WO2017026354A1 - Loss prevention device, unmanned aircraft provided with same, and unmanned aircraft loss prevention system - Google Patents
Loss prevention device, unmanned aircraft provided with same, and unmanned aircraft loss prevention system Download PDFInfo
- Publication number
- WO2017026354A1 WO2017026354A1 PCT/JP2016/072836 JP2016072836W WO2017026354A1 WO 2017026354 A1 WO2017026354 A1 WO 2017026354A1 JP 2016072836 W JP2016072836 W JP 2016072836W WO 2017026354 A1 WO2017026354 A1 WO 2017026354A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- loss prevention
- unmanned aircraft
- information
- position information
- prevention device
- Prior art date
Links
- 230000002265 prevention Effects 0.000 title claims abstract description 116
- 238000004891 communication Methods 0.000 claims abstract description 28
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims abstract description 7
- 238000010295 mobile communication Methods 0.000 claims description 17
- 230000007246 mechanism Effects 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/80—Parachutes in association with aircraft, e.g. for braking thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D25/00—Emergency apparatus or devices, not otherwise provided for
- B64D25/08—Ejecting or escaping means
- B64D25/20—Releasing of crash-position indicators
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/08—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/10—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
- B64U2201/104—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
Definitions
- the present invention relates to a technique for preventing loss of an unmanned aerial vehicle that has gone away.
- the problem to be solved by the present invention is to provide a loss prevention device capable of efficiently searching and collecting a lost unmanned aerial vehicle, an unmanned aircraft including the same, and an unmanned aircraft loss prevention system. There is to do.
- a loss prevention apparatus of the present invention mounted on an unmanned aerial vehicle includes a wide area wireless communication unit and a position information acquisition unit that acquires position information that is information for specifying the current position of the unmanned aircraft. And landing detection means for detecting the landing of the unmanned aircraft, and position information transmission means for transmitting the position information to a predetermined destination by the wide area wireless communication means when the unmanned aircraft is on the ground. It is characterized by.
- Unmanned aerial vehicles lost due to loss of control will crash or land automatically due to the depletion of fuel and power.
- the loss prevention device After the landing of the unmanned aerial vehicle, the loss prevention device notifies the searcher of its current position using the wide-area wireless communication means, thereby narrowing down the search range of the unmanned unmanned aircraft and allowing the aircraft to be easily recovered It becomes.
- the loss prevention apparatus of the present invention further includes a storage battery, and the storage battery can be charged from a power source of the unmanned aircraft.
- the loss prevention device includes a dedicated power source, so that the loss prevention device can continue to operate even after the power source of the unmanned aircraft is depleted. Furthermore, since the loss prevention device includes a storage battery that can be charged by the power source of the unmanned aircraft, for example, even when the loss prevention device is operated even during the flight of the unmanned aircraft, The power of the loss prevention device can be secured. Or, for example, if a lost unmanned aerial vehicle is configured to automatically land before its power source is depleted, the power of the power source of the unmanned aircraft can be used in addition to the power of the storage battery of the loss prevention device. And the loss prevention device can be operated for a longer time.
- the wide area wireless communication means is preferably a connection means to a mobile communication network.
- the loss prevention apparatus can transmit position information with a low-cost and simple configuration regardless of the distance the unmanned aircraft has traveled.
- the loss prevention apparatus of the present invention further includes a short-range wireless communication unit, and the position information transmission unit can transmit the position information by the short-range wireless communication unit.
- the position information is transmitted using a short-distance wireless communication means such as a wireless LAN or Bluetooth (registered trademark), so that a searcher at a distance of several tens of meters from the unmanned aircraft is notified of the position of the aircraft. be able to. It is also possible to use a wide area wireless communication unit and a short-range wireless communication unit in combination. In this case, for example, it is conceivable that the position information is transmitted by the wide area wireless communication means, and the distance between the searcher and the unmanned aircraft can be measured by the signal strength of the short distance wireless communication means.
- a short-distance wireless communication means such as a wireless LAN or Bluetooth (registered trademark)
- the position information acquisition means has a GPS receiver, and the position information includes GPS information which is information acquired by the GPS receiver.
- GPS information generally includes longitude and latitude values and time information. By including these GPS information in the position information transmitted from the loss prevention apparatus, it becomes possible to directly specify the current position of the unmanned aircraft.
- the loss prevention device of the present invention includes a storage unit that records the GPS information during normal flight of the unmanned aircraft, and a storage unit that is unavailable when the GPS receiver is unavailable at the landing point of the unmanned aircraft.
- Current position estimating means for estimating the current position of the unmanned aircraft using the GPS information of the position information, and the position information transmitted by the position information transmitting means includes the estimated current position.
- location information is included.
- the search range can be narrowed down to some extent by estimating the current position of the unmanned aircraft from the GPS information up to the landing point.
- the wide area wireless communication means is a connection means to a mobile communication network
- the position information acquisition means has a GPS receiver
- the position information acquisition means further includes a base of the mobile communication network.
- Base station information that is the current position of the unmanned aerial vehicle estimated based on signal strength from a station can be acquired, and the position information includes GPS information that is information acquired by the GPS receiver, Preferably, base station information is included.
- the current position of the unmanned aerial vehicle can be identified with higher accuracy.
- the loss prevention apparatus of the present invention further includes a revealing unit that visually or audibly tells a searcher near the unmanned aircraft the location of the unmanned aircraft.
- the loss prevention device includes, for example, a buzzer, a rotating light, etc., and informs a searcher in the vicinity of the position so that the vicinity of the unmanned aircraft can be efficiently found.
- the loss prevention device of the present invention further includes a crash detection unit that detects a crash of the unmanned aircraft and a buffer mechanism that reduces an impact when the unmanned aircraft is landing.
- the loss prevention device can detect the crash of unmanned aerial vehicles, and can operate shock absorbers such as parachutes and airbags. Damage to the device itself can be suppressed.
- the unmanned aerial vehicle of the present invention includes the loss prevention device of the present invention.
- the unmanned aerial vehicle of the present invention is preferably a rotary wing aircraft including a plurality of rotary wings.
- the unmanned aerial vehicle according to the present invention further includes distance measuring means for measuring a distance between the unmanned aircraft and the ground surface, and the loss prevention device is configured such that when the unmanned aircraft approaches the ground surface to a predetermined distance of 3 m or less. It is preferable to further include a rotary blade stopping means for stopping the rotary blade.
- the descent speed at the time of landing should be reduced as much as possible.
- the rotor blades of unmanned aerial vehicles are sharp.
- the rotor blades may significantly damage them.
- the loss prevention system of the present invention includes the loss prevention device of the present invention, and a management station that receives the position information from the loss prevention device, and the loss prevention device includes: It has a storage means for recording the GPS information at the time of normal flight of the unmanned aircraft, the position information transmission means transmits the GPS information of the storage means as the position information, and the management station It has the present position estimation means which estimates the present position of the unmanned aircraft based on the position information which is the GPS information of the means.
- the search range can be narrowed down to some extent by estimating the current position of the unmanned aircraft from the GPS information up to the landing point.
- the unmanned aircraft including the same, and the loss prevention system for the unmanned aircraft, it is possible to efficiently search and collect the lost unmanned aircraft.
- 1st Embodiment is an example of the unmanned aerial vehicle provided with the loss prevention apparatus of this invention.
- FIG. 1 is a block diagram showing a functional configuration of a multicopter 101 (unmanned aerial vehicle) according to the present embodiment.
- the multicopter 101 includes a flight controller FC, a plurality of rotors R (rotary blades), an ESC 131 (Electric Speed Controller) provided for each rotor R, a battery 190 that supplies power to these, and a loss prevention device 201. Yes.
- Each rotor R is composed of a motor 132 and a blade 133 connected to its output shaft.
- the ESC 131 is connected to the motor 132 of the rotor R, and rotates the motor 132 at a speed instructed from the flight controller FC.
- the number of rotors of the multicopter 101 is not particularly limited, and from the helicopter having two rotors R, the octacopter having eight rotors R, or even eight depending on the required flight stability, allowable cost, etc. Even those having many rotors can be changed as appropriate.
- the flight controller FC includes a control device 110 that is a microcontroller.
- the control device 110 includes a CPU 111 that is a central processing unit, a memory 112 that is a storage device such as a ROM or a RAM, and a PWM (Pulse Width Modulation) controller 113 that controls the rotation speed of each motor 132 via the ESC 131. ing.
- a CPU 111 that is a central processing unit
- a memory 112 that is a storage device such as a ROM or a RAM
- PWM Pulse Width Modulation
- the flight controller FC further includes a flight control sensor group 121 and a GPS receiver 122 (hereinafter collectively referred to as “sensors”), which are connected to the control device 110.
- the flight control sensor group 121 of the multicopter 101 in this embodiment includes a triaxial acceleration sensor, a triaxial angular velocity sensor, an atmospheric pressure sensor (altitude sensor), a geomagnetic sensor (orientation sensor), and the like.
- the control device 110 can acquire position information of the own aircraft including the latitude and longitude of the aircraft, the altitude, and the azimuth angle of the nose, in addition to the tilt and rotation of the aircraft, using these sensors and the like.
- the memory 112 of the control device 110 stores a flight control program FCP, which is a program in which an algorithm for controlling the attitude and basic flight operation of the multicopter 101 during flight is stored.
- the flight control program FCP adjusts the rotational speed of each rotor R based on the information obtained from the sensor or the like in accordance with an instruction from the operator (transmitter 151), and corrects the attitude and position disturbance of the aircraft.
- the copter 101 is allowed to fly.
- parameters such as the flight path, speed, and altitude are registered in advance as a flight plan FP, and the operator can fly autonomously toward the destination. It is possible (hereinafter referred to as “autopilot”).
- the flight control program FCP of the present embodiment is configured so that the multicopter 101 is automatically landed when the remaining amount of the battery 190 falls below a predetermined threshold value.
- the multicopter 101 in this embodiment has an advanced flight control function.
- the unmanned aerial vehicle according to the present invention is not limited to the form of the multicopter 101.
- the loss prevention device 201 is provided, for example, an airframe in which some sensors are omitted from the sensor or the like, or an autopilot function It is also possible to use a fuselage that can fly only by manual maneuvering, or that does not have an automatic landing function.
- the unmanned aerial vehicle in the present invention is not limited to a rotary wing aircraft, and may be a fixed wing aircraft including a loss prevention device 201.
- Loss prevention device 201 searches and collects the aircraft when multicopter 101 flies out of the radio range of transmitter 151 or when multicopter 101 disappears while flying outside the visual field by the autopilot function. It is a device to assist.
- the loss prevention device 201 of this embodiment includes a control device 210 that is a microcontroller.
- the control device 210 includes a CPU 211 that is a central processing unit, and a memory 212 that is a storage device such as a ROM or a RAM.
- the loss prevention device 201 further includes an IMU 221, a GPS receiver 225, a 3G / LTE module 231, and a wireless LAN module 232, which are connected to the control device 210. Further, the loss prevention apparatus 201 includes a battery 290 that is a dedicated power source.
- the IMU 221 is a general inertial measurement device, and mainly includes a triaxial acceleration sensor and a triaxial angular velocity sensor.
- Registered in the memory 212 of the loss prevention apparatus 201 is a state monitoring program SMP that is a program for monitoring the output value of the IMU 221 to determine whether the multicopter 101 is in a flight state or a landing state.
- These IMU 221 and state monitoring program SMP constitute landing detection means of the loss prevention device 201.
- the GPS receiver 225 is position information acquisition means of the loss prevention device 201, and is precisely a navigation satellite system (NSS) receiver.
- the GPS receiver 225 obtains current longitude and latitude values and time information from a global navigation satellite system (GNSS) or a regional navigation satellite system (RNSS).
- GNSS global navigation satellite system
- RNSS regional navigation satellite system
- GPS information Pg longitude and latitude values and time information
- position information P information for specifying the current position of the multicopter 101 (the loss prevention apparatus 201) such as the GPS information Pg is collectively referred to as “position information P”.
- the loss prevention apparatus 201 can directly identify the current position of the multicopter 101 by including the GPS information Pg in the position information P.
- the loss prevention apparatus 201 of the present embodiment includes a dedicated IMU 221 and a GPS receiver 225 separately from the sensor of the multicopter 101 and the like. Therefore, even when a sensor or the like of the multicopter 101 breaks down, the landing of the airframe can be detected alone and the position information P can be notified.
- the provision of the dedicated IMU 221 and the GPS receiver 225 is not an essential configuration, and a configuration in which necessary information is obtained from the sensor of the multicopter 101 or the like may be employed.
- a dedicated IMU 221 and a GPS receiver 225 are provided, and the output values of the sensors of the multicopter 101 are also used together to ensure the independence of the loss prevention device 201 and more accurately grasp the state of the multicopter 101. A possible configuration is also conceivable.
- the 3G / LTE module 231 is a wide area wireless communication means that can be connected to a mobile communication network such as 3G / HSPA (High Speed Packet Access), LTE (Long Term Evolution) among wide area wireless communication networks.
- the 3G / LTE module 231 can be replaced with a WiMAX module that can be connected to mobile WiMAX (WorldwideWorldInteroperability for Microwave Access).
- a mail program MP that is a program for sending an e-mail to a predetermined destination is registered.
- the mail program MP is position information transmitting means for transmitting the position information P via the mobile communication network.
- the state monitoring program SMP enables the function of the 3G / LTE module 231 and transmits the position information P to a predetermined destination by the mail program MP. Note that the 3G / LTE module 231 is disabled so as not to emit radio waves while the multicopter 101 is flying.
- the protocol used for transmission of the position information P is not limited to SMTP as used in the present embodiment, but may be another general protocol such as HTTP, or provided uniquely for transmission / reception of the position information P. May be a different protocol. Further, the mail program MP may periodically transmit the latest position information P, or may transmit only once at the time of landing.
- the 3G / LTE module 231 of this embodiment also functions as a position information acquisition unit together with the GPS receiver 225.
- the 3G / LTE module 231 estimates the current position of the multicopter 101 by triangulation from the signal strength of the surrounding base stations.
- base station information Pb Such current position information is referred to as “base station information Pb”.
- the position information P of the present embodiment includes the above-described GPS information Pg and base station information Pb. By appropriately combining these pieces of information, the current position of the multicopter 101 can be specified more accurately.
- the position information P of the present invention may be information that contributes to narrowing down the search range of the multicopter 101, and it is not always necessary to include the GPS information Pg and the base station information Pb.
- the wireless LAN module 232 is short-range wireless communication means for transmitting position information P to a receiver (not shown) held by the searcher when the searcher of the multicopter 101 enters the radio wave range.
- the multicopter 101 of the present embodiment tries to transmit the position information P by the wireless LAN module 232. As a result, as much position information P as can be collected can be transmitted to a searcher located at a distance of several tens of meters from the multicopter 101.
- the wireless LAN module 232 can be used together to facilitate the discovery of the multicopter 101.
- the 3G / LTE module 231 sends the position information P by mail, and displays the distance between the searcher and the multicopter 101 on the searcher's receiver based on the signal strength of the wireless LAN module 232.
- the signal transmitted from the wireless LAN module 232 is also a kind of position information P.
- the battery 290 is a storage battery separate from the battery 190 provided in the multicopter 101.
- a battery 190 of the multicopter 101 is connected to the battery 290, and the battery 290 can be charged from the battery 190.
- the loss prevention device 201 includes a dedicated battery 290, so that the loss prevention device 201 can be used even when the battery 190 is out of order or even after the battery 190 is depleted. Can continue to operate independently.
- the state monitoring program SMP constantly monitors the flight state of the multicopter 101 using the IMU 221. That is, the loss prevention device 201 consumes power even during the flight of the multicopter 101. Since the battery 290 of the present embodiment can be charged from the battery 190 of the multicopter 101, the power consumed during the flight of the multicopter 101 can be appropriately charged from the battery 190. It is possible to secure the maximum amount of power of the loss prevention device 201. Furthermore, the multicopter 101 of this embodiment is configured to automatically land before the battery 190 is depleted.
- the loss prevention apparatus 201 can use the remaining power of the battery 190 of the multicopter 101 in addition to the power of the battery 290 after the landing of the multicopter 101. Thereby, it is possible to operate the loss prevention device 201 for a longer time. On the other hand, when the capacity of the battery 290 of the loss prevention apparatus 201 is sufficient, the battery 290 need not be rechargeable from the battery 190 of the multicopter 101.
- Unmanned aerial vehicles lost due to loss of control will crash or land automatically due to the depletion of fuel and power.
- the multicopter 101 of the present embodiment notifies the current position of the multicopter 101 to a predetermined destination where the loss prevention device 201 is a searcher after landing of the aircraft. Thereby, the search range of the lost multicopter 101 is narrowed down, and the searcher can easily find and recover the lost aircraft.
- the loss prevention apparatus 201 includes the 3G / LTE module 231 and can use a mobile communication network, the loss prevention apparatus 201 can be installed in the service area regardless of the distance that the multicopter 101 has moved away.
- the position information P can be transmitted to the searcher from anywhere.
- the loss prevention apparatus 201 transmits the position information P to a predetermined destination at the time of landing, even when the landing is not due to loss. Therefore, it is desirable to set a recipient who can discriminate between normal and abnormal from the contents as the transmission destination of the position information P.
- FIG. 2 is a flowchart showing another example of landing determination by the loss prevention apparatus of the present invention.
- the loss prevention apparatus 201 of this embodiment determines the landing of the multicopter 101 based only on the output value of the IMU 221.
- the loss prevention device 201 further includes a distance sensor that detects the distance between the multicopter 101 and the ground surface, an atmospheric pressure sensor that detects the atmospheric pressure altitude of the multicopter 101, and an amount of current to each rotor R. It is assumed that a current sensor for detection and a rotation sensor for detecting the number of rotations of each rotor R are provided, and two or more of the output values of these sensors indicate the landing of the multicopter 101. Then, it is determined that the multicopter 101 is on the ground. Only a part of these sensors may be used. By doing so, it is possible to determine the landing of the multicopter 101 more accurately.
- the second embodiment is another example of an unmanned aerial vehicle including the loss prevention device of the present invention.
- components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
- FIG. 3 is a block diagram showing a functional configuration of the multicopter 102 according to the present embodiment.
- the machine body of the multicopter 102 is the same as the multicopter 101 of the first embodiment except for the configuration of the loss prevention device 202 described later. Therefore, description of the basic configuration of the multicopter 102 is omitted.
- the loss prevention apparatus 202 of this embodiment has a position analysis program PAP and a flight route storage area FRM in addition to the configuration of the loss prevention apparatus 201 of the first embodiment.
- the state monitoring program SMP of the loss prevention device 202 continuously records the GPS information Pg during the flight and landing of the multicopter 102 in the flight route storage area FRM.
- the position analysis program PAP is current position estimation means for analyzing the GPS information Pg recorded in the flight route storage area FRM and specifying a longitude / latitude value or a range having a higher probability as the current position.
- the GPS information Pg included in the position information P transmitted by the mail program MP includes a plurality of GPS information Pg acquired from the flight route storage area FRM, and a latitude / longitude value specified by the position analysis program PAP or That range is included.
- FIG. 4 is a flowchart showing a procedure for analyzing GPS information Pg by the position analysis program PAP.
- the position analysis program PAP confirms that the GPS receiver 225 is operating effectively (S210). More specifically, the position analysis program PAP confirms that the GPS information Pg can be acquired from the GPS receiver 225, and that the longitude and latitude values and the time information are valid values.
- the position analysis program PAP specifies the longitude and latitude values of the latest GPS information Pg as the current position of the multicopter 102 (S221). ).
- the error of the longitude and latitude values exceeds the above range (S220: N)
- a value obtained by averaging the longitude and latitude values of the plurality of acquired GPS information Pg is specified as the current position of the multicopter 102 (S221). .
- the position analysis program PAP goes back to the past GPS information Pg from the latest GPS information Pg in the flight route storage area FRM.
- a plurality of GPS information Pg is acquired, and the moving direction and moving speed of the multicopter 102 before landing are calculated (S211).
- the predetermined range according to the moving speed on the extension line of the calculated moving direction is estimated as the current position (S212).
- the mail program MP After the above processing by the position analysis program PAP, the mail program MP includes a plurality of GPS information Pg acquired from the flight route storage area FRM, the longitude / latitude value specified by the position analysis program PAP, and its range, and the base station Information Pb is transmitted to a predetermined destination.
- the plurality of GPS information Pg is omitted, and only the longitude / latitude value specified by the position analysis program PAP and the base station information Pb are transmitted. May be.
- the third embodiment is another example of an unmanned aerial vehicle including the loss prevention device of the present invention.
- components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
- FIG. 5 is a block diagram showing a functional configuration of the multicopter 103 according to the present embodiment.
- the machine body of the multicopter 103 is the same as that of the multicopter 101 of the first embodiment except for the configuration of the loss prevention device 203 described later. Therefore, description of the basic configuration of the multicopter 103 is omitted.
- the loss prevention device 203 of the present embodiment includes a distance sensor 222, a buzzer 280, a parachute 260, and a parachute injection device 261 in addition to the configuration of the loss prevention device 201 of the first embodiment.
- the control device 210 of the loss prevention device 202 is connected to the control device 110 of the multicopter 103, and is configured to be able to interrupt the control processing of the aircraft by the control device 110.
- the distance sensor 222 is a distance measuring unit that detects the distance between the multicopter 103 and the ground surface, and is a distance sensor using various methods such as infrared rays, ultrasonic waves, or lasers.
- the state monitoring program SMP of the present embodiment also serves as a rotor stop means for the multicopter 103.
- the state monitoring program SMP monitors the distance between the body of the multicopter 103 and the ground surface by the distance sensor 222. Then, when the distance becomes 3 m or less, the controller 110 is interrupted, the multicopter 103 is hovered once at the altitude, the rotor R is forcibly stopped, and the aircraft is dropped.
- the descent speed at the time of landing should be reduced as much as possible.
- the rotor R of the multicopter 103 is sharp.
- the rotor R may damage the rotor.
- the loss prevention device 203 of this embodiment causes the multicopter 103 to hover once at an altitude that exceeds the height of a human being, and then stops the rotor R to drop the fuselage.
- the lost multicopter 103 arrives due to a decrease in the remaining amount of the battery 190, it is possible to achieve both protection of the aircraft and suppression of damage at the landing point.
- the remaining capacity of the battery 190 exceeds a predetermined threshold value, it is desirable to disable the interrupt processing to the control device 110 so that the rotor stop function does not operate except when the multicopter 103 is unscheduled.
- the rotor stop function may be provided in the multicopter 103 instead of the loss prevention device 203.
- the buzzer 280 is a manifestation means that audibly appeals to the searcher of the lost multicopter 103 about the location of the multicopter 103.
- the loss prevention apparatus 203 can notify a nearby searcher of the position by a buzzer sound emitted from the buzzer 280.
- the searcher can efficiently find the multicopter 103.
- the timing of sounding the buzzer 280 is arbitrary. For example, when an operation instruction is received from a searcher via the wireless LAN module 232 or the 3G / LTE module 231, or the landing of the multicopter 103 is detected. For example, it may be possible to sound intermittently at regular intervals after a predetermined time has elapsed.
- the revealing means of the present invention is not limited to the buzzer 280, and may be means for visually informing the searcher of the location of the multicopter 103, such as a rotating light.
- the parachute 260 and the parachute injection device 261 are buffer mechanisms that alleviate the impact when the multicopter 103 crashes.
- the loss prevention apparatus 203 of this embodiment automatically operates the parachute injection apparatus 261 and deploys the parachute 260. Thereby, it is possible to suppress damage to the body of the multicopter 103, the equipment mounted on the multicopter 103, and the loss prevention device 203 itself.
- the buffer mechanism of the present invention is not limited to the parachute 260, and may further include, for example, an airbag.
- the loss prevention device 203 is desirably mounted on the multicopter 103 in a state where a robust case body is packed with a cushioning material.
- each component of the loss prevention device 203 has a waterproof measure.
- the control functions of the parachute 260, the parachute injection device 261, and the parachute injection device 261 may be provided in the multicopter 103 instead of the loss prevention device 203.
- the fourth embodiment is an example of the loss prevention system of the present invention.
- components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
- the loss prevention system S includes a multicopter 104 in which the loss prevention device 204 is mounted, and a management station 300 that can communicate with the loss prevention device 204 wirelessly.
- the machine body of the multicopter 104 is the same as that of the multicopter 101 of the first embodiment except for the configuration of the loss prevention device 204 described later. Therefore, description of the basic configuration of the multicopter 104 is omitted.
- the loss prevention device 204 of the present embodiment is configured such that the position analysis program PAP is omitted from the loss prevention device 202 of the second embodiment.
- the mail program MP goes back to the past GPS information Pg from the latest GPS information Pg in the flight route storage area FRM, and a plurality of GPS information Pg. And the GPS information Pg is transmitted to the management station 300 together with the base station information Pb.
- the management station 300 of this embodiment is a general-purpose computer such as a general personal computer or tablet PC.
- the management station 300 includes a CPU 311 that is a central processing unit and a memory 312 that is a storage device such as a ROM or a RAM.
- the management station 300 further includes a receiver 320 that can communicate with the loss prevention device 204 via the mobile communication network, and a map display that displays the current position of the multicopter 104 in a state where the position information P is mapped on the map data.
- a program PDP and a monitor 330 are provided.
- the position analysis program PAP specifies or estimates the current position of the multicopter 104 from the GPS information Pg according to the flow of FIG. Then, the map display program PDP maps the current position of the multicopter 104 specified or estimated by the position analysis program PAP and the base station information Pb on the map data and displays them on the monitor 330.
- FIG. 7 is a schematic diagram of a monitor 330 screen showing the current position of the multicopter 104.
- the GPS receiver 225 has failed in the multicopter 104 before landing, and the position analysis program PAP is based on the flow of FIG. 4 (S210: N), and the current position of the multicopter 104 is determined. Assume that the range is estimated.
- the triangle symbol in FIG. 7 indicates the base station B of the mobile communication network, and the broken circle indicates the base station information Pb.
- the black dots indicate the most recent GPS information Pg acquired from the flight route storage area FRM.
- a solid line arrow indicates the flight path FR of the multicopter 104 calculated from the GPS information Pg by the position analysis program PAP.
- a broken arrow indicates the estimated current position Pe of the multicopter 104 calculated from the GPS information Pg by the position analysis program PAP.
- a solid circle indicates a search range A that is a range in which the multicopter 104 should be searched.
- the search range A is not actually displayed on the monitor 330 and is a range determined by the searcher.
- the searcher examines a highly probable range as the current position of the multicopter 104 based on conditions such as the base station information Pb displayed on the monitor 330, the estimated current position Pe, the flight route FR, and surrounding features.
- the search range A is determined.
- the management station 300 includes the position analysis program PAP, and the GPS information Pg is analyzed on the management station 300 side.
- the position analysis program PAP is executed on the multicopter 104 side for management.
- the station 300 may be configured to simply display the result on the monitor 330.
- the wide-area wireless communication means of the present invention is not limited to a means for connecting to a mobile communication network, and for example, a satellite communication system may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
Provided are a loss prevention device that makes it possible to efficiently search for and retrieve an unmanned aircraft that has gone missing, an unmanned aircraft that is provided with the loss prevention device, and an unmanned aircraft loss prevention system. A loss prevention device that is to be installed in an unmanned aircraft. The loss prevention device is characterized by being provided with: a wide-area wireless communication means; a position-information acquisition means that acquires position information, which is information that is for specifying the current position of the unmanned aircraft; a landing detection means that detects the landing of the unmanned aircraft; and a position-information transmission means that, when the unmanned aircraft is on the ground, transmits the position information to a prescribed destination by means of the wide-area wireless communication means.
Description
本発明は、飛去した無人航空機の紛失を防止する技術に関する。
The present invention relates to a technique for preventing loss of an unmanned aerial vehicle that has gone away.
従来、産業用無人ヘリコプターに代表される小型の無人航空機は、機体が高価で入手困難なうえ、安定して飛行させるためには操作に熟練が必要とされるものであった。しかし近年、無人航空機の姿勢制御や自律飛行に用いられるセンサ類およびソフトウェアの改良が大きく進み、これにより無人航空機の操作性が著しく向上するとともに、高性能な機体を安価に入手できるようになった。特に小型のマルチコプターについては、ヘリコプターに比べてそのロータ構造が簡易であり、設計およびメンテナンスが容易であることから、趣味目的だけでなく、広範な分野における種々のミッションへの応用が試行されている。
Conventionally, small unmanned aerial vehicles represented by industrial unmanned helicopters have been expensive and difficult to obtain and require skill to operate in order to fly stably. However, in recent years, improvements in sensors and software used for unmanned aerial vehicle attitude control and autonomous flight have made significant progress, and this has significantly improved the operability of unmanned aircraft and made it possible to obtain high-performance aircraft at low cost. . Especially for small multicopters, the rotor structure is simpler than helicopters, and the design and maintenance are easy. Therefore, not only for hobby purposes, but also for various missions in a wide range of fields. Yes.
無人航空機が誤操作などにより操縦端末の電波圏外に飛去したときや、オートパイロット機能により有視界外を自律飛行していた無人航空機がセンサ類の故障などで失踪したときには、その機体を人手により捜索して回収する必要がある。この捜索および回収作業は負担が大きく、また常に成功するとも限らない。さらに、無人航空機が高価な機材を搭載していたり、秘匿性の高いデータを保有していたりする場合には、その紛失による損害が甚大なものとなるおそれがある。
When an unmanned aerial vehicle flies out of the radio range of a control terminal due to an erroneous operation, or when an unmanned aircraft that has been flying autonomously outside the visual field due to an autopilot function disappears due to a sensor failure, etc., the aircraft is searched manually. Need to be recovered. This search and retrieval operation is burdensome and does not always succeed. Furthermore, if an unmanned aerial vehicle is equipped with expensive equipment or possesses highly confidential data, the loss due to loss may be significant.
上記問題に鑑み、本発明が解決しようとする課題は、失踪した無人航空機の効率的な捜索および回収を可能とする紛失防止装置、およびこれを備える無人航空機、並びに無人航空機の紛失防止システムを提供することにある。
In view of the above problems, the problem to be solved by the present invention is to provide a loss prevention device capable of efficiently searching and collecting a lost unmanned aerial vehicle, an unmanned aircraft including the same, and an unmanned aircraft loss prevention system. There is to do.
上記課題を解決するため、無人航空機に搭載される本発明の紛失防止装置は、広域無線通信手段と、前記無人航空機の現在位置を特定するための情報である位置情報を取得する位置情報取得手段と、前記無人航空機の着地を検知する着地検知手段と、前記無人航空機が地上にあるときに、前記広域無線通信手段により前記位置情報を所定の宛先に送信する位置情報送信手段と、を備えることを特徴とする。
In order to solve the above problems, a loss prevention apparatus of the present invention mounted on an unmanned aerial vehicle includes a wide area wireless communication unit and a position information acquisition unit that acquires position information that is information for specifying the current position of the unmanned aircraft. And landing detection means for detecting the landing of the unmanned aircraft, and position information transmission means for transmitting the position information to a predetermined destination by the wide area wireless communication means when the unmanned aircraft is on the ground. It is characterized by.
制御不能となり失踪した無人航空機は、その動力源である燃料や電力の枯渇により墜落、または自動着陸する。無人航空機の着地後に、紛失防止装置が広域無線通信手段を使ってその現在位置を捜索者に知らせることにより、失踪した無人航空機の捜索範囲を絞り込むことができ、機体を容易に回収することが可能となる。
Unmanned aerial vehicles lost due to loss of control will crash or land automatically due to the depletion of fuel and power. After the landing of the unmanned aerial vehicle, the loss prevention device notifies the searcher of its current position using the wide-area wireless communication means, thereby narrowing down the search range of the unmanned unmanned aircraft and allowing the aircraft to be easily recovered It becomes.
また、本発明の紛失防止装置は、蓄電池をさらに備え、前記蓄電池は、前記無人航空機の電力源から充電可能であることが好ましい。
Moreover, it is preferable that the loss prevention apparatus of the present invention further includes a storage battery, and the storage battery can be charged from a power source of the unmanned aircraft.
無人航空機の電力源とは別に、紛失防止装置が専用の電力源を備えていることにより、無人航空機の電力源が枯渇した後であっても、紛失防止装置は動作を継続することができる。さらに、紛失防止装置が、無人航空機の電力源により充電可能な蓄電池を備えていることにより、例えば無人航空機の飛行中にも紛失防止装置を動作させるときであっても、無人航空機の失踪時における紛失防止装置の電力を確保することができる。または、例えば失踪した無人航空機がその電力源の枯渇前に自動着陸するよう構成されている場合には、紛失防止装置の蓄電池の電力に加えて、無人航空機の電力源の電力も利用することができ、紛失防止装置をより長時間動作させることが可能となる。
In addition to the power source of the unmanned aircraft, the loss prevention device includes a dedicated power source, so that the loss prevention device can continue to operate even after the power source of the unmanned aircraft is depleted. Furthermore, since the loss prevention device includes a storage battery that can be charged by the power source of the unmanned aircraft, for example, even when the loss prevention device is operated even during the flight of the unmanned aircraft, The power of the loss prevention device can be secured. Or, for example, if a lost unmanned aerial vehicle is configured to automatically land before its power source is depleted, the power of the power source of the unmanned aircraft can be used in addition to the power of the storage battery of the loss prevention device. And the loss prevention device can be operated for a longer time.
また、前記広域無線通信手段は、移動体通信網への接続手段であることが好ましい。
The wide area wireless communication means is preferably a connection means to a mobile communication network.
無人航空機の着地後に、地上において、例えば、3G/HSPA(High Speed Packet Access)、LTE(Long Term Evolution)、またはモバイルWiMAX(Worldwide Interoperability for Microwave Access)などの移動体通信網を利用することにより、紛失防止装置は、無人航空機が飛去した距離にかかわらず、低コストかつ簡易な構成で、位置情報を送信することが可能となる。
By using a mobile communication network such as 3G / HSPA (High Speed Packet Access), LTE (Long Term Evolution), or Mobile WiMAX (Worldwide Interoperability for Microwave Access) on the ground after the landing of the unmanned aircraft, The loss prevention apparatus can transmit position information with a low-cost and simple configuration regardless of the distance the unmanned aircraft has traveled.
また、本発明の紛失防止装置は、近距離無線通信手段をさらに備え、前記位置情報送信手段は、前記近距離無線通信手段により前記位置情報を発信可能であることが好ましい。
In addition, it is preferable that the loss prevention apparatus of the present invention further includes a short-range wireless communication unit, and the position information transmission unit can transmit the position information by the short-range wireless communication unit.
無人航空機の着地点の地理的状況によっては、広域無線通信手段による通信が利用できない場合がある。このときに、無線LANやBluetooth(登録商標)などの近距離無線通信手段を用いて位置情報を発信することにより、無人航空機から数十メートル程度の距離にいる捜索者に、機体の位置を知らせることができる。なお、広域無線通信手段と近距離無線通信手段とを併用することも可能である。この場合、例えば、広域無線通信手段により位置情報を送信し、近距離無線通信手段の信号強度により捜索者と無人航空機との距離を計測可能とすることなどが考えられる。
Depending on the geographical situation of the landing point of the unmanned aircraft, communication using wide area wireless communication means may not be available. At this time, the position information is transmitted using a short-distance wireless communication means such as a wireless LAN or Bluetooth (registered trademark), so that a searcher at a distance of several tens of meters from the unmanned aircraft is notified of the position of the aircraft. be able to. It is also possible to use a wide area wireless communication unit and a short-range wireless communication unit in combination. In this case, for example, it is conceivable that the position information is transmitted by the wide area wireless communication means, and the distance between the searcher and the unmanned aircraft can be measured by the signal strength of the short distance wireless communication means.
また、前記位置情報取得手段はGPS受信器を有しており、前記位置情報には、前記GPS受信器により取得された情報であるGPS情報が含まれることが好ましい。
Further, it is preferable that the position information acquisition means has a GPS receiver, and the position information includes GPS information which is information acquired by the GPS receiver.
GPS情報には、一般に、経緯度値と時刻情報が含まれている。紛失防止装置から送信される位置情報にこれらGPS情報が含まれていることにより、無人航空機の現在位置を直接的に特定することが可能となる。
GPS information generally includes longitude and latitude values and time information. By including these GPS information in the position information transmitted from the loss prevention apparatus, it becomes possible to directly specify the current position of the unmanned aircraft.
また、本発明の紛失防止装置は、前記無人航空機の通常飛行時における前記GPS情報を記録する記憶手段と、前記無人航空機の着地点において前記GPS受信器が利用不能であるときに、前記記憶手段の前記GPS情報を用いて、前記無人航空機の現在位置を推定する現在位置推定手段と、をさらに備え、前記位置情報送信手段が送信する前記位置情報には、前記推定された現在位置である推定位置情報が含まれることが好ましい。
Further, the loss prevention device of the present invention includes a storage unit that records the GPS information during normal flight of the unmanned aircraft, and a storage unit that is unavailable when the GPS receiver is unavailable at the landing point of the unmanned aircraft. Current position estimating means for estimating the current position of the unmanned aircraft using the GPS information of the position information, and the position information transmitted by the position information transmitting means includes the estimated current position. Preferably, location information is included.
無人航空機の着地点においてGPS受信器が利用できないときに、その着地点に至るまでのGPS情報から無人航空機の現在位置を推定することにより、捜索範囲をある程度絞り込むことができる。
When the GPS receiver cannot be used at the landing point of the unmanned aircraft, the search range can be narrowed down to some extent by estimating the current position of the unmanned aircraft from the GPS information up to the landing point.
また、前記広域無線通信手段は、移動体通信網への接続手段であり、前記位置情報取得手段はGPS受信器を有しており、前記位置情報取得手段はさらに、前記移動体通信網の基地局からの信号強度に基づいて推定された前記無人航空機の現在位置である基地局情報を取得可能であり、前記位置情報には、前記GPS受信器により取得された情報であるGPS情報と、前記基地局情報とが含まれることが好ましい。
The wide area wireless communication means is a connection means to a mobile communication network, the position information acquisition means has a GPS receiver, and the position information acquisition means further includes a base of the mobile communication network. Base station information that is the current position of the unmanned aerial vehicle estimated based on signal strength from a station can be acquired, and the position information includes GPS information that is information acquired by the GPS receiver, Preferably, base station information is included.
GPS情報と基地局情報とを重ねることにより、無人航空機の現在位置をより精度よく特定することが可能となる。
By superimposing GPS information and base station information, the current position of the unmanned aerial vehicle can be identified with higher accuracy.
また、本発明の紛失防止装置は、前記無人航空機近傍の捜索者に対して、前記無人航空機の存在位置を視覚的または聴覚的に訴える顕在化手段をさらに備えることが好ましい。
Moreover, it is preferable that the loss prevention apparatus of the present invention further includes a revealing unit that visually or audibly tells a searcher near the unmanned aircraft the location of the unmanned aircraft.
GPS受信器の経緯度値や、移動体通信網の基地局による三角測量では、誤差を完全になくすことは困難である。紛失防止装置が例えばブザーや回転灯などを備え、近傍の捜索者にその位置を知らせることにより、効率的に無人航空機近傍を発見することができる。
It is difficult to eliminate the error completely by the longitude and latitude values of the GPS receiver and the triangulation by the base station of the mobile communication network. The loss prevention device includes, for example, a buzzer, a rotating light, etc., and informs a searcher in the vicinity of the position so that the vicinity of the unmanned aircraft can be efficiently found.
また、本発明の紛失防止装置は、前記無人航空機の墜落を検知する墜落検知手段と、前記無人航空機の着地時における衝撃を緩和する緩衝機構と、をさらに備えることが好ましい。
Moreover, it is preferable that the loss prevention device of the present invention further includes a crash detection unit that detects a crash of the unmanned aircraft and a buffer mechanism that reduces an impact when the unmanned aircraft is landing.
紛失防止装置が無人航空機の墜落を検知可能であり、また、例えばパラシュートやエアバッグなどの緩衝機構を作動可能であることにより、無人航空機の機体や、無人航空機に搭載された機材、および紛失防止装置自体の損傷を抑えることができる。
The loss prevention device can detect the crash of unmanned aerial vehicles, and can operate shock absorbers such as parachutes and airbags. Damage to the device itself can be suppressed.
また、上記課題を解決するため、本発明の無人航空機は、本発明の紛失防止装置を備えることを特徴とする。このとき、本発明の無人航空機は、複数の回転翼を備える回転翼機であることが好ましい。
In order to solve the above-mentioned problem, the unmanned aerial vehicle of the present invention includes the loss prevention device of the present invention. At this time, the unmanned aerial vehicle of the present invention is preferably a rotary wing aircraft including a plurality of rotary wings.
また、本発明の無人航空機は、前記無人航空機と地表との距離を測る測距手段をさらに備え、前記紛失防止装置は、前記無人航空機が3m以下の所定の距離まで地表に接近したときに前記回転翼を停止させる回転翼停止手段をさらに備えることが好ましい。
The unmanned aerial vehicle according to the present invention further includes distance measuring means for measuring a distance between the unmanned aircraft and the ground surface, and the loss prevention device is configured such that when the unmanned aircraft approaches the ground surface to a predetermined distance of 3 m or less. It is preferable to further include a rotary blade stopping means for stopping the rotary blade.
回転翼機である無人航空機を着陸させる際には、その着陸時における降下速度は可能な限り落とすべきである。一方、無人航空機の回転翼は鋭利であり、例えば機体の着陸地点に構造物などがある場合、回転翼がこれを著しく損傷させるおそれがある。また、着陸地点に歩行者があるケースも想定し、その被害を最小限に抑える対策を講じておく必要がある。無人航空機を着陸させる際に、人間の身長程度の高度までは可能な限り降下速度を落とし、その後回転翼を停止して機体を落下させることにより、これらの両立を図ることが可能となる。
When landing an unmanned aerial vehicle that is a rotary wing aircraft, the descent speed at the time of landing should be reduced as much as possible. On the other hand, the rotor blades of unmanned aerial vehicles are sharp. For example, when there is a structure or the like at the landing point of the airframe, the rotor blades may significantly damage them. In addition, assuming that there are pedestrians at the landing point, it is necessary to take measures to minimize the damage. When landing an unmanned aerial vehicle, it is possible to achieve both of these by reducing the descent speed as much as possible to an altitude of about the height of a human being, and then stopping the rotor and dropping the aircraft.
また、上記課題を解決するため、本発明の紛失防止システムは、本発明の紛失防止装置と、該紛失防止装置から前記位置情報を受信する管理局と、を備え、前記紛失防止装置は、前記無人航空機の通常飛行時における前記GPS情報を記録する記憶手段を有しており、前記位置情報送信手段は、前記記憶手段の前記GPS情報を前記位置情報として送信し、前記管理局は、前記記憶手段の前記GPS情報である前記位置情報に基づいて前記無人航空機の現在位置を推定する現在位置推定手段を有していることを特徴とする。
In order to solve the above problem, the loss prevention system of the present invention includes the loss prevention device of the present invention, and a management station that receives the position information from the loss prevention device, and the loss prevention device includes: It has a storage means for recording the GPS information at the time of normal flight of the unmanned aircraft, the position information transmission means transmits the GPS information of the storage means as the position information, and the management station It has the present position estimation means which estimates the present position of the unmanned aircraft based on the position information which is the GPS information of the means.
例えば無人航空機の着地点においてGPS受信器が利用できないときに、その着地点に至るまでのGPS情報から無人航空機の現在位置を推定することにより、捜索範囲をある程度絞り込むことができる。
For example, when the GPS receiver cannot be used at the landing point of the unmanned aircraft, the search range can be narrowed down to some extent by estimating the current position of the unmanned aircraft from the GPS information up to the landing point.
以上のように、本発明にかかる紛失防止装置、およびこれを備える無人航空機、並びに無人航空機の紛失防止システムによれば、失踪した無人航空機の効率的な捜索および回収が可能となる。
As described above, according to the loss prevention device according to the present invention, the unmanned aircraft including the same, and the loss prevention system for the unmanned aircraft, it is possible to efficiently search and collect the lost unmanned aircraft.
<第1実施形態>
以下、本発明の第1実施形態について図面を用いて説明する。第1実施形態は、本発明の紛失防止装置を備えた無人航空機の例である。 <First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. 1st Embodiment is an example of the unmanned aerial vehicle provided with the loss prevention apparatus of this invention.
以下、本発明の第1実施形態について図面を用いて説明する。第1実施形態は、本発明の紛失防止装置を備えた無人航空機の例である。 <First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. 1st Embodiment is an example of the unmanned aerial vehicle provided with the loss prevention apparatus of this invention.
(構成概要)
図1は本実施形態にかかるマルチコプター101(無人航空機)の機能構成を示すブロック図である。マルチコプター101は、フライトコントローラFC、複数のローターR(回転翼)、ローターRごとに備えられたESC131(Electric Speed Controller)、これらに電力を供給するバッテリー190、および紛失防止装置201により構成されている。 (Configuration overview)
FIG. 1 is a block diagram showing a functional configuration of a multicopter 101 (unmanned aerial vehicle) according to the present embodiment. Themulticopter 101 includes a flight controller FC, a plurality of rotors R (rotary blades), an ESC 131 (Electric Speed Controller) provided for each rotor R, a battery 190 that supplies power to these, and a loss prevention device 201. Yes.
図1は本実施形態にかかるマルチコプター101(無人航空機)の機能構成を示すブロック図である。マルチコプター101は、フライトコントローラFC、複数のローターR(回転翼)、ローターRごとに備えられたESC131(Electric Speed Controller)、これらに電力を供給するバッテリー190、および紛失防止装置201により構成されている。 (Configuration overview)
FIG. 1 is a block diagram showing a functional configuration of a multicopter 101 (unmanned aerial vehicle) according to the present embodiment. The
各ローターRは、モータ132と、その出力軸に連結されたブレード133とにより構成されている。ESC131は、ローターRのモータ132に接続されており、フライトコントローラFCから指示された速度でモータ132を回転させる。マルチコプター101のローター数は特に限定されず、求められる飛行安定性や許容されるコスト等に応じて、ローターRが2基のヘリコプターから、ローターRが8基のオクタコプター、さらには8基よりも多くのローターを備えるものまで適宜変更可能である。
Each rotor R is composed of a motor 132 and a blade 133 connected to its output shaft. The ESC 131 is connected to the motor 132 of the rotor R, and rotates the motor 132 at a speed instructed from the flight controller FC. The number of rotors of the multicopter 101 is not particularly limited, and from the helicopter having two rotors R, the octacopter having eight rotors R, or even eight depending on the required flight stability, allowable cost, etc. Even those having many rotors can be changed as appropriate.
フライトコントローラFCは、マイクロコントローラである制御装置110を備えている。制御装置110は、中央処理装置であるCPU111、ROMやRAMなどの記憶装置であるメモリ112、および、ESC131を介して各モータ132の回転数を制御するPWM(Pulse Width Modulation)コントローラ113を有している。
The flight controller FC includes a control device 110 that is a microcontroller. The control device 110 includes a CPU 111 that is a central processing unit, a memory 112 that is a storage device such as a ROM or a RAM, and a PWM (Pulse Width Modulation) controller 113 that controls the rotation speed of each motor 132 via the ESC 131. ing.
フライトコントローラFCはさらに、飛行制御センサ群121およびGPS受信器122(以下、これらを総称して「センサ等」ともいう。)を備えており、これらは制御装置110に接続されている。本実施形態におけるマルチコプター101の飛行制御センサ群121には、3軸加速度センサ、3軸角速度センサ、気圧センサ(高度センサ)、地磁気センサ(方位センサ)などが含まれている。制御装置110は、これらセンサ等により、機体の傾きや回転のほか、飛行中の緯度経度、高度、および機首の方位角を含む自機の位置情報を取得可能とされている。
The flight controller FC further includes a flight control sensor group 121 and a GPS receiver 122 (hereinafter collectively referred to as “sensors”), which are connected to the control device 110. The flight control sensor group 121 of the multicopter 101 in this embodiment includes a triaxial acceleration sensor, a triaxial angular velocity sensor, an atmospheric pressure sensor (altitude sensor), a geomagnetic sensor (orientation sensor), and the like. The control device 110 can acquire position information of the own aircraft including the latitude and longitude of the aircraft, the altitude, and the azimuth angle of the nose, in addition to the tilt and rotation of the aircraft, using these sensors and the like.
制御装置110のメモリ112には、マルチコプター101の飛行時における姿勢や基本的な飛行動作を制御するアルゴリズムが実装されたプログラムである飛行制御プログラムFCPが記憶されている。飛行制御プログラムFCPは、オペレータ(送信器151)からの指示に従い、センサ等から取得した情報を基に、個々のローターRの回転数を調節し、機体の姿勢や位置の乱れを補正しながらマルチコプター101を飛行させる。
The memory 112 of the control device 110 stores a flight control program FCP, which is a program in which an algorithm for controlling the attitude and basic flight operation of the multicopter 101 during flight is stored. The flight control program FCP adjusts the rotational speed of each rotor R based on the information obtained from the sensor or the like in accordance with an instruction from the operator (transmitter 151), and corrects the attitude and position disturbance of the aircraft. The copter 101 is allowed to fly.
マルチコプター101の操縦は、オペレータが送信器151から行うほか、例えば、飛行経路や速度、高度などのパラメータを飛行計画FPとして予め登録しておき、目的地に向けて自律的に飛行させることも可能である(以下、このような自律飛行のことを「オートパイロット」という。)。
In addition to the operator operating the multicopter 101 from the transmitter 151, for example, parameters such as the flight path, speed, and altitude are registered in advance as a flight plan FP, and the operator can fly autonomously toward the destination. It is possible (hereinafter referred to as “autopilot”).
また、本実施形態の飛行制御プログラムFCPは、バッテリー190の残量が所定の閾値以下まで低下したときには、自動的にマルチコプター101を不時着させるよう構成されている。
In addition, the flight control program FCP of the present embodiment is configured so that the multicopter 101 is automatically landed when the remaining amount of the battery 190 falls below a predetermined threshold value.
このように、本実施形態におけるマルチコプター101は高度な飛行制御機能を備えている。ただし、本発明における無人航空機はマルチコプター101の形態には限定されず、紛失防止装置201を備えていることを条件として、例えばセンサ等から一部のセンサが省略された機体や、オートパイロット機能を備えず手動操縦のみにより飛行可能な機体、自動着陸機能を備えない機体を用いることもできる。さらに、本発明における無人航空機は回転翼機にも限定されず、紛失防止装置201を備える固定翼機であってもよい。
Thus, the multicopter 101 in this embodiment has an advanced flight control function. However, the unmanned aerial vehicle according to the present invention is not limited to the form of the multicopter 101. On the condition that the loss prevention device 201 is provided, for example, an airframe in which some sensors are omitted from the sensor or the like, or an autopilot function It is also possible to use a fuselage that can fly only by manual maneuvering, or that does not have an automatic landing function. Furthermore, the unmanned aerial vehicle in the present invention is not limited to a rotary wing aircraft, and may be a fixed wing aircraft including a loss prevention device 201.
(紛失防止装置)
紛失防止装置201は、マルチコプター101が送信器151の電波圏外に飛去したときや、マルチコプター101がオートパイロット機能により有視界外を飛行中に失踪したときに、その機体の捜索および回収を補助する装置である。 (Loss prevention device)
Loss prevention device 201 searches and collects the aircraft when multicopter 101 flies out of the radio range of transmitter 151 or when multicopter 101 disappears while flying outside the visual field by the autopilot function. It is a device to assist.
紛失防止装置201は、マルチコプター101が送信器151の電波圏外に飛去したときや、マルチコプター101がオートパイロット機能により有視界外を飛行中に失踪したときに、その機体の捜索および回収を補助する装置である。 (Loss prevention device)
本実施形態の紛失防止装置201は、マイクロコントローラである制御装置210を備えている。制御装置210は、中央処理装置であるCPU211、ROMやRAMなどの記憶装置であるメモリ212を有している。紛失防止装置201はさらに、IMU221、GPS受信器225、3G/LTEモジュール231、および無線LANモジュール232を有しており、これらは制御装置210に接続されている。また、紛失防止装置201は専用の電力源であるバッテリー290を備えている
The loss prevention device 201 of this embodiment includes a control device 210 that is a microcontroller. The control device 210 includes a CPU 211 that is a central processing unit, and a memory 212 that is a storage device such as a ROM or a RAM. The loss prevention device 201 further includes an IMU 221, a GPS receiver 225, a 3G / LTE module 231, and a wireless LAN module 232, which are connected to the control device 210. Further, the loss prevention apparatus 201 includes a battery 290 that is a dedicated power source.
IMU221は一般的な慣性計測装置であり、主に3軸加速度センサと3軸角速度センサにより構成されている。紛失防止装置201のメモリ212には、IMU221の出力値を監視して、マルチコプター101が飛行状態にあるか着陸状態にあるかを判別するプログラムである状態監視プログラムSMPが登録されている。これらIMU221および状態監視プログラムSMPは、紛失防止装置201の着地検知手段を構成している。
The IMU 221 is a general inertial measurement device, and mainly includes a triaxial acceleration sensor and a triaxial angular velocity sensor. Registered in the memory 212 of the loss prevention apparatus 201 is a state monitoring program SMP that is a program for monitoring the output value of the IMU 221 to determine whether the multicopter 101 is in a flight state or a landing state. These IMU 221 and state monitoring program SMP constitute landing detection means of the loss prevention device 201.
GPS受信器225は、紛失防止装置201の位置情報取得手段であり、正確には航法衛星システム(NSS)の受信器である。GPS受信器225は、全地球航法衛星システム(GNSS)または地域航法衛星システム(RNSS)から現在の経緯度値および時刻情報を取得する。以下、このような経緯度値および時刻情報を「GPS情報Pg」という。また、このGPS情報Pgなどの、マルチコプター101(紛失防止装置201)の現在位置を特定するための情報を総称して「位置情報P」という。本実施形態の紛失防止装置201は、位置情報PにGPS情報Pgが含まれていることにより、マルチコプター101の現在位置を直接的に特定することが可能とされている。
The GPS receiver 225 is position information acquisition means of the loss prevention device 201, and is precisely a navigation satellite system (NSS) receiver. The GPS receiver 225 obtains current longitude and latitude values and time information from a global navigation satellite system (GNSS) or a regional navigation satellite system (RNSS). Hereinafter, such longitude and latitude values and time information are referred to as “GPS information Pg”. Further, information for specifying the current position of the multicopter 101 (the loss prevention apparatus 201) such as the GPS information Pg is collectively referred to as “position information P”. The loss prevention apparatus 201 according to the present embodiment can directly identify the current position of the multicopter 101 by including the GPS information Pg in the position information P.
本実施形態の紛失防止装置201は、マルチコプター101のセンサ等とは別に、専用のIMU221およびGPS受信器225を備えている。そのため、マルチコプター101のセンサ等が故障した場合でも、単独で機体の着地を検知し、位置情報Pを通知することができる。ただし、専用のIMU221やGPS受信器225を備えることは必須の構成ではなく、マルチコプター101のセンサ等から必要な情報を得る構成とすることもできる。さらには、専用のIMU221およびGPS受信器225を備え、マルチコプター101のセンサ等の出力値も併用して、紛失防止装置201の独立性を確保しつつ、マルチコプター101の状態をより正確に把握可能な構成とすることも考えられる。
The loss prevention apparatus 201 of the present embodiment includes a dedicated IMU 221 and a GPS receiver 225 separately from the sensor of the multicopter 101 and the like. Therefore, even when a sensor or the like of the multicopter 101 breaks down, the landing of the airframe can be detected alone and the position information P can be notified. However, the provision of the dedicated IMU 221 and the GPS receiver 225 is not an essential configuration, and a configuration in which necessary information is obtained from the sensor of the multicopter 101 or the like may be employed. Furthermore, a dedicated IMU 221 and a GPS receiver 225 are provided, and the output values of the sensors of the multicopter 101 are also used together to ensure the independence of the loss prevention device 201 and more accurately grasp the state of the multicopter 101. A possible configuration is also conceivable.
3G/LTEモジュール231は、広域無線通信網のうち、3G/HSPA(High Speed Packet Access)、LTE(Long Term Evolution)などの移動体通信網に接続可能な広域無線通信手段である。なお、3G/LTEモジュール231は、モバイルWiMAX(Worldwide Interoperability for Microwave Access)に接続可能なWiMAXモジュールで代用することもできる。
The 3G / LTE module 231 is a wide area wireless communication means that can be connected to a mobile communication network such as 3G / HSPA (High Speed Packet Access), LTE (Long Term Evolution) among wide area wireless communication networks. The 3G / LTE module 231 can be replaced with a WiMAX module that can be connected to mobile WiMAX (WorldwideWorldInteroperability for Microwave Access).
紛失防止装置201のメモリ212には、所定の宛先に電子メールを送信するプログラムであるメールプログラムMPが登録されている。メールプログラムMPは、移動体通信網を介して位置情報Pを送信する位置情報送信手段である。状態監視プログラムSMPは、マルチコプター101の着地を検知したときに、3G/LTEモジュール231の機能を有効化し、メールプログラムMPにより位置情報Pを所定の宛先に送信する。なお、3G/LTEモジュール231は、マルチコプター101の飛行中は電波を発しないよう無効化されている。なお、位置情報Pの送信に使用されるプロトコルは本実施形態で用いられるようなSMTPには限られず、HTTPなど他の一般的なプロトコルでもよく、または、位置情報Pの送受信用に独自に設けたプロトコルであってもよい。また、メールプログラムMPは、最新の位置情報Pを周期的に送信してもよく、着地時に一回のみ送信してもよい。
In the memory 212 of the loss prevention apparatus 201, a mail program MP that is a program for sending an e-mail to a predetermined destination is registered. The mail program MP is position information transmitting means for transmitting the position information P via the mobile communication network. When detecting the landing of the multicopter 101, the state monitoring program SMP enables the function of the 3G / LTE module 231 and transmits the position information P to a predetermined destination by the mail program MP. Note that the 3G / LTE module 231 is disabled so as not to emit radio waves while the multicopter 101 is flying. Note that the protocol used for transmission of the position information P is not limited to SMTP as used in the present embodiment, but may be another general protocol such as HTTP, or provided uniquely for transmission / reception of the position information P. May be a different protocol. Further, the mail program MP may periodically transmit the latest position information P, or may transmit only once at the time of landing.
さらに、本実施形態の3G/LTEモジュール231は、GPS受信器225とともに、位置情報取得手段としても機能する。3G/LTEモジュール231は、地上においてその機能が有効化されると、周辺の基地局の信号強度から、三角測量によりマルチコプター101の現在位置を推定する。以下、このような現在位置情報を「基地局情報Pb」という。本実施形態の位置情報Pには、上述のGPS情報Pg、および基地局情報Pbが含まれている。これらの情報を適宜組み合わせることにより、マルチコプター101の現在位置をより正確に特定することができる。なお、本発明の位置情報Pは、マルチコプター101の捜索範囲の絞り込みに資する情報であればよく、常にGPS情報Pgや基地局情報Pbが含まれている必要はない。
Furthermore, the 3G / LTE module 231 of this embodiment also functions as a position information acquisition unit together with the GPS receiver 225. When the function is enabled on the ground, the 3G / LTE module 231 estimates the current position of the multicopter 101 by triangulation from the signal strength of the surrounding base stations. Hereinafter, such current position information is referred to as “base station information Pb”. The position information P of the present embodiment includes the above-described GPS information Pg and base station information Pb. By appropriately combining these pieces of information, the current position of the multicopter 101 can be specified more accurately. Note that the position information P of the present invention may be information that contributes to narrowing down the search range of the multicopter 101, and it is not always necessary to include the GPS information Pg and the base station information Pb.
無線LANモジュール232は、マルチコプター101の捜索者がその電波圏内に入った時に、捜索者が保持する図示しない受信機に対して位置情報Pを送信する近距離無線通信手段である。
The wireless LAN module 232 is short-range wireless communication means for transmitting position information P to a receiver (not shown) held by the searcher when the searcher of the multicopter 101 enters the radio wave range.
マルチコプター101の着地点の地理的状況によっては、3G/LTEモジュール231による通信が利用できないおそれがある。本実施形態のマルチコプター101は、3G/LTEモジュール231による移動体通信網への接続が成功しないときには、無線LANモジュール232により位置情報Pの発信を試みる。これにより、マルチコプター101から数十メートル程度の距離にいる捜索者に対して、収集できる限りの位置情報Pを送信することができる。
Depending on the geographical situation of the landing point of the multicopter 101, there is a possibility that communication by the 3G / LTE module 231 cannot be used. When the connection to the mobile communication network by the 3G / LTE module 231 is not successful, the multicopter 101 of the present embodiment tries to transmit the position information P by the wireless LAN module 232. As a result, as much position information P as can be collected can be transmitted to a searcher located at a distance of several tens of meters from the multicopter 101.
なお、3G/LTEモジュール231が移動体通信網に接続可能であるときも、無線LANモジュール232を併用することにより、マルチコプター101の発見を容易にすることができる。この場合、例えば、3G/LTEモジュール231により位置情報Pをメール送信し、無線LANモジュール232の信号強度に基づいて、捜索者とマルチコプター101との距離を捜索者の受信器に表示することなどが考えられる。なお、ここで無線LANモジュール232から発信される信号も位置情報Pの一種である。
Even when the 3G / LTE module 231 can be connected to the mobile communication network, the wireless LAN module 232 can be used together to facilitate the discovery of the multicopter 101. In this case, for example, the 3G / LTE module 231 sends the position information P by mail, and displays the distance between the searcher and the multicopter 101 on the searcher's receiver based on the signal strength of the wireless LAN module 232. Can be considered. Here, the signal transmitted from the wireless LAN module 232 is also a kind of position information P.
バッテリー290は、マルチコプター101が備えるバッテリー190とは別体の蓄電池である。バッテリー290には、マルチコプター101のバッテリー190が接続されており、バッテリー290は、バッテリー190から充電することができる。
The battery 290 is a storage battery separate from the battery 190 provided in the multicopter 101. A battery 190 of the multicopter 101 is connected to the battery 290, and the battery 290 can be charged from the battery 190.
マルチコプター101のバッテリー190とは別に、紛失防止装置201が専用のバッテリー290を備えていることにより、バッテリー190の故障時や、バッテリー190の電力が枯渇した後であっても、紛失防止装置201は独立して動作を継続することができる。
In addition to the battery 190 of the multicopter 101, the loss prevention device 201 includes a dedicated battery 290, so that the loss prevention device 201 can be used even when the battery 190 is out of order or even after the battery 190 is depleted. Can continue to operate independently.
さらに、本実施形態の紛失防止装置201では、状態監視プログラムSMPが、IMU221を使ってマルチコプター101の飛行状態を常時監視している。つまり、紛失防止装置201は、マルチコプター101の飛行中にも電力を消費している。本実施形態のバッテリー290は、マルチコプター101のバッテリー190から充電可能であることにより、マルチコプター101の飛行中に消費した電力をバッテリー190から適宜充電することができ、マルチコプター101の失踪時における紛失防止装置201の電力を最大量確保することが可能とされている。さらに、本実施形態のマルチコプター101は、そのバッテリー190が枯渇する前に自動着陸するよう構成されている。そのため、紛失防止装置201は、マルチコプター101の着陸後に、バッテリー290の電力に加えて、マルチコプター101のバッテリー190の残電力も利用することができる。これにより、紛失防止装置201をより長時間動作させることが可能とされている。一方、紛失防止装置201のバッテリー290の容量が単独でも十分であるときには、バッテリー290をマルチコプター101のバッテリー190から充電可能とする必要はない。
Furthermore, in the loss prevention apparatus 201 of the present embodiment, the state monitoring program SMP constantly monitors the flight state of the multicopter 101 using the IMU 221. That is, the loss prevention device 201 consumes power even during the flight of the multicopter 101. Since the battery 290 of the present embodiment can be charged from the battery 190 of the multicopter 101, the power consumed during the flight of the multicopter 101 can be appropriately charged from the battery 190. It is possible to secure the maximum amount of power of the loss prevention device 201. Furthermore, the multicopter 101 of this embodiment is configured to automatically land before the battery 190 is depleted. Therefore, the loss prevention apparatus 201 can use the remaining power of the battery 190 of the multicopter 101 in addition to the power of the battery 290 after the landing of the multicopter 101. Thereby, it is possible to operate the loss prevention device 201 for a longer time. On the other hand, when the capacity of the battery 290 of the loss prevention apparatus 201 is sufficient, the battery 290 need not be rechargeable from the battery 190 of the multicopter 101.
制御不能となり失踪した無人航空機は、その動力源である燃料や電力の枯渇により墜落、または自動着陸する。本実施形態のマルチコプター101は、機体の着地後に、紛失防止装置201が捜索者である所定の宛先に対してマルチコプター101の現在位置を通知する。これにより、失踪したマルチコプター101の捜索範囲が絞り込まれ、捜索者は、失踪した機体を容易に発見および回収することが可能とされている。また、紛失防止装置201が3G/LTEモジュール231を備え、移動体通信網を利用可能であることにより、紛失防止装置201は、マルチコプター101が飛去した距離にかかわらず、サービスエリア内であればどこからでも捜索者に位置情報Pを伝達することができる。なお、本実施形態の紛失防止装置201は、失踪による不時着時以外でも、着地時には所定の宛先に位置情報Pを送信する。そのため、位置情報Pの送信先には、その内容から正常および異常を判別可能な受信者を設定することが望ましい。
Unmanned aerial vehicles lost due to loss of control will crash or land automatically due to the depletion of fuel and power. The multicopter 101 of the present embodiment notifies the current position of the multicopter 101 to a predetermined destination where the loss prevention device 201 is a searcher after landing of the aircraft. Thereby, the search range of the lost multicopter 101 is narrowed down, and the searcher can easily find and recover the lost aircraft. In addition, since the loss prevention apparatus 201 includes the 3G / LTE module 231 and can use a mobile communication network, the loss prevention apparatus 201 can be installed in the service area regardless of the distance that the multicopter 101 has moved away. The position information P can be transmitted to the searcher from anywhere. Note that the loss prevention apparatus 201 according to the present embodiment transmits the position information P to a predetermined destination at the time of landing, even when the landing is not due to loss. Therefore, it is desirable to set a recipient who can discriminate between normal and abnormal from the contents as the transmission destination of the position information P.
(着地判断方法の変形例)
図2は、本発明の紛失防止装置による着地判断の他の例を示すフロー図である。本実施形態の紛失防止装置201はIMU221の出力値のみに基づいてマルチコプター101の着地を判断している。ここで、例えば紛失防止装置201がIMU221のほかに、さらに、マルチコプター101と地表との距離を検知する距離センサ、マルチコプター101の気圧高度を検知する気圧センサ、各ローターRへの電流量を検知する電流センサ、各ローターRの回転数を検知する回転センサを備えているものとし、そして、これら各センサの出力値のうち、2つ以上のセンサがマルチコプター101の着地を示している場合に、マルチコプター101が地上にあるものと判断する。なお、これらセンサの一部のみを用いてもよい。こうすることにより、マルチコプター101の着地をより正確に判断することも可能である。 (Modification of landing judgment method)
FIG. 2 is a flowchart showing another example of landing determination by the loss prevention apparatus of the present invention. Theloss prevention apparatus 201 of this embodiment determines the landing of the multicopter 101 based only on the output value of the IMU 221. Here, for example, in addition to the IMU 221, the loss prevention device 201 further includes a distance sensor that detects the distance between the multicopter 101 and the ground surface, an atmospheric pressure sensor that detects the atmospheric pressure altitude of the multicopter 101, and an amount of current to each rotor R. It is assumed that a current sensor for detection and a rotation sensor for detecting the number of rotations of each rotor R are provided, and two or more of the output values of these sensors indicate the landing of the multicopter 101. Then, it is determined that the multicopter 101 is on the ground. Only a part of these sensors may be used. By doing so, it is possible to determine the landing of the multicopter 101 more accurately.
図2は、本発明の紛失防止装置による着地判断の他の例を示すフロー図である。本実施形態の紛失防止装置201はIMU221の出力値のみに基づいてマルチコプター101の着地を判断している。ここで、例えば紛失防止装置201がIMU221のほかに、さらに、マルチコプター101と地表との距離を検知する距離センサ、マルチコプター101の気圧高度を検知する気圧センサ、各ローターRへの電流量を検知する電流センサ、各ローターRの回転数を検知する回転センサを備えているものとし、そして、これら各センサの出力値のうち、2つ以上のセンサがマルチコプター101の着地を示している場合に、マルチコプター101が地上にあるものと判断する。なお、これらセンサの一部のみを用いてもよい。こうすることにより、マルチコプター101の着地をより正確に判断することも可能である。 (Modification of landing judgment method)
FIG. 2 is a flowchart showing another example of landing determination by the loss prevention apparatus of the present invention. The
<第2実施形態>
以下、本発明の第2実施形態について図面を用いて説明する。第2実施形態は、本発明の紛失防止装置を備えた無人航空機の他の例である。なお、以下の説明では、先の実施形態と同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。 Second Embodiment
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. The second embodiment is another example of an unmanned aerial vehicle including the loss prevention device of the present invention. In the following description, components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
以下、本発明の第2実施形態について図面を用いて説明する。第2実施形態は、本発明の紛失防止装置を備えた無人航空機の他の例である。なお、以下の説明では、先の実施形態と同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。 Second Embodiment
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. The second embodiment is another example of an unmanned aerial vehicle including the loss prevention device of the present invention. In the following description, components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
(構成概要)
図3は本実施形態にかかるマルチコプター102の機能構成を示すブロック図である。マルチコプター102の機体は、後述する紛失防止装置202の構成を除き、第1実施形態のマルチコプター101と同様である。そのため、マルチコプター102の基本的な構成についての説明は省略する。 (Configuration overview)
FIG. 3 is a block diagram showing a functional configuration of themulticopter 102 according to the present embodiment. The machine body of the multicopter 102 is the same as the multicopter 101 of the first embodiment except for the configuration of the loss prevention device 202 described later. Therefore, description of the basic configuration of the multicopter 102 is omitted.
図3は本実施形態にかかるマルチコプター102の機能構成を示すブロック図である。マルチコプター102の機体は、後述する紛失防止装置202の構成を除き、第1実施形態のマルチコプター101と同様である。そのため、マルチコプター102の基本的な構成についての説明は省略する。 (Configuration overview)
FIG. 3 is a block diagram showing a functional configuration of the
(紛失防止装置)
本実施形態の紛失防止装置202は、第1実施形態の紛失防止装置201の構成に加え、位置解析プログラムPAP、および飛行ルート記憶域FRMを有している。 (Loss prevention device)
Theloss prevention apparatus 202 of this embodiment has a position analysis program PAP and a flight route storage area FRM in addition to the configuration of the loss prevention apparatus 201 of the first embodiment.
本実施形態の紛失防止装置202は、第1実施形態の紛失防止装置201の構成に加え、位置解析プログラムPAP、および飛行ルート記憶域FRMを有している。 (Loss prevention device)
The
紛失防止装置202の状態監視プログラムSMPは、マルチコプター102の飛行時および着陸時におけるGPS情報Pgを、飛行ルート記憶域FRMに継続的に記録する。そして、位置解析プログラムPAPは、飛行ルート記憶域FRMに記録されたGPS情報Pgを解析し、より現在位置としての蓋然性が高い経緯度値またはその範囲を特定する現在位置推定手段である。本実施形態では、メールプログラムMPが送信する位置情報Pに含まれるGPS情報Pgは、飛行ルート記憶域FRMから取得された複数のGPS情報Pgと、位置解析プログラムPAPにより特定された経緯度値またはその範囲が含まれている。
The state monitoring program SMP of the loss prevention device 202 continuously records the GPS information Pg during the flight and landing of the multicopter 102 in the flight route storage area FRM. The position analysis program PAP is current position estimation means for analyzing the GPS information Pg recorded in the flight route storage area FRM and specifying a longitude / latitude value or a range having a higher probability as the current position. In the present embodiment, the GPS information Pg included in the position information P transmitted by the mail program MP includes a plurality of GPS information Pg acquired from the flight route storage area FRM, and a latitude / longitude value specified by the position analysis program PAP or That range is included.
図4は、位置解析プログラムPAPによるGPS情報Pgの解析手順を示すフロー図である。
FIG. 4 is a flowchart showing a procedure for analyzing GPS information Pg by the position analysis program PAP.
マルチコプター102の着地後、位置解析プログラムPAPは、GPS受信器225が有効に動作していることを確認する(S210)。より具体的には、位置解析プログラムPAPは、GPS受信器225からGPS情報Pgが取得可能であり、また、その経緯度値および時刻情報が有効値であることを確認する。
After the landing of the multicopter 102, the position analysis program PAP confirms that the GPS receiver 225 is operating effectively (S210). More specifically, the position analysis program PAP confirms that the GPS information Pg can be acquired from the GPS receiver 225, and that the longitude and latitude values and the time information are valid values.
GPS受信器225の動作が有効であるときは(S210:Y)、飛行ルート記憶域FRMの最新のGPS情報Pgから過去のGPS情報Pgにさかのぼって複数のGPS情報Pgを取得し、これらGPS情報Pgの経緯度値の誤差が数mの範囲内に収まることを確認する(S220)。
When the operation of the GPS receiver 225 is valid (S210: Y), a plurality of GPS information Pg is acquired by tracing back to the past GPS information Pg from the latest GPS information Pg in the flight route storage area FRM. It is confirmed that the error of the longitude and latitude values of Pg is within a range of several meters (S220).
位置解析プログラムPAPは、これらGPS情報Pgの経緯度値の誤差が上記範囲内であるときには(S220:Y)、最新のGPS情報Pgの経緯度値をマルチコプター102の現在位置と特定する(S221)。一方、同経緯度値の誤差が上記範囲を超えているときには(S220:N)、取得した複数のGPS情報Pgの経緯度値を平均した値をマルチコプター102の現在位置と特定する(S221)。
When the error of the longitude and latitude values of these GPS information Pg is within the above range (S220: Y), the position analysis program PAP specifies the longitude and latitude values of the latest GPS information Pg as the current position of the multicopter 102 (S221). ). On the other hand, when the error of the longitude and latitude values exceeds the above range (S220: N), a value obtained by averaging the longitude and latitude values of the plurality of acquired GPS information Pg is specified as the current position of the multicopter 102 (S221). .
マルチコプター102の着地後、GPS受信器225が有効に動作していないときには(S210:N)、位置解析プログラムPAPは、飛行ルート記憶域FRMの最新のGPS情報Pgから過去のGPS情報Pgにさかのぼって複数のGPS情報Pgを取得し、着地前のマルチコプター102の移動方向と移動速度を算出する(S211)。そして、その算出した移動方向の延長線上における、移動速度に応じた所定の範囲を現在位置と推定する(S212)。
When the GPS receiver 225 is not operating effectively after the landing of the multicopter 102 (S210: N), the position analysis program PAP goes back to the past GPS information Pg from the latest GPS information Pg in the flight route storage area FRM. A plurality of GPS information Pg is acquired, and the moving direction and moving speed of the multicopter 102 before landing are calculated (S211). And the predetermined range according to the moving speed on the extension line of the calculated moving direction is estimated as the current position (S212).
位置解析プログラムPAPによる上記処理の後、メールプログラムMPは、飛行ルート記憶域FRMから取得された複数のGPS情報Pgと、位置解析プログラムPAPにより特定された経緯度値またはその範囲、および、基地局情報Pbを所定の宛先へ送信する。ここで、移動体通信網への接続が不安定であるときは、上記複数のGPS情報Pgを省略し、位置解析プログラムPAPにより特定された経緯度値またはその範囲および基地局情報Pbのみを送信してもよい。
After the above processing by the position analysis program PAP, the mail program MP includes a plurality of GPS information Pg acquired from the flight route storage area FRM, the longitude / latitude value specified by the position analysis program PAP, and its range, and the base station Information Pb is transmitted to a predetermined destination. Here, when the connection to the mobile communication network is unstable, the plurality of GPS information Pg is omitted, and only the longitude / latitude value specified by the position analysis program PAP and the base station information Pb are transmitted. May be.
<第3実施形態>
以下、本発明の第3実施形態について図面を用いて説明する。第3実施形態は、本発明の紛失防止装置を備えた無人航空機の他の例である。なお、以下の説明では、先の実施形態と同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。 <Third Embodiment>
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. The third embodiment is another example of an unmanned aerial vehicle including the loss prevention device of the present invention. In the following description, components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
以下、本発明の第3実施形態について図面を用いて説明する。第3実施形態は、本発明の紛失防止装置を備えた無人航空機の他の例である。なお、以下の説明では、先の実施形態と同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。 <Third Embodiment>
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. The third embodiment is another example of an unmanned aerial vehicle including the loss prevention device of the present invention. In the following description, components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
(構成概要)
図5は本実施形態にかかるマルチコプター103の機能構成を示すブロック図である。マルチコプター103の機体は、後述する紛失防止装置203の構成を除き、第1実施形態のマルチコプター101と同様である。そのため、マルチコプター103の基本的な構成についての説明は省略する。 (Configuration overview)
FIG. 5 is a block diagram showing a functional configuration of themulticopter 103 according to the present embodiment. The machine body of the multicopter 103 is the same as that of the multicopter 101 of the first embodiment except for the configuration of the loss prevention device 203 described later. Therefore, description of the basic configuration of the multicopter 103 is omitted.
図5は本実施形態にかかるマルチコプター103の機能構成を示すブロック図である。マルチコプター103の機体は、後述する紛失防止装置203の構成を除き、第1実施形態のマルチコプター101と同様である。そのため、マルチコプター103の基本的な構成についての説明は省略する。 (Configuration overview)
FIG. 5 is a block diagram showing a functional configuration of the
(紛失防止装置)
本実施形態の紛失防止装置203は、第1実施形態の紛失防止装置201の構成に加え、距離センサ222、ブザー280、並びに、パラシュート260およびパラシュート射出装置261を備えている。そして、紛失防止装置202の制御装置210は、マルチコプター103の制御装置110に接続されており、制御装置110による機体の制御処理に割り込み可能に構成されている。 (Loss prevention device)
Theloss prevention device 203 of the present embodiment includes a distance sensor 222, a buzzer 280, a parachute 260, and a parachute injection device 261 in addition to the configuration of the loss prevention device 201 of the first embodiment. The control device 210 of the loss prevention device 202 is connected to the control device 110 of the multicopter 103, and is configured to be able to interrupt the control processing of the aircraft by the control device 110.
本実施形態の紛失防止装置203は、第1実施形態の紛失防止装置201の構成に加え、距離センサ222、ブザー280、並びに、パラシュート260およびパラシュート射出装置261を備えている。そして、紛失防止装置202の制御装置210は、マルチコプター103の制御装置110に接続されており、制御装置110による機体の制御処理に割り込み可能に構成されている。 (Loss prevention device)
The
距離センサ222は、マルチコプター103と地表との距離を検知する測距手段であり、例えば赤外線、超音波、またはレーザーなど種々の方式を用いた距離センサである。
The distance sensor 222 is a distance measuring unit that detects the distance between the multicopter 103 and the ground surface, and is a distance sensor using various methods such as infrared rays, ultrasonic waves, or lasers.
本実施形態の状態監視プログラムSMPは、マルチコプター103の回転翼停止手段を兼ねている。状態監視プログラムSMPは、距離センサ222により、マルチコプター103の機体と地表との距離を監視する。そして、その距離が3m以下になったときに、制御装置110へ割り込み処理を行い、マルチコプター103をその高度で一度ホバリングさせた後、ローターRを強制的に停止し、機体を落下させる。
The state monitoring program SMP of the present embodiment also serves as a rotor stop means for the multicopter 103. The state monitoring program SMP monitors the distance between the body of the multicopter 103 and the ground surface by the distance sensor 222. Then, when the distance becomes 3 m or less, the controller 110 is interrupted, the multicopter 103 is hovered once at the altitude, the rotor R is forcibly stopped, and the aircraft is dropped.
回転翼機であるマルチコプター103を着陸させる際には、その着陸時における降下速度は可能な限り落とすべきである。一方、マルチコプター103のローターRは鋭利であり、例えばマルチコプター103の着陸地点に構造物などがある場合、ローターRがこれを損傷させるおそれがある。また、着陸地点に歩行者があるケースも想定し、その被害を最小限に抑える対策を講じておく必要がある。本実施形態の紛失防止装置203は、人間の身長を超える程度の高度でマルチコプター103を一度ホバリングさせ、その後ローターRを停止して機体を落下させる。これにより、失踪したマルチコプター103がバッテリー190残量の低下により不時着する場合でも、機体の保護と、着陸地点の被害抑制との両立を図ることが可能とされている。また、マルチコプター103の不時着時以外にはこのローター停止機能が作動しないよう、バッテリー190の残量が所定の閾値を超えているときには、制御装置110への割り込み処理を無効化しておくことが望ましい。なお、かかるローター停止機能は、紛失防止装置203ではなくマルチコプター103が備えていても良い。
When landing the multi-copter 103, which is a rotorcraft, the descent speed at the time of landing should be reduced as much as possible. On the other hand, the rotor R of the multicopter 103 is sharp. For example, when there is a structure or the like at the landing point of the multicopter 103, the rotor R may damage the rotor. In addition, assuming that there are pedestrians at the landing point, it is necessary to take measures to minimize the damage. The loss prevention device 203 of this embodiment causes the multicopter 103 to hover once at an altitude that exceeds the height of a human being, and then stops the rotor R to drop the fuselage. As a result, even when the lost multicopter 103 arrives due to a decrease in the remaining amount of the battery 190, it is possible to achieve both protection of the aircraft and suppression of damage at the landing point. In addition, when the remaining capacity of the battery 190 exceeds a predetermined threshold value, it is desirable to disable the interrupt processing to the control device 110 so that the rotor stop function does not operate except when the multicopter 103 is unscheduled. . The rotor stop function may be provided in the multicopter 103 instead of the loss prevention device 203.
ブザー280は、失踪したマルチコプター103の捜索者に対して、マルチコプター103の存在位置を聴覚的に訴える顕在化手段である。
The buzzer 280 is a manifestation means that audibly appeals to the searcher of the lost multicopter 103 about the location of the multicopter 103.
GPS情報Pgや基地局情報Pbと、マルチコプター103の実際の位置との誤差を完全になくすことは困難である。本実施形態の紛失防止装置203は、ブザー280から発せられるブザー音により、近傍の捜索者にその位置を知らせることができる。これにより捜索者は、効率的にマルチコプター103を発見することができる。ここで、ブザー280を鳴らすタイミングは任意であるが、例えば、無線LANモジュール232や3G/LTEモジュール231経由で捜索者からの作動指示を受信したとき、または、マルチコプター103の着地を検知してから所定時間経過後に一定の間隔で断続的に鳴らすことなどが考えられる。なお、本発明の顕在化手段はブザー280には限られず、例えば回転灯など、捜索者に対してマルチコプター103の存在位置を視覚的に訴える手段であってもよい。
It is difficult to completely eliminate an error between the GPS information Pg and the base station information Pb and the actual position of the multicopter 103. The loss prevention apparatus 203 according to the present embodiment can notify a nearby searcher of the position by a buzzer sound emitted from the buzzer 280. As a result, the searcher can efficiently find the multicopter 103. Here, the timing of sounding the buzzer 280 is arbitrary. For example, when an operation instruction is received from a searcher via the wireless LAN module 232 or the 3G / LTE module 231, or the landing of the multicopter 103 is detected. For example, it may be possible to sound intermittently at regular intervals after a predetermined time has elapsed. Note that the revealing means of the present invention is not limited to the buzzer 280, and may be means for visually informing the searcher of the location of the multicopter 103, such as a rotating light.
パラシュート260およびパラシュート射出装置261は、マルチコプター103の墜落時における衝撃を緩和する緩衝機構である。
The parachute 260 and the parachute injection device 261 are buffer mechanisms that alleviate the impact when the multicopter 103 crashes.
本実施形態の紛失防止装置203は、状態監視プログラムSMPがIMU221の出力値からマルチコプター103の墜落を検知したときに、自動的にパラシュート射出装置261を作動させ、パラシュート260を展開する。これにより、マルチコプター103の機体や、マルチコプター103に搭載された機材、および紛失防止装置203自体の損傷を抑えることが可能とされている。なお、本発明の緩衝機構はパラシュート260のみには限られず、例えばエアバッグなどをさらに備えてもよい。また、墜落に備えて、紛失防止装置203は堅牢なケース体を緩衝材で梱包した状態でマルチコプター103に搭載されていることが望ましい。さらに、紛失防止装置203の各構成は、防水対策が施されていることが望ましい。なお、パラシュート260、パラシュート射出装置261、およびパラシュート射出装置261の制御機能は、紛失防止装置203ではなく、マルチコプター103が備えていても良い。
When the state monitoring program SMP detects the crash of the multicopter 103 from the output value of the IMU 221, the loss prevention apparatus 203 of this embodiment automatically operates the parachute injection apparatus 261 and deploys the parachute 260. Thereby, it is possible to suppress damage to the body of the multicopter 103, the equipment mounted on the multicopter 103, and the loss prevention device 203 itself. The buffer mechanism of the present invention is not limited to the parachute 260, and may further include, for example, an airbag. In addition, in preparation for a crash, the loss prevention device 203 is desirably mounted on the multicopter 103 in a state where a robust case body is packed with a cushioning material. Furthermore, it is desirable that each component of the loss prevention device 203 has a waterproof measure. Note that the control functions of the parachute 260, the parachute injection device 261, and the parachute injection device 261 may be provided in the multicopter 103 instead of the loss prevention device 203.
<第4実施形態>
以下、本発明の第4実施形態について図面を用いて説明する。第4実施形態は、本発明の紛失防止システムの例である。なお、以下の説明では、先の実施形態と同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。 <Fourth embodiment>
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. The fourth embodiment is an example of the loss prevention system of the present invention. In the following description, components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
以下、本発明の第4実施形態について図面を用いて説明する。第4実施形態は、本発明の紛失防止システムの例である。なお、以下の説明では、先の実施形態と同一の機能を有する構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。 <Fourth embodiment>
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. The fourth embodiment is an example of the loss prevention system of the present invention. In the following description, components having the same functions as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
(全体概要)
本実施形態の紛失防止システムSは、紛失防止装置204が搭載されたマルチコプター104、および、紛失防止装置204と無線通信可能な管理局300により構成されている。 (Overview)
The loss prevention system S according to the present embodiment includes amulticopter 104 in which the loss prevention device 204 is mounted, and a management station 300 that can communicate with the loss prevention device 204 wirelessly.
本実施形態の紛失防止システムSは、紛失防止装置204が搭載されたマルチコプター104、および、紛失防止装置204と無線通信可能な管理局300により構成されている。 (Overview)
The loss prevention system S according to the present embodiment includes a
(マルチコプター)
マルチコプター104の機体は、後述する紛失防止装置204の構成を除き、第1実施形態のマルチコプター101と同様である。そのため、マルチコプター104の基本的な構成についての説明は省略する。 (Multicopter)
The machine body of themulticopter 104 is the same as that of the multicopter 101 of the first embodiment except for the configuration of the loss prevention device 204 described later. Therefore, description of the basic configuration of the multicopter 104 is omitted.
マルチコプター104の機体は、後述する紛失防止装置204の構成を除き、第1実施形態のマルチコプター101と同様である。そのため、マルチコプター104の基本的な構成についての説明は省略する。 (Multicopter)
The machine body of the
(紛失防止装置)
本実施形態の紛失防止装置204は、第2実施形態の紛失防止装置202から位置解析プログラムPAPが省略された構成とされている。紛失防止装置204では、状態監視プログラムSMPがマルチコプター104の着地を検知すると、メールプログラムMPは、飛行ルート記憶域FRMの最新のGPS情報Pgから過去のGPS情報Pgにさかのぼって複数のGPS情報Pgを取得し、これらGPS情報Pgを基地局情報Pbとともに管理局300に送信する。 (Loss prevention device)
Theloss prevention device 204 of the present embodiment is configured such that the position analysis program PAP is omitted from the loss prevention device 202 of the second embodiment. In the loss prevention apparatus 204, when the state monitoring program SMP detects the landing of the multicopter 104, the mail program MP goes back to the past GPS information Pg from the latest GPS information Pg in the flight route storage area FRM, and a plurality of GPS information Pg. And the GPS information Pg is transmitted to the management station 300 together with the base station information Pb.
本実施形態の紛失防止装置204は、第2実施形態の紛失防止装置202から位置解析プログラムPAPが省略された構成とされている。紛失防止装置204では、状態監視プログラムSMPがマルチコプター104の着地を検知すると、メールプログラムMPは、飛行ルート記憶域FRMの最新のGPS情報Pgから過去のGPS情報Pgにさかのぼって複数のGPS情報Pgを取得し、これらGPS情報Pgを基地局情報Pbとともに管理局300に送信する。 (Loss prevention device)
The
(管理局)
本実施形態の管理局300は、一般的なパソコンやタブレットPCなどの汎用的コンピュータである。管理局300は、中央処理装置であるCPU311、ROMやRAMなどの記憶装置であるメモリ312を備えている。管理局300はさらに、移動体通信網を介して紛失防止装置204と通信可能な受信器320、並びに、位置情報Pを地図データ上にマッピングした状態でマルチコプター104の現在位置を表示する地図表示プログラムPDPおよびモニター330を備えている。 (Management Bureau)
Themanagement station 300 of this embodiment is a general-purpose computer such as a general personal computer or tablet PC. The management station 300 includes a CPU 311 that is a central processing unit and a memory 312 that is a storage device such as a ROM or a RAM. The management station 300 further includes a receiver 320 that can communicate with the loss prevention device 204 via the mobile communication network, and a map display that displays the current position of the multicopter 104 in a state where the position information P is mapped on the map data. A program PDP and a monitor 330 are provided.
本実施形態の管理局300は、一般的なパソコンやタブレットPCなどの汎用的コンピュータである。管理局300は、中央処理装置であるCPU311、ROMやRAMなどの記憶装置であるメモリ312を備えている。管理局300はさらに、移動体通信網を介して紛失防止装置204と通信可能な受信器320、並びに、位置情報Pを地図データ上にマッピングした状態でマルチコプター104の現在位置を表示する地図表示プログラムPDPおよびモニター330を備えている。 (Management Bureau)
The
管理局300は、マルチコプター104から位置情報Pを受信すると、位置解析プログラムPAPが、図4のフローに沿って、GPS情報Pgからマルチコプター104の現在位置を特定または推定する。そして、地図表示プログラムPDPが、位置解析プログラムPAPにより特定または推定されたマルチコプター104の現在位置と、基地局情報Pbとを地図データ上にマッピングしてモニター330に表示する。
When the management station 300 receives the position information P from the multicopter 104, the position analysis program PAP specifies or estimates the current position of the multicopter 104 from the GPS information Pg according to the flow of FIG. Then, the map display program PDP maps the current position of the multicopter 104 specified or estimated by the position analysis program PAP and the base station information Pb on the map data and displays them on the monitor 330.
図7は、マルチコプター104の現在位置を示すモニター330画面の模式図である。図7の例では、説明の便宜上、細かな地物の表示は省略している。図7の例では、マルチコプター104は、その着地前にGPS受信器225が故障しており、位置解析プログラムPAPは、図4のフローに基づき(S210:N)、マルチコプター104の現在位置の範囲を推定したものとする。
FIG. 7 is a schematic diagram of a monitor 330 screen showing the current position of the multicopter 104. In the example of FIG. 7, detailed features are not shown for convenience of explanation. In the example of FIG. 7, the GPS receiver 225 has failed in the multicopter 104 before landing, and the position analysis program PAP is based on the flow of FIG. 4 (S210: N), and the current position of the multicopter 104 is determined. Assume that the range is estimated.
ここで、図7の三角形の記号は移動体通信網の基地局Bを示しており、破線の円は基地局情報Pbを示している。黒点は、飛行ルート記憶域FRMから取得された直近の複数のGPS情報Pgを示している。実線の矢印は、位置解析プログラムPAPがGPS情報Pgから算出したマルチコプター104の飛行経路FRを示している。破線の矢印は、位置解析プログラムPAPがGPS情報Pgから算出したマルチコプター104の推定現在位置Peを示している。そして、実線の円は、マルチコプター104を捜索すべき範囲である捜索範囲Aを示している。なお、捜索範囲Aは実際にはモニター330に表示されておらず、捜索者が決定した範囲である。捜索者は、モニター330に表示された基地局情報Pb、推定現在位置Pe、飛行経路FR、およびその周辺の地物等の条件から、マルチコプター104の現在位置として蓋然性の高い範囲を検討し、捜索範囲Aを決定する。
Here, the triangle symbol in FIG. 7 indicates the base station B of the mobile communication network, and the broken circle indicates the base station information Pb. The black dots indicate the most recent GPS information Pg acquired from the flight route storage area FRM. A solid line arrow indicates the flight path FR of the multicopter 104 calculated from the GPS information Pg by the position analysis program PAP. A broken arrow indicates the estimated current position Pe of the multicopter 104 calculated from the GPS information Pg by the position analysis program PAP. A solid circle indicates a search range A that is a range in which the multicopter 104 should be searched. The search range A is not actually displayed on the monitor 330 and is a range determined by the searcher. The searcher examines a highly probable range as the current position of the multicopter 104 based on conditions such as the base station information Pb displayed on the monitor 330, the estimated current position Pe, the flight route FR, and surrounding features. The search range A is determined.
なお、本実施形態では、管理局300が位置解析プログラムPAPを備え、管理局300側でGPS情報Pgを解析しているが、当然、位置解析プログラムPAPをマルチコプター104側で実行して、管理局300はその結果をモニター330上に表示するだけの構成としてもよい。
In the present embodiment, the management station 300 includes the position analysis program PAP, and the GPS information Pg is analyzed on the management station 300 side. Naturally, the position analysis program PAP is executed on the multicopter 104 side for management. The station 300 may be configured to simply display the result on the monitor 330.
以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。例えば、本発明の広域無線通信手段は移動体通信網への接続手段には限られず、例えば衛星通信システムを用いたものでもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the wide-area wireless communication means of the present invention is not limited to a means for connecting to a mobile communication network, and for example, a satellite communication system may be used.
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the wide-area wireless communication means of the present invention is not limited to a means for connecting to a mobile communication network, and for example, a satellite communication system may be used.
Claims (13)
- 無人航空機に搭載される紛失防止装置であって、
広域無線通信手段と、
前記無人航空機の現在位置を特定するための情報である位置情報を取得する位置情報取得手段と、
前記無人航空機の着地を検知する着地検知手段と、
前記無人航空機が地上にあるときに、前記広域無線通信手段により前記位置情報を所定の宛先に送信する位置情報送信手段と、を備えることを特徴とする紛失防止装置。 A loss prevention device mounted on an unmanned aerial vehicle,
Wide area wireless communication means;
Position information acquisition means for acquiring position information which is information for specifying the current position of the unmanned aircraft;
Landing detection means for detecting landing of the unmanned aircraft;
A loss prevention apparatus comprising: position information transmission means for transmitting the position information to a predetermined destination by the wide area wireless communication means when the unmanned aircraft is on the ground. - 蓄電池をさらに備え、
前記蓄電池は、前記無人航空機の電力源から充電可能であることを特徴とする請求項1に記載の紛失防止装置。 A storage battery,
The loss prevention device according to claim 1, wherein the storage battery can be charged from a power source of the unmanned aircraft. - 前記広域無線通信手段は、移動体通信網への接続手段であることを特徴とする請求項1に記載の紛失防止装置。 The loss prevention apparatus according to claim 1, wherein the wide area wireless communication means is means for connecting to a mobile communication network.
- 近距離無線通信手段をさらに備え、
前記位置情報送信手段は、前記近距離無線通信手段により前記位置情報を発信可能であることを特徴とする請求項1に記載の紛失防止装置。 Further comprising a short-range wireless communication means,
The loss prevention apparatus according to claim 1, wherein the position information transmitting unit can transmit the position information by the short-range wireless communication unit. - 前記位置情報取得手段はGPS受信器を有しており、
前記位置情報には、前記GPS受信器により取得された情報であるGPS情報が含まれることを特徴とする請求項1に記載の紛失防止装置。 The position information acquisition means has a GPS receiver,
The loss prevention apparatus according to claim 1, wherein the position information includes GPS information that is information acquired by the GPS receiver. - 前記無人航空機の通常飛行時における前記GPS情報を記録する記憶手段と、
前記無人航空機の着地点において前記GPS受信器が利用不能であるときに、前記記憶手段の前記GPS情報を用いて、前記無人航空機の現在位置を推定する現在位置推定手段と、をさらに備え、
前記位置情報送信手段が送信する前記位置情報には、前記推定された現在位置が含まれることを特徴とする請求項5に記載の紛失防止装置。 Storage means for recording the GPS information during normal flight of the unmanned aircraft;
Current position estimation means for estimating the current position of the unmanned aircraft using the GPS information of the storage means when the GPS receiver is unavailable at the landing point of the unmanned aircraft,
6. The loss prevention apparatus according to claim 5, wherein the position information transmitted by the position information transmitting unit includes the estimated current position. - 前記広域無線通信手段は、移動体通信網への接続手段であり、
前記位置情報取得手段はGPS受信器を有しており、
前記位置情報取得手段はさらに、前記移動体通信網の基地局からの信号強度に基づいて推定された前記無人航空機の現在位置である基地局情報を取得可能であり、
前記位置情報には、前記GPS受信器により取得された情報であるGPS情報と、前記基地局情報とが含まれることを特徴とする請求項1に記載の紛失防止装置。 The wide area wireless communication means is a connection means to a mobile communication network,
The position information acquisition means has a GPS receiver,
The position information acquisition means can further acquire base station information that is a current position of the unmanned aircraft estimated based on signal strength from a base station of the mobile communication network,
The loss prevention apparatus according to claim 1, wherein the position information includes GPS information that is information acquired by the GPS receiver and the base station information. - 前記無人航空機近傍の捜索者に対して、前記無人航空機の存在位置を視覚的または聴覚的に訴える顕在化手段をさらに備えることを特徴とする請求項1に記載の紛失防止装置。 2. The loss prevention apparatus according to claim 1, further comprising a revealing means for visually or audibly appealing a searcher in the vicinity of the unmanned aircraft to the location of the unmanned aircraft.
- 前記無人航空機の墜落を検知する墜落検知手段と、
前記無人航空機の着地時における衝撃を緩和する緩衝機構と、をさらに備えることを特徴とする請求項1に記載の紛失防止装置。 A crash detection means for detecting a crash of the unmanned aerial vehicle;
The loss prevention device according to claim 1, further comprising a buffer mechanism that reduces an impact when the unmanned aircraft is landing. - 請求項1から請求項9のいずれか一項に記載の紛失防止装置を備えることを特徴とする無人航空機。 An unmanned aerial vehicle comprising the loss prevention device according to any one of claims 1 to 9.
- 複数の回転翼を備える回転翼機であることを特徴とする請求項10に記載の無人航空機。 The unmanned aerial vehicle according to claim 10, wherein the unmanned aerial vehicle includes a plurality of rotor blades.
- 前記無人航空機と地表との距離を測る測距手段をさらに備え、
前記紛失防止装置は、前記無人航空機が3m以下の所定の距離まで地表に接近したときに前記回転翼を停止させる回転翼停止手段をさらに備えることを特徴とする請求項11に記載の無人航空機。 It further comprises distance measuring means for measuring the distance between the unmanned aircraft and the ground surface,
The unmanned aerial vehicle according to claim 11, wherein the loss prevention device further includes a rotary wing stop unit that stops the rotary wing when the unmanned aircraft approaches the ground surface to a predetermined distance of 3 m or less. - 請求項5に記載の紛失防止装置と、該紛失防止装置から前記位置情報を受信する管理局と、を備える紛失防止システムであって、
前記紛失防止装置は、前記無人航空機の通常飛行時における前記GPS情報を記録する記憶手段を有しており、
前記位置情報送信手段は、前記記憶手段の前記GPS情報を前記位置情報として送信し、
前記管理局は、前記記憶手段の前記GPS情報である前記位置情報に基づいて前記無人航空機の現在位置を推定する現在位置推定手段を有していることを特徴とする紛失防止システム。
A loss prevention system comprising: the loss prevention device according to claim 5; and a management station that receives the location information from the loss prevention device.
The loss prevention device has storage means for recording the GPS information during normal flight of the unmanned aircraft,
The position information transmitting means transmits the GPS information of the storage means as the position information,
The loss prevention system, wherein the management station has a current position estimating unit that estimates a current position of the unmanned aircraft based on the position information that is the GPS information of the storage unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017534389A JP6219003B2 (en) | 2015-08-07 | 2016-08-03 | Loss prevention device, unmanned aircraft including the same, and unmanned aircraft loss prevention system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015156530 | 2015-08-07 | ||
JP2015-156530 | 2015-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017026354A1 true WO2017026354A1 (en) | 2017-02-16 |
Family
ID=57984320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072836 WO2017026354A1 (en) | 2015-08-07 | 2016-08-03 | Loss prevention device, unmanned aircraft provided with same, and unmanned aircraft loss prevention system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6219003B2 (en) |
WO (1) | WO2017026354A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019092460A (en) * | 2017-11-24 | 2019-06-20 | 井関農機株式会社 | Flying body |
JP2019111880A (en) * | 2017-12-21 | 2019-07-11 | アルパイン株式会社 | Unmanned aircraft and battery cartridge |
CN110908406A (en) * | 2019-12-24 | 2020-03-24 | 广东电网有限责任公司 | Positioning device and method suitable for unmanned aerial vehicle falling |
CN111942588A (en) * | 2020-08-31 | 2020-11-17 | 许玉蕊 | Take-out delivery unmanned aerial vehicle |
CN113808322A (en) * | 2021-09-29 | 2021-12-17 | 广州绿怡信息科技有限公司 | Method for reasonably arranging area positions of intelligent mobile phone recovery terminal |
JP7228077B1 (en) * | 2021-09-29 | 2023-02-22 | 楽天グループ株式会社 | Control device, control method, and unmanned aerial vehicle search system |
US11891176B2 (en) | 2018-05-09 | 2024-02-06 | Ntt Docomo, Inc. | Determination of position sending interval for flying vehicle dependent upon ground surface below vehicle |
WO2024162271A1 (en) * | 2023-01-30 | 2024-08-08 | 川崎重工業株式会社 | Unmanned aerial vehicle incident response support system, method and program |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7079659B2 (en) * | 2018-05-23 | 2022-06-02 | 株式会社エンビジョンAescジャパン | Power storage device, its control method, and mobile control system |
JP6526308B1 (en) * | 2018-12-18 | 2019-06-05 | コネクシオ株式会社 | Autonomous unmanned aerial vehicle for data collection, control method and control program thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0534494U (en) * | 1991-09-24 | 1993-05-07 | 日本電気株式会社 | Unmanned aerial vehicle position display |
JP2003284154A (en) * | 2002-03-27 | 2003-10-03 | Hitachi Kokusai Electric Inc | Wireless terminal tracking system |
JP2004017722A (en) * | 2002-06-13 | 2004-01-22 | Toyota Motor Corp | VTOL machine |
JP2008058186A (en) * | 2006-08-31 | 2008-03-13 | Sony Corp | Navigation apparatus, and method and program for processing navigation information |
JP2011524839A (en) * | 2008-06-19 | 2011-09-08 | エル−3 コミュニケーションズ コーポレーション | Flight recorder with integrated standby power supply located within the form factor of the housing and method therefor |
JP2011230756A (en) * | 2010-04-27 | 2011-11-17 | Honeywell Internatl Inc | Ground proximity sensor |
JP2012037204A (en) * | 2010-08-11 | 2012-02-23 | Yasuaki Iwai | Device and method for searching mine |
-
2016
- 2016-08-03 JP JP2017534389A patent/JP6219003B2/en active Active
- 2016-08-03 WO PCT/JP2016/072836 patent/WO2017026354A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0534494U (en) * | 1991-09-24 | 1993-05-07 | 日本電気株式会社 | Unmanned aerial vehicle position display |
JP2003284154A (en) * | 2002-03-27 | 2003-10-03 | Hitachi Kokusai Electric Inc | Wireless terminal tracking system |
JP2004017722A (en) * | 2002-06-13 | 2004-01-22 | Toyota Motor Corp | VTOL machine |
JP2008058186A (en) * | 2006-08-31 | 2008-03-13 | Sony Corp | Navigation apparatus, and method and program for processing navigation information |
JP2011524839A (en) * | 2008-06-19 | 2011-09-08 | エル−3 コミュニケーションズ コーポレーション | Flight recorder with integrated standby power supply located within the form factor of the housing and method therefor |
JP2011230756A (en) * | 2010-04-27 | 2011-11-17 | Honeywell Internatl Inc | Ground proximity sensor |
JP2012037204A (en) * | 2010-08-11 | 2012-02-23 | Yasuaki Iwai | Device and method for searching mine |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019092460A (en) * | 2017-11-24 | 2019-06-20 | 井関農機株式会社 | Flying body |
JP2019111880A (en) * | 2017-12-21 | 2019-07-11 | アルパイン株式会社 | Unmanned aircraft and battery cartridge |
US11891176B2 (en) | 2018-05-09 | 2024-02-06 | Ntt Docomo, Inc. | Determination of position sending interval for flying vehicle dependent upon ground surface below vehicle |
CN110908406A (en) * | 2019-12-24 | 2020-03-24 | 广东电网有限责任公司 | Positioning device and method suitable for unmanned aerial vehicle falling |
CN111942588A (en) * | 2020-08-31 | 2020-11-17 | 许玉蕊 | Take-out delivery unmanned aerial vehicle |
CN111942588B (en) * | 2020-08-31 | 2022-12-09 | 深圳市倍诺思技术有限公司 | Take-out delivery unmanned aerial vehicle |
JP7228077B1 (en) * | 2021-09-29 | 2023-02-22 | 楽天グループ株式会社 | Control device, control method, and unmanned aerial vehicle search system |
WO2023053269A1 (en) | 2021-09-29 | 2023-04-06 | 楽天グループ株式会社 | Control device, control method, and unmanned aerial vehicle search system |
JP2023053138A (en) * | 2021-09-29 | 2023-04-12 | 楽天グループ株式会社 | Control device, control method, and unmanned aerial vehicle search system |
CN116194975A (en) * | 2021-09-29 | 2023-05-30 | 乐天集团股份有限公司 | Control device, control method and unmanned aerial vehicle search system |
CN113808322A (en) * | 2021-09-29 | 2021-12-17 | 广州绿怡信息科技有限公司 | Method for reasonably arranging area positions of intelligent mobile phone recovery terminal |
JP7441983B2 (en) | 2021-09-29 | 2024-03-01 | 楽天グループ株式会社 | Control device, control method, and unmanned aircraft search system |
US12243434B2 (en) * | 2021-09-29 | 2025-03-04 | Rakuten Group, Inc. | Control device, control method, and unmanned aerial vehicle search system |
WO2024162271A1 (en) * | 2023-01-30 | 2024-08-08 | 川崎重工業株式会社 | Unmanned aerial vehicle incident response support system, method and program |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017026354A1 (en) | 2018-01-18 |
JP6219003B2 (en) | 2017-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6219003B2 (en) | Loss prevention device, unmanned aircraft including the same, and unmanned aircraft loss prevention system | |
US11474516B2 (en) | Flight aiding method and system for unmanned aerial vehicle, unmanned aerial vehicle, and mobile terminal | |
US9665094B1 (en) | Automatically deployed UAVs for disaster response | |
EP3735380B1 (en) | Adjusting flight parameters of an aerial robotic vehicle based on presence of propeller guard(s) | |
US10258534B1 (en) | Methods and systems for providing feedback based on information received from an aerial vehicle | |
JP6506302B2 (en) | Method and apparatus for operating a mobile platform | |
EP3735623B1 (en) | Adjustable object avoidance proximity threshold based on presence of propeller guard(s) | |
EP3570132B1 (en) | System and method for data recording and analysis | |
JP5837032B2 (en) | Aircraft that can travel on the ground | |
US20180065735A1 (en) | Unmanned rotorcraft and method for measuring circumjacent object around rotorcraft | |
CN107077149B (en) | Method, control system and mobile device for controlling mobile device | |
US20190138005A1 (en) | Unmanned Aerial Vehicle Damage Mitigation System | |
JP6733948B2 (en) | Drone, its control method, and control program | |
JPWO2017086234A1 (en) | Unmanned aerial vehicle | |
JP2021047026A (en) | Conduction inspection system | |
JP6726814B1 (en) | Processing system, unmanned aerial vehicle, and flight path determination method | |
JP2021061005A (en) | Processing system, aircraft capable of unmanned flight, and dust state estimation method | |
WO2018196641A1 (en) | Aerial vehicle | |
KR20160074297A (en) | Method for Tracing and Recovering Crashed Multirotor Body | |
JP2017010445A (en) | Driving support control device | |
US12243434B2 (en) | Control device, control method, and unmanned aerial vehicle search system | |
JP6832473B1 (en) | Processing systems, unmanned aircraft, and dust condition estimation methods | |
JP2018144539A (en) | Unmanned aircraft | |
JP2018185255A (en) | Unmanned aircraft vehicle | |
JP2021037816A (en) | Drone, control method of drone, and control program of drone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16835051 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017534389 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16835051 Country of ref document: EP Kind code of ref document: A1 |