WO2017024530A1 - Method for calculating content of organic carbon in hydrocarbon source rock - Google Patents

Method for calculating content of organic carbon in hydrocarbon source rock Download PDF

Info

Publication number
WO2017024530A1
WO2017024530A1 PCT/CN2015/086673 CN2015086673W WO2017024530A1 WO 2017024530 A1 WO2017024530 A1 WO 2017024530A1 CN 2015086673 W CN2015086673 W CN 2015086673W WO 2017024530 A1 WO2017024530 A1 WO 2017024530A1
Authority
WO
WIPO (PCT)
Prior art keywords
log
index
density
calculating
curve
Prior art date
Application number
PCT/CN2015/086673
Other languages
French (fr)
Chinese (zh)
Inventor
赵龙
Original Assignee
深圳朝伟达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳朝伟达科技有限公司 filed Critical 深圳朝伟达科技有限公司
Priority to PCT/CN2015/086673 priority Critical patent/WO2017024530A1/en
Priority to PCT/CN2015/096202 priority patent/WO2017024700A1/en
Publication of WO2017024530A1 publication Critical patent/WO2017024530A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Abstract

Provided is a method for calculating the content of organic carbon in a hydrocarbon source rock, belonging to the field of geological petroleum exploration. The method comprises: a first shale content indication is calculated according to a natural potential logging curve (101); a second shale content indication is calculated according to a natural gamma logging curve (102); the lithological index of sand shale is calculated according to a neutron logging curve, a density logging curve and an interval transit time logging curve (103); a hydrocarbon source rock is recognized in the sand shale according to the first shale content indication, the second shale content indication and the lithological index (104); and the content of organic carbon in the hydrocarbon source rock is calculated according to the density logging curve, the interval transit time logging curve and a resistivity logging curve (105). The device comprises: a first calculation module (401), a second calculation module (402), a third calculation module (403), a recognition module (404) and a fourth calculation module (405). The accuracy of calculation of the content of organic carbon in the hydrocarbon source rock is improved through the multiple logging curves.

Description

一种计算烃源岩中有机碳含量的方法Method for calculating organic carbon content in source rock 技术领域Technical field
本发明涉及石油地质勘探领域,特别涉及一种计算烃源岩中有机碳含量的方法。The invention relates to the field of petroleum geological exploration, in particular to a method for calculating the content of organic carbon in a source rock.
背景技术Background technique
烃源岩也叫生油岩,是富含有机质、大量生成油气与排出油气的岩石。为了开采出大量的油气,需要准确地识别出烃源岩。然而,有机质丰度是评价烃源岩生成油气的重要参数之一,且有机碳含量是反映烃源岩有机质丰度的主要指标,所以,计算烃源岩中有机碳含量的方法受到了广泛的关注。The source rock is also called the source rock. It is a rock rich in organic matter, massively producing oil and gas and discharging oil and gas. In order to extract a large amount of oil and gas, it is necessary to accurately identify the source rock. However, organic matter abundance is one of the important parameters for evaluating the hydrocarbon generation of hydrocarbon source rocks, and the organic carbon content is the main indicator reflecting the abundance of organic matter in source rocks. Therefore, the method for calculating the organic carbon content in source rocks has been widely attention.
目前,计算烃源岩中有机碳含量的过程具体为:野外测得电阻率测井曲线和声波时差测井曲线。根据电阻率测井曲线和声波时差测井曲线,计算电阻率和声波时差异常差值的加权平均值。将计算的加权平均值用地化分析数据标定为烃源岩中有机碳含量。At present, the process of calculating the organic carbon content in the source rock is specifically: the resistivity log and the acoustic time difference log measured in the field. Based on the resistivity log curve and the acoustic time difference log, a weighted average of the difference between the resistivity and the acoustic time difference is calculated. The calculated weighted average is calibrated with geochemical analysis data as the organic carbon content of the source rock.
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:In the process of implementing the present invention, the inventors have found that the prior art has at least the following problems:
对于复杂岩性的岩层,由于声波时差测井曲线和电阻率测井曲线受岩性、含油气性和孔隙结构的影响,所以,根据上述方法计算有机碳含量时,降低了计算精度。For complex lithology, the acoustic time difference log and resistivity log are affected by lithology, hydrocarbon content and pore structure. Therefore, when calculating the organic carbon content according to the above method, the calculation accuracy is reduced.
发明内容Summary of the invention
为了解决现有技术的问题,本发明实施例提供了一种计算烃源岩中有机碳含量的方法及装置。所述技术方案如下:In order to solve the problems of the prior art, embodiments of the present invention provide a method and apparatus for calculating the content of organic carbon in a source rock. The technical solution is as follows:
一方面,提供了一种计算烃源岩中有机碳含量的方法,所述方法包括:In one aspect, a method of calculating an organic carbon content in a source rock is provided, the method comprising:
根据自然电位测井曲线,计算第一泥质含量指示;Calculating the first shale content indication according to the natural potential logging curve;
根据自然伽马测井曲线,计算第二泥质含量指示;Calculating a second shale content indication based on the natural gamma log curve;
根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数;Calculating the lithology index of sand mudstone according to neutron log curve, density log curve and acoustic time difference log;
根据所述第一泥质含量指示、所述第二泥质含量指示和所述岩性指数,从所述砂泥岩中识别烃源岩;Identifying source rocks from the sandstone mudstone according to the first shale content indication, the second shale content indication, and the lithology index;
根据所述密度测井曲线、所述声波时差测井曲线和电阻率测井曲线,计算所述烃源岩中的有机碳含量。Calculating an organic carbon content in the source rock according to the density log curve, the acoustic wave time difference log curve, and the resistivity log curve.
可选地,所述根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数,包括:Optionally, the calculating a lithology index of the sand mudstone according to the neutron log curve, the density log curve, and the acoustic wave time difference log curve, including:
根据中子测井曲线,计算视灰岩中子孔隙度指数; Calculate the neutron porosity index of the limestone according to the neutron log curve;
根据密度测井曲线,计算视灰岩密度孔隙度指数;Calculating the apparent limestone density porosity index according to the density logging curve;
根据声波时差测井曲线,计算视灰岩声波孔隙度指数;Calculating the acoustic wave porosity index of the limestone according to the acoustic time difference log;
根据所述视灰岩中子孔隙度指数、所述视灰岩密度孔隙度指数和所述视灰岩声波孔隙度指数,计算砂泥岩的岩性指数。The lithology index of the sand mudstone is calculated according to the porphyrite neutron porosity index, the ash limestone density porosity index and the ash limestone acoustic porosity index.
可选地,所述根据所述视灰岩中子孔隙度指数、所述视灰岩密度孔隙度指数和所述视灰岩声波孔隙度指数,计算砂泥岩的岩性指数,包括:Optionally, the calculating a lithology index of the sandstone rock according to the porphyrite neutron porosity index, the ash limestone density porosity index, and the limestone acoustic wave porosity index, including:
计算所述视灰岩中子孔隙度指数与所述视灰岩密度孔隙度指数之间的第一差值;Calculating a first difference between the porphyrite neutron porosity index and the ash lime density porosity index;
计算所述视灰岩中子孔隙度指数与所述视灰岩声波孔隙度指数之间的第二差值;Calculating a second difference between the porphyrite porosity index of the limestone and the sound wave porosity index of the limestone;
计算所述视灰岩密度孔隙度指数与所述视灰岩声波孔隙度指数之间的第三差值;Calculating a third difference between the apparent limestone density porosity index and the apparent limestone acoustic porosity index;
根据所述第一差值、所述第二差值和所述第三差值,计算砂泥岩的岩性指数。A lithology index of the sand mudstone is calculated based on the first difference, the second difference, and the third difference.
可选地,所述根据所述第一泥质含量指示、所述第二泥质含量指示和所述岩性指数,从所述砂泥岩中识别烃源岩,包括:Optionally, the identifying the source rock from the sandstone mudstone according to the first shale content indication, the second shale content indication, and the lithology index, including:
从所述砂泥岩中选择所述第一泥质含量指示大于第一阈值、所述第二泥质含量指示大于第二阈值且所述岩性指数大于第三阈值的岩层;Selecting, from the sand mudstone, a rock formation indicating that the first shale content is greater than a first threshold, the second shale content is greater than a second threshold, and the lithology index is greater than a third threshold;
将选择的岩层确定为烃源岩。The selected rock formation is identified as a source rock.
可选地,所述根据所述密度测井曲线、所述声波时差测井曲线和电阻率测井曲线,计算所述烃源岩中的有机碳含量,包括:Optionally, calculating the organic carbon content in the source rock according to the density log curve, the acoustic wave time difference log curve, and the resistivity log curve, including:
根据所述密度测井曲线、所述声波时差测井曲线和电阻率测井曲线,按照如下公式计算所述烃源岩中的有机碳含量;Calculating an organic carbon content in the source rock according to the density log, the acoustic time difference log, and the resistivity log according to the following formula;
TOC=(a lg Rt+b△t+c)/ρTOC=(a lg R t +b△t+c)/ρ
其中,上述公式中,TOC为所述烃源岩中的有机碳含量,Rt为所述电阻率测井曲线中的电阻率值,△t为所述声波时差测井曲线中的声波时差,ρ为所述密度测井曲线中的密度值,a、b和c是已知系数。Wherein, in the above formula, TOC is the organic carbon content in the source rock, Rt is the resistivity value in the resistivity log, and Δt is the acoustic time difference in the acoustic time difference log, ρ For the density values in the density log, a, b, and c are known coefficients.
另一方面,提供了一种计算烃源岩中有机碳含量的装置,所述装置包括:In another aspect, an apparatus for calculating an organic carbon content in a source rock is provided, the apparatus comprising:
第一计算模块,用于根据自然电位测井曲线,计算第一泥质含量指示;a first calculation module, configured to calculate a first shale content indication according to the natural potential logging curve;
第二计算模块,用于根据自然伽马测井曲线,计算第二泥质含量指示;a second calculation module, configured to calculate a second shale content indication according to the natural gamma log curve;
第三计算模块,用于根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数;a third calculation module is configured to calculate a lithology index of the sand mudstone according to the neutron log curve, the density log curve, and the acoustic time difference log;
识别模块,将用于根据所述第一泥质含量指示、所述第二泥质含量指示和所述岩性指数, 从所述砂泥岩中识别烃源岩;An identification module for indicating, according to the first shale content indicator, the second shale content indicator, and the lithology index, Identifying source rocks from the sandstone;
第四计算模块,用于根据所述密度测井曲线、所述声波时差测井曲线和电阻率测井曲线,计算所述烃源岩中的有机碳含量。And a fourth calculating module, configured to calculate an organic carbon content in the source rock according to the density logging curve, the acoustic wave time difference logging curve, and the resistivity logging curve.
可选地,所述第三计算模块包括:Optionally, the third calculating module includes:
第一计算单元,用于根据中子测井曲线,计算视灰岩中子孔隙度指数;a first calculating unit, configured to calculate a neutron porosity index of the limestone according to the neutron log curve;
第二计算单元,用于根据密度测井曲线,计算视灰岩密度孔隙度指数;a second calculating unit, configured to calculate a limestone density porosity index according to the density logging curve;
第三计算单元,用于根据声波时差测井曲线,计算视灰岩声波孔隙度指数;a third calculating unit, configured to calculate a limestone acoustic wave porosity index according to the acoustic wave time difference logging curve;
第四计算单元,用于根据所述视灰岩中子孔隙度指数、所述视灰岩密度孔隙度指数和所述视灰岩声波孔隙度指数,计算砂泥岩的岩性指数。And a fourth calculating unit, configured to calculate a lithology index of the sand mudstone according to the porphyrite neutron porosity index, the ash limestone density porosity index, and the ash limestone acoustic porosity index.
可选地,所述第四计算单元包括:Optionally, the fourth calculating unit includes:
第一计算子单元,用于计算所述视灰岩中子孔隙度指数与所述视灰岩密度孔隙度指数之间的第一差值;a first calculating subunit, configured to calculate a first difference between the porphyrite neutron porosity index and the ash lime density porosity index;
第二计算子单元,用于计算所述视灰岩中子孔隙度指数与所述视灰岩声波孔隙度指数之间的第二差值;a second calculating subunit, configured to calculate a second difference between the porphyrite neutron porosity index and the ash lime sound porosity index;
第三计算子单元,用于计算所述视灰岩密度孔隙度指数与所述视灰岩声波孔隙度指数之间的第三差值;a third calculating subunit, configured to calculate a third difference between the apparent limestone density porosity index and the apparent limestone acoustic wave porosity index;
第四计算子单元,用于根据所述第一差值、所述第二差值和所述第三差值,计算砂泥岩的岩性指数。And a fourth calculating subunit, configured to calculate a lithology index of the sand mudstone according to the first difference value, the second difference value, and the third difference value.
可选地,所述识别模块包括:Optionally, the identifying module includes:
选择单元,用于从所述砂泥岩中选择所述第一泥质含量指示大于第一阈值、所述第二泥质含量指示大于第二阈值且所述岩性指数大于第三阈值的岩层;a selection unit, configured to select, from the sand mudstone, the rock formation indicating that the first shale content indicates is greater than a first threshold, the second shale content indicates greater than a second threshold, and the lithology index is greater than a third threshold;
确定单元,用于将选择的岩层确定为烃源岩。A determining unit for determining the selected rock formation as a source rock.
可选地,所述第四计算模块包括:Optionally, the fourth calculation module includes:
第五计算单元,用于根据所述密度测井曲线、所述声波时差测井曲线和电阻率测井曲线,按照如下公式计算所述烃源岩中的有机碳含量;a fifth calculating unit, configured to calculate an organic carbon content in the source rock according to the density log, the acoustic time difference log, and the resistivity log according to the following formula;
TOC=(a lg Rt+b△t+c)/ρTOC=(a lg R t +b△t+c)/ρ
其中,上述公式中,TOC为所述烃源岩中的有机碳含量,Rt为所述电阻率测井曲线中的电阻率值,△t为所述声波时差测井曲线中的声波时差,ρ为所述密度测井曲线中的密度值,a、b和c是已知系数。Wherein, in the above formula, TOC is the organic carbon content in the source rock, Rt is the resistivity value in the resistivity log, and Δt is the acoustic time difference in the acoustic time difference log, ρ For the density values in the density log, a, b, and c are known coefficients.
在本发明实施例中,根据自然电位测井曲线,计算第一泥质含量指示。根据自然伽马测 井曲线,计算第二泥质含量指示。根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数。然后,根据第一泥质含量指示、第二泥质含量指示和岩性指数,从砂泥岩中可以识别出烃源岩。最后,根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,计算烃源岩中的有机碳含量。由于在本发明实施例中不仅仅是根据电阻率测井曲线和声波时差测井曲线进行有机碳含量的计算,还包括自然电位测井曲线、自然伽马测井曲线、中子测井曲线、密度测井曲线等多个测井曲线,提高了计算烃源岩中的有机碳含量的精确度,为油气勘探中精细描述烃源岩有机质空间分布及预测有利油气勘探远景区提供支撑。In an embodiment of the invention, the first shale content indication is calculated based on the natural potential log. Natural gamma The well curve calculates an indication of the second shale content. According to the neutron log curve, the density log curve and the acoustic time difference log, the lithology index of the sand mudstone is calculated. Then, based on the first shale content indication, the second shale content indicator, and the lithology index, the source rock can be identified from the sandstone mudstone. Finally, the organic carbon content in the source rock is calculated based on the density log, the acoustic time difference log and the resistivity log. Since in the embodiment of the present invention, not only the calculation of the organic carbon content based on the resistivity log curve and the acoustic time difference log curve, but also the natural potential logging curve, the natural gamma log curve, the neutron log curve, Multiple logging curves, such as density logging curves, improve the accuracy of calculating the organic carbon content in source rocks, and provide support for the detailed description of the spatial distribution of source rock organic matter in oil and gas exploration and the prediction of favorable oil and gas exploration prospects.
附图说明DRAWINGS
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some embodiments of the present invention. Other drawings may also be obtained from those of ordinary skill in the art in light of the inventive work.
图1是本发明实施例一提供的一种计算烃源岩中有机碳含量的方法流程图;1 is a flow chart of a method for calculating an organic carbon content in a source rock according to a first embodiment of the present invention;
图2是本发明实施例二提供的一种计算烃源岩中有机碳含量的方法流程图;2 is a flow chart of a method for calculating organic carbon content in a source rock according to a second embodiment of the present invention;
图3是本发明实施例二提供的烃源岩中有机碳含量的计算值与分析值之间的对比结果示意图;3 is a schematic view showing a comparison result between a calculated value and an analysis value of an organic carbon content in a source rock according to a second embodiment of the present invention;
图4是本发明实施例三提供的一种计算烃源岩中有机碳含量的装置结构示意图。4 is a schematic structural view of an apparatus for calculating an organic carbon content in a source rock according to a third embodiment of the present invention.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。The embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
在对本发明实施例进行详细地解释说明之前,先对烃源岩相关的概念和结构组成予以介绍。Prior to the detailed explanation of embodiments of the present invention, the concepts and structural compositions associated with source rocks are first described.
烃源岩通常为泥岩或页岩,它是颗粒直径小于1/256mm的一类沉积岩。通常,泥岩呈块状构造,页岩具层理构造,从成份和粒度上看二者没有严格的差别,为表述方便,下面将两者统称为烃源岩。碎屑岩储层中,绝大多数烃源岩是以泥岩、页岩为主的细粒沉积岩,这类岩石的最大特点是富含有机质、孔隙的连通性较差,尤其是孔隙尺寸细微,导致岩石的渗透率非常低,因此,烃源岩还是最常见的隔层或盖层。从油气生成的角度看,泥岩或页岩是烃源岩,它是石油或天然气生成的场所。与之泥岩和页岩相比,颗粒粒径较大的砂岩、砾岩,在沉积岩地层中所占比例很低,但由于其孔隙的连通性好,孔隙的尺寸比较大,渗透率高,成为石油、天然气或地下水的重要储集空间,即油气业界或水文工程业界所称的“储层”。 The source rock is usually mudstone or shale, which is a type of sedimentary rock with a particle diameter of less than 1/256 mm. Generally, the mudstone has a massive structure, and the shale has a bedding structure. There is no strict difference between the composition and the particle size. For the convenience of expression, the two are collectively referred to as source rocks. Among the clastic reservoirs, most of the source rocks are fine-grained sedimentary rocks dominated by mudstones and shale. The most characteristic of such rocks is the richness of organic matter and poor connectivity of pores, especially the fine pore size. The permeability of the rock is very low, so the source rock is still the most common barrier or cap. From the perspective of oil and gas generation, mudstone or shale is a source rock, which is a place where oil or natural gas is generated. Compared with mudstone and shale, sandstone and conglomerate with larger particle size have a lower proportion in sedimentary rock strata, but due to their good pore connectivity, the pore size is relatively large and the permeability is high. An important reservoir space for oil, natural gas or groundwater, known as the “reservoir” in the oil and gas industry or the hydrological engineering industry.
有机质和粘土矿物是泥质烃源岩的两大组成部分。其中,有机质常以分散状、顺层富集状、局部富集状和生物残体等形式赋存于粘土矿物中。有机质、粘土矿物是对烃源岩测井响应产生主要贡献的两个重要组分。测井对岩石中有机质和粘土矿物的类型、丰度、压实程度、富集状态、成熟演化以及充填在孔隙中的流体组分不同而产生的岩石物理、电化学性质的差异,是利用测井曲线识别和评价烃源岩的理论基础。Organic matter and clay minerals are two major components of argillaceous source rocks. Among them, organic matter is often present in clay minerals in the form of dispersion, bedding enrichment, local enrichment, and biological residues. Organic matter and clay minerals are two important components that contribute to the log response of source rock. Logging is the difference between the physical and electrochemical properties of the organic matter and clay minerals in the rock, such as the type, abundance, compaction degree, enrichment state, mature evolution and fluid composition filled in the pores. The well curve identifies and evaluates the theoretical basis of the source rock.
有机地球化学理论认为干酪根是烃源岩中有机质的主体,干酪根虽属烃源岩中的有机质,但它脱离了与之共存的无机矿物,不能很好地反映有机质的赋存状态以及不同类型有机质含量的多少。实验室裂解分析显示,赋存于沉积岩石中的有机质主要由两部分组成,即可溶有机质和不溶有机质(干酪根),它们一起构成一个有机联系的整体,共同反映着沉积有机质的面貌。其中可溶有机质是与粘土矿物通过化学键合在一起的。有机地球化学界取得的研究成果中值得关注的是低熟油的发现,并认为可溶有机质对低熟油的形成有很大的贡献,而可溶有机质的丰度及赋存状态对声、电测井的响应有一定的影响,这为运用测井信息识别与评价低熟油提供了依据。同时,有机质本身具有低密度和吸附性等特征,因此对放射性测井也存在一定的影响。The theory of organic geochemistry is that kerogen is the main body of organic matter in source rocks. Although kerogen is an organic matter in source rocks, it is separated from the inorganic minerals coexisting with it, which does not reflect the occurrence and difference of organic matter. What is the type of organic matter? Laboratory cracking analysis shows that the organic matter present in the sedimentary rock consists mainly of two parts, the soluble organic matter and the insoluble organic matter (kerogen), which together form an organically connected whole, which together reflect the surface of the deposited organic matter. The soluble organic matter is chemically bonded to the clay mineral. Among the research results obtained by the organic geochemical community, it is the discovery of low-mature oils, and it is believed that soluble organic matter contributes a lot to the formation of low-mature oils, while the abundance and occurrence of soluble organic matter are sound, The response of electric logging has a certain influence, which provides a basis for the identification and evaluation of low-mature oil using logging information. At the same time, organic matter itself has low density and adsorption characteristics, so it also has a certain impact on radioactive logging.
实施例一 Embodiment 1
图1是本发明实施例提供的一种计算烃源岩中有机碳含量的方法流程图。参见图1,该方法包括:1 is a flow chart of a method for calculating organic carbon content in a source rock according to an embodiment of the present invention. Referring to Figure 1, the method includes:
步骤101:根据自然电位测井曲线,计算第一泥质含量指示。Step 101: Calculate the first shale content indication according to the natural potential logging curve.
步骤102:根据自然伽马测井曲线,计算第二泥质含量指示。Step 102: Calculate a second shale content indication according to the natural gamma log curve.
步骤103:根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数。Step 103: Calculate the lithology index of the sand mudstone according to the neutron log curve, the density log curve and the acoustic wave time difference log curve.
步骤104:根据第一泥质含量指示、第二泥质含量指示和该岩性指数,从砂泥岩中识别烃源岩。Step 104: Identify the source rock from the sandstone mudstone according to the first shale content indication, the second shale content indication, and the lithology index.
步骤105:根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,计算烃源岩中的有机碳含量。Step 105: Calculate the organic carbon content in the source rock according to the density log curve, the acoustic wave time difference log curve and the resistivity log curve.
在本发明实施例中,根据自然电位测井曲线,计算第一泥质含量指示。根据自然伽马测井曲线,计算第二泥质含量指示。根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数。然后,根据第一泥质含量指示、第二泥质含量指示和岩性指数,从砂泥岩中可以识别出烃源岩。最后,根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,计算烃源岩中的有机碳含量。由于在本发明实施例中不仅仅是根据电阻率测井曲线和声波时差测井曲线进行有机碳含量的计算,还包括自然电位测井曲线、自然伽马测井曲线、中 子测井曲线、密度测井曲线等多个测井曲线,提高了计算烃源岩中的有机碳含量的精确度,为油气勘探中精细描述烃源岩有机质空间分布及预测有利油气勘探远景区提供支撑。In an embodiment of the invention, the first shale content indication is calculated based on the natural potential log. A second shale content indicator is calculated based on the natural gamma log curve. According to the neutron log curve, the density log curve and the acoustic time difference log, the lithology index of the sand mudstone is calculated. Then, based on the first shale content indication, the second shale content indicator, and the lithology index, the source rock can be identified from the sandstone mudstone. Finally, the organic carbon content in the source rock is calculated based on the density log, the acoustic time difference log and the resistivity log. Since in the embodiment of the present invention, not only the calculation of the organic carbon content based on the resistivity log curve and the acoustic time difference log curve, but also the natural potential logging curve, the natural gamma logging curve, and the middle Multiple logging curves such as sub-logging curve and density logging curve improve the accuracy of calculating the organic carbon content in the source rock, and describe the spatial distribution of the source rock organic matter and predict the favorable oil and gas exploration prospects for oil and gas exploration. Provide support.
可选地,根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数,包括:Optionally, the lithology index of the sandstone rock is calculated according to the neutron log curve, the density log curve, and the acoustic time difference log, including:
根据中子测井曲线,计算视灰岩中子孔隙度指数;Calculate the neutron porosity index of the limestone according to the neutron log curve;
根据密度测井曲线,计算视灰岩密度孔隙度指数;Calculating the apparent limestone density porosity index according to the density logging curve;
根据声波时差测井曲线,计算视灰岩声波孔隙度指数;Calculating the acoustic wave porosity index of the limestone according to the acoustic time difference log;
根据视灰岩中子孔隙度指数、视灰岩密度孔隙度指数和视灰岩声波孔隙度指数,计算砂泥岩的岩性指数。The lithology index of sand-shale rock is calculated according to the neutron porosity index, the limestone density porosity index and the ashes limestone acoustic porosity index.
可选地,根据视灰岩中子孔隙度指数、视灰岩密度孔隙度指数和视灰岩声波孔隙度指数,计算砂泥岩的岩性指数,包括:Optionally, the lithology index of the sand-shale rock is calculated according to the ash neutron porosity index, the apparent limestone density porosity index, and the apparent limestone acoustic porosity index, including:
计算视灰岩中子孔隙度指数与视灰岩密度孔隙度指数之间的第一差值;Calculating a first difference between the neutron porosity index of the limestone and the density index of the limestone density;
计算视灰岩中子孔隙度指数与视灰岩声波孔隙度指数之间的第二差值;Calculating a second difference between the neutron porosity index of the limestone and the acoustic porosity index of the limestone;
计算视灰岩密度孔隙度指数与视灰岩声波孔隙度指数之间的第三差值;Calculating a third difference between the limestone density porosity index and the apparent limestone acoustic porosity index;
根据第一差值、第二差值和第三差值,计算砂泥岩的岩性指数。The lithology index of the sand mudstone is calculated based on the first difference, the second difference, and the third difference.
可选地,根据第一泥质含量指示、第二泥质含量指示和岩性指数,从砂泥岩中识别烃源岩,包括:Optionally, the source rock is identified from the sandstone mudstone according to the first shale content indication, the second shale content indicator, and the lithology index, including:
从砂泥岩中选择第一泥质含量指示大于第一阈值、第二泥质含量指示大于第二阈值且岩性指数大于第三阈值的岩层;Selecting, from the sand mudstone, a rock formation indicating that the first shale content is greater than the first threshold, the second shale content is greater than the second threshold, and the lithology index is greater than the third threshold;
将选择的岩层确定为烃源岩。The selected rock formation is identified as a source rock.
可选地,根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,计算烃源岩中的有机碳含量,包括:Optionally, the organic carbon content in the source rock is calculated based on the density log curve, the acoustic time difference log, and the resistivity log, including:
根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,按照如下公式计算烃源岩中的有机碳含量;According to the density logging curve, the acoustic time difference logging curve and the resistivity logging curve, the organic carbon content in the source rock is calculated according to the following formula;
TOC=(a lg Rt+b△t+c)/ρTOC=(a lg R t +b△t+c)/ρ
其中,上述公式中,TOC为烃源岩中的有机碳含量,Rt为电阻率测井曲线中的电阻率值,△t为声波时差测井曲线中的声波时差,ρ为密度测井曲线中的密度值,a、b和c是已知系数。Among them, in the above formula, TOC is the organic carbon content in the source rock, Rt is the resistivity value in the resistivity log, Δt is the acoustic time difference in the acoustic time log, and ρ is in the density log. Density values, a, b, and c are known coefficients.
上述所有可选技术方案,均可按照任意结合形成本发明的可选技术方案,本发明在此不再一一赘述。 All the above optional technical solutions may form an optional technical solution of the present invention according to any combination, and the present invention will not be repeated herein.
实施例二Embodiment 2
图2是本发明实施例提供的一种计算烃源岩中的有机碳含量的方法流程图。参见图2,该方法包括:2 is a flow chart of a method for calculating the content of organic carbon in a source rock according to an embodiment of the present invention. Referring to Figure 2, the method includes:
步骤201:根据自然电位测井曲线,计算第一泥质含量指示。Step 201: Calculate the first shale content indication according to the natural potential logging curve.
具体地,根据自然电位测井曲线,按照如下的公式(1)计算第一泥质含量指示;Specifically, according to the natural potential logging curve, the first shale content indication is calculated according to the following formula (1);
Figure PCTCN2015086673-appb-000001
Figure PCTCN2015086673-appb-000001
其中,在上述公式(1)中,ISP为第一泥质含量指示,SPmax为自然电位在纯砂岩上的幅度,SPmin为自然电位在泥岩层上的基线值,SP为自然电位测井曲线上的自然电位测井值。另外,当ISP值越大时,指示岩层中的泥质含量越大,反之,当ISP值越小时,指示岩层中的泥质含量越小。当岩层中的泥质含量越小时,该岩层为渗透性越好的砂岩层。Among them, in the above formula (1), I SP is the first shale content indication, SP max is the amplitude of the natural potential on the pure sandstone, SP min is the baseline value of the natural potential on the mudstone layer, and SP is the natural potential measurement. The natural potential log value on the well curve. In addition, when the I SP value is larger, it indicates that the shale content in the rock formation is larger, and conversely, when the I SP value is smaller, the shale content in the rock formation is indicated to be smaller. When the shale content in the formation is small, the formation is a sandstone layer with better permeability.
其中,在砂泥岩剖面中,砂岩层的渗透性相对较好,在自然电位测井曲线上表现出明显的幅度差,因此,在井剖面上地层水矿化度较为稳定时,可以用自然电位的相对幅度差定义自然电位测井曲线的泥质含量指示,如上述第一泥质含量指示的公式。Among them, in the sand-shale section, the permeability of the sandstone layer is relatively good, showing a significant difference in the natural potential logging curve. Therefore, when the salinity of the formation water is stable on the well profile, the natural potential can be used. The relative amplitude difference defines the shale content indication of the natural potential log, such as the formula for the first shale content indication described above.
其中,自然电位测井曲线是自然电位随井深而变化的曲线。Among them, the natural potential logging curve is a curve in which the natural potential changes with the depth of the well.
步骤202:根据自然伽马测井曲线,计算第二泥质含量指示。Step 202: Calculate a second shale content indication according to the natural gamma log curve.
具体地,根据自然伽马测井曲线,按照如下公式(2)计算第二泥质含量指示;Specifically, according to the natural gamma log curve, the second shale content indication is calculated according to the following formula (2);
Figure PCTCN2015086673-appb-000002
Figure PCTCN2015086673-appb-000002
其中,在上述公式(2)中,IGR为第二泥质含量指示,GRmax为自然伽马在泥岩层上的幅度,GRmin为自然伽马在纯砂岩层上的基线值,GR为自然伽马测井曲线上的自然伽马测井值。另外,当IGR值越大时,指示岩层中的泥质含量越大,反之,当IGR值越小时,指示岩层中的泥质含量越小。Among them, in the above formula (2), I GR is the second shale content indication, GR max is the amplitude of the natural gamma on the mudstone layer, and GR min is the baseline value of the natural gamma on the pure sandstone layer, and GR is Natural gamma log values on natural gamma logs. In addition, when the I GR value is larger, it indicates that the muddy content in the rock formation is larger, and conversely, when the I GR value is smaller, the muddy content in the rock formation is indicated to be smaller.
其中,烃源岩层一般富含碳,可以吸附较多的放射性元素,如吸附特殊元素铀,从而烃源岩在自然伽马测井曲线上表现为高异常,所以,可以利用自然伽马测井曲线来识别烃源岩。但是,铀的含量不仅与有机质丰度有关,还受裂缝分布的影响,因此,如果单独使用自然伽马测井曲线来识别烃源岩会降低精度。同样,在地层基质和孔隙中没有放射性矿物的井剖面上,自然伽马测井曲线的相对幅度可以指示泥质含量的大小,所以,可以根据自然伽马测井曲线,定义上述的第二泥质含量指示的公式。 Among them, the hydrocarbon source rock layer is generally rich in carbon, which can adsorb more radioactive elements, such as the adsorption of special element uranium, so that the source rock shows high anomaly on the natural gamma log curve, so natural gamma logging can be utilized. Curve to identify source rocks. However, the uranium content is not only related to the abundance of organic matter, but also affected by the distribution of cracks. Therefore, if the natural gamma log is used alone to identify the source rock, the accuracy will be reduced. Similarly, in a well profile with no radioactive minerals in the formation matrix and pores, the relative magnitude of the natural gamma log can indicate the amount of shale content, so the second mud can be defined based on the natural gamma log curve. The formula for the quality content indication.
其中,自然伽马测井曲线是在井内测量岩层中自然存在的放射性核素衰变过程中放射出来的γ射线的强度,且自然伽马测井曲线也是随井深而变化的曲线。Among them, the natural gamma log curve is the intensity of the gamma ray emitted during the decay of the naturally occurring radionuclide in the well, and the natural gamma log curve is also a curve that varies with the depth of the well.
步骤203:根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数。Step 203: Calculate the lithology index of the sand mudstone according to the neutron log curve, the density log curve, and the acoustic wave time difference log curve.
具体地,本步骤可以根据如下(1)-(4)的步骤来实现,包括:Specifically, this step can be implemented according to the following steps (1)-(4), including:
(1)、根据中子测井曲线,计算视灰岩中子孔隙度指数。(1) Calculate the neutron porosity index of the limestone according to the neutron log curve.
具体地,根据中子测井曲线,按照如下公式(3)计算视灰岩中子孔隙度指数;Specifically, according to the neutron log curve, the porphyrite porosity index of the limestone is calculated according to the following formula (3);
Figure PCTCN2015086673-appb-000003
Figure PCTCN2015086673-appb-000003
其中,在上述公式(3)中,
Figure PCTCN2015086673-appb-000004
为视灰岩中子孔隙度指数,CNLma为灰岩骨架的中子孔隙度响应值,CNLf为地层水的中子孔隙度响应值,CNL为中子测井曲线上的中子测井值。另外,当
Figure PCTCN2015086673-appb-000005
值越大时,指示岩层中的含水孔隙度越大,反之,当
Figure PCTCN2015086673-appb-000006
值越小时,指示岩层中的含水空隙度越小。
Wherein, in the above formula (3),
Figure PCTCN2015086673-appb-000004
For the limestone neutron porosity index, CNL ma is the neutron porosity response of the limestone skeleton, CNL f is the neutron porosity response of the formation water, and CNL is the neutron log on the neutron log value. In addition, when
Figure PCTCN2015086673-appb-000005
The larger the value, the greater the water porosity in the formation, and vice versa.
Figure PCTCN2015086673-appb-000006
The smaller the value, the smaller the water-containing voids in the formation.
其中,灰岩骨架为无孔隙度的灰岩。Among them, the limestone skeleton is a non-porous limestone.
其中,在泥质砂岩储层中,中子、密度和声波三孔隙度测井对砂岩和泥质存在较大差异。中子测井主要响应地层中的含氢指数,其幅度大小与地层中的含氢量成正比。在砂泥岩剖面上,纯砂岩储层段的中子响应基本反映储层孔隙度,而在泥岩段上,中子响应主要反映泥岩的束缚水孔隙度。在泥质砂岩储层上,是两者的体积分数的加权平均值。由于泥岩层含有较大的束缚水孔隙度,实测曲线上会出现比砂岩储层还大的测井响应。所以,可以定义上述的视灰岩中子孔隙度指数的公式。Among them, in argillaceous sandstone reservoirs, neutron, density and acoustic three-porosity logging have large differences in sandstone and muddy. The neutron log mainly responds to the hydrogen index in the formation, and its magnitude is proportional to the hydrogen content in the formation. In the sand-shale section, the neutron response of the pure sandstone reservoir segment basically reflects the reservoir porosity, while in the mudstone section, the neutron response mainly reflects the bound water porosity of the mudstone. On argillaceous sandstone reservoirs, a weighted average of the volume fractions of the two. Since the mudstone layer contains large bound water porosity, a log response larger than that of the sandstone reservoir will appear on the measured curve. Therefore, the above formula for the neutron porosity index of the limestone can be defined.
(2)、根据密度测井曲线,计算视灰岩密度孔隙度指数。(2) Calculate the density index of the limestone density according to the density log.
具体地,根据密度测井曲线,按照如下公式(4)计算视灰岩密度孔隙度指数;Specifically, according to the density log curve, the apparent limestone density porosity index is calculated according to the following formula (4);
Figure PCTCN2015086673-appb-000007
Figure PCTCN2015086673-appb-000007
其中,在上述公式(4)中,
Figure PCTCN2015086673-appb-000008
为视灰岩密度孔隙度指数,DENma为灰岩骨架的密度值,DENf为地层水的密度值,DEN为密度测井曲线上的密度测井值。另外,在储层段岩性稳定的条件下,当
Figure PCTCN2015086673-appb-000009
值越大时,指示岩层中的孔隙度越大,反之,当
Figure PCTCN2015086673-appb-000010
值越小时,指示岩层中的孔隙度越小。
Wherein, in the above formula (4),
Figure PCTCN2015086673-appb-000008
For the limestone density porosity index, DEN ma is the density value of the limestone skeleton, DEN f is the density value of the formation water, and DEN is the density log value on the density log. In addition, under the condition that the reservoir section is stable in lithology,
Figure PCTCN2015086673-appb-000009
The larger the value, the greater the porosity in the formation, and vice versa.
Figure PCTCN2015086673-appb-000010
The smaller the value, the smaller the porosity in the formation.
其中,密度测井主要反映地层中与放射源伽马射线作用的电子密度大小,它近似与地层 密度成正比。在砂泥岩剖面上,纯砂岩储层段的密度大小基本反映储层孔隙度,而在泥岩段上,由于粘土的密度常比石英、长石等的密度大,因此,利用统一的骨架时差计算的密度孔隙度明显比实际地层的束缚水孔隙度小,所以,可以定义上述视灰岩密度孔隙度指数的公式。Among them, the density logging mainly reflects the electron density of the gamma ray in the stratum, which approximates the stratum. The density is proportional. In the sand-shale section, the density of the pure sandstone reservoir section basically reflects the reservoir porosity. In the mudstone section, since the density of the clay is often larger than that of quartz and feldspar, the calculation of the uniform skeleton time difference is used. The density porosity is significantly smaller than the bound water porosity of the actual formation, so the above formula for the density of the limestone density can be defined.
(3)、根据声波时差测井曲线,计算视灰岩声波孔隙度指数。(3) Calculate the acoustic wave porosity index of the limestone according to the acoustic time difference log.
具体地,根据声波时差测井曲线,按照如下公式(5)计算视灰岩声波孔隙度指数;Specifically, according to the acoustic wave time difference log curve, the limestone acoustic wave porosity index is calculated according to the following formula (5);
Figure PCTCN2015086673-appb-000011
Figure PCTCN2015086673-appb-000011
其中,在上述公式(5)中,
Figure PCTCN2015086673-appb-000012
为视灰岩声波孔隙度指数,ACf为地层水的声波时差响应值,ACma为灰岩骨架的声波时差响应值,AC为声波时差测井曲线上的声波时差测井值。另外,在储层段岩性稳定的条件下,当
Figure PCTCN2015086673-appb-000013
值越大时,指示岩层中的孔隙度越大,反之,当
Figure PCTCN2015086673-appb-000014
值越小时,指示岩层中的孔隙度越小。
Wherein, in the above formula (5),
Figure PCTCN2015086673-appb-000012
For the limestone acoustic wave porosity index, AC f is the acoustic wave time difference response value of the formation water, AC ma is the acoustic wave time difference response value of the limestone skeleton, and AC is the acoustic wave time difference logging value on the acoustic wave time difference logging curve. In addition, under the condition that the reservoir section is stable in lithology,
Figure PCTCN2015086673-appb-000013
The larger the value, the greater the porosity in the formation, and vice versa.
Figure PCTCN2015086673-appb-000014
The smaller the value, the smaller the porosity in the formation.
其中,声波时差测井主要反映地层中纵波的传播时,其大小与地层中骨架岩性和孔隙度相关。在砂泥岩剖面上,在胶结较好的纯砂岩储层段的声波时差基本反映储层孔隙度,而在泥岩段上,声波时差是泥质类型、分布方式和束缚水孔隙度的综合响应。由于泥岩层含有较大的束缚水孔隙度,实测曲线上会出现比砂岩储层还大的声波时差。,所以,可以定义上述视灰岩声波孔隙度指数的公式。Among them, the acoustic time difference log mainly reflects the propagation of longitudinal waves in the formation, and its size is related to the lithology and porosity of the skeleton in the formation. In the sand-shale section, the acoustic time difference in the well-knotted pure sandstone reservoir section basically reflects the reservoir porosity, while in the mudstone section, the acoustic time difference is the comprehensive response of the shale type, distribution mode and bound water porosity. Since the mudstone layer contains large bound water porosity, there is a larger acoustic time difference than the sandstone reservoir on the measured curve. Therefore, the above formula for the limestone acoustic wave porosity index can be defined.
(4)、根据视灰岩中子孔隙度指数、视灰岩密度孔隙度指数和视灰岩声波孔隙度指数,计算砂泥岩的岩性指数。(4) Calculate the lithology index of sand-shale rock according to the ash neutron porosity index, the limestone density porosity index and the ashes limestone acoustic porosity index.
具体地,计算视灰岩中子孔隙度指数与视灰岩密度孔隙度指数之间的第一差值。计算视灰岩中子孔隙度指数与视灰岩声波孔隙度指数之间的第二差值。计算视灰岩密度孔隙度指数与视灰岩声波孔隙度指数之间的第三差值。根据第一差值、第二差值和第三差值,计算砂泥岩的岩性指数。Specifically, a first difference between the ash neutron porosity index and the ash lime density porosity index is calculated. Calculate the second difference between the neutron porosity index of the limestone and the acoustic porosity index of the limestone. Calculate the third difference between the limestone density porosity index and the apparent limestone acoustic porosity index. The lithology index of the sand mudstone is calculated based on the first difference, the second difference, and the third difference.
其中,根据第一差值、第二差值和第三差值,按照如下公式(6)计算砂泥岩的岩性指数;Wherein, according to the first difference, the second difference and the third difference, the lithology index of the sand mudstone is calculated according to the following formula (6);
Figure PCTCN2015086673-appb-000015
Figure PCTCN2015086673-appb-000015
其中,在上述公式(6)中,Ilith为岩性指数,
Figure PCTCN2015086673-appb-000016
为第一差值,
Figure PCTCN2015086673-appb-000017
为第二差值,
Figure PCTCN2015086673-appb-000018
为第三差值,
Figure PCTCN2015086673-appb-000019
为第一数值与第二数值的差值,第一数值为纯砂岩段的中子视灰岩孔隙度与密度视灰岩孔隙度之和,第二数值为泥岩段的中子视灰岩孔隙度与密度视灰岩孔隙度之和。另外,对于纯砂岩储层段Ilith较小,接近于0,而对于泥页岩段Ilith较大,且接近于1。
Wherein, in the above formula (6), I lith is a lithology index,
Figure PCTCN2015086673-appb-000016
For the first difference,
Figure PCTCN2015086673-appb-000017
For the second difference,
Figure PCTCN2015086673-appb-000018
For the third difference,
Figure PCTCN2015086673-appb-000019
The difference between the first value and the second value, the first value is the sum of the porosity and density of the neutron-looking limestone in the pure sandstone section and the porosity of the limestone, and the second value is the neutron-looking limestone pore of the mudstone section. Degree and density are the sum of the limestone porosity. In addition, I lith is small for the pure sandstone reservoir, close to 0, and I lith is larger for the shale segment and close to 1.
需要补充说明的是,在本发明实施例中,第一差值、第二差值和第三差值均为正数,即为差值的绝对值。It should be noted that, in the embodiment of the present invention, the first difference, the second difference, and the third difference are all positive numbers, that is, the absolute value of the difference.
其中,在砂岩储层段,中子、密度和声波三个视灰岩孔隙度都可反映储层的实际孔隙度。而在泥岩段,中子和声波的视灰岩孔隙度将比密度视灰岩孔隙度大许多。因此,利用三个视灰岩孔隙度的两两差值可以构造判识储层岩性的指标,以划分泥页岩段。Among them, in the sandstone reservoir section, the porphyrite, density and sound wave three ash limestone porosity can reflect the actual porosity of the reservoir. In the mudstone section, the porphyrite porosity of the neutron and sound waves will be much larger than the density of the limestone. Therefore, using the difference between the two ash limestone porosity, an index for identifying the lithology of the reservoir can be constructed to divide the shale section.
步骤204:从砂泥岩中选择第一泥质含量指示大于第一阈值、第二泥质含量指示大于第二阈值且岩性指数大于第三阈值的岩层。Step 204: Select a rock formation from the sand mudstone that indicates that the first shale content indicates greater than the first threshold, the second shale content indicates greater than the second threshold, and the lithology index is greater than the third threshold.
其中,第一阈值、第二阈值和第三阈值均为事先设置的,本发明实施例对此不做具体限定。The first threshold, the second threshold, and the third threshold are all set in advance, and are not specifically limited in this embodiment of the present invention.
步骤206:将选择的岩层确定为烃源岩。Step 206: Determine the selected rock formation as a source rock.
需要补充说明的是,在常见的砂泥岩储层中,烃源岩主要为泥岩和页岩,也有煤系烃源岩。而煤系烃源岩在测井曲线上表现为“三高三低”的特征,即,高中子、高声波时差、高电阻率、低密度、低自然电位、低自然伽马(由于煤层的放射性弱)。因此,上述的第一差值、第二差值和第三差值不能用于煤系烃源岩的识别,在此,可以利用煤系地层的电阻率和含水储层电阻率的差异、自然放射性极地和密度低的特征识别煤系烃源岩。It should be added that in the common sand-shale reservoirs, the source rocks are mainly mudstones and shale, as well as coal-series source rocks. The coal-based source rocks are characterized by “three highs and three lows” on the logging curve, ie, high neutrons, high acoustic time difference, high resistivity, low density, low natural potential, low natural gamma (due to coal seam radioactivity) weak). Therefore, the first difference, the second difference, and the third difference described above cannot be used for the identification of coal-based source rocks. Here, the difference between the resistivity of the coal-bearing formation and the resistivity of the aqueous reservoir can be utilized, and naturally The characteristics of radioactive polar and low density identify coal-series source rocks.
另外,当烃源岩为泥岩时,可以包括碳质泥岩和暗色泥岩。碳质泥岩和暗色泥岩的测井响应表现为“五高一低”特征,即高中子、高声波时差、高电阻率(高于围岩泥岩)、高自然伽马、高铀含量、低密度,并且有机碳含量高的层段其自然伽马和铀曲线值相对较高。所以,除了利用上边分析的几个指标外,还需要单独建立其它的判别指标来识别碳质泥岩和暗色泥岩。In addition, when the source rock is mudstone, carbonaceous mudstone and dark mudstone may be included. The logging response of carbonaceous mudstone and dark mudstone is characterized by “five high and one low”, namely high neutron, high acoustic time difference, high electrical resistivity (higher than surrounding rock mudstone), high natural gamma, high uranium content, low density. And the layer with high organic carbon content has a relatively high natural gamma and uranium curve value. Therefore, in addition to using several indicators of the above analysis, it is necessary to separately establish other discriminant indicators to identify carbonaceous mudstone and dark mudstone.
其中,根据上述步骤从砂泥岩中识别出烃源岩之后,可以根据下述的步骤计算烃源岩中的有机碳含量。Where, after identifying the source rock from the sandstone mud according to the above steps, the organic carbon content in the source rock can be calculated according to the following steps.
步骤207:根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,计算烃源岩中的有机碳含量。Step 207: Calculate the organic carbon content in the source rock according to the density log curve, the acoustic time difference log and the resistivity log.
具体地,根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,按照如下公式(7)计算烃源岩中的有机碳含量;Specifically, according to the density log curve, the acoustic wave time difference log curve and the resistivity log curve, the organic carbon content in the source rock is calculated according to the following formula (7);
TOC=(algRt+b△t+c)/ρ    (7)TOC=(algR t +b△t+c)/ρ (7)
其中,上述公式(7)中,TOC为烃源岩中的有机碳含量,Rt为电阻率测井曲线中的电阻率值,△t为声波时差测井曲线中的声波时差,ρ为密度测井曲线中的密度值,a、b和c是已知系数。 Wherein, in the above formula (7), TOC is the organic carbon content in the source rock, Rt is the resistivity value in the resistivity log, Δt is the acoustic time difference in the acoustic time difference log, and ρ is the density measurement The density values in the well curve, a, b and c are known coefficients.
需要补充说明的是,在本发明实施例中,富含有机质的烃源岩密度较低,密度测井测量的是地层的体积密度,包括骨架密度和流体密度。烃源岩中有机质的密度(1.03~1.1g/cm3)明显低于围岩基质的密度(粘土骨架的密度为2.3~3.1g/cm3),使烃源岩密度测井值降低。富含有机质的低孔泥页岩中,地层密度的变化与有机质丰度的变化存在一定的对应关系。在岩性变化较小的剖面上,泥页岩的有机质丰度和地层密度存在负相关关系。但当重矿物富集时,密度测井就不可能是有机质的可靠指标。所以,可以采用密度测井曲线对有机碳含量的计算公式进行校正。It should be additionally noted that in the embodiment of the present invention, the organic source-rich source rock has a low density, and the density log measures the bulk density of the formation, including the skeleton density and the fluid density. The density of organic matter in the source rock (1.03~1.1g/cm 3 ) is significantly lower than the density of the surrounding rock matrix (the density of the clay skeleton is 2.3-3.1g/cm 3 ), which reduces the log value of the source rock density. In low-porosity shale rich in organic matter, the change of formation density has a certain correspondence with the change of organic matter abundance. On the section with less lithological changes, there is a negative correlation between the organic matter abundance and the formation density of the shale. However, when heavy minerals are enriched, density logging is unlikely to be a reliable indicator of organic matter. Therefore, the density calculation curve can be used to correct the calculation formula of the organic carbon content.
另外,声波时差测井曲线也即是声波测井曲线,所以,△t为声波时差测井曲线中的声波时差值。另外,a、b和c三个参数可以通过对研究区系统采集样品后,采用最小二乘法拟合求得的,并且,为了准确获取a、b和c的值,可选取泥岩取芯段较长、TOC分析数据较多且深度对应较准确的井段进行回归拟合。In addition, the acoustic time difference log is also the sonic log, so Δt is the acoustic time difference in the acoustic time difference log. In addition, the three parameters a, b and c can be obtained by the least squares fitting after collecting samples from the study area system, and in order to accurately obtain the values of a, b and c, the mudstone cores can be selected. The regression analysis is performed on the well sections with long and TOC analysis data and corresponding depths.
其中,在本发明实施例中,通过上述公式(7)计算有机碳含量时,由于电阻率测井曲线和声波时差测井曲线对孔隙度的变化比较灵敏,一旦某一岩性的基线确定,孔隙度的变化会直接引起这两条测井曲线的响应,所以可不需岩芯实验分析就可以直接计算TOC。Wherein, in the embodiment of the present invention, when the organic carbon content is calculated by the above formula (7), since the resistivity log and the acoustic time difference log are sensitive to the change of the porosity, once the baseline of a certain lithology is determined, The change in porosity directly causes the response of the two well logs, so the TOC can be calculated directly without core analysis.
其中,上述描述中提到基线,然而,基线的确定方法可以为:声波时差测井曲线采用算术坐标,电阻率测井曲线采用对数坐标,当两条测井曲线在某一深度内平行或者重叠时,将该深度内的测井曲线确定为基线。Wherein, the baseline is mentioned in the above description. However, the determination method of the baseline may be: the acoustic wave time difference logging curve adopts arithmetic coordinates, and the resistivity logging curve adopts logarithmic coordinates, when the two logging curves are parallel in a certain depth or When overlapping, the log curve within this depth is determined as the baseline.
测井曲线对岩层有机碳含量和充填孔隙流体物理性质差异的响应,是利用测井曲线识别和评价烃源岩的基础。正常情况下,有机碳含量越高的岩层在测井曲线上的异常越大,测定异常值就能反算出有机碳含量。当沉积岩中总有机质重量百分含量超过30-35%时,岩石即具有有机岩类的特征。由于其中分散的有机质干酪根具有特殊的物理性质,如它的导电性差、自然放射性强、密度接近于水的密度、属于轻组分,声波时差接近550μs/m、含氢指数接近67%。因此,好的生油岩,其有机碳TOC含量接近30%,在测井曲线上有明显的反映,而较差的生油岩,有机碳TOC含量为小于30%,测井曲线虽没有特明显的异常,但还是可以反映出来的。所以,在本发明实施例中可以采用上述的测井曲线计算烃源岩中的有机碳含量。The response of the logging curve to the difference between the organic carbon content of the rock formation and the physical properties of the filled pore fluid is the basis for identifying and evaluating the source rock using the logging curve. Under normal circumstances, the higher the organic carbon content, the greater the anomaly on the log, and the abnormal value can be used to calculate the organic carbon content. When the total organic matter content in the sedimentary rock exceeds 30-35%, the rock is characterized by organic rocks. Due to the special physical properties of the dispersed organic kerogen, such as its poor conductivity, strong natural radioactivity, density close to water density, and light components, the acoustic time difference is close to 550 μs/m and the hydrogen content is close to 67%. Therefore, the good oil-bearing rock has an organic carbon TOC content of nearly 30%, which is clearly reflected in the log curve, while the poor oil-bearing rock has an organic carbon TOC content of less than 30%. Obvious anomaly, but it can still be reflected. Therefore, in the embodiment of the present invention, the above-mentioned logging curve can be used to calculate the organic carbon content in the source rock.
另外,为了精细评价烃源岩的分布状况,根据研究区烃源岩的沉积相特征,按照有机碳含量将烃源岩划分为优质、中等和差三类。通常TOC≥2%为优质烃源岩;1%≤TOC≤2%为中等烃源岩;0.3%≤TOC≤1%为差烃源岩。通过这一分类,可将连续评价的烃源岩分布表征 为不同等级的TOC层段,结合有机地球化学分析实现测井和有机地化一体化评价的烃源岩厚度图,在空间上能够实现烃源岩的精细评价和解决烃源岩的非均质性评价难题。In addition, in order to finely evaluate the distribution of source rocks, according to the sedimentary facies characteristics of the source rocks in the study area, the source rocks are classified into high quality, medium and poor according to the organic carbon content. Generally, TOC≥2% is a high-quality source rock; 1%≤TOC≤2% is a medium source rock; 0.3%≤TOC≤1% is a poor source rock. Through this classification, continuous evaluation of source rock distribution characterization For the different levels of TOC interval, combined with organic geochemical analysis, the reservoir source and organic geochemical integrated evaluation of the source rock thickness map can spatially achieve the fine evaluation of the source rock and solve the heterogeneity of the source rock. Sexual evaluation problem.
图3是冀中凹陷岔深80井深部层段稿有机碳层段的地球化学分析值与测井响应计算值的对比,从TOC那条连续的曲线是根据本发明实施例提供的方法计算得到的有机碳含量的曲线,而TOC那条曲线上的横向的短线为通过地球化学分析得到的有机碳含量。由此可以看出,此高有机碳含量层段,通过本发明实施例提供的方法计算的有机碳含量和地球化学分析值吻合较好,因此,本本发明实施例提供的方法对不同有机碳含量的烃源岩也可以取得较好的效果3 is a comparison of the geochemical analysis values of the organic carbon layer of the deep layer of the deep well 80 of the Yuzhong depression in the Suizhong depression with the calculated value of the log response. The continuous curve from the TOC is calculated according to the method provided by the embodiment of the present invention. The curve of the organic carbon content, while the horizontal short line on the TOC curve is the organic carbon content obtained by geochemical analysis. It can be seen that the organic carbon content calculated by the method provided by the embodiment of the present invention is in good agreement with the geochemical analysis value of the high organic carbon content layer. Therefore, the method provided by the embodiment of the present invention has different organic carbon content. The source rock can also achieve better results.
在本发明实施例中,根据自然电位测井曲线,计算第一泥质含量指示。根据自然伽马测井曲线,计算第二泥质含量指示。根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数。然后,根据第一泥质含量指示、第二泥质含量指示和岩性指数,从砂泥岩中可以识别出烃源岩。最后,根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,计算烃源岩中的有机碳含量。由于在本发明实施例中不仅仅是根据电阻率测井曲线和声波时差测井曲线进行有机碳含量的计算,还包括自然电位测井曲线、自然伽马测井曲线、中子测井曲线、密度测井曲线等多个测井曲线,提高了计算烃源岩中的有机碳含量的精确度,为油气勘探中精细描述烃源岩有机质空间分布及预测有利油气勘探远景区提供支撑。In an embodiment of the invention, the first shale content indication is calculated based on the natural potential log. A second shale content indicator is calculated based on the natural gamma log curve. According to the neutron log curve, the density log curve and the acoustic time difference log, the lithology index of the sand mudstone is calculated. Then, based on the first shale content indication, the second shale content indicator, and the lithology index, the source rock can be identified from the sandstone mudstone. Finally, the organic carbon content in the source rock is calculated based on the density log, the acoustic time difference log and the resistivity log. Since in the embodiment of the present invention, not only the calculation of the organic carbon content based on the resistivity log curve and the acoustic time difference log curve, but also the natural potential logging curve, the natural gamma log curve, the neutron log curve, Multiple logging curves, such as density logging curves, improve the accuracy of calculating the organic carbon content in source rocks, and provide support for the detailed description of the spatial distribution of source rock organic matter in oil and gas exploration and the prediction of favorable oil and gas exploration prospects.
实施例三Embodiment 3
图4是本发明实施例提供的一种计算烃源岩中有机碳含量的装置结构示意图。参见图4,该装置包括:第一计算模块401、第二计算模块402、第三计算模块403、识别模块404和第四计算模块405;4 is a schematic structural view of an apparatus for calculating an organic carbon content in a source rock according to an embodiment of the present invention. Referring to FIG. 4, the device includes: a first calculation module 401, a second calculation module 402, a third calculation module 403, an identification module 404, and a fourth calculation module 405;
第一计算模块401,用于根据自然电位测井曲线,计算第一泥质含量指示;a first calculating module 401, configured to calculate a first shale content indication according to the natural potential logging curve;
第二计算模块402,用于根据自然伽马测井曲线,计算第二泥质含量指示;a second calculation module 402, configured to calculate a second shale content indication according to the natural gamma log curve;
第三计算模块403,用于根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数;a third calculation module 403, configured to calculate a lithology index of the sand mudstone according to the neutron log curve, the density log curve, and the acoustic time difference log;
识别模块404,将用于根据第一泥质含量指示、第二泥质含量指示和该岩性指数,从砂泥岩中识别烃源岩;The identification module 404 is configured to identify the source rock from the sandstone mudstone according to the first shale content indication, the second shale content indication, and the lithology index;
第四计算模块405,用于根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,计算烃源岩中的有机碳含量。The fourth calculation module 405 is configured to calculate the organic carbon content in the source rock according to the density log curve, the acoustic wave time difference log curve and the resistivity log curve.
可选地,第三计算模块403包括:Optionally, the third calculating module 403 includes:
第一计算单元,用于根据中子测井曲线,计算视灰岩中子孔隙度指数; a first calculating unit, configured to calculate a neutron porosity index of the limestone according to the neutron log curve;
第二计算单元,用于根据密度测井曲线,计算视灰岩密度孔隙度指数;a second calculating unit, configured to calculate a limestone density porosity index according to the density logging curve;
第三计算单元,用于根据声波时差测井曲线,计算视灰岩声波孔隙度指数;a third calculating unit, configured to calculate a limestone acoustic wave porosity index according to the acoustic wave time difference logging curve;
第四计算单元,用于根据视灰岩中子孔隙度指数、视灰岩密度孔隙度指数和视灰岩声波孔隙度指数,计算砂泥岩的岩性指数。The fourth calculating unit is configured to calculate the lithology index of the sand-shale rock according to the porphyrite porosity index, the limestone density porosity index and the apparent limestone acoustic porosity index.
可选地,第四计算单元包括:Optionally, the fourth calculating unit comprises:
第一计算子单元,用于计算视灰岩中子孔隙度指数与视灰岩密度孔隙度指数之间的第一差值;a first calculating subunit for calculating a first difference between the ash neutron porosity index and the apparent limestone density porosity index;
第二计算子单元,用于计算视灰岩中子孔隙度指数与视灰岩声波孔隙度指数之间的第二差值;a second calculating subunit for calculating a second difference between the porphyrite porosity index of the limestone and the acoustic wave porosity index of the limestone;
第三计算子单元,用于计算视灰岩密度孔隙度指数与视灰岩声波孔隙度指数之间的第三差值;a third calculating subunit for calculating a third difference between the apparent limestone density porosity index and the apparent limestone acoustic porosity index;
第四计算子单元,用于根据第一差值、第二差值和第三差值,计算砂泥岩的岩性指数。And a fourth calculating subunit, configured to calculate a lithology index of the sand mudstone according to the first difference value, the second difference value, and the third difference value.
可选地,识别模块404包括:Optionally, the identification module 404 includes:
选择单元,用于从砂泥岩中选择第一泥质含量指示大于第一阈值、第二泥质含量指示大于第二阈值且岩性指数大于第三阈值的岩层;a selection unit, configured to select, from the sand mudstone, a formation having a first shale content indicating greater than a first threshold, a second shale content indicating greater than a second threshold, and a lithology index greater than a third threshold;
确定单元,用于将选择的岩层确定为烃源岩。A determining unit for determining the selected rock formation as a source rock.
可选地,第四计算模块405包括:Optionally, the fourth calculating module 405 includes:
第五计算单元,用于根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,按照如下公式计算烃源岩中的有机碳含量;a fifth calculating unit, configured to calculate an organic carbon content in the source rock according to the density log, the acoustic time difference log, and the resistivity log;
TOC=(a lg Rt+b△t+c)/ρTOC=(a lg R t +b△t+c)/ρ
其中,上述公式中,TOC为烃源岩中的有机碳含量,Rt为电阻率测井曲线中的电阻率值,△t为声波时差测井曲线中的声波时差,ρ为密度测井曲线中的密度值,a、b和c是已知系数。Among them, in the above formula, TOC is the organic carbon content in the source rock, Rt is the resistivity value in the resistivity log, Δt is the acoustic time difference in the acoustic time log, and ρ is in the density log. Density values, a, b, and c are known coefficients.
在本发明实施例中,根据自然电位测井曲线,计算第一泥质含量指示。根据自然伽马测井曲线,计算第二泥质含量指示。根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数。然后,根据第一泥质含量指示、第二泥质含量指示和岩性指数,从砂泥岩中可以识别出烃源岩。最后,根据密度测井曲线、声波时差测井曲线和电阻率测井曲线,计算烃源岩中的有机碳含量。由于在本发明实施例中不仅仅是根据电阻率测井曲线和声波时差测井曲线进行有机碳含量的计算,还包括自然电位测井曲线、自然伽马测井曲线、中子测井曲线、密度测井曲线等多个测井曲线,提高了计算烃源岩中的有机碳含量的精确度,为油气勘探中精细描述烃源岩有机质空间分布及预测有利油气勘探远景区提供支撑。 In an embodiment of the invention, the first shale content indication is calculated based on the natural potential log. A second shale content indicator is calculated based on the natural gamma log curve. According to the neutron log curve, the density log curve and the acoustic time difference log, the lithology index of the sand mudstone is calculated. Then, based on the first shale content indication, the second shale content indicator, and the lithology index, the source rock can be identified from the sandstone mudstone. Finally, the organic carbon content in the source rock is calculated based on the density log, the acoustic time difference log and the resistivity log. Since in the embodiment of the present invention, not only the calculation of the organic carbon content based on the resistivity log curve and the acoustic time difference log curve, but also the natural potential logging curve, the natural gamma log curve, the neutron log curve, Multiple logging curves, such as density logging curves, improve the accuracy of calculating the organic carbon content in source rocks, and provide support for the detailed description of the spatial distribution of source rock organic matter in oil and gas exploration and the prediction of favorable oil and gas exploration prospects.
需要说明的是:上述实施例提供的计算烃源岩中有机碳含量的装置在计算烃源岩中有机碳含量时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的计算烃源岩中有机碳含量的装置与计算烃源岩中有机碳含量的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。It should be noted that the device for calculating the organic carbon content in the source rock provided by the above embodiment is only illustrated by the division of the above functional modules when calculating the organic carbon content in the source rock. In practical applications, according to the needs, The above function assignment is completed by different functional modules, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above. In addition, the apparatus for calculating the organic carbon content in the source rock provided by the above embodiment is the same as the method embodiment for calculating the organic carbon content in the source rock. The specific implementation process is described in detail in the method embodiment, and details are not described herein again.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。A person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium. The storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The above are only the preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalents, improvements, etc., which are within the spirit and scope of the present invention, should be included in the protection of the present invention. Within the scope.

Claims (5)

  1. 一种计算烃源岩中有机碳含量的方法,其特征在于,所述方法包括:A method for calculating an organic carbon content in a source rock, characterized in that the method comprises:
    根据自然电位测井曲线,计算第一泥质含量指示;Calculating the first shale content indication according to the natural potential logging curve;
    根据自然伽马测井曲线,计算第二泥质含量指示;Calculating a second shale content indication based on the natural gamma log curve;
    根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数;Calculating the lithology index of sand mudstone according to neutron log curve, density log curve and acoustic time difference log;
    根据所述第一泥质含量指示、所述第二泥质含量指示和所述岩性指数,从所述砂泥岩中识别烃源岩;Identifying source rocks from the sandstone mudstone according to the first shale content indication, the second shale content indication, and the lithology index;
    根据所述密度测井曲线、所述声波时差测井曲线和电阻率测井曲线,计算所述烃源岩中的有机碳含量。Calculating an organic carbon content in the source rock according to the density log curve, the acoustic wave time difference log curve, and the resistivity log curve.
  2. 如权利要求1所述的方法,其特征在于,所述根据中子测井曲线、密度测井曲线和声波时差测井曲线,计算砂泥岩的岩性指数,包括:The method of claim 1 wherein said calculating a lithology index of the sand-shale rock based on the neutron log curve, the density log curve, and the sonic time difference log curve comprises:
    根据中子测井曲线,计算视灰岩中子孔隙度指数;Calculate the neutron porosity index of the limestone according to the neutron log curve;
    根据密度测井曲线,计算视灰岩密度孔隙度指数;Calculating the apparent limestone density porosity index according to the density logging curve;
    根据声波时差测井曲线,计算视灰岩声波孔隙度指数;Calculating the acoustic wave porosity index of the limestone according to the acoustic time difference log;
    根据所述视灰岩中子孔隙度指数、所述视灰岩密度孔隙度指数和所述视灰岩声波孔隙度指数,计算砂泥岩的岩性指数。The lithology index of the sand mudstone is calculated according to the porphyrite neutron porosity index, the ash limestone density porosity index and the ash limestone acoustic porosity index.
  3. 如权利要求2所述的方法,其特征在于,所述根据所述视灰岩中子孔隙度指数、所述视灰岩密度孔隙度指数和所述视灰岩声波孔隙度指数,计算砂泥岩的岩性指数,包括:The method according to claim 2, wherein said calculating a sand-shale rock based on said limestone neutron porosity index, said limestone density porosity index, and said limestone acoustic wave porosity index Lithology index, including:
    计算所述视灰岩中子孔隙度指数与所述视灰岩密度孔隙度指数之间的第一差值;Calculating a first difference between the porphyrite neutron porosity index and the ash lime density porosity index;
    计算所述视灰岩中子孔隙度指数与所述视灰岩声波孔隙度指数之间的第二差值;Calculating a second difference between the porphyrite porosity index of the limestone and the sound wave porosity index of the limestone;
    计算所述视灰岩密度孔隙度指数与所述视灰岩声波孔隙度指数之间的第三差值;Calculating a third difference between the apparent limestone density porosity index and the apparent limestone acoustic porosity index;
    根据所述第一差值、所述第二差值和所述第三差值,计算砂泥岩的岩性指数。A lithology index of the sand mudstone is calculated based on the first difference, the second difference, and the third difference.
  4. 如权利要求1所述的方法,其特征在于,所述根据所述第一泥质含量指示、所述第二泥质含量指示和所述岩性指数,从所述砂泥岩中识别烃源岩,包括:The method of claim 1 wherein said identifying source rocks from said sandstone mudstone based on said first shale content indicator, said second shale content indicator, and said lithology index ,include:
    从所述砂泥岩中选择所述第一泥质含量指示大于第一阈值、所述第二泥质含量指示大于第二阈值且所述岩性指数大于第三阈值的岩层;Selecting, from the sand mudstone, a rock formation indicating that the first shale content is greater than a first threshold, the second shale content is greater than a second threshold, and the lithology index is greater than a third threshold;
    将选择的岩层确定为烃源岩。The selected rock formation is identified as a source rock.
  5. 如权利要求1-4任一权利要求所述的方法,其特征在于,所述根据所述密度测井曲线、所述声波时差测井曲线和电阻率测井曲线,计算所述烃源岩中的有机碳含量,包括:The method according to any one of claims 1 to 4, wherein said calculating said source rock according to said density log, said acoustic time difference log and resistivity log Organic carbon content, including:
    根据所述密度测井曲线、所述声波时差测井曲线和电阻率测井曲线,按照如下公式计算所述烃源岩中的有机碳含量;Calculating an organic carbon content in the source rock according to the density log, the acoustic time difference log, and the resistivity log according to the following formula;
    TOC=(algRt+bΔt+c)/ρ TOC=(algR t +bΔt+c)/ρ
    其中,上述公式中,TOC为所述烃源岩中的有机碳含量,Rt为所述电阻率测井曲线中的电阻率值,Δt为所述声波时差测井曲线中的声波时差,ρ为所述密度测井曲线中的密度值,a、b和c是已知系数。 Wherein, in the above formula, TOC is the organic carbon content in the source rock, Rt is the resistivity value in the resistivity log, and Δt is the acoustic time difference in the acoustic time difference log, ρ is The density values in the density log, a, b, and c are known coefficients.
PCT/CN2015/086673 2015-08-11 2015-08-11 Method for calculating content of organic carbon in hydrocarbon source rock WO2017024530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/086673 WO2017024530A1 (en) 2015-08-11 2015-08-11 Method for calculating content of organic carbon in hydrocarbon source rock
PCT/CN2015/096202 WO2017024700A1 (en) 2015-08-11 2015-12-02 Device for calculating content of organic carbon in source rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086673 WO2017024530A1 (en) 2015-08-11 2015-08-11 Method for calculating content of organic carbon in hydrocarbon source rock

Publications (1)

Publication Number Publication Date
WO2017024530A1 true WO2017024530A1 (en) 2017-02-16

Family

ID=57983892

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/086673 WO2017024530A1 (en) 2015-08-11 2015-08-11 Method for calculating content of organic carbon in hydrocarbon source rock
PCT/CN2015/096202 WO2017024700A1 (en) 2015-08-11 2015-12-02 Device for calculating content of organic carbon in source rock

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096202 WO2017024700A1 (en) 2015-08-11 2015-12-02 Device for calculating content of organic carbon in source rock

Country Status (1)

Country Link
WO (2) WO2017024530A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107798211A (en) * 2017-10-17 2018-03-13 中国石油天然气股份有限公司 The determination method and apparatus of the organic acid growing amount of organic matter in underground hydrocarbon source rock stratum
CN109994161A (en) * 2019-04-13 2019-07-09 东北石油大学 The method of trend base-line method combination dynamic linkage method calculating formation organic carbon content
CN110442951A (en) * 2019-07-30 2019-11-12 西北大学 A kind of hydrocarbon source rock total content of organic carbon prediction technique considering density factor
CN110532507A (en) * 2019-08-30 2019-12-03 西安石油大学 A method of the fine and close oily reservoir Drilling ratio of well of improving the standard
CN110619353A (en) * 2019-08-22 2019-12-27 中国石油天然气集团有限公司 Multi-scale logging curve automatic identification method based on deep learning
CN111042811A (en) * 2020-01-13 2020-04-21 中国石油天然气股份有限公司大港油田分公司 Shale oil productivity evaluation method based on sensitive parameter superposition
CN111048163A (en) * 2019-12-18 2020-04-21 延安大学 Shale oil hydrocarbon retention amount (S1) evaluation method based on high-order neural network
CN111058840A (en) * 2019-12-18 2020-04-24 延安大学 Organic carbon content (TOC) evaluation method based on high-order neural network
CN111123378A (en) * 2019-12-25 2020-05-08 中国石油天然气股份有限公司 Method and device for determining gamma ray intensity critical value for dividing lithology type
CN111236932A (en) * 2020-01-13 2020-06-05 中国石油天然气股份有限公司大港油田分公司 Shale oil lithology evaluation method based on indication curve reconstruction
CN111580179A (en) * 2019-01-30 2020-08-25 中国石油天然气股份有限公司 Method, device and system for determining organic carbon content
CN111949945A (en) * 2020-07-28 2020-11-17 中国石油大学(北京) Method, device, equipment and system for determining total organic carbon content of hydrocarbon source rock
CN111963162A (en) * 2020-09-09 2020-11-20 中国石油天然气股份有限公司 Dual-parameter fluid property identification method based on lithology and water-based property
CN112214870A (en) * 2020-09-08 2021-01-12 长江大学 Method and device for establishing permeability quantitative interpretation model
CN112394392A (en) * 2019-08-13 2021-02-23 中国石油天然气股份有限公司 Method and device for evaluating distribution condition of hydrocarbon source rock
CN112523740A (en) * 2019-09-04 2021-03-19 中国石油天然气集团有限公司 Rock type identification method and device for ultra-deep sea underground oil and gas exploration
CN112696197A (en) * 2020-12-30 2021-04-23 中国石油天然气集团有限公司 Oil field reservoir index curve construction method, system, equipment and storage medium
CN112709568A (en) * 2020-12-08 2021-04-27 中国石油天然气股份有限公司 Method and device for identifying dolomite stratum algae dolomite
CN112835113A (en) * 2019-11-25 2021-05-25 中国石油化工股份有限公司 Lithology identification method under sequence constraint
CN113123783A (en) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 Method for finely evaluating volume content of stratum
CN113818870A (en) * 2020-06-02 2021-12-21 中国石油天然气股份有限公司 Reservoir fluid property identification method and system
CN114109349A (en) * 2020-08-11 2022-03-01 中国石油化工股份有限公司 Method for determining porosity index/saturation index of tight sandstone reservoir
CN115032361A (en) * 2021-03-03 2022-09-09 中国石油化工股份有限公司 Method for evaluating organic carbon content of shale oil reservoir based on genetic optimization neural network algorithm
CN115045646A (en) * 2022-06-07 2022-09-13 中国地质调查局油气资源调查中心 Shale gas well site optimization method
CN117310812A (en) * 2023-09-27 2023-12-29 广东海洋大学 Methane fluid longitudinal wave time difference skeleton parameter acquisition method
CN114109349B (en) * 2020-08-11 2024-04-26 中国石油化工股份有限公司 Method for determining porosity index/saturation index of tight sandstone reservoir

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064230A (en) * 2017-05-08 2017-08-18 中国石油大学(北京) The method and apparatus for recognizing marine facies shale degree of graphitization
CN107703560B (en) * 2017-09-29 2019-12-13 西南石油大学 shale lithofacies fine identification method based on triple information
CN109133344A (en) * 2018-09-27 2019-01-04 南京信息工程大学 A method of being precisely controlled bio-denitrifying sewage additional carbon dosage
JP2023111759A (en) 2022-01-31 2023-08-10 株式会社シマノ Component for human-powered vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090254283A1 (en) * 2008-04-07 2009-10-08 Baker Hughes Incorporated method for petrophysical evaluation of shale gas reservoirs
CN102565104A (en) * 2011-12-21 2012-07-11 中国石油天然气股份有限公司 Method for determining content of organic carbon of hydrocarbon source rock
CN103792338A (en) * 2014-01-28 2014-05-14 中国石油天然气股份有限公司 Method and device for determining content of organic carbon in hydrocarbon source rock
CN104237966A (en) * 2014-09-02 2014-12-24 中国石油天然气股份有限公司 Method and device for measuring and calculating underground organic matter porosity degree
CN104636588A (en) * 2014-08-25 2015-05-20 中国石油天然气股份有限公司 Method and device for calculating content of organic carbon in source rock

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656162A (en) * 2015-02-13 2015-05-27 西安石油大学 Method for determining content of uranium and organic carbon in uranium-rich hydrocarbon-source rocks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090254283A1 (en) * 2008-04-07 2009-10-08 Baker Hughes Incorporated method for petrophysical evaluation of shale gas reservoirs
CN102565104A (en) * 2011-12-21 2012-07-11 中国石油天然气股份有限公司 Method for determining content of organic carbon of hydrocarbon source rock
CN103792338A (en) * 2014-01-28 2014-05-14 中国石油天然气股份有限公司 Method and device for determining content of organic carbon in hydrocarbon source rock
CN104636588A (en) * 2014-08-25 2015-05-20 中国石油天然气股份有限公司 Method and device for calculating content of organic carbon in source rock
CN104237966A (en) * 2014-09-02 2014-12-24 中国石油天然气股份有限公司 Method and device for measuring and calculating underground organic matter porosity degree

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107798211A (en) * 2017-10-17 2018-03-13 中国石油天然气股份有限公司 The determination method and apparatus of the organic acid growing amount of organic matter in underground hydrocarbon source rock stratum
CN111580179A (en) * 2019-01-30 2020-08-25 中国石油天然气股份有限公司 Method, device and system for determining organic carbon content
CN111580179B (en) * 2019-01-30 2023-02-28 中国石油天然气股份有限公司 Method, device and system for determining organic carbon content
CN109994161B (en) * 2019-04-13 2023-05-16 东北石油大学 Method for calculating organic carbon content of stratum by combining trend baseline method with dynamic linkage method
CN109994161A (en) * 2019-04-13 2019-07-09 东北石油大学 The method of trend base-line method combination dynamic linkage method calculating formation organic carbon content
CN110442951B (en) * 2019-07-30 2023-05-12 西北大学 Hydrocarbon source rock total organic carbon content prediction method considering density factor
CN110442951A (en) * 2019-07-30 2019-11-12 西北大学 A kind of hydrocarbon source rock total content of organic carbon prediction technique considering density factor
CN112394392B (en) * 2019-08-13 2023-09-26 中国石油天然气股份有限公司 Method and device for evaluating distribution condition of hydrocarbon source rock
CN112394392A (en) * 2019-08-13 2021-02-23 中国石油天然气股份有限公司 Method and device for evaluating distribution condition of hydrocarbon source rock
CN110619353A (en) * 2019-08-22 2019-12-27 中国石油天然气集团有限公司 Multi-scale logging curve automatic identification method based on deep learning
CN110619353B (en) * 2019-08-22 2022-03-29 中国石油天然气集团有限公司 Multi-scale logging curve automatic identification method based on deep learning
CN110532507A (en) * 2019-08-30 2019-12-03 西安石油大学 A method of the fine and close oily reservoir Drilling ratio of well of improving the standard
CN110532507B (en) * 2019-08-30 2022-10-11 西安石油大学 Method for improving drilling rate of compact oil reservoir of horizontal well
CN112523740A (en) * 2019-09-04 2021-03-19 中国石油天然气集团有限公司 Rock type identification method and device for ultra-deep sea underground oil and gas exploration
CN112835113B (en) * 2019-11-25 2024-01-23 中国石油化工股份有限公司 Lithology recognition method under layer sequence constraint
CN112835113A (en) * 2019-11-25 2021-05-25 中国石油化工股份有限公司 Lithology identification method under sequence constraint
CN111048163A (en) * 2019-12-18 2020-04-21 延安大学 Shale oil hydrocarbon retention amount (S1) evaluation method based on high-order neural network
CN111048163B (en) * 2019-12-18 2023-03-31 延安大学 Shale oil hydrocarbon retention amount (S1) evaluation method based on high-order neural network
CN111058840A (en) * 2019-12-18 2020-04-24 延安大学 Organic carbon content (TOC) evaluation method based on high-order neural network
CN111123378A (en) * 2019-12-25 2020-05-08 中国石油天然气股份有限公司 Method and device for determining gamma ray intensity critical value for dividing lithology type
CN113123783B (en) * 2019-12-31 2023-10-13 中国石油化工股份有限公司 Method for finely evaluating volume content of stratum
CN113123783A (en) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 Method for finely evaluating volume content of stratum
CN111236932A (en) * 2020-01-13 2020-06-05 中国石油天然气股份有限公司大港油田分公司 Shale oil lithology evaluation method based on indication curve reconstruction
CN111042811A (en) * 2020-01-13 2020-04-21 中国石油天然气股份有限公司大港油田分公司 Shale oil productivity evaluation method based on sensitive parameter superposition
CN113818870A (en) * 2020-06-02 2021-12-21 中国石油天然气股份有限公司 Reservoir fluid property identification method and system
CN113818870B (en) * 2020-06-02 2024-03-26 中国石油天然气股份有限公司 Reservoir fluid property identification method and system
CN111949945B (en) * 2020-07-28 2023-10-17 中国石油大学(北京) Method, device, equipment and system for determining total organic carbon content of source rock
CN111949945A (en) * 2020-07-28 2020-11-17 中国石油大学(北京) Method, device, equipment and system for determining total organic carbon content of hydrocarbon source rock
CN114109349B (en) * 2020-08-11 2024-04-26 中国石油化工股份有限公司 Method for determining porosity index/saturation index of tight sandstone reservoir
CN114109349A (en) * 2020-08-11 2022-03-01 中国石油化工股份有限公司 Method for determining porosity index/saturation index of tight sandstone reservoir
CN112214870A (en) * 2020-09-08 2021-01-12 长江大学 Method and device for establishing permeability quantitative interpretation model
CN112214870B (en) * 2020-09-08 2023-03-14 长江大学 Method and device for establishing permeability quantitative interpretation model
CN111963162B (en) * 2020-09-09 2023-07-25 中国石油天然气股份有限公司 Lithology and water-based dual-parameter fluid property identification method
CN111963162A (en) * 2020-09-09 2020-11-20 中国石油天然气股份有限公司 Dual-parameter fluid property identification method based on lithology and water-based property
CN112709568B (en) * 2020-12-08 2023-12-26 中国石油天然气股份有限公司 Method and device for identifying dolomite formation algae dolomite
CN112709568A (en) * 2020-12-08 2021-04-27 中国石油天然气股份有限公司 Method and device for identifying dolomite stratum algae dolomite
CN112696197A (en) * 2020-12-30 2021-04-23 中国石油天然气集团有限公司 Oil field reservoir index curve construction method, system, equipment and storage medium
CN115032361A (en) * 2021-03-03 2022-09-09 中国石油化工股份有限公司 Method for evaluating organic carbon content of shale oil reservoir based on genetic optimization neural network algorithm
CN115045646A (en) * 2022-06-07 2022-09-13 中国地质调查局油气资源调查中心 Shale gas well site optimization method
CN117310812A (en) * 2023-09-27 2023-12-29 广东海洋大学 Methane fluid longitudinal wave time difference skeleton parameter acquisition method

Also Published As

Publication number Publication date
WO2017024700A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2017024530A1 (en) Method for calculating content of organic carbon in hydrocarbon source rock
CN104636588B (en) Calculate the method and device of organic carbon content in hydrocarbon source rock
CN104278991B (en) Saline Lake Facies hydrocarbon source rock organic carbon and the polynary well logging computational methods of hydrocarbon potential
CN103603659B (en) Utilize the method for Using Conventional Logs identification Complicated Pore Structures fluid type of reservoir through
Zhu et al. Key factors of marine shale conductivity in southern China—Part II: The influence of pore system and the development direction of shale gas saturation models
CN103867197B (en) Complex lithology natural gas reservoir interval transit time diagnostic method
Zhao et al. Estimating permeability of shale-gas reservoirs from porosity and rock compositions
CN106154351A (en) A kind of evaluation method of low porosity permeability reservoir permeability
CN103883322B (en) Shale gas reservoirs exploration method and device
CN107795320B (en) Calculation method for horizontal well carbonate reservoir parameters
CN105275456A (en) Method for identifying high-quality shale by using logging information
CA2867583C (en) Fracking method for fracking intervals of a horizontal drilling zone in a sweet spot range based on measurements of resistivity and neutron logging data in the horizontal drillingzone
Wang et al. Determination of total organic carbon content in shale formations with regression analysis
Awolayo et al. A cohesive approach at estimating water saturation in a low-resistivity pay carbonate reservoir and its validation
CN106019403B (en) From being born from reservoir formation porosity measurement method
Nie et al. Oil content prediction of lacustrine organic-rich shale from wireline logs: A case study of intersalt reservoirs in the Qianjiang Sag, Jianghan Basin, China
CN105804732A (en) Oil-gas distribution prediction method based on relative resistivity stochastic simulation inversion
CN106568918B (en) Shale organic carbon content TOC prediction method
Nie et al. Evaluation of the in-place adsorbed gas content of organic-rich shales using wireline logging data: a new method and its application
Nie et al. Oil content prediction method based on the TOC and porosity of organic-rich shales from wireline logs: A case study of lacustrine intersalt shale plays in Qianjiang Sag, Jianghan Basin, China
Kadhim et al. Correlation between cementation factor and carbonate reservoir rock properties
Liu et al. Evaluating the CBM reservoirs using NMR logging data
CN113720745A (en) Method for calculating porosity of reservoir stratum containing carbon debris by geophysical logging
He et al. Factors influencing the porosity of gas hydrate bearing sediments
CN110821484A (en) Calculation method and storage medium for geological reserve of continental facies matrix type shale oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900728

Country of ref document: EP

Kind code of ref document: A1