WO2017028535A1 - 一种用于水利水电工程的基于物联网的水位监测系统 - Google Patents

一种用于水利水电工程的基于物联网的水位监测系统 Download PDF

Info

Publication number
WO2017028535A1
WO2017028535A1 PCT/CN2016/077274 CN2016077274W WO2017028535A1 WO 2017028535 A1 WO2017028535 A1 WO 2017028535A1 CN 2016077274 W CN2016077274 W CN 2016077274W WO 2017028535 A1 WO2017028535 A1 WO 2017028535A1
Authority
WO
WIPO (PCT)
Prior art keywords
water level
level monitoring
integrated circuit
capacitor
module
Prior art date
Application number
PCT/CN2016/077274
Other languages
English (en)
French (fr)
Inventor
张萍
Original Assignee
张萍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张萍 filed Critical 张萍
Publication of WO2017028535A1 publication Critical patent/WO2017028535A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention relates to an internet of things based water level monitoring system for water conservancy and hydropower engineering.
  • the technical problem to be solved by the present invention is to provide an IoT-based water level monitoring for water conservancy and hydropower engineering with high measurement efficiency and real-time communication and continuous operation in order to overcome the shortcomings of low measurement efficiency and poor practicability in the prior art. system.
  • an Internet of Things-based water level monitoring system for water conservancy and hydropower engineering comprising a plurality of water level monitoring devices, wherein the water level monitoring device comprises a vertically arranged support column and is arranged at a drive shaft and a solar panel at the top of the support column, a central control device disposed on the support column, and three water level detectors disposed under the support column, and three water level detectors are disposed at equal intervals along the support column;
  • the central control device comprises a housing, a display interface and a control button disposed on the housing, and a central control device disposed in the housing, the central control device comprising a central control system, a water level monitoring module, a wireless communication module, and a working power supply a module, a display control module and a button control module, wherein the water level detector is electrically connected to the water level monitoring module, the solar panel is electrically connected to the working power module, and the display boundary The surface is electrically connected to the display control module, and the control button is electrically connected to the button control module;
  • the water level monitoring module includes a water level monitoring circuit, and the water level monitoring circuit includes a first integrated circuit, a first resistor, a first adjustable resistor, a first capacitor, a second capacitor, a first switch, a second switch, and a battery.
  • the model of the first integrated circuit is NE555, the eighth end of the first integrated circuit is connected to the fourth end, and the eighth end of the first integrated circuit is connected to the positive pole of the battery through the second switch, the first The first end of the integrated circuit is grounded and connected to the negative pole of the battery, and the fourth end of the first integrated circuit is connected to the third end of the first integrated circuit through a series circuit composed of the first switch and the second capacitor, a fourth end of an integrated circuit is grounded through a series circuit of a first adjustable resistor, a first resistor and a first capacitor, and a seventh end of the first integrated circuit is respectively connected to the first adjustable resistor and the first resistor, The sixth end of the first integrated circuit is connected to the second end, and the sixth end of the first integrated circuit is respectively connected to the first resistor and the first capacitor, and the adjustable end of the first adjustable resistor is An integrated circuit Four-terminal connection.
  • the temperature drift coefficients of the first capacitor and the second capacitor are both 5% ppm.
  • the wireless communication module transmits a wireless signal through GPRS.
  • the display interface is a touch screen.
  • a battery is disposed in the housing, and the battery is electrically connected to the working power module.
  • the invention has the beneficial effects that the water level monitoring device in the water level monitoring system based on the Internet of Things for water conservancy and hydropower engineering performs real-time communication with the background through the wireless communication module, so that the staff can monitor the water level of the water in real time; and the water level monitoring is performed.
  • the circuit accurately measures the water level to ensure real-time understanding of the water level in each water area, ensuring the reliability of the system; and the device not only saves energy through the solar panel, but also ensures the sustainable working capacity of the device.
  • FIG. 1 is a schematic structural view of an Internet of Things-based water level monitoring system for a water conservancy and hydropower project according to the present invention
  • FIG. 2 is a circuit schematic diagram of a water level monitoring circuit of an Internet of Things-based water level monitoring system for water conservancy and hydropower engineering according to the present invention
  • FIG. 3 is a system structural diagram of an Internet of Things-based water level monitoring system for water conservancy and hydropower engineering according to the present invention
  • an Internet of Things-based water level monitoring system for water conservancy and hydropower engineering includes a plurality of water level monitoring devices including vertically arranged support columns 3 and disposed on the support columns 3
  • the top drive shaft 2 and the solar panel 1, the central control device disposed on the support column 3, and three water level detectors 6 disposed below the support column 3, the three water level detectors 6 are disposed at equal intervals along the support column 3 ;
  • the central control device comprises a housing, a display interface 4 and a control button 5 disposed on the housing, and a central control device disposed in the housing, the central control device including a central control system 7, a water level monitoring module 8, and wireless communication
  • the central control device including a central control system 7, a water level monitoring module 8, and wireless communication
  • the water level monitoring module 8 includes a water level monitoring circuit, and the water level monitoring circuit includes a first integrated circuit U1, a first resistor R1, a first adjustable resistor Rp1, a first capacitor C1, a second capacitor C2, and a first switch K1.
  • the second switch K2 and the battery BT1 the first integrated circuit U1 is of the type NE555, the eighth end of the first integrated circuit U1 is connected to the fourth end, and the eighth end of the first integrated circuit U1 passes the
  • the second switch K2 is connected to the anode of the battery BT1, the first end of the first integrated circuit U1 is grounded and connected to the cathode of the battery BT1, and the fourth end of the first integrated circuit U1 passes through the first switch K1 and the second capacitor.
  • a series circuit composed of C2 is connected to the third end of the first integrated circuit U1, and the fourth end of the first integrated circuit U1 is grounded through a series circuit composed of a first adjustable resistor Rp1, a first resistor R1 and a first capacitor C1.
  • the seventh end of the first integrated circuit U1 is respectively connected to the first adjustable resistor Rp1 and the first resistor R1, and the sixth end of the first integrated circuit U1 is connected to the second end, the first integrated circuit
  • the sixth end of U1 is connected to the first resistor R1 and the first capacitor C1, respectively.
  • a fourth terminal of the first end of the adjustable variable resistor Rp1 with the first integrated circuit U1 is connected.
  • the temperature drift coefficients of the first capacitor C1 and the second capacitor C2 are both 5% ppm.
  • the wireless communication module 9 transmits a wireless signal via GPRS.
  • the display interface 4 is a touch screen.
  • a battery is disposed in the housing, and the battery is electrically connected to the working power module 10.
  • the working principle of the water level monitoring system based on the Internet of Things for water conservancy and hydropower engineering is: the water level monitoring device communicates with the background through the wireless communication module 9 to realize the water level of the staff. Real-time monitoring; support column 3 is used to fix the device in the water area, and the water level is measured by three water level detectors 6. When the set water level is reached, the device will send a wireless signal. The main station, and accordingly take corresponding measures; wherein the solar panel 1 is used for collecting solar energy, converting it into electric energy, and storing it in the storage battery to ensure the normal operation of the device.
  • the two ends of the first capacitor C1 are respectively point A and point B, and points A and B are electrically connected to one of the water level detectors 6.
  • a point and B point are respectively connected to two ends of the first capacitor C1, and points A and B are electrically connected with one of the water level detectors 6, if the water level is higher than the water level detector 6, That is, point A and point B are both immersed in water, then point A and point B are almost turned on, so that the first capacitor C1 is shorted and cannot be charged, and the steady state circuit connected to the first integrated circuit U1 does not work, such as the water level drops. Below the water level detector 6, the A and B points are open, the first capacitor C1 is charged, the circuit begins to oscillate, and the system issues a corresponding alarm signal.
  • the water level monitoring system based on the Internet of Things for the water conservancy and hydropower project: the water level monitoring module 8 is used for monitoring the water level; the wireless communication module 9 is used for real-time communication with the background; and the working power module 10 is used for ensuring the normal operation of the device.
  • the display control module 11 and the button control module 12 are respectively used to control the operation of the display interface 4 and the control button 5, so that the worker can perform on-site operation and improve the practicability of the device.
  • the water level monitoring device in the water level monitoring system based on the Internet of Things for water conservancy and hydropower engineering performs real-time communication with the background through the wireless communication module 9 to realize real-time monitoring of the water level of the office by the staff;
  • the monitoring circuit accurately measures the water level, ensuring real-time understanding of the water level in each water area, ensuring the reliability of the system; and the device not only saves energy through the solar panel 1, but also ensures the sustainable working capacity of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Fluid Mechanics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

一种用于水利水电工程的基于物联网的水位监测系统,包括若干水位监测装置,所述水位监测装置包括竖直设置的支撑柱(3)、设置在支撑柱(3)顶端的驱动轴(2)和太阳能板(1)、设置在支撑柱(3)上的中控装置和三个设置在支撑柱(3)下方的水位探测器(6),三个水位探测器(6)沿支撑柱(3)竖向等间距设置,该用于水利水电工程的基于物联网的水位监测系统中水位监测装置通过无线通讯模块(9)与后台进行实时通讯,实现工作人员对该处水位进行实时监控;而且通过水位监测电路对水位进行精确测量,保证了对各处水域的水位有实时了解,保证了系统的可靠性;而且装置通过太阳能板(1)不仅节省了能源,还保证了装置的可持续工作能力。

Description

一种用于水利水电工程的基于物联网的水位监测系统 技术领域
本发明涉及一种用于水利水电工程的基于物联网的水位监测系统。
背景技术
在我国,水利水电工程处于发展阶段,由于水利水电工程的工程比较间距,范围甚广,需要对周围很多水域进行监测,以保证水利发电的正常工作。
在现在的水位监测系统中,大多数都是采用人工进行周期性监测,这样的工作方式,不仅效率低,而且工作量大,容易产生测量误差。有些区域也采用监测装置,但是由于地势特殊,对这些装置的供电就会耗费很大的资源,降低了系统的实用性和适用范围。
发明内容
本发明要解决的技术问题是:为了克服现有技术测量效率低和实用性差的不足,提供一种测量效率高且能够进行实时通讯和持续工作的用于水利水电工程的基于物联网的水位监测系统。
本发明解决其技术问题所采用的技术方案是:一种用于水利水电工程的基于物联网的水位监测系统,包括若干水位监测装置,所述水位监测装置包括竖直设置的支撑柱、设置在支撑柱顶端的驱动轴和太阳能板、设置在支撑柱上的中控装置和三个设置在支撑柱下方的水位探测器,三个水位探测器沿支撑柱竖向等间距设置;
所述中控装置包括壳体、设置在壳体上的显示界面和控制按键、设置在壳体内的中央控制装置,所述中央控制装置包括中央控制系统、水位监测模块、无线通讯模块、工作电源模块、显示控制模块和按键控制模块,所述水位探测器与水位监测模块电连接,所述太阳能板与工作电源模块电连接,所述显示界 面与显示控制模块电连接,所述控制按键与按键控制模块电连接;
所述水位监测模块包括水位监测电路,所述水位监测电路包括第一集成电路、第一电阻、第一可调电阻、第一电容、第二电容、第一开关、第二开关和电池,所述第一集成电路的型号为NE555,所述第一集成电路的第八端与第四端连接,所述第一集成电路的第八端通过第二开关与电池的正极连接,所述第一集成电路的第一端接地且与电池的负极连接,所述第一集成电路的第四端通过第一开关和第二电容组成的串联电路与第一集成电路的第三端连接,所述第一集成电路的第四端通过第一可调电阻、第一电阻和第一电容组成的串联电路接地,所述第一集成电路的第七端分别与第一可调电阻和第一电阻连接,所述第一集成电路的第六端与第二端连接,所述第一集成电路的第六端分别与第一电阻和第一电容连接,所述第一可调电阻的可调端与第一集成电路的第四端连接。
作为优选,为了提高水位监测电路的稳定性,提高系统的可靠性,所述第一电容和第二电容的温漂系数均为5%ppm。
作为优选,为了提高系统的信号传输可靠性,所述无线通讯模块通过GPRS传输无线信号。
作为优选,为了提高装置的实用性,所述显示界面为触摸屏。
作为优选,所述壳体内设置有蓄电池,所述蓄电池与工作电源模块电连接。
本发明的有益效果是,该用于水利水电工程的基于物联网的水位监测系统中水位监测装置通过无线通讯模块与后台进行实时通讯,实现工作人员对该处水位进行实时监控;而且通过水位监测电路对水位进行精确测量,保证了对各处水域的水位有实时了解,保证了系统的可靠性;而且装置通过太阳能板不仅节省了能源,还保证了装置的可持续工作能力。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的用于水利水电工程的基于物联网的水位监测系统的结构示意图;
图2是本发明的用于水利水电工程的基于物联网的水位监测系统的水位监测电路的电路原理图;
图3是本发明的用于水利水电工程的基于物联网的水位监测系统的系统结构图;
图中:1.太阳能板,2.驱动轴,3.支撑柱,4.显示界面,5.控制按键,6.水位探测器,7.中央控制系统,8.水位监测模块,9.无线通讯模块,10.工作电源模块,11.显示控制模块,12.按键控制模块,U1.第一集成电路,R1.第一电阻,Rp1.第一可调电阻,C1.第一电容,C2.第二电容,K1.第一开关,K2.第二开关,BT1.电池。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1-图3所示,一种用于水利水电工程的基于物联网的水位监测系统,包括若干水位监测装置,所述水位监测装置包括竖直设置的支撑柱3、设置在支撑柱3顶端的驱动轴2和太阳能板1、设置在支撑柱3上的中控装置和三个设置在支撑柱3下方的水位探测器6,三个水位探测器6沿支撑柱3竖向等间距设置;
所述中控装置包括壳体、设置在壳体上的显示界面4和控制按键5、设置在壳体内的中央控制装置,所述中央控制装置包括中央控制系统7、水位监测模块8、无线通讯模块9、工作电源模块10、显示控制模块11和按键控制模块12,所述水位探测器6与水位监测模块8电连接,所述太阳能板1与工作电源模块 10电连接,所述显示界面4与显示控制模块11电连接,所述控制按键5与按键控制模块12电连接;
所述水位监测模块8包括水位监测电路,所述水位监测电路包括第一集成电路U1、第一电阻R1、第一可调电阻Rp1、第一电容C1、第二电容C2、第一开关K1、第二开关K2和电池BT1,所述第一集成电路U1的型号为NE555,所述第一集成电路U1的第八端与第四端连接,所述第一集成电路U1的第八端通过第二开关K2与电池BT1的正极连接,所述第一集成电路U1的第一端接地且与电池BT1的负极连接,所述第一集成电路U1的第四端通过第一开关K1和第二电容C2组成的串联电路与第一集成电路U1的第三端连接,所述第一集成电路U1的第四端通过第一可调电阻Rp1、第一电阻R1和第一电容C1组成的串联电路接地,所述第一集成电路U1的第七端分别与第一可调电阻Rp1和第一电阻R1连接,所述第一集成电路U1的第六端与第二端连接,所述第一集成电路U1的第六端分别与第一电阻R1和第一电容C1连接,所述第一可调电阻Rp1的可调端与第一集成电路U1的第四端连接。
作为优选,为了提高水位监测电路的稳定性,提高系统的可靠性,所述第一电容C1和第二电容C2的温漂系数均为5%ppm。
作为优选,为了提高系统的信号传输可靠性,所述无线通讯模块9通过GPRS传输无线信号。
作为优选,为了提高装置的实用性,所述显示界面4为触摸屏。
作为优选,所述壳体内设置有蓄电池,所述蓄电池与工作电源模块10电连接。
该用于水利水电工程的基于物联网的水位监测系统的工作原理是:水位监测装置通过无线通讯模块9与后台进行实时通讯,实现工作人员对该处水位进 行实时监控;支撑柱3用于将装置固定设置在该处水域,通过三个水位探测器6对该处水域的不同水位进行测量,当到达设定水位时,则装置就会发出无线信号通知总台,从而采取相应措施;其中太阳能板1用于对太阳能进行采集,转换成电能,并且存储到蓄电池中,保证装置的正常工作。
事实上:第一电容C1两端分别为A点和B点,A点和B点与其中某一个水位探测器6电连接。
水位监测电路的工作原理是:A点和B点分别接在第一电容C1的两端,A点和B点与其中某一个水位探测器6电连接,如水位高出该水位探测器6,即A点和B点均浸没于水中,则A点和B点差不多被导通而使第一电容C1短接而不能充电,第一集成电路U1接成的稳态电路不工作,如水位下降到水位探测器6以下,A点和B点开路,第一电容C1即被充电,电路开始振荡,系统发出相应报警信号。
该用于水利水电工程的基于物联网的水位监测系统中:水位监测模块8用于对水位进行监测;无线通讯模块9用于与后台进行实时通讯;工作电源模块10用于保证装置的正常工作,提高装置的可靠性;显示控制模块11和按键控制模块12分别用于控制显示界面4和控制按键5的工作,便于工作人员进行现场操作,提高装置的实用性。
与现有技术相比,该用于水利水电工程的基于物联网的水位监测系统中水位监测装置通过无线通讯模块9与后台进行实时通讯,实现工作人员对该处水位进行实时监控;而且通过水位监测电路对水位进行精确测量,保证了对各处水域的水位有实时了解,保证了系统的可靠性;而且装置通过太阳能板1不仅节省了能源,还保证了装置的可持续工作能力。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。 本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (5)

  1. 一种用于水利水电工程的基于物联网的水位监测系统,包括若干水位监测装置,其特征在于,所述水位监测装置包括竖直设置的支撑柱(3)、设置在支撑柱(3)顶端的驱动轴(2)和太阳能板(1)、设置在支撑柱(3)上的中控装置和三个设置在支撑柱(3)下方的水位探测器(6),三个水位探测器(6)沿支撑柱(3)竖向等间距设置;
    所述中控装置包括壳体、设置在壳体上的显示界面(4)和控制按键(5)、设置在壳体内的中央控制装置,所述中央控制装置包括中央控制系统(7)、水位监测模块(8)、无线通讯模块(9)、工作电源模块(10)、显示控制模块(11)和按键控制模块(12),所述水位探测器(6)与水位监测模块(8)电连接,所述太阳能板(1)与工作电源模块(10)电连接,所述显示界面(4)与显示控制模块(11)电连接,所述控制按键(5)与按键控制模块(12)电连接;
    所述水位监测模块(8)包括水位监测电路,所述水位监测电路包括第一集成电路(U1)、第一电阻(R1)、第一可调电阻(Rp1)、第一电容(C1)、第二电容(C2)、第一开关(K1)、第二开关(K2)和电池(BT1),所述第一集成电路(U1)的型号为NE555,所述第一集成电路(U1)的第八端与第四端连接,所述第一集成电路(U1)的第八端通过第二开关(K2)与电池(BT1)的正极连接,所述第一集成电路(U1)的第一端接地且与电池(BT1)的负极连接,所述第一集成电路(U1)的第四端通过第一开关(K1)和第二电容(C2)组成的串联电路与第一集成电路(U1)的第三端连接,所述第一集成电路(U1)的第四端通过第一可调电阻(Rp1)、第一电阻(R1)和第一电容(C1)组成的串联电路接地,所述第一集成电路(U1)的第七端分别与第一可调电阻(Rp1)和第一电阻(R1)连接,所述第一集成电路(U1)的第六端与第二端连接,所述第一集成电路(U1)的第六端分别与第一电阻(R1)和第一电容(C1)连接,所述第一 可调电阻(Rp1)的可调端与第一集成电路(U1)的第四端连接。
  2. 如权利要求1所述的用于水利水电工程的基于物联网的水位监测系统,其特征在于,所述第一电容(C1)和第二电容(C2)的温漂系数均为5%ppm。
  3. 如权利要求1所述的用于水利水电工程的基于物联网的水位监测系统,其特征在于,所述无线通讯模块(9)通过GPRS传输无线信号。
  4. 如权利要求1所述的用于水利水电工程的基于物联网的水位监测系统,其特征在于,所述显示界面(4)为触摸屏。
  5. 如权利要求1所述的用于水利水电工程的基于物联网的水位监测系统,其特征在于,所述壳体内设置有蓄电池,所述蓄电池与工作电源模块(10)电连接。
PCT/CN2016/077274 2015-08-19 2016-03-24 一种用于水利水电工程的基于物联网的水位监测系统 WO2017028535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510509350.5A CN105136236A (zh) 2015-08-19 2015-08-19 一种用于水利水电工程的基于物联网的水位监测系统
CN2015105093505 2015-08-19

Publications (1)

Publication Number Publication Date
WO2017028535A1 true WO2017028535A1 (zh) 2017-02-23

Family

ID=54721672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077274 WO2017028535A1 (zh) 2015-08-19 2016-03-24 一种用于水利水电工程的基于物联网的水位监测系统

Country Status (2)

Country Link
CN (1) CN105136236A (zh)
WO (1) WO2017028535A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362847A (zh) * 2018-03-16 2018-08-03 四川银沙科技有限公司 基于物联网的水质监测系统
CN109115299A (zh) * 2018-09-28 2019-01-01 四川能投云电科技有限公司 一种小型水电站的前池水位无线传输装置
CN109167793A (zh) * 2018-09-20 2019-01-08 谢结苟 一种基于物联网的水利监测系统
CN109973824A (zh) * 2019-04-28 2019-07-05 江苏复凌科技有限公司 一种基于物联网技术及采用微光能源补偿实现长续航的ldar探测器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136236A (zh) * 2015-08-19 2015-12-09 张萍 一种用于水利水电工程的基于物联网的水位监测系统
CN105628287A (zh) * 2015-12-25 2016-06-01 张萍 一种基于无线通讯的用于水利发电的压力测量装置
CN105699617A (zh) * 2016-03-14 2016-06-22 夏士桀 一种基于物联网的水质监测系统
CN106568490A (zh) * 2016-10-21 2017-04-19 常州工程职业技术学院 一种基于物联网的水库水位检测装置
CN108151827A (zh) * 2018-01-15 2018-06-12 黄惠玲 一种用于用于水利水电工程的基于物联网的水位监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1353154A2 (en) * 2002-04-11 2003-10-15 Endress + Hauser Wetzer GmbH + Co. KG Battery powered water level measurement
CN1540295A (zh) * 2003-10-31 2004-10-27 太原理工大学 数字检索式水位传感器
CN101246030A (zh) * 2008-03-15 2008-08-20 太原理工大学 一种移动式无线数字水位监测站系统
CN201364188Y (zh) * 2009-01-06 2009-12-16 山西纳克太阳能科技有限公司 太阳能水位监测仪
CN201993141U (zh) * 2010-12-14 2011-09-28 河南省电力公司平顶山供电公司 冷凝塔液位告知装置
CN105136236A (zh) * 2015-08-19 2015-12-09 张萍 一种用于水利水电工程的基于物联网的水位监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1353154A2 (en) * 2002-04-11 2003-10-15 Endress + Hauser Wetzer GmbH + Co. KG Battery powered water level measurement
CN1540295A (zh) * 2003-10-31 2004-10-27 太原理工大学 数字检索式水位传感器
CN101246030A (zh) * 2008-03-15 2008-08-20 太原理工大学 一种移动式无线数字水位监测站系统
CN201364188Y (zh) * 2009-01-06 2009-12-16 山西纳克太阳能科技有限公司 太阳能水位监测仪
CN201993141U (zh) * 2010-12-14 2011-09-28 河南省电力公司平顶山供电公司 冷凝塔液位告知装置
CN105136236A (zh) * 2015-08-19 2015-12-09 张萍 一种用于水利水电工程的基于物联网的水位监测系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362847A (zh) * 2018-03-16 2018-08-03 四川银沙科技有限公司 基于物联网的水质监测系统
CN109167793A (zh) * 2018-09-20 2019-01-08 谢结苟 一种基于物联网的水利监测系统
CN109167793B (zh) * 2018-09-20 2021-06-15 上海上源泵业制造有限公司 一种基于物联网的水利监测系统
CN109115299A (zh) * 2018-09-28 2019-01-01 四川能投云电科技有限公司 一种小型水电站的前池水位无线传输装置
CN109973824A (zh) * 2019-04-28 2019-07-05 江苏复凌科技有限公司 一种基于物联网技术及采用微光能源补偿实现长续航的ldar探测器

Also Published As

Publication number Publication date
CN105136236A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2017028535A1 (zh) 一种用于水利水电工程的基于物联网的水位监测系统
US20160224702A1 (en) Method of calculating voltage and power of large-scaled photovoltaic power plant
CN202854303U (zh) 电池内阻测量装置
CN104143959A (zh) 光伏电池性能衰减监测系统
CN104062507A (zh) 一种蓄电池内阻测量仪
CN205787184U (zh) 一种便携式自动气象站故障检定装置
CN209496050U (zh) 摇杆式风速风向仪
CN201569538U (zh) 一种反磁控冷阴极脉冲放电真空开关真空度在线监测装置
CN213090906U (zh) 一种水电站用水位监测装置
CN202562472U (zh) 智能倾角测量仪
CN202471837U (zh) 一种电池内阻测量电路
CN206162654U (zh) 一种光伏电站组件环境功率预测系统
CN206609413U (zh) 一种垂直度测量仪
CN102818818B (zh) 一种实验用砂土介质热传导特性探测系统
CN204694753U (zh) 一种高精度的输电线路电流在线监测装置
CN204241548U (zh) 一种高压验电器
CN105334366A (zh) 一种精确定位式电力参数表装置
CN207456444U (zh) 一种建筑测绘用定位精准的数字化摄影辅助装置
CN206696026U (zh) 一种在线监测仪计量装置
CN214427505U (zh) 一种便携式电压检测装置
CN205388476U (zh) 一种双电池全站仪
CN203405533U (zh) 污闪监测装置
CN105510844B (zh) 恒压负载电路及使用该恒压负载电路的模拟电池
CN204180015U (zh) 一种低功耗太阳能发电量监控系统
CN211151893U (zh) 一种地质灾害自动化监测系统的供电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836400

Country of ref document: EP

Kind code of ref document: A1