WO2017028331A1 - 码本的配置方法和用户设备 - Google Patents

码本的配置方法和用户设备 Download PDF

Info

Publication number
WO2017028331A1
WO2017028331A1 PCT/CN2015/088307 CN2015088307W WO2017028331A1 WO 2017028331 A1 WO2017028331 A1 WO 2017028331A1 CN 2015088307 W CN2015088307 W CN 2015088307W WO 2017028331 A1 WO2017028331 A1 WO 2017028331A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
antenna ports
codebook
antenna
precoding matrix
Prior art date
Application number
PCT/CN2015/088307
Other languages
English (en)
French (fr)
Inventor
刘鹍鹏
刘江华
张雷鸣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018507512A priority Critical patent/JP2018530937A/ja
Priority to EP15901535.3A priority patent/EP3327966A4/en
Priority to CN201580081752.8A priority patent/CN107852279B/zh
Publication of WO2017028331A1 publication Critical patent/WO2017028331A1/zh
Priority to US15/895,666 priority patent/US10171145B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to communication technologies, and in particular, to a codebook configuration method and user equipment.
  • eNB In the Downlink (DL) of the Long Term Evolution (LTE), multiple-input multiple-output (MIMO) and evolved Node B (Evided Node B) are supported.
  • the abbreviation eNB obtains beamforming gain and spatial multiplexing gain using a precoding method.
  • FDD Frequency Division Duplexing
  • the eNB cannot use the uplink channel (Up Link, UL for short) to estimate the channel information of the DL, so that the user equipment (User Equipment, UE for short) reports the channel information of the DL. .
  • the UE reports the channel information of the DL to the eNB by using a most suitable Precoding Matrix Indicator (PMI) and a rank indication (RI), where the PMI indicates the value of the precoding matrix requested by the UE, and the RI indication The maximum number of layers of signals that can be simultaneously transmitted in the current channel state determined by the UE.
  • PMI Precoding Matrix Indicator
  • RI rank indication
  • the eNB cannot accept the precoding matrix and rank selected by the UE.
  • the eNB should avoid precoding matrices and ranks that cause significant interference to neighboring cells, and introduce codebook subset restriction techniques in LTE Rel_8 and Rel_9 in order to limit the PMI and RI fed back by the UE.
  • the codebook subset restriction technique transmits a codebook subset restriction (CSR) bitmap to each UE through high layer signaling.
  • CSR codebook subset restriction
  • Each bit of the CSR bitmap corresponds to a precoding matrix, and the value of the bit is 0 and 1.
  • the bit is set to 0, the precoding matrix corresponding to the bit is restricted, and the UE does not need to measure and The precoding matrix corresponding to the bit is fed back.
  • a one-dimensional antenna is used, and a one-dimensional antenna can perform beamforming in a horizontal direction.
  • a two-dimensional antenna is currently introduced, and the two-dimensional antenna can perform beamforming in both the horizontal direction and the vertical direction.
  • the configuration and feedback mechanism of the codebook are not defined in the prior art.
  • the embodiment of the invention provides a method for configuring a codebook and a user equipment, which can
  • the line codebook configuration can reduce the feedback overhead of the configuration information limited by the codebook subset.
  • a first aspect of the present invention provides a method for configuring a codebook, including:
  • the user equipment UE receives the reference signal of the antenna whose number of antenna ports is X transmitted by the base station, and the configuration information of the codebook subset whose number of antenna ports is X, and the configuration information of the codebook subset whose number of antenna ports is X
  • the first configuration information and the second configuration information are included, where X is a positive integer greater than or equal to 2;
  • the UE selects a partial precoding matrix from all precoding matrices of the codebook whose antenna port number is X to perform measurement and feedback;
  • the UE measures the precoding matrix that needs to perform channel measurement and feedback according to the reference number of the antenna port being the reference signal of the X antenna.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X1
  • the second configuration is an antenna port number.
  • Configuration information restricted for the codebook subset of X2, where X X1 * X2.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X1
  • the second configuration is an antenna port number.
  • Configuration information restricted for the codebook subset of X2, where X X1 * X2 * 2.
  • the UE is configured according to the codebook subset limitation that the number of antenna ports is X Information to determine the precoding matrix that requires channel measurement and feedback, including:
  • the UE performs a Kronecker product on the precoding matrix with the antenna port number X1 and the precoding matrix with the antenna port number X2 to obtain a precoding matrix of an antenna port that needs to perform channel measurement and feedback.
  • the precoding matrix of the antenna port number is X1
  • the number of the antenna ports is X2
  • the precoding matrix performs the Kronecker product to obtain a precoding matrix of the antenna ports that need to perform channel measurement and feedback, including:
  • the UE performs a Kronecker product of the precoding matrix with the number of antenna ports X1 and the precoding matrix with the number of antenna ports X2 to obtain W 1 of the precoding matrix with the number of antenna ports X;
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction in W1, Corresponding to a beam group, As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction. The number of vectors in the beam group in the vertical direction;
  • the first configuration information is Corresponding configuration information of the codebook subset limitation, where the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction, Corresponding to a beam group, As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • W 2 is a matrix of dimensions X rows for column selection and/or phase adjustment of W 1 (k, l);
  • the first configuration information includes a fifth sub-configuration information and a sixth sub-configuration information, where the fifth sub-configuration information is The configuration information of the corresponding codebook subset limitation, where the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to the codebook subset restriction W 2 corresponding to the configuration information.
  • any one of the first to sixth possible implementation manners of the first aspect in a seventh possible implementation manner of the first aspect, is sent by using high layer signaling; or
  • the first configuration information is sent by using high layer signaling
  • the second configuration information is sent by using dynamic signaling
  • Both the first configuration information and the second configuration information are sent by using high layer signaling.
  • the antenna ports of the X1 and X2 having a large number of antenna ports are
  • the configuration information of the codebook subset restriction is configured by dynamic signaling, and the configuration information of the codebook subset limitation of the antenna port with a small number of antenna ports in the X1 and X2 is configured by using high layer signaling;
  • the configuration information of the codebook subset limitation of the antenna port with a large number of antenna ports in the X1 and X2 is configured by high-layer signaling, and the configuration information of the codebook subset limitation of the antenna port with the small number of antenna ports in the X1 and X2 is configured.
  • Adopt dynamic signaling configuration is configured.
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X1/2, where K is the total number of beam groups in the horizontal direction of the X1 antenna ports, The number of vectors in the horizontal beam group of the X1 antenna ports, Corresponding to a second precoding matrix of the dual codebook structure of the X1 antenna ports in the horizontal direction of the antenna with the number of antenna ports X, a matrix of dimensions X1, used for Perform column selection and/or phase adjustment;
  • the first configuration information includes first sub-configuration information and second sub-configuration information, where the first sub-configuration information is Corresponding configuration information of the codebook subset limitation, where the second sub-configuration information is Configuration information restricted by the corresponding codebook subset;
  • the first configuration information is The configuration information of the corresponding codebook subset restriction.
  • the first sub-configuration information is sent by using a high-level signaling, and the second sub-configuration information is a dynamic Order to send;
  • the first sub-configuration information is sent by using dynamic signaling
  • the second sub-configuration information is sent by using high-layer signaling.
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X2/2, where L is the total number of beam groups in the vertical direction of the X2 antenna ports, The number of vectors in the vertical beam group of the X2 antenna ports, Corresponding to a second precoding matrix of the dual codebook structure of the X2 antenna ports in the vertical direction of the antenna with the number of antenna ports X, a matrix of dimensions X2 rows, used for pairs Perform column selection and/or phase adjustment;
  • the second configuration information includes third sub-configuration information and fourth sub-configuration information, where the third sub-configuration information is Corresponding configuration information of the codebook subset limitation, where the fourth sub-configuration information is Configuration information restricted by the corresponding codebook subset;
  • the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • the third sub-configuration information is sent by using a high-level signaling, where the fourth sub-configuration information is used.
  • Dynamic signaling or
  • the third sub-configuration information is sent by using dynamic signaling, and the fourth sub-configuration information is sent by using high-layer signaling.
  • the antenna with the number of antenna ports is an antenna having at least two rows and two columns Array.
  • the antenna with the number of antenna ports X is an antenna array having at least two rows and two columns, wherein the X1 antenna ports have the same horizontal dimension, and the X2 antenna ports have the same vertical dimension.
  • the antenna with the number of antenna ports X is an antenna array having at least two rows and two columns, where X1 is the number of columns of the antenna with the number of antenna ports X, and X2 is the row of the antenna with the number of antenna ports X.
  • X1 is half the number of columns of the antenna with the number of antenna ports X
  • X2 is the number of rows of the antenna with the number of antenna ports X
  • X1 is the number of columns of the antenna with the number of antenna ports X
  • X2 is half of the number of rows of the antenna whose number of antenna ports is X.
  • the first configuration information is that all precoding matrices in the codebook with the number of antenna ports X are grouped.
  • the enabling restriction information of the codebook group, the grouping of all precoding matrices in the codebook whose number of antenna ports is X is predefined;
  • the second configuration information is enabling restriction information of a precoding matrix in each codebook group.
  • the first configuration information is that the number of the antenna ports is X1 All the precoding matrices in the codebook perform the enabling restriction information of the grouped codebook group, and the grouping of all the precoding matrices in the codebook with the number of antenna ports X1 is predefined, the second configuration Information is the enabling restriction information of the precoding matrix in each codebook group;
  • the first configuration information is an enabling restriction information of a codebook group that is grouped by all precoding matrices in the codebook with the number of antenna ports X2, where the number of antenna ports is X2
  • the grouping of all precoding matrices is predefined
  • the second configuration information is enabling restriction information of the precoding matrix within each codebook group.
  • the first configuration information and the second configuration information are adopted by a high layer. Signaling; or
  • the first configuration information is sent by using high layer signaling
  • the second configuration information is sent by using dynamic signaling
  • the first configuration information is sent by using dynamic signaling, and the second configuration information is sent by using high layer signaling.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X3, and the second configuration information is an antenna.
  • the first configuration information is a codebook of X5 antenna ports Subset-restricted configuration information
  • the first configuration information is a configuration letter of the codebook subset limitation of the X7 antenna ports.
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction in W1
  • Corresponding to a beam group As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • W 2 is the column selection matrix of the dimension X rows, used for column selection of W 1 (k, l), W 3 is a phase adjustment matrix, and W 3 is used for Phase adjustment between the two sets of antennas;
  • the first configuration information includes a fifth sub-configuration information and a sixth sub-configuration information, where the fifth sub-configuration information is The configuration information of the corresponding codebook subset limitation, where the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to the W 2 corresponding codebook subset restriction configuration information and codebook subset restriction W 3 corresponding to the configuration information.
  • the precoding matrix of the fed antenna port includes:
  • the UE uses the first configuration information to determine a precoding matrix of an antenna port that needs to perform channel measurement and feedback;
  • the UE determines an antenna that needs to perform channel measurement and feedback according to the configuration information of the codebook subset limit of the number of antenna ports being X.
  • the precoding matrix of the port including:
  • the UE uses the second configuration information to determine a precoding matrix of an antenna port that needs to perform channel measurement and feedback.
  • the first configuration information and the second configuration information are sent by using high layer signaling; or
  • the first configuration information is sent by using high layer signaling
  • the second configuration information is sent by using dynamic signaling
  • the first configuration information is sent by dynamic signaling, and the second configuration information is used by high layer signaling.
  • the reference signal is a channel state information-reference signal CSI-RS.
  • the dynamic signaling is DL grant signaling, or UL grant signaling.
  • a second aspect of the present invention provides a user equipment UE, including:
  • a receiving module configured to receive, by a base station, a reference signal of an antenna whose antenna port number is X, and configuration information of a codebook subset whose number of antenna ports is X, where the number of antenna ports is limited by a codebook subset of X
  • the configuration information includes first configuration information and second configuration information, where X is a positive integer greater than or equal to 2;
  • a determining module configured to determine, according to the configuration information of the codebook subset limit of the number of antenna ports X, a precoding matrix that needs to perform channel measurement and feedback, where the codebook subset with the number of antenna ports is X is used for Instructing the UE to select a partial precoding matrix from all precoding matrices of the codebook with the number of antenna ports X to perform measurement and feedback;
  • a measuring module configured to measure, according to the reference number of the antenna port, an X antenna
  • the precoding matrix that requires channel measurement and feedback.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X1
  • the second configuration is an antenna port number.
  • Configuration information restricted for the codebook subset of X2, where X X1 * X2.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X1
  • the second configuration is an antenna port number.
  • Configuration information restricted for the codebook subset of X2, where X X1 * X2 * 2.
  • the determining module is specifically configured to:
  • the precoding matrix of the antenna port number X1 and the precoding matrix of the antenna port number X2 are subjected to a Kronecker product to obtain a precoding matrix of an antenna port that requires channel measurement and feedback.
  • the determining module is specifically configured to:
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction in W1, Corresponding to a beam group, As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • the first configuration information is Corresponding configuration information of the codebook subset limitation, where the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction, Corresponding to a beam group, As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • W 2 is a matrix of dimensions X rows for column selection and/or phase adjustment of W 1 (k, l);
  • the first configuration information includes a fifth sub-configuration information and a sixth sub-configuration information, where the fifth sub-configuration information is The configuration information of the corresponding codebook subset limitation, where the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to the codebook subset restriction W 2 corresponding to the configuration information.
  • the first configuration information is sent by using high layer signaling
  • the second configuration information is sent by using dynamic signaling
  • Both the first configuration information and the second configuration information are sent by using high layer signaling.
  • the antenna ports of the X1 and X2 having a large number of antenna ports The configuration information of the codebook subset restriction is configured by dynamic signaling, and the configuration information of the codebook subset limitation of the antenna port with a small number of antenna ports in the X1 and X2 is configured by using high layer signaling;
  • the configuration information of the codebook subset limitation of the antenna port with a large number of antenna ports in the X1 and X2 is configured by high-layer signaling, and the configuration information of the codebook subset limitation of the antenna port with the small number of antenna ports in the X1 and X2 is configured.
  • Adopt dynamic signaling configuration is configured.
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X1/2, where K is the total number of beam groups in the horizontal direction of the X1 antenna ports, The number of vectors in the horizontal beam group of the X1 antenna ports, Corresponding to a second precoding matrix of the dual codebook structure of the X1 antenna ports in the horizontal direction of the antenna with the number of antenna ports X, a matrix of dimensions X1, used for Perform column selection and/or phase adjustment;
  • the first configuration information includes first sub-configuration information and second sub-configuration information, where the first sub-configuration information is Corresponding configuration information of the codebook subset limitation, where the second sub-configuration information is Configuration information restricted by the corresponding codebook subset;
  • the first configuration information is The configuration information of the corresponding codebook subset restriction.
  • the first sub-configuration information is sent by using a high-level signaling, where the second sub-configuration Information is sent using dynamic signaling;
  • the first sub-configuration information is sent by using dynamic signaling
  • the second sub-configuration information is sent by using high-layer signaling.
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X2/2, where L is the total number of beam groups in the vertical direction of the X2 antenna ports, The number of vectors in the beam group in the vertical direction of the X2 antenna ports, Corresponding to a second precoding matrix of the dual codebook structure of the X2 antenna ports in the vertical direction of the antenna with the number of antenna ports X, a matrix of dimensions X2 rows, used for pairs Perform column selection and/or phase adjustment;
  • the second configuration information includes third sub-configuration information and fourth sub-configuration information, where the third sub-configuration information is Corresponding configuration information of the codebook subset limitation, where the fourth sub-configuration information is Configuration information restricted by the corresponding codebook subset;
  • the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • the third sub-configuration information is sent by using a high-level signaling, and the fourth sub-configuration information is used.
  • the third sub-configuration information is sent by using dynamic signaling, and the fourth sub-configuration information is sent by using high-layer signaling.
  • the antenna having the number of antenna ports is X having at least two rows and two The antenna array of the column.
  • the antenna with the number of antenna ports X is an antenna array having at least two rows and two columns, wherein the X1 antenna ports have the same horizontal dimension, and the X2 antenna ports have the same vertical dimension.
  • the antenna with the number of antenna ports X is an antenna array having at least two rows and two columns, where X1 is the number of columns of the antenna with the number of antenna ports X, and X2 is the row of the antenna with the number of antenna ports X.
  • X1 is half the number of columns of the antenna with the number of antenna ports X
  • X2 is the number of rows of the antenna with the number of antenna ports X
  • X1 is the number of columns of the antenna with the number of antenna ports X
  • X2 is half of the number of rows of the antenna whose number of antenna ports is X.
  • the first configuration information is a codebook group that is grouped by all precoding matrices in the codebook with the number of antenna ports X
  • the enabling restriction information, the grouping of all precoding matrices in the codebook whose number of antenna ports is X is predefined
  • the second configuration information is enabling restriction information of a precoding matrix in each codebook group.
  • the first configuration information is that the number of the antenna ports is X1 All the precoding matrices in the codebook perform the enabling restriction information of the grouped codebook group, and the grouping of all the precoding matrices in the codebook with the number of antenna ports X1 is predefined, the second configuration Information is the enabling restriction information of the precoding matrix in each codebook group;
  • the first configuration information is an enabling restriction information of a codebook group that is grouped by all precoding matrices in the codebook with the number of antenna ports X2, where the number of antenna ports is X2
  • the grouping of all precoding matrices is predefined
  • the second configuration information is enabling restriction information of the precoding matrix within each codebook group.
  • the first configuration information and the second configuration information are adopted by a high layer Signaling;
  • the first configuration information is sent by using high layer signaling, and the second configuration information is sent by using a dynamic letter. Order to send; or
  • the first configuration information is sent by using dynamic signaling, and the second configuration information is sent by using high layer signaling.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X3, and the second configuration information is an antenna.
  • the first configuration information is a codebook of X5 antenna ports
  • the first configuration information is configuration information of a codebook subset limitation of X7 antenna ports
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction in W1
  • Corresponding to a beam group As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • W 2 is a column selection matrix of dimension X rows for column selection of W 1 (k, l), W 3 is a phase adjustment matrix, and W 3 is used for Phase adjustment between the two sets of antennas;
  • the first configuration information includes a fifth sub-configuration information and a sixth sub-configuration information, where the fifth sub-configuration information is The configuration information of the corresponding codebook subset limitation, where the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to the W 2 corresponding codebook subset restriction configuration information and codebook subset restriction W 3 corresponding to the configuration information.
  • the determining module is specifically used to: Determining, by the first configuration information, a precoding matrix of an antenna port that needs to perform channel measurement and feedback;
  • the determining module is configured to: determine, by using the second configuration information, a precoding matrix of an antenna port that needs to perform channel measurement and feedback, if the reference signal of the X port number is a non-periodically transmitted reference signal. .
  • the first configuration information and the second configuration information are sent by using high layer signaling; or
  • the first configuration information is sent by using high layer signaling
  • the second configuration information is sent by using dynamic signaling
  • the first configuration information is sent by dynamic signaling, and the second configuration information is used by high layer signaling.
  • the reference signal is a channel state information-reference signal CSI-RS.
  • the dynamic signaling is DL grant signaling, or UL grant signaling.
  • a third aspect of the present invention provides a user equipment UE, including: a processor, a memory, and a a letter interface and a system bus, the memory and the communication interface are connected to the processor through the system bus and complete communication with each other, the memory is used to store computer execution instructions, and the communication interface is used for Communicating with a device, the processor for executing the computer to execute an instruction to cause the UE to perform any one of the first to twenty-fifth possible implementations of the first aspect, the first aspect of the present invention, The method.
  • the UE receives the reference signal of the number of the antenna ports sent by the base station as the X antenna, and the configuration information of the codebook subset whose number of the antenna ports is X, and the number of the antenna ports is
  • the configuration information of the codebook subset limitation of X includes first configuration information and second configuration information; determining a precoding matrix that needs to perform channel measurement and feedback according to configuration information restricted by the codebook subset whose number of antenna ports is X, and A precoding matrix of an antenna port that requires channel measurement and feedback is measured based on the reference signal.
  • the configuration information limited by the codebook subset whose number of antenna ports is X is carried in the first configuration information and the second configuration information, so that the feedback overhead of the configuration information restricted by the codebook subset can be reduced.
  • 1 is a schematic structural view of three types of 2D antenna arrays
  • FIG. 2 is a flowchart of a method for configuring a codebook according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for configuring a codebook according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart of a method for configuring a codebook according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of a UE according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a UE according to Embodiment 11 of the present invention.
  • a two-dimensional (2D) antenna is introduced in the present invention, and the 2D antenna can perform beamforming both horizontally and vertically.
  • 1 is a schematic structural diagram of three types of 2D antenna arrays. As shown in FIG. 1, the first 2D antenna array is a 4*4 antenna array, and the second 2D antenna array is a 2*8 antenna array, and the third The 2D antenna array is a 4*4 antenna array.
  • the current technology does not configure a codebook for the 2D antenna.
  • FIG. 2 is a flowchart of a method for configuring a codebook according to Embodiment 1 of the present invention. As shown in FIG. The method provided can include the following steps:
  • Step 101 The UE receives a reference signal of an antenna whose antenna port number is X transmitted by the base station, and configuration information of a codebook subset limit whose number of antenna ports is X, where the number of the antenna port is the configuration information of the codebook subset limitation of X.
  • the first configuration information and the second configuration information are included, and X is a positive integer greater than or equal to 2.
  • the reference signal may be a Channel State Information-reference signal (CSI-RS).
  • CSI-RS Channel State Information-reference signal
  • An antenna having an antenna port number of X is an antenna array having at least two rows and two columns.
  • Step 102 The UE determines, according to the configuration information of the codebook subset whose number of antenna ports is X, a precoding matrix that needs to perform channel measurement and feedback.
  • the codebook subset with the number of antenna ports X is used to instruct the UE to perform measurement and feedback on selecting a subset of the partial precoding matrices in the set of all precoding matrices of the codebook with the number of antenna ports X.
  • the configuration information of the codebook subset whose number of antenna ports is X may be a CSR bitmap, and each bit of the bitmap corresponds to a precoding matrix, and the value of the bit is 0 and 1, when the bit is set to 0.
  • the precoding matrix corresponding to the bit is restricted, and the UE does not need to measure and feed back the precoding matrix corresponding to the bit. When the bit is set to 1, the UE needs to measure and feed back the precoding corresponding to the bit. matrix.
  • the first configuration information is configuration information restricted by the codebook subset whose antenna port number is X1
  • the X1 antenna port may be a horizontal antenna port of an antenna array having an antenna port number X, that is, the number of antenna ports included in each row of the antenna array
  • the X2 antenna ports may be vertically oriented.
  • the antenna port that is, the number of antenna ports included in each column of the antenna array. Therefore, the first configuration information is configuration information of the codebook subset restriction of the antenna port in the horizontal direction, and the second configuration information is configuration information of the codebook subset restriction of the antenna port in the vertical direction.
  • the first configuration information is configuration information restricted by the codebook subset whose antenna port number is X1
  • the X1 antenna port is half of the horizontal antenna port, or the X2 antenna port is half of the vertical antenna port.
  • the UE determines the precoding matrix of the antenna port that needs to perform channel measurement and feedback according to the configuration information of the codebook subset whose number of antenna ports is X. Specifically, the number of precoding matrices and antenna ports of the antenna port number of the UE is X1. Performing a Kronecker product for the precoding matrix of X2 results in a precoding matrix of the antenna ports that require channel measurement and feedback.
  • the UE performs a Kronecker product on the precoding matrix with the number of antenna ports X1 and the precoding matrix with the number of antenna ports X2 to obtain a precoding matrix of the antenna port that needs to perform channel measurement and feedback, specifically: the antenna of the UE
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction in W1
  • Corresponding to a beam group As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • the first configuration information is The configuration information limited by the corresponding codebook subset
  • the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • the first configuration information is in the form of a bitmap
  • the number of precoding matrices has a total of K
  • the bitmap has a total of K bits, 01010000....10
  • These precoding matrices are enabled, and the UE can perform measurement and feedback based on these precoding matrices.
  • the second configuration information is also in the form of a bitmap, it is assumed The number of precoding matrices is a total of L, then the bitmap has a total of L bits, 11000000..01, then These precoding matrices are enabled, and the UE can perform measurement and feedback based on these precoding matrices.
  • the base station may send configuration information of the codebook subset whose number of antenna ports is X in the following manners:
  • Both the first configuration information and the second configuration information are sent by using high layer signaling.
  • the first configuration information is sent by using high layer signaling, and the second configuration information is sent by dynamic signaling.
  • the configuration information of the codebook subset limitation of the antenna port with a large number of antenna ports in X1 and X2 is configured by dynamic signaling, and the configuration information of the codebook subset limitation of the antenna port with a small number of antenna ports in X1 and X2 is adopted. High-level signaling configuration.
  • the configuration information of the codebook subset limitation of the antenna port with a large number of antenna ports in X1 and X2 is configured by high-level signaling, and the configuration information of the codebook subset limitation of the antenna port with a small number of antenna ports in X1 and X2 is adopted. Dynamic signaling configuration.
  • the precoding matrix in the codebook with the number of antenna ports X1 adopts a dual codebook structure
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X1/2
  • K is the total number of beam groups in the horizontal direction of X1 antenna ports, that is, The total number of.
  • the number of vectors in the beam group in the horizontal direction of the X1 antenna ports Corresponding to a second precoding matrix of the dual codebook structure of the X1 antenna ports in the horizontal direction of the antenna with the number of antenna ports X, a matrix of dimensions X1, used for Perform column selection and/or phase adjustment;
  • the first configuration information includes a first sub-configuration information and a second sub-configuration information, where the first sub-configuration information is The configuration information limited by the corresponding codebook subset, and the second sub-configuration information is The configuration information limited by the corresponding codebook subset, or the first configuration information is The configuration information of the corresponding codebook subset restriction.
  • the first sub-configuration information is sent by using the high-level signaling
  • the second sub-configuration information is sent by using the dynamic signaling
  • the second sub-configuration information is sent by using the high-level signaling.
  • each beam group of the X1 antenna ports in the horizontal direction is divided into K beam groups, and each beam group includes Precoding vectors, each beam as a column vector, a matrix of dimensions X1, used for Perform column selection and or phase adjustment of the two sets of antennas.
  • the precoding matrix in the codebook with the number of antenna ports is X2 adopts a dual codebook structure
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X2/2, and L is the total number of beam groups in the vertical direction of X2 antenna ports, that is, The total number of.
  • the number of vectors in the beam group of the X2 vertical antenna ports Corresponding to a second precoding matrix of the dual codebook structure of the X2 antenna ports in the vertical direction of the antenna with the number of antenna ports X, a matrix of dimensions X2 rows, used for pairs Perform column selection and/or phase adjustment.
  • the second configuration information includes third sub-configuration information and fourth sub-configuration information, where the third sub-configuration information is The configuration information limited by the corresponding codebook subset, and the fourth sub-configuration information is The configuration information limited by the corresponding codebook subset, or the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • the third sub-configuration information is sent by using the high-level signaling
  • the fourth sub-configuration information is sent by using the dynamic signaling
  • the fourth sub-configuration information is sent by using the high-level signaling.
  • the precoding matrix in the codebook with the number of antenna ports X1 and X2 can adopt a dual codebook structure
  • the X1 antenna ports have the same horizontal dimension
  • the X2 antenna ports have the same vertical dimension.
  • the value of X1 may be less than or equal to the total number of antenna ports in the horizontal dimension of the antenna array
  • the value of X2 may be less than or equal to the total number of antenna ports in the vertical dimension of the antenna array.
  • X1 is the number of columns of antennas with the number of antenna ports X
  • X2 is the number of rows of antennas with the number of antenna ports X
  • X1 is half of the number of columns of antennas with the number of antenna ports X
  • X2 is the number of antenna ports.
  • the number of rows of X antennas; or X1 is the number of columns of antennas with the number of antenna ports X, and X2 is half the number of rows of antennas with the number of antenna ports X.
  • the configuration information of the codebook subset restricted by the horizontal dimension is a 0 to a N-1 , and a0 to aN-1 are in the form of a bitmap, and each precoding matrix corresponds to One bit, each bit has a value of 0 or 1.
  • the value of the bit is 1, it indicates that the precoding matrix corresponding to the bit is selected, and the UE needs to measure and feed back the selected precoding matrix.
  • the value of the bit is 0, it indicates that the precoding matrix corresponding to the bit is not selected, and the UE does not need to measure and feed back the selected precoding matrix.
  • the feedback overhead of the configuration information restricted by the codebook subset can be reduced. For example, for a 2D antenna array, assuming that there are 8 precoding matrices available in the horizontal direction and 4 precoding matrices in the vertical direction, the horizontal and vertical precoding matrices are subjected to a total of 32 precodings.
  • Matrix if not separated feedback, then If a 32-bit bitmap is needed to feed back the configuration information of the codebook subset restriction, and the configuration information of the codebook subset restriction of the horizontal dimension and the configuration information of the codebook subset restriction of the vertical dimension are respectively fed back, the horizontal dimension is only Four bits are needed, the vertical dimension only needs 8 bits, and a total of 12 bits are needed for the codebook subset limitation, thereby reducing the feedback overhead of the configuration information limited by the codebook subset.
  • Step 103 The UE measures a reference signal of the X antenna according to the number of antenna ports, and obtains a precoding matrix that needs to perform channel measurement and feedback.
  • Determining the precoding matrix of the antenna port according to the reference signal of the antenna port is a prior art, and details are not described herein again.
  • the UE receives the reference signal that the number of antenna ports sent by the base station is the X antenna, and the configuration information of the codebook subset whose number of antenna ports is X, and the codebook subset whose number of antenna ports is X
  • the limited configuration information includes the first configuration information and the second configuration information.
  • the precoding matrix that needs to perform channel measurement and feedback is determined according to the configuration information of the codebook subset whose number of antenna ports is X, and is required according to the reference signal measurement.
  • the configuration information limited by the codebook subset whose number of antenna ports is X is carried in the first configuration information and the second configuration information, so that the feedback overhead of the configuration information restricted by the codebook subset can be reduced.
  • FIG. 3 is a flowchart of a method for configuring a codebook according to Embodiment 2 of the present invention. As shown in FIG. 3, the method provided in this embodiment may include the following steps:
  • Step 201 The UE receives configuration information that the number of antenna ports sent by the base station is an X antenna, and configuration information of the codebook subset whose number of antenna ports is X.
  • the configuration information of the codebook subset whose number of antenna ports is X includes: The first configuration information and the second configuration information, where the first configuration information is an enabling restriction information of the codebook group grouped by all precoding matrices in the codebook with the number of antenna ports X, and the code port number of the antenna port is X
  • the grouping of all precoding matrices in the medium is predefined; the second configuration information is the enabling restriction information of the precoding matrix in each codebook group, and X is a positive integer greater than or equal to 2.
  • all precoding matrices in the codebook with the number of antenna ports X are required to be grouped in advance.
  • the i-th codebook group is C id ⁇ C id-1 . This is merely an example, and the present invention does not limit the grouping of codebooks.
  • the first configuration information is the enabling restriction information of the codebook group grouped by all the precoding matrices in the codebook with the number of antenna ports X
  • the second configuration information is the pre-prefix in each codebook group.
  • Encoding limit information for the encoding matrix For example, 32 precoding matrices are divided into 4 codebook groups, and each codebook group includes 8 precoding matrices, and the first configuration information carries the enabling restriction information of 4 codebook groups, for example,
  • the enable restriction information is 0110, 1 indicates that the codebook group corresponding to the bit is enabled, and 0 indicates that the codebook group corresponding to the bit is not enabled, then 0110 indicates the second codebook group and the third code.
  • the group is enabled, and the UE needs to measure the precoding matrix in the enabled codebook group. Further, the base station may further specify that the UE only measures a part of the precoding matrix in each codebook group. Therefore, the second configuration information carries the enabling restriction information of the precoding matrix in the enabled codebook group, for example, The enabling restriction information of the precoding matrix of the second codebook group is 11001001, where 1 indicates that the precoding matrix corresponding to the bit is enabled, and 0 indicates that the precoding matrix corresponding to the bit is not enabled, and the UE Only the measured precoding matrix is measured, then 11001001 indicates that the UE only measures the corresponding precoding matrix on the 1, 2, 5, and 8 bits.
  • the first configuration information and the second configuration information are sent by using the high layer signaling; or the first configuration information is sent by using the high layer signaling, and the second configuration information is sent by using the dynamic signaling; or the first configuration information is dynamically The signaling is sent, and the second configuration information is sent by using high layer signaling.
  • Step 202 The UE determines, according to the configuration information of the codebook subset whose number of antenna ports is X, that the channel measurement and the feedback precoding matrix are needed.
  • the UE first determines the enabled codebook group according to the first configuration information, and further determines, according to the second configuration information, which precoding matrices in the enabled codebook are enabled, and is enabled.
  • a precoding matrix is a precoding matrix that requires channel measurement and feedback.
  • Step 203 The UE measures a precoding matrix that needs to perform channel measurement and feedback according to a reference signal of an antenna whose antenna port number is X.
  • the configuration information of the codebook subset whose number of antenna ports is X includes the first configuration information and the second configuration information, where the first configuration information is performed by all precoding matrices in the codebook with the number of antenna ports X.
  • the enabling restriction information of the codebook group after the grouping, the second configuration information is the enabling restriction information of the precoding matrix in each codebook group, and the UE determines the enabled codebook group according to the first configuration information, and further, A precoding matrix of an antenna port that requires channel measurement and feedback is determined according to the second configuration information.
  • the UE measures the reference signal and needs to perform channel measurement and inverse The precoding matrix of the fed antenna port.
  • the codebook group having the number of antenna ports is divided into a plurality of codebook groups, and the restriction information of the codebook group and the restriction information of the precoding matrix in the codebook group are respectively carried in the first configuration.
  • the feedback in the information and the second configuration information can reduce the feedback overhead of the configuration information limited by the codebook subset.
  • the method of the second embodiment is also applicable to the configuration information of the codebook subset limitation of the antenna ports in the horizontal direction and the vertical direction.
  • the first configuration information is an enabling restriction information of a codebook group grouped by all precoding matrices in a codebook with an antenna port number of X1, and all precoding matrices in the codebook with the number of antenna ports being X1
  • the packet is predefined
  • the second configuration information is the enabling restriction information of the precoding matrix within each codebook group.
  • the first configuration information is an enabling restriction information of a codebook group grouped by all precoding matrices in a codebook with an antenna port number of X2, and a packet of all precoding matrices in a codebook with an antenna port number of X2 It is pre-defined, and the second configuration information is the enabling restriction information of the precoding matrix in each codebook group.
  • FIG. 4 is a flowchart of a method for configuring a codebook according to Embodiment 3 of the present invention. As shown in FIG. 4, the method provided in this embodiment may include the following steps:
  • Step 301 The UE receives the reference signal that the number of antenna ports sent by the base station is X, and the configuration information of the codebook subset whose number of antenna ports is X, and the configuration information of the codebook subset whose number of antenna ports is X includes the first The configuration information and the second configuration information, where the first configuration information is configuration information restricted by the codebook subset whose number of antenna ports is X3, and the second configuration information is configuration information of the codebook subset whose antenna port number is X4, and the antenna port is configured.
  • the X antennas are divided into two groups according to the polarization direction of the antenna: the polarization direction of one group of antenna ports is a vertical polarization direction, and the polarization direction of the other group of antenna ports is a horizontal polarization direction.
  • the polarization direction of the antenna port number is X3 is a vertical polarization direction
  • the polarization direction of the antenna port number X4 is a horizontal polarization direction
  • the polarization direction is a horizontal pole.
  • the polarization direction of the antenna port number X4 is the vertical polarization direction.
  • Step 302 The UE determines, according to the configuration information of the codebook subset whose number of antenna ports is X, the precoding matrix that needs to perform channel measurement and feedback.
  • the UE determines a precoding matrix of the antenna port that needs to perform channel measurement and feedback according to the first configuration information and the second configuration information, respectively.
  • Step 303 The UE performs channel measurement and feedback reference signals of the antenna ports according to the requirements, and obtains a precoding matrix that needs to perform channel measurement and feedback.
  • the configuration information of the codebook subset whose number of antenna ports is X includes the first configuration information and the second configuration information, where the first configuration information is configuration information of the codebook subset limit with the number of antenna ports being X3.
  • the second configuration information is configuration information of the codebook subset whose number of antenna ports is X4, and the number of antenna ports is X3 and the number of antenna ports is X4 respectively corresponding to different polarization directions, and according to the first configuration information and the second configuration, respectively.
  • the information determines the precoding matrix of the antenna ports that need to make channel measurements and feedback.
  • the codebook whose number of antenna ports is X is divided into two codebook subsets according to the polarization direction of the antenna, and the configuration information of the two codebook subsets is respectively carried in the first configuration information and the second configuration information, and may be fed back. Reduce the feedback overhead of configuration information restricted by the codebook subset.
  • the method of the third embodiment is also applicable to the configuration information of the codebook subset limitation of the antenna ports in the horizontal direction and the vertical direction.
  • the first configuration information is configuration information restricted by the codebook subset of the X5 antenna ports
  • the first configuration information is configuration information restricted by the codebook subset of the X7 antenna ports
  • FIG. 5 is a flowchart of a method for configuring a codebook according to Embodiment 4 of the present invention. As shown in FIG. 5, the method provided in this embodiment may include the following steps:
  • Step 401 The UE receives the reference signal that the number of the antenna ports sent by the base station is X, and the configuration information of the codebook subset whose number of the antenna ports is X, and the configuration information of the codebook subset whose number of the antenna ports is X includes the first The configuration information and the second configuration information, where X is a positive integer greater than or equal to 2.
  • the periodically transmitted reference signal and the aperiodic transmitted reference signal use different codebook subset configuration information, and the first configuration and the second configuration information respectively correspond to configuration information of different codebook subsets.
  • the first configuration information and the second configuration information are sent by using the high layer signaling; or the first configuration information is sent by using the high layer signaling, and the second configuration information is sent by using the dynamic signaling; or the first configuration information is dynamically Signaling is sent, and the second configuration information is used by higher layer signaling.
  • Step 402 If the reference signal with the number of antenna ports is X is a periodic reference signal, the UE uses the first configuration information to determine a precoding matrix that needs to perform channel measurement and feedback, and if the number of antenna ports is X, the reference signal is non- The reference signal transmitted periodically, the UE uses the second configuration information to determine a precoding matrix that needs to perform channel measurement and feedback.
  • the reference signal may be a CSI-RS signal, and the CSI-RS has two configurations: configuration 0 and configuration 1, configuration 0 indicates that the CSI-RS is a periodic signal, and configuration 1 indicates that the CSI-RS is a non-periodic signal.
  • the vertical beam direction corresponding to each antenna port that transmits the periodic CSI-RS is B1.
  • B1 points to a direction 10 degrees below the horizontal line, and the transmission timing of the periodic CSI-RS transmitted by the base station is 0 ms, 5 ms, and 10 ms.
  • the UE determines, according to the first configuration information, that the enabled codebook set is ⁇ C0 ⁇ .
  • the base station transmits an aperiodic CSI-RS at other times than 0 ms, 5 ms, and 10 ms.
  • the base station transmits an aperiodic CSI-RS at the 7th ms, and transmits a vertical line corresponding to each antenna port of the aperiodic CSI-RS.
  • the beam direction is B2, for example, B2 points to a direction 20 degrees below the horizontal line, and the UE determines the enabled codebook set ⁇ C1 ⁇ according to the second configuration information.
  • the base station can use two bits to indicate which of the enabled codebook sets is selected by the UE.
  • the codebook set that is enabled by 00 is ⁇ C0 ⁇
  • 01 represents the codebook set that is enabled as ⁇ C1 ⁇
  • 10 represents the set of enabled codebooks as ⁇ C2 ⁇
  • 11 represents the set of enabled codebooks as ⁇ C3 ⁇ . If the number of enabled codebook sets is larger, the number of required bits is larger. For example, if the number of enabled codebook sets is eight, a 3-bit indication is required.
  • Step 403 The UE measures a precoding matrix that needs to perform channel measurement and feedback according to a reference signal of an antenna whose antenna port number is X.
  • the periodically transmitted reference signal and the aperiodic transmitted reference signal use different codebook subset configuration information.
  • the UE uses the first configuration information to determine that the channel needs to be performed.
  • the precoding matrix of the antenna port for measuring and feeding back if the reference signal is a reference signal for aperiodic transmission, the UE uses the second configuration information to determine a precoding matrix of the antenna port that needs to perform channel measurement and feedback.
  • the reference signal is divided into two codebook subsets according to the periodicity of the test signal, and the configuration information restricted by the two codebook subsets is respectively fed back through the first configuration information and the second configuration information, and the code can be reduced.
  • the feedback overhead of the configuration information restricted by this subset is provided.
  • a fifth embodiment of the present invention provides a method for configuring a codebook.
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction, Corresponding to a beam group, As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • W 2 is a matrix of dimensions X rows, used for column selection of W 1 (k, l) and phase adjustment between the two sets of antennas.
  • the fifth sub-configuration information and the sixth sub-configuration information are included, and the fifth sub-configuration information is The configuration information limited by the corresponding codebook subset, and the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to the configuration information codebook subset restriction corresponding to W 2.
  • the precoding matrix W W 1 (k, l)*W 2 *W 3 included in the codebook whose antenna port number is X, where W 2 is a column selection matrix of the dimension X rows, for the pair W 1 (k, l) performs column selection, W 3 is a phase adjustment matrix, and W 3 is used to perform phase adjustment between the two sets of antennas.
  • the configuration information of the subset restriction, or the first configuration information includes a fifth sub-configuration information and a sixth sub-configuration information, where the fifth sub-configuration information is The configuration information of the corresponding codebook subset restriction, and the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to codebook subset restriction W 2 corresponding to the configuration information and the codebook subset restriction W 3 corresponding to the configuration information.
  • FIG. 6 is a schematic structural diagram of a UE according to Embodiment 6 of the present invention.
  • the UE provided in this embodiment includes: a receiving module 11, a determining module 12, and a measuring module 13.
  • the receiving module 11 is configured to receive, by the base station, a reference signal of an antenna whose antenna port number is X, and configuration information of a codebook subset whose number of antenna ports is X, where the number of the antenna port is X
  • the set configuration information includes first configuration information and second configuration information, where X is a positive integer greater than or equal to 2;
  • the determining module 12 is configured to determine, according to configuration information of the codebook subset limitation that the number of antenna ports is X, a precoding matrix that needs to perform channel measurement and feedback, where the number of antenna ports is limited by codebook subset of X And selecting, by the UE, a partial precoding matrix from all precoding matrices of the codebook whose antenna port number is X to perform measurement and feedback;
  • the measuring module 13 is configured to measure, according to the reference signal of the X antenna, the precoding matrix that needs to perform channel measurement and feedback.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X1
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X1
  • the determining module 12 is specifically configured to: perform a Kronecker product on the precoding matrix with the antenna port number X1 and the precoding matrix with the antenna port number X2 to obtain channel measurement and feedback.
  • the precoding matrix of the antenna port The determining module 12 performs a Kronecker product on the precoding matrix with the antenna port number X1 and the precoding matrix with the antenna port number X2 to obtain a precoding matrix of an antenna port that needs to perform channel measurement and feedback.
  • a Kronecker product on the precoding matrix with the antenna port number X1 and the precoding matrix with the antenna port number X2 to obtain channel measurement and feedback.
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction in W1
  • Corresponding to a beam group As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • the number of vectors in the beam group in the vertical direction; the first configuration information is Corresponding configuration information of the codebook subset limitation, where the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • the first configuration information and the second configuration information are sent by using high-layer signaling; or the first configuration information is sent by using high-level signaling, and the second configuration information is sent by using dynamic signaling; Or the first configuration information and the second configuration information are sent by using high layer signaling.
  • the configuration information of the codebook subset limitation of the antenna port with a large number of antenna ports in the X1 and X2 is configured by dynamic signaling, and the codebook subset of the antenna port with a small number of antenna ports in the X1 and X2 is configured.
  • the configuration information of the restricted configuration is configured by using a high-level signaling; or the configuration information of the codebook subset of the antenna port having a large number of antenna ports in the X1 and X2 is configured by using high-level signaling, and the number of antenna ports in the X1 and X2 is small.
  • the configuration information of the codebook subset restriction of the antenna port is configured by dynamic signaling.
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X1/2, where K is the total number of beam groups in the horizontal direction of the X1 antenna ports, The number of vectors in the horizontal beam group of the X1 antenna ports, Corresponding to a second precoding matrix of the dual codebook structure of the X1 antenna ports in the horizontal direction of the antenna with the number of antenna ports X, a matrix of dimensions X1, used for Perform column selection and/or phase adjustment.
  • the first configuration information includes first sub-configuration information and second sub-configuration information, where the first sub-configuration information is Corresponding configuration information of the codebook subset limitation, where the second sub-configuration information is Corresponding configuration information of the codebook subset restriction, or the first configuration information is The configuration information of the corresponding codebook subset restriction.
  • the first sub-configuration information is sent by using the high-level signaling, and the second sub-configuration information is sent by using dynamic signaling; or the first sub-configuration information is sent by using dynamic signaling, where the second sub-configuration information is sent.
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X2/2, where L is the total number of beam groups in the vertical direction of the X2 antenna ports, The number of vectors in the beam group in the vertical direction of the X2 antenna ports, Corresponding to a second precoding matrix of the dual codebook structure of the X2 antenna ports in the vertical direction of the antenna with the number of antenna ports X, a matrix of dimensions X2 rows, used for pairs Perform column selection and/or phase adjustment.
  • the second configuration information includes third sub-configuration information and fourth sub-configuration information, where the third sub-configuration information is Corresponding configuration information of the codebook subset limitation, where the fourth sub-configuration information is Corresponding configuration information of the codebook subset restriction, or the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • the third sub-configuration information is sent by using the high-level signaling, and the fourth sub-configuration information is sent by using dynamic signaling, or the third sub-configuration information is sent by using dynamic signaling, where the fourth sub-configuration information is sent.
  • the antenna with the number of antenna ports X is an antenna array having at least two rows and two columns.
  • the X1 antenna ports have the same horizontal dimension, and the X2 antenna ports have the same vertical dimension.
  • X1 is the number of columns of the antenna whose antenna port number is X
  • X2 is the number of rows of the antenna whose number of antenna ports is X
  • X1 is half of the number of columns of the antenna whose number of antenna ports is X
  • X2 is the number of rows of the antenna whose number of antenna ports is X
  • X1 is the number of columns of the antenna whose number of antenna ports is X
  • X2 is half of the number of rows of the antenna whose number of antenna ports is X.
  • the reference signal is a channel state information-reference signal CSI-RS.
  • the dynamic signaling is DL grant signaling, or UL grant signaling.
  • the UE provided in this embodiment may be used to perform the method in the first embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the seventh embodiment of the present invention provides a UE.
  • the first configuration information is performed on all precoding matrices in the codebook with the number of antenna ports X.
  • the enabling restriction information of the grouped codebook group, the grouping of all precoding matrices in the codebook whose number of antenna ports is X is predefined;
  • the second configuration information is a pre-prefix in each codebook group Encoding limit information for the encoding matrix.
  • the first configuration information is an enabling restriction information of a codebook group that is grouped by all precoding matrices in the codebook with the number of antenna ports X1, where the number of antenna ports is X1.
  • the grouping of all precoding matrices is predefined, and the second configuration information is enabling restriction information of the precoding matrix within each codebook group.
  • the first configuration information is an enabling restriction information of a codebook group that is grouped by all precoding matrices in the codebook with the number of antenna ports X2, where the number of antenna ports is X2
  • the grouping of all precoding matrices is predefined
  • the second configuration information is each The enable restriction information of the precoding matrix in the codebook group.
  • the first configuration information and the second configuration information are sent by using high-layer signaling; or the first configuration information is sent by using high-level signaling, and the second configuration information is sent by using dynamic signaling; Or the first configuration information is sent by using dynamic signaling, and the second configuration information is sent by using high layer signaling.
  • the UE in this embodiment may be used to perform the method in the second embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the eighth embodiment of the present invention provides a UE.
  • the structure of the UE in this embodiment is shown in FIG. 6.
  • the first configuration information is configuration information of a codebook subset limit with the number of antenna ports being X3.
  • the first configuration information is configuration information of a codebook subset limitation of X5 antenna ports
  • the first configuration information is configuration information of a codebook subset limitation of X7 antenna ports
  • the UE in this embodiment may be used to perform the method in the third embodiment, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the ninth embodiment of the present invention provides a UE.
  • the structure of the UE in this embodiment is as shown in FIG. 6.
  • the determining module 12 is specifically configured to: determine, by using the first configuration information, a precoding matrix of an antenna port that needs to perform channel measurement and feedback;
  • the determining module 12 is specifically configured to: use the second configuration information to determine a precoding of an antenna port that needs to perform channel measurement and feedback. matrix.
  • the first configuration information and the second configuration information are sent by using high layer signaling.
  • the first configuration information is sent by using the high-level signaling, and the second configuration information is sent by using dynamic signaling; or the first configuration information is sent by dynamic signaling, and the second configuration information is used by the upper layer. Signaling.
  • the UE provided in this embodiment may be used to perform the method in the fourth embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the tenth embodiment of the present invention provides a UE.
  • the structure of the UE in this embodiment is shown in FIG. 6.
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction, Corresponding to a beam group, As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • the number of vectors in the beam group in the vertical direction, W 2 is a matrix of dimensions X rows for column selection and/or phase adjustment of W 1 (k, l). Accordingly, the first configuration information to the W 1 (k, l) corresponding to the configuration information codebook subset restriction, the second configuration information W 2 corresponding codebook subset restriction configuration information; Or the first configuration information includes a fifth sub-configuration information and a sixth sub-configuration information, where the fifth sub-configuration information is The configuration information of the corresponding codebook subset limitation, where the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to the codebook subset restriction W 2 corresponding to the configuration information.
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction in W1
  • Corresponding to a beam group As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • W 2 is the column selection matrix of the dimension X rows, used for column selection of W 1 (k, l), W 3 is a phase adjustment matrix, and W 3 is used for Phase adjustment between the two sets of antennas;
  • the UE in this embodiment may be used to perform the method in the fifth embodiment, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a UE according to Embodiment 11 of the present invention.
  • the UE 200 provided in this embodiment includes: a processor 21, a memory 22, and a communication interface. 23 and a system bus 24, the memory 22 and the communication interface 23 are connected to the processor 21 via the system bus 24 and complete communication with each other, the memory 22 for storing computer execution instructions, the communication The interface 23 is for communicating with other devices, and the processor 21 is configured to execute the computer to execute instructions to cause the UE to perform the method as follows:
  • the number of antenna ports is measured, and the precoding matrix that needs to perform channel measurement and feedback is obtained.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X1
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X1
  • the processor 21 determines, according to the configuration information of the codebook subset whose number of antenna ports is X, the precoding matrix that needs to perform channel measurement and feedback, specifically:
  • the precoding matrix of the antenna port number X1 and the precoding matrix of the antenna port number X2 are subjected to a Kronecker product to obtain a precoding matrix of an antenna port that requires channel measurement and feedback.
  • the first configuration information is Corresponding configuration information of the codebook subset limitation, where the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction, Corresponding to a beam group, As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • W 2 is a matrix of dimensions X rows for column selection and/or phase adjustment of W 1 (k, l).
  • the first configuration information includes a fifth sub-configuration information and a sixth sub-configuration information, where the fifth sub-configuration information is The configuration information of the corresponding codebook subset limitation, where the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to the codebook subset restriction W 2 corresponding to the configuration information.
  • the first configuration information and the second configuration information are sent by using high-layer signaling; or the first configuration information is sent by using high-level signaling, and the second configuration information is sent by using dynamic signaling; Or the first configuration information and the second configuration information are sent by using high layer signaling.
  • the codebook subset limitation of the antenna port with a large number of antenna ports in the X1 and X2 The configuration information of the antenna port of the antenna port with a small number of antenna ports in the X1 and X2 is configured by high-level signaling; or the number of antenna ports in the X1 and X2 is large.
  • the configuration information of the codebook subset limit of the antenna port is configured by high-level signaling, and the configuration information of the codebook subset limitation of the antenna port with the small number of antenna ports in the X1 and X2 is configured by dynamic signaling.
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X1/2, where K is the total number of beam groups in the horizontal direction of the X1 antenna ports, The number of vectors in the horizontal beam group of the X1 antenna ports, Corresponding to a second precoding matrix of the dual codebook structure of the X1 antenna ports in the horizontal direction of the antenna with the number of antenna ports X, a matrix of dimensions X1, used for Perform column selection and/or phase adjustment.
  • the first configuration information includes first sub-configuration information and second sub-configuration information, where the first sub-configuration information is Corresponding configuration information of the codebook subset limitation, where the second sub-configuration information is Corresponding configuration information of the codebook subset restriction, or the first configuration information is The configuration information of the corresponding codebook subset restriction.
  • the first sub-configuration information is sent by using the high-level signaling, and the second sub-configuration information is sent by using dynamic signaling; or the first sub-configuration information is sent by using dynamic signaling, where the second sub- The configuration information is sent by high layer signaling.
  • each beam corresponds to one DFT vector
  • Each column vector is a DFT vector
  • the dimension of each column vector is X2/2, where L is the total number of beam groups in the vertical direction of the X2 antenna ports, The number of vectors in the beam group in the vertical direction of the X2 antenna ports, Corresponding to a second precoding matrix of the dual codebook structure of the X2 antenna ports in the vertical direction of the antenna with the number of antenna ports X, a matrix of dimensions X2 rows, used for pairs Perform column selection and/or phase adjustment.
  • the second configuration information includes third sub-configuration information and fourth sub-configuration information, where the third sub-configuration information is Corresponding configuration information of the codebook subset limitation, where the fourth sub-configuration information is Corresponding configuration information of the codebook subset restriction, or the second configuration information is The configuration information of the corresponding codebook subset restriction.
  • the third sub-configuration information is sent by using the high-level signaling, where the fourth sub-configuration information is sent by using dynamic signaling, or the third sub-configuration information is sent by using dynamic signaling, where the fourth sub- The configuration information is sent by high layer signaling.
  • the antenna with the number of antenna ports X is an antenna array having at least two rows and two columns. Then the X1 antenna ports have the same horizontal dimension, and the X2 antenna ports have the same vertical dimension. Or X1 is the number of columns of the antenna whose antenna port number is X, X2 is the number of rows of the antenna whose number of antenna ports is X; or X1 is half of the number of columns of the antenna whose number of antenna ports is X, X2 is the number of rows of the antenna whose number of antenna ports is X; or X1 is the number of columns of the antenna whose number of antenna ports is X, and X2 is half of the number of rows of the antenna whose number of antenna ports is X.
  • the first configuration information is an enabling restriction information of a codebook group that is grouped by all the precoding matrices in the codebook with the number of antenna ports X, and the number of the antenna ports is an X codebook.
  • the grouping of all the precoding matrices in the group is predefined; the second configuration information is the enabling restriction information of the precoding matrix in each codebook group.
  • the first configuration information is an enabling restriction information of a codebook group that is grouped by all the precoding matrices in the codebook with the number of antenna ports X1, and the number of the antenna ports is a codebook of X1.
  • the grouping of all the precoding matrices in the group is pre-defined
  • the second configuration information is the enabling restriction information of the precoding matrix in each codebook group; or the first configuration information is
  • the enabling restriction information of the codebook group grouped by all the precoding matrices in the codebook with the number of antenna ports is X2, and the grouping of all precoding matrices in the codebook with the number of antenna ports X2 is predefined.
  • the second configuration information is an enabling restriction information of a precoding matrix in each codebook group.
  • the first configuration information is configuration information of a codebook subset limit with an antenna port number of X3
  • the first configuration information is configuration information of a codebook subset limitation of X5 antenna ports
  • each column vector is a DFT vector, and The dimension of each column vector is the number of horizontally polarized antennas, and K is the number of beam groups in the horizontal direction.
  • the number of vectors in the beam group in the horizontal direction Corresponding to the precoding matrix in the vertical direction in W1
  • Corresponding to a beam group As a collection containing at least two column vectors, Each column vector is a DFT vector, and The dimension of each column vector is the number of vertically polarized antennas, and L is the number of beam groups in the vertical direction.
  • W 2 is the column selection matrix of the dimension X rows, used for column selection of W 1 (k, l), W 3 is a phase adjustment matrix, and W 3 is used for Phase adjustment between the two sets of antennas.
  • the first sub-configuration information includes configuration information for a fifth and a sixth sub-configuration information, the configuration information for the fifth sub The configuration information of the corresponding codebook subset limitation, where the sixth sub-configuration information is Corresponding codebook subset restriction configuration information, second configuration information to the W 2 corresponding codebook subset restriction configuration information and codebook subset restriction W 3 corresponding to the configuration information.
  • the processor 21 determines that the channel needs to be performed according to the configuration information that the number of antenna ports is the codebook subset limit of X.
  • the precoding matrix of the antenna port for measuring and feeding back specifically: determining, by using the first configuration information, a precoding matrix of an antenna port that needs to perform channel measurement and feedback;
  • the processor 21 determines that channel measurement and feedback are needed according to the configuration information of the codebook subset limit of the number of antenna ports X. And a precoding matrix of the antenna port, comprising: determining, by using the second configuration information, a precoding matrix of an antenna port that needs to perform channel measurement and feedback.
  • the reference signal is a channel state information-reference signal CSI-RS.
  • the dynamic signaling is DL grant signaling, or UL grant signaling.
  • the UE in this embodiment may be used to perform the methods in the first embodiment to the fifth embodiment.
  • the specific implementation manners and the technical effects are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明提供一种码本的配置方法和用户设备,UE接收基站发送的天线端口数为X天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息;根据天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,并根据参考信号测量得到需要进行信道测量和反馈的天线端口的预编码矩阵。所述方法中,通过将天线端口数为X的码本子集限制的配置信息携带在第一配置信息和第二配置信息中反馈,可以减少码本子集限制的配置信息的反馈开销。

Description

码本的配置方法和用户设备 技术领域
本发明涉及通信技术,尤其涉及一种码本的配置方法和用户设备。
背景技术
在长期演进(Long Term Evolution,简称LTE)的下行链路(Down Link,简称DL)中,支持多输入多输出技术(Multiple-Input Multiple-Output,简称MIMO),演进型基站(eleved Node B,简称eNB)利用预编码方法获得波束成型增益和空间复用增益。在频分双工(Frequency Division Duplexing,简称FDD)模式中,eNB不能利用上行信道(Up Link,简称UL)估计DL的信道信息,从而由用户设备(User Equipment,简称UE)报告DL的信道信息。UE利用最合适的预编码矩阵指示(Precoding Matrix Indicator,简称PMI)和秩指示(rank indication,简称RI)向eNB报告DL的信道信息,其中,PMI指示UE请求的预编码矩阵的值,RI指示在UE确定的当前信道状态下能够同时传输的信号的最大层数。但是在有些情况下,eNB不能接受由UE选择的预编码矩阵和秩。例如,eNB应当避免对相邻小区造成显著干扰的预编码矩阵和秩,为了限制UE反馈的PMI和RI,在LTE Rel_8和Rel_9中引入码本子集限制技术。码本子集限制技术通过高层信令向每个UE发送码本子集限制(codebook subset restriction,简称CSR)位图。在CSR位图的每个比特位对应一个预编码矩阵,比特位的值为0和1,当比特位被设置为0时,与该比特位对应的预编码矩阵受限制,UE不需要测量和反馈该比特位对应的预编码矩阵。
传统的二维(2D)MIMO系统中,采用一维天线,一维天线能在水平方向进行波束成型。为了提高天线的性能,目前引入了二维天线,二维天线在水平方向和垂直方向都可以进行波束成型。对于二维天线,现有技术中并没有定义码本的配置、反馈机制。
发明内容
本发明实施例提供一种码本的配置方法和用户设备,能够对二维天线进 行码本配置,并且可以减少码本子集限制的配置信息的反馈开销。
本发明第一方面提供一种码本的配置方法,包括:
用户设备UE接收基站发送的天线端口数为X的天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,所述天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,X为大于或等于2的正整数;
所述UE根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,所述天线端口数为X的码本子集限制用于指示所述UE从所述天线端口数为X的码本的所有预编码矩阵中选择部分预编码矩阵进行测量和反馈;
所述UE根据所述天线端口数为X天线的参考信号,测量得到所述需要进行信道测量和反馈的预编码矩阵。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2。
结合第一方面,在第一方面的第二种可能的实现方式中,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2*2。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述UE根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,包括:
所述UE将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述UE将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵,包括:
所述UE将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到所述天线端口数为X的预编码矩阵 的W1
所述UE根据公式W=W1*W2得到需要进行信道测量和反馈的天线端口的预编码矩阵,其中,W2为维度X行的矩阵,用于对W1进行列选择和/或相位调整。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,
Figure PCTCN2015088307-appb-000001
或者
Figure PCTCN2015088307-appb-000002
Figure PCTCN2015088307-appb-000003
l=0,...,L,l′=f(l),
Figure PCTCN2015088307-appb-000004
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000005
表示克罗内克积;
Figure PCTCN2015088307-appb-000006
对应于W1中的水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000007
对应一个波束组,
Figure PCTCN2015088307-appb-000008
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000009
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000010
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000011
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000012
对应于W1中的垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000013
对应一个波束组,
Figure PCTCN2015088307-appb-000014
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000015
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000016
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000017
为垂直方向的波束组内的向量的个数;
则所述第一配置信息为
Figure PCTCN2015088307-appb-000018
对应的码本子集限制的配置信息,所述第二配置信息为
Figure PCTCN2015088307-appb-000019
对应的码本子集限制的配置信息。
结合第一方面,在第一方面的第六种可能的实现方式中,所述天线端口数为X的码本中包括的预编码矩阵表示为W=W1(k,l)*W2
Figure PCTCN2015088307-appb-000020
或者
Figure PCTCN2015088307-appb-000021
Figure PCTCN2015088307-appb-000022
l=0,...,L,l′=f(l),
Figure PCTCN2015088307-appb-000023
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000024
表示克罗内克积;
Figure PCTCN2015088307-appb-000025
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000026
对应一个波束组,
Figure PCTCN2015088307-appb-000027
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000028
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000029
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000030
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000031
对应于垂直方向的预编码矩 阵,
Figure PCTCN2015088307-appb-000032
对应一个波束组,
Figure PCTCN2015088307-appb-000033
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000034
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000035
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000036
为垂直方向的波束组内的向量的个数,W2为维度X行的矩阵,用于对W1(k,l)进行列选择和/或相位调整;
则所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息;或者,
所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
Figure PCTCN2015088307-appb-000037
对应的码本子集限制的配置信息,所述第六子配置信息为
Figure PCTCN2015088307-appb-000038
对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息。
结合第一方面、第一方面的第一种至第六种可能的实现方式中的任意一种,在第一方面的第七种可能的实现方式中,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
所述第一配置信息和所述第二配置信息都采用高层信令发送。
结合第一方面的第一种至第六种可能的实现方式中的任意一种,在第一方面的第八种可能的实现方式中,所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用动态信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用高层信令配置;
或者
所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用高层信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用动态信令配置。
结合第一方面的第一种可能的实现方式,在第一方面的第九种可能的实现方式中,所述天线端口数为X1的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000039
其中,
Figure PCTCN2015088307-appb-000040
Figure PCTCN2015088307-appb-000041
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000042
表示克罗内克积;
Figure PCTCN2015088307-appb-000043
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口 的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000044
对应于所述X1个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000045
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000046
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000047
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000048
的每个列向量的维度为所述X1/2,K为所述X1个天线端口的水平方向的波束组的总的个数,
Figure PCTCN2015088307-appb-000049
为所述X1个天线端口的水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000050
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000051
为维度X1行的矩阵,用于对
Figure PCTCN2015088307-appb-000052
进行列选择和/或相位调整;
则所述第一配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息为所述
Figure PCTCN2015088307-appb-000053
对应的码本子集限制的配置信息,所述第二子配置信息为
Figure PCTCN2015088307-appb-000054
对应的码本子集限制的配置信息;
或者,所述第一配置信息为
Figure PCTCN2015088307-appb-000055
对应的码本子集限制的配置信息。
结合第一方面的第九种可能的实现方式,在第一方面的第十种可能的实现方式中,所述第一子配置信息采用高层信令发送,所述第二子配置信息采用动态信令发送;或者
所述第一子配置信息采用动态信令发送,所述第二子配置信息采用高层信令发送。
结合第一方面的第一种可能的实现方式或第一方面的第九种可能的实现方式中的任意一种,在第一方面的第十一种可能的实现方式中,所述天线端口数为X2的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000056
其中,
Figure PCTCN2015088307-appb-000057
Figure PCTCN2015088307-appb-000058
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000059
表示克罗内克积;
Figure PCTCN2015088307-appb-000060
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第一预编码矩阵合,
Figure PCTCN2015088307-appb-000061
对应于所述X2个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000062
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000063
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000064
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000065
的每个列向量的维度为X2/2,L为所述X2个天线端口的垂直方向的波束组的总的个数,
Figure PCTCN2015088307-appb-000066
为所述X2个天线端口的 垂直方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000067
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000068
为维度X2行的矩阵,用于对
Figure PCTCN2015088307-appb-000069
进行列选择和/或相位调整;
则所述第二配置信息包括第三子配置信息和第四子配置信息,所述第三子配置信息为所述
Figure PCTCN2015088307-appb-000070
对应的码本子集限制的配置信息,所述第四子配置信息为
Figure PCTCN2015088307-appb-000071
对应的码本子集限制的配置信息;
或者,所述第二配置信息为
Figure PCTCN2015088307-appb-000072
对应的码本子集限制的配置信息。
结合第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,所述第三子配置信息采用高层信令发送,所述第四子配置信息采用动态信令发送;或者
所述第三子配置信息采用动态信令发送,所述第四子配置信息采用高层信令发送。
结合第一方面或第一方面的第六种可能的实现方式,在第一方面的第十三种可能的实现方式中,所述天线端口数为X的天线为具有至少两行两列的天线阵列。
结合第一方面的第一种至第五种可能的实现方式、第九种至第十二种可能的实现方式中的任意一种,在第一方面的第十四种可能的实现方式中,所述天线端口数为X的天线为具有至少两行两列的天线阵列,其中,所述X1个天线端口具有相同的水平维度,所述X2个天线端口具有相同的垂直维度。
结合第一方面的第一种至第五种可能的实现方式、第九种至第十二种可能的实现方式中的任意一种,在第一方面的第十五种可能的实现方式中,所述天线端口数为X的天线为具有至少两行两列的天线阵列,其中,X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数的一半,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数的一半。
结合第一方面,在第一方面的第十六种可能的实现方式中,所述第一配置信息是所述天线端口数为X的码本中的所有预编码矩阵进行分组后 的码本组的使能限制信息,所述天线端口数为X的码本中的所有预编码矩阵的分组是预先定义的;
所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
结合第一方面的第一种至第五种可能的实现方式的任意一种,在第一方面的第十七种可能的实现方式中,所述第一配置信息是所述天线端口数为X1的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X1的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息;
或者,所述第一配置信息是所述天线端口数为X2的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X2的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
结合第一方面的第十六种或第十七种可能的实现方式,在第一方面的第十八种可能的实现方式中,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令发送。
结合第一方面,在第一方面的第十九种可能的实现方式中,所述第一配置信息为天线端口数为X3的码本子集限制的配置信息,所述第二配置信息为天线端口数为X4的码本子集限制的配置信息,其中X=X3+X4,并且X3=X4,所述X3个天线端口和X4个天线端口分别对应不同的极化方向。
结合第一方面的第一种至第五种可能的实现方式的任意一种,在第一方面的第二十种可能的实现方式中,所述第一配置信息为X5个天线端口的码本子集限制的配置信息,所述第二配置信息为X6个天线端口的码本子集限制的配置信息,其中X1=X5+X6,并且X5=X6,所述X5个天线端口和X6个天线端口分别对应不同的极化方向;
或者,所述第一配置信息为X7个天线端口的码本子集限制的配置信 息,所述第二配置信息为X8个天线端口的码本子集限制的配置信息,其中X2=X7+X8,并且X7=X8,所述X7个天线端口和X8个天线端口分别对应不同的极化方向。
结合第一方面,在第一方面的第二十一种可能的实现方式中,所述天线端口数为X的码本中包括的预编码矩阵可以表示为W=W1(k,l)*W2*W3
Figure PCTCN2015088307-appb-000073
或者
Figure PCTCN2015088307-appb-000074
Figure PCTCN2015088307-appb-000075
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000076
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000077
表示克罗内克积;
Figure PCTCN2015088307-appb-000078
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000079
对应于一个波束组,
Figure PCTCN2015088307-appb-000080
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000081
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000082
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000083
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000084
对应于W1中的垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000085
对应于一个波束组,
Figure PCTCN2015088307-appb-000086
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000087
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000088
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000089
为垂直方向的波束组内的向量的个数,W2为维度X行的列选择矩阵,用于对W1(k,l)进行列选择,W3为相位调整矩阵,W3用于进行两组天线之间的相位调整;
则所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息;
或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
Figure PCTCN2015088307-appb-000090
对应的码本子集限制的配置信息,所述第六子配置信息为
Figure PCTCN2015088307-appb-000091
对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息。
结合第一方面,在第一方面的第二十二种可能的实现方式中,若所述天线端口数为X的参考信号为周期发送的参考信号,则所述UE根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反 馈的天线端口的预编码矩阵,包括:
所述UE采用所述第一配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵;
若所述天线端口数为X的参考信号为非周期发送的参考信号,则所述UE根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的天线端口的预编码矩阵,包括:
所述UE采用所述第二配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵。
结合第一方面,在第一方面的第二十三种可能的实现方式中,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令。
结合第一方面,在第一方面的第二十四种可能的实现方式中,所述参考信号为信道状态信息-参考信号CSI-RS。
结合第一方面的第七种、第八种、第十种、第十二种、第十八种、第二十二种、第二十三种可能的实现方式中的任意一种,在第一方面的第二十五种可能的实现方式中,所述动态信令为DL grant信令,或者UL grant信令。
本发明第二方面提供一种用户设备UE,包括:
接收模块,用于接收基站发送的天线端口数为X的天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,所述天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,X为大于或等于2的正整数;
确定模块,用于根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,所述天线端口数为X的码本子集限制用于指示所述UE从所述天线端口数为X的码本的所有预编码矩阵中选择部分预编码矩阵进行测量和反馈;
测量模块,用于根据所述天线端口数为X天线的参考信号,测量得到 所述需要进行信道测量和反馈的预编码矩阵。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2。
结合第二方面,在第二方面的第二种可能的实现方式中,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2*2。
结合第二方面的第一种或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述确定模块具体用于:
将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述确定模块具体用于:
将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到所述天线端口数为X的预编码矩阵的W1
根据公式W=W1*W2得到需要进行信道测量和反馈的天线端口的预编码矩阵,其中,W2为维度X行的矩阵,用于对W1进行列选择和/或相位调整。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,
Figure PCTCN2015088307-appb-000092
或者
Figure PCTCN2015088307-appb-000093
Figure PCTCN2015088307-appb-000094
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000095
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000096
表示克罗内克积;
Figure PCTCN2015088307-appb-000097
对应于W1中的水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000098
对应一个波束组,
Figure PCTCN2015088307-appb-000099
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000100
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000101
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000102
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000103
对应于W1中的垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000104
对应一个波束组,
Figure PCTCN2015088307-appb-000105
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000106
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000107
的每个列向量的维度为垂直方向同 极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000108
为垂直方向的波束组内的向量的个数;
则所述第一配置信息为
Figure PCTCN2015088307-appb-000109
对应的码本子集限制的配置信息,所述第二配置信息为
Figure PCTCN2015088307-appb-000110
对应的码本子集限制的配置信息。
结合第二方面,在第二方面的第六种可能的实现方式中,所述天线端口数为X的码本中包括的预编码矩阵表示为W=W1(k,l)*W2
Figure PCTCN2015088307-appb-000111
或者
Figure PCTCN2015088307-appb-000112
Figure PCTCN2015088307-appb-000113
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000114
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000115
表示克罗内克积;
Figure PCTCN2015088307-appb-000116
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000117
对应一个波束组,
Figure PCTCN2015088307-appb-000118
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000119
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000120
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000121
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000122
对应于垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000123
对应一个波束组,
Figure PCTCN2015088307-appb-000124
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000125
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000126
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000127
为垂直方向的波束组内的向量的个数,W2为维度X行的矩阵,用于对W1(k,l)进行列选择和/或相位调整;
则所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息;
或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
Figure PCTCN2015088307-appb-000128
对应的码本子集限制的配置信息,所述第六子配置信息为
Figure PCTCN2015088307-appb-000129
对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息。
结合第二方面、第二方面的第一种至第六种可能的实现方式中的任意一种,在第二方面的第七种可能的实现方式中,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
所述第一配置信息和所述第二配置信息都采用高层信令发送。
结合第二方面的第一种至第六种可能的实现方式中的任意一种,在第二方面的第八种可能的实现方式中,所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用动态信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用高层信令配置;
或者
所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用高层信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用动态信令配置。
结合第二方面的第一种可能的实现方式,在第二方面的第九种可能的实现方式中,所述天线端口数为X1的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000130
其中,
Figure PCTCN2015088307-appb-000131
Figure PCTCN2015088307-appb-000132
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000133
表示克罗内克积;
Figure PCTCN2015088307-appb-000134
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000135
对应于所述X1个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000136
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000137
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000138
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000139
的每个列向量的维度为所述X1/2,K为所述X1个天线端口的水平方向的波束组的总的个数,
Figure PCTCN2015088307-appb-000140
为所述X1个天线端口的水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000141
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000142
为维度X1行的矩阵,用于对
Figure PCTCN2015088307-appb-000143
进行列选择和/或相位调整;
则所述第一配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息为所述
Figure PCTCN2015088307-appb-000144
对应的码本子集限制的配置信息,所述第二子配置信息为
Figure PCTCN2015088307-appb-000145
对应的码本子集限制的配置信息;
或者,所述第一配置信息为
Figure PCTCN2015088307-appb-000146
对应的码本子集限制的配置信息。
结合第二方面的第九种可能的实现方式,在第二方面的第十种可能的实现方式中,所述第一子配置信息采用高层信令发送,所述第二子配置信 息采用动态信令发送;或者
所述第一子配置信息采用动态信令发送,所述第二子配置信息采用高层信令发送。
结合第二方面的第一种可能的实现方式或第二方面的第九种可能的实现方式中的任意一种,在第二方面的第十一种可能的实现方式中,所述天线端口数为X2的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000147
其中,
Figure PCTCN2015088307-appb-000148
Figure PCTCN2015088307-appb-000149
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000150
表示克罗内克积;
Figure PCTCN2015088307-appb-000151
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000152
对应于所述X2个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000153
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000154
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000155
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000156
的每个列向量的维度为X2/2,L为所述X2个天线端口的垂直方向的波束组的总的个数,
Figure PCTCN2015088307-appb-000157
为所述X2个天线端口的垂直方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000158
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000159
为维度X2行的矩阵,用于对
Figure PCTCN2015088307-appb-000160
进行列选择和/或相位调整;
则所述第二配置信息包括第三子配置信息和第四子配置信息,所述第三子配置信息为所述
Figure PCTCN2015088307-appb-000161
对应的码本子集限制的配置信息,所述第四子配置信息为
Figure PCTCN2015088307-appb-000162
对应的码本子集限制的配置信息;
或者,所述第二配置信息为
Figure PCTCN2015088307-appb-000163
对应的码本子集限制的配置信息。
结合第二方面的第十一种可能的实现方式,在第二方面的第十二种可能的实现方式中,所述第三子配置信息采用高层信令发送,所述第四子配置信息采用动态信令发送;或者
所述第三子配置信息采用动态信令发送,所述第四子配置信息采用高层信令发送。
结合第二方面或第二方面的第六种可能的实现方式,在第二方面的第十三种可能的实现方式中,所述天线端口数为X的天线为具有至少两行两 列的天线阵列。
结合第二方面的第一种至第五种可能的实现方式、第九种至第十二种可能的实现方式中的任意一种,在第二方面的第十四种可能的实现方式中,所述天线端口数为X的天线为具有至少两行两列的天线阵列,其中,所述X1个天线端口具有相同的水平维度,所述X2个天线端口具有相同的垂直维度。
结合第二方面的第一种至第五种可能的实现方式、第九种至第十二种可能的实现方式中的任意一种,在第二方面的第十五种可能的实现方式中,所述天线端口数为X的天线为具有至少两行两列的天线阵列,其中,X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数的一半,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数的一半。
结合第二方面,在第二方面的第十六种可能的实现方式中,所述第一配置信息是所述天线端口数为X的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X的码本中的所有预编码矩阵的分组是预先定义的;
所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
结合第二方面的第一种至第五种可能的实现方式的任意一种,在第二方面的第十七种可能的实现方式中,所述第一配置信息是所述天线端口数为X1的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X1的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息;
或者,所述第一配置信息是所述天线端口数为X2的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X2的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
结合第二方面的第十六种或第十七种可能的实现方式,在第二方面的第十八种可能的实现方式中,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信 令发送;或者
所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令发送。
结合第二方面,在第二方面的第十九种可能的实现方式中,所述第一配置信息为天线端口数为X3的码本子集限制的配置信息,所述第二配置信息为天线端口数为X4的码本子集限制的配置信息,其中X=X3+X4,并且X3=X4,所述X3个天线端口和X4个天线端口分别对应不同的极化方向。
结合第二方面的第一种至第五种可能的实现方式的任意一种,在第二方面的第二十种可能的实现方式中,所述第一配置信息为X5个天线端口的码本子集限制的配置信息,所述第二配置信息为X6个天线端口的码本子集限制的配置信息,其中X1=X5+X6,并且X5=X6,所述X5个天线端口和X6个天线端口分别对应不同的极化方向;
或者,所述第一配置信息为X7个天线端口的码本子集限制的配置信息,所述第二配置信息为X8个天线端口的码本子集限制的配置信息,其中X2=X7+X8,并且X7=X8,所述X7个天线端口和X8个天线端口分别对应不同的极化方向。
结合第二方面,在第二方面的第二十一种可能的实现方式中,所述天线端口数为X的码本中包括的预编码矩阵可以表示为W=W1(k,l)*W2*W3
Figure PCTCN2015088307-appb-000164
或者
Figure PCTCN2015088307-appb-000165
Figure PCTCN2015088307-appb-000166
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000167
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000168
表示克罗内克积;
Figure PCTCN2015088307-appb-000169
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000170
对应于一个波束组,
Figure PCTCN2015088307-appb-000171
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000172
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000173
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000174
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000175
对应于W1中的垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000176
对应于一个波束组,
Figure PCTCN2015088307-appb-000177
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000178
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000179
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000180
为垂直方向的波束组内的 向量的个数,W2为维度X行的列选择矩阵,用于对W1(k,l)进行列选择,W3为相位调整矩阵,W3用于进行两组天线之间的相位调整;
则所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息;
或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
Figure PCTCN2015088307-appb-000181
对应的码本子集限制的配置信息,所述第六子配置信息为
Figure PCTCN2015088307-appb-000182
对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息。
结合第二方面,在第二方面的第二十二种可能的实现方式中,若所述天线端口数为X的参考信号为周期发送的参考信号,则所述确定模块具体用于:采用所述第一配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵;
若所述天线端口数为X的参考信号为非周期发送的参考信号,则所述确定模块具体用于:采用所述第二配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵。
结合第二方面,在第二方面的第二十三种可能的实现方式中,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令。
结合第二方面,在第二方面的第二十四种可能的实现方式中,所述参考信号为信道状态信息-参考信号CSI-RS。
结合第二方面的第七种、第八种、第十种、第十二种、第十八种、第二十二种、第二十三种可能的实现方式中的任意一种,在第二方面的第二十五种可能的实现方式中,所述动态信令为DL grant信令,或者UL grant信令。
本发明第三方面提供一种用户设备UE,包括:处理器、存储器、通 信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述UE执行如本发明第一方面、第一方面的第一种至第二十五种可能的实现方式中的任意一种所述方法。
本发明实施例提供的码本的配置方法和用户设备,UE接收基站发送的天线端口数为X天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息;根据天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,并根据参考信号测量得到需要进行信道测量和反馈的天线端口的预编码矩阵。所述方法中,通过将天线端口数为X的码本子集限制的配置信息携带在第一配置信息和第二配置信息中反馈,可以减少码本子集限制的配置信息的反馈开销。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为3种2D天线阵列的结构示意图;
图2为本发明实施例一提供的码本的配置方法的流程图;
图3为本发明实施例二提供的码本的配置方法的流程图;
图4为本发明实施例三提供的码本的配置方法的流程图;
图5为本发明实施例四提供的码本的配置方法的流程图;
图6为本发明实施例六提供的UE的结构示意图;
图7为本发明实施例十一提供的UE的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本 发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中引入了二维(2D)天线,2D天线在水平和垂直都可以进行波束成型。图1为3种2D天线阵列的结构示意图,如图1所示,第一个2D天线阵列为一个4*4的天线阵列,第二个2D天线阵列为一个2*8的天线阵列,第三个2D天线阵列为一个4*4的天线阵列。但是,目前的技术中并没有为2D天线配置码本。
为了解决现有技术的问题,本发明实施例一提供一种码本的配置方法,图2为本发明实施例一提供的码本的配置方法的流程图,如图2所示,本实施例提供的方法可以包括以下步骤:
步骤101、UE接收基站发送的天线端口数为X的天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,该天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,X为大于或等于2的正整数。
其中,参考信号可以为信道状态信息-参考信号(Channel State Information-reference signal,简称CSI-RS)。天线端口数为X的天线为具有至少两行两列的天线阵列。
步骤102、UE根据天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵。
本实施例中,天线端口数为X的码本子集限制用于指示UE从天线端口数为X的码本的所有预编码矩阵中集合中选择部分预编码矩阵的子集进行测量和反馈。天线端口数为X的码本子集限制的配置信息可以为CSR位图,在位图的每个比特位对应一个预编码矩阵,比特位的值为0和1,当比特位被设置为0时,与该比特位对应的预编码矩阵受限制,UE不需要测量和反馈该比特位对应的预编码矩阵,当比特位被设置为1时,UE需要测量和反馈该比特位对应的预编码矩阵。
可选的,第一配置信息为天线端口数为X1的码本子集限制的配置信息,第二配置为天线端口数为X2的码本子集限制的配置信息,X=X1*X2。 对于2D天线来说,该X1个天线端口可以为天线端口数为X的天线阵列的水平方向的天线端口,即该天线阵列每一行包含的天线端口数,该X2个天线端口可以为垂直方向的天线端口,即该天线阵列每一列包含的天线端口数。因此,第一配置信息为水平方向的天线端口的码本子集限制的配置信息,第二配置信息为垂直方向的天线端口的码本子集限制的配置信息。或者,第一配置信息为天线端口数为X1的码本子集限制的配置信息,第二配置为天线端口数为X2的码本子集限制的配置信息,其中,X=X1*X2*2,该X1个天线端口为水平方向的天线端口的一半,或者,该X2个天线端口为垂直方向的天线端口的一半。
UE根据天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的天线端口的预编码矩阵,具体为:UE将天线端口数为X1的预编码矩阵和天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵。
其中,UE将天线端口数为X1的预编码矩阵和天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵,具体为:UE将天线端口数为X1的预编码矩阵和天线端口数为X2的预编码矩阵进行克罗内克积得到天线端口数为X的预编码矩阵的W1;然后,UE根据公式W=W1*W2得到需要进行信道测量和反馈的天线端口的预编码矩阵,其中,W2为维度X行的矩阵,用于对W1进行列选择和/或相位调整。
Figure PCTCN2015088307-appb-000183
或者
Figure PCTCN2015088307-appb-000184
Figure PCTCN2015088307-appb-000185
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000186
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000187
表示克罗内克积;
Figure PCTCN2015088307-appb-000188
对应于W1中的水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000189
对应一个波束组,
Figure PCTCN2015088307-appb-000190
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000191
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000192
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000193
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000194
对应于W1中的垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000195
对应一个波束组,
Figure PCTCN2015088307-appb-000196
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000197
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000198
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000199
为垂直方向的波束组 内的向量的个数。相应的,第一配置信息为
Figure PCTCN2015088307-appb-000200
对应的码本子集限制的配置信息,第二配置信息为
Figure PCTCN2015088307-appb-000201
对应的码本子集限制的配置信息。
例如,第一配置信息如果采用bitmap的形式,则假设
Figure PCTCN2015088307-appb-000202
的预编码矩阵的个数一共有K个,则bitmap一共有K bits,01010000….10,则
Figure PCTCN2015088307-appb-000203
Figure PCTCN2015088307-appb-000204
这几个预编码矩阵是被使能的,UE可以基于这几个预编码矩阵进行测量和反馈。第二配置信息如果也采用bitmap的形式,则假设
Figure PCTCN2015088307-appb-000205
的预编码矩阵的个数一共有L个,则bitmap一共有L bits,11000000....01,则
Figure PCTCN2015088307-appb-000206
Figure PCTCN2015088307-appb-000207
这几个预编码矩阵是被使能的,UE可以基于这几个预编码矩阵进行测量和反馈。
本实施例中,基站可以采用如下几种方式发送天线端口数为X的码本子集限制的配置信息:
(1)第一配置信息和第二配置信息都采用高层信令发送。
(2)第一配置信息采用高层信令发送,第二配置信息采用动态信令发送。
(3)第一配置信息和第二配置信息都采用高层信令发送。
(4)X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用动态信令配置,X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用高层信令配置。
(5)X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用高层信令配置,X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用动态信令配置。
(6)若天线端口数为X1的码本中的预编码矩阵采用双码本结构,则天线端口数为X1的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000208
其中,
Figure PCTCN2015088307-appb-000209
Figure PCTCN2015088307-appb-000210
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000211
表示克罗内克积;
Figure PCTCN2015088307-appb-000212
对应于天线端口数为X的天线的水平方向的X1个天线端口的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000213
对应于X1个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000214
对应于一个波束组,每个波束对应一个 DFT向量,
Figure PCTCN2015088307-appb-000215
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000216
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000217
的每个列向量的维度为X1/2,K为X1个天线端口的水平方向的波束组的总的个数,也即为
Figure PCTCN2015088307-appb-000218
的总的个数。
Figure PCTCN2015088307-appb-000219
为X1个天线端口水平方向的的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000220
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000221
为维度X1行的矩阵,用于对
Figure PCTCN2015088307-appb-000222
进行列选择和/或相位调整;
相应的,第一配置信息包括第一子配置信息和第二子配置信息,第一子配置信息为
Figure PCTCN2015088307-appb-000223
对应的码本子集限制的配置信息,第二子配置信息为
Figure PCTCN2015088307-appb-000224
对应的码本子集限制的配置信息,或者,第一配置信息为
Figure PCTCN2015088307-appb-000225
对应的码本子集限制的配置信息。可选的,第一子配置信息采用高层信令发送,第二子配置信息采用动态信令发送;或者,第一子配置信息采用动态信令发送,第二子配置信息采用高层信令发送。
这种方式中,通过将水平方向的X1个天线端口的的波束组划分为K个波束组,每个波束组内包括
Figure PCTCN2015088307-appb-000226
个预编码向量,每个波束作为
Figure PCTCN2015088307-appb-000227
的一个列向量,
Figure PCTCN2015088307-appb-000228
为维度X1行的矩阵,用于对
Figure PCTCN2015088307-appb-000229
进行列选择和或两组天线的相位调整。
(7)若天线端口数为X2的码本中的预编码矩阵采用双码本结构,则天线端口数为X2的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000230
其中,
Figure PCTCN2015088307-appb-000231
Figure PCTCN2015088307-appb-000232
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000233
表示克罗内克积;
Figure PCTCN2015088307-appb-000234
对应于端口数为X的天线阵列的垂直方向的X2个天线端口的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000235
对应于X2个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000236
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000237
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000238
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000239
的每个列向量的维度为X2/2,L为X2个天线端口的垂直方向的波束组的总的个数,也即为
Figure PCTCN2015088307-appb-000240
的总的个数。
Figure PCTCN2015088307-appb-000241
为X2个垂直方向天线端口的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000242
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000243
为维度 X2行的矩阵,用于对
Figure PCTCN2015088307-appb-000244
进行列选择和/或相位调整。
相应的,第二配置信息包括第三子配置信息和第四子配置信息,第三子配置信息为所述
Figure PCTCN2015088307-appb-000245
对应的码本子集限制的配置信息,第四子配置信息为
Figure PCTCN2015088307-appb-000246
对应的码本子集限制的配置信息,或者,第二配置信息为
Figure PCTCN2015088307-appb-000247
对应的码本子集限制的配置信息。可选的,第三子配置信息采用高层信令发送,第四子配置信息采用动态信令发送;或者,第三子配置信息采用动态信令发送,第四子配置信息采用高层信令发送。
可选的,天线端口数为X1和X2的码本中的预编码矩阵均可以采用双码本结构,那么
Figure PCTCN2015088307-appb-000248
本实施例中,当天线端口数为X的天线为具有至少两行两列的天线阵列时,X1个天线端口具有相同的水平维度,X2个天线端口具有相同的垂直维度。此时,X1的取值可能小于或等于天线阵列的水平维度的天线端口总个数,X2的取值可能小于或等于天线阵列的垂直维度的天线端口总个数。
或者,X1为天线端口数为X的天线的列数,X2为天线端口数为X的天线的行数;或者X1为天线端口数为X的天线的列数的一半,X2为天线端口数为X的天线的行数;或者X1为天线端口数为X的天线的列数,X2为天线端口数为X的天线的行数的一半。
假设水平维度的码本共有N个预编码矩阵,则水平维度的码本子集限制的配置信息为a0~aN-1,a0~aN-1为bitmap的形式,每个预编码矩阵对应一个比特位,每个比特位的值为0或1,当比特位的值为1时,表示该比特位对应的预编码矩阵被选中,UE需要测量并反馈该被选中的预编码矩阵。当比特位的值为0时,表示该比特位对应的预编码矩阵没有被选中,UE不需要测量和反馈该被选中的预编码矩阵。假设N为5,则a0~aN-1=01100,则该bitmap中1对应的位置的码字被选中。
本实施例中,通过将水平维度的码本子集限制的配置信息和垂直维度的码本子集限制的配置信息分别反馈,可以减少码本子集限制的配置信息的反馈开销。例如,对于一个2D天线阵列,假设水平方向共有8个预编码矩阵可选,垂直方向共有4个预编码矩阵可以选,则水平和垂直的预编码矩阵进行克罗内科积得到共有32个预编码矩阵,如果不分开反馈,那 么需要32比特的位图来反馈码本子集限制的配置信息,而将水平维度的码本子集限制的配置信息和垂直维度的码本子集限制的配置信息分别反馈时,水平维度只需要4个比特位,垂直维度只需要8个比特位,总共需要12比特进行码本子集限制,从而减少码本子集限制的配置信息的反馈开销。
步骤103、UE根据天线端口数为X天线的参考信号,测量得到需要进行信道测量和反馈的预编码矩阵。
根据天线端口的参考信号确定天线端口的预编码矩阵为现有技术,这里不再赘述。
本实施例的码本配置方法,UE接收基站发送的天线端口数为X天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息;根据天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,并根据参考信号测量得到需要进行信道测量和反馈的天线端口的预编码矩阵。所述方法中,通过将天线端口数为X的码本子集限制的配置信息携带在第一配置信息和第二配置信息中反馈,可以减少码本子集限制的配置信息的反馈开销。
图3为本发明实施例二提供的码本的配置方法的流程图,如图3所示,本实施例提供的方法可以包括以下步骤:
步骤201、UE接收基站发送的天线端口数为X天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,该天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,第一配置信息是天线端口数为X的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,天线端口数为X的码本中的所有预编码矩阵的分组是预先定义的;第二配置信息是每个码本组内的预编码矩阵的使能限制信息,X为大于或等于2的正整数。
本实施例中,需要预先对天线端口数为X的码本中的所有预编码矩阵进行分组,例如天线端口数为X的码本中的所有预编码矩阵为{W}={C0,C1,C2…CN-1},将其分为i个码本组,第一个码本组为C0~Cd-1,第二个码本组为Cd~C2d-1,第i个码本组为Cid~Cid-1。这里只是举例说明,本发明并不对码本的分组进行限制。
本实施例中,第一配置信息是天线端口数为X的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,第二配置信息是每个码本组内的预编码矩阵的使能限制信息。例如,32个预编码矩阵,被分为了4个码本组,每个码本组内有包括8个预编码矩阵,那么第一配置信息中携带4个码本组的使能限制信息,例如,使能限制信息为0110,1表示比特位对应的码本组被使能了,0表示比特位对应的码本组没有被使能,那么0110表示第2个码本组和第3个码本组被使能了,UE需要对使能的码本组内的预编码矩阵进行测量。进一步的,基站还可以规定UE只测量每个码本组内的部分预编码矩阵,因此,第二配置信息中会携带被使能的码本组中的预编码矩阵的使能限制信息,例如,第2个码本组的预编码矩阵的使能限制信息为11001001,其中,1表示比特位对应的预编码矩阵被使能了,0表示比特位对应的预编码矩阵没有被使能,UE只对使能的预编码矩阵进行测量,那么11001001表示UE只对第1、2、5、8个比特位上对应的预编码矩阵进行测量。
可选的,第一配置信息和第二配置信息都采用高层信令发送;或者,第一配置信息采用高层信令发送,第二配置信息采用动态信令发送;或者,第一配置信息采用动态信令发送,第二配置信息采用高层信令发送。
步骤202、UE根据天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈预编码矩阵。
本实施例中,UE首先根据第一配置信息确定被使能的码本组,进一步,根据第二配置信息确定被使能的码本内的哪些预编码矩阵被使能了,被使能的预编码矩阵就是需要进行信道测量和反馈的预编码矩阵。
步骤203、UE根据天线端口数为X的天线的参考信号,测量得到需要进行信道测量和反馈的预编码矩阵。
本实施例中,天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,第一配置信息是天线端口数为X的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,第二配置信息是每个码本组内的预编码矩阵的使能限制信息,UE根据第一配置信息确定被使能的码本组,进一步,根据第二配置信息确定需要进行信道测量和反馈的天线端口的预编码矩阵。UE根据参考信号测量得到需要进行信道测量和反 馈的天线端口的预编码矩阵。所述方法中,通过将天线端口数为X的码本划分为多个码本组,将码本组的使能限制信息和码本组内的预编码矩阵的限制信息分别携带在第一配置信息和第二配置信息中反馈,可以减少码本子集限制的配置信息的反馈开销。
实施例二的方法也适用于水平方向和垂直方向的天线端口的码本子集限制的配置信息。相应的,第一配置信息是天线端口数为X1的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,天线端口数为X1的码本中的所有预编码矩阵的分组是预先定义的,第二配置信息是每个码本组内的预编码矩阵的使能限制信息。或者,第一配置信息是天线端口数为X2的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,天线端口数为X2的码本中的所有预编码矩阵的分组是预先定义的,第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
图4为本发明实施例三提供的码本的配置方法的流程图,如图4所示,本实施例提供的方法可以包括以下步骤:
步骤301、UE接收基站发送的天线端口数为X的参考信号,以及天线端口数为X的码本子集限制的配置信息,天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,第一配置信息为天线端口数为X3的码本子集限制的配置信息,第二配置信息为天线端口数为X4的码本子集限制的配置信息,天线端口数为X3和天线端口数为X4分别对应不同的极化方向,其中X=X3+X4,并且X3=X4,X为大于或等于2的正整数。
本实施例中,按照天线的极化方向将X个天线分为两组:一组天线端口的极化方向为垂直极化方向,另一组天线端口的极化方向为水平极化方向。本实施例中,当天线端口数为X3的极化方向为垂直极化方向时,天线端口数为X4的极化方向为水平极化方向;当天线端口数为X3的极化方向为水平极化方向时,天线端口数为X4的极化方向为垂直极化方向。
步骤302、UE根据天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵。
具体的,UE分别根据第一配置信息和第二配置信息确定需要进行信道测量和反馈的天线端口的预编码矩阵。
步骤303、UE根据需要进行信道测量和反馈的天线端口的参考信号,测量得到需要进行信道测量和反馈的预编码矩阵。
本实施例中,天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,第一配置信息为天线端口数为X3的码本子集限制的配置信息,第二配置信息为天线端口数为X4的码本子集限制的配置信息,天线端口数为X3和天线端口数为X4分别对应不同的极化方向,并分别根据第一配置信息和第二配置信息确定需要进行信道测量和反馈的天线端口的预编码矩阵。根据天线的极化方向将天线端口数为X的码本划分为两个码本子集,两个码本子集限制的配置信息分别携带在第一配置信息和第二配置信息中反馈,可以减少码本子集限制的配置信息的反馈开销。
实施例三的方法也适用于水平方向和垂直方向的天线端口的码本子集限制的配置信息。相应的,第一配置信息为X5个天线端口的码本子集限制的配置信息,第二配置信息为X6个天线端口的码本子集限制的配置信息,其中X1=X5+X6,并且X5=X6,X5个天线端口和X6个天线端口分别对应不同的极化方向。或者,第一配置信息为X7个天线端口的码本子集限制的配置信息,第二配置信息为X8个天线端口的码本子集限制的配置信息,其中X2=X7+X8,并且X7=X8,X7个天线端口和X8个天线端口分别对应不同的极化方向。
图5为本发明实施例四提供的码本的配置方法的流程图,如图5所示,本实施例提供的方法可以包括以下步骤:
步骤401、UE接收基站发送的天线端口数为X的参考信号,以及天线端口数为X的码本子集限制的配置信息,天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,X为大于或等于2的正整数。
本实施例中,周期性传输的参考信号和非周期传输的参考信号使用不同的码本子集配置信息,第一配置和第二配置信息分别对应不同的码本子集的配置信息。
可选的,第一配置信息和第二配置信息都采用高层信令发送;或者,第一配置信息采用高层信令发送,第二配置信息采用动态信令发送;或者,第一配置信息采用动态信令发送,第二配置信息采用高层信令。
步骤402、若天线端口数为X的参考信号为周期发送的参考信号,则UE采用第一配置信息置确定需要进行信道测量和反馈的预编码矩阵,若天线端口数为X的参考信号为非周期发送的参考信号,则UE采用第二配置信息置确定需要进行信道测量和反馈的预编码矩阵。
参考信号可以为CSI-RS信号,CSI-RS有两种配置:configuration 0和configuration 1,configuration 0表示CSI-RS为周期性信号,configuration 1表示CSI-RS为非周期性信号。例如发送周期性CSI-RS的每个天线端口对应的垂直的波束方向为B1,例如B1指向水平线以下10度的方向,基站发送的周期性CSI-RS的发送时刻为0ms,5ms,10ms。UE根据第一配置信息确定使能的码本集合为{C0}。
基站在0ms,5ms,10ms之外的其他时间发送非周期的CSI-RS,例如基站在第7ms的时候发送非周期的CSI-RS,发送非周期的CSI-RS的每个天线端口对应的垂直的波束方向为B2,例如B2指向水平线以下20度的方向,UE根据第二配置信息确定使能的码本集合{C1}。本实施例中,基站可以使用两比特指示UE选用哪个使能的码本集合,例如,用00代表使能的码本集合为{C0},01代表使能的码本集合为{C1},10代表使能的码本集合为{C2},11代表使能的码本集合为{C3}。若使能的码本集合越多,需要的比特数也越多,例如,使能的码本集合为8个,则需要3比特指示。
步骤403、UE根据天线端口数为X的天线的参考信号,测量得到需要进行信道测量和反馈的预编码矩阵。
本实施例中,周期性传输的参考信号和非周期传输的参考信号使用不同的码本子集配置信息,若参考信号为周期发送的参考信号,则UE采用第一配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵,若参考信号为非周期发送的参考信号,则UE采用第二配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵。所述方法中,根据才考信号的周期性将参考信号划分为两个码本子集,两个码本子集限制的配置信息分别通过第一配置信息和第二配置信息反馈,可以减少码本子集限制的配置信息的反馈开销。
本发明实施例五提供一种码本的配置方法,本实施例中,天线端口数为X的码本中包括的预编码矩阵采用双码本表示,具体可以表示为 W=W1(k,l)*W2
Figure PCTCN2015088307-appb-000249
或者
Figure PCTCN2015088307-appb-000250
Figure PCTCN2015088307-appb-000251
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000252
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000253
表示克罗内克积;
Figure PCTCN2015088307-appb-000254
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000255
对应一个波束组,
Figure PCTCN2015088307-appb-000256
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000257
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000258
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000259
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000260
对应于垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000261
对应一个波束组,
Figure PCTCN2015088307-appb-000262
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000263
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000264
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000265
为垂直方向的波束组内的向量的个数,W2为维度X行的矩阵,用于对W1(k,l)进行列选择以及两组天线间的相位调整。
本实施例中,
Figure PCTCN2015088307-appb-000266
可以表示为:
Figure PCTCN2015088307-appb-000267
Figure PCTCN2015088307-appb-000268
相应的,第一配置信息为W1(k,l)对应的码本子集限制的配置信息,第二配置信息为W2对应的码本子集限制的配置信息,或者,第一配置信息包括第五子配置信息和第六子配置信息,第五子配置信息为
Figure PCTCN2015088307-appb-000269
对应的码本子集限制的配置信息,第六子配置信息为
Figure PCTCN2015088307-appb-000270
对应的码本子集限制的配置信息,第二配置信息为W2对应的码本子集限制的配置信息。
或者,天线端口数为X的码本中包括的预编码矩阵W=W1(k,l)*W2*W3,此时W2为维度X行的列选择矩阵,用于对W1(k,l)进行列选择,W3为相位调整矩阵,W3用于进行两组天线之间的相位调整。相应的,第一配置信息为W1(k,l)对应的码本子集限制的配置信息,第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息,或者,第一配置信息包括第五子配置信息和第六子配置信息,第五子配置信息为
Figure PCTCN2015088307-appb-000271
对 应的码本子集限制的配置信息,第六子配置信息为
Figure PCTCN2015088307-appb-000272
对应的码本子集限制的配置信息,第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息。
图6为本发明实施例六提供的UE的结构示意图,如图6所示,本实施例提供的UE包括:接收模块11、确定模块12和测量模块13。
其中,接收模块11,用于接收基站发送的天线端口数为X的天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,所述天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,X为大于或等于2的正整数;
确定模块12,用于根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,所述天线端口数为X的码本子集限制用于指示所述UE从所述天线端口数为X的码本的所有预编码矩阵中选择部分预编码矩阵进行测量和反馈;
测量模块13,用于根据所述天线端口数为X天线的参考信号,测量得到所述需要进行信道测量和反馈的预编码矩阵。
可选的,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2。
可选的,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2*2。
相应的,所述确定模块12具体用于:将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵。其中,确定模块12将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵,具体为:
将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到所述天线端口数为X的预编码矩阵的W1
根据公式W=W1*W2得到需要进行信道测量和反馈的天线端口的预编 码矩阵,其中,W2为维度X行的矩阵,用于对W1进行列选择和/或相位调整。
其中,
Figure PCTCN2015088307-appb-000273
或者
Figure PCTCN2015088307-appb-000274
Figure PCTCN2015088307-appb-000275
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000276
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000277
表示克罗内克积;
Figure PCTCN2015088307-appb-000278
对应于W1中的水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000279
对应一个波束组,
Figure PCTCN2015088307-appb-000280
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000281
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000282
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000283
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000284
对应于W1中的垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000285
对应一个波束组,
Figure PCTCN2015088307-appb-000286
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000287
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000288
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000289
为垂直方向的波束组内的向量的个数;则所述第一配置信息为
Figure PCTCN2015088307-appb-000290
对应的码本子集限制的配置信息,所述第二配置信息为
Figure PCTCN2015088307-appb-000291
对应的码本子集限制的配置信息。
可选的,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者,所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者,所述第一配置信息和所述第二配置信息都采用高层信令发送。
可选的,所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用动态信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用高层信令配置;或者,所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用高层信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用动态信令配置。
可选的,所述天线端口数为X1的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000292
其中,
Figure PCTCN2015088307-appb-000293
Figure PCTCN2015088307-appb-000294
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000295
表示克罗内克积;
Figure PCTCN2015088307-appb-000296
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000297
对应于所述X1个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000298
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000299
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000300
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000301
的每个列向量的维度为所述X1/2,K为所述X1个天线端口的水平方向的波束组的总的个数,
Figure PCTCN2015088307-appb-000302
为所述X1个天线端口的水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000303
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000304
为维度X1行的矩阵,用于对
Figure PCTCN2015088307-appb-000305
进行列选择和/或相位调整。相应的,所述第一配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息为所述
Figure PCTCN2015088307-appb-000306
对应的码本子集限制的配置信息,所述第二子配置信息为
Figure PCTCN2015088307-appb-000307
对应的码本子集限制的配置信息,或者,所述第一配置信息为
Figure PCTCN2015088307-appb-000308
对应的码本子集限制的配置信息。
其中,所述第一子配置信息采用高层信令发送,所述第二子配置信息采用动态信令发送;或者,所述第一子配置信息采用动态信令发送,所述第二子配置信息采用高层信令发送。
可选的,所述天线端口数为X2的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000309
其中,
Figure PCTCN2015088307-appb-000310
Figure PCTCN2015088307-appb-000311
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000312
表示克罗内克积;
Figure PCTCN2015088307-appb-000313
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000314
对应于所述X2个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000315
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000316
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000317
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000318
的每个列向量的维度为X2/2,L为所述X2个天线端口的垂直方向的波束组的总的个数,
Figure PCTCN2015088307-appb-000319
为所述X2个天线端口的垂直方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000320
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000321
为维度X2行的矩阵,用于对
Figure PCTCN2015088307-appb-000322
进行列选择和/或相位调整。相应的,所述第 二配置信息包括第三子配置信息和第四子配置信息,所述第三子配置信息为所述
Figure PCTCN2015088307-appb-000323
对应的码本子集限制的配置信息,所述第四子配置信息为
Figure PCTCN2015088307-appb-000324
对应的码本子集限制的配置信息,或者,所述第二配置信息为
Figure PCTCN2015088307-appb-000325
对应的码本子集限制的配置信息。
其中,所述第三子配置信息采用高层信令发送,所述第四子配置信息采用动态信令发送;或者,所述第三子配置信息采用动态信令发送,所述第四子配置信息采用高层信令发送。
可选的,所述天线端口数为X的天线为具有至少两行两列的天线阵列。所述X1个天线端口具有相同的水平维度,所述X2个天线端口具有相同的垂直维度。或者,X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数的一半,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数的一半。
可选的,所述参考信号为信道状态信息-参考信号CSI-RS。
可选的,所述动态信令为DL grant信令,或者UL grant信令。
本实施例提供的UE,可用于执行实施例一的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例七提供一种UE,本实施例的UE结构请参照图6,本实施例中,所述第一配置信息是所述天线端口数为X的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X的码本中的所有预编码矩阵的分组是预先定义的;所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
或者,所述第一配置信息是所述天线端口数为X1的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X1的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
或者,所述第一配置信息是所述天线端口数为X2的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X2的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个 码本组内的预编码矩阵的使能限制信息。
可选的,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者,所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者,所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令发送。
本实施例的UE,可用于执行实施例二的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例八提供一种UE,本实施例的UE的结构请参照图6所示,本实施例中,所述第一配置信息为天线端口数为X3的码本子集限制的配置信息,所述第二配置信息为天线端口数为X4的码本子集限制的配置信息,其中X=X3+X4,并且X3=X4,所述X3个天线端口和X4个天线端口分别对应不同的极化方向。
或者,所述第一配置信息为X5个天线端口的码本子集限制的配置信息,所述第二配置信息为X6个天线端口的码本子集限制的配置信息,其中X1=X5+X6,并且X5=X6,所述X5个天线端口和X6个天线端口分别对应不同的极化方向。
或者,所述第一配置信息为X7个天线端口的码本子集限制的配置信息,所述第二配置信息为X8个天线端口的码本子集限制的配置信息,其中X2=X7+X8,并且X7=X8,所述X7个天线端口和X8个天线端口分别对应不同的极化方向。
本实施例的UE,可用于执行实施例三的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例九提供一种UE,本实施例的UE的结构请参照图6所示,本实施例中,若所述天线端口数为X的参考信号为周期发送的参考信号,则所述确定模块12具体用于:采用所述第一配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵;
若所述天线端口数为X的参考信号为非周期发送的参考信号,则所述确定模块12具体用于:采用所述第二配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵。
可选的,所述第一配置信息和所述第二配置信息都采用高层信令发 送;或者,所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者,所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令。
本实施例提供的UE,可用于执行实施例四的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例十提供一种UE,本实施例的UE的结构请参照图6所示,本实施例中,所述天线端口数为X的码本中包括的预编码矩阵表示为W=W1(k,l)*W2
Figure PCTCN2015088307-appb-000326
或者
Figure PCTCN2015088307-appb-000327
Figure PCTCN2015088307-appb-000328
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000329
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000330
表示克罗内克积;
Figure PCTCN2015088307-appb-000331
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000332
对应一个波束组,
Figure PCTCN2015088307-appb-000333
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000334
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000335
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000336
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000337
对应于垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000338
对应一个波束组,
Figure PCTCN2015088307-appb-000339
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000340
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000341
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000342
为垂直方向的波束组内的向量的个数,W2为维度X行的矩阵,用于对W1(k,l)进行列选择和/或相位调整。相应的,所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息;或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
Figure PCTCN2015088307-appb-000343
对应的码本子集限制的配置信息,所述第六子配置信息为
Figure PCTCN2015088307-appb-000344
对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息。
或者,所述天线端口数为X的码本中包括的预编码矩阵可以表示为W=W1(k,l)*W2*W3
Figure PCTCN2015088307-appb-000345
或者
Figure PCTCN2015088307-appb-000346
Figure PCTCN2015088307-appb-000347
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000348
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000349
表示克罗内克积;
Figure PCTCN2015088307-appb-000350
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000351
对应于一个波束组,
Figure PCTCN2015088307-appb-000352
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000353
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000354
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000355
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000356
对应于W1中的垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000357
对应于一个波束组,
Figure PCTCN2015088307-appb-000358
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000359
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000360
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000361
为垂直方向的波束组内的向量的个数,W2为维度X行的列选择矩阵,用于对W1(k,l)进行列选择,W3为相位调整矩阵,W3用于进行两组天线之间的相位调整;
相应的,所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息,或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
Figure PCTCN2015088307-appb-000362
对应的码本子集限制的配置信息,所述第六子配置信息为
Figure PCTCN2015088307-appb-000363
对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息。
本实施例的UE,可用于执行实施例五的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例十一提供一种UE,图7为本发明实施例十一提供的UE的结构示意图,如图7所示,本实施例提供的UE200包括:处理器21、存储器22、通信接口23和系统总线24,所述存储器22和所述通信接口23通过所述系统总线24与所述处理器21连接并完成相互间的通信,所述存储器22用于存储计算机执行指令,所述通信接口23用于和其他设备进行通信,所述处理器21用于运行所述计算机执行指令,使所述UE执行如下所述的方法:
接收基站发送的天线端口数为X的天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,所述天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,X为大于或等于2的正整数;
根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,所述天线端口数为X的码本子集限制用于指示所述UE从所述天线端口数为X的码本的所有预编码矩阵中选择部分预编码矩阵进行测量和反馈;
根据所述天线端口数为X天线的参考信号,测量得到所述需要进行信道测量和反馈的预编码矩阵。
可选的,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2。
可选的,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2*2。
相应的,所述处理器21根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,具体为:
将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵。
或者,将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到所述天线端口数为X的预编码矩阵的W1;然后,根据公式W=W1*W2得到需要进行信道测量和反馈的天线端口的预编码矩阵,其中,W2为维度X行的矩阵,用于对W1进行列选择和/或相位调整。
其中,
Figure PCTCN2015088307-appb-000364
或者
Figure PCTCN2015088307-appb-000365
Figure PCTCN2015088307-appb-000366
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000367
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000368
表示克罗内克积;
Figure PCTCN2015088307-appb-000369
对应于W1中的水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000370
对应一个波束组,
Figure PCTCN2015088307-appb-000371
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000372
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000373
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000374
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000375
对应于W1中的垂直方 向的预编码矩阵,
Figure PCTCN2015088307-appb-000376
对应一个波束组,
Figure PCTCN2015088307-appb-000377
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000378
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000379
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000380
为垂直方向的波束组内的向量的个数。相应的,所述第一配置信息为
Figure PCTCN2015088307-appb-000381
对应的码本子集限制的配置信息,所述第二配置信息为
Figure PCTCN2015088307-appb-000382
对应的码本子集限制的配置信息。
可选的,所述天线端口数为X的码本中包括的预编码矩阵表示为W=W1(k,l)*W2
Figure PCTCN2015088307-appb-000383
或者
Figure PCTCN2015088307-appb-000384
Figure PCTCN2015088307-appb-000385
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000386
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000387
表示克罗内克积;
Figure PCTCN2015088307-appb-000388
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000389
对应一个波束组,
Figure PCTCN2015088307-appb-000390
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000391
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000392
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000393
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000394
对应于垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000395
对应一个波束组,
Figure PCTCN2015088307-appb-000396
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000397
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000398
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000399
为垂直方向的波束组内的向量的个数,W2为维度X行的矩阵,用于对W1(k,l)进行列选择和/或相位调整。
相应的,所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息;或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
Figure PCTCN2015088307-appb-000400
对应的码本子集限制的配置信息,所述第六子配置信息为
Figure PCTCN2015088307-appb-000401
对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息。
可选的,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者,所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者,所述第一配置信息和所述第二配置信息都采用高层信令发送。
可选的,所述X1和X2中天线端口数大的天线端口的码本子集限制 的配置信息采用动态信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用高层信令配置;或者,所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用高层信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用动态信令配置。
可选的,所述天线端口数为X1的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000402
其中,
Figure PCTCN2015088307-appb-000403
Figure PCTCN2015088307-appb-000404
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000405
表示克罗内克积;
Figure PCTCN2015088307-appb-000406
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000407
对应于所述X1个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000408
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000409
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000410
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000411
的每个列向量的维度为所述X1/2,K为所述X1个天线端口的水平方向的波束组的总的个数,
Figure PCTCN2015088307-appb-000412
为所述X1个天线端口的水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000413
对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000414
为维度X1行的矩阵,用于对
Figure PCTCN2015088307-appb-000415
进行列选择和/或相位调整。相应的,所述第一配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息为所述
Figure PCTCN2015088307-appb-000416
对应的码本子集限制的配置信息,所述第二子配置信息为
Figure PCTCN2015088307-appb-000417
对应的码本子集限制的配置信息,或者,所述第一配置信息为
Figure PCTCN2015088307-appb-000418
对应的码本子集限制的配置信息。
可选的,所述第一子配置信息采用高层信令发送,所述第二子配置信息采用动态信令发送;或者,所述第一子配置信息采用动态信令发送,所述第二子配置信息采用高层信令发送。
可选的,所述天线端口数为X2的码本中的预编码矩阵表示为
Figure PCTCN2015088307-appb-000419
其中,
Figure PCTCN2015088307-appb-000420
Figure PCTCN2015088307-appb-000421
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000422
表示克罗内克积;
Figure PCTCN2015088307-appb-000423
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第一预编码矩阵,
Figure PCTCN2015088307-appb-000424
对应于所述X2个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
Figure PCTCN2015088307-appb-000425
对应于一个波束组,每个波束对应一个DFT向量,
Figure PCTCN2015088307-appb-000426
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000427
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000428
的每个列向量的维度为X2/2,L为所述X2个天线端口的垂直方向的波束组的总的个数,
Figure PCTCN2015088307-appb-000429
为所述X2个天线端口的垂直方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000430
对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第二预编码矩阵,
Figure PCTCN2015088307-appb-000431
为维度X2行的矩阵,用于对
Figure PCTCN2015088307-appb-000432
进行列选择和/或相位调整。相应的,所述第二配置信息包括第三子配置信息和第四子配置信息,所述第三子配置信息为所述
Figure PCTCN2015088307-appb-000433
对应的码本子集限制的配置信息,所述第四子配置信息为
Figure PCTCN2015088307-appb-000434
对应的码本子集限制的配置信息,或者,所述第二配置信息为
Figure PCTCN2015088307-appb-000435
对应的码本子集限制的配置信息。
可选的,所述第三子配置信息采用高层信令发送,所述第四子配置信息采用动态信令发送;或者,所述第三子配置信息采用动态信令发送,所述第四子配置信息采用高层信令发送。
所述天线端口数为X的天线为具有至少两行两列的天线阵列。则所述X1个天线端口具有相同的水平维度,所述X2个天线端口具有相同的垂直维度。或者,X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数的一半,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数的一半。
可选的,所述第一配置信息是所述天线端口数为X的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X的码本中的所有预编码矩阵的分组是预先定义的;所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
可选的,所述第一配置信息是所述天线端口数为X1的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X1的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息;或者,所述第一配置信息是所 述天线端口数为X2的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X2的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
可选的,所述第一配置信息为天线端口数为X3的码本子集限制的配置信息,所述第二配置信息为天线端口数为X4的码本子集限制的配置信息,其中X=X3+X4,并且X3=X4,所述X3个天线端口和X4个天线端口分别对应不同的极化方向。
可选的,所述第一配置信息为X5个天线端口的码本子集限制的配置信息,所述第二配置信息为X6个天线端口的码本子集限制的配置信息,其中X1=X5+X6,并且X5=X6,所述X5个天线端口和X6个天线端口分别对应不同的极化方向;或者,所述第一配置信息为X7个天线端口的码本子集限制的配置信息,所述第二配置信息为X8个天线端口的码本子集限制的配置信息,其中X2=X7+X8,并且X7=X8,所述X7个天线端口和X8个天线端口分别对应不同的极化方向。
可选的,所述天线端口数为X的码本中包括的预编码矩阵可以表示为W=W1(k,l)*W2*W3
Figure PCTCN2015088307-appb-000436
或者
Figure PCTCN2015088307-appb-000437
Figure PCTCN2015088307-appb-000438
l=0,...,L,l'=f(l),
Figure PCTCN2015088307-appb-000439
k=0,...,K,k'=f(k),
Figure PCTCN2015088307-appb-000440
表示克罗内克积;
Figure PCTCN2015088307-appb-000441
对应于水平方向的预编码矩阵,
Figure PCTCN2015088307-appb-000442
对应于一个波束组,
Figure PCTCN2015088307-appb-000443
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000444
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000445
的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
Figure PCTCN2015088307-appb-000446
为水平方向的波束组内的向量的个数,
Figure PCTCN2015088307-appb-000447
对应于W1中的垂直方向的预编码矩阵,
Figure PCTCN2015088307-appb-000448
对应于一个波束组,
Figure PCTCN2015088307-appb-000449
为包含至少两个列向量的集合,
Figure PCTCN2015088307-appb-000450
的每个列向量为DFT向量,并且
Figure PCTCN2015088307-appb-000451
的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
Figure PCTCN2015088307-appb-000452
为垂直方向的波束组内的向量的个数,W2为维度X行的列选择矩阵,用于对W1(k,l)进行列选择,W3为相位调整矩阵,W3用于进行两组天线之间的相位调整。
相应的,所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息;或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
Figure PCTCN2015088307-appb-000453
对应的码本子集限制的配置信息,所述第六子配置信息为
Figure PCTCN2015088307-appb-000454
对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息。
可选的,若所述天线端口数为X的参考信号为周期发送的参考信号,则所述处理器21根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的天线端口的预编码矩阵,具体为:采用所述第一配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵;
若所述天线端口数为X的参考信号为非周期发送的参考信号,则所述处理器21根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的天线端口的预编码矩阵,包括:采用所述第二配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵。
可选的,所述参考信号为信道状态信息-参考信号CSI-RS。
可选的,所述动态信令为DL grant信令,或者UL grant信令。
本实施例的UE,可用于执行实施例一至实施例五的方法,具体实现方式和技术效果类似,这里不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (53)

  1. 一种码本的配置方法,其特征在于,包括:
    用户设备UE接收基站发送的天线端口数为X的天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,所述天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,X为大于或等于2的正整数;
    所述UE根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,所述天线端口数为X的码本子集限制用于指示所述UE从所述天线端口数为X的码本的所有预编码矩阵中选择部分预编码矩阵进行测量和反馈;
    所述UE根据所述天线端口数为X天线的参考信号,测量得到所述需要进行信道测量和反馈的预编码矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2。
  3. 根据权利要求1所述的方法,其特征在于,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2*2。
  4. 根据权利要求2或3所述的方法,其特征在于,所述UE根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,包括:
    所述UE将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵。
  5. 根据权利要求4所述的方法,其特征在于,所述UE将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵,包括:
    所述UE将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到所述天线端口数为X的预编码矩阵的W1
    所述UE根据公式W=W1*W2得到需要进行信道测量和反馈的天线端口的预编码矩阵,其中,W2为维度X行的矩阵,用于对W1进行列选择和/或相位调整。
  6. 根据权利要求5所述的方法,其特征在于,
    Figure PCTCN2015088307-appb-100001
    或者
    Figure PCTCN2015088307-appb-100002
    l=0,...,L,l'=f(l),
    Figure PCTCN2015088307-appb-100003
    k=0,...,K,k'=f(k),
    Figure PCTCN2015088307-appb-100004
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100005
    对应于W1中的水平方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100006
    对应一个波束组,
    Figure PCTCN2015088307-appb-100007
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100008
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100009
    的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
    Figure PCTCN2015088307-appb-100010
    为水平方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100011
    对应于W1中的垂直方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100012
    对应一个波束组,
    Figure PCTCN2015088307-appb-100013
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100014
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100015
    的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
    Figure PCTCN2015088307-appb-100016
    为垂直方向的波束组内的向量的个数;
    则所述第一配置信息为
    Figure PCTCN2015088307-appb-100017
    对应的码本子集限制的配置信息,所述第二配置信息为
    Figure PCTCN2015088307-appb-100018
    对应的码本子集限制的配置信息。
  7. 根据权利要求1所述的方法,其特征在于,所述天线端口数为X的码本中包括的预编码矩阵表示为W=W1(k,l)*W2
    Figure PCTCN2015088307-appb-100019
    或者
    Figure PCTCN2015088307-appb-100020
    l=0,...,L,l'=f(l),
    Figure PCTCN2015088307-appb-100021
    k=0,...,K,k'=f(k),
    Figure PCTCN2015088307-appb-100022
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100023
    对应于水平方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100024
    对应一个波束组,
    Figure PCTCN2015088307-appb-100025
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100026
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100027
    的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
    Figure PCTCN2015088307-appb-100028
    为水平方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100029
    对应于垂直方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100030
    对应一个波束组,
    Figure PCTCN2015088307-appb-100031
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100032
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100033
    的每个列向量的维度为垂直方向同极化天线的 个数,L为垂直方向的波束组的个数,
    Figure PCTCN2015088307-appb-100034
    为垂直方向的波束组内的向量的个数,W2为维度X行的矩阵,用于对W1(k,l)进行列选择和/或相位调整;
    则所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息;
    或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
    Figure PCTCN2015088307-appb-100035
    对应的码本子集限制的配置信息,所述第六子配置信息为
    Figure PCTCN2015088307-appb-100036
    对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,
    所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
    所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
    所述第一配置信息和所述第二配置信息都采用高层信令发送。
  9. 根据权利要求2-7任一项所述的方法,其特征在于,
    所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用动态信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用高层信令配置;
    或者
    所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用高层信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用动态信令配置。
  10. 根据权利要求2所述的方法,其特征在于,
    所述天线端口数为X1的码本中的预编码矩阵表示为
    Figure PCTCN2015088307-appb-100037
    其中,
    Figure PCTCN2015088307-appb-100038
    k=0,...,K,k'=f(k),
    Figure PCTCN2015088307-appb-100039
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100040
    对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第一预编码矩阵,
    Figure PCTCN2015088307-appb-100041
    对应于所述X1个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
    Figure PCTCN2015088307-appb-100042
    对应于一个波束组,每个波 束对应一个DFT向量,
    Figure PCTCN2015088307-appb-100043
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100044
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100045
    的每个列向量的维度为所述X1/2,K为所述X1个天线端口的水平方向的波束组的总的个数,
    Figure PCTCN2015088307-appb-100046
    为所述X1个天线端口的水平方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100047
    对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第二预编码矩阵,
    Figure PCTCN2015088307-appb-100048
    为维度X1行的矩阵,用于对
    Figure PCTCN2015088307-appb-100049
    进行列选择和/或相位调整;
    则所述第一配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息为所述
    Figure PCTCN2015088307-appb-100050
    对应的码本子集限制的配置信息,所述第二子配置信息为
    Figure PCTCN2015088307-appb-100051
    对应的码本子集限制的配置信息;
    或者,所述第一配置信息为
    Figure PCTCN2015088307-appb-100052
    对应的码本子集限制的配置信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一子配置信息采用高层信令发送,所述第二子配置信息采用动态信令发送;或者
    所述第一子配置信息采用动态信令发送,所述第二子配置信息采用高层信令发送。
  12. 根据权利要求2或者10所述的方法,其特征在于,所述天线端口数为X2的码本中的预编码矩阵表示为
    Figure PCTCN2015088307-appb-100053
    其中,
    Figure PCTCN2015088307-appb-100054
    Figure PCTCN2015088307-appb-100055
    l=0,...,L,l'=f(l),
    Figure PCTCN2015088307-appb-100056
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100057
    对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第一预编码矩阵,
    Figure PCTCN2015088307-appb-100058
    对应于所述X2个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
    Figure PCTCN2015088307-appb-100059
    对应于一个波束组,每个波束对应一个DFT向量,
    Figure PCTCN2015088307-appb-100060
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100061
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100062
    的每个列向量的维度为X2/2,L为所述X2个天线端口的垂直方向的波束组的总的个数,
    Figure PCTCN2015088307-appb-100063
    为所述X2个天线端口的垂直方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100064
    对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第二预编码矩阵,
    Figure PCTCN2015088307-appb-100065
    为维度X2行的矩阵,用于对
    Figure PCTCN2015088307-appb-100066
    进行列选择和/或相位调整;
    则所述第二配置信息包括第三子配置信息和第四子配置信息,所述第 三子配置信息为所述
    Figure PCTCN2015088307-appb-100067
    对应的码本子集限制的配置信息,所述第四子配置信息为
    Figure PCTCN2015088307-appb-100068
    对应的码本子集限制的配置信息;
    或者,所述第二配置信息为
    Figure PCTCN2015088307-appb-100069
    对应的码本子集限制的配置信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第三子配置信息采用高层信令发送,所述第四子配置信息采用动态信令发送;或者
    所述第三子配置信息采用动态信令发送,所述第四子配置信息采用高层信令发送。
  14. 根据权利要求1或7所述的方法,其特征在于,所述天线端口数为X的天线为具有至少两行两列的天线阵列。
  15. 根据权利要求2-6、10-13任一项所述的方法,其特征在于,所述天线端口数为X的天线为具有至少两行两列的天线阵列,其中,所述X1个天线端口具有相同的水平维度,所述X2个天线端口具有相同的垂直维度。
  16. 根据权利要求2-6、10-13任一项所述的方法,其特征在于,所述天线端口数为X的天线为具有至少两行两列的天线阵列,其中,X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数的一半,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数的一半。
  17. 根据权利要求1所述的方法,其特征在于,所述第一配置信息是所述天线端口数为X的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X的码本中的所有预编码矩阵的分组是预先定义的;
    所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
  18. 根据权利要求2-6任一项所述的方法,其特征在于,所述第一配置信息是所述天线端口数为X1的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X1的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息;
    或者,所述第一配置信息是所述天线端口数为X2的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X2的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
    所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
    所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令发送。
  20. 根据权利要求1所述的方法,其特征在于,所述第一配置信息为天线端口数为X3的码本子集限制的配置信息,所述第二配置信息为天线端口数为X4的码本子集限制的配置信息,其中X=X3+X4,并且X3=X4,所述X3个天线端口和X4个天线端口分别对应不同的极化方向。
  21. 根据权利要求2-6任一项所述的方法,其特征在于,所述第一配置信息为X5个天线端口的码本子集限制的配置信息,所述第二配置信息为X6个天线端口的码本子集限制的配置信息,其中X1=X5+X6,并且X5=X6,所述X5个天线端口和X6个天线端口分别对应不同的极化方向;
    或者,所述第一配置信息为X7个天线端口的码本子集限制的配置信息,所述第二配置信息为X8个天线端口的码本子集限制的配置信息,其中X2=X7+X8,并且X7=X8,所述X7个天线端口和X8个天线端口分别对应不同的极化方向。
  22. 根据权利要求1所述的方法,其特征在于,所述天线端口数为X的码本中包括的预编码矩阵可以表示为W=W1(k,l)*W2*W3
    Figure PCTCN2015088307-appb-100070
    或者
    Figure PCTCN2015088307-appb-100071
    Figure PCTCN2015088307-appb-100072
    l=0,...,L,l'=f(l),
    Figure PCTCN2015088307-appb-100073
    k=0,...,K,k'=f(k),
    Figure PCTCN2015088307-appb-100074
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100075
    对应于水平方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100076
    对应于一个波束组,
    Figure PCTCN2015088307-appb-100077
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100078
    的每个列向量为DFT向量,并且的每个列 向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
    Figure PCTCN2015088307-appb-100080
    为水平方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100081
    对应于W1中的垂直方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100082
    对应于一个波束组,
    Figure PCTCN2015088307-appb-100083
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100084
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100085
    的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
    Figure PCTCN2015088307-appb-100086
    为垂直方向的波束组内的向量的个数,W2为维度X行的列选择矩阵,用于对W1(k,l)进行列选择,W3为相位调整矩阵,W3用于进行两组天线之间的相位调整;
    则所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息;
    或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
    Figure PCTCN2015088307-appb-100087
    对应的码本子集限制的配置信息,所述第六子配置信息为
    Figure PCTCN2015088307-appb-100088
    对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息。
  23. 根据权利要求1所述的方法,其特征在于,若所述天线端口数为X的参考信号为周期发送的参考信号,则所述UE根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的天线端口的预编码矩阵,包括:
    所述UE采用所述第一配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵;
    若所述天线端口数为X的参考信号为非周期发送的参考信号,则所述UE根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的天线端口的预编码矩阵,包括:
    所述UE采用所述第二配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵。
  24. 根据权利要求23所述的方法,其特征在于,
    所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
    所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
    所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令。
  25. 根据权利要求1所述的方法,其特征在于,所述参考信号为信道状态信息-参考信号CSI-RS。
  26. 根据权利要求8、9、11、13、19、23、24中任一项所述的方法,其特征在于,所述动态信令为DL grant信令,或者UL grant信令。
  27. 一种用户设备UE,其特征在于,包括:
    接收模块,用于接收基站发送的天线端口数为X的天线的参考信号,以及天线端口数为X的码本子集限制的配置信息,所述天线端口数为X的码本子集限制的配置信息包括第一配置信息和第二配置信息,X为大于或等于2的正整数;
    确定模块,用于根据所述天线端口数为X的码本子集限制的配置信息,确定需要进行信道测量和反馈的预编码矩阵,所述天线端口数为X的码本子集限制用于指示所述UE从所述天线端口数为X的码本的所有预编码矩阵中选择部分预编码矩阵进行测量和反馈;
    测量模块,用于根据所述天线端口数为X天线的参考信号,测量得到所述需要进行信道测量和反馈的预编码矩阵。
  28. 根据权利要求27所述的UE,其特征在于,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2。
  29. 根据权利要求27所述的UE,其特征在于,所述第一配置信息为天线端口数为X1的码本子集限制的配置信息,所述第二配置为天线端口数为X2的码本子集限制的配置信息,其中X=X1*X2*2。
  30. 根据权利要求28或29所述的UE,其特征在于,所述确定模块具体用于:
    将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到需要进行信道测量和反馈的天线端口的预编码矩阵。
  31. 根据权利要求30所述的UE,其特征在于,所述确定模块具体用于:
    将所述天线端口数为X1的预编码矩阵和所述天线端口数为X2的预编码矩阵进行克罗内克积得到所述天线端口数为X的预编码矩阵的W1
    根据公式W=W1*W2得到需要进行信道测量和反馈的天线端口的预编码矩阵,其中,W2为维度X行的矩阵,用于对W1进行列选择和/或相位调整。
  32. 根据权利要求31所述的UE,其特征在于,
    Figure PCTCN2015088307-appb-100089
    或者
    Figure PCTCN2015088307-appb-100090
    l=0,...,L,l'=f(l),
    Figure PCTCN2015088307-appb-100091
    k=0,...,K,k'=f(k),
    Figure PCTCN2015088307-appb-100092
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100093
    对应于W1中的水平方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100094
    对应一个波束组,
    Figure PCTCN2015088307-appb-100095
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100096
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100097
    的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
    Figure PCTCN2015088307-appb-100098
    为水平方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100099
    对应于W1中的垂直方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100100
    对应一个波束组,
    Figure PCTCN2015088307-appb-100101
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100102
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100103
    的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
    Figure PCTCN2015088307-appb-100104
    为垂直方向的波束组内的向量的个数;
    则所述第一配置信息为
    Figure PCTCN2015088307-appb-100105
    对应的码本子集限制的配置信息,所述第二配置信息为
    Figure PCTCN2015088307-appb-100106
    对应的码本子集限制的配置信息。
  33. 根据权利要求27所述的UE,其特征在于,所述天线端口数为X的码本中包括的预编码矩阵表示为W=W1(k,l)*W2
    Figure PCTCN2015088307-appb-100107
    或者
    Figure PCTCN2015088307-appb-100108
    l=0,...,L,l'=f(l),
    Figure PCTCN2015088307-appb-100109
    k=0,...,K,k'=f(k),
    Figure PCTCN2015088307-appb-100110
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100111
    对应于水平方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100112
    对应一个波束组,
    Figure PCTCN2015088307-appb-100113
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100114
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100115
    的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
    Figure PCTCN2015088307-appb-100116
    为水平方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100117
    对应于垂直方向的预编码矩 阵,
    Figure PCTCN2015088307-appb-100118
    对应一个波束组,
    Figure PCTCN2015088307-appb-100119
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100120
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100121
    的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
    Figure PCTCN2015088307-appb-100122
    为垂直方向的波束组内的向量的个数,W2为维度X行的矩阵,用于对W1(k,l)进行列选择和/或相位调整;
    则所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息;
    或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
    Figure PCTCN2015088307-appb-100123
    对应的码本子集限制的配置信息,所述第六子配置信息为
    Figure PCTCN2015088307-appb-100124
    对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息。
  34. 根据权利要求27~33任一项所述的UE,其特征在于,
    所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
    所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
    所述第一配置信息和所述第二配置信息都采用高层信令发送。
  35. 根据权利要求28-33任一项所述的UE,其特征在于,
    所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用动态信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用高层信令配置;
    或者
    所述X1和X2中天线端口数大的天线端口的码本子集限制的配置信息采用高层信令配置,所述X1和X2中天线端口数小的天线端口的码本子集限制的配置信息采用动态信令配置。
  36. 根据权利要求28所述的UE,其特征在于,
    所述天线端口数为X1的码本中的预编码矩阵表示为
    Figure PCTCN2015088307-appb-100125
    其中,
    Figure PCTCN2015088307-appb-100126
    k=0,...,K,k'=f(k),
    Figure PCTCN2015088307-appb-100127
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100128
    对应于所述天线端口数为X的天线的水平方向所述X1个天线端口 的双码本结构的第一预编码矩阵,
    Figure PCTCN2015088307-appb-100129
    对应于所述X1个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
    Figure PCTCN2015088307-appb-100130
    对应于一个波束组,每个波束对应一个DFT向量,
    Figure PCTCN2015088307-appb-100131
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100132
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100133
    的每个列向量的维度为所述X1/2,K为所述X1个天线端口的水平方向的波束组的总的个数,
    Figure PCTCN2015088307-appb-100134
    为所述X1个天线端口的水平方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100135
    对应于所述天线端口数为X的天线的水平方向所述X1个天线端口的双码本结构的第二预编码矩阵,
    Figure PCTCN2015088307-appb-100136
    为维度X1行的矩阵,用于对
    Figure PCTCN2015088307-appb-100137
    进行列选择和/或相位调整;
    则所述第一配置信息包括第一子配置信息和第二子配置信息,所述第一子配置信息为所述
    Figure PCTCN2015088307-appb-100138
    对应的码本子集限制的配置信息,所述第二子配置信息为
    Figure PCTCN2015088307-appb-100139
    对应的码本子集限制的配置信息;
    或者,所述第一配置信息为
    Figure PCTCN2015088307-appb-100140
    对应的码本子集限制的配置信息。
  37. 根据权利要求36所述的UE,其特征在于,所述第一子配置信息采用高层信令发送,所述第二子配置信息采用动态信令发送;或者
    所述第一子配置信息采用动态信令发送,所述第二子配置信息采用高层信令发送。
  38. 根据权利要求28或36所述的UE,其特征在于,所述天线端口数为X2的码本中的预编码矩阵表示为
    Figure PCTCN2015088307-appb-100141
    其中,
    Figure PCTCN2015088307-appb-100142
    Figure PCTCN2015088307-appb-100143
    l=0,...,L,l'=f(l),
    Figure PCTCN2015088307-appb-100144
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100145
    对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第一预编码矩阵,
    Figure PCTCN2015088307-appb-100146
    对应于所述X2个天线端口的双码本结构的第一预编码矩阵中对角位置的矩阵,
    Figure PCTCN2015088307-appb-100147
    对应于一个波束组,每个波束对应一个DFT向量,
    Figure PCTCN2015088307-appb-100148
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100149
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100150
    的每个列向量的维度为X2/2,L为所述X2个天线端口的垂直方向的波束组的总的个数,
    Figure PCTCN2015088307-appb-100151
    为所述X2个天线端口的垂直方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100152
    对应于所述天线端口数为X的天线的垂直方向的所述X2个天线端口的双码本结构的第二预编码矩阵,
    Figure PCTCN2015088307-appb-100153
    为 维度X2行的矩阵,用于对
    Figure PCTCN2015088307-appb-100154
    进行列选择和/或相位调整;
    则所述第二配置信息包括第三子配置信息和第四子配置信息,所述第三子配置信息为所述
    Figure PCTCN2015088307-appb-100155
    对应的码本子集限制的配置信息,所述第四子配置信息为
    Figure PCTCN2015088307-appb-100156
    对应的码本子集限制的配置信息;
    或者,所述第二配置信息为
    Figure PCTCN2015088307-appb-100157
    对应的码本子集限制的配置信息。
  39. 根据权利要求38所述的UE,其特征在于,所述第三子配置信息采用高层信令发送,所述第四子配置信息采用动态信令发送;或者
    所述第三子配置信息采用动态信令发送,所述第四子配置信息采用高层信令发送。
  40. 根据权利要求27或33所述的UE,其特征在于,所述天线端口数为X的天线为具有至少两行两列的天线阵列。
  41. 根据权利要求28-32、36-39任一项所述的UE,其特征在于,所述天线端口数为X的天线为具有至少两行两列的天线阵列,其中,所述X1个天线端口具有相同的水平维度,所述X2个天线端口具有相同的垂直维度。
  42. 根据权利要求28-32、36-39任一项所述的UE,其特征在于,所述天线端口数为X的天线为具有至少两行两列的天线阵列,其中,X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数的一半,X2为所述天线端口数为X的天线的行数;或者X1为所述天线端口数为X的天线的列数,X2为所述天线端口数为X的天线的行数的一半。
  43. 根据权利要求27所述的UE,其特征在于,所述第一配置信息是所述天线端口数为X的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X的码本中的所有预编码矩阵的分组是预先定义的;
    所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
  44. 根据权利要求28-32任一项所述的UE,其特征在于,所述第一配置信息是所述天线端口数为X1的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X1的码本中的所有预编码 矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息;
    或者,所述第一配置信息是所述天线端口数为X2的码本中的所有预编码矩阵进行分组后的码本组的使能限制信息,所述天线端口数为X2的码本中的所有预编码矩阵的分组是预先定义的,所述第二配置信息是每个码本组内的预编码矩阵的使能限制信息。
  45. 根据权利要求43或44所述的UE,其特征在于,所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
    所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
    所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令发送。
  46. 根据权利要求27所述的UE,其特征在于,所述第一配置信息为天线端口数为X3的码本子集限制的配置信息,所述第二配置信息为天线端口数为X4的码本子集限制的配置信息,其中X=X3+X4,并且X3=X4,所述X3个天线端口和X4个天线端口分别对应不同的极化方向。
  47. 根据权利要求28-32任一项所述的UE,其特征在于,所述第一配置信息为X5个天线端口的码本子集限制的配置信息,所述第二配置信息为X6个天线端口的码本子集限制的配置信息,其中X1=X5+X6,并且X5=X6,所述X5个天线端口和X6个天线端口分别对应不同的极化方向;
    或者,所述第一配置信息为X7个天线端口的码本子集限制的配置信息,所述第二配置信息为X8个天线端口的码本子集限制的配置信息,其中X2=X7+X8,并且X7=X8,所述X7个天线端口和X8个天线端口分别对应不同的极化方向。
  48. 根据权利要求27所述的UE,其特征在于,所述天线端口数为X的码本中包括的预编码矩阵可以表示为W=W1(k,l)*W2*W3
    Figure PCTCN2015088307-appb-100158
    或者
    Figure PCTCN2015088307-appb-100159
    Figure PCTCN2015088307-appb-100160
    l=0,...,L,l'=f(l),
    Figure PCTCN2015088307-appb-100161
    k=0,...,K,k'=f(k),
    Figure PCTCN2015088307-appb-100162
    表示克罗内克积;
    Figure PCTCN2015088307-appb-100163
    对应于水平方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100164
    对应于一个波束组,
    Figure PCTCN2015088307-appb-100165
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100166
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100167
    的每个列向量的维度为水平方向同极化天线的个数,K为水平方向的波束组的个数,
    Figure PCTCN2015088307-appb-100168
    为水平方向的波束组内的向量的个数,
    Figure PCTCN2015088307-appb-100169
    对应于W1中的垂直方向的预编码矩阵,
    Figure PCTCN2015088307-appb-100170
    对应于一个波束组,
    Figure PCTCN2015088307-appb-100171
    为包含至少两个列向量的集合,
    Figure PCTCN2015088307-appb-100172
    的每个列向量为DFT向量,并且
    Figure PCTCN2015088307-appb-100173
    的每个列向量的维度为垂直方向同极化天线的个数,L为垂直方向的波束组的个数,
    Figure PCTCN2015088307-appb-100174
    为垂直方向的波束组内的向量的个数,W2为维度X行的列选择矩阵,用于对W1(k,l)进行列选择,W3为相位调整矩阵,W3用于进行两组天线之间的相位调整;
    则所述第一配置信息为所述W1(k,l)对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息;
    或者,所述第一配置信息包括第五子配置信息和第六子配置信息,所述第五子配置信息为
    Figure PCTCN2015088307-appb-100175
    对应的码本子集限制的配置信息,所述第六子配置信息为
    Figure PCTCN2015088307-appb-100176
    对应的码本子集限制的配置信息,所述第二配置信息为W2对应的码本子集限制的配置信息和W3对应的码本子集限制的配置信息。
  49. 根据权利要求27所述的UE,其特征在于,若所述天线端口数为X的参考信号为周期发送的参考信号,则所述确定模块具体用于:采用所述第一配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵;
    若所述天线端口数为X的参考信号为非周期发送的参考信号,则所述确定模块具体用于:采用所述第二配置信息置确定需要进行信道测量和反馈的天线端口的预编码矩阵。
  50. 根据权利要求49所述的UE,其特征在于,
    所述第一配置信息和所述第二配置信息都采用高层信令发送;或者
    所述第一配置信息采用高层信令发送,所述第二配置信息采用动态信令发送;或者
    所述第一配置信息采用动态信令发送,所述第二配置信息采用高层信令。
  51. 根据权利要求27所述的UE,其特征在于,所述参考信号为信道状态信息-参考信号CSI-RS。
  52. 根据权利要求34、35、37、39、45、49、50中任一项所述的UE,其特征在于,所述动态信令为DL grant信令,或者UL grant信令。
  53. 一种用户设备UE,其特征在于,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述UE执行如权利要求1-26任一项所述的方法。
PCT/CN2015/088307 2015-08-14 2015-08-27 码本的配置方法和用户设备 WO2017028331A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018507512A JP2018530937A (ja) 2015-08-14 2015-08-27 コードブック構成方法およびユーザー機器
EP15901535.3A EP3327966A4 (en) 2015-08-14 2015-08-27 Configuration method for codebook and user equipment
CN201580081752.8A CN107852279B (zh) 2015-08-14 2015-08-27 码本的配置方法和用户设备
US15/895,666 US10171145B2 (en) 2015-08-14 2018-02-13 Codebook configuration method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2015/087115 2015-08-14
CN2015087115 2015-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/895,666 Continuation US10171145B2 (en) 2015-08-14 2018-02-13 Codebook configuration method and user equipment

Publications (1)

Publication Number Publication Date
WO2017028331A1 true WO2017028331A1 (zh) 2017-02-23

Family

ID=58051052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088307 WO2017028331A1 (zh) 2015-08-14 2015-08-27 码本的配置方法和用户设备

Country Status (5)

Country Link
US (1) US10171145B2 (zh)
EP (1) EP3327966A4 (zh)
JP (1) JP2018530937A (zh)
CN (1) CN107852279B (zh)
WO (1) WO2017028331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271622B2 (en) 2017-06-14 2022-03-08 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and device for the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11245449B2 (en) * 2015-09-14 2022-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods thereby to indicate a first set of antenna ports and a second set of antenna ports
WO2017095305A1 (en) * 2015-12-02 2017-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Efficient techniques to signal codebook subset restriction bit map in wireless communication systems
CN107181513B (zh) * 2016-03-11 2021-01-22 电信科学技术研究院 一种信道状态信息的反馈方法及装置
WO2019191932A1 (zh) 2018-04-04 2019-10-10 华为技术有限公司 上行天线的选择方法和装置
US10511363B2 (en) * 2018-05-04 2019-12-17 Samsung Electronics Co., Ltd. Precoding for advanced wireless communication systems
US11349534B2 (en) * 2018-07-06 2022-05-31 Nec Corporation Multi-TRP codebook
JP2022502878A (ja) * 2018-08-03 2022-01-11 日本電気株式会社 端末デバイスで実行される方法、及び端末デバイス
US10917140B2 (en) * 2018-10-03 2021-02-09 Nokia Technologies Oy Dynamic signaling of coherence levels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917365A (zh) * 2010-08-16 2010-12-15 中兴通讯股份有限公司 一种码本的配置方法、装置和系统
US20110249637A1 (en) * 2010-04-07 2011-10-13 David Hammarwall Parameterized Codebook Subsets for use with Precoding MIMO Transmissions
CN102938688A (zh) * 2011-08-15 2013-02-20 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN104009785A (zh) * 2013-02-25 2014-08-27 华为技术有限公司 码本反馈方法、用户设备和基站

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203489B2 (en) * 2010-05-05 2015-12-01 Google Technology Holdings LLC Method and precoder information feedback in multi-antenna wireless communication systems
KR20120003781A (ko) * 2010-07-05 2012-01-11 주식회사 팬택 송신장치 및 그 통신방법, 수신장치, 그 통신방법
JP5265657B2 (ja) 2010-12-27 2013-08-14 シャープ株式会社 基地局装置、端末装置、通信システムおよび通信方法
US9438321B2 (en) * 2012-07-12 2016-09-06 Samsung Electronics Co., Ltd. Methods and apparatus for codebook subset restriction for two-dimensional advanced antenna systems
CN103582141A (zh) 2012-07-31 2014-02-12 华为技术有限公司 传输参考信号的方法、用户设备和网络侧设备
CN103687010B (zh) 2012-08-30 2017-07-04 电信科学技术研究院 一种传输参考信号的方法、装置及系统
RU2615980C2 (ru) 2012-11-09 2017-04-12 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ передачи посредством обратной связи информации о состоянии канала в системе беспроводной связи и соответствующее устройство
US9294172B2 (en) * 2013-01-25 2016-03-22 Lg Electronics Inc. Method and apparatus for reporting downlink channel state
CN104811288B (zh) * 2014-01-29 2019-11-29 上海诺基亚贝尔股份有限公司 协同多点传输的方法
US9838095B2 (en) * 2015-07-21 2017-12-05 Samsung Electronics Co., Ltd. Higher rank codebooks for advanced wireless communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110249637A1 (en) * 2010-04-07 2011-10-13 David Hammarwall Parameterized Codebook Subsets for use with Precoding MIMO Transmissions
CN101917365A (zh) * 2010-08-16 2010-12-15 中兴通讯股份有限公司 一种码本的配置方法、装置和系统
CN102938688A (zh) * 2011-08-15 2013-02-20 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN104009785A (zh) * 2013-02-25 2014-08-27 华为技术有限公司 码本反馈方法、用户设备和基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPPTS 36.213 V12.6.0", TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK; EVOLVED UNIVERSAL TERRESTRIAL RADIO ACCESS (E-UTRA); PHYSICAL LAYER PROCEDURES (RELEASE 12, 30 June 2015 (2015-06-30), XP050986698 *
See also references of EP3327966A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271622B2 (en) 2017-06-14 2022-03-08 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and device for the same
US11469795B2 (en) 2017-06-14 2022-10-11 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and device for the same
US11689260B2 (en) 2017-06-14 2023-06-27 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and device for the same

Also Published As

Publication number Publication date
JP2018530937A (ja) 2018-10-18
EP3327966A1 (en) 2018-05-30
US10171145B2 (en) 2019-01-01
CN107852279A (zh) 2018-03-27
EP3327966A4 (en) 2018-07-18
CN107852279B (zh) 2020-04-14
US20180167117A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2017028331A1 (zh) 码本的配置方法和用户设备
CN109845154B (zh) 通信方法、基站和终端设备
CN107196749B (zh) 一种信道状态信息测量、参考信号的发送方法和装置
CN107888323B (zh) 一种信道状态信息的传输方法和设备
KR101532523B1 (ko) 다차원 안테나 어레이의 채널 측정 및 피드백을 위한 방법들 및 장치들
US8483306B2 (en) Method and system for precoding and method for constructing precoding codebook
KR101819911B1 (ko) 코드북을 생성하는 방법
JP6052468B2 (ja) プリコーディング行列インジケータを決定するための方法、ユーザ機器、及び、基地局
US20130064317A1 (en) Method and device for feeding back pre-coding matrix index of dual-polarized antenna
WO2018171604A1 (zh) 信息的传输方法和设备
US11894886B2 (en) Communication method and apparatus
BR112020002932A2 (pt) sinalização de restrição de subconjunto de livro código baseado em feixe aprimorada
WO2016141778A1 (zh) 信道状态信息获取方法、信道状态信息反馈方法及装置
WO2014169873A1 (zh) 一种预编码矩阵反馈方法和终端
US9729216B2 (en) Multiple transmitter codebook methods and devices
CN111342913A (zh) 一种信道测量方法和通信装置
CN111756415A (zh) 通信方法及装置
WO2016169213A1 (zh) 一种信道信息的获取方法和装置
CN106685497B (zh) 码书限制信令的发送、信道信息的量化反馈方法及装置
CN107148761B (zh) 一种基于码本反馈的通信方法和装置
CN106612137B (zh) 码本生成方法、预编码矩阵确定方法及相关装置
KR102204146B1 (ko) 정보 피드백 방법, 정보 피드백 장치 및 단말기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018507512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE