におけるESM Contextの処理シーケンス(S1インターフェイスの無線アクセスベアラ解放手順)を示す。また、図10は、UE20がアイドル状態から接続状態に復帰する場合におけるESM Contextの処理シーケンス(サービスリクエスト手順)を示す。なお、当該処理シーケンスでも、UE20は、少量のデータを送信するMTC端末などを想定している。
 図11(a)~(c)は、UE20が接続状態からアイドル状態に遷移し、その後接続状態に復帰した場合におけるESM Contextの保持状態の説明図である。
 以下、上述した動作例1と異なる部分について主に説明し、同様の部分については、その説明を適宜省略する。
 (3.2.1)接続状態からアイドル状態への遷移時
 図9に示すように、ステップ1~5の処理は、3GPP TS23.401 Section 5.3.5に規定されている内容と同様である。
 MME200は、UE20のGlobally Unique Temporary ID(GUTI)を含むDelete Session RequestをS/PGW300に送信する(ステップ6)。Delete Session Requestを受信したS/PGW300は、UE20と対応付けられている、つまり、UE20用のGTP-C(GPRS Tunneling Protocol-Control Plane)セッション及びGTP-U(GPRS Tunneling Protocol-User Plane)セッションを削除する。
 S/PGW300は、当該GTP-Cセッション及びGTP-Uセッションを削除すると、UE20のESM Contextを含むDelete Session ResponseをMME200に送信する(ステップ7)。
 また、S/PGW300は、当該ESM Contextを消去する。S/PGW300は、UE20のGUTI及びIPアドレスの対応付け(マッピング)のみを保持する(ステップ8)。
 MME200は、受信したDelete Session Responseに含まれているESM Contextを保持し、格納する。(ステップ9)。
 図11(a)は、図8(a)と同様である。すなわち、UE20が接続状態の場合、UE20では、UE20のNAS Context、AS Context及びESM Contextが保持されている。また、eNB100では、UE20のAS Contextが保持されている。さらに、MME200では、UE20のNAS Contextが保持され、S/PGW300では、UE20のESM Contextが保持されている。
 UE20が接続状態からアイドル状態に遷移した場合、図11(b)に示すように、S/PGW300で保持されていた当該ESM Contextは、MME200に転送される。MME200は、転送された当該ESM Contextを保持、つまり、記憶して格納する。
 (3.2.2)アイドル状態から接続状態への復帰時
 図10に示すように、ネットワーク主導によるService Requestの場合、ステップ1の処理から開始される。一方、UE20主導によるService Requestの場合、ステップ5の処理から開始される。以下では、ネットワーク主導によるService Requestの場合について説明する。
 S/PGW300は、UE20宛ての下り方向のIPパケットを受信する(ステップ1)。上述したように、S/PGW300は、Delete Session Responseの送信後、UE20のESM Contextを消去しており、UE20のGUTI及びIPアドレスの対応付けのみを保持している。そこで、S/PGW300は、当該GUTIに基づいてDownlink Data Notificationを送信すべきMMEを選択する。ここでは、MME200が選択されたものとする。
 S/PGW300は、GUTIを含むDownlink Data NotificationをMME200に送信する(ステップ2)。なお、Downlink Data Notificationの送信には、MME200とS/PGW300との間に設定されているデフォルトのGTP-Cセッションを用いることができる。
 MME200は、Downlink Data Notificationに対する肯定応答であるDownlink Data Notification AckをS/PGW300に送信する(ステップ3)。また、MME200は、受信したDownlink Data Notificationに基づいて、UE20に対するページングを実行する(ステップ4)。
 ステップ5~8は、3GPP TS23.401 Section 5.3.4.1に規定されている内容と同様である。Initial Context Setup Completeを受信したMME200は、UE20用のセッションの設定を要求するCreate Session RequestをS/PGW300に送信する(ステップ9)。Create Session Requestには、ESM Contextを始め、UE20のIMSI(International Mobile Subscriber Identity)及びGUTIが含まれる。当該GUTIは、S/PGW300が、UE Contextを更新すべきユーザ装置を特定するために用いられる。
 S/PGW300は、Create Session Requestに対する応答であるCreate Session ResponseをMME200に送信する(ステップ10)。また、S/PGW300は、ESM Context、及び当該GUTIとUE20に割り当てられているIPアドレスとを対応付けに基づいて、UE20用のGTP-Cセッション(トンネル)をMME200と再設定するとともに、UE20用のGTP-Uセッション(トンネル)をeNB100と再設定する(ステップ11, 12)。
 また、図11(c)に示すように、UE20がアイドル状態から接続状態へ復帰した場合、MME200で保持されていたESM Contextは、S/PGW300に返送される。なお、MME200は、S/PGW300の返送後、当該S/PGW300を消去してもよい。
 (3.3)動作例3
 本動作例は、上述した動作例1及び動作例2の組合せである。すなわち、図6~図7に示したAS Contextの処理シーケンスと、図9~図10に示したESM Contextの処理シーケンスとが、平行して実行される。
 すなわち、動作例3では、UE20が接続状態からアイドル状態に遷移すると、UE20のAS Context及びESM ContextがMME200によって保持される。また、動作例3では、UE20がアイドル状態から接続状態に復帰すると、MME200によって保持されていたAS ContextがeNB100に返送されるとともに、MME200によって保持されていたESM ContextがS/PGW300に返送される。
 図12(a)~(c)は、UE20が接続状態からアイドル状態に遷移し、その後接続状態に復帰した場合におけるAS Context及びESM Contextの保持状態の説明図である。
 図12(a)は、図8(a)及び図11(a)と同様である。すなわち、UE20が接続状態の場合、UE20では、UE20のNAS Context、AS Context及びESM Contextが保持されている。また、eNB100では、UE20のAS Contextが保持されている。さらに、MME200では、UE20のNAS Contextが保持され、S/PGW300では、UE20のESM Contextが保持されている。
 UE20が接続状態からアイドル状態に遷移した場合、図12(b)に示すように、eNB100で保持されていた当該AS Contextは、MME200に転送される。また、S/PGW300で保持されていた当該ESM ContextもMME200に転送される。このように、UE20がアイドル状態に遷移した場合、MME200がUE20に関するUE Contextを集中的に保持し、管理する。
 UE20がアイドル状態から接続状態へ復帰した場合、図12(c)に示すように、MME200で保持されていたAS Contextは、eNB100に返送されるとともに、MME200で保持されていたESM Contextは、S/PGW300に返送される。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、上述した動作例1によれば、UE20が接続状態からアイドル状態に遷移した場合、UE20のAS ContextがeNB100からMME200に転送される。また、UE20がアイドル状態から接続状態に復帰した場合、当該AS ContextがMME200からeNB100に返送される。
 このため、UE20が接続状態に復帰した場合に、eNB100とMME200との間において、改めてASに関する設定(セキュリティなど)を実行する必要がなく、速やかにUE20用のSignaling Radio Bearer(SRB)、Data Radio Bearer(DRB)及びAS Contextを再設定することができる。
 さらに、当該AS Contextは、MME200において保持されるため、UE20が接続状態に復帰する際に接続先となるeNBが、当該UEがアイドル状態に遷移した際のeNBと異なる場合でも、当該AS Contextを復帰する際に接続先となるeNBに即座に提供できる。これにより、CIoTのように膨大な数のUEが無線ネットワークに接続される場合でも、アイドル状態のUEを迅速かつ確実に接続状態に復帰させることができる。
 また、動作例1によれば、eNB100において必要となるAS Context用の記憶容量を大幅に低減できる。さらに、eNB100にAS Contextなどのセキュリティに関する情報を記憶させないようにすることは、セキュリティ向上の観点からも好ましい。また、設備規模がeNB100よりも大きいMME200は、一般的に信頼性が高いことからも、AS Contextを保持しておく装置としては、eNB100よりも好ましい。
 動作例1では、UE Context Release Complete及びInitial Context Setup Requestに当該AS Contextが含められている。このため、3GPPにおいて規定されている既存の手順を活用しつつ、アイドル状態のUEを迅速かつ確実に接続状態に復帰させることができる。
 次に、上述した動作例2によれば、UE20が接続状態からアイドル状態に遷移した場合、UE20のESM ContextがS/PGW300からMME200に転送される。また、UE20がアイドル状態から接続状態に復帰した場合、当該ESM ContextがMME200からS/PGW300に返送される。
 このため、UE20が接続状態に復帰した場合に、MME200とS/PGW300の間において、改めてASに関する設定を実行する必要がなく、速やかにUE20用のセッション(GTP-C, GTP-U)を再設定することができる。
 また、動作例2によれば、S/PGW300において必要となるESM Context用の記憶容量を大幅に低減できる。このため、S/PGW300の設備規模を抑制できる。S/PGW300の主な機能がパケットデータのルーティングであること、及び将来の無線ネットワーク(例えば、5G)アーキテクチャへの対応の柔軟性を考慮すると、S/PGW300は、セッション管理などのC-planeの処理を排除し、U-planeの処理に特化することが好ましいが、動作例2によれば、このような機能分離を実現し得る。
 また、動作例3によれば、MME200がUE20に関するUE Context(AS Context及びESM Context)を集中的に保持し、管理する。このため、UE Contextを複数の装置において分散して管理する必要性を低減でき、将来の無線ネットワークアーキテクチャへの対応の柔軟性に寄与し得る。
 さらに、動作例1~動作例3によれば、既存のS1インターフェイスを継続利用して、C-planeの処理をMME200に集中させて実行し、U-planeの処理をS/PGW300に集中させて実行することができるため、今後発展して行く将来(5G)ネットワーク構想との親和性も高いと考えられる。
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した動作例1では、UE Context Release Complete及びInitial Context Setup RequestにUE20のAS Contextが含められていたが、このような動作は、必須ではない。つまり、当該AS Contextは、3GPPにおいて規定されているUE Context Release Complete及びInitial Context Setup Request以外の他のメッセージに含められてもよいし、当該AS Contextを転送するための新規なメッセージを定義してもよい。
 また、上述した動作例2では、S/PGW300が、UE20のGUTI及びIPアドレスの対応付け(マッピング)を保持していたが、このような動作も必須ではない。例えば、S/PGW300は、当該対応付けを実現可能な情報が他の装置から提供されるような形態でも構わない。
 上述した実施形態では、無線通信システム10が、3rd Generation partnership Project(3GPP)によって規定される仕様に準拠(例えばLTE)しているものとして説明したが、無線通信システム10は、必ずしもこのような仕様に準拠していなくても構わない。
 また、上述した実施形態の説明に用いたブロック図は、機能ブロック図を示している。これらの機能ブロック(構成部)は、ハードウェア及び/またはソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/または論理的に結合した1つの装置により実現されてもよいし、物理的及び/または論理的に分離した2つ以上の装置を直接的及び/または間接的に(例えば、有線及び/または無線)で接続し、これら複数の装置により実現されてもよい。
 また、上述したUE20、eNB100、MME200及びS/PGW300は、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、UE20、eNB100、MME200及びS/PGW30のハードウェア構成の一例を示す図である。図13に示すように、UE20、eNB100、MME200及びS/PGW30は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)で構成されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、上述した実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/またはストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/または無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、情報の通知は、上述した実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRCシグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC Connection Setupメッセージ、RRC Connection Reconfigurationメッセージなどであってもよい。
 さらに、入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 上述した実施形態におけるシーケンス及びフローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。
 また、本明細書で説明した用語及び/または本明細書の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/またはシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、「システム」及び「ネットワーク」という用語は、互換的に使用されてもよい。
 さらに、上述したパラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 eNB100(基地局)は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」「eNB」、「セル」、及び「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 UE20は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 さらに、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形の用語は、「備える」と同様に、包括的であることが意図される。さらに、本明細書或いは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 また、本発明は、以下のように表現されてもよい。本発明の一態様は、アクセス層(AS)を介してユーザ装置(UE20)と無線通信を実行する無線基地局(eNB100)と、前記ユーザ装置の移動性を管理する移動管理エンティティ(MME200)とを含む無線通信システム(無線通信システム10)であって、前記無線基地局は、前記ユーザ装置を接続状態またはアイドル状態に制御する状態制御部(状態制御部110)と、前記ユーザ装置が前記接続状態から前記アイドル状態に遷移した場合、前記ユーザ装置と前記無線基地局との間における前記アクセス層のコンテキストであるASコンテキストを前記移動管理エンティティに転送するコンテキスト転送部(ASコンテキスト転送部120)とを備え、前記移動管理エンティティは、前記無線基地局から転送された前記ASコンテキストを保持するコンテキスト保持部(ASコンテキスト保持部210)と、前記無線基地局からの前記ASコンテキストの取得要求に応じて、前記コンテキスト保持部に保持されている前記ASコンテキストを前記無線基地局に送信するコンテキスト送信部(ASコンテキスト送信部220)とを備え、前記状態制御部は、前記移動管理エンティティから送信された前記ASコンテキストを用いて、前記ユーザ装置を前記接続状態に復帰させることを要旨とする。
 本発明の一態様において、前記コンテキスト転送部は、前記ユーザ装置に関するコンテキストの解放が完了したことを示すメッセージ(UE Context Release Complete)に前記ASコンテキストを含めることによって、前記ASコンテキストを前記移動管理エンティティに転送してもよい。
 本発明の一態様において、前記コンテキスト送信部は、前記ユーザ装置に関するコンテキストの設定を要求するメッセージ(Initial Context Setup Request)に前記ASコンテキストを含めることによって、前記ASコンテキストを前記無線基地局に送信してもよい。
 本発明の一態様は、アクセス層を介してユーザ装置と無線通信を実行する無線基地局であって、前記ユーザ装置を接続状態またはアイドル状態に制御する状態制御部と、前記ユーザ装置が前記接続状態から前記アイドル状態に遷移した場合、前記ユーザ装置と前記無線基地局との間における前記アクセス層のコンテキストであるASコンテキストを、前記ユーザ装置の移動性を管理する移動管理エンティティに転送するコンテキスト転送部とを備え、前記状態制御部は、前記移動管理エンティティから送信された前記ASコンテキストを用いて、前記ユーザ装置を前記接続状態に復帰させることを要旨とする。
 本発明の一態様は、アクセス層を介して無線基地局と無線通信を実行するユーザ装置の移動性を管理する移動管理エンティティであって、前記ユーザ装置と前記無線基地局との間における前記アクセス層のコンテキストであるASコンテキストであって、前記無線基地局から転送された前記ASコンテキストを保持するコンテキスト保持部と、前記無線基地局からの前記ASコンテキストの取得要求に応じて、前記コンテキスト保持部に保持されている前記ASコンテキストを前記無線基地局に送信するコンテキスト送信部とを備えることを要旨とする。
 本発明の一態様は、アクセス層を介して無線基地局と無線通信を実行するユーザ装置(UE20)であって、前記ユーザ装置を接続状態またはアイドル状態に制御する接続制御部(接続制御部21)と、前記接続制御部によって、前記ユーザ装置が前記接続状態から前記アイドル状態に遷移した場合、前記ユーザ装置と前記無線基地局との間における前記アクセス層のコンテキストであるASコンテキストを保持するコンテキスト保持部(ASコンテキスト保持部23)とを備えることを要旨とする。
 本発明の一態様において、前記接続制御部は、前記ユーザ装置を前記アイドル状態から前記接続状態に復帰させる場合、前記コンテキスト保持部に保持されている前記ASコンテキストを用いて、前記ユーザ装置を前記接続状態に復帰させることを要旨とする。
 本発明の一態様は、アクセス層を介してユーザ装置と無線通信を実行する無線基地局と、前記ユーザ装置の移動性を管理する移動管理エンティティとを用いた通信制御方法であって、前記ユーザ装置が接続状態からアイドル状態に遷移した場合、前記無線基地局が、前記ユーザ装置と前記無線基地局との間における前記アクセス層のコンテキストであるASコンテキストを前記移動管理エンティティに転送するステップと、前記移動管理エンティティが、前記無線基地局からの前記ASコンテキストの取得要求に応じて、前記ASコンテキストを前記無線基地局に送信するステップと、前記無線基地局が、前記移動管理エンティティから送信された前記ASコンテキストを用いて、前記ユーザ装置を前記接続状態に復帰させるステップとを含むことを要旨とする。
 本発明の一態様は、ユーザ装置(UE20)が送信または受信するパケットデータをルーティングするゲートウェイ装置(S/PGW300)と、前記ユーザ装置の移動性を管理する移動管理エンティティ(MME200)とを含む無線通信システム(無線通信システム10)であって、前記ゲートウェイ装置は、前記ユーザ装置用のセッションの削除を要求するセッション削除要求(Delete Session Request)を前記移動管理エンティティから受信した場合、前記セッションの管理コンテキスト(ESM Context)を含むセッション削除応答(Delete Session Response)を前記移動管理エンティティに送信するセッション管理部(セッション管理部310)を備え、前記移動管理エンティティは、前記セッション削除応答に含まれる前記管理コンテキストを保持するコンテキスト保持部(ESMコンテキスト保持部230)と、前記ユーザ装置がアイドル状態から接続状態に復帰する処理の開始に応じて、前記コンテキスト保持部によって保持されている前記管理コンテキストを含むセッション生成要求(Create Session Request)を前記ゲートウェイ装置に送信するセッション制御部(セッション制御部240)とを備え、前記セッション管理部は、前記移動管理エンティティから受信した前記セッション生成要求に含まれる前記管理コンテキストに基づいて、前記セッションを再設定することを要旨とする。
 本発明の一態様において、前記ゲートウェイ装置は、前記ユーザ装置の識別子である装置識別子と前記ユーザ装置に割り当てられているIPアドレスとを対応付けて保持するユーザ情報保持部(ユーザ装置情報保持部320)を備え、前記セッション管理部は、前記装置識別子を含む前記セッション削除要求を受信し、前記セッション制御部は、前記管理コンテキスト及び前記装置識別子を含む前記セッション生成要求を前記ゲートウェイ装置に送信し、前記セッション管理部は、前記ユーザ情報保持部によって保持されている前記装置識別子と前記IPアドレスとに基づいて前記セッションを再設定してもよい。
 本発明の一態様は、ユーザ装置が送信または受信するパケットデータをルーティングするゲートウェイ装置であって、前記ユーザ装置用のセッションの削除を要求するセッション削除要求を、前記ユーザ装置の移動性を管理する移動管理エンティティから受信した場合、前記セッションの管理コンテキストを含むセッション削除応答を前記移動管理エンティティに送信するセッション管理部を備えることを要旨とする。
 本発明の一態様において、前記ユーザ装置の識別子である装置識別子と前記ユーザ装置に割り当てられているIPアドレスとを対応付けて保持するユーザ情報保持部を備え、前記セッション管理部は、前記装置識別子を含む前記セッション削除要求を受信し、前記セッション管理部は、前記ユーザ情報保持部によって保持されている前記装置識別子と前記IPアドレスとに基づいて前記セッションを再設定してもよい。
 本発明の一態様は、ユーザ装置の移動性を管理する移動管理エンティティであって、前記ユーザ装置用のセッションの管理コンテキストを保持するコンテキスト保持部と、前記ユーザ装置がアイドル状態から接続状態に復帰する処理の開始に応じて、前記コンテキスト保持部によって保持されている前記管理コンテキストを含むセッション生成要求を、前記ユーザ装置が送信または受信するパケットデータをルーティングするゲートウェイ装置に送信するセッション制御部とを備え、前記管理コンテキストは、前記ユーザ装置用のセッションの削除を要求するセッション削除要求に対する前記ゲートウェイ装置からの応答であるセッション削除応答に含まれてもよい。
 本発明の一態様において、前記セッション制御部は、前記管理コンテキスト、及び前記ユーザ装置の識別子である装置識別子を含む前記セッション生成要求を前記ゲートウェイ装置に送信してもよい。
 本発明の一態様は、ユーザ装置が送信または受信するパケットデータをルーティングするゲートウェイ装置と、前記ユーザ装置の移動性を管理する移動管理エンティティとを用いた通信制御方法であって、前記ゲートウェイ装置が、前記ユーザ装置用のセッションの削除を要求するセッション削除要求を前記移動管理エンティティから受信した場合、前記セッションの管理コンテキストを含むセッション削除応答を前記移動管理エンティティに送信するステップと、前記移動管理エンティティが、前記ユーザ装置がアイドル状態から接続状態に復帰する処理の開始に応じて、前記管理コンテキストを含むセッション生成要求を前記ゲートウェイ装置に送信するステップと、前記ゲートウェイ装置が、前記移動管理エンティティから受信した前記セッション生成要求に含まれる前記管理コンテキストに基づいて、前記セッションを再設定するステップと
を含むことを要旨とする。
 本発明の一態様において、前記セッション削除要求は、前記ユーザ装置の識別子である装置識別子を含み、前記セッション生成要求は、前記管理コンテキスト及び前記装置識別子を含み、前記ゲートウェイ装置が、前記装置識別子と前記ユーザ装置に割り当てられているIPアドレスとを対応付けるステップをさらに含み、前記セッションを再設定するステップにおいて、前記ゲートウェイ装置は、前記装置識別子と前記IPアドレスとに基づいて前記セッションを再設定してもよい。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 なお、日本国特許出願第2015-160504号(2015年8月17日出願)の全内容が、参照により、本願明細書に組み込まれている。
上述した無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法によれば、将来の無線ネットワークアーキテクチャへの対応の柔軟性を確保しつつ、CIoTのように膨大な数のユーザ装置(UE)が無線ネットワークに接続される場合でも、迅速なアイドル状態から接続状態への復帰を実現し得る。
 10 無線通信システム
 20 UE
 21 接続制御部
 23 ASコンテキスト保持部
 30 インターネット
 100 eNB
 110 状態制御部
 120 ASコンテキスト転送部
 200 MME
 210 ASコンテキスト保持部
 220 ASコンテキスト送信部
 230 ESMコンテキスト保持部
 240 セッション制御部
 300 S/PGW
 310 セッション管理部
 320 ユーザ装置情報保持部

Claims (8)

  1.  ユーザ装置が送信または受信するパケットデータをルーティングするゲートウェイ装置と、前記ユーザ装置の移動性を管理する移動管理エンティティとを含む無線通信システムであって、
     前記ゲートウェイ装置は、前記ユーザ装置用のセッションの削除を要求するセッション削除要求を前記移動管理エンティティから受信した場合、前記セッションの管理コンテキストを含むセッション削除応答を前記移動管理エンティティに送信するセッション管理部を備え、
     前記移動管理エンティティは、
     前記セッション削除応答に含まれる前記管理コンテキストを保持するコンテキスト保持部と、
     前記ユーザ装置が、アイドル状態から接続状態に復帰する処理の開始に応じて、前記コンテキスト保持部によって保持されている前記管理コンテキストを含むセッション生成要求を前記ゲートウェイ装置に送信するセッション制御部と
    を備え、
     前記セッション管理部は、前記移動管理エンティティから受信した前記セッション生成要求に含まれる前記管理コンテキストに基づいて、前記セッションを再設定する無線通信システム。
  2.  前記ゲートウェイ装置は、前記ユーザ装置の識別子である装置識別子と前記ユーザ装置に割り当てられているIPアドレスとを対応付けて保持するユーザ情報保持部を備え、
     前記セッション管理部は、前記装置識別子を含む前記セッション削除要求を受信し、
     前記セッション制御部は、前記管理コンテキスト及び前記装置識別子を含む前記セッション生成要求を前記ゲートウェイ装置に送信し、
     前記セッション管理部は、前記ユーザ情報保持部によって保持されている前記装置識別子と前記IPアドレスとに基づいて前記セッションを再設定する請求項1に記載の無線通信システム。
  3.  ユーザ装置が送信または受信するパケットデータをルーティングするゲートウェイ装置であって、
     前記ユーザ装置用のセッションの削除を要求するセッション削除要求を、前記ユーザ装置の移動性を管理する移動管理エンティティから受信した場合、前記セッションの管理コンテキストを含むセッション削除応答を前記移動管理エンティティに送信するセッション管理部を備えるゲートウェイ装置。
  4.  前記ユーザ装置の識別子である装置識別子と前記ユーザ装置に割り当てられているIPアドレスとを対応付けて保持するユーザ情報保持部を備え、
     前記セッション管理部は、前記装置識別子を含む前記セッション削除要求を受信し、
     前記セッション管理部は、前記ユーザ情報保持部によって保持されている前記装置識別子と前記IPアドレスとに基づいて前記セッションを再設定する請求項3に記載のゲートウェイ装置。
  5.  ユーザ装置の移動性を管理する移動管理エンティティであって、
     前記ユーザ装置用のセッションの管理コンテキストを保持するコンテキスト保持部と、
     前記ユーザ装置がアイドル状態から接続状態に復帰する処理の開始に応じて、前記コンテキスト保持部によって保持されている前記管理コンテキストを含むセッション生成要求を、前記ユーザ装置が送信または受信するパケットデータをルーティングするゲートウェイ装置に送信するセッション制御部と
    を備え、
     前記管理コンテキストは、前記ユーザ装置用のセッションの削除を要求するセッション削除要求に対する前記ゲートウェイ装置からの応答であるセッション削除応答に含まれる移動管理エンティティ。
  6.  前記セッション制御部は、前記管理コンテキスト、及び前記ユーザ装置の識別子である装置識別子を含む前記セッション生成要求を前記ゲートウェイ装置に送信する請求項5に記載の移動管理エンティティ。
  7.  ユーザ装置が送信または受信するパケットデータをルーティングするゲートウェイ装置と、前記ユーザ装置の移動性を管理する移動管理エンティティとを用いた通信制御方法であって、
     前記ゲートウェイ装置が、前記ユーザ装置用のセッションの削除を要求するセッション削除要求を前記移動管理エンティティから受信した場合、前記セッションの管理コンテキストを含むセッション削除応答を前記移動管理エンティティに送信するステップと、
     前記移動管理エンティティが、前記ユーザ装置がアイドル状態から接続状態に復帰する処理の開始に応じて、前記管理コンテキストを含むセッション生成要求を前記ゲートウェイ装置に送信するステップと、
     前記ゲートウェイ装置が、前記移動管理エンティティから受信した前記セッション生成要求に含まれる前記管理コンテキストに基づいて、前記セッションを再設定するステップと
    を含む通信制御方法。
  8.  前記セッション削除要求は、前記ユーザ装置の識別子である装置識別子を含み、
     前記セッション生成要求は、前記管理コンテキスト及び前記装置識別子を含み、
     前記ゲートウェイ装置が、前記装置識別子と前記ユーザ装置に割り当てられているIPアドレスとを対応付けるステップをさらに含み、
     前記セッションを再設定するステップにおいて、前記ゲートウェイ装置は、前記装置識別子と前記IPアドレスとに基づいて前記セッションを再設定する請求項7に記載の通信制御方法。
PCT/JP2016/070507 2015-08-17 2016-07-12 無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法 WO2017029909A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017535296A JP6751717B2 (ja) 2015-08-17 2016-07-12 無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法
EP16836901.5A EP3340730A4 (en) 2015-08-17 2016-07-12 WIRELESS COMMUNICATION SYSTEM, GATEWAY DEVICE, MOBILITY MANAGEMENT AND COMMUNICATION CONTROL METHOD
CN201680046496.3A CN107852767A (zh) 2015-08-17 2016-07-12 无线通信系统、网关装置、移动管理实体及通信控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-160504 2015-08-17
JP2015160504 2015-08-17

Publications (1)

Publication Number Publication Date
WO2017029909A1 true WO2017029909A1 (ja) 2017-02-23

Family

ID=58052150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070507 WO2017029909A1 (ja) 2015-08-17 2016-07-12 無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法

Country Status (4)

Country Link
EP (1) EP3340730A4 (ja)
JP (1) JP6751717B2 (ja)
CN (1) CN107852767A (ja)
WO (1) WO2017029909A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201973A1 (zh) * 2017-05-03 2018-11-08 华为技术有限公司 一种消息传输的方法及装置
CN108810988A (zh) * 2017-05-03 2018-11-13 华为技术有限公司 一种消息传输的方法及装置
WO2018233518A1 (zh) * 2017-06-20 2018-12-27 华为技术有限公司 一种会话上下文删除方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7339727B2 (ja) * 2018-04-09 2023-09-06 シャープ株式会社 ユーザ装置、制御装置、及び通信制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129273A1 (ja) * 2010-04-14 2011-10-20 シャープ株式会社 位置管理装置、パケットゲートウェイ装置、移動通信システム、移動局装置及び移動通信方法
JP2014510496A (ja) * 2011-04-05 2014-04-24 パナソニック株式会社 改良されたショート・メッセージ送信手順およびハンドオーバ手順
WO2014183833A1 (en) * 2013-05-15 2014-11-20 Alcatel Lucent Network nodes and methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045692B (zh) * 2009-10-26 2014-01-01 中兴通讯股份有限公司 一种基于控制面与媒体面分离的网络架构实现的通信网络
CN102348259B (zh) * 2011-10-18 2014-06-04 大唐移动通信设备有限公司 一种初始ue消息的处理方法及装置
US9247575B2 (en) * 2012-03-27 2016-01-26 Blackberry Limited eNB storing RRC configuration information at another network component
KR102094499B1 (ko) * 2012-10-31 2020-03-27 삼성전자주식회사 무선 통신 시스템에서 로컬 영역 패킷 데이터 네트워크 연결을 관리하는 방법 및 장치
CN105265007A (zh) * 2013-10-16 2016-01-20 华为技术有限公司 通信方法、本地网关、基站、mme和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129273A1 (ja) * 2010-04-14 2011-10-20 シャープ株式会社 位置管理装置、パケットゲートウェイ装置、移動通信システム、移動局装置及び移動通信方法
JP2014510496A (ja) * 2011-04-05 2014-04-24 パナソニック株式会社 改良されたショート・メッセージ送信手順およびハンドオーバ手順
WO2014183833A1 (en) * 2013-05-15 2014-11-20 Alcatel Lucent Network nodes and methods

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements for Cellular Internet of Things; (Release 13)", 3GPP TR 23.720 V0.1.0, July 2015 (2015-07-01), XP055365522 *
NTT DOCOMO: "Efficient Service Request even for mobile UEs", 3GPP TSG-SA WG2 #110AH S2-152843, 26 August 2015 (2015-08-26), pages 2 - 152843, XP051043087 *
NTT DOCOMO: "Removing per UE GTP-C on Sll during idle-mode", 3GPP TSG-SA WG2 #110AH S2-152845, 26 August 2015 (2015-08-26), pages 2 - 152845, XP051043088 *
See also references of EP3340730A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201973A1 (zh) * 2017-05-03 2018-11-08 华为技术有限公司 一种消息传输的方法及装置
CN108810988A (zh) * 2017-05-03 2018-11-13 华为技术有限公司 一种消息传输的方法及装置
CN108810988B (zh) * 2017-05-03 2020-12-01 华为技术有限公司 一种消息传输的方法及装置
WO2018233518A1 (zh) * 2017-06-20 2018-12-27 华为技术有限公司 一种会话上下文删除方法及装置
CN109429329A (zh) * 2017-06-20 2019-03-05 华为技术有限公司 一种会话上下文删除方法及装置
CN109429329B (zh) * 2017-06-20 2020-10-23 华为技术有限公司 一种会话上下文删除方法及装置
US11032872B2 (en) 2017-06-20 2021-06-08 Huawei Technologies Co., Ltd. Apparatus and method for deleting session context

Also Published As

Publication number Publication date
CN107852767A (zh) 2018-03-27
EP3340730A1 (en) 2018-06-27
JPWO2017029909A1 (ja) 2018-06-07
EP3340730A4 (en) 2019-01-23
JP6751717B2 (ja) 2020-09-09

Similar Documents

Publication Publication Date Title
JP7469392B2 (ja) 移動性管理の方法、端末および基地局
EP3399824B1 (en) Data scheduling method, base station and system
CN109327917B (zh) 建立连接的方法及设备
US10674363B2 (en) Access control method, user equipment, and network device
CN110999440B (zh) 无线基站及无线通信方法
EP3664568B1 (en) Communication methods
CN110603828B (zh) 网络装置和无线通信方法
JPWO2018066702A1 (ja) 無線通信システム、ネットワーク装置及び無線通信方法
CN108496406B (zh) 用于在移动通信网络中建立对等连接的方法和装置
EP3032759A1 (en) Method and device for host configuration
WO2017029909A1 (ja) 無線通信システム、ゲートウェイ装置、移動管理エンティティ及び通信制御方法
WO2013170673A1 (zh) 一种接入方法、基站、接入点和用户设备
WO2017029908A1 (ja) 無線通信システム、無線基地局、移動管理エンティティ、ユーザ装置及び通信制御方法
US10708971B2 (en) Mobility management method, user equipment, storage node, and base station
JP6754900B2 (ja) 無線通信システム、ユーザ装置、無線基地局及び無線通信方法
JP6835880B2 (ja) データ伝送方法、アクセスネットワーク装置、端末装置とネットワークエンティティ
WO2017166291A1 (zh) 一种通信方法、终端、基站和移动性管理设备
US11304112B2 (en) Anchor point control device and anchor point control method
WO2014183276A1 (zh) 一种无线网络的分流方法及设备
WO2019193879A1 (ja) ユーザ装置、ネットワーク装置及び無線通信方法
JP2019033432A (ja) 移動管理エンティティ及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016836901

Country of ref document: EP