WO2017026871A1 - 무선통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치 - Google Patents
무선통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치 Download PDFInfo
- Publication number
- WO2017026871A1 WO2017026871A1 PCT/KR2016/008978 KR2016008978W WO2017026871A1 WO 2017026871 A1 WO2017026871 A1 WO 2017026871A1 KR 2016008978 W KR2016008978 W KR 2016008978W WO 2017026871 A1 WO2017026871 A1 WO 2017026871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uci
- transmitted
- information
- transport block
- pusch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/0486—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0632—Channel quality parameters, e.g. channel quality indicator [CQI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
Definitions
- the present invention relates to wireless communication, and more particularly, to a method for transmitting uplink control information by a terminal in a wireless communication system and an apparatus using the method.
- ITU-R International Telecommunication Union Radio communication sector
- IP Internet Protocol
- 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
- Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier-Frequency Division Multiple Access
- LTE-A LTE-Advanced
- LTE-A is one of the potential candidates for IMT-Advanced.
- CA carrier aggregation
- eCA enhanced CA
- eCA may be referred to as a massive CA.
- the amount of uplink control information for example, channel state information (CSI) or ACK / NACK (acknowledgement / not-acknowledgement), which the UE should transmit, may increase.
- CSI channel state information
- ACK / NACK acknowledgenowledgement / not-acknowledgement
- An uplink control information transmission method of a terminal in a wireless communication system and a terminal device using the method are provided.
- a method for transmitting uplink control information (UCI) of a user equipment (UE) in a wireless communication system determines the number of transport blocks (TBs) to be transmitted through a physical uplink shared channel (PUSCH) that supports multiple-layer transmission, and determines the number of transport blocks
- the UCI to be included in each transport block is determined according to the number, and each transport block including the UCI is transmitted to the base station.
- the UE When the UE intends to transmit one transport block through two layers of the PUSCH, the UE duplicates the UCI to be transmitted, maps the UCI to be transmitted to the first layer of the two layers, and transmits the duplicated UCI to the second layer. After mapping to the layer can be sent.
- the UCI to be transmitted may include at least one of acknowledgment / not-acknowledgement (ACK / NACK) information and channel state information.
- ACK / NACK acknowledgment / not-acknowledgement
- the channel state information may include at least one of a rank indicator (RI), a channel quality indicator (CQI), and a precoding matrix index (PMI).
- RI rank indicator
- CQI channel quality indicator
- PMI precoding matrix index
- At least one of acknowledgment / not-acknowledgement (ACK / NACK) information and a rank indicator is included in a first transport block of the two transport blocks, and a channel quality indicator.
- at least one of the precoding matrix indicators may be included in a second transport block of the two transport blocks.
- the second transport block may be a transport block that is modulated in a higher modulation order than the first transport block.
- the UCI may be transmitted without data transmission.
- a downlink control information (DCI) format is received from the base station, and only the UCI may be transmitted without data transmission in the PUSCH only when the DCI format is a specific DCI format.
- DCI downlink control information
- Only the UCI may be transmitted without data transmission in the PUSCH only when the number of cells configured for the UE is larger than a threshold.
- a terminal in another aspect, includes an RF unit for transmitting and receiving a radio signal and a processor connected to the RF unit, wherein the processor includes a physical uplink shared channel supporting multiple-layer transmission. a number of transport blocks (TBs) to be transmitted through a channel (PUSCH), a UCI to be included in each transport block according to the determined number of transport blocks, and a base station for each transport block including the UCI. It characterized in that the transmission.
- An appropriate transmission method may be selected according to the number of transport blocks or codewords to be transmitted by the terminal. If one transport block is to be transmitted, uplink control information included in the transport block is mapped to a plurality of layers in the same manner so as to effect repetitive transmission. In case of transmitting two transport blocks, it is included in the two transport blocks or only one of the two transport blocks according to the type and importance of uplink control information to increase the reliability of transmission and increase the efficiency of resource usage. Can be.
- 1 shows a structure of a radio frame in 3GPP LTE / LTE-A.
- FIG. 2 shows an example of a resource grid for one slot.
- 3 shows a structure of an uplink subframe.
- FIG. 6 is a comparative example of a conventional single carrier system and a carrier aggregation system.
- Example 11 illustrates a terminal operation according to Example # 2-1-1.
- FIG. 13 shows another example of a UCI transmission method of a terminal.
- FIG. 14 is a block diagram illustrating a base station and a terminal.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
- IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using Evolved-UMTS Terrestrial Radio Access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
- LTE-A Advanced
- LTE-A Advanced
- 1 shows a structure of a radio frame in 3GPP LTE / LTE-A.
- a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a Transmission Time Interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
- the structure of the radio frame is merely an example. Therefore, the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
- FIG. 2 shows an example of a resource grid for one slot.
- the downlink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
- the OFDM symbol indicates a specific time interval and may be called an SC-FDMA symbol according to a transmission scheme.
- the downlink slot includes N RB resource blocks (RBs) in the frequency domain.
- the RB includes one slot in the time domain and a plurality of consecutive subcarriers in the frequency domain in resource allocation units.
- the number N RB of resource blocks included in the downlink slot depends on a downlink transmission bandwidth set in a cell.
- N RB may be any one of 6 to 110.
- the structure of the uplink slot may also be the same as that of the downlink slot.
- Each element on the resource grid is called a resource element (RE).
- One resource block includes 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain to include 7 ⁇ 12 resource elements, but the number of OFDM symbols and the number of subcarriers in the resource block is limited thereto. It is not.
- the number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like. For example, the number of OFDM symbols is 7 for a normal cyclic prifix (CP) and the number of OFDM symbols is 6 for an extended cyclic prefix (CP).
- the number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
- 3 shows a structure of an uplink subframe.
- the uplink subframe may be divided into a control region and a data region in the frequency domain.
- the control region is allocated a physical uplink control channel (PUCCH) for transmitting uplink control information.
- the data region is allocated a physical uplink shared channel (PUSCH) for transmitting data.
- the UE may not simultaneously transmit or simultaneously transmit PUCCH and PUSCH according to configuration.
- PUCCH for one UE is allocated to an RB pair in a subframe.
- Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
- the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
- the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
- the uplink control information transmitted on the PUCCH includes ACK / NACK (also referred to as HARQ-ACK), channel state information (CSI) indicating a downlink channel state, scheduling request (SR) which is an uplink radio resource allocation request, and the like.
- the CSI includes a precoding matrix index (PMI) indicating a precoding matrix, a rank indicator (RI) indicating a rank value preferred by the UE, a channel quality indicator (CQI) indicating a channel state, and the like.
- PMI and RI may be referred to as CSI reported by the UE in order to support MIMO (multi-input multi-output) operation.
- the PUSCH is mapped to an uplink shared channel (UL-SCH) which is a transport channel.
- the uplink data transmitted on the PUSCH may be a transport block (TB) which is a data block for the UL-SCH transmitted during the TTI.
- the transport block may be user information.
- uplink data and uplink control information (UCI) may be multiplexed and transmitted. That is, the transport block and the UCI for the UL-SCH may be multiplexed.
- the UCI may be, for example, at least one of CQI, PMI, RI, and ACK / NACK. Alternatively, only UCI may be transmitted in the PUSCH.
- the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in the normal CP (six in the extended CP).
- the leading up to 3 OFDM symbols (up to 4 OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are allocated, and the remaining OFDM symbols are the PDSCH (Physical Downlink Shared Channel). Becomes the data area to be allocated.
- PDSCH refers to a channel through which a base station or node transmits data to a terminal.
- Control channels transmitted in the control region include a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Downlink Control Channel (PDCCH).
- PCFICH Physical Control Format Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- PDCCH Physical Downlink Control Channel
- the PCFICH transmitted in the first OFDM symbol of the subframe carries a Control Format Indicator (CFI), which is information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
- CFI Control Format Indicator
- the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
- PCFICH is transmitted on the fixed PCFICH resources of the subframe.
- the PHICH carries an acknowledgment (ACK) / not-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
- ACK acknowledgment
- NACK not-acknowledgement
- HARQ uplink hybrid automatic repeat request
- the PDCCH is a control channel for transmitting downlink control information (DCI).
- DCI may be defined as resource allocation of PDSCH (also called downlink grant (DL grant)), resource allocation of physical uplink shared channel (PUSCH) (also called uplink grant (UL grant)), arbitrary A set of transmit power control commands and / or activation of Voice over Internet Protocol (VoIP) for individual terminals in the terminal group.
- DL grant downlink grant
- PUSCH physical uplink shared channel
- VoIP Voice over Internet Protocol
- the EPDCCH may be located after the existing control region in the time domain. For example, if an existing control region is transmitted in the first three OFDM symbols of the subframe, the EPDCCH may be located in OFDM symbols located after the three OFDM symbols. In the frequency domain, the existing control region and the EPDCCH may coincide or may be set differently. For example, the PDCCH is transmitted in the entire system band, whereas the EPDCCH may be transmitted only in the same frequency band as the PDSCH transmitted for a specific terminal. 5 shows an example in which the EPDCCH is transmitted only in some frequency bands of the existing control region.
- control information for an advanced UE may be transmitted.
- a reference signal transmitted for demodulation of the PDSCH may be transmitted.
- CA Carrier aggregation
- FIG. 6 is a comparative example of a conventional single carrier system and a carrier aggregation system.
- CC component carrier
- the carrier aggregation system may be divided into a continuous carrier aggregation system in which aggregated carriers are continuous and a non-contiguous carrier aggregation system in which carriers aggregated are separated from each other.
- a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
- the target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
- the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
- broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
- the system frequency band of a wireless communication system is divided into a plurality of carrier frequencies.
- the carrier frequency means a center frequency of a cell.
- a cell may mean a downlink frequency resource and an uplink frequency resource.
- the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
- CA carrier aggregation
- the terminal In order to transmit and receive packet data through a specific cell, the terminal must first complete configuration for the specific cell.
- the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell is completed.
- the configuration may include a general process of receiving common physical layer parameters required for data transmission and reception, media access control (MAC) layer parameters, or parameters required for a specific operation in the RRC layer.
- MAC media access control
- the cell in the configuration complete state may exist in an activation or deactivation state.
- activation means that data is transmitted or received or is in a ready state.
- the UE may monitor or receive a control channel (PDCCH) and a data channel (PDSCH) of an activated cell in order to identify resources (which may be frequency, time, etc.) allocated thereto.
- PDCCH control channel
- PDSCH data channel
- Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
- the terminal may receive system information (SI) required for packet reception from the deactivated cell.
- SI system information
- the terminal does not monitor or receive the control channel (PDCCH) and data channel (PDSCH) of the deactivated cell in order to check the resources (may be frequency, time, etc.) allocated to them.
- PDCH control channel
- PDSCH data channel
- the cell may be divided into a primary cell, a secondary cell, and a serving cell.
- the primary cell refers to a cell operating at a primary frequency, and is a cell in which the terminal performs an initial connection establishment procedure or connection reestablishment with the base station, or is indicated as a primary cell in a handover process. It means a cell.
- the secondary cell refers to a cell operating at the secondary frequency, and is established and used to provide additional radio resources once the RRC connection is established.
- the serving cell is configured as a primary cell when the carrier aggregation is not set or the terminal cannot provide carrier aggregation.
- the term serving cell indicates a cell configured for the terminal and may be configured in plural.
- One serving cell may be configured with one downlink component carrier or a pair of ⁇ downlink component carrier, uplink component carrier ⁇ .
- the plurality of serving cells may be configured as a set consisting of one or a plurality of primary cells and all secondary cells.
- a primary component carrier refers to a component carrier (CC) corresponding to a primary cell.
- the PCC is a CC in which the terminal initially makes a connection (connection or RRC connection) with the base station among several CCs.
- the PCC is a special CC that manages a connection (Connection or RRC Connection) for signaling regarding a plurality of CCs and manages UE context, which is connection information related to a terminal.
- the PCC is connected to the terminal and always exists in the active state in the RRC connected mode.
- the downlink component carrier corresponding to the primary cell is called a downlink primary component carrier (DL PCC), and the uplink component carrier corresponding to the primary cell is called an uplink major component carrier (UL PCC).
- DL PCC downlink primary component carrier
- U PCC uplink major component carrier
- Secondary component carrier refers to a CC corresponding to the secondary cell. That is, the SCC is a CC allocated to the terminal other than the PCC, and the SCC is an extended carrier for the additional resource allocation other than the PCC and may be divided into an activated or deactivated state.
- the downlink component carrier corresponding to the secondary cell is referred to as a DL secondary CC (DL SCC), and the uplink component carrier corresponding to the secondary cell is referred to as an uplink secondary component carrier (UL SCC).
- DL SCC DL secondary CC
- UL SCC uplink secondary component carrier
- the primary cell and the secondary cell have the following characteristics.
- the primary cell is used for transmission of the PUCCH.
- the primary cell is always activated, while the secondary cell is a carrier that is activated / deactivated according to specific conditions.
- RLF Radio Link Failure
- the primary cell may be changed by a security key change or a handover procedure accompanying a RACH (Random Access CHannel) procedure.
- NAS non-access stratum
- the primary cell is always configured with a pair of DL PCC and UL PCC.
- a different CC may be configured as a primary cell for each UE.
- the primary cell can be replaced only through a handover, cell selection / cell reselection process.
- RRC signaling may be used to transmit system information of a dedicated secondary cell.
- the downlink component carrier may configure one serving cell, and the downlink component carrier and the uplink component carrier may be connected to configure one serving cell.
- the serving cell is not configured with only one uplink component carrier.
- the activation / deactivation of the component carrier is equivalent to the concept of activation / deactivation of the serving cell.
- activation of serving cell 1 means activation of DL CC1.
- serving cell 2 assumes that DL CC2 and UL CC2 are configured to be configured, activation of serving cell 2 means activation of DL CC2 and UL CC2.
- each component carrier may correspond to a serving cell.
- the number of component carriers aggregated between the downlink and the uplink may be set differently.
- the case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
- the size (ie bandwidth) of the CCs may be different. For example, assuming that 5 CCs are used for a 70 MHz band configuration, 5 MHz CC (carrier # 0) + 20 MHz CC (carrier # 1) + 20 MHz CC (carrier # 2) + 20 MHz CC (carrier # 3) It may be configured as + 5MHz CC (carrier # 4).
- a plurality of component carriers (CCs), that is, a plurality of serving cells may be supported.
- Such a carrier aggregation system may support non-cross carrier scheduling and cross carrier scheduling.
- Non-cross carrier scheduling may be referred to simply applying a conventional scheduling method within a single cell to a plurality of cells.
- the PDCCH / PDSCH is transmitted through the same CC, and the PDCCH may schedule a PUSCH transmitted through the CC which is basically linked with a specific CC.
- Non-cross carrier scheduling may also be referred to as self scheduling.
- Cross-carrier scheduling is a resource allocation of a PDSCH transmitted on another component carrier through a PDCCH transmitted on a specific component carrier and / or other than the component carrier basically linked with the specific component carrier.
- a scheduling method for resource allocation of a PUSCH transmitted on another CC That is, a PDCCH and a PDSCH may be transmitted through different downlink CCs, and a PUSCH may be transmitted through a downlink CC on which a PDCCH including a UL grant is transmitted and an uplink CC other than the uplink CC basically linked. Can be.
- a carrier indicator indicating a DL CC / UL CC through which a PDSCH / PUSCH for which PDCCH provides control information is transmitted is required.
- a field including such a carrier indicator is hereinafter called a carrier indication field (CIF).
- a carrier aggregation system supporting cross carrier scheduling may include a carrier indication field (CIF) in a conventional downlink control information (DCI) format.
- CIF carrier indication field
- DCI downlink control information
- 3 bits may be extended, and the PDCCH structure may include an existing coding method, Resource allocation methods (ie, CCE-based resource mapping) can be reused.
- a codeword is modulated into a modulation symbol having a complex value by a modulation mapper through scrambling.
- the codeword may be interpreted as a concept equivalent to a transport block (TB).
- a transport block may refer to a predetermined number of bits including information to be transmitted, and a codeword may be a result of coding the bits constituting the transport block to be error resistant. More specifically, encoding may be performed after adding CRC (cyclic redundancy check) bits to the bits constituting the transport block and dividing the bits into code blocks.
- CRC cyclic redundancy check
- the bits constituting the codeword may be modulated by modulating mappers in any one of Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (16QAM), and 64QAM.
- QPSK Quadrature Phase Shift Keying
- 16QAM 16 Quadrature Amplitude Modulation
- 64QAM 64QAM.
- the modulation symbols for each codeword are mapped to one or two layers by a layer mapper.
- Layer is a term used for different streams generated by spatial multiplexing and can be described as which symbol is mapped to which transmit antenna port.
- the rank of transmission means the number of layers transmitted. For ranks greater than one, two codewords may be sent.
- D (q) (0), ..., d (q) (M (q) symb -1) denotes modulation symbols having a complex value for codeword q.
- v represents the number of layers.
- M layer symb represents the number of modulation symbols for each layer. That is, the mapping between transport blocks and layers may include 1) one transport block (CW) mapped to one layer, 2) one transport block (CW) mapped to two layers, or 3) two transport blocks. (CW) are mapped to two layers, 4) two transport blocks (CW) are mapped to three layers, or 5) two transport blocks (CWs) are mapped to four layers, have.
- the symbol having a complex value mapped to each layer is transform precoded by a transform percoder, and is mapped to each resource element RE by a resource element mapper after precoding.
- the SC-FDMA signal gen generates a SC-FDMA signal and transmits the same through an antenna port.
- the present invention proposes a method for efficiently transmitting UCI information through a plurality of layers (LAYER) of the PUSCH when a large number of cells (for example, six or more cells) are configured for the UE through a carrier aggregation technique (CA). do.
- LAYER a large number of cells (for example, six or more cells) are configured for the UE through a carrier aggregation technique (CA). do.
- LCELL a licensed band-based cell
- UCELL an unlicensed band (LTE-U) based cell
- RRP Resource intervals acquired / configured aperiodically in the corresponding UCELL are named "RESERVED RESOURCE PERIOD (RRP)."
- Downlink subframe (DL SF) of the RRP section that is, PDSCH-related control information channel transmitted on the subframe designated for downlink use or uplink subframe (UPLINK SUBFRAME: UL SF) of the RRP section, that is, uplink
- the PUSCH related control information channel transmitted on the subframe designated for the purpose may be set to be transmitted from a predefined LCELL. That is, it may be cross-carrier scheduling (CROSS CARRIER SCHEDULING (CCS)). Alternatively, the control information channel may be transmitted from the same UCELL. That is, it may be self-scheduled (SELF-SCHEDULING: SFS).
- the downlink control information channel related to PDSCH reception on the RRP interval may be implemented in a form in which one downlink control information channel schedules one PDSCH received at the same (or specific) time point (subframe), Subframe Scheduling (SINGLE SUBFRAME SCHEDULING: SSFS)
- one downlink control information channel is a predefined (or predefined) received at another time as well as one PDSCH received at the same (or specific) time point (subframe). It may be implemented in the form of scheduling the signaled) number of PDSCHs, which is referred to as MULTI-SUBFRAME SCHEDULING (MSFS).
- MSFS MULTI-SUBFRAME SCHEDULING
- the RRP interval on the UCELL may be a resource that is configured aperiodically or discontinuously depending on a carrier sensing (CS) result.
- the RRP interval in the UCELL includes: 1) a UE performs a (time / frequency) synchronization operation for the UCELL or a synchronization signal (for example, a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)) for the UE from the base station; Section assumed to be transmitted, 2) section in which the UE performs CSI measurement operation for the UCELL or a reference signal (for example, CRS, CSI-RS) for this is transmitted from the base station, and 3) the terminal transmits data in the UCELL 4)
- the terminal may be defined as at least one of a section for performing a (temporary or temporary) buffering operation on a signal received from the UCELL.
- the proposed scheme will be described based on the 3GPP LTE / LTE-A system.
- the scope of the system to which the present scheme is applied is not limited to the 3GPP LTE / LTE-A system and can be extended to other systems.
- a rule may be defined such that uplink control information (UCI) is transmitted through a PUSCH based on a plurality of layers without data transmission.
- the UCI may include, for example, at least one of CQI / PMI / RI and HARQ-ACK.
- ML_UCIWODATA a UCI transmission operation or transmission mode in which UCI is transmitted through a PUSCH based on a plurality of layers without data transmission.
- ML_UCIWODATA a UCI transmission operation or transmission mode in which UCI is transmitted through a PUSCH based on a plurality of layers without data transmission.
- the term 'transport block: TB' may be (re) interpreted as 'codeword: CODE WORD (CW)'.
- the terminal determines a condition for transmitting a UCI through a PUSCH supporting multi-layer transmission without data transmission (S110).
- the UE transmits the UCI through the PUSCH supporting the multi-layer transmission without data transmission (S120). That is, in the related art, when UCI is transmitted through a PUSCH without data transmission, or when UCI is transmitted through a PUSCH together with data transmission, UCI is transmitted together with data in each transport layer of the data. If the condition is satisfied, the UCI can be transmitted through the PUSCH supporting the multi-layer transmission without data transmission.
- the terminal may transmit the UCI through the PUSCH supporting the multi-layer transmission without data transmission when at least one of the following conditions is satisfied.
- the DCI format may be, for example, DCI format 4.
- DCI format 4 is a DCI format used for scheduling a PUSCH based on a multi-antenna port transmission mode.
- DCI format 4 indicates a modulation, coding scheme and redundancy version for each transport block (this field is called a 'modulation and coding scheme and redundancy version' field, or simply an MCS field).
- I inform MCS ).
- a field indicating the precoding information and the number of layers may be provided (this field is called a 'Precoding information and number of layers' field).
- the terminal on the basis of the value of the MCS field (I MCS) of PUSCH modulation order: can determine a (modulation order Q 'm as shown).
- the following table shows an example of a modulation order (Q ' m ), an index (I TBS ) indicating a transport block size, and a redundancy version (rv idx ) according to the value of an MCS field (I MCS ).
- Each TB related MCS field points to a predefined or signaled value.
- the value of each TB-related MCS field may be designated as 'RESERVED' 29, 30, or 31 in Table 2 above.
- NUM_TXLAYER' is a predefined or signaled number (e.g., 2) or more.
- the value of the 'PRECODING INFORMATION AND NUMBER OF LAYERS' field on the received DCI format may indicate a predefined or signaled number or more of NUM_TXLAYER.
- the field may be 3 bits or 6 bits.
- this may correspond to a case where the 'PRECODING INFORMATION AND NUMBER OF LAYERS' field on the received DCI format indicates 'RESERVED STATE'.
- 'TPMI TRANSMITTED PRECODING MATRIX INDICATOR
- / or 'NUM_TXLAYER' information indicated by 'RESERVED STATE' is defined by the base station to the UE in advance of signaling (e.g., higher layer signaling such as an RRC message). Or physical layer signaling) or a fixed value.
- NUM_ANTPT' 'NUMBER OF ANTENNA PORTS: NUM_ANTPT' or when the number of physical antennas is equal to or greater than the predefined or signaled threshold, or is a predefined or signaled value .
- the threshold may be designated, for example, '2'.
- the threshold may be set to '5' (or '8'). And / or a cell configured with a predefined or signaled specific TDD UL-DL configuration (eg, TDD UL-DL configuration # 5) may be excluded.
- the condition may be interpreted as a case in which a 'coding rate' related to UCI information transmission (or HARQ-ACK information transmission and / or CSI information transmission) is greater than a predefined or signaled threshold.
- the 'coding rate' is the 'scheduled bandwidth (SCHEDULED BANDWIDTH) or resource size' related to UCI information transmission (or HARQ-ACK information transmission and / or CSI information transmission) and / or the size (/ quantity) of UCI bits to be transmitted.
- the size (/ quantity) of HARQ-ACK bits and / or the size (/ quantity) of CSI e.g. RI / CQI / PMI)
- the number of CSI reports to be transmitted or the CSI process (related to the CSI report) Number etc. (dynamically).
- the specific field may be, for example, an 'NDI field (for example, 1 bit)' or a 'UL INDEX (/ DL INDEX) field (for example, 2 bits)'. If 'NDI field' points to a value of '1', multi-layer based UCI transmission is triggered; if 'NDI field' points to '0', single layer (and / or 1 TB) based UCI transmission is triggered It can be interpreted as.
- the specific field may be an additionally defined 'multi-layer based UCI transmission triggering field (for example, 1 bit)'.
- ⁇ For example, set (via RRC signaling) 'multi-layer-based UCI transmission (mode)' to some (or all) states indicated by the 'CSI request bit field (eg 2 bits, 1 bit)'. If the received 'CSI request bit field' indicates the state, a rule may be defined to perform 'multi-layer based UCI transmission'.
- the terminal determines the number of transmission blocks (TBs) to be transmitted through a PUSCH supporting multi-layer transmission (S210), and determines UCI to be included in each transport block according to the determined number of transport blocks (S210). S220).
- the UCI transmission operation in which UCI is transmitted through a PUSCH based on a plurality of layers without data transmission that is, ML_UCIWODATA operation based on [Proposed Method # 1] may be applied to the following cases.
- the UCI information transmission based on ML_UCIWODATA may be performed.
- 'TB (/ CW) -TO-LAYER MAPPING' relationship is '1 TB (/ CW)-> 1 LAYER', '1 TB (/ CW)-> 2 LAYER' , '2 TB (/ CW)-> 2 LAYER', '2 TB (/ CW)-> 3 LAYER', '2 TB (/ CW)-> 4 LAYER'.
- UCI information (or HARQ-ACK information and / or CSI (RI / CQI / PMI) information) mapped / transmitted through '2 layers' may be the same. In such a transmission method, a spatial diversity effect can be obtained.
- the rule may be defined such that RI information and / or HARQ-ACK information (and / or CQI information and / or PMI information) mapped / transmitted to one specific layer are repeatedly mapped / transmitted on the other layer.
- Example 11 illustrates a terminal operation according to Example # 2-1-1 described above.
- the UE duplicates the UCI included in the transport block (S310).
- the terminal maps the UCI to a first layer and maps the duplicated UCI to a second layer (S320).
- the terminal transmits the UCI mapped to each layer (S330). For example, when the UE transmits UCI (at least one of ACK / NACK information and CSI information) through a PUSCH supporting two-layer transmission, the UCI transmitted by the first layer and the UCI transmitted by the second layer are the same. To do it. That is, the same UCI is repeatedly transmitted in each layer.
- UCI information (or HARQ-ACK information and / or CSI (RI / CQI / PMI) information) mapped / transmitted for each layer may be partially or all different.
- Cell type eg LCELL, UCELL
- UCI information or HARQ-ACK information and / or CSI (RI / CQI / PMI) information
- CSI RI / CQI / PMI
- CG CELL GROUP
- Layer-specific UCI information (or HARQ-ACK information and / or CSI (RI / CQI / PMI) information) mapping / transmission rule without direct (or additional) signaling may be defined as follows.
- CSI lifto related information of priority may be configured to be mapped / transmitted.
- the priority may be 1. Cell group index-> CSI reporting type-> CSI process index (/ ID)-> cell index-> CSI subframe set index order. Or 2. CSI reporting type-> cell group index-> CSI process index (/ ID)-> cell index-> CSI subframe set index order. Or 3. CSI Reporting Type-> CSI Process Index (/ ID)-> Cell Group Index-> Cell Index-> CSI Subframe Set Index (or CSI Reporting Type-> CSI Process Index (/ ID)-> Cell Index- > Cell group index-> CSI subframe set index or CSI reporting type-> CSI process index (/ ID)-> cell index-> CSI subframe set index-> cell group index). This may indicate a candidate position where a parameter relating to the cell group index may be inserted.
- the relatively low (or high) cell group index and / or cell index and / or CSI subframe set index and / or CSI process index (/ ID) related CSI report may be set to have a high priority. And / or the LCELL (or UCELL) related CSI report has a higher priority than the UCELL (or LCELL) related CSI report and / or the PUCCH transmitting cell related CSI report has a higher priority than the cell related CSI report that does not transmit PUCCH. It can be set to have.
- RI information and / or HARQ-ACK information mapped / transmitted to one specific layer may be mapped / transmitted (repeated) on another layer.
- CQI information and / or PMI information mapping / transmission may be defined by cell types (e.g. LCELL, UCELL) and / or cell group index and / or mapped per layer set through predefined signaling (or rules). Cell index (and / or CSI process index (/ ID) and / or CSI subframe set index).
- HARQ-ACK information and / or RI information is mapped / transmitted through two TB (S), while CQI information and / or PMI information is the highest MCS (I MCS ).
- Rules can be defined to be mapped / transmitted only via TB.
- TB selection with the highest MCS is valid in case of telling TB-specific MCS value in DCI format.
- an additional MCS value may be set (/ linked) to a 'RESERVED MCS INDEX' (eg, 29, 30, 31) through a predefined signaling (or rule).
- Specific TB-related UCI information (or HARQ-ACK information and / or CSI (RI / CQI / PMI) information) mapping / transmission rule may be configured to follow (Rule # 2-1).
- the terminal determines to transmit two transport blocks (TBs) (S410)
- the ACK / NACK information and / or RI information are included in both the first transport block and the second transport block, and the CQI.
- Information and / or PMI information is included only in a transport block modulated with a higher modulation order among the first and second transport blocks (S420). That is, UCI, which is relatively high in importance such as ACK / NACK and RI, is included in both transport blocks and transmitted, thereby making the effect of repetitive transmission appear. Relatively low UCIs, such as CQI / PMI, are included only in transport blocks with higher modulation orders to increase resource utilization.
- the terminal maps the two transport blocks to the layer and then transmits (S430).
- UCI information (or HARQ-ACK information and / or CSI (RI / CQI / PMI)) mapped / transmitted per TB (/ layer) through predefined signaling (or rule) Information)
- the relevant cell type eg, LCELL, UCELL
- / or cell group index and / or cell index and / or CSI process index (/ ID) and / or CSI subframe set index
- / ID / or CSI subframe set index
- mapping / transmission rules may be set to follow (rule # 2-1).
- HARQ-ACK information and / or RI information is mapped / transmitted via two TB (S), while CQI information and / or PMI information mapping / transmission is defined by predefined signaling ( Or cell type (e.g. LCELL, UCELL) and / or cell group index and / or cell index (and / or CSI process index (/ ID) and / or mapped per "TB" Or CSI subframe set index) ".
- Or cell type e.g. LCELL, UCELL
- cell group index and / or cell index and / or CSI process index (/ ID) and / or mapped per "TB” Or CSI subframe set index
- Example # 2-2-3 A relatively high (or low) priority of the signaled (or defined) number in advance (see, for example, the priority described in (Example # 2-1-2))
- the CSI report related information of the CSI report is mapped / transmitted through the TB of the highest MCS (I MCS ), and the relatively low (or defined) number of (pre-signed (or defined)) CSI report related information is Rules may be defined to map / transmit through the remaining TBs.
- the specific TB (/ layer) related UCI information (or HARQ-ACK information and / or CSI (RI / CQI / PMI) information) mapping / transmission rule may be set to follow (Rule # 2-1).
- HARQ-ACK information and / or RI information is mapped / transmitted via two TB (S), while (pre-signed (or defined) number of relatively high) Priority (or low) CQI information and / or PMI information are mapped / transmitted through the TB of the highest MCS (I MCS ) and (pre-signed (or defined) number of relatively low (or high)) Priority CQI information and / or PMI information may be configured to be mapped / transmitted through the remaining TBs.
- FIG. 13 shows another example of a UCI transmission method of a terminal.
- the ACK / NACK information and / or the RI information are transport blocks mapped to more layers among the first transport block and the second transport block.
- CQI information and / or PMI information may be included in a transport block mapped to fewer layers (S520).
- the terminal maps the two transport blocks to the layer and then transmits (S530). For example, if the ML_UCIWODATA related modulation order is fixed to a specific value (e.g.
- a relatively high (or low) number of previously signaled (or defined) UCI information (HARQ) ACK information and relatively high priority information among CSI (RI / CQI / PMI) information are mapped / transmitted through a TB to which a relatively large number of layers are allocated and signaled (or defined) in advance.
- the relatively low (or high) priority UCI information (HARQ-ACK information, relatively low priority information among CSI (RI / CQI / PMI) information) is the remaining TB (i.e., a relatively small number of layers). May be set to be mapped / transmitted via TB to which is allocated.
- ML_UCIWODATA related modulation order is fixed to a specific value (e.g. QPSK)
- a larger number (/ quantity) previously signaled (or defined) through a TB to which a relatively large number of layers are allocated UCI information (or HARQ-ACK information and / or CSI (RI / CQI / PMI) information) of may be configured to be mapped / transmitted.
- Example # 2-2-4 If the ML_UCIWODATA related modulation order is fixed to a certain value (e.g. QPSK), the higher number (or defined) previously signaled (or defined) through the TB of the highest MCS (I MCS ) / Quantity) UCI information (or HARQ-ACK information and / or CSI (RI / CQI / PMI) information) may be configured to be mapped / transmitted.
- a certain value e.g. QPSK
- examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
- the above-described proposal schemes may be independently implemented, some proposal schemes may be implemented in combination (or merge).
- the proposed schemes described above may also transmit data through a specific condition (for example, the amount of PUSCH resources, the number of CSI feedbacks, and rate matching) even when the UCI is transmitted through the PUSCH together with the data (TX OF UCI W / DATA). Rate effects, etc.) can be considered and extended.
- FIG. 14 is a block diagram illustrating a base station and a terminal.
- the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
- the processor 110 implements the proposed functions, processes and / or methods.
- the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
- the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
- the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
- the processor 210 implements the proposed functions, processes and / or methods.
- the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
- the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
- Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband and wireless signals.
- the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
- the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
- the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말 장치를 제공한다. 상기 방법은 다중 레이어(Multiple-layer) 전송을 지원하는 PUSCH를 통해 전송하려는 전송 블록의 개수를 결정하고, 상기 결정된 전송 블록의 개수에 따라 각 전송 블록에 포함될 UCI를 결정하고, 상기 UCI를 포함하는 각 전송 블록을 기지국으로 전송하는 것을 특징으로 한다.
Description
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 단말이 상향링크 제어 정보를 전송하는 방법 및 이러한 방법을 이용하는 장치에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 제공한다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
기존 LTE-A에서는 최대 5개의 반송파(셀)들을 집성하여 반송파 집성(Carrier Aggregation: CA)를 제공하였으나, 장래의 무선통신 시스템에서는 최대 32개의 반송파(셀)들을 집성하는 eCA(enhanced CA)도 고려하고 있다. eCA는 대규모(massive) CA라 칭할 수도 있다.
이러한 eCA 상황에서는 단말이 전송해야 하는 상향링크 제어 정보 예를 들어, 채널 상태 정보(channel state information: CSI)나 ACK/NACK (acknowledgement/not-acknowledgement)의 양이 증가할 수 있다.
증가한 상향링크 제어 정보를 효율적으로 보고할 수 있는 방법 및 장치가 필요하다.
무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말 장치를 제공하고자 한다.
일 측면에서, 무선통신 시스템에서 단말(User Equipment: UE)의 상향링크 제어 정보 (Uplink Control Information: UCI) 전송 방법을 제공한다. 상기 방법은 다중 레이어(Multiple-layer) 전송을 지원하는 물리 상향링크 공유 채널(physical uplink shared channel: PUSCH)를 통해 전송하려는 전송 블록(transport block: TB)의 개수를 결정하고, 상기 결정된 전송 블록의 개수에 따라 각 전송 블록에 포함될 UCI를 결정하고, 상기 UCI를 포함하는 각 전송 블록을 기지국으로 전송하는 것을 특징으로 한다.
단말은 하나의 전송 블록을 상기 PUSCH의 2개 레이어들을 통해 전송하려는 경우, 전송하려는 UCI를 복제하고, 상기 전송하려는 UCI를 상기 2개 레이어들 중 제1 레이어에 맵핑하고 상기 복제한 UCI를 제2 레이어에 맵핑한 후 전송할 수 있다.
상기 전송하려는 UCI는 ACK/NACK(acknowledgement/not-acknowledgement) 정보 및 채널 상태 정보(channel state information) 중 적어도 하나를 포함할 수 있다.
상기 채널 상태 정보는 랭크 지시자(rank indicator: RI), 채널 품질 지시자(channel quality indicator: CQI), 프리코딩 행렬 지시자(precoding matrix index: PMI) 중 적어도 하나를 포함할 수 있다.
2개의 전송 블록들을 상기 PUSCH를 통해 전송하려는 경우, ACK/NACK (acknowledgement/not-acknowledgement) 정보 및 랭크 지시자 중 적어도 하나는, 상기 2개의 전송 블록들 중 제1 전송 블록에 포함되고, 채널 품질 지시자 및 프리코딩 행렬 지시자 중 적어도 하나는 상기 2개의 전송 블록들 중 제2 전송 블록에 포함될 수 있다.
상기 제2 전송 블록은 상기 제1 전송 블록에 비해 더 높은 변조 차수(modulation order)로 변조되는 전송 블록일 수 있다.
상기 PUSCH에서는 데이터 전송 없이 상기 UCI만 전송될 수 있다.
상기 기지국으로부터 하향링크 제어 정보(downlink control information: DCI) 포맷을 수신하되, 상기 DCI 포맷이 특정 DCI 포맷인 경우에만 상기 PUSCH에서 데이터 전송 없이 상기 UCI만 전송될 수 있다.
상기 단말에게 설정된 셀의 개수가 임계값보다 많은 경우에 한해 상기 PUSCH에서 데이터 전송 없이 상기 UCI만 전송될 수 있다.
다른 측면에서 제공되는 단말은, 무선신호를 송수신하는 RF부 및 상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 다중 레이어(Multiple-layer) 전송을 지원하는 물리 상향링크 공유 채널(physical uplink shared channel: PUSCH)를 통해 전송하려는 전송 블록(transport block: TB)의 개수를 결정하고, 상기 결정된 전송 블록의 개수에 따라 각 전송 블록에 포함될 UCI를 결정하고, 상기 UCI를 포함하는 각 전송 블록을 기지국으로 전송하는 것을 특징으로 한다.
단말이 전송하려는 전송 블록 또는 코드워드의 개수에 따라 적절한 전송 방법을 선택할 수 있다. 하나의 전송 블록을 전송하려는 경우에는 상기 전송 블록에 포함된 상향링크 제어 정보를 복수의 레이어에 동일하게 맵핑하여 반복 전송의 효과가 나도록 한다. 2개의 전송 블록을 전송하려는 경우에는 상향링크 제어 정보의 종류, 중요도에 따라 상기 2개의 전송 블록에 모두 포함시키거나 상기 2개의 전송 블록 중 하나에만 포함시켜 전송의 신뢰성도 높이고 자원 사용의 효율성도 높일 수 있다.
도 1은 3GPP LTE/LTE-A에서 무선 프레임의 구조를 나타낸다.
도 2는 하나의 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3은 상향링크 서브프레임의 구조를 나타낸다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 EPDCCH를 예시한다.
도 6은 기존의 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 7은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 예시한다.
도 8은 PUSCH 처리 과정을 나타낸다.
도 9는 [제안 방법 #1]에 의한 단말의 동작을 나타낸다.
도 10은 제안 방법#2에 따른 단말 동작을 나타낸다.
도 11은 예시#2-1-1에 따른 단말 동작을 나타낸다.
도 12는 예시#2-2-1에 따른 단말 동작을 나타낸다.
도 13은 단말의 UCI 전송 방법의 다른 예를 나타낸다.
도 14는 기지국 및 단말을 나타내는 블록도이다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA(Evolved-UMTS Terrestrial Radio Access)를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. 설명을 명확하게 하기 위해, LTE-A 시스템에 적용되는 상황을 가정하여 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 3GPP LTE/LTE-A에서 무선 프레임의 구조를 나타낸다.
도 1을 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(Transmission Time Interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 상기 무선 프레임의 구조는 일 예에 불과하다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수는 다양하게 변경될 수 있다.
도 2는 하나의 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
슬롯은 하향링크 슬롯과 상향링크 슬롯이 있다. 하향링크 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함한다. OFDM 심벌은 특정 시간 구간을 나타내는 것이며 전송 방식에 따라 SC-FDMA 심벌이라 칭할 수도 있다. 하향링크 슬롯은 주파수 영역에서 NRB개의 자원블록(RB; Resource Block)을 포함한다. 자원블록은 자원 할당 단위로 시간 영역에서 하나의 슬롯, 주파수 영역에서 복수의 연속하는 부반송파(subcarrier)를 포함한다.
하향링크 슬롯에 포함되는 자원블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB은 6 내지 110 중 어느 하나일 수 있다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element, RE)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되어 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, 노멀 CP(normal cyclic prifix)의 경우 OFDM 심벌의 수는 7이고, 확장된 CP(extended cyclic prefix)의 경우 OFDM 심벌의 수는 6이다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 3은 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 데이터가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단말은 설정에 따라 PUCCH와 PUSCH를 동시에 전송하지 않거나, 동시에 전송할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티(diversity) 이득을 얻을 수 있다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 ACK/NACK(HARQ-ACK이라고 표기하기도 함), 하향링크 채널 상태를 나타내는 CSI(Channel State Information), 상향링크 무선 자원 할당 요청인 SR(Scheduling Request) 등이 있다. CSI에는 프리코딩 행렬을 지시하는 PMI(precoding matrix index or precoding matrix indicator), 단말이 선호하는 랭크 값을 나타내는 RI(rank indicator), 채널 상태를 나타내는 CQI(channel quality indicator) 등이 있다. PMI, RI는 MIMO(multi-input multi-output) 동작을 지원하기 위해 단말이 보고하는 CSI라 할 수 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block: TB)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터와 상향링크 제어 정보(uplink control information: UCI)가 다중화되어(multiplexed) 전송될 수도 있다. 즉, UL-SCH를 위한 전송 블록과 UCI가 다중화된 것일 수 있다. 상기 UCI는 예를 들어, CQI, PMI, RI, ACK/NACK 중 적어도 하나일 수 있다. 또는 PUSCH에서 UCI만 전송될 수도 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 노멀 CP에서 7개(확장 CP에서는 6개)의 OFDM 심벌을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심벌들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. PDSCH는 기지국 또는 노드가 단말에게 데이터를 전송하는 채널을 의미한다.
제어 영역에서 전송되는 제어채널에는 PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel), PDCCH(Physical Downlink Control Channel)가 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 개수(즉, 제어영역의 크기)에 관한 정보인 CFI(Control Format Indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. PCFICH는 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(acknowledgement)/ NACK(not-acknowledgement) 신호를 나른다. 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH는 하향링크 제어정보(Downlink Control Information: DCI)를 전송하는 제어 채널이다. DCI는 PDSCH의 자원 할당(이를 하향링크 그랜트(downlink grant: DL 그랜트)라고도 한다), PUSCH(physical uplink shared channel)의 자원 할당(이를 상향링크 그랜트(uplink grant: UL 그랜트)라고도 한다), 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
도 5는 EPDCCH를 예시한다.
도 5를 참조하면, EPDCCH는, 시간 영역에서 보면 기존의 제어 영역 다음에 위치할 수 있다. 예를 들어, 서브프레임의 첫 3개의 OFDM 심벌에서 기존의 제어 영역이 전송된다면 상기 3개의 OFDM 심벌 다음에 위치하는 OFDM 심벌들에 EPDCCH가 위치할 수 있다. 주파수 영역에서 보면, 기존의 제어 영역과 EPDCCH는 일치할 수도 있고 서로 다르게 설정될 수도 있다. 예컨대, PDCCH는 전 시스템 대역에서 전송되는데 반해, EPDCCH는 특정 단말에 대하여 전송되는 PDSCH와 동일한 주파수 대역에서만 전송될 수 있다. 도 5에서는 기존의 제어 영역의 일부 주파수 대역에서만 EPDCCH가 전송되는 예를 나타내었다. EPDCCH에서는 개선된 단말(advanced UE)을 위한 제어 정보가 전송될 수 있다. EPDCCH에서는 PDSCH의 복조를 위해 전송되는 참조 신호가 전송될 수 있다.
<반송파 집성(carrier aggregation: CA)>
이제 반송파 집성에 대해 설명한다.
도 6은 기존의 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 6을 참조하면, 단일 반송파 시스템에서는 상향링크와 하향링크에 하나의 반송파만을 단말에게 지원한다. 반송파의 대역폭은 다양할 수 있으나, 단말에게 할당되는 반송파는 하나이다. 반면, 반송파 집성(carrier aggregation, CA) 시스템에서는 단말에게 복수의 요소 반송파(DL CC A 내지 C, UL CC A 내지 C)가 할당될 수 있다. 요소 반송파(component carrier: CC)는 반송파 집성 시스템에서 사용되는 반송파를 의미하며 반송파로 약칭할 수 있다. 예를 들어, 단말에게 60MHz의 대역폭을 할당하기 위해 3개의 20MHz의 요소 반송파가 할당될 수 있다.
반송파 집성 시스템은 집성되는 반송파들이 연속한 연속(contiguous) 반송파 집성 시스템과 집성되는 반송파들이 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다.
1개 이상의 요소 반송파를 집성할 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
무선 통신 시스템의 시스템 주파수 대역은 복수의 반송파 주파수(Carrier-frequency)로 구분된다. 여기서, 반송파 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 이하에서 셀(cell)은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(CA)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍으로 존재할 수 있다.
특정 셀을 통하여 패킷(packet) 데이터의 송수신이 이루어지기 위해서는, 단말은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC(media access control) 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 단말은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, 단말은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다.
프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, 단말이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다.
세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고 추가적인 무선 자원을 제공하는데 사용된다.
서빙 셀은 반송파 집성이 설정되지 않거나 반송파 집성을 제공할 수 없는 단말인 경우에는 프라이머리 셀로 구성된다. 반송파 집성이 설정된 경우 서빙 셀이라는 용어는 단말에게 설정된 셀을 나타내며 복수로 구성될 수 있다. 하나의 서빙 셀은 하나의 하향링크 요소 반송파 또는 {하향링크 요소 반송파, 상향링크 요소 반송파}의 쌍으로 구성될 수 있다. 복수의 서빙 셀은 프라이머리 셀 및 모든 세컨더리 셀들 중 하나 또는 복수로 구성된 집합으로 구성될 수 있다.
PCC(primary component carrier)는 프라이머리 셀에 대응하는 요소 반송파(component carrier: CC)를 의미한다. PCC는 단말이 여러 CC 중에 초기에 기지국과 접속(Connection 혹은 RRC Connection)을 이루게 되는 CC이다. PCC는 다수의 CC에 관한 시그널링을 위한 연결(Connection 혹은 RRC Connection)을 담당하고, 단말과 관련된 연결정보인 단말문맥정보(UE Context)를 관리하는 특별한 CC이다. 또한, PCC는 단말과 접속을 이루게 되어 RRC 연결상태(RRC Connected Mode)일 경우에는 항상 활성화 상태로 존재한다. 프라이머리 셀에 대응하는 하향링크 요소 반송파를 하향링크 주요소 반송파(DownLink Primary Component Carrier, DL PCC)라 하고, 프라이머리 셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다.
SCC(secondary component carrier)는 세컨더리 셀에 대응하는 CC를 의미한다. 즉, SCC는 PCC 이외에 단말에 할당된 CC로서, SCC는 단말이 PCC 이외에 추가적인 자원할당 등을 위하여 확장된 반송파(Extended Carrier)이며 활성화 혹은 비활성화 상태로 나뉠 수 있다. 세컨더리 셀에 대응하는 하향링크 요소 반송파를 하향링크 부요소 반송파(DL Secondary CC, DL SCC)라 하고, 세컨더리 셀에 대응하는 상향링크 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다.
프라이머리 셀과 세컨더리 셀은 다음과 같은 특징을 가진다.
첫째, 프라이머리 셀은 PUCCH의 전송을 위해 사용된다. 둘째, 프라이머리 셀은 항상 활성화되어 있는 반면, 세컨더리 셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다. 셋째, 프라이머리 셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 재연결이 트리거링(triggering)된다. 넷째, 프리이머리 셀은 보안키(security key) 변경이나 RACH(Random Access CHannel) 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 다섯째, NAS(non-access stratum) 정보는 프라이머리 셀을 통해서 수신한다. 여섯째, FDD 시스템의 경우 언제나 프라이머리 셀은 DL PCC와 UL PCC가 쌍(pair)으로 구성된다. 일곱째, 각 단말마다 다른 요소 반송파(CC)가 프라이머리 셀로 설정될 수 있다. 여덟째, 프라이머리 셀은 핸드오버, 셀 선택/셀 재선택 과정을 통해서만 교체될 수 있다. 신규 세컨더리 셀의 추가에 있어서, 전용(dedicated) 세컨더리 셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다.
서빙 셀을 구성하는 요소 반송파는, 하향링크 요소 반송파가 하나의 서빙 셀을 구성할 수도 있고, 하향링크 요소 반송파와 상향링크 요소 반송파가 연결 설정되어 하나의 서빙 셀을 구성할 수 있다. 그러나, 하나의 상향링크 요소 반송파만으로는 서빙 셀이 구성되지 않는다.
요소 반송파의 활성화/비활성화는 곧 서빙 셀의 활성화/비활성화의 개념과 동등하다. 예를 들어, 서빙 셀1이 DL CC1으로 구성되어 있다고 가정할 때, 서빙 셀1의 활성화는 DL CC1의 활성화를 의미한다. 만약, 서빙 셀2가 DL CC2와 UL CC2가 연결 설정되어 구성되어 있다고 가정할 때, 서빙 셀2의 활성화는 DL CC2와 UL CC2의 활성화를 의미한다. 이러한 의미에서, 각 요소 반송파는 서빙 셀(cell)에 대응될 수 있다.
하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 또한, CC들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)과 같이 구성될 수도 있다.
상술한 바와 같이 반송파 집성 시스템에서는 단일 반송파 시스템과 달리 복수의 요소 반송파(component carrier, CC), 즉, 복수의 서빙 셀을 지원할 수 있다.
이러한 반송파 집성 시스템은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 지원할 수 있다.
도 7은 비교차 반송파 스케줄링 및 교차 반송파 스케줄링을 예시한다.
비교차 반송파 스케줄링(non-cross carrier scheduling)은 종래의 단일 셀 내에서의 스케줄링 방법을 복수개의 셀들에 단순 확장하여 적용하는 것이라 할 수 있다. PDCCH에 의하여 스케줄링되는 PDSCH가 있을 때, 상기 PDCCH/PDSCH는 동일 요소 반송파를 통해 전송되며, 상기 PDCCH는 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파를 통해 전송되는 PUSCH를 스케줄링할 수 있다. 비교차 반송파 스케줄링은 셀프 스케줄링(Self Scheduling)이라 칭할 수도 있다.
교차 반송파 스케줄링(cross-carrier scheduling: CCS)은 특정 요소 반송파를 통해 전송되는 PDCCH를 통해 다른 요소 반송파를 통해 전송되는 PDSCH의 자원 할당 및/또는 상기 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파 이외의 다른 요소 반송파를 통해 전송되는 PUSCH의 자원 할당을 할 수 있는 스케줄링 방법이다. 즉, PDCCH와 PDSCH가 서로 다른 하향링크 CC를 통해 전송될 수 있고, UL 그랜트를 포함하는 PDCCH가 전송된 하향링크 CC와 기본적으로 링크된 상향링크 CC가 아닌 다른 상향링크 CC를 통해 PUSCH가 전송될 수 있다. 이처럼 교차 반송파 스케줄링을 지원하는 시스템에서는 PDCCH가 제어정보를 제공하는 PDSCH/PUSCH가 어떤 DL CC/UL CC를 통하여 전송되는지를 알려주는 반송파 지시자가 필요하다. 이러한 반송파 지시자를 포함하는 필드를 이하에서 반송파 지시 필드(carrier indication field, CIF)라 칭한다.
교차 반송파 스케줄링을 지원하는 반송파 집성 시스템은 종래의 DCI(downlink control information) 포맷에 반송파 지시 필드(CIF)를 포함할 수 있다. 교차 반송파 스케줄링을 지원하는 시스템 예를 들어 LTE-A 시스템에서는 기존의 DCI 포맷(즉, LTE에서 사용하는 DCI 포맷)에 CIF가 추가되므로 3 비트가 확장될 수 있고, PDCCH 구조는 기존의 코딩 방법, 자원 할당 방법(즉, CCE 기반의 자원 맵핑)등을 재사용할 수 있다.
이제 본 발명에 대해 설명한다.
먼저, PUSCH 처리 과정에 대해 설명한다.
도 8은 PUSCH 처리 과정을 나타낸다.
도 8을 참조하면, 코드워드(codeword)는 스크램블링(scrambling)을 거쳐 변조 맵퍼(modulation mapper)에 의하여 복소 값을 가지는 변조 심볼로 변조된다. 여기서, 코드워드는 전송 블록(transport block: TB)과 등가의 개념으로 해석될 수 있다. 예컨대, 전송 블록은 전송하고자 하는 정보를 포함하는 미리 정해진 개수의 비트들을 지칭할 수 있고, 코드워드는 전송 블록을 이루는 상기 비트들을 오류에 강하도록 코딩한 결과일 수 있다. 보다 구체적으로 전송 블록을 이루는 비트들에 CRC(cyclic redundancy check) 비트들을 추가한 후 코드 블록으로 분할한 후 인코딩이 수행될 수 있다.
코드워드를 구성하는 비트들은 변조 맵퍼에 의하여 QPSK(Quadrature Phase Shift Keying), 16QAM(16 Quadrature Amplitude Modulation), 64QAM 중 어느 하나의 방식으로 변조되어 변조 심볼들이 될 수 있다. 각 코드워드에 대한 변조 심볼들은 레이어 맵퍼(layer mapper)에 의하여 하나 또는 2개의 레이어에 맵핑된다. 레이어는 공간 다중화(spatial multiplexing)에 의하여 생성된 서로 다른 스트림(stream)들에 사용되는 용어로, 어떤 심볼이 어떤 전송 안테나 포트에 맵핑되는지로 기술될 수 있다. 전송의 랭크(rank)란 전송되는 레이어의 개수를 의미한다. 1 보다 큰 랭크에 대해, 2개의 코드워드들이 전송될 수 있다.
다음 표는 코드워드가 레이어에 어떻게 맵핑되는지를 예시한다.
[표 1]
상기 표에서 d(q)(0),..., d(q)(M(q)
symb
-1)는 코드워드 q에 대한 복소 값을 가지는 변조 심볼들을 나타낸다. d(q)(0),..., d(q)(M(q)
symb
-1)는 x(i)=[x(0)(i) ... x(v-1)(i)]T에 맵핑된다. v는 레이어의 개수를 나타낸다. Mlayer
symb는 레이어 별 변조 심볼의 개수를 나타낸다. 즉, 전송 블록과 레이어 간의 맵핑은 1) 하나의 전송 블록(CW)가 하나의 레이어에 맵핑되거나, 2) 하나의 전송 블록(CW)가 2개 레이어들에 맵핑되거나, 3) 2개의 전송 블록(CW)들이 2개의 레이어들에 맵핑되거나, 4) 2개의 전송 블록(CW)들이 3개의 레이어들에 맵핑되거나, 5) 2개의 전송 블록(CW)들이 4개의 레이어들에 맵핑되는 것으로 정의되어 있다.
각 레이어에 맵핑된 복소 값을 가지는 심볼은 변환 프리코더(transform percoder)에 의하여 변환 프리코딩되고, 프리코딩을 거쳐 자원 요소 맵퍼(Resource element mapper)에 의하여 각 자원 요소(RE)에 맵핑된 후, SC-FDMA 신호 생성기(SC-FDMA signal gen)에 의하여 SC-FDMA 신호로 생성된 후 안테나 포트를 통해 전송된다.
본 발명에서는 많은 개수의 셀들(예를 들어, 6개 이상의 셀들)이 반송파 집성 기법(CA)으로 단말에게 설정된 경우, PUSCH의 복수 개의 레이어(LAYER)를 통해서 UCI 정보를 효율적으로 전송하는 방법을 제안한다.
이하에서는 설명의 편의를 위해서, 면허 대역 기반의 셀을 "LCELL"이라 하고, 비면허 대역(LTE-U) 기반의 셀을"UCELL"로 명명한다.
해당 UCELL에서 비주기적으로 확보/구성되는 자원 구간을 "유보된 자원 주기 (RESERVED RESOURCE PERIOD: RRP)"라 명명한다.
RRP 구간의 하향링크 서브프레임(DOWNLINK SUBFRAME: DL SF) 즉, 하향링크 용도로 지정된 서브프레임 상에서 전송되는 PDSCH 관련 제어 정보 채널 또는 RRP 구간의 상향링크 서브프레임(UPLINK SUBFRAME: UL SF) 즉, 상향링크 용도로 지정된 서브프레임 상에서 전송되는 PUSCH 관련 제어 정보 채널은, 사전에 정의된 LCELL로부터 전송되도록 설정될 수 있다. 즉, 교차 반송파 스케줄링(CROSS CARRIER SCHEDULING: CCS)될 수 있다. 또는 상기 제어 정보 채널은 동일 UCELL로부터 전송 될 수 있다. 즉, 셀프 스케줄링(SELF-SCHEDULING: SFS)될 수도 있다.
RRP 구간 상에서의 PDSCH 수신 관련 하향링크 제어 정보 채널은, 하나의 하향링크 제어 정보 채널이 동일 (혹은 특정) 시점(서브프레임)에서 수신되는 하나의 PDSCH을 스케줄링하는 형태로 구현될 수 있으며, 이를 단일 서브프레임 스케줄링 (SINGLE SUBFRAME SCHEDULING: SSFS 라 칭한다. 또는 하나의 하향링크 제어 정보 채널이 동일 (혹은 특정) 시점(서브프레임)에서 수신되는 하나의 PDSCH 뿐만 아니라 다른 시점에서 수신되는 사전에 정의된 (혹은 시그널링된) 개수의 PDSCH들을 스케줄링하는 형태로 구현될 수도 있으며, 이를 다중 서브프레임 스케줄링(MULTI-SUBFRAME SCHEDULING: MSFS라 칭한다.
UCELL 상의 RRP 구간은 반송파 센싱(CARRRIER SENSING: CS) 결과에 의존하여 비주기적 혹은 불연속적으로 구성되는 자원일 수 있다. 일례로 UCELL에서의 RRP 구간은, 1) 단말이 UCELL에 대한 (시간/주파수) 동기 동작을 수행하거나 기지국으로부터 이를 위한 동기 신호(예: PSS(primary synchronization signal), SSS(secondary synchronization signal))가 전송된다고 가정되는 구간, 2) 단말이 UCELL에 대한 CSI 측정 동작을 수행하거나 기지국으로부터 이를 위한 참조 신호 (예: CRS, CSI-RS)가 전송된다고 가정되는 구간, 3)단말이 UCELL에서의 데이터 송신(/수신) 관련 DCI 검출 동작을 수행하는 구간, 4)단말이 UCELL에서 수신되는 신호에 대해 (일시적인 혹은 임시적인) 버퍼링 동작을 수행하는 구간 중 적어도 하나로 정의될 수 있다.
이하에서는 설명의 편의를 위해 3GPP LTE/LTE-A 시스템을 기반으로 제안 방식을 설명한다. 하지만, 본 제안 방식이 적용되는 시스템의 범위는 3GPP LTE/LTE-A 시스템에 제한되지 않고 다른 시스템으로도 확장 가능하다.
[제안 방법#1] 하기 일부 혹은 모든 조건들이 만족될 경우, 데이터 전송 없이 상향링크 제어 정보(UPLINK CONTROL INFORMATION: UCI)가 복수 개의 레이어들 기반의 PUSCH를 통해서 전송되도록 규칙이 정의될 수 있다. 이 때, UCI는 예를 들어, CQI/PMI/RI, HARQ-ACK 중 적어도 하나를 포함할 수 있다.
설명의 편의를 위해서, 데이터 전송 없이 UCI가 복수 개의 레이어들 기반의 PUSCH를 통해서 전송되는 UCI 전송 동작 또는 전송 모드를 "ML_UCIWODATA"로 명명한다. 여기서, 일례로, 본 발명에서 '전송 블록: TB'의 용어는 '코드워드: CODE WORD (CW)'로 (재)해석될 수도 있다.
도 9는 [제안 방법 #1]에 의한 단말의 동작을 나타낸다.
도 9를 참조하면, 단말은 데이터 전송 없이 UCI를 다중 레이어 전송을 지원하는 PUSCH를 통해 전송하기 위한 조건을 판단한다(S110).
단말은 상기 조건을 만족할 경우, 데이터 전송 없이 UCI를 다중 레이어 전송을 지원하는 PUSCH를 통해 전송한다(S120). 즉, 종래에는 데이터 전송 없이 UCI를 PUSCH로 전송할 경우, 단일 레이어 전송을 하거나, 또는 데이터 전송과 함께 UCI를 PUSCH로 전송할 경우, 데이터의 전송 레이어 각각에 데이터와 함께 UCI를 전송하였으나, 본 발명에서는 특정 조건을 만족하면 데이터 전송 없이 UCI를 다중 레이어 전송을 지원하는 PUSCH를 통해 전송할 수 있다.
예를 들어, 단말은 다음 조건들 중 적어도 하나를 만족할 경우에 데이터 전송 없이 UCI를 다중 레이어 전송을 지원하는 PUSCH를 통해 전송할 수 있다.
(조건#1-1) 사전에 정의된 DCI 포맷을 수신한 경우.
상기 DCI 포맷은 예를 들어, DCI 포맷 4일 수 있다. DCI 포맷 4는 다중 안테나 포트 전송 모드 기반의 PUSCH를 스케줄링하기 위해 사용되는 DCI 포맷이다. DCI 포맷 4는 각 전송 블록에 대하여 변조, 코딩 기법 및 리던던시 버전을 알려주는 필드(이 필드를 '변조 및 코딩 기법 및 리던던시 버전'(Modulation and coding scheme and redundancy version) 필드, 또는 간단히 MCS 필드라 하고, IMCS를 알려줌)를 제공할 수 있다. 또한, 프리코딩 정보 및 레이어의 개수를 알려주는 필드(이 필드를 'Precoding information and number of layers'필드라고 함)도 제공할 수 있다.
(조건#1-2) 사전에 정의되거나 시그널링된 개수의 전송 블록(TB)이 'ENABLED'된 경우. 예를 들어, 1 또는 2개의 TB가 가용한 경우일 수 있다.
단말은 MCS 필드 (IMCS)의 값에 기반하여 PUSCH의 변조 차수(modulation order: Q'm이라 표시)을 결정할 수 있다.
다음 표는 MCS 필드 (IMCS)의 값에 따른 변조 차수(Q'm), 전송 블록 크기를 나타내는 인덱스(ITBS), 리던던시 버전(redundancy version: rvidx )의 예를 나타낸다.
[표 2]
단말은 수신한 DCI 포맷(예컨대, DCI 포맷 4) 상의 특정 TB 관련 'MCS 필드 정보' 그리고/혹은 'RA (RESOURCE BLOCK ASSIGNMENT) 필드 정보'가 아래 모든 혹은 일부 조건을 만족시키지 않으면, 해당 TB는 'ENABLED'된 것으로 간주할 수 있다.
1) (조건#1-2-1) MCS 필드 (IMCS)가 '0'의 값을 가리키고, RA 필드를 통해 할당된 물리적 자원 블록(PRB) 개수가 '1' 보다 큰 값을 가리키는 경우,
2) (조건#1-2-2) MCS 필드 (IMCS)가 '28'의 값을 가리키고, RA(RESOURCE ALLOCATION: 자원 할당) 필드를 통해 할당된 PRB 개수가 '1'의 값을 가리키는 경우.
(조건#1-3) 각각의 TB 관련 MCS 필드 (IMCS)가 사전에 정의되거나 시그널링된 값을 가리키는 경우. 예를 들어, 각각의 TB 관련 MCS 필드의 값이 상기 표 2 상에서 '유보된(RESERVED)'29, 30, 또는 31으로 지정될 수 있다.
(조건#1-4) '전송 레이어의 개수(NUMBER OF TRANSMISSION LAYERS: NUM_TXLAYER)'가 사전에 정의되거나 시그널링된 개수(예를 들어, 2) 혹은 그 이상인 경우.
예를 들어, 수신된 DCI 포맷 상의 '프리코딩 정보 및 레이어 개수(PRECODING INFORMATION AND NUMBER OF LAYERS)' 필드의 값이 사전에 정의되거나 시그널링된 개수 혹은 그 이상의 NUM_TXLAYER를 가리키는 경우가 해당될 수 있다. 상기 필드는 3 비트 또는 6 비트일 수 있다.
또는, 수신된 DCI 포맷 상의 '프리코딩 정보 및 레이어 개수(PRECODING INFORMATION AND NUMBER OF LAYERS)' 필드가 '유보된 상태(RESERVED STATE)'를 가리키는 경우가 해당될 수 있다.
'유보된 상태(RESERVED STATE)'가 가리키는 'TPMI(TRANSMITTED PRECODING MATRIX INDICATOR)' 정보 그리고/혹은 'NUM_TXLAYER' 정보는 기지국이 단말에게 사전에 정의된 시그널링(예를 들어, RRC 메시지와 같은 상위 계층 시그널링 혹은 물리 계층 시그널링)을 통해 알려주거나, 혹은 고정된 값일 수도 있다.
(조건#1-5) 수신된 DCI 포맷 상의 1비트 또는 2비트인'CSI 요청 비트(CSI REQUEST BIT)' 필드가 사전에 정의되거나 시그널링된 개수 혹은 그 이상의 셀들 그리고/혹은 CSI 프로세스 관련 A-CSI 리포트를 트리거링하는 경우 그리고/혹은 RA 필드를 통해 할당된 PRB 개수가 사전에 정의되거나 시그널링된 개수(예를 들어, 20, 4) 보다 작거나 같은(혹은 큰) 경우.
(조건#1-6) '안테나 포트의 개수(NUMBER OF ANTENNA PORTS: NUM_ANTPT)' 또는 물리적인 안테나 개수가 사전에 정의되거나 시그널링된 임계값보다 같거나 큰 경우, 혹은 사전에 정의되거나 시그널링된 값인 경우. 해당 임계값은 예컨대, '2'로 지정될 수 있다.
(조건#1-7) 다중 안테나 포트 전송 모드(MUTI-ANTENNA PORT TRANSMISSION MODE, 즉, 상향링크 MIMO 모드)가 설정된 경우 또는 상향링크 MIMO 모드 동작 관련 능력(CAPABILITY)이 있는 경우.
(조건#1-8) 사전에 정의되거나 시그널링된 임계값 보다 많은 개수의 셀들이 반송파 집성(CA)으로 설정된 경우(혹은 대규모 CA 모드(MASSIVE CA MODE)가 설정된 경우).
상기 임계값은 '5' (혹은 '8')로 설정될 수 있다. 그리고/혹은 사전에 정의되거나 시그널링된 특정 TDD UL-DL 설정(예: TDD UL-DL 설정 #5)로 설정된 셀은 제외될 수 있다.
(조건#1-9) 전송될 UCI 비트들의 크기(/양)나 또는 HARQ-ACK 비트들의 크기(/양), 그리고/혹은 CSI(예컨대, RI/CQI/PMI)의 크기(/양)) 또는 전송될 CSI 리포트 개수 혹은 CSI 리포트에 관련된 CSI 프로세스의 개수가 사전에 정의되거나 시그널링된 임계값 보다 큰 경우.
일례로, 상기 조건은 UCI 정보 전송(혹은 HARQ-ACK 정보 전송 그리고/혹은 CSI 정보 전송) 관련된 '코딩율(CODING RATE)'가 사전에 정의되거나 시그널링된 임계값 보다 큰 경우로 해석 가능하다. 일례로, '코딩율'은 UCI 정보 전송 (혹은 HARQ-ACK 정보 전송 그리고/혹은 CSI 정보 전송) 관련 '스케줄링 받은 대역(SCHEDULED BANDWIDTH) 또는 자원 크기' 그리고/혹은 전송될 UCI 비트들의 크기(/양) (혹은 HARQ-ACK 비트들의 크기(/양) 그리고/혹은 CSI(예를 들어, RI/CQI/PMI)의 크기(/양)) (혹은 전송될 CSI 리포트 개수 혹은 (CSI 리포트 관련) CSI 프로세스 개수) 등에 따라 (동적으로) 변경될 수 있다.
(조건#1-10) 사전에 정의된 DCI 포맷 상의 특정 필드가 사전에 정의되거나 시그널링된 특정 값을 가리킬 경우.
상기 특정 필드는 예컨대,'NDI 필드(예: 1비트)' 혹은 'UL INDEX(/DL INDEX) 필드(예: 2비트)'일 수 있다. 'NDI 필드'가 '1'의 값을 가리키면 다중 레이어 기반의 UCI 전송이 트리거링되고, 'NDI 필드'가 '0'의 값을 가리키면 단일 레이어(그리고/혹은 1 TB) 기반의 UCI 전송이 트리거링되는 것으로 해석될 수 있다.
또는 상기 특정 필드는 추가적으로 정의된 '다중 레이어 기반의 UCI 전송 트리거링 필드(예: 1 비트)'일 수 있다.
일례로, 'CSI 요청 비트 필드(예: 2 비트, 1 비트)'가 가리키는 일부 (혹은 모든) 상태에 '다중 레이어 기반의 UCI 전송(모드)'을 (RRC 시그널링을 통해) 설정(/지시/링크)해놓고, 만약 수신된 'CSI 요청 비트 필드'가 해당 상태를 가리킨다면, '다중 레이어 기반의 UCI 전송'을 수행하도록 규칙이 정의될 수도 있다.
[제안 방법#2]
도 10은 전술한 제안 방법#2에 따른 단말 동작을 나타낸다.
도 10을 참조하면, 단말은 다중 레이어 전송을 지원하는 PUSCH를 통해 전송하려는 전송 블록(TB)의 개수를 결정하고(S210), 결정된 전송 블록의 개수에 따라 각 전송 블록에 포함될 UCI을 결정한다(S220).
예를 들어, 데이터 전송 없이 UCI가 복수 개의 레이어들 기반의 PUSCH를 통해서 전송되는 UCI 전송 동작 즉, [제안 방법#1] 기반의 ML_UCIWODATA 동작은, 아래의 경우들에 적용될 수 있다.
(경우#2-1) [제안 방법#1]의 (조건#1-2)가 '1 개 이상의 TB(S)가 ENABLED된 경우' 혹은 '1 개의 TB가 ENABLED된 경우'로 정의된 경우, 만약 실제로 1 개의 TB만이 ENABLED되고, '프리코딩 정보 및 레이어 개수' 필드가 '2' 혹은 그 이상의 레이어 개수를 가리킬 때.
(경우#2-2) [제안 방법#1]의 (조건#1-2)가 '1 개 이상의 TB(S)가 ENABLED된 경우' 혹은 '2 개의 TB가 ENABLED된 경우'로 정의된 경우, 만약 실제로 2 개의 TB(S)이 ENABLED되고, '프리코딩 정보 및 레이어 개수' 관련 필드가 '2' 혹은 그 이상의 레이어 개수를 가리킬 때.
상기 (경우#2-1) 또는 (경우#2-2)에서 하기 일부 혹은 모든 규칙에 따라, ML_UCIWODATA 기반의 UCI 정보 전송이 수행되도록 설정될 수 있다. 여기서, 참고로, 현재 표준 규격에 따르면, 'TB(/CW)-TO-LAYER MAPPING' 관계가 '1 TB(/CW)-> 1 LAYER', '1 TB(/CW)-> 2 LAYER', '2 TB(/CW)-> 2 LAYER', '2 TB(/CW)-> 3 LAYER', '2 TB(/CW)-> 4 LAYER'로 정의되어 있다.
(규칙#2-1) 전술한 (경우#2-1) 즉, 1 TB만이 실제로 ENABLED된 경우에서, 1 TB가 '2 레이어들'를 통해서 전송될 경우, 아래의 일부 혹은 모든 방법에 따라, UCI 전송이 수행될 수 있다.
(예시#2-1-1) '2 레이어들'을 통해서 맵핑/전송되는 UCI 정보(혹은 HARQ-ACK 정보 그리고/혹은 CSI(RI/CQI/PMI) 정보)가 동일할 수 있다. 이러한 전송 방법의 경우, 공간 다이버시티 효과를 얻을 수 있다.
특정 하나의 레이어에 맵핑/전송된 RI 정보 그리고/혹은 HARQ-ACK 정보 (그리고/혹은 CQI 정보 그리고/혹은 PMI 정보)는 다른 하나의 레이어 상에서도 반복하여 맵핑/전송되도록 규칙이 정의될 수 있다.
도 11은 전술한 예시#2-1-1에 따른 단말 동작을 나타낸다.
하나의 전송 블록(TB)을 2 레이어를 통해 전송하려는 경우, 단말은 상기 전송 블록에 포함된 UCI를 복제한다(S310). 단말은 상기 UCI를 제1 레이어에 맵핑하고, 상기 복제된 UCI를 제2 레이어에 맵핑한다(S320). 단말은 각 레이어에 맵핑된 UCI를 전송한다(S330). 예를 들어, 단말이 UCI(ACK/NACK 정보 및 CSI 정보 중 적어도 하나)를 2 레이어 전송을 지원하는 PUSCH를 통해 전송함에 있어서, 제1 레이어에서 전송하는 UCI와 제2 레이어에서 전송하는 UCI를 동일하게 하는 것이다. 즉, 각 레이어에서 동일한 UCI를 반복하여 전송하는 것이다.
(예시#2-1-2) 레이어 별로 맵핑/전송되는 UCI 정보 (혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보)가 일부 혹은 모두 상이할 수 있다.
사전에 정의된 시그널링(혹은 규칙)을 통해서, 레이어 별로 맵핑/전송되는 UCI 정보 (혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보) 관련 셀 타입 (예: LCELL, UCELL) 그리고/혹은 셀 그룹(CELL GROUP: CG) 인덱스 그리고/혹은 셀 인덱스 (그리고/혹은 CSI 프로세스 인덱스(/ID) 그리고/혹은 CSI 서브프레임 집합 인덱스)가 설정될 수 있다.
직접적인 (혹은 추가적인) 시그널링 없이 레이어 별 UCI 정보 (혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보) 맵핑/전송 규칙은 아래와 같이 정의될 수 있다.
예를 들어, 가장 낮은 인덱스(LOWEST INDEX)(또는 가장 높은 인덱스(HIGHEST INDEX))의 레이어부터 오름차순(혹은 내림차순)으로, (사전에 시그널링된 (혹은 정의된) 개수의) 상대적으로 높은 (혹은 낮은) 우선 순위의 CSI 리프토 관련 정보들이 맵핑/전송되도록 설정될 수 있다.
우선 순위는 1. 셀 그룹 인덱스-> CSI 리포팅 타입-> CSI 프로세스 인덱스(/ID)-> 셀 인덱스-> CSI 서브프레임 집합 인덱스 순서일 수 있다. 또는 2. CSI 리포팅 타입-> 셀 그룹 인덱스-> CSI 프로세스 인덱스(/ID)-> 셀 인덱스 -> CSI 서브프레임 집합 인덱스 순서일 수 있다. 또는 3. CSI 리포팅 타입-> CSI 프로세스 인덱스(/ID)-> 셀 그룹 인덱스 -> 셀 인덱스 -> CSI 서브프레임 집합 인덱스 (혹은 CSI 리포팅 타입-> CSI 프로세스 인덱스(/ID)-> 셀 인덱스 -> 셀 그룹 인덱스 -> CSI 서브프레임 집합 인덱스 혹은 CSI 리포팅 타입-> CSI 프로세스 인덱스(/ID)-> 셀 인덱스 -> CSI 서브프레임 집합 인덱스-> 셀 그룹 인덱스) 순서일 수 있다. 이는 셀 그룹 인덱스 관련한 파라미터가 삽입될 수 있는 후보 위치를 나타낼 수도 있다.
상대적으로 낮은 (혹은 높은) 셀 그룹 인덱스 그리고/혹은 셀 인덱스 그리고/혹은 CSI 서브프레임 집합 인덱스 그리고/혹은 CSI 프로세스 인덱스(/ID) 관련 CSI 리포트가 높은 우선 순위를 가지는 것으로 설정될 수 있다. 그리고/혹은 LCELL (혹은 UCELL) 관련 CSI 리포트가 UCELL (혹은 LCELL) 관련 CSI 리포트보다 높은 우선 순위를 가지거나 그리고/혹은 PUCCH 전송 셀 관련 CSI 리포트가 PUCCH를 전송하지 않는 셀 관련 CSI 리포트보다 높은 우선 순위를 가지는 것으로 설정될 수 있다.
예외적으로 특정 하나의 레이어에 맵핑/전송된 RI 정보 그리고/혹은 HARQ-ACK 정보는 다른 하나의 레이어 상에서도 (반복) 맵핑/전송될 수 있다. 반면에 CQI 정보 그리고/혹은 PMI 정보 맵핑/전송은 사전에 정의된 시그널링 (혹은 규칙)을 통해서 설정된 "레이어 별로 맵핑/전송되는 셀 타입(예: LCELL, UCELL) 그리고/혹은 셀 그룹 인덱스 그리고/혹은 셀 인덱스(그리고/혹은 CSI 프로세스 인덱스(/ID) 그리고/혹은 CSI 서브프레임 집합 인덱스)"를 따르도록 설정될 수도 있다.
(규칙#2-2) 전술한 (경우#2-2) 즉, 2 TB가 실제로 ENABLED된 경우에서, 특정 TB가 '1 레이어' 혹은 그 이상의 레이어 개수 (예: 2)를 통해서 전송되는 경우, 아래의 일부 혹은 모든 방법에 따라, UCI 전송이 수행될 수 있다.
(예시#2-2-1) HARQ-ACK 정보 그리고/혹은 RI 정보는 2 개의 TB(S)를 통해서 맵핑/전송되고, 반면에 CQI 정보 그리고/혹은 PMI 정보는 가장 높은 MCS (IMCS)의 TB를 통해서만 맵핑/전송되도록 규칙이 정의될 수 있다.
가장 높은 MCS (IMCS)를 가지는 TB 선택은 DCI 포맷에서 TB 별 MCS 값을 알려주는 경우에 유효하다. 또 다른 일례로, 사전에 정의된 시그널링(혹은 규칙)을 통해, 'RESERVED MCS INDEX' (예: 29, 30, 31)에 추가적인 MCS 값을 설정(/링크)해 놓을 수 있다.
특정 TB 관련 UCI 정보 (혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보) 맵핑/전송 규칙은 (규칙#2-1)을 따르도록 설정될 수 도 있다.
도 12는 예시#2-2-1에 따른 단말 동작을 나타낸다.
도 12를 참조하면, 단말은 2개의 전송 블록(TB)들을 전송하기로 판단한 경우(S410), ACK/NACK 정보 및/또는 RI 정보는 제1 전송 블록 및 제2 전송 블록에 모두 포함시키고, CQI 정보 및/또는 PMI 정보는 상기 제1, 2 전송 블록들 중 더 높은 변조 차수로 변조되는 전송 블록에만 포함시킨다(S420). 즉, ACK/NACK, RI와 같이 중요도가 상대적으로 높은 UCI는 2개의 전송 블록들 모두에 포함하여 전송함으로써 반복 전송의 효과가 나타나게 한다. CQI/PMI와 같이 중요도가 상대적으로 낮은 UCI는 변조 차수가 더 높은 전송 블록에서만 포함하여 전송함으로써 자원 활용도를 높인다. 단말은 2개의 전송 블록들을 레이어에 맵핑한 후 전송한다(S430).
(예시#2-2-2) 사전에 정의된 시그널링(혹은 규칙)을 통해서, TB(/레이어) 별로 맵핑/전송되는 UCI 정보(혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보) 관련 셀 타입(예: LCELL, UCELL) 그리고/혹은 셀 그룹 인덱스 그리고/혹은 셀 인덱스 (그리고/혹은 CSI 프로세스 인덱스(/ID) 그리고/혹은 CSI 서브프레임 집합 인덱스)가 설정될 수 있다.
일례로, 특정 TB(/레이어) 관련 UCI 정보 (혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보) 맵핑/전송 규칙은 (규칙#2-1)을 따르도록 설정될 수 있다.
또 다른 일례로, (예외적으로) HARQ-ACK 정보 그리고/혹은 RI 정보는 2 개의 TB(S)를 통해서 맵핑/전송되고, 반면 CQI 정보 그리고/혹은 PMI 정보 맵핑/전송은 사전에 정의된 시그널링 (혹은 규칙)을 통해서 설정된 "TB(/레이어) 별로 맵핑/전송되는 셀 타입(예: LCELL, UCELL) 그리고/혹은 셀 그룹 인덱스 그리고/혹은 셀 인덱스 (그리고/혹은 CSI 프로세스 인덱스(/ID) 그리고/혹은 CSI 서브프레임 집합 인덱스)"를 따르도록 설정될 수 도 있다.
(예시#2-2-3) 사전에 시그널링된 (혹은 정의된) 개수의 상대적으로 높은(혹은 낮은) 우선 순위(예를 들어, (예시#2-1-2)에 설명된 우선 순위 참조)의 CSI 리포트 관련 정보들이 가장 높은 MCS (IMCS)의 TB를 통해서 맵핑/전송되고, (사전에 시그널링된 (혹은 정의된) 개수의) 상대적으로 낮은 (혹은 높은) 우선 순위의 CSI 리포트 관련 정보들이 나머지 TB를 통해서 맵핑/전송되도록 규칙이 정의될 수 있다.
특정 TB(/레이어) 관련 UCI 정보 (혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보) 맵핑/전송 규칙은 (규칙#2-1)을 따르도록 설정될 수 있다.
또 다른 일례로, (예외적으로) HARQ-ACK 정보 그리고/혹은 RI 정보는 2 개의 TB(S)를 통해서 맵핑/전송되고, 반면에 (사전에 시그널링된 (혹은 정의된) 개수의) 상대적으로 높은 (혹은 낮은) 우선 순위의 CQI 정보 그리고/혹은 PMI 정보들은 가장 높은 MCS (IMCS)의 TB를 통해서 맵핑/전송되고 (사전에 시그널링된 (혹은 정의된) 개수의) 상대적으로 낮은 (혹은 높은) 우선 순위의 CQI 정보 그리고/혹은 PMI 정보들은 나머지 TB를 통해서 맵핑/전송되도록 설정될 수 도 있다.
도 13은 단말의 UCI 전송 방법의 다른 예를 나타낸다.
도 13을 참조하면, 단말이 2개의 전송 블록을 전송하기로 판단한 경우(S510), ACK/NACK 정보 및/또는 RI 정보는 제1 전송 블록 및 제2 전송 블록 중에서 더 많은 레이어에 맵핑되는 전송 블록에 포함시키고, CQI 정보 및/또는 PMI 정보는 더 적은 레이어에 맵핑되는 전송 블록에 포함시킬 수 있다(S520). 단말은 2개의 전송 블록을 레이어에 맵핑한 후 전송한다(S530). 예를 들어, ML_UCIWODATA 관련 변조 차수(MODULATION ORDER)가 특정 값 (예: QPSK)으로 고정되는 경우, 사전에 시그널링된 (혹은 정의된) 개수의 상대적으로 높은 (혹은 낮은) 우선 순위의 UCI 정보 (HARQ-ACK 정보, CSI(RI/CQI/PMI) 정보들 중 상대적으로 우선 순위가 높은 정보)들은 상대적으로 많은 개수의 레이어가 할당되는 TB를 통해서 맵핑/전송되고, 사전에 시그널링된 (혹은 정의된) 개수의 상대적으로 낮은 (혹은 높은) 우선 순위의 UCI 정보 (HARQ-ACK 정보, CSI (RI/CQI/PMI) 정보 중 상대적으로 우선 순위가 낮은 정보)들은 나머지 TB (즉, 상대적으로 적은 개수의 레이어가 할당되는 TB)를 통해서 맵핑/전송되도록 설정될 수 있다.
또 다른 일례로, ML_UCIWODATA 관련 변조 차수가 특정 값(예: QPSK)으로 고정되는 경우, 상대적으로 많은 개수의 레이어가 할당되는 TB를 통해서 사전에 시그널링된 (혹은 정의된) 더 많은 개수(/양)의 UCI 정보 (혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보)들이 맵핑/전송되도록 설정될 수 있다.
(예시#2-2-4) ML_UCIWODATA 관련 변조 차수가 특정 값(예: QPSK)으로 고정되는 경우, 가장 높은 MCS (IMCS)의 TB를 통해서 사전에 시그널링된 (혹은 정의된) 더 많은 개수(/양)의 UCI 정보 (혹은 HARQ-ACK 정보 그리고/혹은 CSI (RI/CQI/PMI) 정보)들이 맵핑/전송되도록 설정될 수 있다.
(규칙#2-3) (경우#2-2) 즉, 2 TB가 실제로 ENABLED된 경우에서, 상이한 TB(/레이어)를 통해서 전송되는 일부 혹은 모든 UCI 정보(혹은 PMI/CQI 정보(들) 그리고/혹은 RI 정보(들) 그리고/혹은 HARQ-ACK 정보(들)) 간에는 '개별 채널 코딩(SEPERATE CHANNEL CODING)'이 적용될 수 있다. 채널 코딩은 예를 들어, TBCC(tail biting convolution code) 그리고/혹은 'CRC 생성/ATTACH'이 적용되도록 규칙이 정의될 수 있다.
(규칙#2-3)이 적용된 경우에 대한 구체적인 일례로, 7 개의 셀들이 반송파 집성으로 설정된 단말의 경우, 만약 3 개의 셀들 관련 CQI/PMI 정보(들) (1STTB_CP)이 첫번째 TB를 통해서 전송되고, 나머지 4 개의 셀들 관련 CQI/PMI 정보(2NDTB_CP)이 두번째 TB를 통해서 전송된다면, 1STTB_CP와 2NDTB_CP 간에는 개별적으로 채널 코딩(그리고/혹은 CRC 생성/ATTACH)이 적용될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 또한, 상기 설명한 제안 방식들은 UCI를 데이터와 함께 PUSCH를 통해 전송하는 경우(TX OF UCI W/ DATA의 경우)에도 특정 조건(예를 들어, PUSCH 자원양, CSI 피드백 수, 레이트 매칭으로 인한 데이터 코드율 영향 등)이 고려되어 확장 적용될 수 있다.
도 14는 기지국 및 단말을 나타내는 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.
Claims (15)
- 무선통신 시스템에서 단말(User Equipment: UE)의 상향링크 제어 정보 (Uplink Control Information: UCI) 전송 방법에 있어서,다중 레이어(Multiple-layer) 전송을 지원하는 물리 상향링크 공유 채널(physical uplink shared channel: PUSCH)를 통해 전송하려는 전송 블록(transport block: TB)의 개수를 결정하고,상기 결정된 전송 블록의 개수에 따라 각 전송 블록에 포함될 UCI를 결정하고, 및상기 UCI를 포함하는 각 전송 블록을 기지국으로 전송하는 것을 특징으로 하는 방법.
- 제 1 항에 있어서,하나의 전송 블록을 상기 PUSCH의 2개 레이어들을 통해 전송하려는 경우,전송하려는 UCI를 복제하고,상기 전송하려는 UCI를 상기 2개 레이어들 중 제1 레이어에 맵핑하고 상기 복제한 UCI를 제2 레이어에 맵핑한 후 전송하는 것을 특징으로 하는 방법.
- 제 2 항에 있어서,상기 전송하려는 UCI는 ACK/NACK(acknowledgement/not-acknowledgement) 정보 및 채널 상태 정보(channel state information) 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
- 제 3 항에 있어서,상기 채널 상태 정보는 랭크 지시자(rank indicator: RI), 채널 품질 지시자(channel quality indicator: CQI), 프리코딩 행렬 지시자(precoding matrix index: PMI) 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
- 제1 항에 있어서, 2개의 전송 블록들을 상기 PUSCH를 통해 전송하려는 경우, ACK/NACK (acknowledgement/not-acknowledgement) 정보 및 랭크 지시자 중 적어도 하나는 상기 2개의 전송 블록들 중 제1 전송 블록에 포함되고, 채널 품질 지시자 및 프리코딩 행렬 지시자 중 적어도 하나는 상기 2개의 전송 블록들 중 제2 전송 블록에 포함되는 것을 특징으로 하는 방법.
- 제 5 항에 있어서, 상기 제2 전송 블록은 상기 제1 전송 블록에 비해 더 높은 변조 차수(modulation order)로 변조되는 전송 블록인 것을 특징으로 하는 방법.
- 제 1 항에 있어서, 상기 PUSCH에서는 데이터 전송 없이 상기 UCI만 전송되는 것을 특징으로 하는 방법.
- 제 7 항에 있어서, 상기 기지국으로부터 하향링크 제어 정보(downlink control information: DCI) 포맷을 수신하되,상기 DCI 포맷이 특정 DCI 포맷인 경우에만 상기 PUSCH에서 데이터 전송 없이 상기 UCI만 전송되는 것을 특징으로 하는 방법.
- 제 7항에 있어서, 상기 단말에게 설정된 셀의 개수가 임계값보다 많은 경우에 한해 상기 PUSCH에서 데이터 전송 없이 상기 UCI만 전송되는 것을 특징으로 하는 방법.
- 단말은,무선신호를 송수신하는 RF부; 및상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는다중 레이어(Multiple-layer) 전송을 지원하는 물리 상향링크 공유 채널(physical uplink shared channel: PUSCH)를 통해 전송하려는 전송 블록(transport block: TB)의 개수를 결정하고,상기 결정된 전송 블록의 개수에 따라 각 전송 블록에 포함될 UCI를 결정하고, 및상기 UCI를 포함하는 각 전송 블록을 기지국으로 전송하는 것을 특징으로 하는 단말.
- 제 10 항에 있어서,상기 프로세서는 하나의 전송 블록을 상기 PUSCH의 2개 레이어들을 통해 전송하려는 경우, 전송하려는 UCI를 복제하고, 상기 전송하려는 UCI를 상기 2개 레이어들 중 제1 레이어에 맵핑하고 상기 복제한 UCI를 제2 레이어에 맵핑한 후 전송하는 것을 특징으로 하는 단말.
- 제 11 항에 있어서,상기 전송하려는 UCI는 ACK/NACK(acknowledgement/not-acknowledgement) 정보 및 채널 상태 정보(channel state information) 중 적어도 하나를 포함하는 것을 특징으로 하는 단말.
- 제10 항에 있어서, 2개의 전송 블록들을 상기 PUSCH를 통해 전송하려는 경우, ACK/NACK (acknowledgement/not-acknowledgement) 정보 및 랭크 지시자 중 적어도 하나는 상기 2개의 전송 블록들 중 제1 전송 블록에 포함되고, 채널 품질 지시자 및 프리코딩 행렬 지시자 중 적어도 하나는 상기 2개의 전송 블록들 중 제2 전송 블록에 포함되는 것을 특징으로 하는 단말.
- 제 13 항에 있어서, 상기 제2 전송 블록은 상기 제1 전송 블록에 비해 더 높은 변조 차수(modulation order)로 변조되는 전송 블록인 것을 특징으로 하는 단말.
- 제 10 항에 있어서, 상기 PUSCH에서는 데이터 전송 없이 상기 UCI만 전송되는 것을 특징으로 하는 단말.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/752,232 US11129181B2 (en) | 2015-08-13 | 2016-08-16 | Method for transmitting uplink control information of terminal in wireless communication system and device using the method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562204953P | 2015-08-13 | 2015-08-13 | |
US62/204,953 | 2015-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017026871A1 true WO2017026871A1 (ko) | 2017-02-16 |
Family
ID=57983343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/008978 WO2017026871A1 (ko) | 2015-08-13 | 2016-08-16 | 무선통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11129181B2 (ko) |
WO (1) | WO2017026871A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022080946A1 (en) * | 2020-10-16 | 2022-04-21 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting uplink channel in wireless communication system |
US11765730B2 (en) | 2017-09-29 | 2023-09-19 | Ntt Docomo, Inc. | User terminal and radio communication method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11412534B2 (en) * | 2016-11-04 | 2022-08-09 | Qualcomm Incorporated | System and method for mapping uplink control information |
US11496890B2 (en) * | 2017-03-22 | 2022-11-08 | Sony Corporation | Terminal device, base station device, communication method, and storage medium |
US11140575B2 (en) * | 2017-08-11 | 2021-10-05 | Qualcomm Incorporated | Modifying CSI transmissions over uplink shared resources |
US12068847B2 (en) * | 2018-01-12 | 2024-08-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Control signaling for radio access networks |
US11540257B2 (en) | 2018-03-23 | 2022-12-27 | Qualcomm Incorporated | Uplink control information transmission on autonomous uplink in new radio-unlicensed (NR-U) |
US11664868B2 (en) * | 2020-04-09 | 2023-05-30 | Qualcomm Incorporated | Triggering aperiodic channel state information (A-CSI) reports on a physical uplink control channel (PUCCH) |
WO2023206337A1 (en) * | 2022-04-29 | 2023-11-02 | Qualcomm Incorporated | Uplink ccontrol information multiplexing on uplink shared channel with multiple transport blocks |
CN118200095A (zh) * | 2022-12-12 | 2024-06-14 | 大唐移动通信设备有限公司 | 多载波的数据处理方法及装置 |
JP2024116781A (ja) * | 2023-02-16 | 2024-08-28 | 株式会社Kddi総合研究所 | 上りリンク制御情報の効率的な送信のための端末装置、基地局装置、制御方法、及びプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110299484A1 (en) * | 2010-06-02 | 2011-12-08 | Samsung Electronics Co., Ltd. | Method and system for transmitting channel state information in wireless communication systems |
US20130051369A1 (en) * | 2010-05-13 | 2013-02-28 | Lg Electronics Inc. | Method and apparatus for multiplexing control information and data, and for transmitting the multiplexed control information and data in a mimo wireless communication system |
US20140086174A1 (en) * | 2012-09-27 | 2014-03-27 | Samsung Electronics Co., Ltd | Method and apparatus for transmitting/receiving channel state information |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5216058B2 (ja) * | 2010-02-15 | 2013-06-19 | 株式会社エヌ・ティ・ティ・ドコモ | 移動端末装置および上り制御情報信号の送信方法 |
US9083501B2 (en) * | 2010-04-05 | 2015-07-14 | Qualcomm Incorporated | Feedback of control information for multiple carriers |
WO2011155777A2 (ko) * | 2010-06-09 | 2011-12-15 | 엘지전자 주식회사 | 다중 반송파 지원 무선 통신 시스템에서 채널상태정보 송수신 방법 및 장치 |
EP3253108A4 (en) * | 2015-01-28 | 2018-08-15 | Sharp Kabushiki Kaisha | Terminal device, base station device, communication method, and integrated circuit |
WO2017010477A1 (ja) * | 2015-07-15 | 2017-01-19 | 株式会社Nttドコモ | ユーザ端末、無線基地局及び無線通信方法 |
-
2016
- 2016-08-16 WO PCT/KR2016/008978 patent/WO2017026871A1/ko active Application Filing
- 2016-08-16 US US15/752,232 patent/US11129181B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130051369A1 (en) * | 2010-05-13 | 2013-02-28 | Lg Electronics Inc. | Method and apparatus for multiplexing control information and data, and for transmitting the multiplexed control information and data in a mimo wireless communication system |
US20110299484A1 (en) * | 2010-06-02 | 2011-12-08 | Samsung Electronics Co., Ltd. | Method and system for transmitting channel state information in wireless communication systems |
US20140086174A1 (en) * | 2012-09-27 | 2014-03-27 | Samsung Electronics Co., Ltd | Method and apparatus for transmitting/receiving channel state information |
Non-Patent Citations (2)
Title |
---|
CATT: "UCI Feedback on PUSCH for up to 32 CCs", R1-152570, 3GPP TSG RAN WG1 MEETING #81, 25 May 2015 (2015-05-25), Fukuoka, Japan, XP050971605 * |
LG ELECTRONICS: "Enhancements to UCI on PUSCH for Rel-13 CA", R1-152719, 3GPP TSG RAN WG1 MEETING #81, 24 May 2015 (2015-05-24) - 29 May 2015 (2015-05-29), Fukuoka, Japan, XP050969289 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11765730B2 (en) | 2017-09-29 | 2023-09-19 | Ntt Docomo, Inc. | User terminal and radio communication method |
WO2022080946A1 (en) * | 2020-10-16 | 2022-04-21 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting uplink channel in wireless communication system |
US12133217B2 (en) | 2020-10-16 | 2024-10-29 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting uplink channel in wireless communication system |
Also Published As
Publication number | Publication date |
---|---|
US20200214024A1 (en) | 2020-07-02 |
US11129181B2 (en) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017026871A1 (ko) | 무선통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치 | |
WO2018182383A1 (ko) | 무선 통신 시스템에서 짧은 전송 시간 간격을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치 | |
WO2018088857A1 (ko) | 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치 | |
WO2018084488A1 (ko) | 무선 통신 시스템에서 동적 가변 사이즈의 하향링크 제어 정보를 송신하는 방법 및 이를 위한 장치 | |
WO2019156466A1 (ko) | 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치 | |
WO2017171528A1 (ko) | 무선 통신 시스템에서 단말에 의해 수행되는 v2x 통신 방법 및 상기 방법을 이용하는 단말 | |
WO2016068542A2 (ko) | Mtc 기기의 pucch 전송 방법 | |
WO2018143621A1 (ko) | 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격 또는 복수의 프로세싱 시간을 지원하기 위한 방법 및 이를 위한 장치 | |
WO2017078326A1 (ko) | 무선 통신 시스템에서 상향링크 제어 채널 전송 방법 및 이를 위한 장치 | |
WO2011007985A2 (ko) | 무선 통신 시스템에서 수신 장치가 제어 정보를 전송하는 방법 | |
WO2017026873A1 (ko) | 무선통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 상기 방법을 이용하는 장치 | |
WO2011162543A2 (ko) | 다중 반송파 지원 무선 통신 시스템에서 상향링크 제어 정보 송수신 방법 및 장치 | |
WO2012112008A2 (en) | Mobile communication system and channel transmission/reception method thereof | |
WO2011111977A2 (ko) | 상향링크 제어정보 전송방법 및 사용자기기 | |
WO2013122384A1 (ko) | 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치 | |
WO2012128490A2 (ko) | 무선 통신 시스템에서 동적 서브프레임 설정 시 재전송 방법 및 이를 위한 장치 | |
WO2010013961A2 (en) | Method and apparatus of monitoring pdcch in wireless communication system | |
WO2012150822A2 (ko) | 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국 | |
WO2014046457A1 (en) | Method and apparatus for performing uplink transmission in a wireless communication system | |
WO2014069877A1 (en) | Method and apparatus for configuring a reference signal in a wireless communication system | |
WO2013032202A2 (ko) | 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국 | |
WO2012177073A2 (ko) | 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 | |
WO2012011657A2 (ko) | 채널 상태 정보 피드백을 송수신하는 방법 및 그 장치 | |
WO2010050766A2 (ko) | 무선통신 시스템에서 harq 수행 방법 및 장치 | |
WO2017150942A1 (ko) | 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16835511 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16835511 Country of ref document: EP Kind code of ref document: A1 |