WO2017028042A1 - 上行控制信息的发送方法、接收方法、用户设备以及基站 - Google Patents

上行控制信息的发送方法、接收方法、用户设备以及基站 Download PDF

Info

Publication number
WO2017028042A1
WO2017028042A1 PCT/CN2015/087062 CN2015087062W WO2017028042A1 WO 2017028042 A1 WO2017028042 A1 WO 2017028042A1 CN 2015087062 W CN2015087062 W CN 2015087062W WO 2017028042 A1 WO2017028042 A1 WO 2017028042A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
uplink control
code
control information
data
Prior art date
Application number
PCT/CN2015/087062
Other languages
English (en)
French (fr)
Inventor
官磊
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/087062 priority Critical patent/WO2017028042A1/zh
Priority to CN201580080471.0A priority patent/CN107615851B/zh
Publication of WO2017028042A1 publication Critical patent/WO2017028042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of LTE communications, and in particular, to a method, a receiving method, a user equipment, and a base station for transmitting uplink control information.
  • the Long Term Evolution (LTE) system downlink and uplink are based on Orthogonal Frequency Division Multiplexing Access (OFDMA) and Single Carrier-Frequency Division Multiplexing Access (Single Carrier-Frequency Division Multiplexing Access, respectively).
  • OFDMMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier-Frequency Division Multiplexing Access
  • time domain symbols time-frequency resources are divided into OFDM or SC-FDMA symbols (hereinafter referred to as time domain symbols) in the time domain dimension and subcarriers in the frequency domain dimension.
  • the transmission of services in the LTE system is based on base station scheduling.
  • the basic time unit of scheduling is one subframe, and one subframe includes multiple time domain symbols.
  • the LTE adopts the Hybrid Automatic Repeat Request (HARQ) mechanism.
  • the user equipment User Equipment, UE receives the physical downlink shared channel (PDSCH) and then passes the physical uplink control.
  • the channel Physical Uplink Control Channel, PUCCH
  • the data part of the specific feedback information is: if the PDSCH is received correctly, the UE feeds back an acknowledgment (ACK) on the PUCCH. If not, the feedback is not on the PUCCH. Correct (NACKnowledge, NACK).
  • LTE also supports Carrier Aggregation (CA) technology, that is, the base station configures multiple carriers to one UE to improve the data rate of the UE.
  • CA Carrier Aggregation
  • the PUCCH transmission mode in the CA mode is usually performed by using PUCCH Format 3 (PF3). Transmit, PF3 mode uses Discrete Fourier Transform to extend the transmission structure of Orthogonal Frequency Division Multiplexing (DFT-Spread-OFDM, DFT-S-OFDM). Under this transmission structure, one resource block can support multiple UEs for PUCCH.
  • DFT-Spread-OFDM Orthogonal Frequency Division Multiplexing
  • a single UE can only occupy one time domain symbol in one resource block, and the original data portion of the feedback information supported by one time domain symbol has a transmission capacity of about 20 bits, can support CA of 5 carriers, and supports 4 bits for one carrier. Capacity.
  • the embodiment of the present invention provides a method for transmitting uplink control information, a receiving method, a user equipment, and a base station, which can improve the transmission of feedback information on a single resource block (Resource Block, RB) by increasing the number of code channels of the data portion of the transmission feedback information. capacity.
  • Resource Block Resource Block
  • the first aspect of the embodiments of the present invention provides a method for sending uplink control information, which may include:
  • the UE determines a PUCCH resource, where the PUCCH resource is used to carry uplink control information, and the uplink control information includes a data portion of the feedback information corresponding to the downlink data information and a demodulation reference signal DMRS portion used for demodulating the data portion;
  • the first RB occupied by the PUCCH resource includes M first code channels for transmitting data portions and N second code channels for transmitting DMRS portions, and each first code channel corresponds to one orthogonal code sequence, and each second The code channel corresponds to a sequence of DMRS, where N ⁇ M, M and N are integers, and M>1, N ⁇ 1;
  • the UE sends uplink control information on the PUCCH resource.
  • N is equal to one.
  • the method may further include:
  • the UE performs independent discrete Fourier transform DFT on the data portions on each of the first one of the M first code channels.
  • the method may further include:
  • the UE separately performs independent spreading on the data portions of each of the M first code channels by using different spreading code sequences.
  • the method may further include:
  • the number M of the first code channels to be occupied by the channel-coded data portion is determined according to the number of bits of the feedback information before the channel coding.
  • the method may further include:
  • the UE determines the number M of the first code channels according to the data configuration command.
  • the first possible implementation of the first aspect, the second possible implementation of the first aspect, the third possible implementation of the first aspect, the fourth possible aspect of the first aspect A possible implementation manner of the implementation manner and the fifth possible implementation manner of the first aspect, in a sixth possible implementation manner of the first aspect, the first code channel and the second code channel are respectively Time domain orthogonal code or frequency domain orthogonal code identification.
  • the second aspect of the embodiment of the present invention further provides a method for sending uplink control information, which may include:
  • the UE determines a physical uplink control channel PUCCH resource, where the PUCCH resource is used to carry uplink control information, and the uplink control information includes a data portion of the feedback information corresponding to the downlink data information and a demodulation reference signal DMRS portion used for demodulating the data portion;
  • the PUCCH resource occupies consecutive K second RBs, each of the second RBs includes a third code channel for transmitting a data part, each third code channel corresponds to one orthogonal code sequence, and the DMRS part includes a frequency domain not Overlapping first DMRS portion and second DMRS portion,
  • the first DMRS part occupies K1 second RBs in the K1 second RBs, and each of the K1 second RBs occupied by the first DMRS part includes a part for transmitting the first DMRS part.
  • Four code channels each fourth code channel corresponds to a first sequence of DMRS
  • the second DMRS part occupies K-K1 second RBs
  • the second DMRS part occupies K-K1 second RBs uniformly corresponding to one for transmission a fifth code channel of the second DMRS portion, the fifth code channel corresponding to the second sequence of the DMRS, wherein 0 ⁇ K1 ⁇ K, K and K1 are integers, and K>1;
  • the UE sends uplink control information on the PUCCH resource.
  • the fourth code channel is included
  • the data portions transmitted in the third code channel in the K1 second RBs all adopt frequency domain cyclic shift.
  • the data portion transmitted in the third code channel in the K-K1 second RBs corresponding to the fifth code channel is not subjected to frequency domain cyclic shift.
  • a third possible implementation of the first aspect In conjunction with the second aspect, the first possible implementation of the second aspect, and the second possible implementation of the second aspect, a third possible implementation of the first aspect In the manner, at least two of the first sequences of the K1 first sequences adopt the same or different root sequences.
  • the fourth possible implementation in the first aspect In conjunction with the second aspect, the first possible implementation of the second aspect, and the second possible implementation of the second aspect, the fourth possible implementation in the first aspect In the mode, at least two of the first sequences of the K1 first sequences adopt the same root sequence and different cyclic shifts.
  • the method may further include:
  • the UE determines, according to the DMRS configuration command, that the first DMRS part occupies K1 second RBs, and the second DMRS part occupies K-K1 second RBs.
  • the method may further include:
  • the UE performs unified DFT on the data portions carried on the third code channel of the K second RBs.
  • the first possible implementation of the second aspect, the second possible implementation of the second aspect, the third possible implementation of the second aspect, and the fourth possible aspect of the second aspect In a seventh possible implementation manner of the first aspect, a possible implementation manner of the implementation manner, the fifth possible implementation manner of the second aspect, and the sixth possible implementation manner of the second aspect
  • the third code channel, the fourth code channel, and the fifth code channel are respectively identified by a time domain orthogonal code or a frequency domain orthogonal code.
  • the third aspect of the embodiment of the present invention further provides a method for receiving uplink control information, which may include:
  • the base station sends downlink data information to the user equipment UE;
  • the base station determines the PUCCH resource; the PUCCH resource is used to carry the uplink control information, and the uplink control information includes a data portion of the feedback information corresponding to the downlink data information sent by the UE and a demodulation reference signal DMRS portion used to demodulate the data portion;
  • the first resource block RB occupied by the PUCCH resource includes M first code channels for transmitting data portions and N second code channels for transmitting DMRS parts, and each first code channel corresponds to one orthogonal code sequence, and each The second code channel corresponds to a sequence of DMRS, where N ⁇ M, M and N are integers, and M>1, N ⁇ 1;
  • the base station receives uplink control information on the PUCCH resource.
  • N is equal to one.
  • the method may further include:
  • the base station sends a data configuration instruction to the UE, where the data configuration instruction indicates the number M of the first code channel included in the first RB for transmitting the data portion.
  • the method further includes:
  • the base station demodulates the data portion according to the received DMRS portion.
  • the first possible implementation of the third aspect and the second possible implementation of the third aspect, a third possible implementation in the third aspect
  • the first code channel and the second code channel are respectively identified by a time domain orthogonal code or a frequency domain orthogonal code.
  • the fourth aspect of the embodiments of the present invention further provides a method for receiving uplink control information, which may include:
  • the base station sends downlink data information to the user equipment UE;
  • the base station determines the PUCCH resource; the PUCCH resource is used to carry the uplink control information, and the uplink control information includes a data portion of the feedback information corresponding to the downlink data information sent by the UE and a DMRS portion for demodulating the data portion;
  • the PUCCH resource occupies consecutive K second RBs, each of the second RBs includes a third code channel for transmitting a data part, each third code channel corresponds to one orthogonal code sequence, and the DMRS part includes a frequency domain not Overlapping first DMRS portion and second DMRS portion,
  • the first DMRS part occupies K1 second RBs in the K1 second RBs, and the first DMRS
  • Each of the partially occupied K1 second RBs includes a fourth code channel for transmitting the first DMRS part, each fourth code channel corresponding to a first sequence of one DMRS, and the second DMRS part is occupied.
  • K-K1 second RBs, the K-K1 second RBs occupied by the second DMRS part uniformly correspond to a fifth code channel for transmitting the second DMRS part, and the fifth code channel corresponds to the second sequence of the DMRS, where 0 ⁇ K1 ⁇ K, K and K1 are integers, and K>1;
  • the base station receives uplink control information on the PUCCH resource.
  • the data portion transmitted in the third code channel in the K1 second RBs including the fourth code channel adopts a frequency domain cyclic shift.
  • the data portion transmitted in the third code channel in the K-K1 second RBs corresponding to the fifth code channel No frequency domain cyclic shift is performed.
  • the first possible implementation of the fourth aspect and the second possible implementation of the fourth aspect, a third possible implementation of the fourth aspect
  • at least two of the first sequences of the K1 first sequences adopt the same or different root sequences.
  • the method may further include:
  • the eNB sends a DMRS configuration command to the UE, so that the UE configures the second RB occupied by the first DMRS part and the second DMRS part according to the DMRS configuration command.
  • the fourth aspect is combined with the fourth aspect, the first possible implementation of the fourth aspect, the second possible implementation of the fourth aspect, the third possible implementation of the fourth aspect, and the fourth possible aspect of the fourth aspect
  • the third code channel, the fourth code channel, and the fifth code channel are respectively time-domain orthogonal codes or frequencies. Domain orthogonal code identification.
  • the fifth aspect of the embodiment of the present invention further provides a user equipment, which may include:
  • a first receiving module configured to receive downlink data information sent by the base station
  • a first processing module configured to determine a physical uplink control channel PUCCH resource, where the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information, and a demodulation reference signal used to demodulate the data portion DMRS part;
  • the first resource block RB occupied by the PUCCH resource includes M first code channels for transmitting data portions and N second code channels for transmitting DMRS parts, and each first code channel corresponds to one orthogonal code sequence, and each The second code channel corresponds to a sequence of DMRS, where N ⁇ M, M and N are integers, and M>1, N ⁇ 1;
  • the first sending module is configured to send uplink control information on the PUCCH resource.
  • the first processing module is further configured to separately perform independent discrete data portions of each of the M first code channels Fourier transform DFT.
  • the first processing module is further configured to use different spreading code sequences to respectively perform the first code channel on each of the M first code channels.
  • the data portions are each independently spread.
  • the first processing module is further configured to perform channel coding on the data part;
  • the first processing module is further configured to determine, according to the number of bits of the pre-channel coding feedback information, the number M of the first code channels to be occupied by the channel-coded data portion.
  • the first receiving module is further configured to receive a data configuration command sent by the base station;
  • the first processing module is further configured to determine the number M of the first code channels according to the data configuration instruction.
  • a sixth aspect of the embodiments of the present invention provides a user equipment, which may include:
  • a second receiving module configured to receive downlink data information sent by the base station
  • a second processing module configured to determine a physical uplink control channel PUCCH resource, where the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information, and a demodulation reference signal used to demodulate the data portion DMRS part;
  • the PUCCH resource occupies consecutive K second RBs, each of the second RBs includes a third code channel for transmitting a data part, each third code channel corresponds to one orthogonal code sequence, and the DMRS part includes a frequency domain not Overlapping first DMRS portion and second DMRS portion,
  • the first DMRS part occupies K1 second RBs in the K1 second RBs, and each of the K1 second RBs occupied by the first DMRS part includes a part for transmitting the first DMRS part.
  • Four code channels each fourth code channel corresponds to a first sequence of DMRS
  • the second DMRS part occupies K-K1 second RBs
  • the second DMRS part occupies K-K1 second RBs uniformly corresponding to one for transmission a fifth code channel of the second DMRS portion, the fifth code channel corresponding to the second sequence of the DMRS, wherein 0 ⁇ K1 ⁇ K, K and K1 are integers, and K>1;
  • the second sending module is configured to send uplink control information on the PUCCH resource.
  • the first receiving module is further configured to receive a DMRS configuration command that is sent by the base station;
  • the second processing module is further configured to determine, according to the DMRS configuration instruction, that the first DMRS part occupies K1 second RBs, and the second DMRS part occupies K-K1 second RBs.
  • the second processing module is further configured to carry the third code channel of the K second RBs
  • the data portion is uniformly DFT.
  • the seventh aspect of the embodiment of the present invention further provides a base station, which may include:
  • a third sending module configured to send downlink data information to the user equipment UE
  • a third processing module configured to determine a physical uplink control channel PUCCH resource; the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information sent by the UE according to the downlink data information, and a demodulation for demodulating the data portion Reference signal DMRS portion;
  • the first resource block RB occupied by the PUCCH resource includes M first code channels for transmitting data portions and N second code channels for transmitting DMRS parts, and each first code channel corresponds to one orthogonal code sequence, and each The second code channel corresponds to a sequence of DMRS, where N ⁇ M, M and N are integers, and M>1, N ⁇ 1;
  • the third receiving module is configured to receive uplink control information on the PUCCH resource.
  • the third sending module is further configured to send a data configuration instruction to the UE, where the data configuration instruction indicates that the first RB is included for transmission The number M of the first code channels of the data portion.
  • the third processing module is further configured to perform demodulation on the data portion according to the received DMRS portion.
  • the eighth aspect of the embodiments of the present invention further provides a base station, which may include:
  • a fourth sending module configured to send downlink data information to the user equipment UE
  • a fourth processing module configured to determine a physical uplink control channel PUCCH resource, where the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information sent by the UE, and a solution for demodulating the data portion. Adjusting the reference signal DMRS portion;
  • the PUCCH resource occupies consecutive K second RBs, each of the second RBs includes a third code channel for transmitting a data part, each third code channel corresponds to one orthogonal code sequence, and the DMRS part includes a frequency domain not Overlapping first DMRS portion and second DMRS portion,
  • the first DMRS part occupies K1 second RBs in the K1 second RBs, and each of the K1 second RBs occupied by the first DMRS part includes a part for transmitting the first DMRS part.
  • Four code channels each fourth code channel corresponds to a first sequence of DMRS
  • the second DMRS part occupies K-K1 second RBs
  • the second DMRS part occupies K-K1 second RBs uniformly corresponding to one for transmission a fifth code channel of the second DMRS portion, the fifth code channel corresponding to the second sequence of the DMRS, wherein 0 ⁇ K1 ⁇ K, K and K1 are integers, and K>1;
  • the fourth receiving module is configured to receive uplink control information on the PUCCH resource.
  • the fourth sending module is further configured to send a DMRS configuration instruction to the UE, so that the UE performs the first DMRS part and the second DMRS according to the DMRS configuration instruction.
  • the second RBs that are partially occupied are configured.
  • the embodiment of the present invention has the following advantages: in the embodiment of the present invention, the PUCCH resource is used to carry uplink control information, and the uplink control information includes a data portion and a demodulated data portion of the feedback information corresponding to the downlink data information.
  • the DMRS part when a single UE transmits the data part of the feedback information, at least two first code channels in the first RB occupied by the PUCCH resource may be used to transmit the data part of the feedback information, that is, equivalent to being in a single first
  • a plurality of PF3s are arranged on the RB, and the capacity of the feedback information transmission on the single RB is increased by increasing the number of code channels of the data portion of the transmission feedback information in a single first RB without changing the PF3 in the existing LTE system.
  • FIG. 1 is a schematic structural diagram of a CA system in an LTE technology
  • FIG. 3 is a schematic diagram of an embodiment of a method for sending uplink control information according to an embodiment of the present invention
  • FIG. 3a is a diagram showing another embodiment of a method for transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a method for receiving uplink control information according to an embodiment of the present invention
  • 4a is a diagram showing another embodiment of a method for transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a method for receiving uplink control information according to an embodiment of the present invention
  • FIG. 6 is a diagram of an embodiment of a method for receiving uplink control information according to an embodiment of the present invention.
  • FIG. 7 is a diagram of an embodiment of a user equipment according to an embodiment of the present invention.
  • FIG. 8 is a diagram of an embodiment of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an embodiment of a base station according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing an embodiment of a base station according to an embodiment of the present invention.
  • FIG. 11 is a diagram of an embodiment of a user equipment according to an embodiment of the present invention.
  • Figure 12 is a diagram showing an embodiment of a base station according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for transmitting uplink control information, which is used to solve the problem that the current PF3 structure cannot meet the transmission capacity of the data portion supported by a single UE.
  • FIG. 1 is a schematic structural diagram of a CA system in an LTE technology.
  • the CA system includes a first UE and a second UE.
  • the UE and the base station can transmit information through a carrier group.
  • the first UE and the base station transmit information through the carrier group f1.
  • the second UE and the base station transmit information through the carrier group f1 and the carrier group f2.
  • the CA When the CA is performed, multiple carriers sent by the base station are synchronously transmitted, and the UE may separately detect a physical downlink control channel (PDCCH Physical Downlink Control Channel) and a corresponding PDSCH for scheduling each carrier, where a specific detection process of each carrier is performed. Similar to the single carrier case described above.
  • PDCCH Physical Downlink Control Channel Physical Downlink Control Channel
  • the PUCCH transmission mode in the CA mode is usually PF3.
  • FIG. 2 is a channel structure diagram of the PF3.
  • the channel structure of the PF3 occupies one in each of the two slots of one subframe.
  • the time-frequency resource of the RB adopts the DFT-S-OFDM transmission mode.
  • the feedback information (for example, taking the 20 ACK/NACK bit size as an example) performs channel coding and rate matching to obtain 48 coded bits, and the coded bits are obtained.
  • the feedback information is scrambled, and then the feedback information after the interference is modulated, modulated into 24 Quadrature Phase Shift Keyin (QPSK) symbols, and then the 24 QPSK symbols are respectively placed into one In the two slots of the subframe.
  • QPSK Quadrature Phase Shift Keyin
  • QPSK is divided into absolute phase shift and relative phase shift. Because of the phase ambiguity problem in absolute phase shift mode, the relative phase shifting method DQPSK is mainly used in practice. It has been widely used in wireless communication and has become a modern communication. A very important mode of modulation and demodulation; there are 12 QPSK symbols on each time slot, which are placed on 12 consecutive subcarriers on a time domain symbol of the time slot, that is, when one of the RBs is occupied. 12 subcarriers on the domain symbol.
  • orthogonal masking (OCC Orthogonal Cover Code) is performed in the time domain, and the OCC spreading code length is generally 5, and the spreading time occupies 5 time domain symbols in one RB (one time) The domain symbol is 12 subcarriers.
  • OCC Orthogonal Cover Code Orthogonal Cover Code
  • Different UEs can perform code division multiplexing on different RBs through different OCC spreading code sequences, and the other two time domain symbols are used to carry the demodulation reference signal DMRS.
  • the above-mentioned spreading code length may also be 4.
  • the cell-specific cyclic shift is performed on the frequency domain in the 12 modulation symbols on each time domain symbol, and the cyclic shift is a cyclic shift specific to each modulation symbol, that is, each time domain.
  • the cyclic shifts on the symbols can be different, but all UEs in the cell are the same for the cyclic shift on each time domain symbol.
  • DFT precoding and IFFT are performed and then transmitted to the base station.
  • each UE can only use one orthogonal code sequence on one RB, that is, only one time domain symbol can be used to transmit feedback information in one time slot, and one time domain symbol transmission is used.
  • the capacity is limited.
  • the number of bits of the original feedback information is not more than 20 bits, it can be transmitted through a time domain symbol.
  • the capacity of the feedback information is greater than 20 bits, the transmission capacity of one time domain symbol is exceeded. As a result, the PF3 capacity cannot meet the demand.
  • the specific extension manner may be implemented by using a method for sending uplink control information provided by the embodiment of the present invention.
  • the method of sending is introduced.
  • FIG. 3 is a schematic diagram of an embodiment of a method for sending uplink control information according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for sending uplink control information, which may include the following. content:
  • the UE receives downlink data information sent by the base station.
  • the LTE network performs communication between the base station and the UE, and the UE receives downlink data information sent by the base station.
  • the UE determines a PUCCH resource.
  • the PUCCH resource is used to carry uplink control information, and the uplink control information includes a data portion of the feedback information corresponding to the downlink data information and a DMRS portion for demodulating the data portion; the first RB occupied by the PUCCH resource includes a portion for transmitting data.
  • the manner in which the UE determines the PUCCH resource is implemented by receiving the resource configuration command of the base station, that is, after transmitting the downlink data information, the base station may send another resource configuration instruction to the UE, where the resource configuration command can indicate the UE to use.
  • the resource configuration command can indicate the UE to use.
  • timing at which the base station sends the resource configuration command is not limited to the following: after the downlink data information is sent, the downlink data information may be sent simultaneously, or the resource configuration command may be sent first, and then the downlink data information is sent, which is not limited.
  • N is equal to one.
  • the TDRS part is transmitted by using only one second code channel of the first RB, that is, there is only one DMRS sequence in the first RB, and only one DMRS sequence is sent when transmitting on the PUCCH resource. .
  • PAPR Peak to Average Power Ratio
  • a sequence in which a plurality of DMRSs are employed may cause a problem that the above PAPR is high.
  • the transmission power can be added to the sequence without allocating power among multiple sequences, so that the performance of the channel estimation is significantly larger than that of multiple DMRS sequences.
  • the PAPR is much lower than the sequence in which multiple DMRSs are transmitted, which is equivalent to maintaining the low PAPR characteristic of the DMRS portion of the basic PF3, maintaining power efficiency.
  • the foregoing one RB adopts multiple PF3s, and may also be extended to multiple first RBs.
  • multiple PF3s may be present on each of the plurality of first RBs.
  • the number of sequences of the DMRS is smaller than the number of orthogonal code sequences of the data part, that is, N ⁇ M.
  • N may also be greater than 1.
  • a first RB is included.
  • Four first code channels and two second code channels, that is, a sequence having four orthogonal code sequences and two DMRSs, and four orthogonal code sequences are respectively spread using different spreading codes, and two DMRSs are used.
  • the sequence can be generated by two cyclic shifts of a root sequence, which can support the above two antenna transmissions, that is, one antenna corresponds to one DMRS sequence.
  • the configuration of the correspondence between the downlink data information and the data portion of the feedback information may be based on different TDD uplink and downlink configurations in the LTE system.
  • uplink and downlink are transmitted at different times of the same carrier, specifically A carrier includes a downlink subframe, an uplink subframe, and A special subframe, where the special subframe includes a Downlink Pilot Time Slot (DwPTS), a Guard Period (GP), and an Uplink Pilot Time Slot (UpPTS).
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • GP is mainly used for downlink to uplink device conversion time and propagation delay compensation.
  • downlink data can be transmitted in the DwPTS, but the PUSCH cannot be transmitted in the UpPTS. Therefore, the special subframe can also be regarded as a downlink subframe.
  • LTE currently supports 7 different TDD uplink and downlink configurations, as shown in Table 1.
  • D represents a downlink subframe
  • S represents a special subframe
  • U represents an uplink subframe
  • the following data information is taken as an example.
  • the UE After the UE receives the PDSCH, if the receiving is correct, the UE feeds back an ACK on the PUCCH. If not, the NACK is fed back on the PUCCH.
  • the UE For the FDD, after receiving the PDSCH in the subframe n-4, the UE feeds back ACK/NACK in the subframe n; for TDD, the timing relationship of the PDSCH receiving the feedback information corresponding thereto is shown in Table 2.
  • the subframe of the standard number is the uplink subframe n used for feedback feedback information, and the number of the identifier indicates the feedback signal corresponding to the PDSCH in the downlink subframe set that needs to feed back n-k in the uplink subframe n.
  • n-7 is the downlink subframe 5
  • n-6 is the downlink subframe 6, which is specifically read from the uplink and downlink configuration 1 of Table 1, because n-7 It is -5, that is, the fifth subframe from the far right to the left, that is, the downlink subframe 5, and since n-6 is -4, that is, the fourth subframe that is not from the rightmost to the left,
  • the special subframe here is used as the downlink subframe.
  • the first code channel and the second code channel are respectively identified by a time domain orthogonal code or a frequency domain orthogonal code.
  • the first code channel and the second code channel may be correspondingly identified, such as a time domain orthogonal code or a frequency domain orthogonal code.
  • the two code channels are identified, for example, the first code channel is identified by a time domain orthogonal code, and the second code channel is identified by a frequency domain orthogonal code.
  • the UE sends uplink control information on the PUCCH resource.
  • the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information and a DMRS portion of the demodulated data portion, and the data of the feedback information is transmitted by the single UE.
  • the uplink control information includes a data portion of the feedback information corresponding to the downlink data information and a DMRS portion of the demodulated data portion
  • the data of the feedback information is transmitted by the single UE.
  • at least two first code channels in the first RB occupied by the PUCCH resource may be used to transmit the data portion of the feedback information, that is, equivalent to arranging multiple PF3s on a single first RB without changing the existing
  • the capacity of the feedback information transmission on the single RB is increased by increasing the number of code channels of the data portion of the transmission feedback information within a single first RB.
  • the UE may determine the number M of the first code channels in multiple manners, which may be different according to actual application scenarios.
  • FIG. 3a is another embodiment of a method for sending uplink control information according to an embodiment of the present invention.
  • the sending method is optional. It can also include:
  • the UE determines the quantity M of the first code channel according to the data configuration instruction.
  • the data configuration instruction can be first generated at the base station, and the first code is configured in the data configuration instruction.
  • the number of channels M is given, and the base station sends the data configuration command to the UE.
  • the UE After receiving the configuration command sent by the base station, the UE can determine the number M of the first code channel according to the indication of the data configuration command. It is a pre-generated data configuration command on the base station side, and each UE that enters the range of the base station determines the number M of the first code channel according to the data configuration command, which can improve the achievability of the solution of the embodiment of the present invention.
  • the sending method may further include:
  • the UE performs channel coding on the data part.
  • the UE determines the number of bits of the data part of the original feedback information, and performs channel coding on the data part of the original feedback information.
  • the number M of the first code channel determines the number of bits of the feedback information that can be transmitted on one first RB, that is, the capacity of the feedback information transmission on the first RB, so before the uplink control information is sent, the first The number M of code channels is determined.
  • the number of bits of the first code channel to be occupied by the channel-coded data portion is determined according to the number of bits of the channel information before the channel coding, which is a dynamically adjustable manner, that is, feedback information.
  • the number M of the first code channels required for transmitting the feedback information is determined, which can improve the achievability of the solution of the embodiment of the present invention.
  • the CA configuration and the downlink data scheduling are performed first, and the multiple carriers may be FDD or TDD, and 10 TDD carriers of the same uplink and downlink configuration 2 are configured as an example.
  • the uplink subframe 2 of the primary carrier needs to feed back the downlink subframes 4 and 5 on the 10 carriers according to the timing relationship between the TDD uplink and downlink subframe configuration and the data portion of the downlink data and the feedback information in Table 1 and Table 2.
  • the data portion corresponding to the first code track in 6 and 8.
  • the first code channels are respectively scheduled by independent control channels, or may be scheduled by a unified control channel, or a combination of the two, such as multiple control channels, each scheduling and data channels in one downlink subframe.
  • the UE After obtaining the carrier configuration and the downlink data scheduling of the base station on the configured carrier, based on the timing relationship specified in Table 2, the UE determines data of the original feedback information that needs to be fed back in the uplink subframe (such as the uplink subframe 2 described above).
  • the bit of the data portion of the original feedback information is a bit stream of 1 or 0, where "1" represents the ACK that the downlink data channel was correctly received, and "0" represents The downlink data channel is not correctly received NACK.
  • the number of original ACK/NACK bits here is generally determined by the configured set of carriers, such as based on downlink subframes 4, 5, 6, and 8 on each of the above 10 configured carriers, then on uplink subframe 2
  • the types of channel coding are various, such as linear block coding, convolutional codes or Turbo codes. If you use linear block coding, such as Reed Muller (RM) code, you do not need to add cyclic redundancy check CRC before encoding. If you use convolutional code or Turbo, you can add CRC before encoding. It may not be added, and it is not limited as needed according to actual needs.
  • linear block coding such as Reed Muller (RM) code
  • RM Reed Muller
  • convolutional code or Turbo you can add CRC before encoding. It may not be added, and it is not limited as needed according to actual needs.
  • step 103 the data part and the DMRS part may also be processed accordingly.
  • the sending method may further include:
  • the UE separately performs independent spreading on the data portions of each of the M first code channels by using different spreading code sequences.
  • the data portions on each of the first code channels may be independently spread. After spreading, M different orthogonal code sequences which are orthogonal to each other are obtained, and M orthogonal code sequences can be respectively transmitted in M first code channels.
  • the data portion (ie, the generated orthogonal code sequence portions) transmitted in each of the first code channels can be orthogonal to each other. Therefore, when the UE transmits the data portion of the feedback information by using the plurality of first code channels, the transmission performance is not affected by the interference between the orthogonal code sequences.
  • the data portion of the feedback information is also subjected to constellation modulation. Considering that the performance requirement of the data portion is higher than the data, relatively robust QPSK modulation is generally adopted, that is, every two The encoded bits generate a QPSK modulation symbol. Of course, other modulation methods are not excluded. For example, the modulation mode of 16QAM or even 64QAM can be applied in a scenario where the channel condition of the UE is good and the signal to noise ratio is relatively high.
  • the data partial bits of the 40 original feedback information need to be transmitted by the dual PF3 of the single first RB, and then the number of bits after encoding and/or rate matching is 96, and after QPSK modulation, 48 QPSK symbols are obtained. Will be these 48 QPSK
  • the modulation symbols are divided into two groups and are respectively transmitted in two time slots of one subframe, and the 24 modulation symbols which are specifically divided into the first group are mapped on 12 subcarriers in one first RB in the first slot. Two modulation symbols are mapped on each subcarrier, and subsequently transmitted on the two first codecs by spreading the orthogonal code sequence; the mapping manner of the second group in the second time slot is similar to that of the first group, and is not described herein. .
  • the first and second orthogonal code sequences are as shown in Table 3.
  • orthogonal code sequences may be used for spreading, as long as the spread spectrum can be maintained without interference, and the specific orthogonal code sequence is not limited.
  • the sending method may further include:
  • the UE performs independent DFT on data portions on each of the first one of the M first code channels.
  • a DFT operation is required on the data portion, since a first RB has a plurality of first code channels, and each of the first The portion of data transmitted in one code channel is relatively independent, so separate data DFTs are required for each data portion of the first code track.
  • the UE After step 102e, the UE performs a DFT operation on each of the L1 group cyclically shifted modulation symbols, and performs a DFT operation on each of the L2 group cyclically shifted modulation symbols, that is, for one
  • the time domain symbol uses a uniform DFT operation of length K*12.
  • the L1 group DFT modulation symbols are mapped to the L1 time domain symbols in the first slot, and the L2 group DFT modulated symbols are mapped into the second slot.
  • the code channels identified by multiple orthogonal codes are mapped to the same RB.
  • an inverse fast Fourier transform (IFFT) operation is performed on the frequency domain signal on each time domain symbol after mapping, and finally the UE transmits the UCI modulation symbol after the IFFT operation to the base station in the uplink subframe.
  • the method for transmitting the uplink control information in the embodiment of the present invention is described above.
  • the method for receiving the uplink control information in this embodiment is described below.
  • FIG. 4 is a schematic diagram of an embodiment of a method for receiving uplink control information according to an embodiment of the present invention. As shown in FIG. 4, an embodiment of the present invention provides a method for receiving uplink control information, which may include the following. content:
  • the UE receives downlink data information sent by the base station.
  • the LTE network performs communication between the base station and the UE, and the UE receives downlink data information sent by the base station.
  • the UE determines a PUCCH resource.
  • the PUCCH resource is used to carry uplink control information, and the uplink control information includes a data portion of the feedback information corresponding to the downlink data information and a DMRS portion for demodulating the data portion;
  • the PUCCH resource occupies consecutive K second RBs, each of which Each of the two RBs includes a third code channel for transmitting a data portion, each third code channel corresponds to one orthogonal code sequence, and the DMRS portion includes a first DMRS portion and a second DMRS portion that do not overlap each other in the frequency domain, first The DMRS part occupies K1 second RBs in the K1 second RBs, and each of the K1 second RBs occupied by the first DMRS part includes a fourth code channel for transmitting the first DMRS part, Each of the fourth code channels corresponds to a first sequence of DMRSs, the second DMRS part occupies K-K1 second RBs, and the K-K1 second RBs occupied by the second DMRS part are uniform
  • the manner in which the UE determines the PUCCH resource is similar to the manner in which the PUCCH resource is determined in the embodiment shown in FIG. 3, and details are not described herein again.
  • the data portion transmitted in the third code channel in the K1 second RBs including the fourth code channel adopts a frequency domain cyclic shift.
  • the K1 second RBs include a fourth code channel, each fourth code channel corresponds to a first sequence of DMRSs, and the first sequence in each fourth code channel is independently generated. Therefore, in order to ensure cell specific
  • the frequency domain cyclic shift is similarly matched, that is, the transmitted signal is orthogonal to the signal sent by the UE supporting only the existing PF3 (hereinafter referred to as the basic PF3) in the cell, so as not to cause interference with each other, and needs to cycle according to the cell-specific frequency domain.
  • the shifting uses the frequency domain cyclic shift operation for the data portion transmitted in the third code channel.
  • the data portion transmitted in the third code channel in the K-K1 second RBs corresponding to the fifth code channel is not subjected to frequency domain cyclic shift.
  • the K-K1 second RBs correspond to the fifth code channel, and the fifth code channel corresponds to the first sequence of the DMRS. Because it is a long DMRS sequence, it cannot be similar to the cell-specific frequency domain cyclic shift. The signal with the basic PF3 cannot be orthogonal, so the frequency domain cyclic shift similar to the cell-specific frequency domain cyclic shift can not maintain the orthogonality. Therefore, the K-K1 second RBs are here. The portion of data transmitted in the third code channel within is not subjected to frequency domain cyclic shift.
  • a ZC (Zadoff-Chu) sequence may be used, and considering that a repeated DMRS sequence is transmitted on each second RB, the PAPR may be greatly improved, and the DMRS part may be divided into a DMRS portion and a second DMRS portion, wherein the first DMRS portion is formed by splicing K1 short first sequences (each fourth code channel corresponds to a first sequence), that is, for each of the K1 second RBs
  • the second RB separately generates a first sequence of the DMRS, the first sequence and the DMRS sequence of the basic PF3 can coexist orthogonally, and the second DMRS part is a long second sequence (all K-K1 second RBs correspond to the fifth The second sequence corresponding to the code channel), that is, the remaining K-K1 second RBs generate a long length according to the length (K-K1) of the second RBs, that is, the length of (K-K1)*12
  • At least two of the first sequences of the K1 first sequences use the same or different root sequences.
  • At least two of the first sequences of the K1 first sequences use the same root sequence and are not The same cyclic displacement.
  • the DMRS on each of the second RBs of the K1 second RBs may use different cyclic shifts of the same root sequence or different root sequences may be used on each second RB, and the PAPR obtained by the test is compared with The DMRS sequence repeated on each second RB is significantly reduced.
  • the PAPR obtained by different root sequences will be lower, but the cost is not DMRS with the basic PF3 of the cell.
  • the sequences coexist orthogonally, and may also collide with the sequence of the DMRS of the neighboring cell to cause inter-cell PUCCH channel interference.
  • the root sequence information used by each of the adjacent cells can be exchanged to avoid using the same root sequence.
  • PF3 performs orthogonal coexistence.
  • the third code channel, the fourth code channel, and the fifth code channel may be respectively identified by a time domain orthogonal code or a frequency domain orthogonal code.
  • the first code channel and the second code channel may be correspondingly identified, for example, a time domain orthogonal code or a frequency may be used.
  • the domain orthogonal code identifies the two code channels.
  • the first code channel is identified by a time domain orthogonal code
  • the second code channel is identified by a frequency domain orthogonal code.
  • the UE sends uplink control information on the PUCCH resource.
  • the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information and a DMRS portion of the demodulated data portion, and the data of the feedback information is transmitted by the single UE.
  • the PUCCH resource may occupy multiple second RBs, that is, multiple second RBs may correspond to one PF3, so that the data portion of the feedback information may be transmitted in the third code channel on different second RBs, that is, through feedback.
  • the data portion of the information is transmitted on the third code track of the plurality of second RBs, respectively, thereby increasing the capacity of the feedback information transmission by increasing the third code channel of the data portion transmitting the feedback information.
  • FIG. 4a is a schematic diagram of another embodiment of the method for transmitting uplink control information according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of FIG.
  • the sending method may further include:
  • the UE receives the DMRS configuration command sent by the base station.
  • the UE may receive the DMRS configuration command sent by the base station, and then set the number of the second RBs and the number of the second RBs that are occupied by the second DMRS.
  • the UE determines, according to the DMRS configuration command, that the first DMRS part occupies K1 second RBs, and the second DMRS part occupies K-K1 second RBs.
  • the UE After receiving the DMRS configuration command, the UE determines, according to the instruction, the number K1 of the second RBs occupied by the first DMRS part and the number K-K1 of the second RBs occupied by the second DMRS part.
  • the sending method may further include:
  • the UE performs unified DFT on data portions carried on the third code channel of the K second RBs.
  • a DFT operation is required on the data portion, since a second RB has a third code channel and each second The data portion transmitted in the RB is relatively independent, so it is only necessary to perform a unified DFT for each data portion on each of the second RBs.
  • the method for transmitting uplink control information according to the embodiment of the present invention is described above, and the following is implemented for the present invention.
  • the method of receiving the uplink control information is described.
  • FIG. 5 is a schematic diagram of an embodiment of a method for receiving uplink control information according to an embodiment of the present invention. As shown in FIG. 5, an embodiment of the present invention provides a method for receiving uplink control information, which may include the following. content:
  • the base station sends downlink data information to the user equipment UE.
  • the uplink control information is generated according to the downlink data information. After the base station first sends the downlink data information to the UE, the base station uplinks the control information and sends the information to the base station.
  • the base station determines a physical uplink control channel PUCCH resource.
  • the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information that is sent by the UE according to the downlink data information, and a demodulation reference signal DMRS portion that is used to demodulate the data portion;
  • the first resource block RB occupied by the PUCCH resource includes M first code channels for transmitting data portions and N second code channels for transmitting DMRS parts, and each first code channel corresponds to one orthogonal code sequence, and each The second code channel corresponds to a sequence of DMRS, where N ⁇ M, M and N are integers, and M>1, N ⁇ 1;
  • DMRS part For most UEs that use the LTE system, only one antenna is used to transmit data. Therefore, only one second code channel of the first RB is used to transmit the DMRS part, that is, only the first RB is included.
  • a sequence of DMRSs when transmitted on a PUCCH resource, transmits only one sequence of DMRS.
  • the transmission power can be added to the sequence without allocating power among multiple sequences, so that the performance of the channel estimation is significantly larger than that of multiple DMRS sequences.
  • the PAPR is much lower than the sequence in which multiple DMRSs are transmitted, which is equivalent to maintaining the low PAPR characteristic of the DMRS portion of the basic PF3, maintaining power efficiency.
  • the base station determines that the PUCCH resource has two purposes, one of which is used to generate a resource configuration command, and is sent to the UE, so that the UE can determine the PUCCH resource that carries the uplink control information, that is, after the base station sends the downlink data information,
  • the UE may further send a resource configuration instruction, where the resource configuration instruction can indicate which PUCCH resources are used by the UE to send the upper control information, and the UE can determine the PUCCH resource according to the resource configuration instruction, and second, the base station determines the PUCCH resource.
  • the base station receives the uplink control information sent by the UE on the PUCCH resource.
  • timing at which the base station sends the resource configuration command is not limited to the following: after the downlink data information is sent, the downlink data information may be sent simultaneously, or the resource configuration command may be sent first, and then the downlink data information is sent, which is not limited.
  • the base station may determine the PUCCH resource according to the actual situation, and may dynamically determine the PUCCH resource according to the load condition of the PUCCH resource, such as determining a lower-load PUCCH resource to carry uplink control information, or may also be based on the PUCCH resource.
  • the interference condition is used to determine the PUCCH resource, for example, the interference condition of the PUCCH resource can be analyzed, and the PUCCH resource with less interference condition is selected to carry the uplink control information.
  • the number of sequences of the DMRS is smaller than the number of orthogonal code sequences of the data part, that is, N ⁇ M.
  • N may also be greater than 1.
  • a first RB is included.
  • Four first code channels and two second code channels, that is, a sequence having four orthogonal code sequences and two DMRSs, and four orthogonal code sequences are respectively spread using different spreading codes, and two DMRSs are used.
  • the sequence can be generated by two cyclic shifts of a root sequence, which can support the above two antenna transmissions, that is, one antenna corresponds to one DMRS sequence.
  • the first code channel and the second code channel are respectively identified by a time domain orthogonal code or a frequency domain orthogonal code.
  • the first code channel and the second code channel may be correspondingly identified, such as a time domain orthogonal code or a frequency domain orthogonal code.
  • the two code channels are identified, for example, the first code channel is identified by a time domain orthogonal code, and the second code channel is identified by a frequency domain orthogonal code.
  • the base station receives uplink control information on the PUCCH resource.
  • the PUCCH resource is used to carry the uplink control information
  • the uplink control information includes the data part of the feedback information corresponding to the downlink data information sent by the UE and the DMRS part of the demodulated data part, and the single UE is in the base station.
  • At least two first code channels in the first RB occupied by the PUCCH resource may be used to transmit the data part of the feedback information, that is, equivalent to arranging multiple PF3s on a single first RB,
  • the capacity of the feedback information transmission on the single RB is increased by increasing the number of code channels of the data portion of the transmission feedback information within a single first RB.
  • the receiving method may further include:
  • the base station sends a data configuration instruction to the UE.
  • the data configuration instruction indicates that the number M of the first code channels for transmitting the data portion is included in the first RB.
  • step 204 there is no absolute order relationship between step 204 and step 201 to step 203.
  • a data configuration instruction may be sent to the UE, where the data configuration instruction indicates that the first RB includes a part for transmitting data.
  • the number M of code channels so that the UE can learn the number M of the first code channel from the data configuration command after receiving the data configuration command, thereby improving the scalability of the solution of the embodiment of the present invention.
  • the receiving method may further include:
  • the base station demodulates the data part according to the received DMRS part.
  • the base station After receiving the uplink control information sent by the UE, the base station demodulates the data portion of the uplink control information by using the DMRS part in the uplink control information, so as to obtain the actual information of the data part.
  • step 304 and step 305 and step 301 to step 303.
  • the foregoing describes the method for transmitting the uplink control information and the method for receiving the uplink control information according to the embodiment of the present invention.
  • the following describes the sending of the uplink control information in the embodiment of the present invention by using a specific method for sending and receiving the uplink control information in the embodiment of the present invention.
  • the method and the receiving method are explained.
  • FIG. 6 is a schematic diagram of an embodiment of a method for receiving uplink control information according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for receiving uplink control information, which may include the following. content:
  • the base station sends downlink data information to the user equipment UE.
  • the base station In the LTE network, communication between the base station and the UE is performed, and the base station sends the downlink data information to the UE.
  • the base station determines a PUCCH resource.
  • the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information sent by the UE, and a demodulation reference signal DMRS portion used to demodulate the data portion;
  • the PUCCH resource occupies consecutive K second RBs, each of the second RBs includes a third code channel for transmitting a data part, each third code channel corresponds to one orthogonal code sequence, and the DMRS part includes a frequency domain not Overlapping first DMRS portion and second DMRS portion,
  • the first DMRS part occupies K1 second RBs in the K1 second RBs, and each of the K1 second RBs occupied by the first DMRS part includes a part for transmitting the first DMRS part.
  • Four code channels each fourth code channel corresponds to a first sequence of DMRS
  • the second DMRS part occupies K-K1 second RBs
  • the second DMRS part occupies K-K1 second RBs uniformly corresponding to one for transmission a fifth code channel of the second DMRS portion, the fifth code channel corresponding to the second sequence of the DMRS, wherein 0 ⁇ K1 ⁇ K, K and K1 are integers, and K>1;
  • the purpose of determining the PUCCH resource by the base station is similar to the purpose of determining the PUCCH resource in the embodiment shown in FIG. 5, and details are not described herein again.
  • the base station can determine the PUCCH resource according to the actual situation, which is similar to the determination of the PUCCH resource in the embodiment shown in FIG. 5, and details are not described herein again.
  • the data portion transmitted in the third code channel in the K1 second RBs including the fourth code channel adopts a frequency domain cyclic shift.
  • the K1 second RBs include a fourth code channel, each fourth code channel corresponds to a first sequence of DMRSs, and the first sequence in each fourth code channel is independently generated. Therefore, in order to ensure cell specific
  • the frequency domain cyclic shift is similarly matched, that is, the transmitted signal is orthogonal to the signal sent by the UE supporting only the existing PF3 (hereinafter referred to as the basic PF3) in the cell, so as not to cause interference with each other, and needs to cycle according to the cell-specific frequency domain.
  • the shifting uses the frequency domain cyclic shift operation for the data portion transmitted in the third code channel.
  • the data portion transmitted in the third code channel in the K-K1 second RBs corresponding to the fifth code channel is not subjected to frequency domain cyclic shift.
  • the K-K1 second RBs correspond to the fifth code channel, and the fifth code channel corresponds to the first sequence of the DMRS. Because it is a long DMRS sequence, it cannot be similar to the cell-specific frequency domain cyclic shift. The signal with the basic PF3 cannot be orthogonal, so the frequency domain cyclic shift similar to the cell-specific frequency domain cyclic shift can not maintain the orthogonality. Therefore, the K-K1 second RBs are here. The portion of data transmitted in the third code channel within is not subjected to frequency domain cyclic shift.
  • DMRS sequence is generated in the same manner as the DMRS in the embodiment shown in FIG.
  • the sequence is generated in a similar manner and will not be described here.
  • At least two of the first sequences of the K1 first sequences use the same or different root sequences.
  • At least two of the first sequences of the K1 first sequences use the same root sequence and different cyclic shifts.
  • the DMRS on each of the second RBs of the K1 second RBs may use different cyclic shifts of the same root sequence or different root sequences may be used on each second RB, and the PAPR obtained by the test is compared with The DMRS sequence repeated on each second RB is significantly reduced.
  • the PAPR obtained by different root sequences will be lower, but the cost is not DMRS with the basic PF3 of the cell.
  • the sequences coexist orthogonally, and may also collide with the sequence of the DMRS of the neighboring cell to cause inter-cell PUCCH channel interference.
  • the root sequence information used by each of the adjacent cells can be exchanged to avoid using the same root sequence.
  • PF3 performs orthogonal coexistence.
  • the third code channel, the fourth code channel, and the fifth code channel may be respectively identified by a time domain orthogonal code or a frequency domain orthogonal code.
  • the first code channel and the second code channel may be correspondingly identified, for example, a time domain orthogonal code or a frequency may be used.
  • the domain orthogonal code identifies the two code channels.
  • the first code channel is identified by a time domain orthogonal code
  • the second code channel is identified by a frequency domain orthogonal code.
  • the base station receives uplink control information on the PUCCH resource.
  • the PUCCH resource is used to carry the uplink control information
  • the uplink control information includes the data part of the feedback information corresponding to the downlink data information sent by the UE and the DMRS part of the demodulated data part, and the single UE transmits the feedback.
  • the PUCCH resource may occupy multiple second RBs, that is, multiple second RBs may correspond to one PF3, thereby feeding back the data portion of the information.
  • the sub-bands may be transmitted on the third code channel on the different second RBs, that is, by transmitting the data portions of the feedback information on the third code channels of the plurality of second RBs respectively, thereby increasing the data portion of the transmission feedback information Three code channels to improve the capacity of feedback information transmission.
  • the number K1 of the second RBs occupied by the first DMRS part and the number K-K1 of the second RBs occupied by the second DMRS part may be set, and the following manner may be adopted.
  • the receiving method may further include:
  • the base station sends a DMRS configuration command to the UE, so that the UE configures the second RB occupied by the first DMRS part and the second DMRS part according to the DMRS configuration instruction.
  • the base station In order to configure the number of the second RBs occupied by the first part and the second part of the DMRS, the base station further sends a DMRS configuration command to the UE, and after receiving the DMRS configuration command, the UE determines the first DMRS according to the instruction.
  • the number K1 of the second RBs partially occupied and the number K-K1 of the second RBs occupied by the second DMRS part improve the achievability of the solution of the embodiment of the present invention.
  • step 402a there is no necessary order relationship between step 402a and step 401 to step 403.
  • mechanism (a) is a basic PF3 mechanism, that is, a single RB single PF3;
  • Mechanism (b) is a mechanism for two RB multiple PF3s
  • Mechanism (c) is a mechanism for two RB single PF3s
  • Mechanism (d) is a mechanism for 3 RB multiple PF3.
  • the mechanism (a) is the PAPR of the basic PF3; the mechanisms (b) and (d) are the multiple PF3 schemes of 2 RBs and 3 RBs, respectively. It can be seen that since the data part adopts multiple orthogonal code sequences, the PAPR of the data part of the multi-PF3 of the two RBs is improved by about 1.2 dB compared with the basic PF3, and the PAPR of the data part of the multi-PF3 of the three RBs Compared with the basic PF3, there is about 1.8dB improvement; while the multi-PF3 of 2 RBs has a 3dB improvement based on the repeat DMRS symbol compared to the basic PF3, and the 3 RB multi-PF3 is based on the repeated DMRS symbol PAPR phase. It has a 4.7dB improvement over the basic PF3.
  • the method for transmitting and receiving the uplink control information in the embodiment of the present invention is described above.
  • the user equipment in the embodiment of the present invention is introduced below.
  • FIG. 7 is a diagram of an embodiment of a user equipment according to an embodiment of the present invention.
  • an embodiment of the present invention provides a user equipment, which may include:
  • the first receiving module 501 is configured to receive downlink data information sent by the base station;
  • the first processing module 502 is configured to determine a physical uplink control channel PUCCH resource, where the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information, and a demodulation reference for demodulating the data portion.
  • Signal DMRS part
  • the first resource block RB occupied by the PUCCH resource includes M first code channels for transmitting data portions and N second code channels for transmitting DMRS parts, and each first code channel corresponds to one orthogonal code sequence, and each The second code channel corresponds to a sequence of DMRS, where N ⁇ M, M and N are integers, and M>1, N ⁇ 1;
  • the first sending module 503 is configured to send uplink control information on the PUCCH resource.
  • the first receiving module 501 after receiving the downlink data information sent by the base station, the first receiving module 501 first determines the PUCCH resource by using the first processing module 502, and the PUCCH resource is used to carry the uplink control information and the uplink control information.
  • the data portion of the feedback information corresponding to the downlink data information and the DMRS portion of the demodulated data portion may be used to transmit at least two first code channels in the first RB occupied by the PUCCH resource when transmitting the data portion of the feedback information.
  • the capacity of the feedback information transmission on the single RB is increased by increasing the number of code channels of the data portion of the transmission feedback information within a single first RB.
  • the manner in which the first processing module 502 determines the PUCCH resource is implemented by receiving the resource configuration command of the base station, that is, after transmitting the downlink data information, the base station may send a resource configuration command to the first processing module 501.
  • the resource configuration instruction can indicate which PUCCH resources are used by the first sending module 503 to send the upper control information, and the first processing module 502 can determine the PUCCH resource according to the resource configuration instruction.
  • timing at which the base station sends the resource configuration command is not limited to the following: after the downlink data information is sent, the downlink data information may be sent simultaneously, or the resource configuration command may be sent first, and then the downlink data information is sent, which is not limited.
  • N is equal to one.
  • N is equal to 1
  • N is equal to 1 in the embodiment shown in FIG. 3, and details are not described herein again.
  • the first code channel and the second code channel are respectively identified by a time domain orthogonal code or a frequency domain orthogonal code.
  • the first code channel and the second code channel may be correspondingly identified, such as a time domain orthogonal code or a frequency domain orthogonal code.
  • the two code channels are identified, for example, the first code channel is identified by a time domain orthogonal code, and the second code channel is identified by a frequency domain orthogonal code.
  • the first processing module 502 is further configured to perform independent discrete Fourier transform DFT on the data portions on each of the first one of the M first code channels.
  • the data processing part In order to convert the data part transmitted on the first code channel from the time domain signal to the frequency domain signal, the data processing part needs to perform a DFT operation by using the first processing module 502, because a first RB has multiple first codes.
  • the data portion transmitted in each of the first code channels is relatively independent, so separate data DFTs are required for each data portion on each of the first code channels.
  • the first processing module 502 is configured to separately perform independent spreading on the data portions of each of the M first code channels by using different spreading code sequences.
  • the first processing module 502 can separately perform data portions on each of the first code channels. Independent spreading, so that after M is spread, M different orthogonal code sequences which are orthogonal to each other are obtained, and M orthogonal code sequences can be respectively transmitted in M first code channels.
  • the first processing module 502 separately performs independent spreading on the data portions on each of the first code channels, and can reach the data portion (ie, the generated orthogonal code sequence portion) transmitted in each of the first code channels. They are mutually orthogonal, such that when the UE transmits the data portion of the feedback information by using the plurality of first code channels, the transmission performance is not affected by the interference caused by the orthogonal code sequences.
  • the number of the first code channel M may be The configuration is performed in advance, and the first receiving module 501 is further configured to receive a data configuration command sent by the base station;
  • the first processing module 502 is further configured to determine the quantity M of the first code channel according to the data configuration instruction.
  • the data configuration command may be first generated in the base station, where the data configuration command gives an indication to the number M of the first code channel, and the base station sends the data configuration command to the first receiving module 501, where the first receiving module 501
  • the first processing module 502 can determine the number M of the first code channel according to the indication of the data configuration command, because it is the base station side pre-Mr.
  • the data configuration command is used, and each UE that enters the range of the base station determines the number M of the first code channel according to the data configuration command, which can improve the achievability of the solution of the embodiment of the present invention.
  • the first processing module 502 is further configured to perform channel on the data part. coding;
  • the first processing module 502 is further configured to determine, according to the number of bits of the pre-channel coding feedback information, the number M of the first code channels to be occupied by the channel-coded data portion.
  • the data portion of the original feedback information is channel-encoded by the first processing module 502 for subsequent operations.
  • the number M of the first code channel determines the number of bits of the feedback information that can be transmitted on one first RB, that is, the capacity of the feedback information transmission on the single first RB, and thus is sent by the first processing module 502.
  • the first processing module 502 needs to determine the number M of the first code channel.
  • the first processing module 502 determines, according to the number of bits of the channel coding feedback information, the channel coded data portion needs to be occupied.
  • the number M of one code channel is dynamically adjustable, that is, after the feedback information is analyzed, the number M of the first code channels required for transmitting the feedback information is determined, which can improve the implementation of the solution of the embodiment of the present invention. Sex.
  • a scenario of the user equipment in the embodiment of the present invention is described (for example, a single first RB multi-PF3 mode is adopted), and another scenario of the user equipment in the embodiment of the present invention is introduced (for example, multiple second RBs are adopted). PF3 mode).
  • FIG. 8 is a diagram of an embodiment of a user equipment according to an embodiment of the present invention. As shown in FIG. 8, the embodiment of the present invention provides a user equipment, which may include:
  • the second receiving module 601 is configured to receive downlink data information sent by the base station;
  • the second processing module 602 is configured to determine a physical uplink control channel PUCCH resource, where the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information, and a demodulation reference for demodulating the data portion.
  • Signal DMRS part
  • the PUCCH resource occupies consecutive K second RBs, each of the second RBs includes a third code channel for transmitting a data part, each third code channel corresponds to one orthogonal code sequence, and the DMRS part includes a frequency domain not Overlapping first DMRS portion and second DMRS portion,
  • the first DMRS part occupies K1 second RBs in the K1 second RBs, and each of the K1 second RBs occupied by the first DMRS part includes a part for transmitting the first DMRS part.
  • Four code channels each fourth code channel corresponds to a first sequence of DMRS
  • the second DMRS part occupies K-K1 second RBs
  • the second DMRS part occupies K-K1 second RBs uniformly corresponding to one for transmission a fifth code channel of the second DMRS portion, the fifth code channel corresponding to the second sequence of the DMRS, wherein 0 ⁇ K1 ⁇ K, K and K1 are integers, and K>1;
  • the second sending module 603 is configured to send uplink control information on the PUCCH resource.
  • the first receiving module 601 after receiving the downlink data information sent by the base station, the first receiving module 601 first determines the PUCCH resource by using the first processing module 602, and the PUCCH resource is used to carry the uplink control information and the uplink control information.
  • the data portion of the feedback information corresponding to the downlink data information and the DMRS portion of the demodulated data portion, when transmitting the data portion of the feedback information, the PUCCH resource may occupy multiple second RBs, that is, the plurality of second RBs may correspond to one PF3.
  • the data portion of the feedback information can be transmitted on the third code channel on the different second RBs, that is, by transmitting the data portion of the feedback information on the third code channel of the plurality of second RBs, and then by the first sending module. 603.
  • the uplink control information is sent on the PUCCH resource, that is, the multiple PF3s are arranged on a single first RB, and the third part of the data part of the transmission feedback information can be added without changing the PF3 in the existing LTE system. Code channels to increase the capacity of feedback information transmission.
  • the manner in which the second processing module 602 determines the PUCCH resource is similar to the manner in which the first processing module 502 determines the PUCCH resource in the embodiment shown in FIG. 7 , and details are not described herein again.
  • the generation manner of the sequence of the DMRS is similar to the generation manner of the sequence of the DMRS in the embodiment shown in FIG. 4, and details are not described herein again.
  • the first receiving module 601 is further configured to receive a DMRS configuration command sent by the base station;
  • the second processing module 602 is further configured to determine, according to the DMRS configuration instruction, that the first DMRS part occupies K1 second RBs, and the second DMRS part occupies K-K1 second RBs.
  • the first receiving module 601 can receive the DMRS configuration command sent by the base station, in order to determine the number of the second RBs that are occupied by the first DMRS part and the number of the second RBs that are occupied by the second DMRS.
  • the second processing module 602 determines, according to the instruction, the number K1 of the second RBs occupied by the first DMRS part and the number K-K1 of the second RBs occupied by the second DMRS part.
  • the second processing module 602 is further configured to perform unified DFT on the data portions carried on the third code channel of the K second RBs.
  • the second processing module 602 In order to convert the data part transmitted on the third code channel from the time domain signal to the frequency domain signal, the second processing module 602 also needs to perform a DFT operation on the data part, because a second RB has a third code.
  • the data portion transmitted in each of the second RBs is relatively independent, so that it is only necessary to perform a unified DFT for each of the data portions on each of the second RBs.
  • the user equipment of the embodiment of the present invention is described above.
  • the base station of the embodiment of the present invention is introduced below.
  • FIG. 9 is a block diagram of a base station according to an embodiment of the present invention. As shown in FIG. 9, an embodiment of the present invention provides a base station, which may include:
  • the third sending module 701 is configured to send downlink data information to the user equipment UE.
  • the third processing module 702 is configured to determine a physical uplink control channel PUCCH resource, where the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information sent by the UE according to the downlink data information, and a solution for demodulating the data portion. Adjusting the reference signal DMRS portion;
  • the first resource block RB occupied by the PUCCH resource includes M first code channels for transmitting data portions and N second code channels for transmitting DMRS parts, and each first code channel corresponds to one orthogonal code sequence, and each The second code channel corresponds to a sequence of DMRS, where N ⁇ M, M and N are integers, and M>1, N ⁇ 1;
  • the third receiving module 703 is configured to receive uplink control information on the PUCCH resource.
  • the third sending module 701 sends the downlink data information to the UE, and the third processing module 702 determines the PUCCH resource, where the PUCCH resource is used to carry the uplink control information, and the uplink control information includes the downlink data.
  • the data part of the feedback information corresponding to the information and the DMRS part of the demodulated data part may be used to transmit the feedback information by using at least two first code channels in the first RB occupied by the PUCCH resource when transmitting the data part of the feedback information.
  • the data portion is then received by the third receiving module 703 on the PUCCH resource, which is equivalent to arranging multiple PF3s on a single first RB, without changing the PF3 in the existing LTE system.
  • the capacity of the feedback information transmission on the single RB is increased by increasing the number of code channels of the data portion of the transmission feedback information within a single first RB.
  • the third processing module 702 determines that the PUCCH resource has two purposes, one of which is The resource configuration command is generated and sent to the UE, so that the UE can determine the PUCCH resource that carries the uplink control information, that is, after the downlink data information is sent, the third sending module 701 can send a resource configuration command to the UE, where the resource is configured.
  • the configuration command can indicate which PUCCH resources the UE uses to send the upper control information, so that the UE can determine the PUCCH resource according to the resource configuration instruction, and second, after determining the PUCCH resource, the third receiving module 703 is in the PUCCH.
  • the uplink control information sent by the UE is received on the resource.
  • timing at which the third sending module 701 sends the resource configuration command is not limited to being transmitted simultaneously with the downlink data information after the downlink data information is sent, or the resource configuration command may be sent first, and then the downlink data information is sent. The details are not limited.
  • the third processing module 702 may determine the PUCCH resource according to the actual situation, and may dynamically determine the PUCCH resource according to the load condition of the PUCCH resource, such as determining a lower-load PUCCH resource to carry uplink control information, or The PUCCH resource is determined according to the interference situation of the PUCCH resource. For example, the interference of the PUCCH resource may be analyzed, and the PUCCH resource with less interference is selected to carry the uplink control information.
  • the third sending module 701 is further configured to send a data configuration instruction to the UE, where the data configuration instruction indicates the number M of the first code channel included in the first RB for transmitting the data portion.
  • the third sending module 701 may send a data configuration instruction to the UE, where the data configuration instruction indicates that the first code included in the first RB is used to transmit the data part.
  • the number M of the channels so that the UE can learn the number M of the first code channels from the data configuration command after receiving the data configuration command, thereby improving the scalability of the solution of the embodiment of the present invention.
  • the third processing module 702 is further configured to demodulate the data portion according to the received DMRS portion.
  • the third receiving module 703 After receiving the uplink control information sent by the UE, the third receiving module 703 demodulates the data portion of the uplink control information by using the DMRS part in the uplink control information, so as to obtain the actual data part. Information, thereby improving the scalability of the solution of the embodiments of the present invention.
  • a case of the base station according to the embodiment of the present invention is described above (for example, a single first RB multi-PF3 mode is adopted), and another scenario of the base station according to the embodiment of the present invention is introduced (for example, adopting multiple Two RB single PF3 mode).
  • FIG. 10 is a block diagram of a base station according to an embodiment of the present invention.
  • a base station which may include:
  • the fourth sending module 801 is configured to send downlink data information to the user equipment UE.
  • the fourth processing module 802 is configured to determine a physical uplink control channel PUCCH resource, where the PUCCH resource is used to carry uplink control information, where the uplink control information includes a data portion of the feedback information corresponding to the downlink data information sent by the UE, and a data portion used for demodulating the data. Demodulating the reference signal DMRS portion;
  • the PUCCH resource occupies consecutive K second RBs, each of the second RBs includes a third code channel for transmitting a data part, each third code channel corresponds to one orthogonal code sequence, and the DMRS part includes a frequency domain not Overlapping first DMRS portion and second DMRS portion,
  • the first DMRS part occupies K1 second RBs in the K1 second RBs, and each of the K1 second RBs occupied by the first DMRS part includes a part for transmitting the first DMRS part.
  • Four code channels each fourth code channel corresponds to a first sequence of DMRS
  • the second DMRS part occupies K-K1 second RBs
  • the second DMRS part occupies K-K1 second RBs uniformly corresponding to one for transmission a fifth code channel of the second DMRS portion, the fifth code channel corresponding to the second sequence of the DMRS, wherein 0 ⁇ K1 ⁇ K, K and K1 are integers, and K>1;
  • the fourth receiving module 803 is configured to receive uplink control information on the PUCCH resource.
  • the third sending module 801 sends the downlink data information to the UE, and the third processing module 802 determines the PUCCH resource, where the PUCCH resource is used to carry the uplink control information, and the uplink control information includes the downlink data.
  • the data part of the feedback information corresponding to the information and the DMRS part of the demodulated data part may be used to transmit the feedback information by using at least two first code channels in the first RB occupied by the PUCCH resource when transmitting the data part of the feedback information.
  • the data portion is then received by the third receiving module 803 on the PUCCH resource, which is equivalent to arranging multiple PF3s on a single first RB, without changing the PF3 in the existing LTE system.
  • the capacity of the feedback information transmission on the single RB is increased by increasing the number of code channels of the data portion of the transmission feedback information within a single first RB.
  • the fourth processing module 802 determines that the PUCCH resource is similar to the third processing module 702 in the embodiment shown in FIG. 9 for determining the PUCCH resource, and details are not described herein again.
  • the fourth processing module 802 determines the PUCCH resource and the implementation shown in FIG.
  • the third processing module 702 in the embodiment determines the PUCCH resources similarly, and details are not described herein again.
  • the generation manner of the sequence of the DMRS is similar to the generation manner of the sequence of the DMRS in the embodiment shown in FIG. 4, and details are not described herein again.
  • the first sending module 801 is further configured to send a DMRS configuration command to the UE, so that the UE configures the second RB respectively occupied by the first DMRS part and the second DMRS part according to the DMRS configuration instruction.
  • the first sending module 801 further sends a DMRS configuration command to the UE, and the UE receives the DMRS configuration command, according to the instruction, to configure the number of the second RBs that are occupied by the first part and the second part of the DMRS.
  • the number K1 of the second RBs occupied by the first DMRS part and the number K-K1 of the second RBs occupied by the second DMRS part are determined, thereby improving the achievability of the solution of the embodiment of the present invention.
  • FIG. 11 is a diagram of an embodiment of a user equipment according to an embodiment of the present invention, where the user equipment 9 may include at least one processing that is connected to the bus.
  • the 901, the at least one receiver 902, and the at least one transmitter 903, the base station according to the embodiment of the present invention may have more or less components than those shown in FIG. 11, and two or more components may be combined, or There may be different component configurations or arrangements, each component being implemented in hardware, software or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the processor 901 can implement the function of the first processing module 502 in the embodiment shown in FIG. 7, and the receiver 902 can implement the embodiment in the embodiment shown in FIG.
  • the function of the first receiving module 501, the transmitter 903 can implement the function of the first sending module 503 in the embodiment shown in FIG. 7;
  • the processor 901 can implement the function of the first processing module 602 in the embodiment shown in FIG. 8
  • the receiver 902 can implement the function of the first receiving module 601 in the embodiment shown in FIG.
  • the transmitter 903 can implement the functions of the second transmitting module 603 in the embodiment shown in FIG.
  • FIG. 12 is a diagram of an embodiment of a user equipment according to an embodiment of the present invention, where the base station 10 may include at least one processor that is connected to the bus. 1001, at least one receiver 1002 and at least one transmitter 1003.
  • the base station according to the embodiment of the present invention may have more or less components than those shown in FIG. Two or more components may be combined, or may have different component configurations or arrangements, which may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the processor 1001 can implement the function of the third processing module 702 in the embodiment shown in FIG. 9, and the receiver 1002 can implement the embodiment in the embodiment shown in FIG.
  • the function of the third receiving module 703, the transmitter 1003 can implement the function of the third sending module 701 in the embodiment shown in FIG. 9;
  • the processor 1001 can implement the function of the fourth processing module 1002 in the embodiment shown in FIG. 10, and the receiver 1002 can implement the function of the fourth receiving module 803 in the embodiment shown in FIG.
  • the transmitter 1003 can implement the functions of the fourth transmitting module 801 in the embodiment shown in FIG.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold as a standalone product Or when used, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种上行控制信息的发送方法、接收方法、用户设备以及基站。可包括UE接收基站发送的下行数据信息;UE确定PUCCH资源,PUCCH资源占用的第一RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;UE在PUCCH资源上发送上行控制信息。本发明实施例将PUCCH资源占用的第一RB内的至少两个第一码道用于传输反馈信息的数据部分,即在单个第一RB上布置多个PF3,在不改变现有LTE系统中的PF3的情况下,通过在单个第一RB内增加传输反馈信息的数据部分的码道数量来提高单RB上反馈信息传输的容量。

Description

上行控制信息的发送方法、接收方法、用户设备以及基站 技术领域
本发明涉及LTE通信领域,具体涉及上行控制信息的发送方法、接收方法、用户设备以及基站。
背景技术
长期演进(Long Term Evolution,LTE)系统下行和上行分别基于正交频分复用多址(Orthogonal Frequency Division Multiplexing Access,OFDMA)和单载波频分复用多址(Single Carrier–Frequency Division Multiplexing Access,SC-FDMA),时频资源被划分成时间域维度上的OFDM或SC-FDMA符号(下称时域符号)和频率域维度上的子载波。LTE系统中业务的传输是基于基站调度的,调度的基本时间单位是一个子帧,一个子帧包括多个时域符号。
LTE采用混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)机制,以下行为例,用户设备(User Equipment,UE)接收到物理下行共享信道(Physical Downlink Shared Channel,PDSCH)之后,会通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)发送反馈信息,具体的反馈信息的数据部分为:如果PDSCH接收正确,则UE在PUCCH上反馈确认(ACKnowledge,ACK),如果不正确,则在PUCCH上反馈不正确(NACKnowledge,NACK)。
LTE还支持载波聚合(Carrier Aggregation,CA)技术,即基站把多个载波配置给一个UE来提升UE的数据速率,CA模式下的PUCCH发送模式通常采用PUCCH格式3(PUCCH Format 3,PF3)进行发送,PF3模式采用离散傅里叶变换扩展正交频分复用(DFT-Spread-OFDM,DFT-S-OFDM)的发送结构,在该发送结构下,一个资源块能支持多个UE进行PUCCH通信,单个UE仅能占用一个资源块中的一个时域符号,而一个时域符号支持的反馈信息的原始数据部分传输容量大约为20比特,可以支持5个载波的CA,一个载波支持4比特的容量。
然而随着LTE技术的继续演进,需要传输的反馈信息越来越多,如需要 传输超过20比特的原始数据部分,如传输40比特的原始数据部分,当前PF3结构对于单个UE支持的数据部分的传输容量已无法满足需求。
发明内容
本发明实施例提供了上行控制信息的发送方法、接收方法、用户设备以及基站,能够能通过增加传输反馈信息的数据部分的码道数量提高单资源块(Resource Block,RB)上反馈信息传输的容量。
有鉴于此,本发明实施例第一方面提供一种上行控制信息的发送方法,可包括:
UE接收基站发送的下行数据信息;
UE确定PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用的第一RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
UE在PUCCH资源上发送上行控制信息。
结合第一方面,在第一方面的第一种可能的实现方式中,N等于1。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,方法还可包括:
UE将M个第一码道之中的每个第一码道上的数据部分分别进行独立的离散傅里叶变换DFT。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,方法还可包括:
UE采用不同的扩频码序列分别对M个第一码道之中的每个第一码道上的数据部分均分别进行独立的扩频。
结合第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式和第一方面的第三种可能的实现方式之中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,方法还可包括:
对数据部分进行信道编码;
根据信道编码前反馈信息的比特数确定信道编码后的数据部分需占用的第一码道的数量M。
结合第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式和第一方面的第三种可能的实现方式之中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,方法还可包括:
接收基站发出的数据配置指令;
UE根据数据配置指令确定第一码道的数量M。
结合第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可能的实现方式、第一方面的第三种可能的实现方式、第一方面的第四种可能的实现方式和第一方面的第五种可能的实现方式之中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,第一码道和第二码道分别由时域正交码或频域正交码标识。
本发明实施例第二方面还提供一种上行控制信息的发送方法,可包括:
UE接收基站发送的下行数据信息;
UE确定物理上行控制信道PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用连续的K个第二RB,每个第二RB中均包括用于传输数据部分的第三码道,每个第三码道对应一个正交码序列,DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
其中,第一DMRS部分占用K1个第二RB中的K1个第二RB,第一DMRS部分占用的K1个第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个第四码道对应一个DMRS的第一序列,第二DMRS部分占用K-K1个第二RB,第二DMRS部分占用的K-K1个第二RB统一对应一条用于传输第二DMRS部分的第五码道,第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
UE在PUCCH资源上发送上行控制信息。
结合第二方面,在第二方面的第一种可能的实现方式中,包含第四码道的 K1个第二RB内的第三码道中传输的数据部分均采用频域循环位移。
结合第二方面,在第二方面的第二种可能的实现方式中,对应第五码道的K-K1个第二RB内的第三码道中传输的数据部分不进行频域循环位移。
结合第二方面、第二方面的第一种可能的实现方式和第二方面的第二种可能的实现方式之中的任一种可能的实现方式,在第一方面的第三种可能的实现方式中,K1个第一序列中至少两个第一序列采用相同或不同的根序列。
结合第二方面、第二方面的第一种可能的实现方式和第二方面的第二种可能的实现方式之中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,K1个第一序列中至少两个第一序列采用相同的根序列且不同的循环位移。
结合第二方面、第二方面的第一种可能的实现方式、第二方面的第二种可能的实现方式、第二方面的第三种可能的实现方式和第二方面的第四种可能的实现方式之中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,方法还可包括:
UE接收基站下发的DMRS配置指令;
UE根据DMRS配置指令确定第一DMRS部分占用K1个第二RB,第二DMRS部分占用K-K1个第二RB。
结合第二方面、第二方面的第一种可能的实现方式、第二方面的第二种可能的实现方式、第二方面的第三种可能的实现方式、第二方面的第四种可能的实现方式和第二方面的第五种可能的实现方式之中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,方法还可包括:
UE对K个第二RB的第三码道上承载的数据部分均进行统一的DFT。
结合第二方面、第二方面的第一种可能的实现方式、第二方面的第二种可能的实现方式、第二方面的第三种可能的实现方式、第二方面的第四种可能的实现方式、第二方面的第五种可能的实现方式和第二方面的第六种可能的实现方式之中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,第三码道、第四码道和第五码道分别由时域正交码或频域正交码标识。
本发明实施例第三方面还提供一种上行控制信息的接收方法,可包括:
基站向用户设备UE发送下行数据信息;
基站确定PUCCH资源;PUCCH资源用于承载上行控制信息,上行控制信息包括UE发送的下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用的第一资源块RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
基站在PUCCH资源上接收上行控制信息。
结合第三方面,在第三方面的第一种可能的实现方式中,N等于1。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,方法还可包括:
基站向UE发送数据配置指令,数据配置指令中指示第一RB内包括用于传输数据部分的第一码道的数量M。
结合第三方面、第三方面的第一种可能的实现方式和第三方面的第二种可能的实现方式之中的任一种可能的实现方式,在第三方面的第三种可能的实现方式中,方法还包括:
基站根据接收的DMRS部分对数据部分进行解调。
结合第三方面、第三方面的第一种可能的实现方式和第三方面的第二种可能的实现方式之中的任一种可能的实现方式,在第三方面的第三种可能的实现方式中,第一码道和第二码道分别由时域正交码或频域正交码标识。
本发明实施例第四方面还提供一种上行控制信息的接收方法,可包括:
基站向用户设备UE发送下行数据信息;
基站确定PUCCH资源;PUCCH资源用于承载上行控制信息,上行控制信息包括UE发送的下行数据信息对应的反馈信息的数据部分和用于解调数据部分的DMRS部分;
PUCCH资源占用连续的K个第二RB,每个第二RB中均包括用于传输数据部分的第三码道,每个第三码道对应一个正交码序列,DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
其中,第一DMRS部分占用K1个第二RB中的K1个第二RB,第一DMRS 部分占用的K1个第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个第四码道对应一个DMRS的第一序列,第二DMRS部分占用K-K1个第二RB,第二DMRS部分占用的K-K1个第二RB统一对应一条用于传输第二DMRS部分的第五码道,第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
基站在PUCCH资源上接收上行控制信息。
结合第四方面,在第四方面的第一种可能的实现方式中,包含第四码道的K1个第二RB内的第三码道中传输的数据部分均采用频域循环位移。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,对应第五码道的K-K1个第二RB内的第三码道中传输的数据部分不进行频域循环位移。
结合第四方面、第四方面的第一种可能的实现方式和第四方面的第二种可能的实现方式之中的任一种可能的实现方式,在第四方面的第三种可能的实现方式中,K1个第一序列中至少两个第一序列采用相同或不同的根序列。
结合第四方面、第四方面的第一种可能的实现方式和第四方面的第二种可能的实现方式之中的任一种可能的实现方式,在第四方面的第四种可能的实现方式中,K1个第一序列中至少两个第一序列采用相同的根序列且不同的循环位移。
结合第四方面、第四方面的第一种可能的实现方式、第四方面的第二种可能的实现方式、第四方面的第三种可能的实现方式和第四方面的第四种可能的实现方式之中的任一种可能的实现方式,在第四方面的第五种可能的实现方式中,方法还可包括:
基站向UE下发DMRS配置指令,以使得UE根据DMRS配置指令对第一DMRS部分和第二DMRS部分分别占用的第二RB进行配置。
结合第四方面、第四方面的第一种可能的实现方式、第四方面的第二种可能的实现方式、第四方面的第三种可能的实现方式和第四方面的第四种可能的实现方式之中的任一种可能的实现方式,在第四方面的第五种可能的实现方式中,第三码道、第四码道和第五码道分别由时域正交码或频域正交码标识。
本发明实施例第五方面还提供一种用户设备,可包括:
第一接收模块,用于接收基站发送的下行数据信息;
第一处理模块,用于确定物理上行控制信道PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用的第一资源块RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
第一发送模块,用于在PUCCH资源上发送上行控制信息。
结合第五方面,在第五方面的第一种可能的实现方式中,第一处理模块还用于将M个第一码道之中的每个第一码道上的数据部分分别进行独立的离散傅里叶变换DFT。
结合第五方面,在第五方面的第二种可能的实现方式中,第一处理模块还用于采用不同的扩频码序列分别对M个第一码道之中的每个第一码道上的数据部分均分别进行独立的扩频。
结合第五方面、第五方面的第一种可能的实现方式和第五方面的第二种可能的实现方式之中的任一种可能的实现方式,在第五方面的第三种可能的实现方式中,第一处理模块还用于对数据部分进行信道编码;
第一处理模块还用于根据信道编码前反馈信息的比特数确定信道编码后的数据部分需占用的第一码道的数量M。
结合第五方面、第五方面的第一种可能的实现方式和第五方面的第二种可能的实现方式之中的任一种可能的实现方式,在第五方面的第三种可能的实现方式中,第一接收模块还用于接收基站发出的数据配置指令;
第一处理模块还用于根据数据配置指令确定第一码道的数量M。
本发明实施例第六方面还提供一种用户设备,可包括:
第二接收模块,用于接收基站发送的下行数据信息;
第二处理模块,用于确定物理上行控制信道PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用连续的K个第二RB,每个第二RB中均包括用于传输数据部分的第三码道,每个第三码道对应一个正交码序列,DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
其中,第一DMRS部分占用K1个第二RB中的K1个第二RB,第一DMRS部分占用的K1个第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个第四码道对应一个DMRS的第一序列,第二DMRS部分占用K-K1个第二RB,第二DMRS部分占用的K-K1个第二RB统一对应一条用于传输第二DMRS部分的第五码道,第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
第二发送模块,用于在PUCCH资源上发送上行控制信息。
结合第六方面,在第六方面的第一种可能的实现方式中,第一接收模块还用于接收基站下发的DMRS配置指令;
第二处理模块还用于根据DMRS配置指令确定第一DMRS部分占用K1个第二RB,第二DMRS部分占用K-K1个第二RB。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,第二处理模块还用于对K个第二RB的第三码道上承载的数据部分均进行统一的DFT。
本发明实施例第七方面还提供一种基站,可包括:
第三发送模块,用于向用户设备UE发送下行数据信息;
第三处理模块,用于确定物理上行控制信道PUCCH资源;PUCCH资源用于承载上行控制信息,上行控制信息包括UE根据下行数据信息发送的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用的第一资源块RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
第三接收模块,用于在PUCCH资源上接收上行控制信息。
结合第七方面,在第七方面的第一种可能的实现方式中,第三发送模块还用于向UE发送数据配置指令;数据配置指令中指示第一RB内包括用于传输 数据部分的第一码道的数量M。
结合第七方面或第七方面的第一种可能的实现方式,在第七方面的第二种可能的实现方式中,第三处理模块还用于根据接收的DMRS部分对数据部分进行解调。
本发明实施例第八方面还提供一种基站,可包括:
第四发送模块,用于向用户设备UE发送下行数据信息;
第四处理模块,用于确定物理上行控制信道PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括UE发送的下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用连续的K个第二RB,每个第二RB中均包括用于传输数据部分的第三码道,每个第三码道对应一个正交码序列,DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
其中,第一DMRS部分占用K1个第二RB中的K1个第二RB,第一DMRS部分占用的K1个第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个第四码道对应一个DMRS的第一序列,第二DMRS部分占用K-K1个第二RB,第二DMRS部分占用的K-K1个第二RB统一对应一条用于传输第二DMRS部分的第五码道,第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
第四接收模块,用于在PUCCH资源上接收上行控制信息。
结合第八方面,在第八方面的第一种可能的实现方式中,第四发送模块还用于向UE下发DMRS配置指令,以使得UE根据DMRS配置指令对第一DMRS部分和第二DMRS部分分别占用的第二RB进行配置。
从以上技术方案可以看出,本发明实施例具有以下优点:在本发明实施例中PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和解调数据部分的DMRS部分,单个UE在传输反馈信息的数据部分时,可采用将PUCCH资源占用的第一RB内的至少两个第一码道用于传输反馈信息的数据部分,即相当于在单个第一RB上布置多个PF3,在不改变现有LTE系统中的PF3的情况下,通过在单个第一RB内增加传输反馈信息的数据部分的码道数量来提高单RB上反馈信息传输的容量。
附图说明
图1是LTE技术中CA系统的结构示意图;
图2是PF3的信道结构图;
图3为本发明实施例的上行控制信息的发送方法的一个实施例图;
图3a是本发明实施例的上行控制信息的发送方法的另一个实施例图;
图4为本发明实施例的上行控制信息的接收方法的一个实施例图;
图4a是本发明实施例的上行控制信息的发送方法的另一个实施例图;
图5为本发明实施例的上行控制信息的接收方法的一个实施例图;
图6为本发明实施例的上行控制信息的接收方法的一个实施例图;
图7是本发明实施例的用户设备的一个实施例图;
图8是本发明实施例的用户设备的一个实施例图;
图9是本发明实施例的基站的一个实施例图;
图10是本发明实施例的基站的一个实施例图;
图11是本发明实施例的用户设备的一个实施例图;
图12是本发明实施例的基站的一个实施例图。
具体实施方式
本发明实施例提供了一种上行控制信息的发送方法,用于解决当前PF3结构对于单个UE支持的数据部分的传输容量已无法满足需求。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。
以下分别进行详细说明。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。
随着LTE技术的继续演进,需要传输的反馈信息越来越多,请参阅图1, 图1是LTE技术中CA系统的结构示意图,CA系统包括基站第一UE和第二UE,UE和基站之间可通过载波组传输信息,如第一UE与基站之间通过载波组f1传输信息,或是如第二UE与基站之间通过载波组f1和载波组f2传输信息。进行CA时,基站发送的多个载波时间上是同步发送的,UE可以分别检测调度每个载波的物理下行控制信道(PDCCH Physical Downlink Control Channel)和相应的PDSCH,其中每个载波的具体检测过程与上述单载波情况类似。
其中,在CA模式下的PUCCH发送模式通常采用PF3,请参阅图2,图2是PF3的信道结构图,从图中可知,PF3的信道结构在一个子帧的两个时隙中各占用一个RB的时频资源,采用DFT-S-OFDM传输方式,具体的,反馈信息(如以20ACK/NACK比特大小为例)进行信道编码和速率匹配后得到48个编码后比特,并对编码后的反馈信息进行加扰处理,之后会对加干扰之后的反馈信息进行调制,调制成24个正交相移键控(Quadrature Phase Shift Keyin,QPSK)符号,再将这24个QPSK符号分别放到一个子帧的两个时隙中。
其中,QPSK分为绝对相移和相对相移两种,由于绝对相移方式存在相位模糊问题,所以在实际中主要采用相对移相方式DQPSK,目前已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式;每个时隙上有12个QPSK符号,具体放在该时隙的一个时域符号上的12个连续子载波上,也就是占用一个RB中的一个时域符号上的12个子载波。
其次,针对每个时隙,在时域进行正交掩码(OCC Orthogonal Cover Code)扩频,OCC扩频码长一般为5,扩频后占一个RB内的5个时域符号(一个时域符号12个子载波),不同的UE可以在一个RB上通过不同的OCC扩频码序列进行码分复用,其余两个时域符号用来承载解调参考信号DMRS。
此外,对于特殊情况(比如第二个时隙中如果有探测参考信号(SRS Sounding Reference Signal)的发送的情况下),上述扩频码长也可能为4。扩频后,再对每个时域符号上的12个调制符号在频域上做小区特定的循环移位,该循环移位是对每个调制符号特定的循环移位,即每个时域符号上的循环移位可以不同,但该小区中所有UE对于每个时域符号上的循环移位是相同的。最后,进行DFT预编码和IFFT,继而发送给基站。
由上可知,通过上述PF3的信道结构,每个UE仅能使用一个RB上的一个正交码序列即在一个时隙中仅能使用一个时域符号传输反馈信息,而由于一个时域符号传输的容量有限,当原始反馈的信息的比特数不大于20比特时,可以顺利通过一个时域符号进行传输,而当反馈信息的容量大于20比特时,就会超过一个时域符号的传输容量,从而出现PF3容量无法满足需求的问题。
为解决上述问题,在原始反馈信息大于20比特时,需要对当前PF3的容量进行扩展,具体扩展方式可采用本发明实施例提供的一种上行控制信息的发送方法来实现,下面对本发明实施例的发送方法进行介绍。
请参阅图3,图3为本发明实施例的上行控制信息的发送方法的一个实施例图,如图3所示,本发明的一个实施例提供一种上行控制信息的发送方法,可包括以下内容:
101、UE接收基站发送的下行数据信息。
其中,在LTE网络中,基站和UE之间会进行通信,UE会接收到基站发送的下行数据信息。
102、UE确定PUCCH资源。
其中,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和用于解调数据部分的DMRS部分;PUCCH资源占用的第一RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1。
需要说明的是,UE确定PUCCH资源的方式是通过接收基站的资源配置指令来实现的,即基站在发送下行数据信息后,可向UE再发送一个资源配置指令,该资源配置指令能够指示UE使用哪些PUCCH资源发送上控制信息,而UE则可根据此资源配置指令来确定PUCCH资源。
需要说明的是,基站发送资源配置指令的时机并不仅限于在发送下行数据信息之后,也可与下行数据信息同时发送,也可先发送资源配置指令,而后在发送下行数据信息,具体不作限定。
作为可选的,N等于1。
其中,对于目前大多数使用LTE系统的UE来说,通常仅采用一根天线进 行传输数据,因此仅采用第一RB的一个第二码道传输DMRS部分即可,即在第一RB内仅有一个DMRS的序列,在PUCCH资源上发送时,仅发送一个DMRS的序列即可。
需要说明的是,对于LTE系统来说,由于一个时域符号在传输时,是由多个独立经过调制的子载波信号叠加而成的,当各个子载波相位相同或者相近时,叠加信号便会受到相同初始相位信号的调制,从而产生较大的瞬时功率峰值,从而带来较高的峰值平均功率比(Peak to Average Power Ratio,PAPR),即信号的峰值与信号的平均功率的比值。由于一般的功率放大器的动态范围都是有限的,所以PAPR较大的信号极易进入功率放大器的非线性区域,导致信号产生非线性失真,造成明显的频谱扩展干扰以及带内信号畸变,导致整个LTE系统性能严重下降。由于本实施例中相当于在一个第一RB上布置了多个PF3,并且设置了N个DMRS的序列,而采用多个DMRS的序列可能会出现上述PAPR较高的问题。
由此可见,由于仅发送一个DMRS的序列,因此,发射功率都可以加到该序列上,而不需要在多个序列间分配功率,这样信道估计的性能相比于多个DMRS序列会大幅度提升,此外,由于仅发送一个DMRS的序列,PAPR相比于发送多个DMRS的序列要低很多,相当于保持了基本PF3的DMRS部分的低PAPR特性,保持了功率效率。
需要说明的是,上述一个第一RB采用多个PF3,还可以扩展到多个第一RB的情况,此时,多个第一RB中的每个RB上都可以有多个PF3。
需要说明的是,DMRS的序列的数量要小于数据部分的正交码序列的数量,即N<M,当然N也可大于1,举例来说,如N等于2时,一个第一RB内包括四个第一码道和两个第二码道,即具有四个正交码序列和两个DMRS的序列,四个正交码序列分别采用不同的扩频码进行扩频,两个DMRS的序列可采用一个根序列的两个循环移位产生,这样可以支持上述两天线传输,即一根天线对应一个DMRS的序列。
需要说明的是,下行数据信息与反馈信息的数据部分的对应关系的配置可依据采用LTE系统中不同的TDD上下行配置,对于TDD系统,上行和下行在同一载波的不同时间来传输,具体在一个载波上包括下行子帧,上行子帧和 特殊子帧,其中,特殊子帧中包括下行导频时隙(Downlink Pilot Time Slot,DwPTS),保护时间(Guard Period,GP)和上行导频时隙(Uplink Pilot Time Slot,UpPTS)三个部分,其中GP主要用于下行到上行的器件转换时间和传播时延的补偿。此外,DwPTS中可以传输下行数据,但UpPTS中不可以传输PUSCH,因此也可以把特殊子帧看做下行子帧。LTE当前支持7种不同的TDD上下行配置,如表1所示。
表1
Figure PCTCN2015087062-appb-000001
其中D表示下行子帧,S表示特殊子帧,U表示上行子帧。
其中,以下行数据信息为例,UE接收到PDSCH之后,如果接收正确,则UE在PUCCH上反馈ACK,如果不正确,则在PUCCH上反馈NACK。对于FDD,UE在子帧n-4接收到PDSCH之后,会在子帧n反馈ACK/NACK;对于TDD,PDSCH接收与其对应的反馈信息的时序关系如表2所示,
表2
Figure PCTCN2015087062-appb-000002
其中,标数字的子帧为用于反馈反馈信息的上行子帧n,标识的数字表示在该上行子帧n中需要反馈n-k的下行子帧集合中的PDSCH所对应的反馈信 息的数据部分,举例来说,在上下行配置1的子帧n=2中的集合{7、6}表示上行子帧n=2用来反馈n-7和n-6这两个下行子帧上的PDSCH所对应的反馈信息的数据部分,具体n-7为下行子帧5,n-6为下行子帧6,具体为从表1的上下行配置1中读取,由于n-7为-5,即为从最右侧向左的第五个子帧,即为下行子帧5,又由于n-6为-4,即未从最右侧向左的第四个子帧,即为下行子帧6,这里的特殊子帧作为下行子帧。
作为可选的,第一码道和第二码道分别由时域正交码或频域正交码标识。
其中,为了便于对第一码道和第二码道进行正确的识别,可对第一码道和第二码道进行相应的标识,如可采用时域正交码或是频域正交码对这两种码道进行标识,如第一码道采用时域正交码进行标识,第二码道通过频域正交码标识。
103、UE在PUCCH资源上发送上行控制信息。
由此可知,在本发明实施例中PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和解调数据部分的DMRS部分,单个UE在传输反馈信息的数据部分时,可采用将PUCCH资源占用的第一RB内的至少两个第一码道用于传输反馈信息的数据部分,即相当于在单个第一RB上布置多个PF3,在不改变现有LTE系统中的PF3的情况下,通过在单个第一RB内增加传输反馈信息的数据部分的码道数量来提高单RB上反馈信息传输的容量。
需要说明的是,UE可采用多种方式确定第一码道的数量M,可根据实际应用场景的不同而有所不同。
举例来说,若UE对于反馈信息的需求容量是固定的,即在一个基站的范围内,多个UE对于反馈信息的需求容量均是相同的,则第一码道的数量M的数量可以预先进行配置,具体可采用如下方式,请参阅图3a,图3a是本发明实施例的上行控制信息的发送方法的另一个实施例图,在图3的基础上,作为可选的,该发送方法还可包括:
102a、接收基站发出的数据配置指令;
102b、UE根据数据配置指令确定第一码道的数量M。
由此可见,可先在基站生成数据配置指令,该数据配置指令中对于第一码 道的数量M给予了指示,基站会将该数据配置指令发送给UE,UE在接收到基站发出的配置指令后,即可根据数据配置指令的指示,确定出第一码道的数量M,由于是基站侧预先生成好的数据配置指令,每一进入该基站范围内的UE均会根据该数据配置指令确定第一码道的数量M,能够提高本发明实施例的方案的可实现性。
又举例来说,若UE对反馈信息的需求容量是可变的,或是多个UE需求的反馈信息的容量是不相同的,此时,作为可选的,该发送方法还可包括:
102c、UE对数据部分进行信道编码。
其中,UE确定了原始的反馈信息的数据部分比特数,就会对原始的反馈信息的数据部分进行信道编码。
102d、根据信道编码前反馈信息的比特数确定信道编码后的数据部分需占用的第一码道的数量M。
其中,第一码道的数量M确定关乎在一个第一RB上能传输的反馈信息的比特数,即单第一RB上反馈信息传输的容量,因此在发送上行控制信息之前,需要对第一码道的数量M进行确定,此处采用根据信道编码前反馈信息的比特数确定信道编码后的数据部分需占用的第一码道的数量M,此方式为动态可调整方式,即对反馈信息进行分析后,再确定传输这些反馈信息需要的第一码道的数量M,能够提高本发明实施例的方案的可实现性。
需要说明的是,在UE对数据部分进行信道编码之前,会首先CA配置和下行数据调度,该多个载波可以为FDD或TDD,以配置了相同上下行配置2的10个TDD载波为例,根据表1和表2中的TDD上下行子帧配置以及下行数据与反馈信息的数据部分的时序关系,主载波的上行子帧2最多需要反馈该10个载波上的下行子帧4、5、6和8中第一码道所对应的数据部分。这些第一码道分别由独立的控制信道调度,也可以由统一的控制信道调度,也可以是两者的结合,比如多个控制信道,每个调度多与一个下行子帧中的数据信道。在获取了载波配置以及基站在该配置的载波上的下行数据调度之后,基于表2中规定的时序关系,UE确定上行子帧中(比如上述上行子帧2)需要反馈的原始反馈信息的数据部分的比特数,这些原始反馈信息的数据部分的比特就是1或0的比特流,其中“1”代表下行数据信道被正确接收的ACK,“0”代表 下行数据信道没有被正确接收的NACK。这里的原始ACK/NACK比特数一般由被配置的载波集合来确定,比如基于上述10个被配置载波上的每个载波上的下行子帧4、5、6和8,那么上行子帧2上确定的原始反馈信息的数据部分的比特数为4*10=40。在确定了原始反馈信息的数据部分的比特数后,就会对这些反馈信息的数据部分进行信道编码。
其中,信道编码的类型由多种,如可以为线性块编码,卷积码或Turbo码。如果用线性块编码,比如里德穆勒(Reed Muller,RM)码,一般不需要在编码前添加循环冗余校验CRC,如果采用卷积码或Turbo,可以在编码前添加CRC,当然也可以不添加,根据实际情况需要,具体不作限定。
需要说明的是,在步骤103之前,还可对数据部分和DMRS部分进行相应的处理。
作为可选的,该发送方法还可包括:
102e、UE采用不同的扩频码序列分别对M个第一码道之中的每个第一码道上的数据部分均分别进行独立的扩频。
其中,为了使得M个第一码道中的传输的正交码序列为正交的,即相互之间不干扰,因此可针对每个第一码道上的数据部分均分别进行独立的扩频,从而在扩频后得到M个不相同的相互之间为正交的正交码序列,M个正交码序列可分别在M个第一码道中进行传输。
由此可见,采用对每个第一码道上的数据部分均分别进行独立的扩频,能够达到每个第一码道中传输的数据部分(即生成的正交码序列部分)是相互正交的,从而使得UE在采用多个第一码道传输反馈信息的数据部分时,不会由于正交码序列相互之间造成的干扰而影响传输性能。
需要说明的是,在进行扩频操作之前,还会对反馈信息的数据部分进行星座调制,考虑到数据部分的性能要求比数据高,所以一般都会采用比较鲁棒的QPSK调制,即每两个编码后的比特生成一个QPSK调制符号。当然,其他调制方式也不排除,比如16QAM甚至64QAM的调制方式,可以应用在UE的信道条件很好,信噪比较高的场景下。在本实施例中,40个原始反馈信息的数据部分比特需要单个第一RB的双PF3来传输,那么编码和/或速率匹配后的比特数为96,经过QPSK调制后,得到48个QPSK符号,会将这48个QPSK 调制符号分成两组,分别在一个子帧的两个时隙中传输,具体分为第一组的24个调制符号映射在第一个时隙中的一个第一RB内的12个子载波上,每个子载波上映射两个调制符号,后续通过正交码序列扩频来在两个第一码刀上传输;第二组在第二个时隙中的映射方式与第一组类似,不在赘述。
可以理解的是,在星座调制后,UE对每一组24个调制符号中的每个调制符号进行扩频操作。具体的,使用第一码长L1的第一正交码对第一组的24个调制符号中的每个调制符号进行扩频,一般的L1=5;对于第二组的24个调制符号进行类似扩频,使用第二码长L2的第二正交码,L2可以为5或4。第一和第二正交码序列如表3所示,
Figure PCTCN2015087062-appb-000003
需要说明的是,也可以是其他类型的正交码序列进行扩频,只要能达到扩频后能够保持互不干扰即可,具体的正交码序列并不做限定。
作为可选的,该发送方法还可包括:
102f、UE将M个第一码道之中的每个第一码道上的数据部分分别进行独立的DFT。
其中,为了将在第一码道上传输的数据部分从时域信号变换到频域信号,需要对该数据部分进行DFT操作,由于一个第一RB上具有多个第一码道,而每个第一码道中传输的数据部分是相对独立的,因此需要对每个第一码道上的数据部分均分别进行独立的DFT。
其中,在步骤102e之后,UE会对L1组循环移位后的调制符号中的每一组进行DFT操作,对L2组循环移位后的调制符号中的每一组进行DFT操作,即对于一个时域符号,采用统一的一个长度为K*12的DFT操作。
需要说明的是,在DFT操作完成后,将L1组DFT后的调制符号映射到第一时隙中的L1个时域符号上,将L2组DFT后的调制符号映射到第二时隙中的L2个时域符号上,这里多个正交码标识的码信道映射到了相同的RB上。而后再对映射后的每个时域符号上的频域信号进行逆快速傅里叶变换(Inverse Fast Fourier Transformation,IFFT)操作,最后UE在上行子帧中发送IFFT操作后的UCI调制符号给基站。
上面对本发明实施例的上行控制信息的发送方法进行了介绍,下面对本实施例的上行控制信息的接收方法进行介绍。
请参阅图4,图4为本发明实施例的上行控制信息的接收方法的一个实施例图,如图4所示,本发明的一个实施例提供一种上行控制信息的接收方法,可包括以下内容:
201、UE接收基站发送的下行数据信息。
其中,在LTE网络中,基站和UE之间会进行通信,UE会接收到基站发送的下行数据信息。
202、UE确定PUCCH资源。
其中,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和用于解调数据部分的DMRS部分;PUCCH资源占用连续的K个第二RB,每个第二RB中均包括用于传输数据部分的第三码道,每个第三码道对应一个正交码序列,DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,第一DMRS部分占用K1个第二RB中的K1个第二RB,第一DMRS部分占用的K1个第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个第四码道对应一个DMRS的第一序列,第二DMRS部分占用K-K1个第二RB,第二DMRS部分占用的K-K1个第二RB统一对应一条用于传输第二DMRS部分的第五码道,第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1。
需要说明的是,UE确定PUCCH资源的方式与图3所示的实施例的确定PUCCH资源的方式相类似,此处不再赘述。
作为可选的,包含第四码道的K1个第二RB内的第三码道中传输的数据部分均采用频域循环位移。
其中,K1个第二RB包含第四码道,每个第四码道对应一个DMRS的第一序列,每个第四码道中的第一序列均为独立生成的,因此,为了保证与小区特定的频域循环移位相似配,即发出的信号与小区中仅支持现有PF3(以下称基本PF3)的UE发出的信号保持正交,从而互相不造成干扰,需要按照小区特定的频域循环移位对第三码道中传输的数据部分均采用频域循环位移的操作。
作为可选的,对应第五码道的K-K1个第二RB内的第三码道中传输的数据部分不进行频域循环位移。
其中,K-K1个第二RB对应有第五码道,第五码道对应一个DMRS的第一序列,由于是采用的长的DMRS序列,因此无法与小区特定的频域循环移位相似配,与基本PF3的信号无法保持正交,因而进行与小区特定的频域循环移位相似配的频域循环位移也无法起到保持正交的作用,因而此处对K-K1个第二RB内的第三码道中传输的数据部分不进行频域循环位移。
需要说明的是,对于DMRS的序列,可以采用ZC(Zadoff-Chu)序列,并且考虑到每个第二RB上如果发送重复的DMRS序列,会导致PAPR大幅度提升,可将DMRS部分分为第一DMRS部分和第二DMRS部分,其中第一DMRS部分由K1个短的第一序列(每个第四码道对应一个第一序列)拼接而成,即对这K1个第二RB按照每个第二RB单独生成DMRS的第一序列,该第一序列与基本PF3的DMRS序列能够正交共存,第二DMRS部分为一个长的第二序列(所有K-K1个第二RB对应的第五码道所对应的第二序列),即剩余的K-K1个第二RB上按照长度(K-K1)个第二RB的长度即(K-K1)*12的长度来生成一个长的第二序列,从而通过减少重复的DMRS来降低峰均比,第一DMRS部分和第二DMRS部分可根据K1的取值来确定是否具有第一DMRS部分和/或第二DMRS部分,当K1=0时,表示DMRS部分仅包含第二DMRS部分,即此时DMRS部分仅由一个长的第二序列构成,而当K1=K时,则表示DMRS部分仅包含第一DMRS部分,即DMRS部分由K个短的第一序列拼接而成。
作为可选的,K1个第一序列中至少两个第一序列采用相同或不同的根序列。
作为可选的,K1个第一序列中至少两个第一序列采用相同的根序列且不 同的循环位移。
其中,K1个第二RB中的每个第二RB上的DMRS可采用相同根序列的不同循环移位或是每个第二RB上可以采用不同的根序列,通过测试得到的PAPR相比于每个第二RB上重复的DMRS序列由明显的降低。
可以理解的是,由于不同根序列之间的相关性比相同根的不同移位的序列要低很多,因此不同根序列得到的PAPR会更低,但代价是不能与本小区的基本PF3的DMRS的序列正交共存,且还可能与邻小区的DMRS的序列相碰撞而造成小区间PUCCH信道干扰。此时,可以让相邻小区间交互各自使用的根序列信息,来避开使用相同的根序列。
举例来说,假设有4个RB的单PF3,其中2个RB上采用不同根序列来生成DMRS,且该不同根序列中的至少一个根序列是不同于本小区基本PF3使用的根序列的,来降低PAPR;而其他2个RB上采用相同根序列的不同循环移位,该相同根序列的序列与本小区基本PF3使用的根序列相同,这样可以做到这部分RB上与本小区的基本PF3进行正交共存。
作为可选的,第三码道、第四码道和第五码道可分别由时域正交码或频域正交码标识。
其中,为了便于对第三码道、第四码道和第五码进行正确的识别,可对第一码道和第二码道进行相应的标识,如可采用时域正交码或是频域正交码对这两种码道进行标识,如第一码道采用时域正交码进行标识,第二码道通过频域正交码标识。
203、UE在PUCCH资源上发送上行控制信息。
由此可知,在本发明实施例中PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和解调数据部分的DMRS部分,单个UE在传输反馈信息的数据部分时,PUCCH资源可占用多个第二RB,即多个第二RB可对应一个PF3,从而反馈信息的数据部分可在不同的第二RB上的第三码道进行传输,即通过将反馈信息的数据部分分别在多个第二RB的第三码道上传输,从而通过增加传输反馈信息的数据部分的第三码道来提高反馈信息传输的容量。
需要说明的是,第一DMRS部分占用的第二RB的数量K1和第二DMRS 部分占用的第二RB的数量K-K1可进行设置,具体可采用如下方式,请参阅图4a,图4a是本发明实施例的上行控制信息的发送方法的另一个实施例图,在图4的基础上,作为可选的,该发送方法还可包括:
202a、UE接收基站下发的DMRS配置指令。
其中,为了确定第一DMRS部分占用的第二RB的数量K1和第二DMRS部分占用的第二RB的数量K-K1,UE可接收基站下发的DMRS配置指令,而后进行设置。
202b、UE根据DMRS配置指令确定第一DMRS部分占用K1个第二RB,第二DMRS部分占用K-K1个第二RB。
其中,UE在接收到DMRS配置指令后,会根据该指令确定第一DMRS部分占用的第二RB的数量K1,以及第二DMRS部分占用的第二RB的数量K-K1。
作为可选的,该发送方法还可包括:
203c、UE对K个第二RB的第三码道上承载的数据部分均进行统一的DFT。
其中,为了将在第三码道上传输的数据部分从时域信号变换到频域信号,需要对该数据部分进行DFT操作,由于一个第二RB上具有一个第三码道,而每个第二RB中传输的数据部分是相对独立的,因此仅需要对每个第二RB上的数据部分均分别进行统一的DFT。
需要说明的是,在进行DFT操作之前,还会对反馈信息的数据部分进行星座调制,具体调制方式与图3中所示的实施例的星座调制方式相类似,此处不再赘述。在星座调制后,UE对每一组24个调制符号中的每个调制符号进行扩频操作。具体的,使用第一码长L1的第一正交码对第一组的24个调制符号中的每个调制符号进行扩频,一般的L1=5;对于第二组的24个调制符号进行类似扩频,使用第二码长L2的第二正交码,L2可以为5或4。扩频后,得到L1组扩频后的调制符号和L2组扩频后的调制符号,其中每个第二RB上的扩频码序列可以相同,也可以不相同。完成扩频之后就会这些调制符号进行DFT操作。
上面介绍了本发明实施例的上行控制信息的发送方法,下面对本发明实施 例的上行控制信息的接收方法进行介绍。
请参阅图5,图5为本发明实施例的上行控制信息的接收方法的一个实施例图,如图5所示,本发明的一个实施例提供一种上行控制信息的接收方法,可包括以下内容:
301、基站向用户设备UE发送下行数据信息。
其中,上行控制信息是根据下行数据信息产生的,基站首先向UE发送下行数据信息后,由UE商城上行控制信息并发送给基站。
302、基站确定物理上行控制信道PUCCH资源。
PUCCH资源用于承载上行控制信息,上行控制信息包括UE根据下行数据信息发送的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用的第一资源块RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
其中,对于目前大多数使用LTE系统的UE来说,通常仅采用一根天线进行传输数据,因此仅采用第一RB的一个第二码道传输DMRS部分即可,即在第一RB内仅有一个DMRS的序列,在PUCCH资源上发送时,仅发送一个DMRS的序列即可。
由此可见,由于仅发送一个DMRS的序列,因此,发射功率都可以加到该序列上,而不需要在多个序列间分配功率,这样信道估计的性能相比于多个DMRS序列会大幅度提升,此外,由于仅发送一个DMRS的序列,PAPR相比于发送多个DMRS的序列要低很多,相当于保持了基本PF3的DMRS部分的低PAPR特性,保持了功率效率。
需要说明的是,基站确定PUCCH资源目的有两点,其一是用于生成资源配置指令,发送给UE,使得UE能够确定出承载上行控制信息的PUCCH资源,即基站在发送下行数据信息后,可向UE再发送一个资源配置指令,该资源配置指令能够指示UE使用哪些PUCCH资源发送上控制信息,而UE则可根据此资源配置指令来确定PUCCH资源,其二是基站在确定了该PUCCH资 源后,会由基站在该PUCCH资源上接收UE发送的上行控制信息。
需要说明的是,基站发送资源配置指令的时机并不仅限于在发送下行数据信息之后,也可与下行数据信息同时发送,也可先发送资源配置指令,而后在发送下行数据信息,具体不作限定。
需要说明的是,基站可根据实际情况对PUCCH资源进行确定,可根据PUCCH资源的负载情况来动态确定PUCCH资源,如确定负载较低的PUCCH资源来承载上行控制信息,或者还可根据PUCCH资源的干扰情况进行确定PUCCH资源,如可对PUCCH资源的干扰情况进行分析,选取其中干扰情况较小的PUCCH资源来承载上行控制信息。
需要说明的是,DMRS的序列的数量要小于数据部分的正交码序列的数量,即N<M,当然N也可大于1,举例来说,如N等于2时,一个第一RB内包括四个第一码道和两个第二码道,即具有四个正交码序列和两个DMRS的序列,四个正交码序列分别采用不同的扩频码进行扩频,两个DMRS的序列可采用一个根序列的两个循环移位产生,这样可以支持上述两天线传输,即一根天线对应一个DMRS的序列。
作为可选的,第一码道和第二码道分别由时域正交码或频域正交码标识。
其中,为了便于对第一码道和第二码道进行正确的识别,可对第一码道和第二码道进行相应的标识,如可采用时域正交码或是频域正交码对这两种码道进行标识,如第一码道采用时域正交码进行标识,第二码道通过频域正交码标识。
303、基站在PUCCH资源上接收上行控制信息。
由此可见,在本发明实施例中PUCCH资源用于承载上行控制信息,上行控制信息包括UE发送的下行数据信息对应的反馈信息的数据部分和解调数据部分的DMRS部分,单个UE在向基站发送上行控制信息时,可采用将PUCCH资源占用的第一RB内的至少两个第一码道用于传输反馈信息的数据部分,即相当于在单个第一RB上布置多个PF3,在不改变现有LTE系统中的PF3的情况下,通过在单个第一RB内增加传输反馈信息的数据部分的码道数量来提高单RB上反馈信息传输的容量。
作为可选的,该接收方法还可包括:
304、基站向UE发送数据配置指令。
其中,该数据配置指令中指示第一RB内包括用于传输数据部分的第一码道的数量M。
可以理解的是,步骤204与步骤201至步骤203之间没有绝对的顺序关系。
需要说明的是,在该接收方法中,为了使得UE能够确定第一码道的数量M,可向UE发送数据配置指令,该数据配置指令中指示第一RB内包括用于传输数据部分的第一码道的数量M,从而使得UE能够在接收到该数据配置指令后,从该数据配置指令中获知第一码道的数量M,从而提高本发明实施例的方案的可扩展性。
作为可选的,该接收方法还可包括:
305、基站根据接收的DMRS部分对数据部分进行解调。
其中,基站在接收到UE发送的上行控制信息后,会通过上行控制信息中的DMRS部分对上行控制信息的数据部分进行解调,从而获得数据部分的实际信息。
可以理解的是,步骤304和步骤305与步骤301至步骤303之间没有必然的顺序关系。
上面分别介绍了本发明实施例的上行控制信息的发送方法和接收方法,下面结合一个采用本发明实施例的具体的上行控制信息的发送方法和接收方法例子对本发明实施例的上行控制信息的发送方法和接收方法予以说明。
请参阅图6,图6为本发明实施例的上行控制信息的接收方法的一个实施例图,如图6所示,本发明的一个实施例提供一种上行控制信息的接收方法,可包括以下内容:
401、基站向用户设备UE发送下行数据信息。
其中,在LTE网络中,基站和UE之间会进行通信,基站会向发送的下行数据信息。
402、基站确定PUCCH资源。
其中,PUCCH资源用于承载上行控制信息,上行控制信息包括UE发送的下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用连续的K个第二RB,每个第二RB中均包括用于传输数据部分的第三码道,每个第三码道对应一个正交码序列,DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
其中,第一DMRS部分占用K1个第二RB中的K1个第二RB,第一DMRS部分占用的K1个第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个第四码道对应一个DMRS的第一序列,第二DMRS部分占用K-K1个第二RB,第二DMRS部分占用的K-K1个第二RB统一对应一条用于传输第二DMRS部分的第五码道,第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
需要说明的是,基站确定PUCCH资源目的与图5所示的实施例中确定PUCCH资源目的类似,此处不再赘述。
需要说明的是,基站可根据实际情况对PUCCH资源进行确定,与图5所示的实施例中对PUCCH资源进行确定相类似,此处不再赘述。
作为可选的,包含第四码道的K1个第二RB内的第三码道中传输的数据部分均采用频域循环位移。
其中,K1个第二RB包含第四码道,每个第四码道对应一个DMRS的第一序列,每个第四码道中的第一序列均为独立生成的,因此,为了保证与小区特定的频域循环移位相似配,即发出的信号与小区中仅支持现有PF3(以下称基本PF3)的UE发出的信号保持正交,从而互相不造成干扰,需要按照小区特定的频域循环移位对第三码道中传输的数据部分均采用频域循环位移的操作。
作为可选的,对应第五码道的K-K1个第二RB内的第三码道中传输的数据部分不进行频域循环位移。
其中,K-K1个第二RB对应有第五码道,第五码道对应一个DMRS的第一序列,由于是采用的长的DMRS序列,因此无法与小区特定的频域循环移位相似配,与基本PF3的信号无法保持正交,因而进行与小区特定的频域循环移位相似配的频域循环位移也无法起到保持正交的作用,因而此处对K-K1个第二RB内的第三码道中传输的数据部分不进行频域循环位移。
需要说明的是,DMRS的序列的生成方式与图4所示的实施例中的DMRS 的序列的生成方式相类似,此处不再赘述。
作为可选的,K1个第一序列中至少两个第一序列采用相同或不同的根序列。
作为可选的,K1个第一序列中至少两个第一序列采用相同的根序列且不同的循环位移。
其中,K1个第二RB中的每个第二RB上的DMRS可采用相同根序列的不同循环移位或是每个第二RB上可以采用不同的根序列,通过测试得到的PAPR相比于每个第二RB上重复的DMRS序列由明显的降低。
可以理解的是,由于不同根序列之间的相关性比相同根的不同移位的序列要低很多,因此不同根序列得到的PAPR会更低,但代价是不能与本小区的基本PF3的DMRS的序列正交共存,且还可能与邻小区的DMRS的序列相碰撞而造成小区间PUCCH信道干扰。此时,可以让相邻小区间交互各自使用的根序列信息,来避开使用相同的根序列。
举例来说,假设有4个RB的单PF3,其中2个RB上采用不同根序列来生成DMRS,且该不同根序列中的至少一个根序列是不同于本小区基本PF3使用的根序列的,来降低PAPR;而其他2个RB上采用相同根序列的不同循环移位,该相同根序列的序列与本小区基本PF3使用的根序列相同,这样可以做到这部分RB上与本小区的基本PF3进行正交共存。
作为可选的,第三码道、第四码道和第五码道可分别由时域正交码或频域正交码标识。
其中,为了便于对第三码道、第四码道和第五码进行正确的识别,可对第一码道和第二码道进行相应的标识,如可采用时域正交码或是频域正交码对这两种码道进行标识,如第一码道采用时域正交码进行标识,第二码道通过频域正交码标识。
403、基站在PUCCH资源上接收上行控制信息。
由此可知,在本发明实施例中PUCCH资源用于承载上行控制信息,上行控制信息包括UE发送的对应下行数据信息的反馈信息的数据部分和解调数据部分的DMRS部分,单个UE在传输反馈信息的数据部分时,PUCCH资源可占用多个第二RB,即多个第二RB可对应一个PF3,从而反馈信息的数据部 分可在不同的第二RB上的第三码道进行传输,即通过将反馈信息的数据部分分别在多个第二RB的第三码道上传输,从而通过增加传输反馈信息的数据部分的第三码道来提高反馈信息传输的容量。
需要说明的是,第一DMRS部分占用的第二RB的数量K1和第二DMRS部分占用的第二RB的数量K-K1可进行设置,具体可采用如下方式。
作为可选的,该接收方法还可包括:
402a、基站向UE下发DMRS配置指令,以使得UE根据DMRS配置指令对第一DMRS部分和第二DMRS部分分别占用的第二RB进行配置。
其中,为了对DMRS的第一部分和第二部分分别占用的第二RB的数量进行配置,基站还会向UE发送DMRS配置指令,UE在接收到DMRS配置指令后,会根据该指令确定第一DMRS部分占用的第二RB的数量K1,以及第二DMRS部分占用的第二RB的数量K-K1,从而提高本发明实施例的方案的可实现性。
可以理解的是,步骤402a与步骤401至步骤403之间没有必然的顺序关系。
下面针对上述两种方式,其一是在一个第一RB上采用多个PF3(简称单RB多PF3),其二是一个PF3扩展到多个第二RB上(简称多RB单PF3),针对这两种方式相对于基本PF3的峰均比进行了测试,具体测试结果如下表4,
表4
Figure PCTCN2015087062-appb-000004
Figure PCTCN2015087062-appb-000005
其中,机制(a)为基本PF3的机制,即单RB单PF3;
机制(b)为2个RB多PF3的机制;
机制(c)为2个RB单PF3的机制;
机制(d)为3个RB多PF3的机制。
由此可见,机制(a)为基本PF3的PAPR;机制(b)和(d)分别为2个RB和3个RB的多PF3方案。可以看出,由于数据部分采用了多个正交码序列,2个RB的多PF3的数据部分的PAPR相比于基本PF3有大约1.2dB的提升,3个RB的多PF3的数据部分的PAPR相比于基本PF3有大约1.8dB的提升;而2个RB的多PF3基于重复DMRS符号的PAPR相比于基本PF3有3dB的大幅度提升,3个RB的多PF3基于重复DMRS符号的PAPR相比于基本PF3有4.7dB的大幅度提升。
上面对本发明实施例的上行控制信息的发送方法和接收方法进行了介绍,下面对本发明实施例的用户设备进行介绍。
请参阅图7,图7是本发明实施例的用户设备的一个实施例图,如图7所示,本发明实施例提供一种用户设备,可包括:
第一接收模块501,用于接收基站发送的下行数据信息;
第一处理模块502,用于确定物理上行控制信道PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用的第一资源块RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
第一发送模块503,用于在PUCCH资源上发送上行控制信息。
由此可知,在本发明实施例中第一接收模块501在接收到基站发送的下行数据信息后,会先通过第一处理模块502确定PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和解调数据部分的DMRS部分,在传输反馈信息的数据部分时,可采用将PUCCH资源占用的第一RB内的至少两个第一码道用于传输反馈信息的数据部分,而后由第一发送模块503在PUCCH资源上发送上行控制信息,即相当于在单个第一RB上布置多个PF3,在不改变现有LTE系统中的PF3的情况下,通过在单个第一RB内增加传输反馈信息的数据部分的码道数量来提高单RB上反馈信息传输的容量。
需要说明的是,第一处理模块502确定PUCCH资源的方式是通过接收基站的资源配置指令来实现的,即基站在发送下行数据信息后,可向第一处理模块501再发送一个资源配置指令,该资源配置指令能够指示第一发送模块503使用哪些PUCCH资源发送上控制信息,而第一处理模块502则可根据此资源配置指令来确定PUCCH资源。
需要说明的是,基站发送资源配置指令的时机并不仅限于在发送下行数据信息之后,也可与下行数据信息同时发送,也可先发送资源配置指令,而后在发送下行数据信息,具体不作限定。
作为可选的,N等于1。
其中,N等于1的情况与图3所示实施例中N等于1的情况相类似,此处不再赘述。
作为可选的,第一码道和第二码道分别由时域正交码或频域正交码标识。
其中,为了便于对第一码道和第二码道进行正确的识别,可对第一码道和第二码道进行相应的标识,如可采用时域正交码或是频域正交码对这两种码道进行标识,如第一码道采用时域正交码进行标识,第二码道通过频域正交码标识。
作为可选的,第一处理模块502还用于将M个第一码道之中的每个第一码道上的数据部分分别进行独立的离散傅里叶变换DFT。
其中,为了将在第一码道上传输的数据部分从时域信号变换到频域信号,需要通过第一处理模块502对该数据部分进行DFT操作,由于一个第一RB上具有多个第一码道,而每个第一码道中传输的数据部分是相对独立的,因此需要对每个第一码道上的数据部分均分别进行独立的DFT。
作为可选的,第一处理模块502用于采用不同的扩频码序列分别对M个第一码道之中的每个第一码道上的数据部分均分别进行独立的扩频。
其中,为了使得M个第一码道中的传输的正交码序列为正交的,即相互之间不干扰,因此可通过第一处理模块502针对每个第一码道上的数据部分均分别进行独立的扩频,从而在扩频后得到M个不相同的相互之间为正交的正交码序列,M个正交码序列可分别在M个第一码道中进行传输。
由此可见,采用第一处理模块502对每个第一码道上的数据部分均分别进行独立的扩频,能够达到每个第一码道中传输的数据部分(即生成的正交码序列部分)是相互正交的,从而使得UE在采用多个第一码道传输反馈信息的数据部分时,不会由于正交码序列相互之间造成的干扰而影响传输性能。
需要说明的是,若UE对于反馈信息的需求容量是固定的,即在一个基站的范围内,多个UE对于反馈信息的需求容量均是相同的,则第一码道的数量M的数量可以预先进行配置,作为可选的,第一接收模块501还用于接收基站发出的数据配置指令;
第一处理模块502还用于根据数据配置指令确定第一码道的数量M。
由此可见,可先在基站生成数据配置指令,该数据配置指令中对于第一码道的数量M给予了指示,基站会将该数据配置指令发送给第一接收模块501,第一接收模块501在接收到基站发出的配置指令后,即可由第一处理模块502根据数据配置指令的指示,确定出第一码道的数量M,由于是基站侧预先生 成好的数据配置指令,每一进入该基站范围内的UE均会根据该数据配置指令确定第一码道的数量M,能够提高本发明实施例的方案的可实现性。
若UE对反馈信息的需求容量是可变的,或是多个UE需求的反馈信息的容量是不相同的,此时,作为可选的,第一处理模块502还用于对数据部分进行信道编码;
第一处理模块502还用于根据信道编码前反馈信息的比特数确定信道编码后的数据部分需占用的第一码道的数量M。
需要说明的是,在确定了原始的反馈信息的数据部分比特数,就会通过第一处理模块502对原始的反馈信息的数据部分进行信道编码,以便于后续操作。
需要说明的是,第一码道的数量M确定关乎在一个第一RB上能传输的反馈信息的比特数,即单第一RB上反馈信息传输的容量,因此在由第一处理模块502发送上行控制信息之前,需要通过第一处理模块502对第一码道的数量M进行确定,此处第一处理模块502根据信道编码前反馈信息的比特数确定信道编码后的数据部分需占用的第一码道的数量M,此方式为动态可调整方式,即对反馈信息进行分析后,再确定传输这些反馈信息需要的第一码道的数量M,能够提高本发明实施例的方案的可实现性。
上面对本发明实施例的用户设备的一种情形进行了描述(如采用单第一RB多PF3方式),下面对本发明实施例的用户设备的另一种情形进行介绍(如采用多第二RB单PF3方式)。
请参阅图8,图8是本发明实施例的用户设备的一个实施例图,如图8所示,本发明实施例提供一种用户设备,可包括:
第二接收模块601,用于接收基站发送的下行数据信息;
第二处理模块602,用于确定物理上行控制信道PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用连续的K个第二RB,每个第二RB中均包括用于传输数据部分的第三码道,每个第三码道对应一个正交码序列,DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
其中,第一DMRS部分占用K1个第二RB中的K1个第二RB,第一DMRS部分占用的K1个第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个第四码道对应一个DMRS的第一序列,第二DMRS部分占用K-K1个第二RB,第二DMRS部分占用的K-K1个第二RB统一对应一条用于传输第二DMRS部分的第五码道,第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
第二发送模块603,用于在PUCCH资源上发送上行控制信息。
由此可知,在本发明实施例中第一接收模块601在接收到基站发送的下行数据信息后,会先通过第一处理模块602确定PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和解调数据部分的DMRS部分,在传输反馈信息的数据部分时,PUCCH资源可占用多个第二RB,即多个第二RB可对应一个PF3,从而反馈信息的数据部分可在不同的第二RB上的第三码道进行传输,即通过将反馈信息的数据部分分别在多个第二RB的第三码道上传输,而后由第一发送模块603在PUCCH资源上发送上行控制信息,即相当于在单个第一RB上布置多个PF3,在不改变现有LTE系统中的PF3的情况下,能通过增加传输反馈信息的数据部分的第三码道来提高反馈信息传输的容量。
需要说明的是,第二处理模块602确定PUCCH资源的方式与图7所示实施例中第一处理模块502确定PUCCH资源的方式类似,此处不再赘述。
需要说明的是,DMRS的序列的生成方式与图4所示的实施例中的DMRS的序列的生成方式相类似,此处不再赘述。
作为可选的,第一接收模块601还用于接收基站下发的DMRS配置指令;
第二处理模块602还用于根据DMRS配置指令确定第一DMRS部分占用K1个第二RB,第二DMRS部分占用K-K1个第二RB。
由此可见,为了确定第一DMRS部分占用的第二RB的数量K1和第二DMRS部分占用的第二RB的数量K-K1,第一接收模块601可接收基站下发的DMRS配置指令,第二处理模块602在接收到DMRS配置指令后,会根据该指令确定出第一DMRS部分占用的第二RB的数量K1,以及第二DMRS部分占用的第二RB的数量K-K1。
作为可选的,第二处理模块602还用于对K个第二RB的第三码道上承载的数据部分均进行统一的DFT。
其中,为了将在第三码道上传输的数据部分从时域信号变换到频域信号,需要通过第二处理模块602还对该数据部分进行DFT操作,由于一个第二RB上具有一个第三码道,而每个第二RB中传输的数据部分是相对独立的,因此仅需要对每个第二RB上的数据部分均分别进行统一的DFT。
上面对本发明实施例的用户设备进行了介绍,下面对本发明实施例的基站进行介绍。
请参阅图9,图9是本发明实施例的基站的一个实施例图,如图9所示,本发明实施例提供一种基站,可包括:
第三发送模块701,用于向用户设备UE发送下行数据信息;
第三处理模块702,用于确定物理上行控制信道PUCCH资源;PUCCH资源用于承载上行控制信息,上行控制信息包括UE根据下行数据信息发送的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用的第一资源块RB内包括用于传输数据部分的M个第一码道和传输DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
第三接收模块703,用于在PUCCH资源上接收上行控制信息。
由此可知,在本发明实施例中第三发送模块701会向UE发送下行数据信息,并且会由第三处理模块702确定PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和解调数据部分的DMRS部分,在传输反馈信息的数据部分时,可采用将PUCCH资源占用的第一RB内的至少两个第一码道用于传输反馈信息的数据部分,而后由第三接收模块703在PUCCH资源上接收UE发送的上行控制信息,即相当于在单个第一RB上布置多个PF3,在不改变现有LTE系统中的PF3的情况下,通过在单个第一RB内增加传输反馈信息的数据部分的码道数量来提高单RB上反馈信息传输的容量。
需要说明的是,第三处理模块702确定PUCCH资源目的有两点,其一是 用于生成资源配置指令,并发送给UE,使得UE能够确定出承载上行控制信息的PUCCH资源,即第三发送模块701在发送下行数据信息后,可向UE再发送一个资源配置指令,该资源配置指令能够指示UE使用哪些PUCCH资源发送上控制信息,而使得UE则可根据此资源配置指令来确定PUCCH资源,其二是在确定了该PUCCH资源后,会由第三接收模块703在该PUCCH资源上接收UE发送的上行控制信息。
需要说明的是,第三发送模块701发送资源配置指令的时机并不仅限于在发送下行数据信息之后,也可与下行数据信息同时发送,也可先发送资源配置指令,而后在发送下行数据信息,具体不作限定。
需要说明的是,第三处理模块702可根据实际情况对PUCCH资源进行确定,可根据PUCCH资源的负载情况来动态确定PUCCH资源,如确定负载较低的PUCCH资源来承载上行控制信息,或者还可根据PUCCH资源的干扰情况进行确定PUCCH资源,如可对PUCCH资源的干扰情况进行分析,选取其中干扰情况较小的PUCCH资源来承载上行控制信息。
作为可选的,第三发送模块701还用于向UE发送数据配置指令;数据配置指令中指示第一RB内包括用于传输数据部分的第一码道的数量M。
由此可知,为了使得UE能够确定第一码道的数量M,可由第三发送模块701向UE发送数据配置指令,该数据配置指令中指示第一RB内包括用于传输数据部分的第一码道的数量M,从而使得UE能够在接收到该数据配置指令后,从该数据配置指令中获知第一码道的数量M,从而提高本发明实施例的方案的可扩展性。
作为可选的,第三处理模块702还用于根据接收的DMRS部分对数据部分进行解调。
其中,第三接收模块703在接收到UE发送的上行控制信息后,会由第三处理模块702通过上行控制信息中的DMRS部分对上行控制信息的数据部分进行解调,从而获得数据部分的实际信息,从而提高本发明实施例的方案的可扩展性。
上面对本发明实施例的基站的一种情形进行了描述(如采用单第一RB多PF3方式),下面对本发明实施例的基站的另一种情形进行介绍(如采用多第 二RB单PF3方式)。
请参阅图10,图10是本发明实施例的基站的一个实施例图,如图10所示,本发明实施例提供一种基站,可包括:
第四发送模块801,用于向用户设备UE发送下行数据信息;
第四处理模块802,用于确定物理上行控制信道PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括UE发送的下行数据信息对应的反馈信息的数据部分和用于解调数据部分的解调参考信号DMRS部分;
PUCCH资源占用连续的K个第二RB,每个第二RB中均包括用于传输数据部分的第三码道,每个第三码道对应一个正交码序列,DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
其中,第一DMRS部分占用K1个第二RB中的K1个第二RB,第一DMRS部分占用的K1个第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个第四码道对应一个DMRS的第一序列,第二DMRS部分占用K-K1个第二RB,第二DMRS部分占用的K-K1个第二RB统一对应一条用于传输第二DMRS部分的第五码道,第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
第四接收模块803,用于在PUCCH资源上接收上行控制信息。
由此可知,在本发明实施例中第三发送模块801会向UE发送下行数据信息,并且会由第三处理模块802确定PUCCH资源,PUCCH资源用于承载上行控制信息,上行控制信息包括下行数据信息对应的反馈信息的数据部分和解调数据部分的DMRS部分,在传输反馈信息的数据部分时,可采用将PUCCH资源占用的第一RB内的至少两个第一码道用于传输反馈信息的数据部分,而后由第三接收模块803在PUCCH资源上接收UE发送的上行控制信息,即相当于在单个第一RB上布置多个PF3,在不改变现有LTE系统中的PF3的情况下,通过在单个第一RB内增加传输反馈信息的数据部分的码道数量来提高单RB上反馈信息传输的容量。
需要说明的是,第四处理模块802确定PUCCH资源目的与图9所示实施例中第三处理模块702确定PUCCH资源目的类似,此处不再赘述。
需要说明的是,第四处理模块802对PUCCH资源进行确定与图9所示实 施例中第三处理模块702对PUCCH资源进行确定类似,此处不再赘述。
需要说明的是,DMRS的序列的生成方式与图4所示的实施例中的DMRS的序列的生成方式相类似,此处不再赘述。
作为可选的,第一发送模块801还用于向UE下发DMRS配置指令,以使得UE根据DMRS配置指令对第一DMRS部分和第二DMRS部分分别占用的第二RB进行配置。
其中,为了对DMRS的第一部分和第二部分分别占用的第二RB的数量进行配置,第一发送模块801还会向UE发送DMRS配置指令,UE在接收到DMRS配置指令后,会根据该指令确定第一DMRS部分占用的第二RB的数量K1,以及第二DMRS部分占用的第二RB的数量K-K1,从而提高本发明实施例的方案的可实现性。
下面对本发明实施例中用户设备的结构进行描述,请参阅图11,图11是本发明实施例的用户设备的一个实施例图,其中,用户设备9可包括均与总线相连接的至少一个处理器901、至少一个接收器902和至少一个发送器903,本发明实施例涉及的基站可以具有比图11所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
具体的,对于图7所示的实施例来说,该处理器901能实现图7所示实施例中的第一处理模块502的功能,该接收器902能实现图7所示实施例中的第一接收模块501的功能,该发送器903能实现图7所示实施例中的第一发送模块503的功能;
对于图8来说,该处理器901能实现图8所示实施例中的第一处理模块602的功能,该接收器902能实现图8所示实施例中的第一接收模块601的功能,该发送器903能实现图8所示实施例中的第二发送模块603的功能。
下面对本发明实施例中用户设备的结构进行描述,请参阅图12,图12是本发明实施例的用户设备的一个实施例图,其中,基站10可包括均与总线相连接的至少一个处理器1001、至少一个接收器1002和至少一个发送器1003,本发明实施例涉及的基站可以具有比图12所示出的更多或更少的部件,可以 组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
具体的,对于图9所示的实施例来说,该处理器1001能实现图9所示实施例中的第三处理模块702的功能,该接收器1002能实现图9所示实施例中的第三接收模块703的功能,该发送器1003能实现图9所示实施例中的第三发送模块701的功能;
对于图10来说,该处理器1001能实现图10所示实施例中的第四处理模块1002的功能,该接收器1002能实现图10所示实施例中的第四接收模块803的功能,该发送器1003能实现图10所示实施例中的第四发送模块801的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (40)

  1. 一种上行控制信息的发送方法,其特征在于,包括:
    用户设备UE接收基站发送的下行数据信息;
    所述UE确定物理上行控制信道PUCCH资源,所述PUCCH资源用于承载上行控制信息,所述上行控制信息包括所述下行数据信息对应的反馈信息的数据部分和用于解调所述数据部分的解调参考信号DMRS部分;
    所述PUCCH资源占用的第一资源块RB内包括用于传输所述数据部分的M个第一码道和传输所述DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
    所述UE在所述PUCCH资源上发送所述上行控制信息。
  2. 根据权利要求1所述的上行控制信息的发送方法,其特征在于:所述N等于1。
  3. 根据权利要求1或2所述的上行控制信息的发送方法,其特征在于:所述方法还包括:
    所述UE将M个第一码道之中的每个第一码道上的所述数据部分分别进行独立的离散傅里叶变换DFT。
  4. 根据权利要求3所述的上行控制信息的发送方法,其特征在于,所述方法还包括:
    所述UE采用不同的扩频码序列分别对所述M个第一码道之中的每个第一码道上的数据部分均分别进行独立的扩频。
  5. 根据权利要求1至4中任一项所述的上行控制信息的发送方法,其特征在于,所述方法还包括:
    所述UE对所述数据部分进行信道编码;
    根据信道编码前反馈信息的比特数确定信道编码后的数据部分需占用的第一码道的数量M。
  6. 根据权利要求1至4中任一项所述的上行控制信息的发送方法,其特征在于,所述方法还包括:
    接收基站发出的数据配置指令;
    所述UE根据所述数据配置指令确定所述第一码道的数量M。
  7. 根据权利要求1至6中任一项所述的上行控制信息的发送方法,其特征在于:
    所述第一码道和所述第二码道分别由时域正交码或频域正交码标识。
  8. 一种上行控制信息的发送方法,其特征在于,包括:
    用户设备UE接收基站发送的下行数据信息;
    所述UE确定物理上行控制信道PUCCH资源,所述PUCCH资源用于承载上行控制信息,所述上行控制信息包括所述下行数据信息对应的反馈信息的数据部分和用于解调所述数据部分的解调参考信号DMRS部分;
    所述PUCCH资源占用连续的K个第二RB,每个所述第二RB中均包括用于传输所述数据部分的第三码道,每个所述第三码道对应一个正交码序列,所述DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
    其中,所述第一DMRS部分占用K1个所述第二RB中的K1个所述第二RB,所述第一DMRS部分占用的K1个所述第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个所述第四码道对应一个DMRS的第一序列,所述第二DMRS部分占用K-K1个所述第二RB,所述第二DMRS部分占用的K-K1个所述第二RB统一对应一条用于传输第二DMRS部分的第五码道,所述第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
    所述UE在所述PUCCH资源上发送所述上行控制信息。
  9. 根据权利要求8所述的上行控制信息的发送方法,其特征在于:包含所述第四码道的K1个所述第二RB内的第三码道中传输的所述数据部分均采用频域循环位移。
  10. 根据权利要求8所述的上行控制信息的发送方法,其特征在于:对应所述第五码道的K-K1个第二RB内的第三码道中传输的所述数据部分不进行频域循环位移。
  11. 根据权利要求8至10中任一项所述的上行控制信息的发送方法,其特征在于:K1个所述第一序列中至少两个所述第一序列采用相同或不同的根序列。
  12. 根据权利要求8至10中任一项所述的上行控制信息的发送方法,其特征在于:K1个所述第一序列中至少两个所述第一序列采用相同的根序列且不同的循环位移。
  13. 根据权利要求8至12中任一项所述的上行控制信息的发送方法,其特征在于:所述方法还包括:
    所述UE接收基站下发的DMRS配置指令;
    所述UE根据所述DMRS配置指令确定所述第一DMRS部分占用K1个所述第二RB,所述第二DMRS部分占用K-K1个所述第二RB。
  14. 根据权利要求8至13中任一项所述的上行控制信息的发送方法,其特征在于:在所述UE在所述PUCCH资源上发送所述上行控制信息之前,所述方法还包括:
    所述UE对K个所述第二RB的第三码道上承载的数据部分均进行统一的DFT。
  15. 根据权利要求8至14中任一项所述的上行控制信息的发送方法,其特征在于:所述第三码道、所述第四码道和所述第五码道分别由时域正交码或频域正交码标识。
  16. 一种上行控制信息的接收方法,其特征在于,包括:
    基站向用户设备UE发送下行数据信息;
    基站确定物理上行控制信道PUCCH资源;所述PUCCH资源用于承载上行控制信息,所述上行控制信息包括UE根据所述下行数据信息发送的反馈信息的数据部分和用于解调所述数据部分的解调参考信号DMRS部分;
    所述PUCCH资源占用的第一资源块RB内包括用于传输所述数据部分的M个第一码道和传输所述DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
    所述基站在所述PUCCH资源上接收所述上行控制信息。
  17. 根据权利要求16所述的上行控制信息的接收方法,其特征在于:所述N等于1。
  18. 根据权利要求16或17所述的上行控制信息的接收方法,其特征在于, 所述方法还包括:
    所述基站向UE发送数据配置指令,所述数据配置指令中指示所述第一RB内包括用于传输所述数据部分的第一码道的数量M。
  19. 根据权利要求16至18中任一项所述的上行控制信息的接收方法,其特征在于,所述方法还包括:
    所述基站根据接收的DMRS部分对数据部分进行解调。
  20. 根据权利要求16至18中任一项所述的上行控制信息的接收方法,其特征在于:
    所述第一码道和所述第二码道分别由时域正交码或频域正交码标识。
  21. 一种上行控制信息的接收方法,其特征在于,包括:
    基站向用户设备UE发送下行数据信息;
    基站确定物理上行控制信道PUCCH资源,所述PUCCH资源用于承载上行控制信息,所述上行控制信息包括所述UE发送的所述下行数据信息对应的反馈信息的数据部分和用于解调所述数据部分的解调参考信号DMRS部分;
    所述PUCCH资源占用连续的K个第二RB,每个所述第二RB中均包括用于传输所述数据部分的第三码道,每个所述第三码道对应一个正交码序列,所述DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
    其中,所述第一DMRS部分占用K1个所述第二RB中的K1个所述第二RB,所述第一DMRS部分占用的K1个所述第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个所述第四码道对应一个DMRS的第一序列,所述第二DMRS部分占用K-K1个所述第二RB,所述第二DMRS部分占用的K-K1个所述第二RB统一对应一条用于传输第二DMRS部分的第五码道,所述第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
    所述基站在所述PUCCH资源上接收所述上行控制信息。
  22. 根据权利要求21所述的上行控制信息的发送方法,其特征在于:包含所述第四码道的K1个第二RB内的第三码道中传输的所述数据部分均采用频域循环位移。
  23. 根据权利要求22所述的上行控制信息的发送方法,其特征在于:对 应所述第五码道的K-K1个第二RB内的第三码道中传输的所述数据部分不进行频域循环位移。
  24. 根据权利要求21至23中任一项所述的上行控制信息的发送方法,其特征在于:K1个所述第一序列中至少两个所述第一序列采用相同或不同的根序列。
  25. 根据权利要求21至23中任一项所述的上行控制信息的发送方法,其特征在于:K1个所述第一序列中至少两个所述第一序列采用相同的根序列且不同的循环位移。
  26. 根据权利要求21至25中任一项所述的上行控制信息的发送方法,其特征在于,所述方法还包括:
    所述基站向UE下发DMRS配置指令,以使得所述UE根据所述DMRS配置指令对第一DMRS部分和第二DMRS部分分别占用的第二RB进行配置。
  27. 根据权利要求21至25中任一项所述的上行控制信息的接收方法,其特征在于:
    所述第三码道、所述第四码道和所述第五码道分别由时域正交码或频域正交码标识。
  28. 一种用户设备,其特征在于,包括:
    第一接收模块,用于接收基站发送的下行数据信息;
    第一处理模块,用于确定物理上行控制信道PUCCH资源,所述PUCCH资源用于承载上行控制信息,所述上行控制信息包括所述下行数据信息对应的反馈信息的数据部分和用于解调所述数据部分的解调参考信号DMRS部分;
    所述PUCCH资源占用的第一资源块RB内包括用于传输所述数据部分的M个第一码道和传输所述DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
    第一发送模块,用于在所述PUCCH资源上发送所述上行控制信息。
  29. 根据权利要求28所述的用户设备,其特征在于:
    所述第一处理模块还用于将M个第一码道之中的每个第一码道上的所述数据部分分别进行独立的离散傅里叶变换DFT。
  30. 根据权利要求28所述的用户设备,其特征在于:
    所述第一处理模块还用于采用不同的扩频码序列分别对所述M个第一码道之中的每个第一码道上的数据部分均分别进行独立的扩频。
  31. 根据权利要求28至30中任一项所述的用户设备,其特征在于:
    所述第一处理模块还用于对所述数据部分进行信道编码;
    所述第一处理模块还用于根据信道编码前反馈信息的比特数确定信道编码后的数据部分需占用的第一码道的数量M。
  32. 根据权利要求28至30中任一项所述的用户设备,其特征在于:
    所述第一接收模块还用于接收基站发出的数据配置指令;
    所述第一处理模块还用于根据所述数据配置指令确定所述第一码道的数量M。
  33. 一种用户设备,其特征在于,包括:
    第二接收模块,用于接收基站发送的下行数据信息;
    第二处理模块,用于确定物理上行控制信道PUCCH资源,所述PUCCH资源用于承载上行控制信息,所述上行控制信息包括所述下行数据信息对应的反馈信息的数据部分和用于解调所述数据部分的解调参考信号DMRS部分;
    所述PUCCH资源占用连续的K个第二RB,每个所述第二RB中均包括用于传输所述数据部分的第三码道,每个所述第三码道对应一个正交码序列,所述DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
    其中,所述第一DMRS部分占用K1个所述第二RB中的K1个所述第二RB,所述第一DMRS部分占用的K1个所述第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个所述第四码道对应一个DMRS的第一序列,所述第二DMRS部分占用K-K1个所述第二RB,所述第二DMRS部分占用的K-K1个所述第二RB统一对应一条用于传输第二DMRS部分的第五码道,所述第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
    第二发送模块,用于在所述PUCCH资源上发送所述上行控制信息。
  34. 根据权利要求33所述的用户设备,其特征在于:
    所述第一接收模块还用于接收基站下发的DMRS配置指令;
    所述第二处理模块还用于根据所述DMRS配置指令确定所述第一DMRS部分占用K1个所述第二RB,所述第二DMRS部分占用K-K1个所述第二RB。
  35. 根据权利要求33或34所述的用户设备,其特征在于:
    所述第二处理模块还用于对K个所述第二RB的第三码道上承载的数据部分均进行统一的DFT。
  36. 一种基站,其特征在于,包括:
    第三发送模块,用于向用户设备UE发送下行数据信息;
    第三处理模块,用于确定物理上行控制信道PUCCH资源;所述PUCCH资源用于承载上行控制信息,所述上行控制信息包括UE根据所述下行数据信息发送的反馈信息的数据部分和用于解调所述数据部分的解调参考信号DMRS部分;
    所述PUCCH资源占用的第一资源块RB内包括用于传输所述数据部分的M个第一码道和传输所述DMRS部分的N个第二码道,每个第一码道对应一个正交码序列,每个第二码道对应一个DMRS的序列,其中,N<M,M和N均为整数,且M>1,N≥1;
    第三接收模块,用于在所述PUCCH资源上接收所述上行控制信息。
  37. 根据权利要求36所述的基站,其特征在于:
    所述第三发送模块还用于向UE发送数据配置指令;所述数据配置指令中指示所述第一RB内包括用于传输所述数据部分的第一码道的数量M。
  38. 根据权利要求36或37所述的基站,其特征在于:
    所述第三处理模块还用于根据接收的DMRS部分对数据部分进行解调。
  39. 一种基站,其特征在于,包括:
    第四发送模块,用于向用户设备UE发送下行数据信息;
    第四处理模块,用于确定物理上行控制信道PUCCH资源,所述PUCCH资源用于承载上行控制信息,所述上行控制信息包括所述UE发送的所述下行数据信息对应的反馈信息的数据部分和用于解调所述数据部分的解调参考信号DMRS部分;
    所述PUCCH资源占用连续的K个第二RB,每个所述第二RB中均包括用于传输所述数据部分的第三码道,每个所述第三码道对应一个正交码序列, 所述DMRS部分包括频域互不重叠的第一DMRS部分和第二DMRS部分,
    其中,所述第一DMRS部分占用K1个所述第二RB中的K1个所述第二RB,所述第一DMRS部分占用的K1个所述第二RB之中的每个RB内均包含一个用于传输第一DMRS部分的第四码道,每个所述第四码道对应一个DMRS的第一序列,所述第二DMRS部分占用K-K1个所述第二RB,所述第二DMRS部分占用的K-K1个所述第二RB统一对应一条用于传输第二DMRS部分的第五码道,所述第五码道对应DMRS的第二序列,其中,0≤K1≤K,K和K1均为整数,且K>1;
    第四接收模块,用于在所述PUCCH资源上接收所述上行控制信息。
  40. 根据权利要求39所述的基站,其特征在于:
    所述第四发送模块还用于向UE下发DMRS配置指令,以使得所述UE根据所述DMRS配置指令对第一DMRS部分和第二DMRS部分分别占用的第二RB进行配置。
PCT/CN2015/087062 2015-08-14 2015-08-14 上行控制信息的发送方法、接收方法、用户设备以及基站 WO2017028042A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/087062 WO2017028042A1 (zh) 2015-08-14 2015-08-14 上行控制信息的发送方法、接收方法、用户设备以及基站
CN201580080471.0A CN107615851B (zh) 2015-08-14 2015-08-14 上行控制信息的发送方法、接收方法、用户设备以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/087062 WO2017028042A1 (zh) 2015-08-14 2015-08-14 上行控制信息的发送方法、接收方法、用户设备以及基站

Publications (1)

Publication Number Publication Date
WO2017028042A1 true WO2017028042A1 (zh) 2017-02-23

Family

ID=58050462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087062 WO2017028042A1 (zh) 2015-08-14 2015-08-14 上行控制信息的发送方法、接收方法、用户设备以及基站

Country Status (2)

Country Link
CN (1) CN107615851B (zh)
WO (1) WO2017028042A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632188A (zh) * 2017-03-17 2018-10-09 华为技术有限公司 一种用于无线通信的方法、装置和系统
US11212151B2 (en) 2017-08-23 2021-12-28 Qualcomm Incorporated User multiplexing for uplink control information
WO2022206931A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 一种物理上行控制信道的发送方法、接收方法及通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294306B (zh) * 2018-12-07 2021-08-13 华为技术有限公司 一种参考信号的传输方法及装置
CN112968757B (zh) * 2021-01-29 2022-12-16 海能达通信股份有限公司 Pdcch资源的分配方法、解调方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104460A (zh) * 2011-03-18 2011-06-22 电信科学技术研究院 一种确定反馈信息比特数的方法和设备
CN102387598A (zh) * 2011-10-19 2012-03-21 新邮通信设备有限公司 一种物理下行控制信道的调度方法
CN102438319A (zh) * 2012-01-13 2012-05-02 电信科学技术研究院 一种上行控制信道资源分配方法及其装置
US20130230017A1 (en) * 2012-03-05 2013-09-05 Samsung Electronics Co., Ltd. Harq-ack signal transmission in response to detection of control channel type in case of multiple control channel types
CN103684714A (zh) * 2012-09-07 2014-03-26 北京三星通信技术研究有限公司 一种反馈harq-ack信息的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215577B (zh) * 2010-04-02 2015-09-16 中兴通讯股份有限公司 回程链路上行控制信道的资源分配方法和系统
CN103312483B (zh) * 2012-03-14 2016-08-03 华为终端有限公司 控制信息发送和接收方法、基站和用户设备
CN103391178B (zh) * 2012-05-10 2017-12-12 中兴通讯股份有限公司 Pucch资源映射、配置方法及装置、用户设备、基站
CN104170303B (zh) * 2014-01-29 2017-06-06 华为技术有限公司 一种数据传输方法、设备和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104460A (zh) * 2011-03-18 2011-06-22 电信科学技术研究院 一种确定反馈信息比特数的方法和设备
CN102387598A (zh) * 2011-10-19 2012-03-21 新邮通信设备有限公司 一种物理下行控制信道的调度方法
CN102438319A (zh) * 2012-01-13 2012-05-02 电信科学技术研究院 一种上行控制信道资源分配方法及其装置
US20130230017A1 (en) * 2012-03-05 2013-09-05 Samsung Electronics Co., Ltd. Harq-ack signal transmission in response to detection of control channel type in case of multiple control channel types
CN103684714A (zh) * 2012-09-07 2014-03-26 北京三星通信技术研究有限公司 一种反馈harq-ack信息的方法和设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632188A (zh) * 2017-03-17 2018-10-09 华为技术有限公司 一种用于无线通信的方法、装置和系统
CN108632188B (zh) * 2017-03-17 2021-04-20 华为技术有限公司 一种用于无线通信的方法、装置和系统
US10999108B2 (en) 2017-03-17 2021-05-04 Huawei Technologies Co., Ltd. Wireless communication method, apparatus, and system
US11212151B2 (en) 2017-08-23 2021-12-28 Qualcomm Incorporated User multiplexing for uplink control information
US11646928B2 (en) 2017-08-23 2023-05-09 Qualcomm Incorporated User multiplexing for uplink control information
WO2022206931A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 一种物理上行控制信道的发送方法、接收方法及通信装置
CN116055018A (zh) * 2021-04-02 2023-05-02 华为技术有限公司 一种物理上行控制信道的发送方法、接收方法及通信装置
CN116055018B (zh) * 2021-04-02 2023-09-29 华为技术有限公司 一种物理上行控制信道的发送方法、接收方法及通信装置

Also Published As

Publication number Publication date
CN107615851B (zh) 2019-12-17
CN107615851A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
US10499387B2 (en) Terminal device, integrated circuit, radio communication method, and base station device
US9680618B2 (en) Local area optimized uplink control channel
EP2919538B1 (en) User equipment, base station device, communication methods and integrated circuits
US8369299B2 (en) Method and apparatus for multiplexing CDM pilot and FDM data
US9014101B2 (en) Control channel transmission and reception method and system
US10491353B2 (en) Base station and communication method
US20190342056A1 (en) Terminal device, base station device, and transmission/reception method
EP3051908A1 (en) Terminal, base station, and communication method
EP3051910A1 (en) Terminal, base station, and communication method
AU2016350129A2 (en) Terminal and transmission method
WO2016127409A1 (zh) 传输上行控制信息的方法、用户设备和接入网设备
US20120076089A1 (en) Mobile terminal apparatus and radio communication method
WO2017028042A1 (zh) 上行控制信息的发送方法、接收方法、用户设备以及基站
EP3051899A1 (en) Terminal, base station, and communication method
US20230164014A1 (en) Method and device for reducing peak-to-average power ratio in orthogonal frequency division multiplexing modulation system
KR20200100003A (ko) 밀리미터파 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901247

Country of ref document: EP

Kind code of ref document: A1