WO2017028072A1 - 下行控制信息的接收、发送方法及装置 - Google Patents

下行控制信息的接收、发送方法及装置 Download PDF

Info

Publication number
WO2017028072A1
WO2017028072A1 PCT/CN2015/087111 CN2015087111W WO2017028072A1 WO 2017028072 A1 WO2017028072 A1 WO 2017028072A1 CN 2015087111 W CN2015087111 W CN 2015087111W WO 2017028072 A1 WO2017028072 A1 WO 2017028072A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
subframe
subframes
downlink control
dci
Prior art date
Application number
PCT/CN2015/087111
Other languages
English (en)
French (fr)
Inventor
南方
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/087111 priority Critical patent/WO2017028072A1/zh
Priority to CN201580065171.5A priority patent/CN107006041B/zh
Publication of WO2017028072A1 publication Critical patent/WO2017028072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and an apparatus for receiving and transmitting downlink control information.
  • the coverage of the system needs to be enhanced, for example, an additional 15 dB coverage enhancement is performed on the coverage of the existing system.
  • the coverage enhancement refers to that the user equipment (English: User Equipment, UE for short) that transmits the signal in the system can ensure reliable communication with the base station.
  • the coverage enhancement of the downlink control information (English: Downlink Control Information, DCI) transmitted by the MTC physical downlink control channel (English: Physical Downlink Control Channel, PDCCH) (also referred to as MPDCCH)
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • MPDCCH Physical Downlink Control Channel
  • Multiple subframes are used to transmit the same DCI, that is, multiple repeated transmissions of DCI are included in multiple subframes.
  • the control channel element (English: Enhanced Control Channel Element, referred to as ECCE) is the same as the aggregation level (English: Aggregation Level, AL) used for carrying the DCI for each DCI.
  • the index is the same.
  • DCI performs repeated transmission in each subframe of multiple subframes.
  • the aggregation level of the MPDCCH candidates carrying the DCI is 2, and the index is 0 and 1 ECCE composition.
  • Embodiments of the present invention provide a method and an apparatus for receiving and transmitting downlink control information, to at least To solve the coverage enhancement of the DCI in the prior art, when the same DCI is repeatedly transmitted in multiple subframes, there is no effective technical means to ensure that the MPDCCH candidate carrying the DCI is used when carrying the DCI for each repetition.
  • the aggregation level is the same, and the ECCE index is the same.
  • the embodiment of the present invention adopts the following technical solutions:
  • the first aspect provides a method for transmitting downlink control information DCI, where the method includes:
  • the DCI is transmitted by the first physical downlink control channel candidate.
  • the determining, by using the control channel element index, the multiple subframes in which the first physical downlink control channel candidate is located includes:
  • the maximum value of the control channel element index is not greater than the control of the PRB pair included in the physical downlink control channel candidate in the physical downlink control channel set in the physical resource block PRB pair of the physical downlink control channel in the first subframe Determining, by the maximum value of the channel element index, the plurality of subframes include the first subframe and the second subframe; otherwise, determining that the multiple subframes only include the second subframe; wherein the second subframe
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the frame is greater than the physical downlink control channel in the first subframe.
  • the number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set in the set is in the PRB pair.
  • the first subframe is a regular cyclic prefix
  • the special subframe is configured as A special subframe in any configuration of 1, 2, 6, 7, and 9, the second subframe is a downlink subframe in the conventional CP.
  • the first subframe is a subframe in which a synchronization signal and/or a physical broadcast channel PBCH is located
  • the second subframe is a subframe other than the first subframe in which all downlink information can be transmitted.
  • Other sub-frames are possible implementations.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in a time division duplex TDD system, the The sub-frames of the multiple-repetition transmission of the DCI include a special subframe configured under the regular cyclic prefix CP, and the special sub-frames in any configuration of 1, 2, 6, 7, and 9;
  • Each special subframe is used for one repeated transmission of the DCI;
  • each of the special subframes in the special subframe is used for one repetition transmission of the DCI, where a represents a physical resource of a physical downlink control channel in a special subframe in the special subframe.
  • the method in combination with the fourth possible implementation manner of the first aspect, if the control channel element index ranges between [a, a*2-1], the method also includes:
  • the value range of [a, a*2-1] of the control channel elements included in the PRB pair in the PRB pair set in each special subframe of the special subframe is numbered.
  • the method in combination with the fourth possible implementation manner of the first aspect, if the two special subframes in the special subframe are used for one-time repeated transmission of DCI, the method also includes:
  • control channel elements included in the PRB pair in the PRB pair set in each of the special subframes are numbered in a value range of [0, a*2-1].
  • a second aspect of the present invention provides a transmitting apparatus for downlink control information DCI, wherein the transmitting apparatus of the DCI includes: a determining unit and a sending unit;
  • the determining unit is configured to determine a control channel element of the first physical downlink control channel candidate And the first physical downlink control channel candidate is one of one or more physical downlink control channel candidates in the physical downlink control channel set;
  • the determining unit is further configured to determine, according to the control channel element index, a plurality of subframes where the first physical downlink control channel candidate is located;
  • the sending unit is configured to send the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the determining unit is specifically configured to:
  • the maximum value of the control channel element index is not greater than the control of the PRB pair included in the physical downlink control channel candidate in the physical downlink control channel set in the physical resource block PRB pair of the physical downlink control channel in the first subframe Determining, by the maximum value of the channel element index, the plurality of subframes include the first subframe and the second subframe; otherwise, determining that the multiple subframes only include the second subframe; wherein the second subframe
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the frame is greater than the physical downlink control channel in the first subframe.
  • the number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set in the set is in the PRB pair.
  • the first subframe is a regular cyclic prefix
  • the special subframe is configured as A special subframe in any configuration of 1, 2, 6, 7, and 9, the second subframe is a downlink subframe in the conventional CP.
  • the first subframe is a subframe in which the synchronization signal and/or the physical broadcast channel PBCH is located
  • the second A subframe is a subframe other than the first subframe in all subframes in which downlink information can be transmitted.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in a time division duplex TDD system, the The subframe of the repeated transmission of the DCI includes a special subframe under a regular cyclic prefix CP. Configure a special subframe in any configuration of 1, 2, 6, 7, or 9;
  • the determining unit is specifically configured to:
  • Each special subframe is used for one repeated transmission of the DCI;
  • each of the special subframes in the special subframe is used for one repetition transmission of the DCI, where a represents a physical resource of a physical downlink control channel in a special subframe in the special subframe.
  • the sending apparatus of the DCI further includes a numbering unit
  • the numbering unit is configured to: if the control channel element index ranges between [a, a*2-1], in the PRB pair set in each special subframe of the special subframe
  • the PRB numbers the range of [a, a*2-1] of the included control channel elements.
  • the sending apparatus of the DCI further includes a numbering unit
  • the numbering unit is configured to: if each of the special subframes in the special subframe is used for one-time repeated transmission of DCI, the set of the PRB pairs in each two special subframes in the special subframe
  • the PRB in the middle is numbered in the range of [0, a*2-1] of the contained control channel elements.
  • a device for transmitting downlink control information includes: a processor and a transmitter;
  • the processor is configured to determine a control channel element index of the first physical downlink control channel candidate, where the first physical downlink control channel candidate is one of multiple physical downlink control channel candidates in the physical downlink control channel set a physical downlink control channel candidate;
  • the processor is further configured to determine, according to the control channel element index, a plurality of subframes where the first physical downlink control channel candidate is located;
  • the transmitter is configured to send the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the processor is specifically configured to:
  • the maximum value of the control channel element index is not greater than the control of the PRB pair included in the physical downlink control channel candidate in the physical downlink control channel set in the physical resource block PRB pair of the physical downlink control channel in the first subframe Determining, by the maximum value of the channel element index, the plurality of subframes include the first subframe and the second subframe; otherwise, determining that the multiple subframes only include the second subframe; wherein the second subframe
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the frame is greater than the physical downlink control channel in the first subframe.
  • the number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set in the set is in the PRB pair.
  • the first subframe is a regular cyclic prefix
  • the special subframe is configured as A special subframe in any configuration of 1, 2, 6, 7, and 9, the second subframe is a downlink subframe in the conventional CP.
  • the first subframe is a subframe in which the synchronization signal and/or the physical broadcast channel PBCH is located
  • the second A subframe is a subframe other than the first subframe in all subframes in which downlink information can be transmitted.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in a time division duplex TDD system, the The sub-frames of the multiple-repetition transmission of the DCI include a special subframe configured under the regular cyclic prefix CP, and the special sub-frames in any configuration of 1, 2, 6, 7, and 9;
  • the processor is specifically configured to:
  • Each special subframe is used for one repeated transmission of the DCI;
  • Every two special subframes in the special subframe are used for one repetition transmission of the DCI, where a represents a physical downlink in a special subframe in the special subframe.
  • the processor is further configured to: if the control channel element index ranges in [a, a*2- 1), the control channel elements included in the PRB pair in the PRB pair set in each special subframe of the special subframe are numbered in the range of [a, a*2-1].
  • the processor is further configured to: if each of the special subframes in the special subframe is used for DCI One-time repeated transmission, in which the control channel elements included in the PRB pair in the PRB pair set in each of the special subframes in the special subframe are in the range of [0, a*2-1] Numbering.
  • the method for transmitting the DCI and the device for transmitting the DCI according to the embodiment of the present invention, in the embodiment of the present invention, first determining a control channel element index of the first physical downlink control channel candidate, and further determining, according to the control channel element index, the After the plurality of subframes in which the first physical downlink control channel candidate is located, the DCI is transmitted by the first physical downlink control channel candidate in the multiple subframes. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • a fourth aspect provides a method for transmitting downlink control information DCI, where the method includes:
  • the first physical downlink control channel candidate is one of one or more physical downlink control channel candidates in the physical downlink control channel set a candidate, in each of the plurality of subframes, the physical resource block PRB of the physical downlink control channel is in the set of the physical The number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the downlink control channel set is located is the same;
  • the DCI is transmitted by the first physical downlink control channel candidate.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the uplink and downlink configuration of the long term evolution LTE TDD is any one of 2, 3, 4, and 5
  • the multiple subframes are all downlink subframes.
  • the multiple subframes are subframes in which the synchronization signal is located and subframes in the subframe where the physical broadcast channel PBCH is located; or Each subframe is a subframe other than the subframe in which the synchronization signal is located and the subframe in which the PBCH is located in all subframes in which downlink information can be transmitted.
  • the multiple subframes include a regular subframe prefix CP, and the special subframe configuration is 1, 2, 6, and 7. 9 Special subframes in any configuration, in which the control channel elements are composed of 4 resource element groups.
  • the multiple subframes include a special subframe and a downlink subframe
  • the special subframe includes an orthogonal frequency division of the cell reference signal CRS.
  • a modulation symbol of a DCI transmitted on an OFDM symbol is a modulation symbol in a modulation symbol of a DCI transmitted on an OFDM symbol containing a CRS in the downlink subframe
  • at least two of the special subframes include a demodulation reference signal DMRS
  • the OFDM symbol, the modulation symbol of the DCI transmitted on the two OFDM symbols containing the DMRS is a modulation symbol in a modulation symbol of the DCI transmitted on the OFDM symbol containing the DMRS in the downlink subframe.
  • a fifth aspect provides a transmitting apparatus for downlink control information DCI, where the transmitting apparatus of the DCI includes: a determining unit and a sending unit;
  • the determining unit is configured to determine multiple subframes where the first physical downlink control channel candidate is located, where the first physical downlink control channel candidate is one or more physical downlink control channel candidates in the physical downlink control channel set One of the physical downlink control channel candidates, in each of the plurality of subframes, a physical resource block of the physical downlink control channel The number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the set in the PRB pair is the same;
  • the sending unit is configured to send the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the uplink and downlink configuration of the long term evolution LTE TDD is any one of 2, 3, 4, and 5
  • the multiple subframes are all downlink subframes.
  • the multiple subframes are subframes in which the synchronization signal is located and subframes in the subframe where the physical broadcast channel PBCH is located; or Each subframe is a subframe other than the subframe in which the synchronization signal is located and the subframe in which the PBCH is located in all subframes in which downlink information can be transmitted.
  • the multiple subframes include a regular subframe prefix CP, and the special subframe configuration is 1, 2, 6, and 7. 9 Special subframes in any configuration, in which the control channel elements are composed of 4 resource element groups.
  • the multiple subframes include a special subframe and a downlink subframe
  • the special subframe includes an orthogonal frequency division of the cell reference signal CRS.
  • a modulation symbol of a DCI transmitted on an OFDM symbol is a modulation symbol in a modulation symbol of a DCI transmitted on an OFDM symbol containing a CRS in the downlink subframe
  • at least two of the special subframes include a demodulation reference signal DMRS
  • the OFDM symbol, the modulation symbol of the DCI transmitted on the two OFDM symbols containing the DMRS is a modulation symbol in a modulation symbol of the DCI transmitted on the OFDM symbol containing the DMRS in the downlink subframe.
  • a sixth aspect provides a sending apparatus for downlink control information DCI, where the sending apparatus of the DCI includes: a processor and a transmitter;
  • the processor is configured to determine a plurality of subframes where the first physical downlink control channel candidate is located, where the first physical downlink control channel candidate is one or more physical downlink control channel candidates in the physical downlink control channel set One of the physical downlink control channels And selecting, in each of the plurality of subframes, a physical resource block PRB of the physical downlink control channel, and a control channel element included in a PRB pair where the physical downlink control channel candidate in the physical downlink control channel set in the set is located
  • the numbers are the same;
  • the transmitter is configured to send the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the uplink and downlink configuration of the long term evolution LTE TDD is any one of 2, 3, 4, and 5
  • the multiple subframes are all downlink subframes.
  • the multiple subframes are the subframe in which the synchronization signal is located and the subframe in the subframe where the physical broadcast channel PBCH is located; or Each subframe is a subframe other than the subframe in which the synchronization signal is located and the subframe in which the PBCH is located in all subframes in which downlink information can be transmitted.
  • the multiple subframes include a regular subframe prefix CP, and the special subframe configuration is 1, 2, 6, and 7. 9 Special subframes in any configuration, in which the control channel elements are composed of 4 resource element groups.
  • the multiple subframes include a special subframe and a downlink subframe
  • the special subframe includes an orthogonal frequency division of the cell reference signal CRS.
  • a modulation symbol of a DCI transmitted on an OFDM symbol is a modulation symbol in a modulation symbol of a DCI transmitted on an OFDM symbol containing a CRS in the downlink subframe
  • at least two of the special subframes include a demodulation reference signal DMRS
  • the OFDM symbol, the modulation symbol of the DCI transmitted on the two OFDM symbols containing the DMRS is a modulation symbol in a modulation symbol of the DCI transmitted on the OFDM symbol containing the DMRS in the downlink subframe.
  • the physical downlink control in the PRB pair set of the physical downlink control channel in each of the multiple subframes The number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the channel set is located is the same. Therefore, the coverage of DCI increases Strong, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in each DCI that carries the repetition is the same, and the index of the control channel element used is adopted. the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • a seventh aspect provides a method for receiving downlink control information DCI, where the method includes:
  • the DCI is received by the first physical downlink control channel candidate.
  • the determining, by using the control channel element index, the multiple subframes in which the first physical downlink control channel candidate is located includes:
  • the maximum value of the control channel element index is not greater than the control of the PRB pair included in the physical downlink control channel candidate in the physical downlink control channel set in the physical resource block PRB pair of the physical downlink control channel in the first subframe Determining, by the maximum value of the channel element index, the plurality of subframes include the first subframe and the second subframe; otherwise, determining that the multiple subframes only include the second subframe; wherein the second subframe
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the frame is greater than the physical downlink control channel in the first subframe.
  • the number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set in the set is in the PRB pair.
  • the first subframe is a special subframe configured in any configuration of 1, 2, 6, 7, 9 under a regular cyclic prefix CP, and the second subframe is configured.
  • the subframe is a downlink subframe under the regular CP.
  • the first subframe is a subframe in which a synchronization signal and/or a physical broadcast channel PBCH is located
  • the second A subframe is a subframe other than the first subframe in all subframes in which downlink information can be transmitted.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in a time division duplex TDD system, the The sub-frames of the multiple-repetition transmission of the DCI include a special subframe configured under the regular cyclic prefix CP, and the special sub-frames in any configuration of 1, 2, 6, 7, and 9;
  • Each special subframe is used for one repeated transmission of the DCI;
  • each of the special subframes in the special subframe is used for one repetition transmission of the DCI, where a represents a physical resource of a physical downlink control channel in a special subframe in the special subframe.
  • the method in combination with the fourth possible implementation manner of the seventh aspect, if the control channel element index ranges between [a, a*2-1], the method also includes:
  • the value range of [a, a*2-1] of the control channel elements included in the PRB pair in the PRB pair set in each special subframe of the special subframe is numbered.
  • the method in combination with the fourth possible implementation manner of the seventh aspect, if the two special subframes in the special subframe are used for one-time repeated transmission of DCI, the method also includes:
  • the eighth aspect provides a receiving apparatus for downlink control information DCI, where the receiving apparatus of the DCI includes: a determining unit and a receiving unit;
  • the determining unit is configured to determine a control channel element index of the first physical downlink control channel candidate, where the first physical downlink control channel candidate is one of multiple physical downlink control channel candidates in the physical downlink control channel set a physical downlink control channel candidate;
  • the determining unit is further configured to determine, according to the control channel element index, a plurality of subframes where the first physical downlink control channel candidate is located;
  • the receiving unit is configured to receive the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the determining unit is specifically configured to:
  • the maximum value of the control channel element index is not greater than the control of the PRB pair included in the physical downlink control channel candidate in the physical downlink control channel set in the physical resource block PRB pair of the physical downlink control channel in the first subframe Determining, by the maximum value of the channel element index, the plurality of subframes include the first subframe and the second subframe; otherwise, determining that the multiple subframes only include the second subframe; wherein the second subframe
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the frame is greater than the physical downlink control channel in the first subframe.
  • the number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set in the set is in the PRB pair.
  • the first subframe is a regular cyclic prefix
  • the special subframe is configured as A special subframe in any configuration of 1, 2, 6, 7, and 9, the second subframe is a downlink subframe in the conventional CP.
  • the first subframe is a subframe in which the synchronization signal and/or the physical broadcast channel PBCH is located, and the second The subframe is the subframe in which all downlink information can be transmitted, except for the first subframe.
  • Other sub-frames are possible implementation manners.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in a time division duplex TDD system, the The sub-frames of the multiple-repetition transmission of the DCI include a special subframe configured under the regular cyclic prefix CP, and the special sub-frames in any configuration of 1, 2, 6, 7, and 9;
  • the determining unit is specifically configured to:
  • Each special subframe is used for one repeated transmission of the DCI;
  • each of the special subframes in the special subframe is used for one repetition transmission of the DCI, where a represents a physical resource of a physical downlink control channel in a special subframe in the special subframe.
  • the receiving apparatus of the DCI further includes a numbering unit
  • the numbering unit is configured to: if the control channel element index ranges between [a, a*2-1], in the PRB pair set in each special subframe of the special subframe
  • the PRB numbers the range of [a, a*2-1] of the included control channel elements.
  • the receiving device of the DCI further includes a numbering unit
  • the numbering unit is configured to: if each of the special subframes in the special subframe is used for one-time repeated transmission of DCI, the set of the PRB pairs in each two special subframes in the special subframe
  • the PRB in the middle is numbered in the range of [0, a*2-1] of the contained control channel elements.
  • a ninth aspect a receiving apparatus for downlink control information DCI is provided, wherein the receiving apparatus of the DCI comprises: a processor and a receiver;
  • the processor is configured to determine a control channel element index of the first physical downlink control channel candidate, where the first physical downlink control channel candidate is one of multiple physical downlink control channel candidates in the physical downlink control channel set a physical downlink control channel candidate;
  • the processor is further configured to determine, according to the control channel element index, a plurality of subframes where the first physical downlink control channel candidate is located;
  • the receiver is configured to receive DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the processor is specifically configured to:
  • the maximum value of the control channel element index is not greater than the control of the PRB pair included in the physical downlink control channel candidate in the physical downlink control channel set in the physical resource block PRB pair of the physical downlink control channel in the first subframe Determining, by the maximum value of the channel element index, the plurality of subframes include the first subframe and the second subframe; otherwise, determining that the multiple subframes only include the second subframe; wherein the second subframe
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the frame is greater than the physical downlink control channel in the first subframe.
  • the number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set in the set is in the PRB pair.
  • the first subframe is a regular cyclic prefix
  • the special subframe is configured as A special subframe in any configuration of 1, 2, 6, 7, and 9, the second subframe is a downlink subframe in the conventional CP.
  • the first subframe is a subframe in which a synchronization signal and/or a physical broadcast channel PBCH is located
  • the second A subframe is a subframe other than the first subframe in all subframes in which downlink information can be transmitted.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in a time division duplex TDD system, the The sub-frames of the multiple-repetition transmission of the DCI include a special subframe configured under the regular cyclic prefix CP, and the special sub-frames in any configuration of 1, 2, 6, 7, and 9;
  • the processor is specifically configured to:
  • control channel element index ranges between [0, a-1], or the control signal
  • the range of the track element index is between [a, a*2-1], and then determining that each special subframe in the special subframe is used for one repeated transmission of the DCI;
  • each of the special subframes in the special subframe is used for one repetition transmission of the DCI, where a represents a physical resource of a physical downlink control channel in a special subframe in the special subframe.
  • the processor is further configured to: if the control channel element index ranges in [a, a*2- 1), the control channel elements included in the PRB pair in the PRB pair set in each special subframe of the special subframe are numbered in the range of [a, a*2-1].
  • the processor is further configured to: if each of the special subframes in the special subframe is used for DCI One-time repeated transmission, in which the control channel elements included in the PRB pair in the PRB pair set in each of the special subframes in the special subframe are in the range of [0, a*2-1] Numbering.
  • the receiving method of the DCI and the receiving device of the DCI provided by the embodiment of the present invention in the embodiment of the present invention, first determining a control channel element index of the first physical downlink control channel candidate, and further determining, according to the control channel element index, the After the plurality of subframes in which the first physical downlink control channel candidate is located, the DCI is received by the first physical downlink control channel candidate in the multiple subframes. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • a tenth aspect provides a method for receiving downlink control information DCI, where the method includes:
  • the first physical downlink control channel candidate is one of one or more physical downlink control channel candidates in the physical downlink control channel set a candidate, in each of the plurality of subframes, a physical resource block PRB of the physical downlink control channel, and a control channel element included in a PRB pair of the physical downlink control channel candidate in the set of physical downlink control channels in the set.
  • the DCI is received by the first physical downlink control channel candidate.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the uplink and downlink configuration of the long term evolution LTE TDD is any one of 2, 3, 4, and 5
  • the multiple subframes are all downlink subframes.
  • the multiple subframes are subframes in which the synchronization signal is located and subframes in the subframe where the physical broadcast channel PBCH is located; or Each subframe is a subframe other than the subframe in which the synchronization signal is located and the subframe in which the PBCH is located in all subframes in which downlink information can be transmitted.
  • the multiple subframes include a regular subframe prefix CP, and the special subframe configuration is 1, 2, 6, and 7. 9 Special subframes in any configuration, in which the control channel elements are composed of 4 resource element groups.
  • the multiple subframes include a special subframe and a downlink subframe
  • the special subframe includes an orthogonal frequency division of the cell reference signal CRS.
  • a modulation symbol of a DCI transmitted on an OFDM symbol is a modulation symbol in a modulation symbol of a DCI transmitted on an OFDM symbol containing a CRS in the downlink subframe
  • at least two of the special subframes include a demodulation reference signal DMRS
  • the OFDM symbol, the modulation symbol of the DCI transmitted on the two OFDM symbols containing the DMRS is a modulation symbol in a modulation symbol of the DCI transmitted on the OFDM symbol containing the DMRS in the downlink subframe.
  • a receiving apparatus for downlink control information DCI includes: a determining unit and a receiving unit;
  • the determining unit is configured to determine multiple subframes where the first physical downlink control channel candidate is located, where the first physical downlink control channel candidate is one or more physical downlink control channel candidates in the physical downlink control channel set One of the physical downlink control channel candidates, in each of the plurality of subframes, the physical resource block PRB of the physical downlink control channel, and the PRB of the physical downlink control channel candidate in the set of physical downlink control channels in the set
  • the number of control channel elements included is the same;
  • the receiving unit is configured to receive the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the uplink and downlink configuration is any one of 2, 3, 4, and 5 In the configuration, the multiple subframes are all downlink subframes.
  • the multiple subframes are subframes in which the synchronization signal is located and subframes in the subframe where the physical broadcast channel PBCH is located; or
  • the plurality of subframes are all subframes other than the subframe in which the synchronization signal is located and the subframe in which the PBCH is located in all subframes in which downlink information can be transmitted.
  • the multiple subframes include a regular subframe prefix CP, and the special subframe configuration is 1, 2, 6, A special subframe in any configuration of 7,9, in which the control channel element is composed of four resource element groups.
  • the multiple subframes include a special subframe and a downlink subframe, and the special subframe includes an orthogonal frequency of the cell reference signal CRS.
  • the modulation symbol of the DCI transmitted on the multiplexed OFDM symbol is a modulation symbol in a modulation symbol of a DCI transmitted on an OFDM symbol containing a CRS in the downlink subframe, and at least two of the special subframes have a demodulation reference
  • the OFDM symbol of the signal DMRS, the modulation symbol of the DCI transmitted on the OFDM symbol containing the DMRS is a modulation symbol in a modulation symbol of the DCI transmitted on the OFDM symbol containing the DMRS in the downlink subframe.
  • a receiving apparatus for downlink control information DCI includes: a processor and a receiver;
  • the processor is configured to determine a plurality of subframes where the first physical downlink control channel candidate is located, where the first physical downlink control channel candidate is one or more physical downlink control channel candidates in the physical downlink control channel set One of the physical downlink control channel candidates, in each of the plurality of subframes, the physical resource block PRB of the physical downlink control channel, and the PRB of the physical downlink control channel candidate in the set of physical downlink control channels in the set The number of control channel elements included is the same;
  • the receiver is configured to receive DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the uplink and downlink configuration is any one of 2, 3, 4, and 5 In the configuration, the multiple subframes are all downlink subframes.
  • the multiple subframes are subframes in which the synchronization signal is located and subframes in the subframe where the physical broadcast channel PBCH is located; or
  • the plurality of subframes are all subframes other than the subframe in which the synchronization signal is located and the subframe in which the PBCH is located in all subframes in which downlink information can be transmitted.
  • the multiple subframes include a regular subframe prefix CP, and the special subframe configuration is 1, 2, 6, A special subframe in any configuration of 7,9, in which the control channel element is composed of four resource element groups.
  • the multiple subframes include a special subframe and a downlink subframe, and the special subframe includes an orthogonal frequency of the cell reference signal CRS
  • the modulation symbol of the DCI transmitted on the multiplexed OFDM symbol is a modulation symbol in a modulation symbol of a DCI transmitted on an OFDM symbol containing a CRS in the downlink subframe, and at least two of the special subframes have a demodulation reference
  • the OFDM symbol of the signal DMRS, the modulation symbol of the DCI transmitted on the OFDM symbol containing the DMRS is a modulation symbol in a modulation symbol of the DCI transmitted on the OFDM symbol containing the DMRS in the downlink subframe.
  • the physical downlink control in the PRB pair set of the physical downlink control channel in each of the multiple subframes The number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the channel set is located is the same. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • FIG. 1 is a schematic diagram 1 of transmitting multiple subframes of a repeated DCI according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of multiplexing of a PDCCH, a PDSCH, and an EPDCCH in the prior art
  • FIG. 3 is a schematic diagram of a communication system for DCI transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart 1 of a method for transmitting a DCI according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram 2 of multiple subframes for transmitting repeated DCI according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram 1 of a PRB pair of a PRB pair set of a physical downlink control channel according to an embodiment of the present invention, and a PRB pair having an overlapping PRB pair with a PBCH;
  • FIG. 7 is a schematic diagram 3 of transmitting multiple subframes of a repeated DCI according to an embodiment of the present invention.
  • FIG. 8 is a second schematic flowchart of a method for transmitting a DCI according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram 4 of transmitting multiple subframes of a repeated DCI according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram 2 of a PRB pair of a PRB pair set of a physical downlink control channel according to an embodiment of the present invention, and a PRB pair having an overlapping PRB pair with a PBCH;
  • FIG. 11 is a schematic diagram 1 of modulation symbol mapping of DCI in a downlink subframe and a special subframe according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram 2 of modulation symbol mapping of DCI in a downlink subframe and a special subframe according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram 3 of modulation symbol mapping of DCI in a downlink subframe and a special subframe according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram 4 of modulation symbol mapping of DCI in a downlink subframe and a special subframe according to an embodiment of the present disclosure
  • 15 is a schematic flowchart 1 of a method for receiving a DCI according to an embodiment of the present invention.
  • FIG. 16 is a second schematic flowchart of a method for receiving a DCI according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram 1 of a DCI sending apparatus according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram 2 of a DCI sending apparatus according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram 1 of a DCI receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram 2 of a DCI receiving apparatus according to an embodiment of the present invention.
  • the downlink multiple access method usually uses orthogonal frequency division multiplexing (MIMO).
  • MIMO orthogonal frequency division multiplexing
  • Access English: Orthogonal Frequency Division Multiple Access, referred to as: OFDMA.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the downlink resources of the system are divided into Orthogonal Frequency Division Multiplexing (OFDM) symbols in terms of time, and are divided into subcarriers in terms of frequency.
  • OFDM Orthogonal Frequency Division Multiplexing
  • one radio frame includes 10 subframes, and one subframe has a length of 1 ms, and each radio frame has a sub-frame. Frames are numbered 0-9.
  • One sub-frame contains two time slots (English: slot).
  • each time slot contains 7 OFDM symbols, numbered 0-6; in the case of extended CP Each slot contains 6 OFDM symbols, numbered 0-5.
  • a time-frequency resource composed of one OFDM symbol and one subcarrier is called a resource element (English: Resource Element, abbreviated as RE).
  • the size of a physical resource block (English: Physical Resource Block, PRB for short) is defined as one time slot in time and 180 kHz in the frequency domain. When the subcarrier spacing is 15 kHz, one PRB contains 12 subcarriers in frequency, and at this time, one PRB contains a total of 84 or 72 REs.
  • the PRB is numbered in the frequency domain, which is the PRB index.
  • a PRB pair is defined as a pair of PRBs having the same PRB index of two slots on one subframe.
  • the LTE system supports two frame structures: Type1 and Type2, where Type1 is used for Frequency Division Duplexing (English: Frequency Division Duplexing, FDD for short) and Type 2 is used for Time Division Duplexing (TDD).
  • Type1 is used for Frequency Division Duplexing (English: Frequency Division Duplexing, FDD for short)
  • Type 2 is used for Time Division Duplexing (TDD).
  • the frame structure of FDD and TDD is shown in FIG. 1 .
  • each subframe included in a 10 ms radio frame can be used for both downlink transmission and uplink transmission.
  • a subframe included in a 10 ms radio frame is either a downlink subframe, an uplink subframe, or a special subframe.
  • Which subframe is a downlink subframe, an uplink subframe, or a special subframe is determined by the TDD uplink and downlink configuration.
  • LTE currently supports seven different TDD uplink and downlink configurations, as shown in Table 1, where D represents a downlink subframe for downlink transmission, S represents a special subframe, and U represents an uplink subframe.
  • the special subframe includes a downlink pilot time slot (English: Downlink Pilot Time Slot, referred to as DwPTS), a guard time (English: Guard Period, abbreviated as GP), and an uplink pilot time slot (English: Uplink Pilot Time Slot) , referred to as: UpPTS) three parts, GP is mainly used for downlink to uplink conversion time and propagation delay compensation.
  • DwPTS Downlink Pilot Time Slot
  • GP Uplink Pilot Time Slot
  • UpPTS UpPTS
  • the synchronization signal of the LTE system is divided into a primary synchronization signal (English: Primary Synchronization Signal, PSS for short) and a secondary synchronization signal (English: Secondary Synchronization Signal, SSS for short).
  • PSS and SSS are located on the central 72 subcarriers of the system bandwidth.
  • PSS and SSS are transmitted on subframe 0 and subframe 5;
  • PSS is transmitted on subframe 1 and subframe 6
  • SSS is transmitted on subframe 0 and subframe 5.
  • the information interaction between the base station and the UE in the LTE system can be roughly divided into two categories: control information and service data.
  • the information is carried by the physical channel at the physical layer, and one physical channel corresponds to a set of REs.
  • the DCI mainly includes scheduling information of uplink and downlink service data, a request for reporting an aperiodic channel quality indicator, a notification of a change of a multicast control channel, an uplink power control command, and the like.
  • DCI is carried over the PDCCH.
  • the PDCCH and the physical downlink shared channel (English: Physical Downlink Shared Channel, PDSCH for short) are time division multiplexed in one subframe.
  • the PDCCH occupies the first n (n is one of 1, 2, 3, 4) OFDM symbols of one subframe, and the PDSCH occupies the remaining OFDM symbols.
  • the PDCCH is mapped across the entire system bandwidth in the frequency domain.
  • an enhanced physical downlink control channel (English: Enhanced Physical Downlink Control Channel, EPDCCH for short) is introduced.
  • the resources of the EPDCCH are allocated from the original PDSCH region, and are frequency-division multiplexed with the PDSCH, and can occupy different PRB pairs with the PDSCH.
  • the multiplexing diagram of the PDCCH, the PDSCH, and the EPDCCH is as shown in FIG. 2 .
  • An EPDCCH is aggregated by one or more enhanced ECCEs, and the aggregation level is used to indicate the number of ECCEs constituting the EPDCCH.
  • Each ECCE consists of 4 or 8 enhanced Resource Element Groups (English: Enhanced Resource Element Groups, EREG for short). There are 16 EREGs per PRB pair, numbered 0-15, so there are 4 or 2 ECCEs per PRB pair. Different EREGs contain the same or different numbers of REs.
  • the high layer signaling configures each UE with one or two sets of PRB pairs for EPDCCH transmission, that is, a set of PRB pairs of one or two EPDCCHs, and each PRB pair set contains 2, 4 or 8 PRB pairs.
  • Each aggregation level of the EPDCCH corresponds to one search space.
  • the search space refers to a set of EPDCCH candidates (English: candidates) that the UE needs to monitor at an aggregation level.
  • the ECCEs constituting one EPDCCH candidate are ECCEs in the ECCEs included in the PRB pair in the PRB pair set of one EPDCCH.
  • the bandwidth of the received and/or transmitted signals supported by the UE is one of the main techniques employed to reduce the complexity or cost of the UE.
  • the bandwidth of the UE receiving and/or transmitting signals is only 1.4 MHz.
  • the physical downlink control channel may specifically include an EPDCCH, and may also include an MPDCCH.
  • the control channel element may be an ECCE or an MTC control channel element (English: MTC).
  • the CCE abbreviated as: MCCE, and the like;
  • the resource element group may be an EREG, or may be a resource element group of the MTC (English: MTC REG, abbreviated as MREG), and the like, which are not specifically limited in the embodiments of the present invention.
  • control channel element included in the PRB pair in the physical downlink control channel candidate in the embodiment of the present invention is not in the PRB pair where the synchronization signal and/or the PBCH is located. That is, in the subframe in which the synchronization signal and/or the PBCH are located, the PRB pair of the PRB pair set of the physical downlink control channel may have a PRB pair that overlaps with the synchronization signal and/or the PRB pair in which the PBCH is located. The physical downlink control channel candidate cannot occupy the synchronization signal and/or the PRB pair in which the PBCH is located.
  • the PRB pair in which the physical downlink control channel candidate is located has only the PRB of the physical downlink control channel.
  • the synchronization signal includes a primary synchronization signal (Primary Synchronization Signal, PSS for short) and/or a secondary synchronization signal (SSS), which is not specifically limited in this embodiment of the present invention.
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • the words “first”, “second” and the like are used to distinguish the same or similar items whose functions and functions are substantially the same, in the field.
  • the skilled person will understand that the words “first”, “second” and the like do not limit the number and order of execution.
  • the present invention is mainly applied to an LTE system or an LTE-A system, or other versions of the LTE system in the future.
  • the present invention is also applicable to other communication systems, as long as the DCI transmitting device and the DCI receiving device are present in the communication system, the DCI transmitting device needs to transmit DCI to the DCI receiving device, and the DCI receiving device needs to receive the DCI.
  • the DCI sent by the sending device As shown in FIG. 3, the base station and UE1-UE6 form a communication system in which the base station needs to transmit DCI to UE1-UE6, and UE1-UE6 needs to receive DCI transmitted by the base station.
  • UE4-UE6 also constitutes a communication system, in which UE5 needs to send DCI to UE4 and UE6, and UE4 and UE6 need to receive DCI sent by UE5.
  • the transmitting device of the DCI may be a base station or a UE, and the receiving device of the DCI may be a UE, where the base station may be a NodeB or an evolved NodeB (English: Evolved NodeB, referred to as eNB)
  • eNB evolved NodeB
  • an embodiment of the present invention provides a method for transmitting DCI, as shown in FIG. 4, including steps S401-S403:
  • the transmitting device of the DCI determines a control channel element index of the first physical downlink control channel candidate, where the first physical downlink control channel candidate is one of one or more physical downlink control channel candidates in the physical downlink control channel set. Physical downlink control channel candidate.
  • the sending device of the DCI may determine the control channel element index of the first physical downlink control channel candidate according to its own scheduling, which is not specifically limited in this embodiment of the present invention.
  • the transmitting device of the DCI determines, according to the control channel element index, a plurality of subframes where the first physical downlink control channel candidate is located.
  • the transmitting device of the DCI transmits the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the method for transmitting a DCI according to the embodiment of the present invention in the embodiment of the present invention, first determining a control channel element index of a first physical downlink control channel candidate, and further determining the first physical downlink control according to the control channel element index After the plurality of subframes in which the channel candidates are located, the DCI is transmitted by the first physical downlink control channel candidate in the plurality of subframes. Therefore, for DCI coverage enhancement, when the same DCI is performed multiple times in multiple subframes When the transmission is repeated, the physical downlink control channel candidate that carries the DCI is guaranteed.
  • the aggregation level used in each DCI is the same, and the index of the control channel element used is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • an embodiment of the present invention provides a DCI receiving method, as shown in FIG. 15, including steps S1501-S1503:
  • the receiving device of the DCI determines a control channel element index of the first physical downlink control channel candidate, where the first physical downlink control channel candidate is one of one or more physical downlink control channel candidates in the physical downlink control channel set. Physical downlink control channel candidate.
  • the receiving device of the DCI may determine the control channel element index of the first physical downlink control channel candidate according to the predetermined search space, or determine the control channel element index of the first physical downlink control channel candidate according to the signaling sent by the sending end.
  • the embodiment of the present invention does not specifically limit this.
  • the receiving device of the DCI determines, according to the control channel element index, a plurality of subframes where the first physical downlink control channel candidate is located.
  • the receiving device of the DCI receives the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the control channel element index of the first physical downlink control channel candidate is first determined, and then the first physical downlink control is determined according to the control channel element index.
  • the DCI is received by the first physical downlink control channel candidate in the multiple subframes. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the signaling overhead of the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • the step S402/S1502 may specifically include:
  • the transmitting/receiving apparatus of the DCI determines that the plurality of subframes include the first subframe and the second subframe; otherwise, the transmitting/receiving apparatus of the DCI determines that the multiple subframes include only the second subframe a frame, wherein the number of control channel elements included in the PRB pair in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the second subframe is greater than the number of The number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set in the set of PRB pairs of the physical downlink control channel in a subframe is included.
  • EPDCCH defines the number of EREGs that make up each ECCE in a downlink subframe and a special subframe. As shown in Table 3. Where the number of ECCEs in a PRB pair The number of ECCEs in the 2, 4, and 6 PRB pairs within the bandwidth supported by the MTC UE is also shown in Table 3.
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the second subframe is greater than
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the first subframe is as shown in Table 3, in the TDD system.
  • the first subframe may be a special subframe configured under a normal CP, and configured in any of 1, 2, 6, 7, and 9 configurations.
  • the second subframe is a downlink subframe under the regular CP.
  • the composition is the first If the control channel element index of a physical downlink control channel candidate is not greater than 3, the multiple subframes in which the first physical downlink control channel candidate is located include the special subframe configuration of the conventional CP, which is 1, 2, 6, 7, or 9 The special subframes in the configuration include the downlink subframes in the conventional CP. Otherwise, the multiple subframes in which the first physical downlink control channel candidate is located only include the downlink subframes in the conventional CP.
  • the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel for the DCI transmission is in the same subframe
  • the PRB pair is composed of four PRB pairs. If the control channel element index of a physical downlink control channel candidate is not greater than 7, the multiple subframes in which the first physical downlink control channel candidate is located include the special subframe configuration of the conventional CP, which is 1, 2, 6, 7, or 9
  • the special subframes in the configuration include the downlink subframes in the conventional CP. Otherwise, the multiple subframes in which the first physical downlink control channel candidate is located only include the downlink subframes in the conventional CP.
  • the composition is the first If the control channel element index of a physical downlink control channel candidate is not greater than 11, the multiple subframes in which the first physical downlink control channel candidate is located include the special subframe configuration of the conventional CP, which is 1, 2, 6, 7, and 9 The special subframes in the configuration include the downlink subframes in the conventional CP. Otherwise, the multiple subframes in which the first physical downlink control channel candidate is located only include the downlink subframes in the conventional CP.
  • the control channel element is ECCE
  • the TDD uplink and downlink configuration is configuration 0
  • the regular CP and the special subframe configuration is 1.
  • the physical downlink control channel set in the PRB pair set of one physical downlink control channel used for DCI transmission When the PRB pair in which the physical downlink control channel candidate is located is 6 PRB pairs, when the aggregation level of the first physical downlink control channel candidate is 8, and the control channel element index constituting the first physical downlink control channel candidate is 0-
  • the multiple subframes include a special subframe configured in any configuration of 1, 2, 6, 7, and 9 in a normal CP. It also includes downlink subframes under the regular CP.
  • the first subframe is a subframe in which a synchronization signal and/or a PBCH is located
  • the second subframe is a subframe other than the first subframe in all subframes in which downlink information can be transmitted. frame.
  • the PRB pair of the physical downlink control channel's PRB pair may have a PRB pair that overlaps with the synchronization signal and/or the PRB pair in which the PBCH is located.
  • the repeated transmission of the DCI skips the synchronization signal and/or the subframe in which the PBCH is located.
  • All the subframes that can transmit downlink information include a downlink subframe and a special subframe.
  • the system bandwidth has a frequency bandwidth of 15 PRBs in the frequency of 3 MHz, and the number is 0-14.
  • the PBCH occupies half of the PRB pair numbered 4, and is numbered 5 A PRB pair of -9, half of the PRB pair numbered 10.
  • the set of PRB pairs of the physical downlink control channel includes PRB pairs numbered 0-5.
  • the PRB pair in which the physical downlink control channel candidate is located has only the PRB pair numbered 0-3, and the downlink subframe of the regular CP has only 16 control channel elements; and in other subframes, the physical downlink control channel candidate
  • the PRB pair is the PRB pair numbered 0-5.
  • the maximum value of the control channel element index of the first physical downlink control channel candidate is not greater than the physical downlink control in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the first subframe
  • the maximum value of the included control channel element index of the PRB pair in which the channel candidate is located determines that the plurality of subframes include the first subframe and the second subframe; otherwise, it is determined that the plurality of subframes only include the second subframe.
  • the first subframe is a subframe in which a synchronization signal and/or a PBCH is located
  • the second subframe is a subframe other than the first subframe in all subframes in which downlink information can be transmitted.
  • the control channel element index of the first physical downlink control channel candidate is not greater than 15, then the The subframe in which the first physical downlink control channel candidate is located includes subframe 0 and other subframes. Otherwise, the multiple subframes in which the first physical downlink control channel candidate is located do not include subframe 0. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in the TDD system, the subframes used for multiple repeated transmissions of the DCI are It includes a special subframe configured under the normal CP as a special subframe in any configuration of 1, 2, 6, 7, and 9.
  • step S402/S1502 may specifically include:
  • the DCI transmission/reception device determines Each special subframe of the special subframe is used for one repetition transmission of the DCI; otherwise, the transmitting/receiving apparatus of the DCI determines that every two special subframes in the special subframe are used for the DCI One repetition transmission, where a denotes the number of control channel elements included in the PRB pair in the physical resource block PRB pair set of the physical downlink control channel in one special subframe in the special subframe.
  • multiple repetitions of the DCI may be used in the same redundancy version or in different redundancy versions, which is not specifically limited in this embodiment of the present invention.
  • the multiple subframes further include a downlink subframe in a regular CP, and each downlink subframe in the multiple subframes is used for one repeated transmission of the DCI.
  • the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel used for the DCI transmission in one subframe is two PRB pairs
  • the composition is the first The range of the control channel element index of a physical downlink control channel candidate is included in the range of [0, 3], or if the range of the control channel element index constituting the first physical downlink control channel candidate is included in [4, 7]
  • Each of the plurality of sub-frames is used for one iteration of DCI.
  • the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel for the DCI transmission is in the same subframe
  • the PRB pair is composed of four PRB pairs.
  • the range of the control channel element index of a physical downlink control channel candidate is included in the range of [0, 7], or if the range of the control channel element index constituting the first physical downlink control channel candidate is included in [8, 15]
  • Each of the two special subframes in the subframe is used for one repetition transmission of the DCI.
  • the composition is the first The range of the control channel element index of a physical downlink control channel candidate is included in the range of [0, 11], or if the range of the control channel element index constituting the first physical downlink control channel candidate is included in [12, 23] And determining, in the range of the plurality of subframes in which the first physical downlink control channel candidate is located, for one repeated transmission of the DCI; otherwise, determining that the first physical downlink control channel candidate is located
  • Each of the two special subframes in the subframe is used for one repetition transmission of the DCI.
  • the special subframe in the above example refers to a special subframe configured in any configuration of 1, 2, 6, 7, and 9 in a normal CP.
  • the method further includes:
  • the transmission device of the DCI numbers the control channel elements included in the PRB pair in the PRB pair set in each special subframe of the special subframe in the range of values of [a, a*2-1].
  • a PRB pair of physical downlink control channel candidates in a set of physical downlink control channels in a set of PRB pairs of a physical downlink control channel for DCI transmission is 6 PRB pairs, which constitutes a
  • the control channel element index of a physical downlink control channel candidate is 12-23.
  • the index of the control channel element included in the PRB pair in the PRB pair set is 12-23, where the first physical downlink control channel candidate is located.
  • Each of the plurality of subframes is used for one repetition transmission of the DCI.
  • the method further includes:
  • the transmitting device of the DCI numbers the control channel elements included in the PRB pair in the PRB pair set in each of the special subframes in the range of [0, a*2-1] .
  • the transmission device of the DCI may consecutively number the control channel elements included in the PRB pair in the PRB pair set in each of the two special subframes, and the range is [0, a*2-1].
  • the TDD uplink and downlink configuration is configuration 0, the regular CP, and the special subframe configuration is 1, assuming that the PRB pair set of one physical downlink control channel used for DCI transmission includes six PRB pairs in one subframe, and constitutes
  • the index of the control channel element of the first physical downlink control channel candidate is 0-23
  • the index of the control channel element included in the PRB pair in the PRB pair set is 0-11.
  • the index of the control channel element included in the PRB pair in the PRB pair is 12-23.
  • a schematic diagram of a plurality of subframes for transmitting repeated DCIs is shown in FIG. 7.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • the embodiment of the present invention further provides a method for transmitting DCI, as shown in FIG. 8, including steps S801 and S802:
  • the sending device of the DCI determines a plurality of subframes where the first physical downlink control channel candidate is located, where the first physical downlink control channel candidate is a physical downlink control channel set.
  • One of the physical downlink control channel candidates in the one or more physical downlink control channel candidates, in each of the plurality of subframes, in the physical downlink control channel set in the PRB pair set of the physical downlink control channel The number of control channel elements included in the PRB pair in which the physical downlink control channel candidate is located is the same.
  • the transmitting device of S802 and DCI transmits DCI through the first physical downlink control channel candidate in the plurality of subframes.
  • the multiple subframes where the first physical downlink control channel candidate is located may include a downlink subframe, a special subframe, a subframe where the synchronization signal is located, a subframe where the PBCH is located, and all downlink information that can transmit downlink information.
  • the PRB pair set of the physical downlink control channel is The number of the control channel elements included in the PRB pair in the physical downlink control channel set in the physical downlink control channel set may be the same.
  • the embodiment of the present invention does not specifically limit the type of the subframe included in the multiple subframes.
  • the system bandwidth includes a frequency width of 15 PRBs in the frequency of 3 MHz, and the number is 0-14.
  • the TDD uplink and downlink configuration is configured as 0, the regular CP, the special subframe configuration is 1, the subframe 0 is the downlink subframe, and the subframe 1 is the special subframe.
  • the PBCH occupies half of the PRB pair numbered 4, half of the PRB pair numbered 5-9, and half of the PRB pair numbered 10.
  • the set of PRB pairs of the physical downlink control channel includes PRB pairs numbered 2-5.
  • the PRB pair of the physical downlink control channel candidate in the set of physical downlink control channels in the set of PRB pairs of the physical downlink control channel has only PRB pairs numbered 2-3, including 8 control channel elements; 1.
  • the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the set of PRB pairs of the physical downlink control channel is a PRB pair of numbers 2-5, and includes 8 control channel elements.
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the set is the same in subframe 0 and subframe 1 in the physical resource block PRB pair of the physical downlink control channel. Both frame 0 and subframe 1 may be subframes for transmitting DCI.
  • the PRB pair set of the physical downlink control channel is The number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set is located is the same. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • an embodiment of the present invention further provides a DCI receiving method, as shown in FIG. 16, including steps S1601 and S1602:
  • the receiving device of the DCI determines a plurality of subframes where the first physical downlink control channel candidate is located, where the first physical downlink control channel candidate is one of the physical downlink control channel candidates in the physical downlink control channel set.
  • One of the physical downlink control channel candidates, in each of the plurality of subframes, the PRB pair contained in the physical downlink control channel set in the PRB pair set of the physical downlink control channel is controlled by the PRB pair included in the physical downlink control channel candidate
  • the number of channel elements is the same.
  • the receiving device of the DCI receives the DCI through the first physical downlink control channel candidate in the plurality of subframes.
  • the multiple subframes where the first physical downlink control channel candidate is located may include a downlink subframe, a special subframe, a subframe where the synchronization signal is located, a subframe where the PBCH is located, and all downlink information that can transmit downlink information.
  • the PRB pair set of the physical downlink control channel is The number of the control channel elements included in the PRB pair in the physical downlink control channel set in the physical downlink control channel set may be the same.
  • the embodiment of the present invention does not specifically limit the type of the subframe included in the multiple subframes.
  • the system bandwidth includes a total of 15 PRBs in the frequency within 3 MHz.
  • the frequency width is numbered 0-14.
  • the TDD uplink and downlink configuration is configured as 0, the regular CP, the special subframe configuration is 1, the subframe 0 is the downlink subframe, and the subframe 1 is the special subframe.
  • the PBCH occupies half of the PRB pair numbered 4, half of the PRB pair numbered 5-9, and half of the PRB pair numbered 10.
  • the set of PRB pairs of the physical downlink control channel includes PRB pairs numbered 2-5.
  • the PRB pair of the physical downlink control channel candidate in the set of physical downlink control channels in the set of PRB pairs of the physical downlink control channel has only PRB pairs numbered 2-3, including 16 control channel elements; 1.
  • the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the set of PRB pairs of the physical downlink control channel is a PRB pair of numbers 2-5, and includes 16 control channel elements.
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the set is the same in subframe 0 and subframe 1 in the physical resource block PRB pair of the physical downlink control channel. Both frame 0 and subframe 1 may be subframes for transmitting DCI.
  • the physical of the physical downlink control channel set in the PRB pair set of the physical downlink control channel is the same. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly received DCI with low complexity.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the repeated transmission of the DCI occupies the same subframe type, for example, in FIG. It is shown that the 2 repeated transmissions of the first DCI occupy only the downlink subframe, and the 2 repeated transmissions of the second DCI occupy only the special subframe.
  • the special subframe is a special subframe configured in any one of 1, 2, 6, 7, and 9 in a special subframe of a TDD system
  • the downlink subframe is a downlink subframe in a normal CP. .
  • the multiple subframes are all downlink subframes.
  • the repeated transmission of the DCI only occupies the downlink subframe.
  • the same DCI may be transmitted in multiple subframes by using the method of other embodiments of the present invention. Since the uplink configuration 2 has 6 downlink subframes in one radio frame and the uplink and downlink configuration is one of 3, 4, and 5, the downlink to uplink conversion period is 10 milliseconds, so in the above case, one wireless There are more downlink subframes in the frame, and only transmitting DCI in the downlink subframe does not cause too much limitation on the physical downlink control channel capacity.
  • the multiple subframes are subframes in which the synchronization signal is located and subframes in the subframe where the physical broadcast channel PBCH is located; or the multiple subframes are all downlink information that can transmit downlink information.
  • the implementation is applied to the subframe in which the synchronization signal is located and/or the subframe in which the PBCH is located, and the PRB pair in the PRB pair set of the physical downlink control channel is intersected with the synchronization signal and/or the PRB pair in which the PBCH is located. In the case of a stacked PRB pair.
  • All the subframes that can transmit downlink information include a downlink subframe and a special subframe.
  • the system bandwidth has a frequency bandwidth of 15 PRBs in the frequency of 3 MHz, and the number is 0-14.
  • the PBCH occupies half of the PRB pair numbered 4, and is numbered 5 A PRB pair of -9, half of the PRB pair numbered 10.
  • the set of PRB pairs of the physical downlink control channel includes PRB pairs numbered 0-5.
  • the PRB pair in which the physical downlink control channel candidate is located has only the PRB pair numbered 0-3, and the downlink subframe of the regular CP has only 16 control channel elements; and in other subframes, the physical downlink control channel candidate
  • the PRB pair is the PRB pair numbered 0-5.
  • the PRB pair inclusion control of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel The number of channel elements is different.
  • the multiple subframes do not include a subframe in which a positioning reference signal (English: Positioning Reference Signal, PRS for short) is located.
  • a positioning reference signal English: Positioning Reference Signal, PRS for short
  • the multiple subframes include a special subframe configured in any configuration of 1, 2, 6, 7, 9 under a regular CP, in the special subframe.
  • each control channel element consists of 4 resource element groups.
  • one PRB pair includes four control channel elements. That is, the implementation modifies the number of EREGs constituting each ECCE in the downlink subframe and the special subframe defined in the existing EPDCCH.
  • the number of resource element groups constituting one control channel element is the same in a special subframe in a configuration of any one of 1, 2, 6, 7, and a downlink subframe in a conventional CP.
  • the number of PRB pairs in the physical downlink control channel set in the physical downlink control channel set of the physical downlink control channel is the same, the number of the control channel elements included in the PRB pair is the same. .
  • the multiple subframes further include downlink subframes under a regular CP.
  • a calculation method of a resource element group constituting one control channel element, and a PRB pair in which a resource element group constituting one control channel element is located The calculation method is the same as the existing EPDCCH.
  • the REs constituting the resource element group mapping are the same as the existing EPDCCH, and are not described herein again in the embodiment of the present invention.
  • the multiple subframes include a special subframe and a downlink subframe
  • the special subframe includes a cell reference signal (English: Cell-specific Reference Signal, referred to as
  • the modulation symbol of the DCI transmitted on the OFDM symbol of the CRS) is a modulation symbol in a modulation symbol of the DCI transmitted on the OFDM symbol containing the CRS in the downlink subframe
  • at least two of the special subframes include demodulation OFDM symbol of the reference signal (English: Demodulation Reference Signal, DMRS for short)
  • the modulation symbols of the DCI transmitted on the two OFDM symbols containing the DMRS are modulation symbols in the modulation symbols of the DCI transmitted on the OFDM symbol containing the DMRS in the downlink subframe.
  • This implementation can be applied to a TDD system, a conventional CP special subframe configuration 1, 2, 3, 4, 6, 7, 8, 9, and an extended CP special subframe configuration 1, 2, 3, 5, and 6.
  • the implementation is made in a special subframe of the TDD system by a specific mapping relationship between the modulation symbols of the DCI transmitted on the OFDM symbols in the special subframe and the modulation symbols of the DCI transmitted on the OFDM symbols in the downlink subframe.
  • the number of resource element groups of one control channel element is four.
  • the special subframe when the special subframe is configured as one of 1, 2, 6, and 7, the first time slot of the special subframe
  • the OFDM symbols numbered 0, 1, 4, and the modulation symbols of the DCI transmitted on the OFDM symbols numbered 0 and 1 of the second slot, and the number of the first slot of the downlink subframe is 0, 1
  • the OFDM symbol of 4, and the modulation symbol of the DCI transmitted on the OFDM symbol numbered 0, 1 of the second slot are the same; the number of the first slot of the special subframe is 2, 3, 5, 6
  • the modulation symbols of the DCI transmitted on the OFDM symbol, the OFDM symbols numbered 5 and 6 of the first slot of the downlink subframe, and the DCI transmitted on the OFDM symbols numbered 5 and 6 of the second slot The modulation symbols are the same; the second slot of the special subframe.
  • the second slot number of the special subframe is the modulation symbol and downlink of the DCI transmitted on the OFDM symbol of 2.
  • the modulation symbols of the DCI transmitted on the OFDM symbols numbered 2 or 3 in the first slot of the subframe or the second slot are the same.
  • the special subframe when the special subframe is configured as one of 1, 2, 6, and 7, the first time slot of the special subframe OFDM symbols numbered 0, 1, 4, 5, 6, and modulation symbols of DCI transmitted on OFDM symbols numbered 0, 1 of the second slot, and numbers of the first slot of the downlink subframe
  • the OFDM symbols of 0, 1, 4, 5, and 6, and the modulation symbols of the DCI transmitted on the OFDM symbols of the second slot numbered 0, 1 are the same;
  • the number of the first slot of the special subframe is
  • the modulation symbols of the DCI transmitted on the OFDM symbols of 2, 3 are the modulation symbols in the modulation symbols of the DCI transmitted on the OFDM symbols numbered 2 and 3 of the first slot of the downlink subframe, and are discarded in the downlink subframe.
  • the special subframe when the special subframe is configured as one of 3, 4, 8, and 9, the first time slot of the special subframe
  • the OFDM symbols numbered 0, 1, 4, and the modulation symbols of the DCI transmitted on the OFDM symbols numbered 0, 1, 4 of the second slot, and the number of the first slot of the downlink subframe is 0.
  • the OFDM symbols of 1, 4, and the modulation symbols of the DCI transmitted on the OFDM symbols of the second slot numbered 0, 1, 4 are the same; the number of the first slot of the special subframe is 2, 3 An OFDM symbol, and a modulation symbol of a DCI transmitted on an OFDM symbol numbered 2 and 3 in a second slot, an OFDM symbol numbered 5 and 6 in a first slot of a downlink subframe, and a second
  • the modulation symbols of the DCI transmitted on the OFDM symbols with the slot numbers 5 and 6 are the same;
  • the OFDM symbols of the first slot of the special subframe are numbered 5 and 6, and the first slot of the downlink subframe or
  • the modulation symbols of the DCI transmitted on the OFDM symbols numbered 2 and 3 of the second slot are the same.
  • the special subframe when the special subframe is configured as one of 3, 4, 8, and 9, the first time slot of the special subframe
  • the OFDM symbols numbered 0, 1, 4, and the modulation symbols of the DCI transmitted on the OFDM symbols numbered 0, 1, 4 of the second slot, and the number of the first slot of the downlink subframe is 0.
  • the OFDM symbols of 1, 4, and the modulation symbols of the DCI transmitted on the OFDM symbols of the second slot numbered 0, 1, 4 are the same; the number of the first slot of the special subframe is 2, 3
  • the OFDM symbol is the same as the modulation symbol of the DCI transmitted on the OFDM symbol numbered 5 and 6 of the first slot of the downlink subframe; the OFDM symbol of the first slot of the special subframe is numbered 5 and 6,
  • the modulation symbol of the DCI transmitted on the OFDM symbol numbered 2, 3 of the first slot of the downlink subframe is the same; the DCI transmitted on the OFDM symbol of the second slot of the special subframe number 2, 3
  • the modulation symbol is the modulation symbol in the modulation symbol of the DCI transmitted on the OFDM symbol numbered 2, 3 of the second time slot of the downlink subframe, and the downlink is discarded.
  • the second time slot in the subframe is numbered 2, 3
  • the special subframe is configured as one of 1, 2, 3, 5, 6, the modulation symbol of the DCI transmitted on each OFDM symbol in the special subframe DwPTS, and the downlink subframe
  • the OFDM symbols in the corresponding positions in the middle that is, the modulation symbols of the DCI transmitted on the OFDM symbols of the same number in the same slot are the same.
  • the receiving device of the DCI can receive the DCI in multiple subframes by using a specific mapping relationship between the modulation symbol of the DCI transmitted on the OFDM symbol in the special subframe and the modulation symbol of the DCI transmitted on the OFDM symbol in the downlink subframe.
  • the OFDM symbols can be combined to reduce the reception complexity of the receiving device of the DCI.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • the embodiment of the present invention further provides a DCI transmission apparatus 170 for performing the DCI transmission method.
  • the DCI transmission apparatus 170 includes: a determination unit. 1701 and transmitting unit 1702.
  • the determining unit 1701 is configured to determine a control channel element index of the first physical downlink control channel candidate, where the first physical downlink control channel candidate is one or more physical downlink control channel candidates in the physical downlink control channel set One of the physical downlink control channel candidates.
  • the determining unit 1701 is further configured to determine, according to the control channel element index, a plurality of subframes in which the first physical downlink control channel candidate is located.
  • the sending unit 1702 is configured to send the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the determining unit 1701 is specifically configured to:
  • the maximum value of the control channel element index is not greater than the control channel element index included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the first subframe a maximum value, determining that the plurality of subframes include the first subframe and the second subframe; otherwise, determining that the multiple subframes only include the second subframe; wherein, the physical of the second subframe
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair of the downlink control channel is greater than the PRB pair set of the physical downlink control channel in the first subframe. The number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set is located.
  • the first subframe is a special subframe configured in any configuration of 1, 2, 6, 7, 9 in a normal subframe
  • the second subframe is the The downlink subframe under the regular CP.
  • the first subframe is a subframe in which a synchronization signal and/or a PBCH is located
  • the second subframe is a subframe other than the first subframe in all subframes in which downlink information can be transmitted. frame.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in the TDD system, the subframes used for multiple repeated transmissions of the DCI are It includes a special subframe configured under the normal CP as a special subframe in any configuration of 1, 2, 6, 7, and 9.
  • the determining unit 1701 is specifically configured to:
  • Each special subframe is used for one repeated transmission of the DCI.
  • Every two special subframes in the special subframe are used for one repetition transmission of the DCI, where a represents a physical downlink in a special subframe in the special subframe.
  • the DCI transmitting device 170 further includes a numbering unit 1703.
  • the numbering unit 1703 is configured to: if the range of the control channel element index is between [a, a*2-1], in the PRB pair set in each special subframe of the special subframe The PRB number of the control channel elements included in [a, a*2-1] is numbered.
  • the DCI sending device 170 further includes a numbering unit 1703.
  • the numbering unit 1703 is configured to: if each of the special subframes in the special subframe is used for one-time repeated transmission of DCI, the PRB pair in each two special subframes in the special subframe The PRBs in the set number the control channel elements included in [0, a*2-1].
  • the determining unit 1701 and the numbering unit 1703 may be implemented by a processor, and the sending unit 1702 may be implemented by a transceiver, where the transceiver and the processor are The embodiments of the present invention do not specifically limit this.
  • the method for transmitting the DCI by the sending apparatus 170 of the DCI provided by the embodiment of the present invention may refer to the foregoing method embodiment, and details are not described herein again.
  • the transmitting device of the DCI first determines the control channel element index of the first physical downlink control channel candidate, and further determines the first according to the control channel element index. After the plurality of subframes in which the physical downlink control channel candidate is located, the DCI is transmitted by the first physical downlink control channel candidate in the multiple subframes. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index. , avoiding blind detection of different aggregation level combinations and control channel element index combinations by the receiving device of the DCI, It is sufficient for the receiving device of the DCI to receive the repeatedly transmitted DCI with a lower complexity.
  • the embodiment of the present invention further provides a DCI transmission apparatus 170 for performing the DCI transmission method.
  • the DCI transmission apparatus 170 includes: a determination unit. 1701 and transmitting unit 1702.
  • the determining unit 1701 is configured to determine multiple subframes where the first physical downlink control channel candidate is located, where the first physical downlink control channel candidate is one or more physical downlink control channel candidates in the physical downlink control channel set One of the physical downlink control channel candidates, in each of the plurality of subframes, the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel is included The number of control channel elements is the same.
  • the sending unit 1702 is configured to send the DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the multiple subframes are all downlink subframes.
  • the multiple subframes are subframes in which the synchronization signal is located and subframes in the subframe in which the PBCH is located; or, the multiple subframes are all subframes in which downlink information can be transmitted.
  • the multiple subframes include a special subframe configured in any configuration of 1, 2, 6, 7, 9 under a regular CP, in the special subframe.
  • each control channel element consists of 4 resource element groups.
  • the multiple subframes include a special subframe and a downlink subframe, and a modulation symbol of a DCI transmitted on an OFDM symbol that includes a CRS in the special subframe is a CRS in the downlink subframe.
  • a modulation symbol in a modulation symbol of a DCI transmitted on an OFDM symbol, at least two OFDM symbols containing DMRS in the special subframe, and modulation symbols of the DCI transmitted on the OFDM symbols containing the DMRS are DMRS in the downlink subframe Modulation symbols in the modulation symbols of the DCI transmitted on the OFDM symbol.
  • the determining unit 1701 can be implemented by a processor, and the sending unit 1702 can be implemented by a transceiver, wherein the transceiver and the processor can communicate with each other.
  • the embodiment of the invention is not specifically limited thereto.
  • the method for transmitting the DCI by the sending apparatus 170 of the DCI provided by the embodiment of the present invention may refer to the foregoing method embodiment, and details are not described herein again.
  • the physical downlink control channel set in the PRB pair set of the physical downlink control channel is set.
  • the number of control channel elements included in the PRB pair in which the downlink control channel candidate is located is the same. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • the embodiment of the present invention further provides a receiving device 190 for performing DCI receiving method.
  • the receiving device 190 of the DCI includes: determining unit. 1901 and receiving unit 1902.
  • the determining unit 1901 is configured to determine a control channel element index of the first physical downlink control channel candidate, where the first physical downlink control channel candidate is one or more physical downlink control channel candidates in the physical downlink control channel set One of the physical downlink control channel candidates.
  • the determining unit 1901 is further configured to determine, according to the control channel element index, a plurality of subframes in which the first physical downlink control channel candidate is located.
  • the receiving unit 1902 is configured to pass the first physical downlink in the multiple subframes
  • the control channel candidate receives the DCI.
  • the determining unit 1901 is specifically configured to:
  • the maximum value of the control channel element index is not greater than the control channel element index included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel in the first subframe a maximum value, determining that the plurality of subframes include the first subframe and the second subframe; otherwise, determining that the multiple subframes only include the second subframe; wherein, the physical of the second subframe
  • the number of control channel elements included in the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair of the downlink control channel is greater than the PRB pair set of the physical downlink control channel in the first subframe. The number of control channel elements included in the PRB pair in which the physical downlink control channel candidate in the physical downlink control channel set is located.
  • the first subframe is a special subframe configured in any configuration of 1, 2, 6, 7, 9 in a normal subframe
  • the second subframe is the The downlink subframe under the regular CP.
  • the first subframe is a subframe in which a synchronization signal and/or a PBCH is located
  • the second subframe is a subframe other than the first subframe in all subframes in which downlink information can be transmitted. frame.
  • the multiple subframes are subframes for multiple repeated transmissions of the DCI, and in the TDD system, the subframes used for multiple repeated transmissions of the DCI are It includes a special subframe configured under the normal CP as a special subframe in any configuration of 1, 2, 6, 7, and 9.
  • the determining unit 1901 is specifically configured to:
  • Each special subframe is used for one repeated transmission of the DCI;
  • each of the special subframes in the special subframe is used for one repetition transmission of the DCI, where a represents a PRB pair of a physical downlink control channel in a special subframe in the special subframe.
  • the number of control channel elements included in the PRB pair in the set is determined.
  • the receiving device 190 of the DCI further includes a numbering unit 1903.
  • the numbering unit 1903 is configured to: if the range of the control channel element index is between [a, a*2-1], in the PRB pair set in each special subframe of the special subframe The PRB number of the control channel elements included in [a, a*2-1] is numbered.
  • the receiving device 190 of the DCI further includes a numbering unit 1903.
  • the numbering unit 1903 is configured to: if each of the special subframes in the special subframe is used for one-time repeated transmission of DCI, for the PRB pair in each two special subframes in the special subframe The PRBs in the set number the control channel elements included in [0, a*2-1].
  • the determining unit 1901 and the numbering unit 1903 may be implemented by a processor, and the receiving unit 1902 may be implemented by a transceiver, where the transceiver and the processor are The embodiments of the present invention do not specifically limit this.
  • the method for receiving the DCI by the receiving device 190 of the DCI provided by the embodiment of the present invention may refer to the foregoing method embodiment, and details are not described herein again.
  • the receiving apparatus of the DCI first determines the control channel element index of the first physical downlink control channel candidate, and further determines the first according to the control channel element index. After the plurality of subframes in which the physical downlink control channel candidate is located, the DCI is received by the first physical downlink control channel candidate in the multiple subframes. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • the embodiment of the present invention further provides a method for The receiving apparatus 190 of the DCI that performs the above-described DCI receiving method, as shown in FIG. 19, the DCI receiving apparatus 190 includes a determining unit 1901 and a receiving unit 1902.
  • the determining unit 1901 is configured to determine multiple subframes where the first physical downlink control channel candidate is located, where the first physical downlink control channel candidate is one or more physical downlink control channel candidates in the physical downlink control channel set One of the physical downlink control channel candidates, in each of the plurality of subframes, the PRB pair of the physical downlink control channel candidate in the physical downlink control channel set in the PRB pair set of the physical downlink control channel is included The number of control channel elements is the same.
  • the receiving unit 1902 is configured to receive DCI by using the first physical downlink control channel candidate in the multiple subframes.
  • the multiple subframes are all downlink subframes, or the multiple subframes are special subframes.
  • the multiple subframes are all downlink subframes.
  • the multiple subframes are subframes in which the synchronization signal is located and subframes in the subframe in which the PBCH is located; or, the multiple subframes are all subframes in which downlink information can be transmitted.
  • the multiple subframes include a special subframe configured in any configuration of 1, 2, 6, 7, 9 under a regular CP, in the special subframe.
  • each control channel element consists of 4 resource element groups.
  • the multiple subframes include a special subframe and a downlink subframe, and a modulation symbol of a DCI transmitted on an OFDM symbol that includes a CRS in the special subframe is a CRS in the downlink subframe.
  • a modulation symbol in a modulation symbol of a DCI transmitted on an OFDM symbol, at least two OFDM symbols containing DMRS in the special subframe, and modulation symbols of the DCI transmitted on the OFDM symbols containing the DMRS are The modulation symbols in the modulation symbols of the DCI transmitted on the OFDM symbol of the DMRS are included in the downlink subframe.
  • the determining unit 1901 can be implemented by a processor, and the receiving unit 1902 can be implemented by a transceiver, where The transceiver and the processor can communicate with each other, which is not specifically limited in this embodiment of the present invention.
  • the method for receiving the DCI by the receiving device 190 of the DCI provided by the embodiment of the present invention may refer to the foregoing method embodiment, and details are not described herein again.
  • the receiving device of the DCI in the embodiment of the present invention, in each of the plurality of subframes, the physical downlink control channel set in the PRB pair set of the physical downlink control channel
  • the number of control channel elements included in the PRB pair in which the downlink control channel candidate is located is the same. Therefore, for the coverage enhancement of the DCI, when the same DCI is repeatedly transmitted in multiple subframes, the physical downlink control channel candidate that carries the DCI is guaranteed, and the aggregation level used in carrying each repeated DCI is the same.
  • the index of the control channel elements is the same.
  • the receiving device of the DCI can receive the DCI of each repeated transmission according to the same aggregation level and the control channel element index, saving the signaling overhead for notifying the DCI of each aggregation transmission and the control channel element index.
  • the blind detection of the combination of different aggregation levels and the control channel element index combination by the receiving device of the DCI is avoided, and the receiving device of the DCI can receive the repeatedly transmitted DCI with low complexity.
  • the above described device is only illustrated by the division of the above functional modules. In practical applications, the above functions may be assigned differently according to needs.
  • the function module is completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device and the unit described above refer to the corresponding process in the foregoing method embodiment, and details are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供下行控制信息的接收、发送方法及装置,以至少解决现有技术中对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,还没有有效的技术手段保证承载DCI的MPDCCH候选,在承载每次重复的DCI时采用的聚合级别相同,采用的ECCE的索引相同的问题。发送方法包括:确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。本发明适用于无线通信领域。

Description

下行控制信息的接收、发送方法及装置 技术领域
本发明涉及无线通信领域,尤其涉及下行控制信息的接收、发送方法及装置。
背景技术
当系统支持机器类型通信(英文:Machine Type Communication,简称:MTC)业务时,需要对系统的覆盖进行增强,比如在现有系统的覆盖基础上进行额外15dB的覆盖增强。其中,覆盖增强是指系统中信号的传输能够保证信道质量差的用户设备(英文:User Equipment,简称:UE)能可靠的和基站进行通信。
现有技术中,采用多个子帧传输同样的信息是系统覆盖增强的有效技术手段之一。比如,对于通过MTC的物理下行控制信道(英文:Physical Downlink Control Channel,简称:PDCCH)(也可以称作MPDCCH)进行承载的下行控制信息(英文:Downlink Control Information,简称:DCI)传输的覆盖增强,采用多个子帧传输相同的DCI,即在多个子帧中包含DCI的多次重复传输。其中,对于承载DCI的MPDCCH候选,需要在承载每次重复的DCI时采用的聚合级别(英文:Aggregation Level,简称:AL)相同,采用的控制信道元素(英文:Enhanced Control Channel Element,简称:ECCE)的索引相同。如图1所示,DCI在多个子帧的每个子帧进行一次重复传输,在该多个子帧的每个子帧,承载该DCI的MPDCCH候选的聚合级别都是2,都是由索引是0和1的ECCE组成。
然而,目前现有技术中还没有有效的技术手段保证承载DCI的MPDCCH候选,在承载每次重复的DCI时采用的聚合级别相同,采用的ECCE的索引相同。
发明内容
本发明实施例提供下行控制信息的接收、发送方法及装置,以至少 解决现有技术中对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,还没有有效的技术手段保证承载DCI的MPDCCH候选,在承载每次重复的DCI时采用的聚合级别相同,采用的ECCE的索引相同的问题。为达到上述目的,本发明实施例采用如下技术方案:
第一方面,提供一种下行控制信息DCI的发送方法,所述方法包括:
确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
在第一方面第一种可能的实现方式中,结合第一方面,所述根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧,包括:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
在第一方面第二种可能的实现方式中,结合第一方面第一种可能的实现方式,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
在第一方面第三种可能的实现方式中,结合第一方面第一种可能的 实现方式,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
在第一方面第四种可能的实现方式中,结合第一方面,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
所述根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧,包括:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
在第一方面第五种可能的实现方式中,结合第一方面第四种可能的实现方式,若所述控制信道元素索引的范围在[a,a*2-1]之间,所述方法还包括:
对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
在第一方面第六种可能的实现方式中,结合第一方面第四种可能的实现方式,若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,所述方法还包括:
对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
第二方面,提供一种下行控制信息DCI的发送装置,其特征在于,所述DCI的发送装置包括:确定单元和发送单元;
所述确定单元,用于确定第一物理下行控制信道候选的控制信道元 素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
所述确定单元,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
所述发送单元,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
在第二方面第一种可能的实现方式中,结合第二方面,所述确定单元具体用于:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
在第二方面第二种可能的实现方式中,结合第二方面第一种可能的实现方式,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
在第二方面第三种可能的实现方式中,结合第二方面第一种可能的实现方式,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
在第二方面第四种可能的实现方式中,结合第二方面,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧 配置为1,2,6,7,9任一配置下的特殊子帧;
所述确定单元具体用于:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
在第二方面第五种可能的实现方式中,结合第二方面第四种可能的实现方式,所述DCI的发送装置还包括编号单元;
所述编号单元,用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
在第二方面第六种可能的实现方式中,结合第二方面第四种可能的实现方式,所述DCI的发送装置还包括编号单元;
所述编号单元,用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
第三方面,提供一种下行控制信息DCI的发送装置,其特征在于,所述DCI的发送装置包括:处理器和发送器;
所述处理器,用于确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
所述处理器,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
所述发送器,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
在第三方面第一种可能的实现方式中,结合第三方面,所述处理器具体用于:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
在第三方面第二种可能的实现方式中,结合第三方面第一种可能的实现方式,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
在第三方面第三种可能的实现方式中,结合第三方面第一种可能的实现方式,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
在第三方面第四种可能的实现方式中,结合第三方面,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
所述处理器具体用于:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行 控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
在第三方面第五种可能的实现方式中,结合第三方面第四种可能的实现方式,所述处理器,还用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
在第三方面第六种可能的实现方式中,结合第三方面第四种可能的实现方式,所述处理器,还用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
基于本发明实施例提供的DCI的发送方法和DCI的发送装置,由于本发明实施例中,首先确定第一物理下行控制信道候选的控制信道元素索引,进而根据该控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧后,在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
第四方面,提供一种下行控制信息DCI的发送方法,所述方法包括:
确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理 下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
在第四方面第一种可能的实现方式中,结合第四方面,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
在第四方面第二种可能的实现方式中,结合第四方面,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
在第四方面第三种可能的实现方式中,结合第四方面,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
在第四方面第四种可能的实现方式中,结合第四方面,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
在第四方面第五种可能的实现方式中,结合第四方面,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
第五方面,提供一种下行控制信息DCI的发送装置,所述DCI的发送装置包括:确定单元和发送单元;
所述确定单元,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块 PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
所述发送单元,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
在第五方面第一种可能的实现方式中,结合第五方面,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
在第五方面第二种可能的实现方式中,结合第五方面,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
在第五方面第三种可能的实现方式中,结合第五方面,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
在第五方面第四种可能的实现方式中,结合第五方面,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
在第五方面第五种可能的实现方式中,结合第五方面,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
第六方面,提供一种下行控制信息DCI的发送装置,所述DCI的发送装置包括:处理器和发送器;
所述处理器,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候 选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
所述发送器,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
在第六方面第一种可能的实现方式中,结合第六方面,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
在第六方面第二种可能的实现方式中,结合第六方面,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
在第六方面第三种可能的实现方式中,结合第六方面,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
在第六方面第四种可能的实现方式中,结合第六方面,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
在第六方面第五种可能的实现方式中,结合第六方面,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
基于本发明实施例提供的DCI的发送方法和DCI的发送装置,由于本发明实施例中,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。因此,对于DCI的覆盖增 强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
第七方面,提供一种下行控制信息DCI的接收方法,所述方法包括:
确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
在第七方面第一种可能的实现方式中,结合第七方面,所述根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧,包括:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
在第七方面第二种可能的实现方式中,结合第七方面第一种可能的 实现方式,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
在第七方面第三种可能的实现方式中,结合第七方面第一种可能的实现方式,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
在第七方面第四种可能的实现方式中,结合第七方面,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
所述根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧,包括:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
在第七方面第五种可能的实现方式中,结合第七方面第四种可能的实现方式,若所述控制信道元素索引的范围在[a,a*2-1]之间,所述方法还包括:
对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
在第七方面第六种可能的实现方式中,结合第七方面第四种可能的实现方式,若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,所述方法还包括:
对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB 对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
第八方面,提供一种下行控制信息DCI的接收装置,其特征在于,所述DCI的接收装置包括:确定单元和接收单元;
所述确定单元,用于确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
所述确定单元,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
所述接收单元,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
在第八方面第一种可能的实现方式中,结合第八方面,所述确定单元具体用于:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
在第八方面第二种可能的实现方式中,结合第八方面第一种可能的实现方式,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
在第八方面第三种可能的实现方式中,结合第八方面第一种可能的实现方式,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之 外的其它子帧。
在第八方面第四种可能的实现方式中,结合第八方面,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
所述确定单元具体用于:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
在第八方面第五种可能的实现方式中,结合第八方面第四种可能的实现方式,所述DCI的接收装置还包括编号单元;
所述编号单元,用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
在第八方面第六种可能的实现方式中,结合第八方面第四种可能的实现方式,所述DCI的接收装置还包括编号单元;
所述编号单元,用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
第九方面,提供一种下行控制信息DCI的接收装置,其特征在于,所述DCI的接收装置包括:处理器和接收器;
所述处理器,用于确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
所述处理器,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
所述接收器,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
在第九方面第一种可能的实现方式中,结合第九方面,所述处理器具体用于:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
在第九方面第二种可能的实现方式中,结合第九方面第一种可能的实现方式,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
在第九方面第三种可能的实现方式中,结合第九方面第一种可能的实现方式,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
在第九方面第四种可能的实现方式中,结合第九方面,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
所述处理器具体用于:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信 道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
在第九方面第五种可能的实现方式中,结合第九方面第四种可能的实现方式,所述处理器,还用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
在第九方面第六种可能的实现方式中,结合第九方面第四种可能的实现方式,所述处理器,还用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
基于本发明实施例提供的DCI的接收方法和DCI的接收装置,由于本发明实施例中,首先确定第一物理下行控制信道候选的控制信道元素索引,进而根据该控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧后,在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得第DCI的接收装置以较低的复杂度接收重复发送的DCI。
第十方面,提供一种下行控制信息DCI的接收方法,所述方法包括:
确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
在第十方面第一种可能的实现方式中,结合第十方面,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
在第十方面第二种可能的实现方式中,结合第十方面,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
在第十方面第三种可能的实现方式中,结合第十方面,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
在第十方面第四种可能的实现方式中,结合第十方面,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
在第十方面第五种可能的实现方式中,结合第十方面,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
第十一方面,提供一种下行控制信息DCI的接收装置,所述DCI的接收装置包括:确定单元和接收单元;
所述确定单元,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
所述接收单元,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
在第十一方面第一种可能的实现方式中,结合第十一方面,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
在第十一方面第二种可能的实现方式中,结合第十一方面,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
在第十一方面第三种可能的实现方式中,结合第十一方面,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
在第十一方面第四种可能的实现方式中,结合第十一方面,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
在第十一方面第五种可能的实现方式中,结合第十一方面,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
第十二方面,提供一种下行控制信息DCI的接收装置,所述DCI的 接收装置包括:处理器和接收器;
所述处理器,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
所述接收器,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
在第十二方面第一种可能的实现方式中,结合第十二方面,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
在第十二方面第二种可能的实现方式中,结合第十二方面,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
在第十二方面第三种可能的实现方式中,结合第十二方面,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
在第十二方面第四种可能的实现方式中,结合第十二方面,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
在第十二方面第五种可能的实现方式中,结合第十二方面,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
基于本发明实施例提供的DCI的接收方法和DCI的接收装置,由于本发明实施例中,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的传输重复的DCI的多个子帧的示意图一;
图2为现有技术中PDCCH、PDSCH和EPDCCH的复用示意图;
图3为本发明实施例提供的用于DCI传输的通信系统示意图;
图4为本发明实施例提供的DCI的发送方法流程示意图一;
图5为本发明实施例提供的传输重复的DCI的多个子帧的示意图二;
图6为本发明实施例提供的物理下行控制信道的PRB对集合包含的PRB对与PBCH所在的PRB对有交叠的PRB对时的示意图一;
图7为本发明实施例提供的传输重复的DCI的多个子帧的示意图三;
图8为本发明实施例提供的DCI的发送方法流程示意图二;
图9为本发明实施例提供的传输重复的DCI的多个子帧的示意图四;
图10为本发明实施例提供的物理下行控制信道的PRB对集合包含的PRB对与PBCH所在的PRB对有交叠的PRB对时的示意图二;
图11为本发明实施例提供的下行子帧与特殊子帧中DCI的调制符号映射示意图一;
图12为本发明实施例提供的下行子帧与特殊子帧中DCI的调制符号映射示意图二;
图13为本发明实施例提供的下行子帧与特殊子帧中DCI的调制符号映射示意图三;
图14为本发明实施例提供的下行子帧与特殊子帧中DCI的调制符号映射示意图四;
图15为本发明实施例提供的DCI的接收方法流程示意图一;
图16为本发明实施例提供的DCI的接收方法流程示意图二;
图17为本发明实施例提供的DCI的发送装置结构示意图一;
图18为本发明实施例提供的DCI的发送装置结构示意图二;
图19为本发明实施例提供的DCI的接收装置结构示意图一;
图20为本发明实施例提供的DCI的接收装置结构示意图二。
具体实施方式
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
在长期演进(英文:Long Term Evolution,简称:LTE)或高级的长期演进(英文:LTE Advanced,简称:LTE-A)系统中,下行多址接入方式通常采用正交频分复用多址接入(英文:Orthogonal Frequency Division Multiple Access,简称:OFDMA)方式。系统的下行资源从时间上看被划分成了正交频分复用(英文:Orthogonal Frequency Division Multiplexing,简称:OFDM)符号,从频率上看被划分成了子载波。根据LTE标准,一个无线帧包含10个子帧,一个子帧长1ms,每个无线帧的子 帧按照0-9编号。一个子帧包含有两个时隙(英文:slot),常规循环前缀(英文:Cyclic Prefix,简称:CP)情况下每个时隙包含7个OFDM符号,编号是0-6;扩展CP情况下每个时隙包含6个OFDM符号,编号是0-5。一个OFDM符号和一个子载波构成的时频资源称为资源元素(英文:Resource Element,简称:RE)。定义一个物理资源块(英文:Physical Resource Block,简称:PRB)的大小为时间上的一个时隙,频域上的180kHz。当子载波间隔为15kHz时,一个PRB在频率上包含12个子载波,此时一个PRB共包含84个或72个RE。在频域上对PRB进行编号,即为PRB索引。定义一个PRB对(PRB pair)为在一个子帧上的两个时隙的PRB索引相同的一对PRB。
LTE系统支持两种帧结构:Type1和Type2,其中Type1用于频分双工(英文:Frequency Division Duplexing,简称:FDD),Type2用于时分双工(英文:Time Division Duplexing,简称TDD)。其中,FDD和TDD的帧结构如图1所示。
对于FDD的帧结构Type1,一个10ms无线帧包含的每个子帧既可以用于下行传输,也可以用于上行传输。
对于TDD的帧结构Type2,一个10ms的无线帧包含的子帧或者为下行子帧,或者为上行子帧,或者为特殊子帧。具体哪个子帧为下行子帧、上行子帧、或者特殊子帧由TDD上下行配置决定。LTE当前支持7种不同的TDD上下行配置,如表一所示,其中D表示下行子帧,用于下行传输,S表示特殊子帧,U表示上行子帧。
表一
Figure PCTCN2015087111-appb-000001
Figure PCTCN2015087111-appb-000002
其中,特殊子帧中包括下行导频时隙(英文:Downlink Pilot Time Slot,简称:DwPTS),保护时间(英文:Guard Period,简称:GP)和上行导频时隙(英文:Uplink Pilot Time Slot,简称:UpPTS)三个部分,GP主要用于下行到上行的转换时间和传播时延的补偿。此外,DwPTS中可以传输下行数据,但UpPTS中不可以传输上行数据。UpPTS和DwPTS的时间长度由特殊子帧配置决定,如表二所示。其中Ts是一个时间单元,Ts=1/(15000x2048)秒。
表二
Figure PCTCN2015087111-appb-000003
LTE系统的同步信号分为主同步信号(英文:Primary Synchronization Signal,简称:PSS)和辅同步信号(英文:Secondary Synchronization Signal,简称:SSS)。PSS和SSS位于系统带宽的中央72个子载波上。对于FDD系统,PSS和SSS都在子帧0和子帧5上传输; 对于TDD系统,PSS在子帧1和子帧6上传输,SSS在子帧0和子帧5上传输。
LTE系统中基站和UE之间的信息交互大体可分为两类:控制信息和业务数据。这些信息在物理层都是通过物理信道进行承载的,一个物理信道对应一个RE的集合。DCI主要包含上行下行业务数据的调度信息、非周期信道质量指示上报的请求、多播控制信道变化的通知、上行功率控制命令等等。
在LTE的版本10和之前的版本中,DCI通过PDCCH进行承载。PDCCH与承载下行业务数据的物理下行共享信道(英文:Physical Downlink Shared channel,简称:PDSCH)是时分复用在一个子帧中。PDCCH占用一个子帧的前n(n为1、2、3、4中的一种)个OFDM符号,PDSCH占用剩余的OFDM符号。在频域上PDCCH在整个系统带宽范围进行映射。
在版本10之后的LTE系统中,为了增加控制信道的容量,引入了增强的物理下行控制信道(英文:Enhanced Physical Downlink Control Channel,简称:EPDCCH)。EPDCCH的资源是从原有的PDSCH区域划分出来的,与PDSCH是频分复用的,可与PDSCH占用不同的PRB对。其中,PDCCH、PDSCH和EPDCCH的复用示意图如图2所示。
一个EPDCCH由一个或者多个增强的ECCE聚合而成,用聚合级别(英文:aggregation level)来表示组成EPDCCH的ECCE的个数。每个ECCE由4个或者8个增强的资源元素组(英文:Enhanced Resource Element Groups,简称:EREG)组成。每个PRB对有16个EREG,编号为0-15,因此每个PRB对有4个或者2个ECCE。不同的EREG包含的RE的个数相同或者不相同。高层信令给每个UE配置一个或者两个PRB对的集合用于EPDCCH传输,即一个或者两个EPDCCH的PRB对集合,每个PRB对集合包含2、4或者8个PRB对。EPDCCH每个聚合级别对应一个搜索空间。搜索空间是指在一个聚合级别,UE需要监听的EPDCCH候选(英文:candidate)的集合。组成一个EPDCCH候选的ECCE是一个EPDCCH的PRB对集合中的PRB对包含的ECCE中的ECCE。
在MTC中,由于UE数量众多,需要降低UE的复杂度或成本。降低 UE支持的接收和/或发送信号的带宽是降低UE的复杂度或成本采用的主要技术之一。比如UE接收和/或发送信号的带宽只有1.4MHz。
最后,需要统一说明的是,下述各实施例中,物理下行控制信道具体可以包括EPDCCH,也可以包括MPDCCH等;控制信道元素具体可以是ECCE,也可以是MTC的控制信道元素(英文:MTC CCE,简称:MCCE)等;资源元素组具体可以是EREG,也可以是MTC的资源元素组(英文:MTC REG,简称:MREG)等,本发明各实施例对此均不作具体限定。
另外,本发明实施例中的物理下行控制信道候选中的PRB对包含的控制信道元素不在同步信号和/或PBCH所在的PRB对中。即,在同步信号和/或PBCH所在的子帧,物理下行控制信道的PRB对集合包含的PRB对可能与同步信号和/或PBCH所在的PRB对有交叠的PRB对。由于物理下行控制信道候选不能占用同步信号和/或PBCH所在的PRB对,因此,在同步信号和/或PBCH所在的子帧,物理下行控制信道候选所在的PRB对就只有物理下行控制信道的PRB对集合包含的PRB对中除了交叠的PRB对之外的PRB对。
其中,同步信号包括主同步信号(英文:Primary Synchronization Signal,简称:PSS)和/或辅同步信号(英文:Secondary Synchronization Signal,简称:SSS),本发明实施例对此不作具体限定。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。在下文描述中,处于解释而非限定的目的,阐述了一些特定细节以便清楚理解。在一些实施例中,省略了公知的装置、电路和方法的详细描述,以免因不必要的细节使得描述模糊。通篇描述中,相同的引用数字和相同的名称指代相同或相似的元素。
为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
本发明主要应用于LTE系统或者LTE-A系统,或者未来其它版本的LTE系统。当然,本发明也可以应用于其它的通信系统,只要该通信系统中存在DCI的发送装置和DCI的接收装置,DCI的发送装置需要向DCI的接收装置发送DCI,DCI的接收装置需要接收DCI的发送装置发送的DCI。如图3所示,基站和UE1-UE6组成一个通信系统,在该通信系统中,基站需要给UE1-UE6发送DCI,UE1-UE6需要接收基站发送的DCI。此外,UE4-UE6也组成一个通信系统,在该通信系统中,UE5需要给UE4、UE6发送DCI,UE4、UE6需要接收UE5发送的DCI。
由图3可以看出,本发明实施例中,DCI的发送装置可以是基站或UE,DCI的接收装置可以是UE,其中,基站可以是NodeB或者演进型NodeB(英文:Evolved NodeB,简称:eNB),本发明实施例对此不作具体限定。
基于上述通信系统,本发明实施例提供一种DCI的发送方法,如图4所示,包括步骤S401-S403:
S401、DCI的发送装置确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选。
具体的,DCI的发送装置可以根据自身的调度确定第一物理下行控制信道候选的控制信道元素索引,本发明实施例对此不作具体限定。
S402、DCI的发送装置根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧。
S403、DCI的发送装置在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
基于本发明实施例提供的DCI的发送方法,由于本发明实施例中,首先确定第一物理下行控制信道候选的控制信道元素索引,进而根据该控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧后,在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次 重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
基于上述通信系统,本发明实施例提供一种DCI的接收方法,如图15所示,包括步骤S1501-S1503:
S1501、DCI的接收装置确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选。
具体的,DCI的接收装置可以根据预先规定的搜索空间确定第一物理下行控制信道候选的控制信道元素索引,或者,根据发送端发送的信令确定第一物理下行控制信道候选的控制信道元素索引,本发明实施例对此不作具体限定。
S1502、DCI的接收装置根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧。
S1503、DCI的接收装置在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
基于本发明实施例提供的DCI的接收方法,由于本发明实施例中,首先确定第一物理下行控制信道候选的控制信道元素索引,进而根据该控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧后,在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从 而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
进一步的,一种可能的实现方式中,步骤S402/S1502具体可以包括:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则DCI的发送/接收装置确定所述多个子帧包括所述第一子帧和第二子帧;否则,则DCI的发送/接收装置确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
现有技术中,EPDCCH定义了在下行子帧和特殊子帧中,组成每个ECCE的EREG的个数
Figure PCTCN2015087111-appb-000004
如表三所示。其中,一个PRB对中的ECCE的个数
Figure PCTCN2015087111-appb-000005
以及在MTC UE支持的带宽内的2个、4个、6个PRB对中的ECCE的个数也如表三所示。
表三
Figure PCTCN2015087111-appb-000006
Figure PCTCN2015087111-appb-000007
由表三可以看出,对于TDD系统的常规CP,特殊子帧配置1,2,6,7,9的情况下,在下行子帧和特殊子帧,相同个数的PRB对中的ECCE的个数不相同。若组成MPDCCH的每个ECCE的EREG的个数和EPDCCH采用相同的定义,当传输相同的DCI的多个子帧既包括下行子帧,也包括特殊子帧时,在所述多个子帧中的每个子帧,MPDCCH的PRB对集合包含的相同个数的PRB对中可用于组成MPDCCH候选的ECCE的个数并不相同,从而DCI在每个子帧进行一次重复传输时,无法保证所有的MPDCCH候选在多个子帧中的每个子帧都采用相同的聚合级别和ECCE的索引。
本发明实施例中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数,由表三可知,在TDD系统中,所述第一子帧可以是常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特 殊子帧,所述第二子帧为所述常规CP下的下行子帧。
比如,当在一个子帧中,用于DCI传输的一个物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为2个PRB对时,如果组成第一物理下行控制信道候选的控制信道元素索引不大于3,则该第一物理下行控制信道候选所在的多个子帧既包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,又包括常规CP下的下行子帧;否则,该第一物理下行控制信道候选所在的多个子帧仅包含常规CP下的下行子帧。
比如,当在一个子帧中,用于DCI传输的一个物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为4个PRB对时,如果组成第一物理下行控制信道候选的控制信道元素索引不大于7,则该第一物理下行控制信道候选所在的多个子帧既包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,又包括常规CP下的下行子帧;否则,该第一物理下行控制信道候选所在的多个子帧仅包含常规CP下的下行子帧。
比如,当在一个子帧中,用于DCI传输的一个物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为6个PRB对时,如果组成第一物理下行控制信道候选的控制信道元素索引不大于11,则该第一物理下行控制信道候选所在的多个子帧既包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,又包括常规CP下的下行子帧;否则,该第一物理下行控制信道候选所在的多个子帧仅包含常规CP下的下行子帧。
示例性的,假设控制信道元素为ECCE,TDD上下行配置是配置0,常规CP,特殊子帧配置是1,用于DCI传输的一个物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为6个PRB对的情况下,当第一物理下行控制信道候选的聚合级别是8,并且组成第一物理下行控制信道候选的控制信道元素索引是0-7时,用于传输重复的DCI的多个子帧的示意图如图5所示。其中,所述多个子帧既包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧, 又包括常规CP下的下行子帧。
可选的,所述第一子帧为同步信号和/或PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
如上所述,在同步信号和/或PBCH所在的子帧,物理下行控制信道的PRB对集合包含的PRB对可能与同步信号和/或PBCH所在的PRB对有交叠的PRB对。当物理下行控制信道候选映射的PRB对在频率上与同步信号和/或PBCH所在的PRB对有交叠时,DCI的重复传输跳过同步信号和/或PBCH所在的子帧。即当物理下行控制信道候选映射的PRB对在频率上与同步信号和/或PBCH所在的PRB对有交叠时,DCI的接收装置不在同步信号和/或PBCH所在的子帧监听物理下行控制信道候选。其中,所有可以传输下行信息的子帧包括下行子帧和特殊子帧。
示例性的,如图6所示,系统带宽3MHz内在频率上共包含15个PRB的频率宽度,编号为0-14,在子帧0,PBCH占用编号为4的PRB对的一半、编号为5-9的PRB对、编号为10的PRB对的一半。物理下行控制信道的PRB对集合包含编号为0-5的PRB对。在子帧0,物理下行控制信道候选所在的PRB对只有编号为0-3的PRB对,对于常规CP的下行子帧,只有16个控制信道元素;而在其它子帧,物理下行控制信道候选所在的PRB对则为编号为0-5的PRB对,对于常规CP的下行子帧,有24个控制信道元素。从而DCI在子帧0-4的每个子帧进行一次重复传输时,就无法保证所有的物理下行控制信道候选在所述多个子帧中的每个子帧都采用相同的聚合级别和控制信道元素的索引。本发明实施例中,若第一物理下行控制信道候选的控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定多个子帧包括第一子帧和第二子帧;否则,则确定多个子帧仅包括第二子帧。其中,第一子帧为同步信号和/或PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。则若第一物理下行控制信道候选的控制信道元素索引不大于15时,则该 第一物理下行控制信道候选所在的子帧包括子帧0和其它子帧,否则,该第一物理下行控制信道候选所在的多个子帧不包括子帧0。从而,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。
另一种可能的实现方式中,所述多个子帧为用于所述DCI的多次重复传输的子帧,在TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧。
进而,步骤S402/S1502具体可以包括:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则DCI的发送/接收装置确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;否则,则DCI的发送/接收装置确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
需要说明的是,本发明实施例中,DCI的多次重复传输可以采用相同的冗余版本,也可以采用不同的冗余版本,本发明实施例对此不作具体限定。
可选的,所述多个子帧还包括常规CP下的下行子帧,所述多个子帧中的每一个下行子帧用于所述DCI的一次重复传输。
比如,当在一个子帧中,用于DCI传输的一个物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为2个PRB对时,如果组成第一物理下行控制信道候选的控制信道元素索引的范围包含在[0,3]的范围之内,或者,如果组成第一物理下行控制信道候选的控制信道元素索引的范围包含在[4,7]的范围之内,则确定该第一物理下行控制信道候选所在的多个子帧中的每个特殊子帧用于DCI的一次重复传输;否则,则确定该第一物理下行控制信道候选所在 的多个子帧中的每两个特殊子帧用于DCI的一次重复传输。
比如,当在一个子帧中,用于DCI传输的一个物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为4个PRB对时,如果组成第一物理下行控制信道候选的控制信道元素索引的范围包含在[0,7]的范围之内,或者,如果组成第一物理下行控制信道候选的控制信道元素索引的范围包含在[8,15]的范围之内,则确定该第一物理下行控制信道候选所在的多个子帧中的每个特殊子帧用于DCI的一次重复传输;否则,则确定该第一物理下行控制信道候选所在的多个子帧中的每两个特殊子帧用于DCI的一次重复传输。
比如,当在一个子帧中,用于DCI传输的一个物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为6个PRB对时,如果组成第一物理下行控制信道候选的控制信道元素索引的范围包含在[0,11]的范围之内,或者,如果组成第一物理下行控制信道候选的控制信道元素索引的范围包含在[12,23]的范围之内,则确定该第一物理下行控制信道候选所在的多个子帧中的每个特殊子帧用于DCI的一次重复传输;否则,则确定该第一物理下行控制信道候选所在的多个子帧中的每两个特殊子帧用于DCI的一次重复传输。
需要说明的是,上述示例中的特殊子帧具体是指常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧。
进一步的,若所述控制信道元素索引的范围在[a,a*2-1]之间,所述方法还包括:
DCI的传输装置对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
示例性的,假设在一个子帧中,用于DCI传输的一个物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为6个PRB对,组成第一物理下行控制信道候选的控制信道元素索引是12-23,则在一个特殊子帧,PRB对集合中的PRB对包含的控制信道元素的索引是12-23,第一物理下行控制信道候选所在的多个子帧中的每一个特殊子帧用于DCI的一次重复传输。
可选的,若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,所述方法还包括:
DCI的传输装置对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
优选的,DCI的传输装置可以对所述每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素进行连续编号,范围是[0,a*2-1]。
示例性的,TDD上下行配置是配置0,常规CP,特殊子帧配置是1时,假设用于DCI传输的一个物理下行控制信道的PRB对集合在一个子帧中包含6个PRB对,组成第一物理下行控制信道候选的控制信道元素的索引是0-23,则在两个特殊子帧中的其中一个特殊子帧,PRB对集合中的PRB对包含的控制信道元素索引是0-11;在两个特殊子帧中的另外一个特殊子帧,PRB对集合中的PRB对包含的控制信道元素索引是12-23。其中,用于传输重复的DCI的多个子帧的示意图如图7所示。
由上述各实施例的描述可以看出,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
基于上述通信系统,本发明实施例还提供一种DCI的发送方法,如图8所示,包括步骤S801和S802:
S801、DCI的发送装置确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合 中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。
S802、DCI的发送装置在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
具体的,本发明实施例中,第一物理下行控制信道候选所在的多个子帧可以包含下行子帧、特殊子帧、同步信号所在的子帧、PBCH所在的子帧、所有可以传输下行信息的子帧中除了同步信号和/或PBCH所在的子帧的其它子帧中的一种或多种子帧,只要满足所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同即可,本发明实施例对所述多个子帧包含的子帧的类型不作具体限定。
示例性的,如图10所示,系统带宽3MHz内在频率上共包含15个PRB的频率宽度,编号为0-14。TDD上下行配置为配置0,常规CP,特殊子帧配置是1,子帧0是下行子帧,子帧1是特殊子帧。在子帧0,PBCH占用编号为4的PRB对的一半、编号为5-9的PRB对、编号为10的PRB对的一半。物理下行控制信道的PRB对集合包含编号为2-5的PRB对。在子帧0,物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对只有编号是2-3的PRB对,包含8个控制信道元素;在子帧1,物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为编号2-5的PRB对,包含8个控制信道元素。由于物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数在子帧0和子帧1相同,从而子帧0和子帧1都可以是用于传输DCI的子帧。
基于本发明实施例提供的DCI的发送方法,由于本发明实施例中,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述 物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
基于上述通信系统,本发明实施例还提供一种DCI的接收方法,如图16所示,包括步骤S1601和S1602:
S1601、DCI的接收装置确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。
S1602、DCI的接收装置在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
具体的,本发明实施例中,第一物理下行控制信道候选所在的多个子帧可以包含下行子帧、特殊子帧、同步信号所在的子帧、PBCH所在的子帧、所有可以传输下行信息的子帧中除了同步信号和/或PBCH所在的子帧的其它子帧中的一种或多种子帧,只要满足所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同即可,本发明实施例对所述多个子帧包含的子帧的类型不作具体限定。
示例性的,如图10所示,系统带宽3MHz内在频率上共包含15个PRB 的频率宽度,编号为0-14。TDD上下行配置为配置0,常规CP,特殊子帧配置是1,子帧0是下行子帧,子帧1是特殊子帧。在子帧0,PBCH占用编号为4的PRB对的一半、编号为5-9的PRB对、编号为10的PRB对的一半。物理下行控制信道的PRB对集合包含编号为2-5的PRB对。在子帧0,物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对只有编号是2-3的PRB对,包含16个控制信道元素;在子帧1,物理下行控制信道的PRB对集合中物理下行控制信道集合中的物理下行控制信道候选所在的PRB对为编号2-5的PRB对,包含16个控制信道元素。由于物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数在子帧0和子帧1相同,从而子帧0和子帧1都可以是用于传输DCI的子帧。
基于本发明实施例提供的DCI的接收方法,由于本发明实施例中,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复接收的DCI。
进一步的,在图8和图16所示的实施例中:
一种可能的实现方式中,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
该实现方式中,DCI的重复传输占用相同的子帧类型,例如图9所 示,第一DCI的2次重复传输只占用下行子帧,第二DCI的2次重复传输只占用特殊子帧。特别的,所述特殊子帧为TDD系统常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述下行子帧为常规CP下的下行子帧。
一种可能的实现方式中,在TDD系统中,若LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
该实现方式中,DCI的重复传输只占用下行子帧。对于其它上下行配置的情况,可以采用本发明其它实施例的方法在多个子帧传输相同的DCI。由于上行配置2时,一个无线帧中有6个下行子帧,上下行配置是3、4、5中的一种时,下行到上行的转换周期是10毫秒,因此在以上情况下,一个无线帧中有较多的下行子帧,只在下行子帧中传输DCI不会造成物理下行控制信道容量的太大限制。
一种可能的实现方式中,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
特别的,该实现方式应用于在同步信号所在的子帧和/或PBCH所在的子帧中,物理下行控制信道的PRB对集合中的PRB对与同步信号和/或PBCH所在的PRB对有交叠的PRB对的情况下。
其中,所有可以传输下行信息的子帧包括下行子帧和特殊子帧。
示例性的,如图6所示,系统带宽3MHz内在频率上共包含15个PRB的频率宽度,编号为0-14,在子帧0,PBCH占用编号为4的PRB对的一半、编号为5-9的PRB对、编号为10的PRB对的一半。物理下行控制信道的PRB对集合包含编号为0-5的PRB对。在子帧0,物理下行控制信道候选所在的PRB对只有编号为0-3的PRB对,对于常规CP的下行子帧,只有16个控制信道元素;而在其它子帧,物理下行控制信道候选所在的PRB对则为编号为0-5的PRB对,对于常规CP的下行子帧,有24个控制信道元素。从而在子帧0-4,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制 信道元素的个数不相同。第一物理下行控制信道候选所在的多个子帧例如只有子帧1-4。
需要说明的是,在上述实施例中,可选的,所述多个子帧不包括定位参考信号(英文:Positioning Reference Signal,简称:PRS)所在的子帧。
一种可能的实现方式中,在TDD系统中,所述多个子帧包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
该实现方式中,对于常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧和常规CP下的下行子帧,一个PRB对包含4个控制信道元素,也就是说,该实现方式修改了现有EPDCCH中定义的在下行子帧和特殊子帧中,组成每个ECCE的EREG的个数
Figure PCTCN2015087111-appb-000008
使得常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧和常规CP下的下行子帧中,组成一个控制信道元素的资源元素组的个数相同。当物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对的个数相同时,这些PRB对包含的控制信道元素的个数也相同。
可选的,所述多个子帧还包括常规CP下的下行子帧。
需要说明的是,在一种可能的实现方式中,在所述特殊子帧中,组成一个控制信道元素的资源元素组的计算方法,以及组成一个控制信道元素的资源元素组所在的PRB对的计算方法和现有EPDCCH相同。在物理下行控制信道的PRB对集合中的每个PRB对中,组成资源元素组映射的RE和现有EPDCCH相同,本发明实施例在此不再赘述。
需要说明的是,在另一种可能的实现方式中,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号(英文:Cell-specific Reference Signal,简称:CRS)的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号(英文:Demodulation Reference Signal,简称:DMRS)的OFDM符号, 所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
该实现方式可以应用于TDD系统,常规CP特殊子帧配置1、2、3、4、6、7、8、9,扩展CP特殊子帧配置1、2、3、5、6的情况下。该实现方式通过特殊子帧中的OFDM符号上传输的DCI的调制符号和下行子帧中的OFDM符号上传输的DCI的调制符号的特定的映射关系,使得在TDD系统的特殊子帧中,组成一个控制信道元素的资源元素组的个数是4个。
示例性的,如图11所示,在4个天线端口情况下,对于常规CP,特殊子帧配置为1、2、6、7中的一种时,特殊子帧的第一个时隙的编号为0、1、4的OFDM符号,以及第二个时隙的编号为0、1的OFDM符号上传输的DCI的调制符号,与下行子帧的第一个时隙的编号为0、1、4的OFDM符号,以及第二个时隙的编号为0、1的OFDM符号上传输的DCI的调制符号相同;特殊子帧的第一个时隙的编号为2、3、5、6的OFDM符号上传输的DCI的调制符号,与下行子帧的第一个时隙的编号为5、6的OFDM符号,以及第二个时隙的编号为5、6的OFDM符号上传输的DCI的调制符号相同;特殊子帧的第二个时隙如果编号是2的OFDM符号也在DwPTS内,那么特殊子帧的第二个时隙编号是2的OFDM符号上传输的DCI的调制符号和下行子帧第一个时隙或者第二个时隙中编号是2或3的OFDM符号上传输的DCI的调制符号相同。
示例性的,如图12所示,在4个天线端口情况下,对于常规CP,特殊子帧配置为1、2、6、7中的一种时,特殊子帧的第一个时隙的编号为0、1、4、5、6的OFDM符号,以及第二个时隙的编号为0、1的OFDM符号上传输的DCI的调制符号,与下行子帧的第一个时隙的编号为0、1、4、5、6的OFDM符号,以及第二个时隙的编号为0、1的OFDM符号上传输的DCI的调制符号相同;特殊子帧的第一个时隙的编号为2、3的OFDM符号上传输的DCI的调制符号,是下行子帧的第一个时隙的编号为2、3的OFDM符号上传输的DCI的调制符号中的调制符号,丢弃下行子帧中第一个时隙的编号为2、3的OFDM符号上与特殊子帧中第一个时隙的编号为2、3的OFDM符号中的DMRS的RE位置相同的RE上传输的DCI的调制符 号;特殊子帧的第二个时隙如果编号是2的OFDM符号也在DwPTS内,那么特殊子帧的第二个时隙编号是2的OFDM符号上传输的DCI的调制符号和下行子帧第二个时隙中编号是2的OFDM符号上传输的DCI的调制符号相同。
示例性的,如图13所示,在4个天线端口情况下,对于常规CP,特殊子帧配置为3、4、8、9中的一种时,特殊子帧的第一个时隙的编号为0、1、4的OFDM符号,以及第二个时隙的编号为0、1、4的OFDM符号上传输的DCI的调制符号,与下行子帧的第一个时隙的编号为0、1、4的OFDM符号,以及第二个时隙的编号为0、1、4的OFDM符号上传输的DCI的调制符号相同;特殊子帧的第一个时隙的编号为2、3的OFDM符号,以及第二个时隙的编号为2、3的OFDM符号上传输的DCI的调制符号,与下行子帧的第一个时隙的编号为5、6的OFDM符号,以及第二个时隙的编号为5、6的OFDM符号上传输的DCI的调制符号相同;特殊子帧的第一个时隙的编号为5、6的OFDM符号,与下行子帧的第一个时隙或者第二个时隙的编号为2、3的OFDM符号上传输的DCI的调制符号相同。在上述方法中,如果特殊子帧的某个OFDM符号不在DwPTS中,则这个OFDM符号不用于DCI的传输。
示例性的,如图14所示,在4个天线端口情况下,对于常规CP,特殊子帧配置为3、4、8、9中的一种时,特殊子帧的第一个时隙的编号为0、1、4的OFDM符号,以及第二个时隙的编号为0、1、4的OFDM符号上传输的DCI的调制符号,与下行子帧的第一个时隙的编号为0、1、4的OFDM符号,以及第二个时隙的编号为0、1、4的OFDM符号上传输的DCI的调制符号相同;特殊子帧的第一个时隙的编号为2、3的OFDM符号,与下行子帧的第一个时隙的编号为5、6的OFDM符号上传输的DCI的调制符号相同;特殊子帧的第一个时隙的编号为5、6的OFDM符号,与下行子帧的第一个时隙的编号为2、3的OFDM符号上传输的DCI的调制符号相同;特殊子帧的第二个时隙的编号为2、3的OFDM符号上传输的DCI的调制符号,是下行子帧的第二个时隙的编号为2、3的OFDM符号上传输的DCI的调制符号中的调制符号,丢弃下行子帧中第二个时隙的编号为2、3的 OFDM符号上与特殊子帧中第二个时隙的编号为2、3的OFDM符号中的DMRS的RE位置相同的RE上传输的DCI的调制符号。在上述方法中,如果特殊子帧的某个OFDM符号不在DwPTS中,则这个OFDM符号不用于DCI的传输。
示例性的,对于扩展CP,特殊子帧配置为1、2、3、5、6中的一种时,特殊子帧DwPTS中的每个OFDM符号上传输的DCI的调制符号,与下行子帧中相应位置的OFDM符号,即相同时隙中编号相同的OFDM符号上传输的DCI的调制符号相同。
通过上述特殊子帧中的OFDM符号上传输的DCI的调制符号和下行子帧中的OFDM符号上传输的DCI的调制符号的特定的映射关系,可以使得DCI的接收装置在多个子帧接收DCI时,可以对OFDM符号进行合并,从而使得DCI的接收装置的接收复杂度降低。
由上述各实施例的描述可以看出,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
与上述DCI的发送方法实施例对应,本发明实施例还提供一种用于执行上述DCI的发送方法的DCI的发送装置170,如图17所示,所述DCI的发送装置170包括:确定单元1701和发送单元1702。
所述确定单元1701,用于确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选。
所述确定单元1701,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧。
所述发送单元1702,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
一种可能的实现方式中,所述确定单元1701具体用于:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
具体的,在TDD系统中,所述第一子帧为常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
可选的,所述第一子帧为同步信号和/或PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
另一种可能的实现方式中,所述多个子帧为用于所述DCI的多次重复传输的子帧,在TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧。
所述确定单元1701具体用于:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输。
否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行 控制信道的PRB对集合中的PRB对包含的控制信道元素的个数。
进一步的,如图18所示,所述DCI的发送装置170还包括编号单元1703。
所述编号单元1703,用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
可选的,如图18所示,所述DCI的发送装置170还包括编号单元1703。
所述编号单元1703,用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
具体的,图17与18所示的DCI的发送装置170的实施例中,确定单元1701和编号单元1703可以通过处理器实现,发送单元1702可以通过收发器实现,其中,收发器和处理器之间可以相互通信,本发明实施例对此不作具体限定。
具体的,通过本发明实施例提供的DCI的发送装置170发送DCI的方法可参考上述方法实施例,本发明实施例在此不再赘述。
基于本发明实施例提供的DCI的发送装置,由于本发明实施例中,DCI的发送装置首先确定第一物理下行控制信道候选的控制信道元素索引,进而根据该控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧后,在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能 够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
与上述DCI的传输方法实施例对应,本发明实施例还提供一种用于执行上述DCI的传输方法的DCI的发送装置170,如图17所示,所述DCI的发送装置170包括:确定单元1701和发送单元1702。
所述确定单元1701,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。
所述发送单元1702,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
一种可能的实现方式中,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
一种可能的实现方式中,在TDD系统中,若LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
一种可能的实现方式中,所述多个子帧均为同步信号所在的子帧和PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
一种可能的实现方式中,在TDD系统中,所述多个子帧包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
一种可能的实现方式中,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有CRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS 的OFDM符号上传输的DCI的调制符号中的调制符号。
具体的,图17所示的DCI的发送装置170的实施例中,确定单元1701可以通过处理器实现,发送单元1702可以通过收发器实现,其中,收发器和处理器之间可以相互通信,本发明实施例对此不作具体限定。
具体的,通过本发明实施例提供的DCI的发送装置170发送DCI的方法可参考上述方法实施例,本发明实施例在此不再赘述。
基于本发明实施例提供的DCI的发送装置,由于本发明实施例中,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
与上述DCI的接收方法实施例对应,本发明实施例还提供一种用于执行上述DCI的接收方法的DCI的接收装置190,如图19所示,所述DCI的接收装置190包括:确定单元1901和接收单元1902。
所述确定单元1901,用于确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选。
所述确定单元1901,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧。
所述接收单元1902,用于在所述多个子帧,通过所述第一物理下行 控制信道候选接收DCI。
一种可能的实现方式中,所述确定单元1901具体用于:
若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
具体的,在TDD系统中,所述第一子帧为常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
可选的,所述第一子帧为同步信号和/或PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
另一种可能的实现方式中,所述多个子帧为用于所述DCI的多次重复传输的子帧,在TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧。
所述确定单元1901具体用于:
若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的PRB对集合中的PRB对包含的控制信道元素的个数。
进一步的,如图20所示,所述DCI的接收装置190还包括编号单元1903。
所述编号单元1903,用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
可选的,如图20所示,所述DCI的接收装置190还包括编号单元1903。
所述编号单元1903,用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
具体的,图19与20所示的DCI的接收装置190的实施例中,确定单元1901和编号单元1903可以通过处理器实现,接收单元1902可以通过收发器实现,其中,收发器和处理器之间可以相互通信,本发明实施例对此不作具体限定。
具体的,通过本发明实施例提供的DCI的接收装置190接收DCI的方法可参考上述方法实施例,本发明实施例在此不再赘述。
基于本发明实施例提供的DCI的接收装置,由于本发明实施例中,DCI的接收装置首先确定第一物理下行控制信道候选的控制信道元素索引,进而根据该控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧后,在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得第DCI的接收装置以较低的复杂度接收重复发送的DCI。
与上述DCI的接收方法实施例对应,本发明实施例还提供一种用于 执行上述DCI的接收方法的DCI的接收装置190,如图19所示,所述DCI的接收装置190包括:确定单元1901和接收单元1902。
所述确定单元1901,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。
所述接收单元1902,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
一种可能的实现方式中,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
一种可能的实现方式中,在TDD系统中,若LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
一种可能的实现方式中,所述多个子帧均为同步信号所在的子帧和PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
一种可能的实现方式中,在TDD系统中,所述多个子帧包括常规CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
一种可能的实现方式中,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有CRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
具体的,图19所示的DCI的接收装置190的实施例中,确定单元1901可以通过处理器实现,接收单元1902可以通过收发器实现,其中, 收发器和处理器之间可以相互通信,本发明实施例对此不作具体限定。
具体的,通过本发明实施例提供的DCI的接收装置190接收DCI的方法可参考上述方法实施例,本发明实施例在此不再赘述。
基于本发明实施例提供的DCI的接收装置,由于本发明实施例中,在所述多个子帧中的每个子帧,物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同。因此,对于DCI的覆盖增强,当相同的DCI在多个子帧中进行多次重复传输时,保证了承载DCI的物理下行控制信道候选,在承载每次重复的DCI时采用的聚合级别相同,采用的控制信道元素的索引相同。从而能够使得DCI的接收装置能够按照相同的聚合级别以及控制信道元素索引接收每次重复传输的DCI,节省了用于通知DCI每次重复传输所采用的聚合级别以及控制信道元素索引的信令开销,避免了DCI的接收装置对不同聚合级别组合、控制信道元素索引组合的盲检测,能够使得DCI的接收装置以较低的复杂度接收重复发送的DCI。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (78)

  1. 一种下行控制信息DCI的发送方法,其特征在于,所述方法包括:
    确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
    根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
    在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧,包括:
    若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
  3. 根据权利要求2所述的方法,其特征在于,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
  4. 根据权利要求2所述的方法,其特征在于,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
  5. 根据权利要求1所述的方法,其特征在于,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述 DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
    所述根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧,包括:
    若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
    否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
  6. 根据权利要求5所述的方法,其特征在于,若所述控制信道元素索引的范围在[a,a*2-1]之间,所述方法还包括:
    对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
  7. 根据权利要求5所述的方法,其特征在于,若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,所述方法还包括:
    对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
  8. 一种下行控制信息DCI的发送方法,其特征在于,所述方法包括:
    确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
    在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
  9. 根据权利要求8所述的方法,其特征在于,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
  10. 根据权利要求8所述的方法,其特征在于,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
  11. 根据权利要求8所述的方法,其特征在于,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
  12. 根据权利要求8所述的方法,其特征在于,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
  13. 根据权利要求8所述的方法,其特征在于,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
  14. 一种下行控制信息DCI的接收方法,其特征在于,所述方法包括:
    确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
    根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
    在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧,包括:
    若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
  16. 根据权利要求15所述的方法,其特征在于,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
  17. 根据权利要求15所述的方法,其特征在于,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
  18. 根据权利要求14所述的方法,其特征在于,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
    所述根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧,包括:
    若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
    否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
  19. 根据权利要求18所述的方法,其特征在于,若所述控制信道元素索引的范围在[a,a*2-1]之间,所述方法还包括:
    对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
  20. 根据权利要求18所述的方法,其特征在于,若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,所述方法还包括:
    对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
  21. 一种下行控制信息DCI的接收方法,其特征在于,所述方法包括:
    确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
    在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
  22. 根据权利要求21所述的方法,其特征在于,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
  23. 根据权利要求21所述的方法,其特征在于,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
  24. 根据权利要求21所述的方法,其特征在于,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
  25. 根据权利要求21所述的方法,其特征在于,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
  26. 根据权利要求21所述的方法,其特征在于,所述多个子帧包括 特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
  27. 一种下行控制信息DCI的发送装置,其特征在于,所述DCI的发送装置包括:确定单元和发送单元;
    所述确定单元,用于确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
    所述确定单元,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
    所述发送单元,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
  28. 根据权利要求27所述的DCI的发送装置,其特征在于,所述确定单元具体用于:
    若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
  29. 根据权利要求28所述的DCI的发送装置,其特征在于,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行 子帧。
  30. 根据权利要求28所述的DCI的发送装置,其特征在于,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
  31. 根据权利要求27所述的DCI的发送装置,其特征在于,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
    所述确定单元具体用于:
    若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
    否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
  32. 根据权利要求31所述的DCI的发送装置,其特征在于,所述DCI的发送装置还包括编号单元;
    所述编号单元,用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
  33. 根据权利要求31所述的DCI的发送装置,其特征在于,所述DCI的发送装置还包括编号单元;
    所述编号单元,用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
  34. 一种下行控制信息DCI的发送装置,其特征在于,所述DCI的发送装置包括:确定单元和发送单元;
    所述确定单元,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的 一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
    所述发送单元,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
  35. 根据权利要求34所述的DCI的发送装置,其特征在于,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
  36. 根据权利要求34所述的DCI的发送装置,其特征在于,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
  37. 根据权利要求34所述的DCI的发送装置,其特征在于,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
  38. 根据权利要求34所述的DCI的发送装置,其特征在于,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
  39. 根据权利要求34所述的DCI的发送装置,其特征在于,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
  40. 一种下行控制信息DCI的接收装置,其特征在于,所述DCI的接收装置包括:确定单元和接收单元;
    所述确定单元,用于确定第一物理下行控制信道候选的控制信道元素 索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
    所述确定单元,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
    所述接收单元,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
  41. 根据权利要求40所述的DCI的接收装置,其特征在于,所述确定单元具体用于:
    若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
  42. 根据权利要求41所述的DCI的接收装置,其特征在于,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
  43. 根据权利要求41所述的DCI的接收装置,其特征在于,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
  44. 根据权利要求40所述的DCI的接收装置,其特征在于,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
    所述确定单元具体用于:
    若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
    否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
  45. 根据权利要求44所述的DCI的接收装置,其特征在于,所述DCI的接收装置还包括编号单元;
    所述编号单元,用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
  46. 根据权利要求44所述的DCI的接收装置,其特征在于,所述DCI的接收装置还包括编号单元;
    所述编号单元,用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
  47. 一种下行控制信息DCI的接收装置,其特征在于,所述DCI的接收装置包括:确定单元和接收单元;
    所述确定单元,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
    所述传输单元,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
  48. 根据权利要求47所述的DCI的接收装置,其特征在于,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
  49. 根据权利要求47所述的DCI的接收装置,其特征在于,在时分 双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
  50. 根据权利要求47所述的DCI的接收装置,其特征在于,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
  51. 根据权利要求47所述的DCI的接收装置,其特征在于,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
  52. 根据权利要求47所述的DCI的接收装置,其特征在于,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
  53. 一种下行控制信息DCI的发送装置,其特征在于,所述DCI的发送装置包括:处理器和发送器;
    所述处理器,用于确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
    所述处理器,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
    所述发送器,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
  54. 根据权利要求53所述的DCI的发送装置,其特征在于,所述处理器具体用于:
    若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制 信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
  55. 根据权利要求54所述的DCI的发送装置,其特征在于,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行子帧。
  56. 根据权利要求54所述的DCI的发送装置,其特征在于,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
  57. 根据权利要求53所述的DCI的发送装置,其特征在于,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
    所述处理器具体用于:
    若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
    否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
  58. 根据权利要求57所述的DCI的发送装置,其特征在于,
    所述处理器,还用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含 的控制信道元素在[a,a*2-1]的取值范围进行编号。
  59. 根据权利要求57所述的DCI的发送装置,其特征在于,
    所述处理器,还用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
  60. 一种下行控制信息DCI的发送装置,其特征在于,所述DCI的发送装置包括:处理器和发送器;
    所述处理器,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
    所述发送器,用于在所述多个子帧,通过所述第一物理下行控制信道候选发送DCI。
  61. 根据权利要求60所述的DCI的发送装置,其特征在于,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
  62. 根据权利要求60所述的DCI的发送装置,其特征在于,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
  63. 根据权利要求60所述的DCI的发送装置,其特征在于,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
  64. 根据权利要求60所述的DCI的发送装置,其特征在于,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
  65. 根据权利要求60所述的DCI的发送装置,其特征在于,所述多 个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
  66. 一种下行控制信息DCI的接收装置,其特征在于,所述DCI的接收装置包括:处理器和接收器;
    所述处理器,用于确定第一物理下行控制信道候选的控制信道元素索引,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选;
    所述处理器,还用于根据所述控制信道元素索引,确定所述第一物理下行控制信道候选所在的多个子帧;
    所述接收器,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
  67. 根据权利要求66所述的DCI的接收装置,其特征在于,所述处理器具体用于:
    若所述控制信道元素索引的最大值不大于第一子帧中物理下行控制信道的物理资源块PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素索引的最大值,则确定所述多个子帧包括所述第一子帧和第二子帧;否则,则确定所述多个子帧仅包括第二子帧;其中,所述第二子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数大于所述第一子帧中物理下行控制信道的PRB对集合中所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数。
  68. 根据权利要求67所述的DCI的接收装置,其特征在于,在时分双工TDD系统中,所述第一子帧为常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,所述第二子帧为所述常规CP下的下行 子帧。
  69. 根据权利要求67所述的DCI的接收装置,其特征在于,所述第一子帧为同步信号和/或物理广播信道PBCH所在的子帧,所述第二子帧为所有可以传输下行信息的子帧中除所述第一子帧之外的其它子帧。
  70. 根据权利要求66所述的DCI的接收装置,其特征在于,所述多个子帧为用于所述DCI的多次重复传输的子帧,在时分双工TDD系统中,所述用于所述DCI的多次重复传输的子帧中包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧;
    所述处理器具体用于:
    若所述控制信道元素索引的范围在[0,a-1]之间,或者所述控制信道元素索引的范围在[a,a*2-1]之间,则确定所述特殊子帧中的每个特殊子帧用于所述DCI的一次重复传输;
    否则,则确定所述特殊子帧中的每两个特殊子帧用于所述DCI的一次重复传输,其中,a表示所述特殊子帧中的一个特殊子帧中物理下行控制信道的物理资源块PRB对集合中的PRB对包含的控制信道元素的个数。
  71. 根据权利要求70所述的DCI的接收装置,其特征在于,
    所述处理器,还用于若所述控制信道元素索引的范围在[a,a*2-1]之间,对所述特殊子帧的每个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[a,a*2-1]的取值范围进行编号。
  72. 根据权利要求70所述的DCI的接收装置,其特征在于,
    所述处理器,还用于若所述特殊子帧中的每两个特殊子帧用于DCI的一次重复传输,对所述特殊子帧中的每两个特殊子帧中的所述PRB对集合中的PRB对包含的控制信道元素在[0,a*2-1]的取值范围进行编号。
  73. 一种下行控制信息DCI的接收装置,其特征在于,所述DCI的接收装置包括:处理器和接收器;
    所述处理器,用于确定第一物理下行控制信道候选所在的多个子帧,其中,所述第一物理下行控制信道候选为物理下行控制信道集合中的一个或多个物理下行控制信道候选中的其中一个物理下行控制信道候选,在所述多个子帧中的每个子帧,物理下行控制信道的物理资源块PRB对集合中 所述物理下行控制信道集合中的物理下行控制信道候选所在的PRB对包含的控制信道元素的个数均相同;
    所述接收器,用于在所述多个子帧,通过所述第一物理下行控制信道候选接收DCI。
  74. 根据权利要求73所述的DCI的接收装置,其特征在于,所述多个子帧均为下行子帧,或者所述多个子帧均为特殊子帧。
  75. 根据权利要求73所述的DCI的接收装置,其特征在于,在时分双工TDD系统中,若长期演进LTE TDD的上下行配置为2,3,4,5中的任一种配置,则所述多个子帧为均下行子帧。
  76. 根据权利要求73所述的DCI的接收装置,其特征在于,所述多个子帧均为同步信号所在的子帧和物理广播信道PBCH所在的子帧中的子帧;或者,所述多个子帧均为所有可以传输下行信息的子帧中除所述同步信号所在的子帧和所述PBCH所在的子帧之外的其它子帧。
  77. 根据权利要求73所述的DCI的接收装置,其特征在于,在时分双工TDD系统中,所述多个子帧包括常规循环前缀CP下特殊子帧配置为1,2,6,7,9任一配置下的特殊子帧,在所述特殊子帧中,每个控制信道元素由4个资源元素组组成。
  78. 根据权利要求73所述的DCI的接收装置,其特征在于,所述多个子帧包括特殊子帧和下行子帧,并且所述特殊子帧中含有小区参考信号CRS的正交频分复用OFDM符号上传输的DCI的调制符号是所述下行子帧中含有CRS的OFDM符号上传输的DCI的调制符号中的调制符号,所述特殊子帧中至少存在两个含有解调参考信号DMRS的OFDM符号,所述两个含有DMRS的OFDM符号上传输的DCI的调制符号是所述下行子帧中含有DMRS的OFDM符号上传输的DCI的调制符号中的调制符号。
PCT/CN2015/087111 2015-08-14 2015-08-14 下行控制信息的接收、发送方法及装置 WO2017028072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/087111 WO2017028072A1 (zh) 2015-08-14 2015-08-14 下行控制信息的接收、发送方法及装置
CN201580065171.5A CN107006041B (zh) 2015-08-14 2015-08-14 下行控制信息的接收、发送方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/087111 WO2017028072A1 (zh) 2015-08-14 2015-08-14 下行控制信息的接收、发送方法及装置

Publications (1)

Publication Number Publication Date
WO2017028072A1 true WO2017028072A1 (zh) 2017-02-23

Family

ID=58050595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087111 WO2017028072A1 (zh) 2015-08-14 2015-08-14 下行控制信息的接收、发送方法及装置

Country Status (2)

Country Link
CN (1) CN107006041B (zh)
WO (1) WO2017028072A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899983A (zh) * 2017-03-03 2017-06-27 北京佰才邦技术有限公司 调度信息获取方法、终端和基带芯片
CN109151969A (zh) * 2017-06-16 2019-01-04 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
WO2019019057A1 (zh) * 2017-07-26 2019-01-31 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635866B (zh) * 2019-10-30 2022-02-01 紫光展锐(重庆)科技有限公司 一种控制信道的盲检方法、终端、网元及存储介质
CN113271661B (zh) * 2020-02-14 2024-02-09 大唐移动通信设备有限公司 一种控制信息传输方法及装置
CN113300807B (zh) * 2020-02-24 2023-03-24 维沃移动通信有限公司 信息检测、信息发送方法、终端和网络设备
CN115398985B (zh) * 2020-05-29 2024-10-18 中兴通讯股份有限公司 跳过控制信道信息的接收

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036262A (zh) * 2009-09-25 2011-04-27 中兴通讯股份有限公司 一种下行控制信息的检测方法和装置
US20130322343A1 (en) * 2011-02-10 2013-12-05 Lg Electronics Inc. Method and device for transmitting reception confirmation in wireless communication system
CN103688483A (zh) * 2011-05-03 2014-03-26 瑞典爱立信有限公司 基于搜索区域的控制信道监视
CN104202828A (zh) * 2014-03-21 2014-12-10 中兴通讯股份有限公司 控制信息的传输、接收方法、装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5809103B2 (ja) * 2012-05-09 2015-11-10 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
CN104811263A (zh) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 控制信息的传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036262A (zh) * 2009-09-25 2011-04-27 中兴通讯股份有限公司 一种下行控制信息的检测方法和装置
US20130322343A1 (en) * 2011-02-10 2013-12-05 Lg Electronics Inc. Method and device for transmitting reception confirmation in wireless communication system
CN103688483A (zh) * 2011-05-03 2014-03-26 瑞典爱立信有限公司 基于搜索区域的控制信道监视
CN104202828A (zh) * 2014-03-21 2014-12-10 中兴通讯股份有限公司 控制信息的传输、接收方法、装置及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899983A (zh) * 2017-03-03 2017-06-27 北京佰才邦技术有限公司 调度信息获取方法、终端和基带芯片
CN109151969A (zh) * 2017-06-16 2019-01-04 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
CN109151969B (zh) * 2017-06-16 2022-04-05 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
US11540231B2 (en) 2017-06-16 2022-12-27 Zte Corporation Method and device for determining transmission power, and terminal and storage medium
WO2019019057A1 (zh) * 2017-07-26 2019-01-31 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN107006041A (zh) 2017-08-01
CN107006041B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
US20230422261A1 (en) Physical downlink control channel and physical hybrid automatic repeat request indicator channel enhancements
JP6786665B2 (ja) アンライセンスバンドをサポートする無線アクセスシステムにおいて部分サブフレームを構成してスケジューリングする方法及びこれをサポートする装置
US20230337249A1 (en) Method for multiplexing uplink control information in wireless communication system, and apparatus using same
US20240298321A1 (en) Device and method for transmitting uplink control channel in wireless communication system
CN107438973B (zh) 接收pdsch的方法和无线装置
US10455565B2 (en) Method and MTC device for receiving downlink control channel
CN110266454B (zh) 用于接收系统信息块的装置
JP6511464B2 (ja) 無線通信システムにおいて低い遅延のための信号送受信方法及びこのための装置
WO2017028072A1 (zh) 下行控制信息的接收、发送方法及装置
WO2014119847A1 (ko) Mbsfn 서브프레임 송신 및 수신 방법 및 장치
EP2748962B1 (en) Search space reconfiguration for enhanced-pdcch
US9641300B2 (en) Method for transmitting and receiving control channel, base station, and user equipment
EP2728780B1 (en) Response information sending method, receiving method and device
US10045341B2 (en) Method and apparatus for wireless communication of machine type communication
EP2804433A1 (en) Downlink control information transmission method and device
EP2712254B1 (en) Control channel transmission method and device
WO2012109901A1 (zh) 发送探测参考信号的方法、资源分配方法、系统及基站
CN109690988A (zh) 下行控制信息监听、发送、接收方法及装置
WO2017024582A1 (zh) 上行参考信号传输方法、用户终端及基站
JP2016519885A (ja) 同じ周波数帯域を使用する複数のサイトにリソースを割り当てる方法及び装置
US20130286966A1 (en) Method of allocating radio resources for control channel and method for receiving the control channel
US11310811B2 (en) Media access control layer architecture, method for transmitting data, network-side device and terminal
JP2016531509A (ja) Tddシステムにおける情報伝送方法、情報決定方法、および装置、ならびにシステム
US20240275530A1 (en) Method, apparatus, and system for transmitting harq-ack codebook in wireless communication system
WO2012134115A2 (ko) Tdd 기반 무선 통신 시스템에서 mbsfn 서브프레임을 이용한 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901277

Country of ref document: EP

Kind code of ref document: A1