WO2017022472A1 - Marker for undifferentiated mesenchymal stem cells and use thereof - Google Patents

Marker for undifferentiated mesenchymal stem cells and use thereof Download PDF

Info

Publication number
WO2017022472A1
WO2017022472A1 PCT/JP2016/071190 JP2016071190W WO2017022472A1 WO 2017022472 A1 WO2017022472 A1 WO 2017022472A1 JP 2016071190 W JP2016071190 W JP 2016071190W WO 2017022472 A1 WO2017022472 A1 WO 2017022472A1
Authority
WO
WIPO (PCT)
Prior art keywords
islr
mesenchymal stem
stem cells
cancer
expression
Prior art date
Application number
PCT/JP2016/071190
Other languages
French (fr)
Japanese (ja)
Inventor
篤 榎本
高橋 雅英
啓子 前田
昭壽 原
水谷 泰之
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2017532474A priority Critical patent/JP6841429B2/en
Publication of WO2017022472A1 publication Critical patent/WO2017022472A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a mesenchymal stem cell marker. Specifically, the present invention relates to a molecule (biomarker) having high specificity for mesenchymal stem cells in an undifferentiated state and use thereof.
  • a molecule biomarker
  • Mesenchymal stem cells are cells that are present in many organs including bone marrow, adipose tissue, dental pulp, umbilical cord, and endometrium It is known that when cultured on culture dishes under specific conditions, it differentiates into bone, cartilage and fat.
  • mesenchymal stem cells are also known to have the effect of promoting the proliferation and differentiation of other cell groups (trophic effect) and immunomodulation, and are now GVHD (graft-versus-host disease), spinal cord injury, after kidney transplantation Application to the treatment of various diseases such as renal failure, myocardial infarction and peripheral occlusive arterial disease is expected.
  • Non-patent Document 1 mesenchymal stem cells exist around blood vessels such as sinusoids and small arteries in the bone marrow, and around capillaries in other organs.
  • the bone marrow functions as a niche cell for maintaining hematopoietic stem cells or as a bone stem cell for bone regeneration (Non-patent Document 2).
  • pericytes vascular pericytes
  • fibroblasts around the blood vessels, and are considered to be involved in vascular maturation.
  • Non-patent Document 4 There is also a theory that the cause of interstitial fibrosis in cancer and various fibrotic diseases is perisite proliferation.
  • cells that satisfy the following conditions (1) to (3) are defined as mesenchymal stem cells.
  • (1) Cells that adhere on the culture dish (2) CD105 positive, CD73 positive, CD90 positive, CD45 negative, CD34 negative, CD14 or CD11b negative, CD79a or CD19 negative, HLA-DR negative (3) Having the ability to differentiate into osteoblasts, chondroblasts and adipocytes in vitro (in vitro)
  • Stro-1, PDGF receptor, Sca-1, CD271, CD146, etc. have been reported as markers for mesenchymal stem cells.
  • a method for isolating a stem cell has been developed (see, for example, Patent Document 1).
  • all markers including CD105, CD73, and CD90 are expressed in epithelial cells, cancer cells, nerve cells, etc., and are not specific for mesenchymal stem cells.
  • Pericytes Developmental, Physiological, and Pathological Perspectives, sProblems, msand Promises. Developmental Cell 21, 193-215.
  • Human and mouse ISLR immunoglobulin superfamily containing leucine-rich repeat genes: genomic structure and tissue expression.Genomics 61, 37-43. Homma, S., Shimada, T., Hikake, T., and Yaginuma, H. (2009). Expression pattern of LRR and Ig domain-containing protein (LRRIG protein) in the early mouse embryo. Gene Expression Patterns -26. Mandai, K., Guo, T., Hillaire, CS, Meabon, JS, Kanning, KC, Bothwell, M., and Ginty, DD (2009). LIG family receptor tyrosine kinase-associated proteins . Neuron 63, 614-627.
  • the present invention provides a marker molecule that is highly specific for mesenchymal stem cells in an undifferentiated state and enables high-sensitivity mesenchymal stem cell identification and preparation of high-purity mesenchymal stem cells, and uses thereof It is an issue to provide.
  • ISLR leucine-rich repeat-containing immunoglobulin superfamily
  • ISLR2 also known as Linx
  • Non-patent Document 8 Non-patent Document 8
  • ISLR expression is higher than normal in lung cancer, breast cancer, pancreatic cancer and the like
  • Patent Document 2 Non-Patent Documents 9 and 10
  • ISLR is only listed as one of many genes that exhibit similar behavior, and there is no mention of ISLR function.
  • Non-Patent Documents 11 and 12 the significance of ISLR expression in mesenchymal stem cells and its function are unknown.
  • ISLR is a marker molecule specific for mesenchymal stem cells.
  • ISLR is highly specific for undifferentiated mesenchymal stem cells, and is distinct from the previously reported markers of mesenchymal stem cells.
  • ISLR has been found to be a marker for mesenchymal stem cells in mice as well as humans, and its utility value is high.
  • An undifferentiated mesenchymal stem cell marker consisting of a leucine-rich repeat-containing immunoglobulin superfamily (ISLR).
  • a method for preparing undifferentiated mesenchymal stem cells comprising a step of selecting and collecting ISLR-expressing cells from a cell population containing mesenchymal stem cells.
  • the cell population containing mesenchymal stem cells is derived from bone marrow, dental pulp, adipose tissue, endometrium, umbilical cord, skeletal muscle, or peripheral blood.
  • a method for detecting undifferentiated mesenchymal stem cells characterized by detecting the expression state of ISLR as an index.
  • [6] A method for evaluating the undifferentiation of a mesenchymal stem cell, comprising the step of examining the expression state of ISLR in a test mesenchymal stem cell. [7] The method according to any one of [3] to [6], wherein the mesenchymal stem cell is a human cell. [8] A reagent for detecting undifferentiated mesenchymal stem cells, comprising an anti-ISLR antibody. [9] An undifferentiated mesenchymal stem cell detection kit comprising the reagent according to [8]. [10] A method for detecting undifferentiated mesenchymal stem cells that accumulate in a diseased site of cancer or fibrotic disease, wherein the expression state of ISLR is detected as an index.
  • a kit for estimating the prognosis of a patient with cancer or fibrosis comprising the reagent according to [16] or [17].
  • ISLR expression in human bone marrow-derived mesenchymal stem cells and dermal fibroblasts was examined by Western blot.
  • Note 1 Human skin fibroblasts transfected with ISLR-specific shRNA ISLR expression in human adipose-derived stem cells. The expression of ISLR was examined by Western blot.
  • Note 1 Glyceraldehyde-3- Phosphate Dehydrogenase (endogenous control) ISLR expression in mouse bone marrow-derived mesenchymal stem cells. The expression of ISLR was examined by Western blot.
  • Endogenous control Decreased ISLR expression associated with the differentiation of mouse mesenchymal stem cells.
  • the expression level of ISLR mRNA on differentiation induction day 7 was examined by quantitative RT-PCR. Verification of the effect of high ISLR expression on differentiation of mesenchymal stem cells. Differentiation induction of C3H10T1 / 2 in which ISLR was forcibly expressed was induced, and the expression of ISLR, Sox9 (cartilage differentiation marker), Osteopontin, and Runx2 (both bone differentiation markers) were examined by Western blot on day 0 and day 7. It was. Note 1: Chondrocyte marker, Note 2: Osteoblast marker, Note 3: Osteoblast marker ISLR expression in various cultured cells.
  • ISLR expression in human fibroblasts, vascular smooth muscle cells, vascular endothelial cells and various epithelial cells was examined by Western blotting.
  • ISLR expression in mesenchymal stem cells growing in the stroma of pancreatic cancer Mesenchymal stem cells accumulate in the stroma of moderately differentiated pancreatic cancer and poorly differentiated pancreatic cancer.
  • the presence of mesenchymal stem cells was examined by in situ hybridization using ISLR expression as an index.
  • Mesenchymal stem cells accumulate in the stroma of moderately differentiated colorectal cancer and poorly differentiated colorectal cancer.
  • the presence of mesenchymal stem cells was examined by in situ hybridization using ISLR expression as an index.
  • ISLR expression in breast cancer tissue Mesenchymal stem cells accumulate in the stroma of invasive ductal carcinoma.
  • the presence of mesenchymal stem cells was examined by in situ hybridization using ISLR expression as an index.
  • ISLR expression at the infarct site in a mouse myocardial infarction model Mesenchymal stem cells accumulate at the myocardial infarction site of the mouse myocardial infarction model.
  • the presence of mesenchymal stem cells was examined by in situ hybridization using ISLR expression as an index. Difference in survival rate after myocardial infarction between wild-type and ISLR knockout mice. ISLR knockout mice were prepared and the survival rate after myocardial infarction was compared with wild type mice.
  • Undifferentiated Mesenchymal Stem Cell Marker The first aspect of the present invention relates to a marker molecule that has been specifically expressed in undifferentiated mesenchymal stem cells, that is, an “undifferentiated mesenchymal stem cell marker”.
  • An “undifferentiated mesenchymal stem cell marker” refers to a molecule that serves as an indicator of mesenchymal stem cells that retain undifferentiated properties. Detection, measurement, labeling, and preparation (sorting) of undifferentiated mesenchymal stem cells using the undifferentiated mesenchymal stem cell marker of the present invention (hereinafter sometimes referred to as “the marker of the present invention” for short) ⁇ Concentration), evaluation, etc. become possible.
  • the marker of the present invention has high utility value in preparing undifferentiated mesenchymal stem cells from a cell population containing mesenchymal stem cells.
  • Undifferentiated mesenchymal stem cells have the ability to differentiate into osteoblasts, chondroblasts, and adipocytes. If undifferentiated mesenchymal stem cells are cultured under specific induction conditions, they differentiate along the cell lineage corresponding to the induction conditions.
  • the marker of the present invention consists of leucine-rich repeat-containing immunoglobulin superfamily (ISLR: immunoglobulin-superfamily-containing leucine-rich-repeat).
  • ISLR is a cell membrane-bound or secreted molecule, and is highly expressed in lung cancer, breast cancer, pancreatic cancer and the like (see, for example, Patent Document 2, Non-Patent Documents 9 and 10).
  • SEQ ID NO: 1 human ISLR amino acid sequence (NCBI Reference Sequence: NP_005536.1, immunoglobulin superfamily containing leucine-rich repeat protein precursor [Homo sapiens].)
  • SEQ ID NO: 2 amino acid sequence of mouse ISLR (NCBI Reference Sequence: NP_036173.1, immunoglobulin superfamily containing leucine-rich repeat protein precursor [Mus musculus].)
  • SEQ ID NO: 3 Amino acid sequence of rat ISLR (NCBI Reference Sequence: NP_001119772.1 immunoglobulin superfamily containing leucine-rich repeat protein precursor [Rattus norvegicus])
  • SEQ ID NO: 4 cDNA sequence of human ISLR (GeneID: 3671, NCBI Reference Sequence: NM_005545.3, homosapiens immunoglobulin superfamily
  • Human ISLR has a known variant (variant 2) sequence (Homo sapiens immunoglobulin superfamily containing leucine-rich repeat (ISLR), transcript variant 2, mRNA, amino acid sequence: NP_958934.1, cDNA sequence: NM_201526.1) .
  • the amino acid sequence of the variant is identical to the above amino acid sequence (SEQ ID NO: 1).
  • variant 2 sequence (Mus musculus immunoglobulin superfamily containing leucine-rich repeat (Islr), transcript variant 2, mRNA, amino acid sequence: NP_001182360.1, cDNA sequence: NM_001195431.1) is known.
  • the amino acid sequence of the variant is identical to the above amino acid sequence (SEQ ID NO: 2).
  • the marker of the present invention is used not as an indicator of undifferentiated mesenchymal stem cells present in the human body but as an indicator of undifferentiated mesenchymal stem cells in a state separated from the human organism. Is done.
  • the second aspect of the present invention relates to the use of the marker of the present invention and provides a method for preparing undifferentiated mesenchymal stem cells (hereinafter referred to as “preparation method of the present invention”).
  • preparation method of the present invention When the cell population before carrying out the preparation method of the present invention (that is, the cell population subjected to the preparation method of the present invention) and the cell population obtained by the preparation method of the present invention are compared, the latter is less than the former.
  • Undifferentiated mesenchymal stem cells are useful per se, and are expected to be used as transplantation materials for regenerative medicine, for example.
  • Various cells obtained by inducing differentiation thereof can also be used for reconstruction of a specific tissue.
  • chemokines, cytokines, growth factors and the like produced by mesenchymal stem cells are expected to be applied to the treatment of various diseases.
  • undifferentiated mesenchymal stem cells are important for maintenance of hematopoietic stem cells, and undifferentiated mesenchymal stem cells can also be used as support cells when maintaining hematopoietic stem cells in vitro.
  • undifferentiated mesenchymal stem cells are also useful in the field of bone marrow transplantation. According to the preparation method of the present invention, since highly specific markers are used, undifferentiated mesenchymal stem cells that are extremely useful in this way can be prepared with high purity. Also, efficient preparation is possible.
  • the preparation method of the present invention uses the marker of the present invention. Specifically, in the preparation method of the present invention, the following step is performed, that is, “the step of selecting and collecting ISLR-expressing cells from a cell population containing mesenchymal stem cells”. Hereinafter, details of the step will be described.
  • a cell population containing mesenchymal stem cells is prepared in advance.
  • the cell population can be obtained by a conventional method from bone marrow, dental pulp, adipose tissue, endometrium, umbilical cord, umbilical cord blood, skeletal muscle, peripheral blood or the like of a human or non-human animal (eg, mouse, rat).
  • physical processing cutting, pipetting, filtering, etc.
  • enzymes on samples eg, bone marrow fluid, aspirated fat, skeletal muscle tissue, blood
  • Treatment for example, using trypsin, dispase, collagenase, elastase, papain, etc.
  • the cell mass is not present.
  • the sample collected from the cell source or the cells separated therefrom may be seeded and cultured in a culture vessel, and the cells showing adhesion may be used as “cell population including mesenchymal stem cells”.
  • a cell population obtained by a method similar to the conventional method for preparing mesenchymal stem cells, in which adherent cells are selected is used as the “cell population containing mesenchymal stem cells”.
  • ISLR-expressing cells are selected and collected from a cell population containing mesenchymal stem cells. That is, an undifferentiated mesenchymal stem cell, which is a target cell, is obtained using ISLR expression as an index. Selection and collection using ISLR as an indicator can be performed, for example, by flow cytometry and cell sorting using an anti-ISLR antibody. According to flow cytometry and cell sorting, it is possible to sort ISLR positive cells specifically and efficiently.
  • Devices for performing flow cytometry and cell sorting are commercially available from, for example, Beckman Coulter Co., Ltd., Nippon Becton Dickinson Co., Ltd., and the like. Basic operating methods, sorting conditions, etc. may be in accordance with the instruction manual attached to the device.
  • ISLR positive cells can be selected and collected by affinity chromatography using anti-ISLR antibodies or magnetic cell separation using magnetic beads.
  • Anti-ISLR antibodies used for flow cytometry, cell sorting, magnetic cell separation, etc. are polyclonal antibodies and oligoclonal antibodies (mixtures of several to several tens of antibodies) as long as they can be used for selection and recovery of ISLR positive cells. And any of monoclonal antibodies.
  • a polyclonal antibody or an oligoclonal antibody an anti-serum-derived IgG fraction obtained by animal immunization, or an affinity-purified antibody using an antigen can be used.
  • Anti-ISLR antibodies can be prepared using immunological techniques, phage display methods, ribosome display methods, and the like. Preparation of a polyclonal antibody by an immunological technique can be performed by the following procedure.
  • An antigen (ISLR or a part thereof) is prepared and used to immunize animals such as rabbits.
  • An antigen can be obtained by purifying a biological sample.
  • a recombinant antigen can also be used.
  • Recombinant ISLR is prepared by, for example, introducing a gene encoding ISLR (which may be a part of the gene) into a suitable host using a vector and expressing it in the resulting recombinant cell. can do.
  • an antigen to which a carrier protein is bound may be used.
  • the carrier protein KLH (KeyholeHLimpet) Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin) and the like are used.
  • the carbodiimide method, the glutaraldehyde method, the diazo condensation method, the MBS (maleimidobenzoyloxysuccinimide) method, etc. can be used for the coupling
  • an antigen in which ISLR (or a part thereof) is expressed as a fusion protein with GST, ⁇ -galactosidase, maltose-binding protein, histidine (His) tag or the like can also be used.
  • a fusion protein can be easily purified by a general method.
  • Immunization is repeated as necessary, and blood is collected when the antibody titer has sufficiently increased, and serum is obtained by centrifugation or the like. The obtained antiserum is affinity purified to obtain a polyclonal antibody.
  • monoclonal antibodies can be prepared by the following procedure. First, an immunization operation is performed in the same procedure as described above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hybridoma. Subsequently, after this hybridoma is monoclonalized, a clone producing an antibody having high specificity for the antigen is selected. The target antibody can be obtained by purifying the culture medium of the selected clone.
  • the desired antibody can be obtained by growing the hybridoma to a desired number or more, then transplanting it into the abdominal cavity of an animal (for example, a mouse), growing it in ascites, and purifying the ascites.
  • affinity chromatography using protein G, protein A or the like is preferably used.
  • affinity chromatography in which an antigen is immobilized may be used.
  • methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination.
  • the preparation method of the present invention uses a marker highly specific to undifferentiated mesenchymal stem cells, it becomes possible to specifically and efficiently prepare undifferentiated mesenchymal stem cells alone.
  • other marker molecules that can be used to select undifferentiated mesenchymal stem cells (for example, CD105, CD73, CD90, CD45, CD34, CD14, CD11b, CD79a, CD19, known as markers for mesenchymal stem cells, HLA-DR etc.) is not excluded or restricted. That is, the steps of constructing the method of the present invention (using ISLR) for the purpose of further improving purity or homogeneity, enriching a specific cell population (eg, characterized by expression of a specific marker molecule), etc. In addition to (Step), a step of selection and collection with other marker molecules may be performed. This step is performed before or after the sorting and collection step using ISLR.
  • the third aspect of the present invention relates to detection of undifferentiated mesenchymal stem cells, a method for detecting undifferentiated mesenchymal stem cells (hereinafter referred to as “the detection method of the present invention”), Reagents and kits used in the method are provided.
  • the detection method of the present invention has the greatest feature in that undifferentiated mesenchymal stem cells are detected using the expression state of ISLR as an index. According to the detection method of the present invention, undifferentiated mesenchymal stem cells in a sample can be detected specifically and with high sensitivity. Therefore, the detection method of the present invention is useful as an experimental means (research tool) that enables identification, visualization, extraction and the like of undifferentiated mesenchymal stem cells.
  • the detection method of the present invention is applied to a sample containing undifferentiated mesenchymal stem cells.
  • the sample is not particularly limited as long as it may contain undifferentiated mesenchymal stem cells.
  • a tissue piece or a cell population collected or separated from a living body, or a cell population extracted from them can be used as a sample.
  • the detection method of the present invention is typically carried out in vitro, but in the case of using a sample from a non-human animal or detecting ISLR expression in a human sample transplanted to a non-human animal, Can also be implemented.
  • ISLR mRNA or ISLR protein is a detection target. That is, in the detection method of the present invention, the expression of ISLR mRNA or ISLR protein is detected.
  • the “expression state” means the degree of expression (level), and is used as a term encompassing the presence / absence of expression and the expression level. Therefore, in the detection method of the present invention, qualitative or quantitative detection is performed on the expression of ISLRIS mRNA or ISLR protein.
  • Detection of ISLR mRNA expression can be performed by various methods using primers or probes specific to ISLR mRNA, such as RT-PCR, quantitative PCR, in situ hybridization, Northern blotting, and the like.
  • a substance exhibiting specific binding property to ISLR protein is used.
  • an anti-ISLR antibody is preferably employed.
  • Anti-ISLR antibody enables highly specific detection. If a labeled antibody is used, the amount of bound antibody can be directly detected using the amount of label as an index. Therefore, a simpler detection method can be constructed.
  • an indirect detection method such as a method using a secondary antibody to which a labeling substance is bound or a method using a polymer to which a secondary antibody and a labeling substance are bound.
  • the secondary antibody here is an antibody having a specific binding property to the anti-ISLR antibody.
  • an anti-ISLR antibody is prepared as a rabbit antibody, an anti-rabbit IgG antibody can be used.
  • Labeled secondary antibodies that can be used against various types of antibodies such as rabbits, goats, and mice are commercially available (for example, Funakoshi Co., Ltd., Cosmo Bio Co., Ltd., etc.), depending on the configuration of the detection method of the present invention. Appropriate ones can be appropriately selected and used.
  • the anti-ISLR antibody is useful for detecting undifferentiated mesenchymal stem cells. Therefore, the present invention also provides a reagent for detecting undifferentiated mesenchymal stem cells containing an anti-ISLR antibody.
  • the anti-ISLR antibody is labeled. Labeling substances used for labeling include, for example, fluorescent dyes such as fluorescein, rhodamine, Texas red, oregon green, enzymes such as horseradish peroxidase, microperoxidase, alkaline phosphatase, ⁇ -D-galactosidase, luminol, acridine dye, and other chemicals.
  • fluorescent dyes such as fluorescein, rhodamine, Texas red, oregon green
  • enzymes such as horseradish peroxidase, microperoxidase, alkaline phosphatase, ⁇ -D-galactosidase, luminol, acridine dye, and other chemicals.
  • the present invention further provides a kit for detecting undifferentiated mesenchymal stem cells comprising the reagent of the present invention as a constituent element.
  • the detection method of the present invention can be carried out more easily.
  • Other reagents buffers, reaction reagents, enzymes, enzyme substrates, etc.
  • devices or instruments containers, reaction devices, fluorescent readers, etc.
  • an instruction manual is attached to the kit of the present invention.
  • a further aspect of the present invention provides a method for evaluating the undifferentiation of mesenchymal stem cells, characterized by determining the expression state of ISLR as an index.
  • the expression state of ISLR is examined for a sample (test mesenchymal stem cell), and whether or not the undifferentiated state is maintained is determined based on the result.
  • ISLR mRNA or ISLR protein is detected.
  • the expression of ISLR mRNA or ISLR protein when the expression of ISLR mRNA or ISLR protein is observed, it is determined that the undifferentiation is maintained.
  • the level of undifferentiation may be determined from the expression level of ISLR mRNA or ISLR protein.
  • the description of the said (item 3 column) is used about the detection of ISLR mRNA or ISLR protein.
  • the evaluation method of the present invention By using the evaluation method of the present invention, it becomes possible to identify or select mesenchymal stem cells that maintain undifferentiated properties (that is, undifferentiated mesenchymal stem cells). That is, the evaluation method of the present invention is useful as a means for identifying and selecting mesenchymal stem cells.
  • the undifferentiated nature of mesenchymal stem cells also represents the effectiveness of applying mesenchymal stem cells to various uses, in other words, “quality”. Therefore, the evaluation method of the present invention is also useful as a means for evaluating or ensuring the quality of mesenchymal stem cells.
  • the present invention As a further aspect, there are provided a method for detecting undifferentiated mesenchymal stem cells accumulated at the affected site of cancer or fibrotic disease, a prognosis estimation method for patients with cancer or fibrotic disease, and a reagent / kit used therefor.
  • the ISLR expression state of the sample is examined, and it is determined whether or not mesenchymal stem cells are accumulated in the affected site based on the result.
  • the detection result can be used for determination of disease progression (for example, the degree of differentiation of cancer tissue) and estimation of a patient's prognosis (details of prognosis estimation will be described later).
  • disease progression for example, the degree of differentiation of cancer tissue
  • prognosis estimation will be described later.
  • cancerous tissue is the affected site.
  • a diseased site in the case of fibrosis is a site where inflammation or fibrosis occurs.
  • a pathological tissue extract or a patient-derived serum, exosome, etc. which uses a pathological tissue or pathological tissue specimen separated from a living body (patient) by biopsy (biopsy) or at the time of surgery as a sample. It may be used as a sample.
  • Cancer is not particularly limited. Examples of cancer include pancreatic cancer, colon cancer, breast cancer, lung cancer, kidney cancer, prostate cancer, and melanoma. Fibrotic diseases are not limited in the same manner, and typical examples include myocardial infarction, pulmonary fibrosis (interstitial pneumonia), cirrhosis, and chronic nephropathy.
  • the detection means detection of ISLR mRNA or ISLR protein
  • the explanation of the above (Item 3) is used, but a specific example of a detection method applicable when a pathological tissue or a pathological tissue specimen is used as a sample.
  • One example is an in situ hybridization method.
  • the present invention also provides a prognostic estimation method for cancer or fibrotic disease patients as an application of the above detection method.
  • ISLR is used as a biomarker. That is, in the present invention, the prognosis of a patient is estimated using ISLR as a marker for prognosis of cancer or fibrotic disease prognosis.
  • information useful for prognosis estimation of cancer patients or fibrotic disease patients can be obtained. The information is used, for example, for determining a treatment policy (selecting an effective treatment method, etc.). By using the determination result, improvement of treatment results, improvement of prognosis, improvement of patient's quality of life (QOL) and the like are brought about.
  • QOL quality of life
  • the “biomarker for prognosis estimation” refers to a biomolecule that serves as an index for estimating the prognosis of a patient.
  • a step of detecting the ISLR expression level in a patient-derived sample detection step
  • a step of estimating the prognosis based on the detection result prognosis estimation step
  • the detection step is in accordance with the above detection method.
  • the prognosis estimation step the prognosis is estimated using the detected ISLR (ie, ISLR expression level) as an index. Basically, a criterion is adopted that the prognosis is good when the ISLR expression level is large.
  • a plurality of evaluation categories in which ISLR expression level and prognosis are associated are set in advance. Then, based on the ISLR expression level obtained in the detection step, the corresponding evaluation category is determined.
  • the evaluation category an example focusing on the presence or absence of ISLR expression (Example 1), an example focusing on the level of ISLR expression (Example 2), and an example focusing on changes in the expression level (Example 3) ) Is shown below. In the case of Example 3, detection is usually performed at least twice (at different times).
  • category Evaluation result linked
  • the number of evaluation categories, ISLR expression levels and evaluation results associated with each evaluation category can be arbitrarily set through preliminary experiments and the like, without being limited to the above example. Note that the determination / evaluation in the present invention can be automatically / mechanically performed regardless of the judgment of a person having specialized knowledge such as a doctor or a laboratory technician.
  • the present invention further provides a prognostic estimation reagent and a prognostic estimation kit.
  • the prognosis estimation reagent enables detection of ISLR, and one of the specific examples is an anti-ISLR antibody. Regarding the anti-ISLR antibody, the above description (column in item 3) is incorporated.
  • the prognostic estimation kit uses prognostic estimation as an essential component, and conforms to the kit used for the above-mentioned “detection of undifferentiated mesenchymal stem cells”.
  • ISLR expression in human bone marrow-derived mesenchymal stem cells and dermal fibroblasts (1) Method and results (Fig. 1) Western using anti-ISLR antibody developed by the laboratory, preparing cell extracts from human bone marrow-derived mesenchymal stem cells (hereinafter human bone marrow MSC) and skin fibroblasts (both obtained from Lonza Japan KK) The expression of ISLR was examined by blotting.
  • Anti-ISLR antibody was prepared by the following method. First, the following peptides for antigen 1 to 3 were synthesized.
  • Peptide for antigen 1 amino acids 229-251 of human ISLR (CSAPSVQLSYQPSQDGAELRPGF: SEQ ID NO: 7)
  • Peptide for antigen 2 amino acids 344-368 of human ISLR (LATPGEGGEDTLGRRFRFKKAVEGKG: SEQ ID NO: 8
  • Peptide for antigen 3 amino acids 341-359 of mouse ISLR (NVALATPGEGGEDAVGHKF: SEQ ID NO: 9)
  • the antigen peptide was combined with the carrier protein KLH, and then rabbits (antigen peptides 1, 3) or guinea pigs (antigen peptide 2) were immunized.
  • Serum was collected after immunization, and the specific antibody was purified using an affinity column to which a peptide for antigen was covalently bound.
  • an antibody obtained by immunization with peptide 1 for antigen is anti-ISLR antibody 1
  • an antibody obtained by immunization with peptide 2 for antigen is anti-ISLR antibody 2
  • an antibody obtained by immunization with peptide 3 for antigen is anti-ISLR antibody. Called 3 respectively.
  • Adipose tissue is known to contain cells with characteristics and functions equivalent to bone marrow-derived mesenchymal stem cells, and is called adipose tissue-derived stem cells (ADSC) or simply MSCs.
  • a cell extract was prepared from human ADSC (Lonza Japan KK), and the expression of ISLR was examined by Western blotting using anti-ISLR antibody 2. As a result, the expression of ISLR in human ADSC was confirmed. GAPDH is used as an endogenous control.
  • ISLR expression in mouse bone marrow-derived mesenchymal stem cells (1) Method and results (Fig. 3) Cell extracts were prepared from mouse bone marrow-derived mesenchymal stem cells (Cyagen), and the expression of ISLR was examined by Western blotting using anti-ISLR antibody 3. As a result, it was confirmed that ISLR was expressed in mouse bone marrow-derived mesenchymal stem cells. It was also confirmed that ISLR expression increased when the cells were cultured at high density. ⁇ -tubulin is used as an endogenous control.
  • FABP4 is used as an adipocyte marker
  • Collagen IIa is used as a chondroblast marker
  • Osteopontin is used as an osteoblast marker.
  • ISLR is an undifferentiated human bone marrow MSC marker molecule. It was suggested that there is.
  • ISLR is a marker molecule for undifferentiated mesenchymal stem cells. It was done.
  • FIG. 8 Expression of ISLR in various cultured cells (1) Method and results (Fig. 8) Cell extracts of human fibroblasts, vascular smooth muscle cells, vascular endothelial cells and various epithelial cells (purchased from Lonza Japan Co., Ltd. or ZenBio) were prepared, and Western blotting using antibodies against ISLR and various marker molecules ( Anti-ISLR antibody 2 was used for ISLR detection). As a result, it was revealed that ISLR is not expressed in cells other than fibroblasts.
  • ISLR is expressed in mesenchymal stem cells, fibroblasts, and adipose-derived stem cells, but is not expressed in other cells, and ISLR is a marker molecule highly specific for MSC. It was shown that.
  • ISLR expression in mesenchymal stem cells infiltrating the pancreatic cancer stroma (1) Method and results (Fig. 9) The expression of ISLR in moderately differentiated pancreatic cancer and poorly differentiated pancreatic cancer was examined by in situ hybridization. As indicated by the arrowheads, the expression of ISLR was high in mesenchymal stem cells that accumulated or infiltrated into the stroma of moderately differentiated pancreatic cancer, and it was detected that mesenchymal stem cells were accumulated or infiltrated. On the other hand, ISLR expression was not observed in poorly differentiated pancreatic cancer. Moreover, as shown in the right figure, the expression of ISLR correlated with a good patient prognosis. The specimen was collected as follows.
  • the region with the most tumor components was selected under microscopic examination, and the expression of ISLR was examined by an in situ hybridization method.
  • the examined tissues more than 20% of the cells with fibroblast-like morphology that infiltrate the cancer stroma in the medium magnification field of view (20x objective lens) have high ISLR expression and less ISLR positive.
  • Groups were grouped as low expression and the post-operative cumulative progression-free survival was plotted for each group. Since it was detection of messenger RNA by the in situ hybridization method, it was determined as positive when a signal was observed even in part of the cytoplasm.
  • ISLR is expressed in mesenchymal stem cells infiltrating cancer tissues, and the degree of mesenchymal stem cells detected by ISLR reflects the good prognosis of cancer-bearing patients.
  • ISLR is expressed in mesenchymal stem cells infiltrating colon cancer tissues in addition to pancreatic cancer, and is a useful marker for detecting mesenchymal stem cells infiltrating various cancer tissues. The possibility was suggested.
  • ISLR is expressed in mesenchymal stem cells that infiltrate breast cancer tissues in addition to pancreatic cancer and colon cancer, and is a useful marker for detecting mesenchymal stem cells infiltrating various cancer tissues. It was suggested that
  • ISLR is expressed in mesenchymal stem cells that accumulate at the site of myocardial infarction, suggesting that ISLR is a useful marker even in fibrotic diseases such as myocardial infarction.
  • ISLR knockout mice were prepared and the survival rate after myocardial infarction was compared with wild type mice. ISLR knockout mice were found to have a significantly worse prognosis after myocardial infarction than wild-type mice.
  • ISLR is also related to the prognosis of fibrotic diseases such as myocardial infarction.
  • the present invention provides a marker for undifferentiated mesenchymal stem cells.
  • the marker of the present invention shows high specificity for undifferentiated mesenchymal stem cells. According to the preparation method using the marker, undifferentiated mesenchymal stem cells that are particularly important and useful in the field of regenerative medicine can be prepared with high purity. The marker is also useful for detection of undifferentiated mesenchymal stem cells, evaluation of undifferentiation, and the like.

Abstract

The present invention addresses the problem of providing a marker molecule that is highly specific for mesenchymal stem cells in an undifferentiated state and enables identification of mesenchymal stem cells at a high sensitivity or preparation of highly pure mesenchymal stem cells. Provided are a marker for undifferentiated mesenchymal stem cells, said marker comprising immunoglobulin superfamily containing leucine-rich repeat, and a use of the same.

Description

未分化間葉系幹細胞マーカー及びその用途Undifferentiated mesenchymal stem cell marker and use thereof
 本発明は間葉系幹細胞マーカーに関する。詳しくは、未分化な状態の間葉系幹細胞に特異性の高い分子(バイオマーカー)及びその用途に関する。本出願は、2015年8月3日に出願された日本国特許出願第2015-153712号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a mesenchymal stem cell marker. Specifically, the present invention relates to a molecule (biomarker) having high specificity for mesenchymal stem cells in an undifferentiated state and use thereof. This application claims priority based on Japanese Patent Application No. 2015-153712 filed on Aug. 3, 2015, the entire contents of which are incorporated by reference.
 間葉系幹細胞(mesenchymal stem cell又はmesenchymal stromal cell。以下、「MSC」と略称することがある)は骨髄、脂肪組織、歯髄、臍帯、子宮内膜をはじめとして多くの臓器に存在する細胞であり、培養皿上で特定の条件下で培養すると骨、軟骨及び脂肪に分化することが知られている。また、間葉系幹細胞は他の細胞群の増殖や分化を促す作用(trophic effect)及び免疫調整能を有することも知られ、現在ではGVHD(移植片対宿主病)、脊椎損傷、腎移植後の腎不全、心筋梗塞、末梢閉塞性動脈疾患等の多様な疾患の治療への応用が期待されている。 Mesenchymal stem cells (mesenchymal stem cell or mesenchymal stromal cell; hereinafter referred to as “MSC”) are cells that are present in many organs including bone marrow, adipose tissue, dental pulp, umbilical cord, and endometrium It is known that when cultured on culture dishes under specific conditions, it differentiates into bone, cartilage and fat. In addition, mesenchymal stem cells are also known to have the effect of promoting the proliferation and differentiation of other cell groups (trophic effect) and immunomodulation, and are now GVHD (graft-versus-host disease), spinal cord injury, after kidney transplantation Application to the treatment of various diseases such as renal failure, myocardial infarction and peripheral occlusive arterial disease is expected.
 間葉系幹細胞は骨髄では類洞及び細小動脈等の血管周囲に、その他の臓器では毛細血管周囲に存在することが知られている(非特許文献1)。骨髄では造血幹細胞維持のためのニッチ細胞として、あるいは骨再生のための骨幹細胞として機能している(非特許文献2)。骨髄以外の臓器ではペリサイト(血管周皮細胞)あるいは血管周囲の線維芽細胞として存在しており、血管の成熟化に関わるとされている(非特許文献3)。また、癌や各種線維化疾患において間質の線維化を引き起こす原因がペリサイトの増殖であるとする学説も存在する(非特許文献4)。 It is known that mesenchymal stem cells exist around blood vessels such as sinusoids and small arteries in the bone marrow, and around capillaries in other organs (Non-patent Document 1). The bone marrow functions as a niche cell for maintaining hematopoietic stem cells or as a bone stem cell for bone regeneration (Non-patent Document 2). In organs other than the bone marrow, they exist as pericytes (vascular pericytes) or fibroblasts around the blood vessels, and are considered to be involved in vascular maturation (Non-patent Document 3). There is also a theory that the cause of interstitial fibrosis in cancer and various fibrotic diseases is perisite proliferation (Non-patent Document 4).
 国際的に以下の条件(1)~(3)を満たす細胞が間葉系幹細胞と定義されている。
 (1)培養皿上で接着する細胞であること
 (2)CD105陽性、CD73陽性、CD90陽性、CD45陰性、CD34陰性、CD14又はCD11bが陰性、CD79a又はCD19が陰性、HLA-DR陰性であること
 (3)試験管内(in vitro)において骨芽細胞、軟骨芽細胞及び脂肪細胞への分化能を有すること
Internationally, cells that satisfy the following conditions (1) to (3) are defined as mesenchymal stem cells.
(1) Cells that adhere on the culture dish (2) CD105 positive, CD73 positive, CD90 positive, CD45 negative, CD34 negative, CD14 or CD11b negative, CD79a or CD19 negative, HLA-DR negative (3) Having the ability to differentiate into osteoblasts, chondroblasts and adipocytes in vitro (in vitro)
 上記(2)に列挙された分子以外にも、Stro-1、PDGF受容体、Sca-1、CD271、CD146などが間葉系幹細胞のマーカーとして報告されており、これらのマーカーの組み合わせで間葉系幹細胞を単離する方法が開発されている(例えば特許文献1を参照)。しかしながら、上記のCD105、CD73、CD90を含め、いずれのマーカーも上皮細胞や癌細胞、あるいは神経細胞などに発現しており、間葉系幹細胞に特異的ではない。 In addition to the molecules listed in (2) above, Stro-1, PDGF receptor, Sca-1, CD271, CD146, etc. have been reported as markers for mesenchymal stem cells. A method for isolating a stem cell has been developed (see, for example, Patent Document 1). However, all markers including CD105, CD73, and CD90 are expressed in epithelial cells, cancer cells, nerve cells, etc., and are not specific for mesenchymal stem cells.
国際公開第2009/031678号パンフレットInternational Publication No. 2009/031678 Pamphlet 米国特許出願公開第2005/0260639 A1号明細書US Patent Application Publication No. 2005/0260639 A1
 間葉系幹細胞のマーカーとして数多くの分子が報告されているが、いずれも間葉系幹細胞以外の細胞にも発現しており特異性は低い。そこで本発明は、未分化な状態の間葉系幹細胞に特異性が高く、高感度での間葉系幹細胞の同定や高純度な間葉系幹細胞の調製などを可能にするマーカー分子及びその用途を提供することを課題とする。 Many molecules have been reported as markers for mesenchymal stem cells, but all are expressed in cells other than mesenchymal stem cells and have low specificity. Therefore, the present invention provides a marker molecule that is highly specific for mesenchymal stem cells in an undifferentiated state and enables high-sensitivity mesenchymal stem cell identification and preparation of high-purity mesenchymal stem cells, and uses thereof It is an issue to provide.
 上記課題の下で研究を進める中、本発明者らは細胞膜結合型/分泌型の分子であるロイシンリッチリピート含有免疫グロブリンスーパーファミリー(ISLR:immunoglobulin superfamily containing leucine-rich repeat)に着眼し、各種実験を行った。ISLRは1997年に眼の網膜に発現する分子として遺伝子クローニングされたが、その機能は未だ明らかになっていない(非特許文献5、6)。2009年に発表された遺伝子発現解析の論文では、マウス胎児において鰓弓、肢芽、体節、頭部や体幹の間葉系組織に発現していることが報告されている(非特許文献7)。ISLRの相同遺伝子に相当するISLR2(別名Linx)は神経系組織を中心に発現することも報告されている(非特許文献8)。また、肺癌、乳癌、膵癌などにおいてISLRの発現が正常に比して高いとする報告もある(例えば、特許文献2、非特許文献9、10を参照)。但し、いずれの報告においても、同様の挙動を示す多数の遺伝子の中の一つとしてISLRが掲載されているにすぎず、また、ISLRの機能に関する言及はない。一方、間葉系幹細胞における遺伝子発現を網羅的に調べた研究の報告では、発現の上昇を認める遺伝子のリストにISLRが掲載されている(非特許文献11、12)。しかしながら、間葉系幹細胞におけるISLRの発現の意義、その機能などは不明である。 While conducting research under the above-mentioned problems, the present inventors focused on the leucine-rich repeat-containing immunoglobulin superfamily (ISLR), a cell membrane-bound / secreted molecule, and conducted various experiments. Went. ISLR was cloned as a molecule expressed in the retina of the eye in 1997, but its function has not yet been clarified (Non-Patent Documents 5 and 6). In a paper on gene expression analysis published in 2009, it has been reported that it is expressed in the mesenchymal tissue of the arch, limb bud, body segment, head and trunk in mouse fetuses (non-patent literature) 7). It has also been reported that ISLR2 (also known as Linx), which is a homologous gene of ISLR, is expressed mainly in nervous system tissues (Non-patent Document 8). There is also a report that ISLR expression is higher than normal in lung cancer, breast cancer, pancreatic cancer and the like (see, for example, Patent Document 2, Non-Patent Documents 9 and 10). However, in either report, ISLR is only listed as one of many genes that exhibit similar behavior, and there is no mention of ISLR function. On the other hand, in a report of a study that comprehensively examined gene expression in mesenchymal stem cells, ISLR is listed in a list of genes that recognize increased expression (Non-Patent Documents 11 and 12). However, the significance of ISLR expression in mesenchymal stem cells and its function are unknown.
 後述の実施例に示す通り、本発明者らの検討の結果、ISLRが間葉系幹細胞に特異的なマーカー分子であることが明らかとなった。ISLRは未分化な状態の間葉系幹細胞に特異性が高く、これまでに報告された間葉系幹細胞のマーカーとは一線を画する。また、ヒトに限らずマウスにおいてもISLRが間葉系幹細胞のマーカーになることが判明し、その利用価値は高い。 As shown in the examples described later, as a result of the study by the present inventors, it was revealed that ISLR is a marker molecule specific for mesenchymal stem cells. ISLR is highly specific for undifferentiated mesenchymal stem cells, and is distinct from the previously reported markers of mesenchymal stem cells. Moreover, ISLR has been found to be a marker for mesenchymal stem cells in mice as well as humans, and its utility value is high.
 ところで、間葉系幹細胞は腫瘍又は癌の発生部位や転移部位に集積する特性を有するとの学説がある。しかしながら、集積することの意義、集積した細胞の役割(特に癌の進展への関与)については諸説あり、その解明が切望されている。本発明者らは、間葉系幹細胞を特異的に検出するISLRというツールを得たことにより、間葉系幹細胞の集積を視覚的に捉え、また間葉系幹細胞の存在量を検出することができるようになった。この成果を基に更に研究を進めた結果、ISLRの発現が癌の進展及び癌患者の予後に関連することが見出された。また、心筋梗塞のモデル動物を用いた実験によって心筋梗塞の梗塞部位に間葉系幹細胞が集積する現象が観察されるとともに、ISLRノックアウトマウスでは心筋梗塞後の予後が有意に悪いことが示され、心筋梗塞等の線維化疾患の進展や予後の評価ないし推定にもISLRが有用であることが判明した。
 以下の発明は、主として以上の成果に基づく。
 [1]ロイシンリッチリピート含有免疫グロブリンスーパーファミリー(ISLR)からなる、未分化間葉系幹細胞マーカー。
 [2]ISLRが、配列番号1~3のいずれかのアミノ酸配列を含む、[1]に記載の未分化間葉系幹細胞マーカー。
 [3]間葉系幹細胞を含む細胞集団から、ISLRを発現する細胞を選別し、回収するステップを含む、未分化間葉系幹細胞を調製する方法。
 [4]間葉系幹細胞を含む細胞集団が、骨髄、歯髄、脂肪組織、子宮内膜、臍帯、骨格筋又は末梢血に由来する、[3]に記載の方法。
 [5]ISLRの発現状態を指標として検出することを特徴とする、未分化間葉系幹細胞を検出する方法。
 [6]被検間葉系幹細胞におけるISLRの発現状態を調べるステップを含む、間葉系幹細胞の未分化性を評価する方法。
 [7]間葉系幹細胞がヒト細胞である、[3]~[6]のいずれか一項に記載の方法。
 [8]抗ISLR抗体を含む、未分化間葉系幹細胞検出用試薬。
 [9][8]に記載の試薬を含む、未分化間葉系幹細胞検出用キット。
 [10]ISLRの発現状態を指標として検出することを特徴とする、癌又は線維化疾患の罹患部位に集積する未分化間葉系幹細胞を検出する方法。
 [11]癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、[10]に記載の方法。
 [12]ISLRからなる、癌又は線維化疾患の予後推定用バイオマーカー。
 [13]癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、[12]に記載の予後推定用バイオマーカー。
 [14]ISLRの発現量を指標とした、癌又は線維化疾患患者の予後推定法。
 [15]癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、[14]に記載の予後推定法。
 [16]抗ISLR抗体を含む、癌又は線維化疾患患者の予後推定用試薬。
 [17]癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、[16]に記載の予後推定用試薬。
 [18][16]又は[17]に記載の試薬を含む、癌又は線維化疾患患者の予後推定用キット。
By the way, there is a theory that mesenchymal stem cells have the property of accumulating at the site of tumor or cancer occurrence or metastasis. However, there are various theories about the significance of accumulation and the role of accumulated cells (particularly involved in the progression of cancer), and their elucidation is eagerly desired. By obtaining a tool called ISLR that specifically detects mesenchymal stem cells, the present inventors can visually grasp the accumulation of mesenchymal stem cells and detect the abundance of mesenchymal stem cells. I can do it now. As a result of further research based on this result, it was found that the expression of ISLR is related to the progression of cancer and the prognosis of cancer patients. In addition, an experiment using a model animal of myocardial infarction shows a phenomenon in which mesenchymal stem cells accumulate at the infarct site of myocardial infarction, and ISLR knockout mice show that the prognosis after myocardial infarction is significantly worse, It has been found that ISLR is also useful for the progression and prognosis evaluation or estimation of fibrotic diseases such as myocardial infarction.
The following invention is mainly based on the above results.
[1] An undifferentiated mesenchymal stem cell marker consisting of a leucine-rich repeat-containing immunoglobulin superfamily (ISLR).
[2] The undifferentiated mesenchymal stem cell marker according to [1], wherein ISLR comprises any one of the amino acid sequences of SEQ ID NOS: 1 to 3.
[3] A method for preparing undifferentiated mesenchymal stem cells, comprising a step of selecting and collecting ISLR-expressing cells from a cell population containing mesenchymal stem cells.
[4] The method according to [3], wherein the cell population containing mesenchymal stem cells is derived from bone marrow, dental pulp, adipose tissue, endometrium, umbilical cord, skeletal muscle, or peripheral blood.
[5] A method for detecting undifferentiated mesenchymal stem cells, characterized by detecting the expression state of ISLR as an index.
[6] A method for evaluating the undifferentiation of a mesenchymal stem cell, comprising the step of examining the expression state of ISLR in a test mesenchymal stem cell.
[7] The method according to any one of [3] to [6], wherein the mesenchymal stem cell is a human cell.
[8] A reagent for detecting undifferentiated mesenchymal stem cells, comprising an anti-ISLR antibody.
[9] An undifferentiated mesenchymal stem cell detection kit comprising the reagent according to [8].
[10] A method for detecting undifferentiated mesenchymal stem cells that accumulate in a diseased site of cancer or fibrotic disease, wherein the expression state of ISLR is detected as an index.
[11] The method according to [10], wherein the cancer is pancreatic cancer, colon cancer, or breast cancer, and the fibrosis is myocardial infarction.
[12] A biomarker for prognosis estimation of cancer or fibrotic disease, comprising ISLR.
[13] The biomarker for prognosis estimation according to [12], wherein the cancer is pancreatic cancer, colon cancer, or breast cancer, and the fibrosis is myocardial infarction.
[14] A method for estimating the prognosis of a patient with cancer or fibrosis using the expression level of ISLR as an index.
[15] The prognosis estimation method according to [14], wherein the cancer is pancreatic cancer, colon cancer, or breast cancer, and the fibrosis is myocardial infarction.
[16] A reagent for estimating the prognosis of a patient with cancer or fibrosis, comprising an anti-ISLR antibody.
[17] The prognostic reagent according to [16], wherein the cancer is pancreatic cancer, colon cancer, or breast cancer, and the fibrotic disease is myocardial infarction.
[18] A kit for estimating the prognosis of a patient with cancer or fibrosis, comprising the reagent according to [16] or [17].
ヒト骨髄由来間葉系幹細胞及び皮膚線維芽細胞におけるISLRの発現。ウェスタンブロット法によってISLRの発現を調べた。注1:ISLR特異的shRNAを導入したヒト皮膚線維芽細胞ISLR expression in human bone marrow-derived mesenchymal stem cells and dermal fibroblasts. The expression of ISLR was examined by Western blot. Note 1: Human skin fibroblasts transfected with ISLR-specific shRNA ヒト脂肪由来幹細胞におけるISLRの発現。ウェスタンブロット法によってISLRの発現を調べた。注1:Glyceraldehyde-3- Phosphate Dehydrogenase(内因性コントロール)ISLR expression in human adipose-derived stem cells. The expression of ISLR was examined by Western blot. Note 1: Glyceraldehyde-3- Phosphate Dehydrogenase (endogenous control) マウス骨髄由来間葉系幹細胞におけるISLRの発現。ウェスタンブロット法によってISLRの発現を調べた。注1:内因性コントロールISLR expression in mouse bone marrow-derived mesenchymal stem cells. The expression of ISLR was examined by Western blot. Note 1: Endogenous control マウス間葉系幹細胞の分化に伴うISLR発現の減少。分化誘導0日目、1日目、7日目、及び14日目のISLR及び各種マーカー分子の発現をウェスタンブロット法で調べた。注1:Glyceraldehyde-3-Phosphate Dehydrogenase(内因性コントロール)、注2:fatty-acid binding protein 4(脂肪細胞マーカー)、注3:軟骨芽細胞マーカー、注4:骨芽細胞マーカーDecreased ISLR expression associated with the differentiation of mouse mesenchymal stem cells. The expression of ISLR and various marker molecules on differentiation induction day 0, day 1, day 7, and day 14 was examined by Western blotting. Note 1: Glyceraldehyde-3-Phosphate Dehydrogenase (endogenous control), Note 2: fatty-acid binding protein 4 (adipocyte marker), Note 3: Chondroblast marker, Note 4: Osteoblast marker ヒト間葉系幹細胞の分化に伴うISLR発現の減少。分化誘導0日目、1日目、7日目、及び14日目のISLR及び各種マーカー分子の発現をウェスタンブロット法で調べた。注1:Glyceraldehyde-3-Phosphate Dehydrogenase(コントロール)Decreased ISLR expression associated with human mesenchymal stem cell differentiation. The expression of ISLR and various marker molecules on differentiation induction day 0, day 1, day 7, and day 14 was examined by Western blotting. Note 1: Glyceraldehyde-3-Phosphate Dehydrogenase (control) 間葉系幹細胞の分化に伴うISLR遺伝子mRNAの発現の減少。分化誘導7日目のISLRのmRNAの発現量を定量的RT-PCRで調べた。Decreased expression of ISLR gene mRNA with mesenchymal stem cell differentiation. The expression level of ISLR mRNA on differentiation induction day 7 was examined by quantitative RT-PCR. ISLRの高発現が間葉系幹細胞の分化に及ぼす影響の検証。ISLRを強制発現させたC3H10T1/2を分化誘導し、0日目及び7日目にISLR、Sox9(軟骨分化のマーカー)、Osteopontin、Runx2(ともに骨分化のマーカー)の発現をウェスタンブロット法で調べた。注1:軟骨細胞マーカー、注2:骨芽細胞マーカー、注3:骨芽細胞マーカーVerification of the effect of high ISLR expression on differentiation of mesenchymal stem cells. Differentiation induction of C3H10T1 / 2 in which ISLR was forcibly expressed was induced, and the expression of ISLR, Sox9 (cartilage differentiation marker), Osteopontin, and Runx2 (both bone differentiation markers) were examined by Western blot on day 0 and day 7. It was. Note 1: Chondrocyte marker, Note 2: Osteoblast marker, Note 3: Osteoblast marker 各種培養細胞におけるISLRの発現。ヒト線維芽細胞、血管平滑筋細胞、血管内皮細胞及び各種上皮細胞(ロンザジャパン株式会社又はZenBio社より購入)におけるISLRの発現をウェスタンブロット法で調べた。ISLR expression in various cultured cells. The expression of ISLR in human fibroblasts, vascular smooth muscle cells, vascular endothelial cells and various epithelial cells (purchased from Lonza Japan Co., Ltd. or ZenBio) was examined by Western blotting. 膵癌の間質で増殖する間葉系幹細胞におけるISLRの発現。中分化型膵癌および低分化型膵癌の間質には間葉系幹細胞が集積する。この間葉系幹細胞の存在をISLRの発現を指標としてIn situハイブリダイゼーション法で調べた。ISLR expression in mesenchymal stem cells growing in the stroma of pancreatic cancer. Mesenchymal stem cells accumulate in the stroma of moderately differentiated pancreatic cancer and poorly differentiated pancreatic cancer. The presence of mesenchymal stem cells was examined by in situ hybridization using ISLR expression as an index. 大腸癌組織におけるISLRの発現。中分化型大腸癌および低分化型大腸癌の間質には間葉系幹細胞が集積する。この間葉系幹細胞の存在をISLRの発現を指標としてIn situハイブリダイゼーション法で調べた。ISLR expression in colon cancer tissue. Mesenchymal stem cells accumulate in the stroma of moderately differentiated colorectal cancer and poorly differentiated colorectal cancer. The presence of mesenchymal stem cells was examined by in situ hybridization using ISLR expression as an index. 乳癌組織におけるISLRの発現。浸潤性乳管癌の間質には間葉系幹細胞が集積する。この間葉系幹細胞の存在をISLRの発現を指標としてIn situハイブリダイゼーション法で調べた。ISLR expression in breast cancer tissue. Mesenchymal stem cells accumulate in the stroma of invasive ductal carcinoma. The presence of mesenchymal stem cells was examined by in situ hybridization using ISLR expression as an index. マウス心筋梗塞モデルの梗塞部位におけるISLRの発現。マウス心筋梗塞モデルの心筋梗塞部位には間葉系幹細胞が集積する。この間葉系幹細胞の存在をISLRの発現を指標としてIn situハイブリダイゼーション法で調べた。ISLR expression at the infarct site in a mouse myocardial infarction model. Mesenchymal stem cells accumulate at the myocardial infarction site of the mouse myocardial infarction model. The presence of mesenchymal stem cells was examined by in situ hybridization using ISLR expression as an index. 野生型マウスとISLRノックアウトマウスの心筋梗塞後の生存率の相違。ISLRノックアウトマウスを作製し、心筋梗塞後の生存率を野生型マウスと比較した。Difference in survival rate after myocardial infarction between wild-type and ISLR knockout mice. ISLR knockout mice were prepared and the survival rate after myocardial infarction was compared with wild type mice.
1.未分化間葉系幹細胞マーカー
 本発明の第1の局面は未分化間葉系幹細胞に特異的発現を認めたマーカー分子、即ち「未分化間葉系幹細胞マーカー」に関する。「未分化間葉系幹細胞マーカー」とは、未分化性を保持している間葉系幹細胞であることの指標となる分子をいう。本発明の未分化間葉系幹細胞マーカー(以下、略して「本発明のマーカー」と呼ぶこともある)を利用すれば、未分化間葉系幹細胞の検出、測定、標識化、調製(分取・濃縮)、評価等が可能になる。特に、間葉系幹細胞を含む細胞集団から未分化間葉系幹細胞を調製する上で本発明のマーカーはその利用価値が高い。「未分化間葉系幹細胞」は、骨芽細胞、軟骨芽細胞、脂肪細胞への分化能を有する。未分化間葉系幹細胞を特定の誘導条件で培養すれば、誘導条件に対応した細胞系譜に沿って分化する。
1. Undifferentiated Mesenchymal Stem Cell Marker The first aspect of the present invention relates to a marker molecule that has been specifically expressed in undifferentiated mesenchymal stem cells, that is, an “undifferentiated mesenchymal stem cell marker”. An “undifferentiated mesenchymal stem cell marker” refers to a molecule that serves as an indicator of mesenchymal stem cells that retain undifferentiated properties. Detection, measurement, labeling, and preparation (sorting) of undifferentiated mesenchymal stem cells using the undifferentiated mesenchymal stem cell marker of the present invention (hereinafter sometimes referred to as “the marker of the present invention” for short)・ Concentration), evaluation, etc. become possible. In particular, the marker of the present invention has high utility value in preparing undifferentiated mesenchymal stem cells from a cell population containing mesenchymal stem cells. “Undifferentiated mesenchymal stem cells” have the ability to differentiate into osteoblasts, chondroblasts, and adipocytes. If undifferentiated mesenchymal stem cells are cultured under specific induction conditions, they differentiate along the cell lineage corresponding to the induction conditions.
 本発明のマーカーはロイシンリッチリピート含有免疫グロブリンスーパーファミリー(ISLR:immunoglobulin superfamily containing leucine-rich repeat)からなる。ISLRは細胞膜結合型又は分泌型の分子であり、肺癌、乳癌、膵癌などにおいて高発現が認められている(例えば、特許文献2、非特許文献9、10を参照)。 The marker of the present invention consists of leucine-rich repeat-containing immunoglobulin superfamily (ISLR: immunoglobulin-superfamily-containing leucine-rich-repeat). ISLR is a cell membrane-bound or secreted molecule, and is highly expressed in lung cancer, breast cancer, pancreatic cancer and the like (see, for example, Patent Document 2, Non-Patent Documents 9 and 10).
 公共のデータベースに登録されているISLRのアミノ酸配列とそれをコードする遺伝子配列を添付の配列表に示す。配列番号と配列の対応関係は以下の通りである。
 配列番号1:ヒトISLRのアミノ酸配列(NCBI Reference Sequence: NP_005536.1, immunoglobulin superfamily containing leucine-rich repeat protein precursor [Homo sapiens].)
 配列番号2:マウスISLRのアミノ酸配列(NCBI Reference Sequence: NP_036173.1, immunoglobulin superfamily containing leucine-rich repeat protein precursor [Mus musculus].)
 配列番号3:ラットISLRのアミノ酸配列(NCBI Reference Sequence: NP_001119772.1 immunoglobulin superfamily containing leucine-rich repeat protein precursor [Rattus norvegicus])
 配列番号4:ヒトISLRのcDNA配列(GeneID:3671、NCBI Reference Sequence: NM_005545.3, Homo sapiens immunoglobulin superfamily containing leucine-rich repeat (ISLR), transcript variant 1, mRNA.)
 配列番号5:マウスISLRのcDNA配列(GeneID: 26968、NCBI Reference Sequence: NM_012043.4, Mus musculus immunoglobulin superfamily containing leucine-rich repeat (Islr), transcript variant 1, mRNA.)
 配列番号6:ラットISLRのcDNA配列(GeneID: 686539、NCBI Reference Sequence: XM_006243176.2, NM_001126300.1, Rattus norvegicus immunoglobulin superfamily containing leucine-rich repeat (Islr), mRNA)
The amino acid sequences of ISLR registered in public databases and the gene sequences encoding them are shown in the attached sequence listing. The correspondence between the sequence numbers and the sequences is as follows.
SEQ ID NO: 1: human ISLR amino acid sequence (NCBI Reference Sequence: NP_005536.1, immunoglobulin superfamily containing leucine-rich repeat protein precursor [Homo sapiens].)
SEQ ID NO: 2 amino acid sequence of mouse ISLR (NCBI Reference Sequence: NP_036173.1, immunoglobulin superfamily containing leucine-rich repeat protein precursor [Mus musculus].)
SEQ ID NO: 3: Amino acid sequence of rat ISLR (NCBI Reference Sequence: NP_001119772.1 immunoglobulin superfamily containing leucine-rich repeat protein precursor [Rattus norvegicus])
SEQ ID NO: 4: cDNA sequence of human ISLR (GeneID: 3671, NCBI Reference Sequence: NM_005545.3, homosapiens immunoglobulin superfamily containing leucine-rich repeat (ISLR), transcript variant 1, mRNA.)
SEQ ID NO: 5: cDNA sequence of mouse ISLR (GeneID: 26968, NCBI Reference Sequence: NM_012043.4, Mus musculus immunoglobulin superfamily containing leucine-rich repeat (Islr), transcript variant 1, mRNA.)
SEQ ID NO: 6: Rat ISLR cDNA sequence (GeneID: 686539, NCBI Reference Sequence: XM_006243176.2, NM_001126300.1, Rattus norvegicus immunoglobulin superfamily containing leucine-rich repeat (Islr), mRNA)
 ヒトISLRにはバリアント(variant 2)の配列(Homo sapiens immunoglobulin superfamily containing leucine-rich repeat (ISLR), transcript variant 2, mRNA、アミノ酸配列:NP_958934.1、cDNA配列:NM_201526.1)が知られている。当該バリアントのアミノ酸配列は上記のアミノ酸配列(配列番号1)と同一である。 Human ISLR has a known variant (variant 2) sequence (Homo sapiens immunoglobulin superfamily containing leucine-rich repeat (ISLR), transcript variant 2, mRNA, amino acid sequence: NP_958934.1, cDNA sequence: NM_201526.1) . The amino acid sequence of the variant is identical to the above amino acid sequence (SEQ ID NO: 1).
 マウスについてもバリアント(variant 2)の配列(Mus musculus immunoglobulin superfamily containing leucine-rich repeat (Islr), transcript variant 2, mRNA、アミノ酸配列:NP_001182360.1、cDNA配列:NM_001195431.1)が知られている。当該バリアントのアミノ酸配列は上記のアミノ酸配列(配列番号2)と同一である。 Also for mice, the variant (variant 2) sequence (Mus musculus immunoglobulin superfamily containing leucine-rich repeat (Islr), transcript variant 2, mRNA, amino acid sequence: NP_001182360.1, cDNA sequence: NM_001195431.1) is known. The amino acid sequence of the variant is identical to the above amino acid sequence (SEQ ID NO: 2).
 尚、ヒトへの適用の場合、ヒト生体中に存在する未分化間葉系幹細胞の指標としてではなく、ヒト生体から分離された状態の未分化間葉系幹細胞の指標として本発明のマーカーは利用される。 In the case of application to humans, the marker of the present invention is used not as an indicator of undifferentiated mesenchymal stem cells present in the human body but as an indicator of undifferentiated mesenchymal stem cells in a state separated from the human organism. Is done.
2.未分化間葉系幹細胞の調製
 本発明の第2の局面は本発明のマーカーの用途に関し、未分化間葉系幹細胞を調製する方法(以下、「本発明の調製法」と呼ぶ)を提供する。本発明の調製法を実施する前の細胞集団(即ち、本発明の調製法に供される細胞集団)と本発明の調製法によって得られる細胞集団を比較すると、前者よりも後者の方が未分化間葉系幹細胞の含有率が高いことから、「未分化間葉系幹細胞の調製」を、「未分化間葉系幹細胞の濃縮」、或いは「未分化間葉系幹細胞の純度(比率)の向上」と言い換えることも可能である。
2. Preparation of Undifferentiated Mesenchymal Stem Cells The second aspect of the present invention relates to the use of the marker of the present invention and provides a method for preparing undifferentiated mesenchymal stem cells (hereinafter referred to as “preparation method of the present invention”). . When the cell population before carrying out the preparation method of the present invention (that is, the cell population subjected to the preparation method of the present invention) and the cell population obtained by the preparation method of the present invention are compared, the latter is less than the former. Since the content of differentiated mesenchymal stem cells is high, “preparation of undifferentiated mesenchymal stem cells”, “concentration of undifferentiated mesenchymal stem cells”, or “purity (ratio) of undifferentiated mesenchymal stem cells” It can be paraphrased as “improvement”.
 未分化間葉系幹細胞はそれ自体が有用であり、例えば再生医療用の移植材料としての利用が期待される。また、それを分化誘導して得られる各種細胞(骨芽細胞、軟骨芽細胞等)も特定の組織の再建に利用され得る。更には、間葉系幹細胞の産生するケモカイン、サイトカイン、増殖因子なども、様々な疾患の治療への適用が期待される。一方、未分化間葉系幹細胞は造血幹細胞の維持に重要であることが知られており、造血幹細胞を生体外で維持する場合の支持細胞としても未分化間葉系幹細胞は利用され得る。従って、未分化間葉系幹細胞は骨髄移植の分野でも有用である。本発明の調製法によれば、特異性の高いマーカーを用いることから、このように極めて有用性の高い未分化間葉系幹細胞を高純度で調製することができる。また、効率的な調製も可能になる。 Undifferentiated mesenchymal stem cells are useful per se, and are expected to be used as transplantation materials for regenerative medicine, for example. Various cells (osteoblasts, chondroblasts, etc.) obtained by inducing differentiation thereof can also be used for reconstruction of a specific tissue. Furthermore, chemokines, cytokines, growth factors and the like produced by mesenchymal stem cells are expected to be applied to the treatment of various diseases. On the other hand, it is known that undifferentiated mesenchymal stem cells are important for maintenance of hematopoietic stem cells, and undifferentiated mesenchymal stem cells can also be used as support cells when maintaining hematopoietic stem cells in vitro. Therefore, undifferentiated mesenchymal stem cells are also useful in the field of bone marrow transplantation. According to the preparation method of the present invention, since highly specific markers are used, undifferentiated mesenchymal stem cells that are extremely useful in this way can be prepared with high purity. Also, efficient preparation is possible.
 本発明の調製法は上記本発明のマーカーを利用する。具体的には、本発明の調製法では以下のステップ、即ち、「間葉系幹細胞を含む細胞集団から、ISLRを発現する細胞を選別し、回収するステップ」、を行う。以下、当該ステップの詳細を説明する。 The preparation method of the present invention uses the marker of the present invention. Specifically, in the preparation method of the present invention, the following step is performed, that is, “the step of selecting and collecting ISLR-expressing cells from a cell population containing mesenchymal stem cells”. Hereinafter, details of the step will be described.
 間葉系幹細胞を含む細胞集団は予め用意しておく。当該細胞集団はヒト又は非ヒト動物(例えばマウス、ラット)の骨髄、歯髄、脂肪組織、子宮内膜、臍帯、臍帯血、骨格筋、末梢血等から常法で取得することができる。通常、これらの細胞源(細胞ソース、由来)から採取した試料(例えば、骨髄液、吸引脂肪、骨格筋組織片、血液)に対して物理的処理(裁断、ピペッティング、フィルタ処理等)や酵素処理(例えば、トリプシン、ディスパーゼ、コラゲナーゼ、エラスターゼ、パパイン等を使用する)を単独又は併用して行い、細胞を分離する。好ましくは、細胞塊がない状態にしておく。末梢血などから細胞集団を用意する場合には溶血処理などによって血球成分を除去しておくことが好ましい。 A cell population containing mesenchymal stem cells is prepared in advance. The cell population can be obtained by a conventional method from bone marrow, dental pulp, adipose tissue, endometrium, umbilical cord, umbilical cord blood, skeletal muscle, peripheral blood or the like of a human or non-human animal (eg, mouse, rat). Usually, physical processing (cutting, pipetting, filtering, etc.) and enzymes on samples (eg, bone marrow fluid, aspirated fat, skeletal muscle tissue, blood) collected from these cell sources (cell sources, origins) Treatment (for example, using trypsin, dispase, collagenase, elastase, papain, etc.) is performed alone or in combination to separate cells. Preferably, the cell mass is not present. When preparing a cell population from peripheral blood or the like, it is preferable to remove blood cell components by hemolysis or the like.
 上記細胞源から採取した試料又はそこから分離した細胞を培養容器に播種して培養し、接着性を示した細胞を「間葉系幹細胞を含む細胞集団」として用いることにしてもよい。換言すれば、本発明の一態様では、接着性細胞を選択するという、従来の間葉系幹細胞の調製法と同様の方法で得られる細胞集団を「間葉系幹細胞を含む細胞集団」として用いる。 The sample collected from the cell source or the cells separated therefrom may be seeded and cultured in a culture vessel, and the cells showing adhesion may be used as “cell population including mesenchymal stem cells”. In other words, in one embodiment of the present invention, a cell population obtained by a method similar to the conventional method for preparing mesenchymal stem cells, in which adherent cells are selected, is used as the “cell population containing mesenchymal stem cells”. .
 本発明の調製法では、間葉系幹細胞を含む細胞集団から、ISLRを発現する細胞を選別し、回収する。即ち、ISLRの発現を指標として、目的の細胞である未分化間葉系幹細胞を得る。ISLRを指標とした選別及び回収は、例えば、抗ISLR抗体を利用したフローサイトメトリー及びセルソーティングで行うことができる。フローサイトメトリー及びセルソーティングによれば特異的且つ効率的にISLR陽性細胞を分取することが可能である。フローサイトメトリー及びセルソーティングを実施するための装置(フローサイトメーター及びセルソーター)は例えばベックマン・コールター株式会社、日本ベクトン・ディッキンソン株式会社などから販売されており、それらを利用することができる。基本的な操作法、分取条件などは装置に添付の取扱説明書に従えばよい。 In the preparation method of the present invention, ISLR-expressing cells are selected and collected from a cell population containing mesenchymal stem cells. That is, an undifferentiated mesenchymal stem cell, which is a target cell, is obtained using ISLR expression as an index. Selection and collection using ISLR as an indicator can be performed, for example, by flow cytometry and cell sorting using an anti-ISLR antibody. According to flow cytometry and cell sorting, it is possible to sort ISLR positive cells specifically and efficiently. Devices for performing flow cytometry and cell sorting (flow cytometer and cell sorter) are commercially available from, for example, Beckman Coulter Co., Ltd., Nippon Becton Dickinson Co., Ltd., and the like. Basic operating methods, sorting conditions, etc. may be in accordance with the instruction manual attached to the device.
 フローサイトメトリー以外にも、抗ISLR抗体を用いたアフィニティークロマトグラフィーあるいは磁気ビーズを用いた磁気細胞分離等によって、ISLR陽性細胞を選別、回収することが可能である。 In addition to flow cytometry, ISLR positive cells can be selected and collected by affinity chromatography using anti-ISLR antibodies or magnetic cell separation using magnetic beads.
 フローサイトメトリー、セルソーティング、或いは磁気細胞分離等に用いる抗ISLR抗体は、ISLR陽性細胞の選別及び回収に利用可能な限り、ポリクローナル抗体、オリゴクローナル抗体(数種~数十種の抗体の混合物)、及びモノクローナル抗体のいずれでもよい。ポリクローナル抗体又はオリゴクローナル抗体としては、動物免疫して得た抗血清由来のIgG画分のほか、抗原によるアフィニティー精製抗体を使用できる。抗ISLR抗体は免疫学的手法、ファージディスプレイ法、リボソームディスプレイ法などを利用して調製することができる。免疫学的手法によるポリクローナル抗体の調製は次の手順で行うことができる。抗原(ISLR又はその一部)を調製し、これを用いてウサギ等の動物に免疫を施す。生体試料を精製することにより抗原を得ることができる。また、組換え型抗原を用いることもできる。組換え型ISLRは、例えば、ISLRをコードする遺伝子(遺伝子の一部であってもよい)を、ベクターを用いて適当な宿主に導入し、得られた組換え細胞内で発現させることにより調製することができる。 Anti-ISLR antibodies used for flow cytometry, cell sorting, magnetic cell separation, etc. are polyclonal antibodies and oligoclonal antibodies (mixtures of several to several tens of antibodies) as long as they can be used for selection and recovery of ISLR positive cells. And any of monoclonal antibodies. As a polyclonal antibody or an oligoclonal antibody, an anti-serum-derived IgG fraction obtained by animal immunization, or an affinity-purified antibody using an antigen can be used. Anti-ISLR antibodies can be prepared using immunological techniques, phage display methods, ribosome display methods, and the like. Preparation of a polyclonal antibody by an immunological technique can be performed by the following procedure. An antigen (ISLR or a part thereof) is prepared and used to immunize animals such as rabbits. An antigen can be obtained by purifying a biological sample. A recombinant antigen can also be used. Recombinant ISLR is prepared by, for example, introducing a gene encoding ISLR (which may be a part of the gene) into a suitable host using a vector and expressing it in the resulting recombinant cell. can do.
 免疫惹起作用を増強するために、キャリアタンパク質を結合させた抗原を用いてもよい。キャリアタンパク質としてはKLH(Keyhole Limpet Hemocyanin)、BSA(Bovine Serum Albumin)、OVA(Ovalbumin)などが使用される。キャリアタンパク質の結合にはカルボジイミド法、グルタルアルデヒド法、ジアゾ縮合法、MBS(マレイミドベンゾイルオキシコハク酸イミド)法などを使用できる。一方、ISLR(又はその一部)を、GST、βガラクトシダーゼ、マルトース結合タンパク、又はヒスチジン(His)タグ等との融合タンパク質として発現させた抗原を用いることもできる。このような融合タンパク質は、汎用的な方法により簡便に精製することができる。 In order to enhance the immunity-inducing action, an antigen to which a carrier protein is bound may be used. As the carrier protein, KLH (KeyholeHLimpet) Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin) and the like are used. The carbodiimide method, the glutaraldehyde method, the diazo condensation method, the MBS (maleimidobenzoyloxysuccinimide) method, etc. can be used for the coupling | bonding of carrier protein. On the other hand, an antigen in which ISLR (or a part thereof) is expressed as a fusion protein with GST, β-galactosidase, maltose-binding protein, histidine (His) tag or the like can also be used. Such a fusion protein can be easily purified by a general method.
 必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で採血し、遠心処理などによって血清を得る。得られた抗血清をアフィニティー精製し、ポリクローナル抗体とする。 Immunization is repeated as necessary, and blood is collected when the antibody titer has sufficiently increased, and serum is obtained by centrifugation or the like. The obtained antiserum is affinity purified to obtain a polyclonal antibody.
 一方、モノクローナル抗体については次の手順で調製することができる。まず、上記と同様の手順で免疫操作を実施する。必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で免疫動物から抗体産生細胞を摘出する。次に、得られた抗体産生細胞と骨髄腫細胞とを融合してハイブリドーマを得る。続いて、このハイブリドーマをモノクローナル化した後、抗原に対して高い特異性を有する抗体を産生するクローンを選択する。選択されたクローンの培養液を精製することによって目的の抗体が得られる。一方、ハイブリドーマを所望数以上に増殖させた後、これを動物(例えばマウス)の腹腔内に移植し、腹水内で増殖させて腹水を精製することにより目的の抗体を取得することもできる。上記培養液の精製又は腹水の精製には、プロテインG、プロテインA等を用いたアフィニティークロマトグラフィーが好適に用いられる。また、抗原を固相化したアフィニティークロマトグラフィーを用いることもできる。更には、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、硫安分画、及び遠心分離等の方法を用いることもできる。これらの方法は単独ないし任意に組み合わされて用いられる。 On the other hand, monoclonal antibodies can be prepared by the following procedure. First, an immunization operation is performed in the same procedure as described above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hybridoma. Subsequently, after this hybridoma is monoclonalized, a clone producing an antibody having high specificity for the antigen is selected. The target antibody can be obtained by purifying the culture medium of the selected clone. On the other hand, the desired antibody can be obtained by growing the hybridoma to a desired number or more, then transplanting it into the abdominal cavity of an animal (for example, a mouse), growing it in ascites, and purifying the ascites. For purification of the culture medium or ascites, affinity chromatography using protein G, protein A or the like is preferably used. Alternatively, affinity chromatography in which an antigen is immobilized may be used. Furthermore, methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination.
 本発明の調製法は未分化間葉系幹細胞に特異性の高いマーカーを利用することから、単独でも未分化間葉系幹細胞を特異的且つ効率的に調製することを可能にする。しかしながら、未分化間葉系幹細胞の選別に利用可能な他のマーカー分子(例えば、間葉系幹細胞のマーカーとして知られているCD105、CD73、CD90、CD45、CD34、CD14、CD11b、CD79a、CD19、HLA-DR等)の併用を排除或いは制限するものではない。即ち、純度ないし均一性の更なる向上、特定の細胞集団(例えば特定のマーカー分子の発現によって特徴付けられるもの)の濃縮等の目的の下、本発明の方法を構成するステップ(ISLRを利用したステップ)に加え、他のマーカー分子による選別及び回収のステップを行うことにしてもよい。当該ステップは、ISLRを利用した選別及び回収ステップの前又は後に実施される。 Since the preparation method of the present invention uses a marker highly specific to undifferentiated mesenchymal stem cells, it becomes possible to specifically and efficiently prepare undifferentiated mesenchymal stem cells alone. However, other marker molecules that can be used to select undifferentiated mesenchymal stem cells (for example, CD105, CD73, CD90, CD45, CD34, CD14, CD11b, CD79a, CD19, known as markers for mesenchymal stem cells, HLA-DR etc.) is not excluded or restricted. That is, the steps of constructing the method of the present invention (using ISLR) for the purpose of further improving purity or homogeneity, enriching a specific cell population (eg, characterized by expression of a specific marker molecule), etc. In addition to (Step), a step of selection and collection with other marker molecules may be performed. This step is performed before or after the sorting and collection step using ISLR.
3.未分化間葉系幹細胞の検出
 本発明の第3の局面は未分化間葉系幹細胞の検出に関し、未分化間葉系幹細胞を検出する方法(以下、「本発明の検出法」と呼ぶ)、当該方法に用いられる試薬及びキットが提供される。本発明の検出法は、ISLRの発現状態を指標として未分化間葉系幹細胞を検出する点に最大の特徴を有する。本発明の検出法によれば、試料中の未分化間葉系幹細胞を特異的且つ高感度に検出できる。従って、未分化間葉系幹細胞の同定、可視化、抽出等を可能にする実験手段(リサーチツール)として本発明の検出法は有用である。
3. Detection of Undifferentiated Mesenchymal Stem Cells The third aspect of the present invention relates to detection of undifferentiated mesenchymal stem cells, a method for detecting undifferentiated mesenchymal stem cells (hereinafter referred to as “the detection method of the present invention”), Reagents and kits used in the method are provided. The detection method of the present invention has the greatest feature in that undifferentiated mesenchymal stem cells are detected using the expression state of ISLR as an index. According to the detection method of the present invention, undifferentiated mesenchymal stem cells in a sample can be detected specifically and with high sensitivity. Therefore, the detection method of the present invention is useful as an experimental means (research tool) that enables identification, visualization, extraction and the like of undifferentiated mesenchymal stem cells.
 未分化間葉系幹細胞を含む試料に対して本発明の検出法が適用される。未分化間葉系幹細胞を含む可能性がある限り、試料は特に限定されない。例えば、生体から採取ないし分離した組織片や細胞集団、或いはそれらから抽出した細胞集団などを試料として用いることができる。 The detection method of the present invention is applied to a sample containing undifferentiated mesenchymal stem cells. The sample is not particularly limited as long as it may contain undifferentiated mesenchymal stem cells. For example, a tissue piece or a cell population collected or separated from a living body, or a cell population extracted from them can be used as a sample.
 本発明の検出法は典型的にはin vitroで実施されるが、非ヒト動物の試料を用いる場合や、非ヒト動物に移植したヒト試料中のISLRの発現を検出する場合には、in vivoで実施することもできる。 The detection method of the present invention is typically carried out in vitro, but in the case of using a sample from a non-human animal or detecting ISLR expression in a human sample transplanted to a non-human animal, Can also be implemented.
 「ISLRの発現状態」を指標とした検出ではISLR mRNA又はISLRタンパク質が検出対象となる。即ち、本発明の検出法ではISLR mRNA又はISLRタンパク質の発現を検出する。本発明において「発現状態」とは発現の程度(レベル)を意味し、発現の有無と発現量を包括した用語として使用される。従って、本発明の検出法ではISLR mRNA又はISLRタンパク質の発現に関して定性的又は定量的な検出が行われることになる。 In the detection using “ISLR expression state” as an index, ISLR mRNA or ISLR protein is a detection target. That is, in the detection method of the present invention, the expression of ISLR mRNA or ISLR protein is detected. In the present invention, the “expression state” means the degree of expression (level), and is used as a term encompassing the presence / absence of expression and the expression level. Therefore, in the detection method of the present invention, qualitative or quantitative detection is performed on the expression of ISLRIS mRNA or ISLR protein.
 ISLR mRNAの発現の検出は、ISLR mRNAに特異的なプライマー又はプローブを利用した各種方法、例えばRT-PCR、定量PCR、in situハイブリダイゼーション、ノーザンブロッティング等によって実施することができる。他方、ISLRタンパク質の発現の検出には、ISLRタンパク質に対して特異的な結合性を示す物質が用いられる。当該物質として、好ましくは抗ISLR抗体を採用する。抗ISLR抗体によれば特異性の高い検出が可能になる。標識化抗体を使用すれば、標識量を指標に結合抗体量を直接検出することが可能である。従って、より簡便な検出法を構築できる。その反面、標識物質を結合させた抗ISLR抗体を用意する必要があることに加えて、検出感度が一般に低くなるという問題点がある。そこで、標識物質を結合させた二次抗体を利用する方法、二次抗体と標識物質を結合させたポリマーを利用する方法など、間接的検出方法を利用することが好ましい。ここでの二次抗体とは、抗ISLR抗体に特異的結合性を有する抗体である。例えばウサギ抗体として抗ISLR抗体を調製した場合には抗ウサギIgG抗体を使用できる。ウサギやヤギ、マウスなど様々な種の抗体に対して使用可能な標識二次抗体が市販されており(例えばフナコシ株式会社やコスモ・バイオ株式会社など)、本発明の検出法の構成に応じて適切なものを適宜選択して使用することができる。 Detection of ISLR mRNA expression can be performed by various methods using primers or probes specific to ISLR mRNA, such as RT-PCR, quantitative PCR, in situ hybridization, Northern blotting, and the like. On the other hand, for the detection of ISLR protein expression, a substance exhibiting specific binding property to ISLR protein is used. As the substance, an anti-ISLR antibody is preferably employed. Anti-ISLR antibody enables highly specific detection. If a labeled antibody is used, the amount of bound antibody can be directly detected using the amount of label as an index. Therefore, a simpler detection method can be constructed. On the other hand, in addition to the need to prepare an anti-ISLR antibody to which a labeling substance is bound, there is a problem that the detection sensitivity is generally lowered. Therefore, it is preferable to use an indirect detection method such as a method using a secondary antibody to which a labeling substance is bound or a method using a polymer to which a secondary antibody and a labeling substance are bound. The secondary antibody here is an antibody having a specific binding property to the anti-ISLR antibody. For example, when an anti-ISLR antibody is prepared as a rabbit antibody, an anti-rabbit IgG antibody can be used. Labeled secondary antibodies that can be used against various types of antibodies such as rabbits, goats, and mice are commercially available (for example, Funakoshi Co., Ltd., Cosmo Bio Co., Ltd., etc.), depending on the configuration of the detection method of the present invention. Appropriate ones can be appropriately selected and used.
 上記の説明から明らかなように、抗ISLR抗体は未分化間葉系幹細胞の検出に有用である。そこで本発明は、抗ISLR抗体を含む未分化間葉系幹細胞検出用試薬も提供する。一態様では抗ISLR抗体は標識化されている。標識化に用いる標識物質としては例えば、フルオレセイン、ローダミン、テキサスレッド、オレゴングリーン等の蛍光色素、ホースラディッシュペルオキシダーゼ、マイクロペルオキシダーゼ、アルカリ性ホスファターゼ、β-D-ガラクトシダーゼ等の酵素、ルミノール、アクリジン色素等の化学又は生物発光化合物、32P、131I、125I等の放射性同位体、及びビオチンを挙げることができる。 As is clear from the above explanation, the anti-ISLR antibody is useful for detecting undifferentiated mesenchymal stem cells. Therefore, the present invention also provides a reagent for detecting undifferentiated mesenchymal stem cells containing an anti-ISLR antibody. In one aspect, the anti-ISLR antibody is labeled. Labeling substances used for labeling include, for example, fluorescent dyes such as fluorescein, rhodamine, Texas red, oregon green, enzymes such as horseradish peroxidase, microperoxidase, alkaline phosphatase, β-D-galactosidase, luminol, acridine dye, and other chemicals. Alternatively, bioluminescent compounds, radioisotopes such as 32 P, 131 I and 125 I, and biotin can be mentioned.
 本発明は更に、本発明の試薬を構成要素として含む、未分化間葉系幹細胞検出用キットも提供する。当該キットを用いることにより、本発明の検出法をより簡便に実施することができる。本発明の検出法を実施する際に使用するその他の試薬(緩衝液、反応用試薬、酵素、酵素の基質など)及び/又は装置ないし器具(容器、反応装置、蛍光リーダーなど)をキットに含めてもよい。尚、通常、本発明のキットには取り扱い説明書が添付される。 The present invention further provides a kit for detecting undifferentiated mesenchymal stem cells comprising the reagent of the present invention as a constituent element. By using the kit, the detection method of the present invention can be carried out more easily. Other reagents (buffers, reaction reagents, enzymes, enzyme substrates, etc.) and / or devices or instruments (containers, reaction devices, fluorescent readers, etc.) used in carrying out the detection method of the present invention are included in the kit. May be. Usually, an instruction manual is attached to the kit of the present invention.
4.間葉系幹細胞の未分化性評価
 上記の通り、ISLRは未分化間葉系幹細胞のマーカーとして有用であり、ISLRの発現状態は未分化性の指標となる。そこで本発明の更なる局面は、ISLRの発現状態を指標として判定することを特徴とする、間葉系幹細胞の未分化性を評価する方法を提供する。本発明の評価法では、試料(被検間葉系幹細胞)についてISLRの発現状態を調べ、その結果に基づき未分化性を維持しているか否か、或いは未分化性の程度を判定する。ISLRの発現状態を調べるため、ISLR mRNA又はISLRタンパク質が検出される。本発明の評価法では、例えば、ISLR mRNA又はISLRタンパク質の発現を認める場合に未分化性を維持していると判定する。ISLR mRNA又はISLRタンパク質の発現量から未分化性のレベルを判定することにしてもよい。尚、ISLR mRNA又はISLRタンパク質の検出については上記(項目3.の欄)の説明が援用される。
4). Evaluation of Undifferentiation of Mesenchymal Stem Cells As described above, ISLR is useful as a marker for undifferentiated mesenchymal stem cells, and the expression state of ISLR is an indicator of undifferentiation. Therefore, a further aspect of the present invention provides a method for evaluating the undifferentiation of mesenchymal stem cells, characterized by determining the expression state of ISLR as an index. In the evaluation method of the present invention, the expression state of ISLR is examined for a sample (test mesenchymal stem cell), and whether or not the undifferentiated state is maintained is determined based on the result. In order to examine the expression state of ISLR, ISLR mRNA or ISLR protein is detected. In the evaluation method of the present invention, for example, when the expression of ISLR mRNA or ISLR protein is observed, it is determined that the undifferentiation is maintained. The level of undifferentiation may be determined from the expression level of ISLR mRNA or ISLR protein. In addition, the description of the said (item 3 column) is used about the detection of ISLR mRNA or ISLR protein.
 本発明の評価法を利用すると、未分化性を維持した間葉系幹細胞(即ち未分化間葉系幹細胞)を同定したり、選別したりすることが可能になる。即ち、間葉系幹細胞の同定、選別の手段として本発明の評価法は有用である。一方、間葉系幹細胞の未分化性は間葉系幹細胞を各種用途に適用する際の有効性、言い換えれば「品質」を表すことにもなる。従って、間葉系幹細胞の品質を評価又は担保するための手段としても本発明の評価法は有用である。 By using the evaluation method of the present invention, it becomes possible to identify or select mesenchymal stem cells that maintain undifferentiated properties (that is, undifferentiated mesenchymal stem cells). That is, the evaluation method of the present invention is useful as a means for identifying and selecting mesenchymal stem cells. On the other hand, the undifferentiated nature of mesenchymal stem cells also represents the effectiveness of applying mesenchymal stem cells to various uses, in other words, “quality”. Therefore, the evaluation method of the present invention is also useful as a means for evaluating or ensuring the quality of mesenchymal stem cells.
5.癌又は線維化疾患の罹患部位に集積(浸潤)する間葉系幹細胞の検出と患者の予後推定(評価)
 ISLRの発現が癌の進展及び癌患者の予後に関連するとの知見、及び心筋梗塞等の線維化疾患の進展や予後の評価ないし推定にもISLRが有用であるとの知見に基づき、本発明は更なる局面として、癌又は線維化疾患の罹患部位に集積する未分化間葉系幹細胞を検出する方法、並びに癌又は線維化疾患患者の予後推定法及びそれに利用される試薬・キットを提供する。
5). Detection of mesenchymal stem cells that accumulate (infiltrate) in the affected area of cancer or fibrotic disease and estimate the prognosis of the patient (evaluation)
Based on the knowledge that the expression of ISLR is related to the progression of cancer and the prognosis of cancer patients, and the knowledge that ISLR is useful for the evaluation or estimation of the progression and prognosis of fibrotic diseases such as myocardial infarction, the present invention As a further aspect, there are provided a method for detecting undifferentiated mesenchymal stem cells accumulated at the affected site of cancer or fibrotic disease, a prognosis estimation method for patients with cancer or fibrotic disease, and a reagent / kit used therefor.
 この局面の検出法では、試料についてISLRの発現状態を調べ、その結果に基づき罹患部位に間葉系幹細胞が集積しているか否かを判定する。検出結果は疾患の進行状態(例えば癌組織の分化度)の判定や患者の予後推定(予後推定についての詳細は後述する)に利用することができる。癌を対象にした場合、癌組織が罹患部位となる。他方、線維化疾患を対象にした場合の罹患部位は、炎症ないし線維化を生じている部位である。 In the detection method of this aspect, the ISLR expression state of the sample is examined, and it is determined whether or not mesenchymal stem cells are accumulated in the affected site based on the result. The detection result can be used for determination of disease progression (for example, the degree of differentiation of cancer tissue) and estimation of a patient's prognosis (details of prognosis estimation will be described later). When cancer is targeted, cancerous tissue is the affected site. On the other hand, a diseased site in the case of fibrosis is a site where inflammation or fibrosis occurs.
 典型的には、生体(患者)からバイオプシー(生検)によって或いは手術の際に分離された病理組織又は病理組織標本を試料として用いる、病理組織の抽出物や、患者由来の血清、エクソソーム等を試料として用いることにしてもよい。 Typically, a pathological tissue extract or a patient-derived serum, exosome, etc., which uses a pathological tissue or pathological tissue specimen separated from a living body (patient) by biopsy (biopsy) or at the time of surgery as a sample. It may be used as a sample.
 癌は特に限定されない。癌を例示すれば、膵癌、大腸癌、乳癌、肺癌、腎臓癌、前立腺癌、メラノーマである。線維化疾患も同様に限定されるものではなく、代表的なものを挙げると、心筋梗塞、肺線維症(間質性肺炎)、肝硬変、慢性腎症である。 Cancer is not particularly limited. Examples of cancer include pancreatic cancer, colon cancer, breast cancer, lung cancer, kidney cancer, prostate cancer, and melanoma. Fibrotic diseases are not limited in the same manner, and typical examples include myocardial infarction, pulmonary fibrosis (interstitial pneumonia), cirrhosis, and chronic nephropathy.
 検出手段(ISLR mRNAやISLRタンパク質の検出)については上記(項目3.の欄)の説明が援用されるが、病理組織又は病理組織標本を試料とした場合に適用可能な検出法の具体例の一つとして、In situハイブリダイゼーション法を挙げることができる。 For the detection means (detection of ISLR mRNA or ISLR protein), the explanation of the above (Item 3) is used, but a specific example of a detection method applicable when a pathological tissue or a pathological tissue specimen is used as a sample. One example is an in situ hybridization method.
 本発明は上記検出法の応用として、癌又は線維化疾患患者の予後推定法も提供する。本発明の予後推定法ではISLRをバイオマーカーとして用いる。即ち、本発明ではISLRを癌又は線維化疾患予後推定用マーカーとして患者の予後を推定する。本発明の予後推定法によれば、癌患者又は線維化疾患患者の予後推定に有益な情報が得られる。当該情報は例えば治療方針の決定(効果的な治療法の選択など)に利用される。判定結果を利用することによって治療成績の向上、予後改善、患者の生活の質(QOL)の向上などがもたらされる。 The present invention also provides a prognostic estimation method for cancer or fibrotic disease patients as an application of the above detection method. In the prognostic estimation method of the present invention, ISLR is used as a biomarker. That is, in the present invention, the prognosis of a patient is estimated using ISLR as a marker for prognosis of cancer or fibrotic disease prognosis. According to the prognosis estimation method of the present invention, information useful for prognosis estimation of cancer patients or fibrotic disease patients can be obtained. The information is used, for example, for determining a treatment policy (selecting an effective treatment method, etc.). By using the determination result, improvement of treatment results, improvement of prognosis, improvement of patient's quality of life (QOL) and the like are brought about.
 本明細書において「予後推定用バイオマーカー」とは、患者の予後推定の指標となる生体分子のことをいう。本発明の予後推定法では、患者由来の試料中のISLR発現量を検出するステップ(検出ステップ)及び、検出結果に基づき予後を推定するステップ(予後推定ステップ)を実施する。検出ステップは上記検出法に準ずる。予後推定ステップでは、検出されたISLR(即ちISLR発現量)を指標として予後を推定する。基本的には、ISLR発現量が多いと予後が良好であるとの判断基準が採用される。以下、ISLR発現量に基づく評価の具体例を示す。まず、ISLR発現量と予後とが関連付けられた複数の評価区分を予め設定しておく。そして、検出ステップで得られたISLR発現量に基づき、該当する評価区分を決定する。評価区分の設定に関する具体例として、ISLRの発現の有無に注目した例(例1)と、ISLRの発現量の程度に注目した例(例2)、発現量の変化に注目した例(例3)を以下に示す。例3の場合には、通常、少なくとも2回(異なる時点)の検出を行うことになる。尚、区分名:当該区分に関連付けられるISLR発現量:当該区分に関連付けられる評価結果の順で記載する。
<例1>
 区分1:ISLR陽性である:予後が良い
 区分2:ISLR陰性である:予後が悪い
<例2>
 区分1:ISLRの発現を認めず:予後が悪い
 区分2:ISLRの弱い発現を認める:予後が比較的悪い
 区分3:ISLRの中程度の発現を認める:予後が比較的良い
 区分4:ISLRの強い発現を認める:予後が良い
<例3>
 区分1:ISLR発現量の増大を認める:予後が良い
 区分2:ISLR発現量の減少を認める:予後が悪い
In this specification, the “biomarker for prognosis estimation” refers to a biomolecule that serves as an index for estimating the prognosis of a patient. In the prognosis estimation method of the present invention, a step of detecting the ISLR expression level in a patient-derived sample (detection step) and a step of estimating the prognosis based on the detection result (prognosis estimation step) are performed. The detection step is in accordance with the above detection method. In the prognosis estimation step, the prognosis is estimated using the detected ISLR (ie, ISLR expression level) as an index. Basically, a criterion is adopted that the prognosis is good when the ISLR expression level is large. Hereinafter, specific examples of evaluation based on the ISLR expression level are shown. First, a plurality of evaluation categories in which ISLR expression level and prognosis are associated are set in advance. Then, based on the ISLR expression level obtained in the detection step, the corresponding evaluation category is determined. As specific examples for setting the evaluation category, an example focusing on the presence or absence of ISLR expression (Example 1), an example focusing on the level of ISLR expression (Example 2), and an example focusing on changes in the expression level (Example 3) ) Is shown below. In the case of Example 3, detection is usually performed at least twice (at different times). In addition, it describes in order of classification name: ISLR expression level linked | related with the said classification | category: Evaluation result linked | related with the said classification | category.
<Example 1>
Category 1: ISLR positive: good prognosis Category 2: ISLR negative: poor prognosis <Example 2>
Category 1: No ISLR expression: poor prognosis Category 2: Low ISLR expression: relatively poor prognosis Category 3: Moderate ISLR expression: relatively good prognosis Category 4: ISLR Strong expression: good prognosis <Example 3>
Category 1: Increase in ISLR expression level: good prognosis Category 2: Decrease in ISLR expression level: poor prognosis
 評価区分の数、及び各評価区分に関連付けられるISLR発現量及び評価結果はいずれも上記の例に何らとらわれることなく、予備実験等を通して任意に設定することができる。尚、本発明における判定・評価は、医師や検査技師など専門知識を有する者の判断によらずとも自動的/機械的に行うことができる。 The number of evaluation categories, ISLR expression levels and evaluation results associated with each evaluation category can be arbitrarily set through preliminary experiments and the like, without being limited to the above example. Note that the determination / evaluation in the present invention can be automatically / mechanically performed regardless of the judgment of a person having specialized knowledge such as a doctor or a laboratory technician.
 本発明は更に、予後推定用試薬及び予後推定用キットも提供する。予後推定用試薬はISLRの検出を可能にするものであり、具体例の一つは抗ISLR抗体である。抗ISLR抗体については上記(項目3.の欄)の説明が援用される。予後推定用キットは予後推定用を必須の構成要素とするものであり、上記の「未分化間葉系幹細胞の検出」に使用されるキットに準ずる。 The present invention further provides a prognostic estimation reagent and a prognostic estimation kit. The prognosis estimation reagent enables detection of ISLR, and one of the specific examples is an anti-ISLR antibody. Regarding the anti-ISLR antibody, the above description (column in item 3) is incorporated. The prognostic estimation kit uses prognostic estimation as an essential component, and conforms to the kit used for the above-mentioned “detection of undifferentiated mesenchymal stem cells”.
1.ヒト骨髄由来間葉系幹細胞及び皮膚線維芽細胞におけるISLRの発現
(1)方法と結果(図1)
 ヒト骨髄由来間葉系幹細胞(以下ヒト骨髄MSC)及び皮膚線維芽細胞(いずれもロンザジャパン株式会社より入手)から細胞抽出液を調製し、当該研究室によって開発された抗ISLR抗体を用いたウェスタンブロット法によってISLRの発現を調べた。抗ISLR抗体は以下の方法で調製した。まず、以下の抗原用ペプチド1~3を合成した。
 抗原用ペプチド1:ヒトISLRの229-251番目アミノ酸(CSAPSVQLSYQPSQDGAELRPGF:配列番号7)
 抗原用ペプチド2:ヒトISLRの344-368番目アミノ酸(LATPGEGGEDTLGRRFHGKAVEGKG:配列番号8
 抗原用ペプチド3:マウスISLRの341-359番目アミノ酸(NVALATPGEGGEDAVGHKF:配列番号9)
 次に、抗原用ペプチドをキャリアタンパク質KLHと結合後、ウサギ(抗原用ペプチド1、3)又はモルモット(抗原用ペプチド2)に免疫した。免疫後に血清を回収し、抗原用ペプチドを共有結合させたアフィニティーカラムを用いて特異的抗体を精製した。このようにして3種類の抗ISLR抗体を得た。説明の便宜上、抗原用ペプチド1の免疫により得た抗体を抗ISLR抗体1、抗原用ペプチド2の免疫により得た抗体を抗ISLR抗体2、抗原用ペプチド3の免疫により得た抗体を抗ISLR抗体3とそれぞれ呼ぶ。
1. ISLR expression in human bone marrow-derived mesenchymal stem cells and dermal fibroblasts (1) Method and results (Fig. 1)
Western using anti-ISLR antibody developed by the laboratory, preparing cell extracts from human bone marrow-derived mesenchymal stem cells (hereinafter human bone marrow MSC) and skin fibroblasts (both obtained from Lonza Japan KK) The expression of ISLR was examined by blotting. Anti-ISLR antibody was prepared by the following method. First, the following peptides for antigen 1 to 3 were synthesized.
Peptide for antigen 1: amino acids 229-251 of human ISLR (CSAPSVQLSYQPSQDGAELRPGF: SEQ ID NO: 7)
Peptide for antigen 2: amino acids 344-368 of human ISLR (LATPGEGGEDTLGRRFRFKKAVEGKG: SEQ ID NO: 8
Peptide for antigen 3: amino acids 341-359 of mouse ISLR (NVALATPGEGGEDAVGHKF: SEQ ID NO: 9)
Next, the antigen peptide was combined with the carrier protein KLH, and then rabbits (antigen peptides 1, 3) or guinea pigs (antigen peptide 2) were immunized. Serum was collected after immunization, and the specific antibody was purified using an affinity column to which a peptide for antigen was covalently bound. In this way, three types of anti-ISLR antibodies were obtained. For convenience of explanation, an antibody obtained by immunization with peptide 1 for antigen is anti-ISLR antibody 1, an antibody obtained by immunization with peptide 2 for antigen is anti-ISLR antibody 2, and an antibody obtained by immunization with peptide 3 for antigen is anti-ISLR antibody. Called 3 respectively.
 抗ISLR抗体2を用いたウェスタンブロットの結果、約50kDaのサイズに確認されるバンドを認め、ヒト骨髄MSC及び線維芽細胞におけるISLRの発現が証明された。ヒト骨髄MSC及び線維芽細胞の培養上清(メディウム)中にもISLRが検出され、ISLRは分泌性因子であることも示された。RNA干渉法によってISLRの発現を抑制(ノックダウン)した線維芽細胞ではISLRのバンドを認めず、本実験で用いた抗体の特異性が示された。尚、PDGF受容体α及びβ-アクチンは内因性のコントロールとして用いている。 As a result of Western blotting using anti-ISLR antibody 2, a band confirmed at a size of about 50 kDa was observed, and the expression of ISLR in human bone marrow MSCs and fibroblasts was proved. ISLR was also detected in the culture supernatant (medium) of human bone marrow MSCs and fibroblasts, indicating that ISLR is a secretory factor. In the fibroblasts in which ISLR expression was suppressed (knocked down) by RNA interference, no ISLR band was observed, indicating the specificity of the antibody used in this experiment. PDGF receptors α and β-actin are used as endogenous controls.
(2)考察
 ヒト骨髄MSC及び皮膚線維芽細胞におけるISLRの発現が確認された。各種臓器より単離される線維芽細胞はMSCと同様に骨、軟骨、脂肪への分化能を有することも報告されており、線維芽細胞と呼ばれる細胞の少なくとも一部はMSCとしての特徴を備えていることが報告されている。今回のウェスタンブロット法の結果はヒト骨髄MSCのみならず皮膚線維芽細胞に含まれるMSCにもISLRが発現している可能性を示唆するものである。
(2) Discussion The expression of ISLR in human bone marrow MSCs and dermal fibroblasts was confirmed. It has also been reported that fibroblasts isolated from various organs have the ability to differentiate into bone, cartilage, and fat in the same way as MSC, and at least some of the cells called fibroblasts have the characteristics of MSC. It has been reported that The results of this Western blot suggest that ISLR may be expressed not only in human bone marrow MSCs but also in MSCs contained in dermal fibroblasts.
2.ヒト脂肪由来幹細胞におけるISLRの発現
(1)方法と結果(図2)
 脂肪組織には骨髄由来間葉系幹細胞と同等の特徴と機能を有する細胞が存在していることが知られ脂肪由来幹細胞(adipose tissue-derived stem cell、以下ADSC)あるいは単にMSCと呼ばれている。ヒトADSC(ロンザジャパン株式会社)から細胞抽出液を調製し、抗ISLR抗体2を用いたウェスタンブロット法によってISLRの発現を調べた。その結果、ヒトADSCにおけるISLRの発現が確認された。尚、GAPDHは内因性のコントロールとして用いている。
2. ISLR expression in human adipose-derived stem cells (1) Methods and results (Fig. 2)
Adipose tissue is known to contain cells with characteristics and functions equivalent to bone marrow-derived mesenchymal stem cells, and is called adipose tissue-derived stem cells (ADSC) or simply MSCs. . A cell extract was prepared from human ADSC (Lonza Japan KK), and the expression of ISLR was examined by Western blotting using anti-ISLR antibody 2. As a result, the expression of ISLR in human ADSC was confirmed. GAPDH is used as an endogenous control.
3.マウス骨髄由来間葉系幹細胞におけるISLRの発現
(1)方法と結果(図3)
 マウス骨髄由来間葉系幹細胞(Cyagen社)から細胞抽出液を調製し、抗ISLR抗体3を用いたウェスタンブロット法によってISLRの発現を調べた。その結果、マウス骨髄由来間葉系幹細胞にISLRが発現していることが確認された。また、同細胞を高密度で培養した際にはISLRの発現が上昇することも確認された。尚、β-チュブリンは内因性のコントロールとして用いている。
3. ISLR expression in mouse bone marrow-derived mesenchymal stem cells (1) Method and results (Fig. 3)
Cell extracts were prepared from mouse bone marrow-derived mesenchymal stem cells (Cyagen), and the expression of ISLR was examined by Western blotting using anti-ISLR antibody 3. As a result, it was confirmed that ISLR was expressed in mouse bone marrow-derived mesenchymal stem cells. It was also confirmed that ISLR expression increased when the cells were cultured at high density. Β-tubulin is used as an endogenous control.
4.間葉系幹細胞の分化に伴うISLR発現の減少(マウス間葉系幹細胞株C3H10T1/2を用いた検証)
(1)方法と結果(図4)
 マウス間葉系幹細胞の細胞株であるC3H10T1/2を用いて、脂肪、軟骨、及び骨への分化におけるISLRの発現の変化について検証した。各分化誘導メディウム(ロンザジャパン株式会社)を添加後、0日、1日、7日、及び14日のISLR及び各種マーカー分子の発現をウェスタンブロット法(ISLRの検出には抗ISLR抗体3を使用)で検証した。脂肪、軟骨、骨分化のいずれにおいても分化誘導後1日でISLRの発現の顕著な低下が観察された。尚、FABP4は脂肪細胞のマーカー、Collagen IIaは軟骨芽細胞のマーカー、Osteopontinは骨芽細胞のマーカーとして使用している。
4). Decrease in ISLR expression associated with differentiation of mesenchymal stem cells (validation using mouse mesenchymal stem cell line C3H10T1 / 2)
(1) Method and results (Fig. 4)
Using C3H10T1 / 2, a cell line of mouse mesenchymal stem cells, we examined changes in ISLR expression during differentiation into fat, cartilage, and bone. After the addition of each differentiation-inducing medium (Lonza Japan Co., Ltd.), the expression of ISLR and various marker molecules on the 0th, 1st, 7th, and 14th days was detected by Western blotting (anti-ISLR antibody 3 was used for ISLR detection) ). In all of fat, cartilage, and bone differentiation, a significant decrease in ISLR expression was observed one day after differentiation induction. FABP4 is used as an adipocyte marker, Collagen IIa is used as a chondroblast marker, and Osteopontin is used as an osteoblast marker.
(2)考察
 脂肪、軟骨、骨分化のいずれにおいても分化誘導直後にISLRの発現の顕著な低下が観察され、ISLRは未分化な状態の間葉系幹細胞のマーカー分子であることが示唆された。
(2) Discussion In any of fat, cartilage, and bone differentiation, a significant decrease in ISLR expression was observed immediately after induction of differentiation, suggesting that ISLR is a marker molecule for undifferentiated mesenchymal stem cells. .
5.間葉系幹細胞の分化に伴うISLR発現の減少(ヒト骨髄MSCを用いた検証)
(1)方法と結果(図5)
 ヒト骨髄MSCを用いて、脂肪、軟骨、及び骨への分化におけるISLRの発現の変化について検証した。各分化誘導メディウム(ロンザジャパン株式会社)を添加後、0日、1日、7日、及び14日のISLRの発現をウェスタンブロット法(抗ISLR抗体2を使用)で検証した。脂肪、軟骨、骨分化のいずれにおいても分化誘導後1日目でISLRの発現の顕著な低下が観察された。
5). Decrease in ISLR expression associated with differentiation of mesenchymal stem cells (validation using human bone marrow MSC)
(1) Method and results (Fig. 5)
Human bone marrow MSCs were used to examine changes in ISLR expression during differentiation into fat, cartilage, and bone. After the addition of each differentiation-inducing medium (Lonza Japan Co., Ltd.), the expression of ISLR on the 0th, 1st, 7th, and 14th was verified by Western blotting (using anti-ISLR antibody 2). In any of fat, cartilage, and bone differentiation, a marked decrease in ISLR expression was observed on the first day after differentiation induction.
(2)考察
 図4の実験と同様、脂肪、軟骨、骨分化のいずれにおいても分化誘導直後にISLRの発現の顕著な低下が観察され、ISLRは未分化な状態のヒト骨髄MSCのマーカー分子であることが示唆された。
(2) Consideration As in the experiment of FIG. 4, in all of fat, cartilage, and bone differentiation, a marked decrease in ISLR expression was observed immediately after induction of differentiation. ISLR is an undifferentiated human bone marrow MSC marker molecule. It was suggested that there is.
6.間葉系幹細胞の分化に伴うISLR遺伝子メッセンジャーRNA(mRNA)の発現の減少(間葉系幹細胞株C3H10T1/2を用いた検証)
(1)方法と結果(図6)
 間葉系幹細胞株C3H10T1/2を用いて、脂肪、軟骨、及び骨への分化におけるISLRのmRNAの発現量の変化について検証した。各分化誘導メディウム(ロンザジャパン株式会社)を添加後、7日後のISLRのmRNAの発現量を定量的RT-PCR法で検証した。脂肪、軟骨、骨分化のいずれにおいても分化誘導後7日でISLRのmRNAの発現量の顕著な低下が観察された。グラフの縦軸はISLRと内因性コントロールとして用いたGAPDHのmRNAの比として示している。
6). Decreased expression of ISLR gene messenger RNA (mRNA) accompanying mesenchymal stem cell differentiation (validation using mesenchymal stem cell line C3H10T1 / 2)
(1) Method and results (Fig. 6)
Using the mesenchymal stem cell line C3H10T1 / 2, changes in the expression level of ISLR mRNA during differentiation into fat, cartilage, and bone were examined. After adding each differentiation-inducing medium (Lonza Japan Co., Ltd.), the expression level of ISLR mRNA 7 days later was verified by a quantitative RT-PCR method. In any of fat, cartilage, and bone differentiation, a significant decrease in the expression level of ISLR mRNA was observed 7 days after differentiation induction. The vertical axis of the graph shows ISLR and the ratio of GAPDH mRNA used as an endogenous control.
(2)考察
 脂肪、軟骨、骨分化のいずれにおいても分化誘導後にISLRのmRNAの発現量の顕著な低下が観察され、ISLRは未分化な状態の間葉系幹細胞のマーカー分子であることが示唆された。
(2) Consideration In all of fat, cartilage, and bone differentiation, a significant decrease in the expression level of ISLR mRNA was observed after differentiation induction, suggesting that ISLR is a marker molecule for undifferentiated mesenchymal stem cells. It was done.
7.ISLRの高発現が間葉系幹細胞の分化に及ぼす影響の検証
(1)方法と結果(図7)
 間葉系幹細胞株C3H10T1/2を用いて、ISLRを外因性に強制発現させた場合に、脂肪、軟骨、及び骨への分化に与える影響について検証した。レトロウイルス発現系を用いてISLRをC3H10T1/2に強制発現させ、その後に各分化誘導メディウム(ロンザジャパン株式会社)を添加後、0及び7日のISLR、Sox9(軟骨分化のマーカー)、Osteopontin(骨分化のマーカー)及びRunx2(骨分化のマーカー)の発現をウェスタンブロット法(ISLRの検出には抗ISLR抗体3を使用)で検証した。その結果、ISLRの強制発現がSox9、Osteopointin及びRunx2の発現を抑制することが明らかとなった。
7). Verification of the effect of high ISLR expression on differentiation of mesenchymal stem cells (1) Method and results (Fig. 7)
The effect of exogenous forced expression of ISLR on mesenchymal stem cell line C3H10T1 / 2 on fat, cartilage, and bone differentiation was examined. ISLR was forcibly expressed in C3H10T1 / 2 using a retrovirus expression system, and then each differentiation-inducing medium (Lonza Japan Co., Ltd.) was added. The expression of bone differentiation marker) and Runx2 (bone differentiation marker) was verified by Western blotting (anti-ISLR antibody 3 was used to detect ISLR). As a result, it became clear that forced expression of ISLR suppressed the expression of Sox9, Osteopointin and Runx2.
(2)考察
 軟骨・骨分化のいずれにおいてもISLRの強制発現によってSox9、Osteopontin及びRunx2の各種分化マーカーの発現の抑制が観察され、ISLRは間葉系幹細胞が未分化な状態を維持するために必要な分子である可能性が示された。
(2) Consideration In both cartilage and bone differentiation, suppression of the expression of various differentiation markers of Sox9, Osteopontin and Runx2 was observed by forced expression of ISLR, and ISLR maintains the mesenchymal stem cells in an undifferentiated state. The possibility of being a necessary molecule was shown.
8.各種培養細胞におけるISLRの発現
(1)方法及び結果(図8)
 ヒト線維芽細胞、血管平滑筋細胞、血管内皮細胞及び各種上皮細胞(ロンザジャパン株式会社又はZenBio社より購入)の細胞抽出液を調製し、ISLR及び各種マーカー分子に対する抗体を用いてウェスタンブロット法(ISLRの検出には抗ISLR抗体2を使用)で検証した。その結果、ISLRは線維芽細胞以外の細胞には発現していないことが明らかとなった。
8). Expression of ISLR in various cultured cells (1) Method and results (Fig. 8)
Cell extracts of human fibroblasts, vascular smooth muscle cells, vascular endothelial cells and various epithelial cells (purchased from Lonza Japan Co., Ltd. or ZenBio) were prepared, and Western blotting using antibodies against ISLR and various marker molecules ( Anti-ISLR antibody 2 was used for ISLR detection). As a result, it was revealed that ISLR is not expressed in cells other than fibroblasts.
(2)考察
 ISLRは間葉系幹細胞、線維芽細胞、脂肪由来幹細胞には発現するが、それ以外の細胞では発現していないことが確認され、ISLRがMSCに特異性の高いマーカー分子であることが示された。
(2) Discussion ISLR is expressed in mesenchymal stem cells, fibroblasts, and adipose-derived stem cells, but is not expressed in other cells, and ISLR is a marker molecule highly specific for MSC. It was shown that.
9.膵癌間質に浸潤する間葉系幹細胞におけるISLRの発現
(1)方法及び結果(図9)
 中分化型膵癌および低分化型膵癌におけるISLRの発現をIn situハイブリダイゼーション法で調べた。矢頭で示すように、中分化型膵癌の間質に集積あるいは浸潤する間葉系幹細胞においてISLRの発現が高く、間葉系幹細胞が集積ないし浸潤していることが検出された。一方で低分化型膵癌ではISLRの発現が見られなかった。また、右図に示すように、ISLRの発現は患者の良好な予後と相関した。尚、検体採取は次のようにして行った。
9. ISLR expression in mesenchymal stem cells infiltrating the pancreatic cancer stroma (1) Method and results (Fig. 9)
The expression of ISLR in moderately differentiated pancreatic cancer and poorly differentiated pancreatic cancer was examined by in situ hybridization. As indicated by the arrowheads, the expression of ISLR was high in mesenchymal stem cells that accumulated or infiltrated into the stroma of moderately differentiated pancreatic cancer, and it was detected that mesenchymal stem cells were accumulated or infiltrated. On the other hand, ISLR expression was not observed in poorly differentiated pancreatic cancer. Moreover, as shown in the right figure, the expression of ISLR correlated with a good patient prognosis. The specimen was collected as follows.
 膵癌の患者の手術により得た病理組織標本から鏡検下で腫瘍成分が最も多い領域を選別し、ISLRの発現をIn situハイブリダイゼーション法で調べた。調べた組織の内、中倍率視野(20倍対物レンズ)で癌間質に浸潤する線維芽細胞様形態を有する細胞の20%以上にISLRが陽性のものをISLR高発現、それより少ないものを低発現としてグループ分けし、それぞれのグループについて手術後累積無増悪生存率をプロットした。In situハイブリダイゼーション法によるメッセンジャーRNAの検出であるため、細胞質の一部でもシグナルが観察される場合に陽性と判定した。 From the histopathological specimen obtained by surgery of a patient with pancreatic cancer, the region with the most tumor components was selected under microscopic examination, and the expression of ISLR was examined by an in situ hybridization method. Among the examined tissues, more than 20% of the cells with fibroblast-like morphology that infiltrate the cancer stroma in the medium magnification field of view (20x objective lens) have high ISLR expression and less ISLR positive. Groups were grouped as low expression and the post-operative cumulative progression-free survival was plotted for each group. Since it was detection of messenger RNA by the in situ hybridization method, it was determined as positive when a signal was observed even in part of the cytoplasm.
(2)考察
 ISLRは癌組織に浸潤する間葉系幹細胞に発現しており、ISLRにより検出される間葉系幹細胞の程度は担癌患者の良好な予後を反映することが示された。
(2) Discussion It was shown that ISLR is expressed in mesenchymal stem cells infiltrating cancer tissues, and the degree of mesenchymal stem cells detected by ISLR reflects the good prognosis of cancer-bearing patients.
10.大腸癌間質に浸潤する間葉系幹細胞におけるISLRの発現
(1)方法及び結果(図10)
 中分化型大腸癌および低分化型大腸癌におけるISLRの発現をIn situハイブリダイゼーション法で調べた。矢頭で示すように、中分化型大腸癌の間質に集積あるいは浸潤する間葉系幹細胞においてISLRの発現が高く、間葉系幹細胞が集積ないし浸潤していることが検出された。一方で低分化型大腸癌ではISLRの発現が見られなかった。
10. Expression of ISLR in mesenchymal stem cells infiltrating the colorectal cancer stroma (1) Method and results (FIG. 10)
The expression of ISLR in moderately differentiated colorectal cancer and poorly differentiated colorectal cancer was examined by in situ hybridization. As indicated by the arrowheads, the expression of ISLR was high in mesenchymal stem cells that accumulated or infiltrated into the stroma of moderately differentiated colorectal cancer, and it was detected that mesenchymal stem cells were accumulated or infiltrated. On the other hand, ISLR expression was not observed in poorly differentiated colorectal cancer.
(2)考察
 ISLRは膵癌に加えて大腸癌組織に浸潤する間葉系幹細胞にも発現しており、ISLRが多様な癌組織に浸潤する間葉系幹細胞を検出するために有用なマーカーである可能性が示唆された。
(2) Discussion ISLR is expressed in mesenchymal stem cells infiltrating colon cancer tissues in addition to pancreatic cancer, and is a useful marker for detecting mesenchymal stem cells infiltrating various cancer tissues. The possibility was suggested.
10.乳癌間質に浸潤する間葉系幹細胞におけるISLRの発現
(1)方法及び結果(図11)
 浸潤性乳管癌におけるISLRの発現をIn situハイブリダイゼーション法で調べた。矢頭で示すように、浸潤性乳管癌の間質に集積ないし浸潤する間葉系幹細胞においてISLRの発現が認められた。
10. Expression of ISLR in mesenchymal stem cells infiltrating breast cancer stroma (1) Method and results (FIG. 11)
The expression of ISLR in invasive ductal carcinoma was examined by in situ hybridization. As indicated by the arrowhead, ISLR expression was observed in mesenchymal stem cells that accumulated or infiltrated into the stroma of invasive ductal carcinoma.
(2)考察
 ISLRは膵癌や大腸癌に加えて乳癌組織に浸潤する間葉系幹細胞にも発現しており、ISLRが多様な癌組織に浸潤する間葉系幹細胞を検出するために有用なマーカーである可能性が示唆された。
(2) Discussion ISLR is expressed in mesenchymal stem cells that infiltrate breast cancer tissues in addition to pancreatic cancer and colon cancer, and is a useful marker for detecting mesenchymal stem cells infiltrating various cancer tissues. It was suggested that
11.マウス心筋梗塞モデルの梗塞部位におけるISLRの発現
(1)方法及び結果(図12)
 マウス心筋梗塞モデルの心筋梗塞部位におけるISLRの発現をIn situハイブリダイゼーション法(RNAscope法を用いた)で調べた。8週齢雄の心筋梗塞モデルを用いた。矢頭で示すように、発症後7日目の心外膜周辺においてISLRが認めらる。即ち、心筋梗塞部位においても間葉系幹細胞が浸潤していることが検出できた。
11. Expression of ISLR at the infarct site of mouse myocardial infarction model (1) Method and results (Fig. 12)
The expression of ISLR at the myocardial infarction site of the mouse myocardial infarction model was examined by in situ hybridization method (using RNAscope method). An 8-week-old male myocardial infarction model was used. As indicated by the arrowhead, ISLR is found around the epicardium 7 days after onset. That is, it was detected that the mesenchymal stem cells were infiltrated even at the myocardial infarction site.
(2)考察
 ISLRは心筋梗塞部位に集積する間葉系幹細胞に発現しており、ISLRが心筋梗塞などの線維化疾患においても有用なマーカーになることが示唆された。
(2) Discussion ISLR is expressed in mesenchymal stem cells that accumulate at the site of myocardial infarction, suggesting that ISLR is a useful marker even in fibrotic diseases such as myocardial infarction.
12.野生型マウスとISLRノックアウトマウスの心筋梗塞後の生存率の相違
(1)方法及び結果(図13)
 ISLRノックアウトマウスを作製し、心筋梗塞後の生存率を野生型マウスと比較した。ISLRノックアウトマウスは野生型マウスに比較して、心筋梗塞後の予後が有意に悪いことが明らかとなった。
12 Difference in survival rate after myocardial infarction between wild-type mice and ISLR knockout mice (1) Methods and results (FIG. 13)
ISLR knockout mice were prepared and the survival rate after myocardial infarction was compared with wild type mice. ISLR knockout mice were found to have a significantly worse prognosis after myocardial infarction than wild-type mice.
(2)考察
 心筋梗塞などの線維化疾患の予後にもISLRが関連することが示唆された。
(2) Discussion It was suggested that ISLR is also related to the prognosis of fibrotic diseases such as myocardial infarction.
 本発明は未分化間葉系幹細胞のマーカーを提供する。本発明のマーカーは未分化間葉系幹細胞に高い特異性を示す。当該マーカーを用いた調製法によれば、特に再生医療の分野で重要且つ有用な未分化間葉系幹細胞を高純度で調製することが可能になる。また、当該マーカーは未分化間葉系幹細胞の検出や未分化性の評価等にも有用である。 The present invention provides a marker for undifferentiated mesenchymal stem cells. The marker of the present invention shows high specificity for undifferentiated mesenchymal stem cells. According to the preparation method using the marker, undifferentiated mesenchymal stem cells that are particularly important and useful in the field of regenerative medicine can be prepared with high purity. The marker is also useful for detection of undifferentiated mesenchymal stem cells, evaluation of undifferentiation, and the like.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

Claims (18)

  1.  ロイシンリッチリピート含有免疫グロブリンスーパーファミリー(ISLR)からなる、未分化間葉系幹細胞マーカー。 An undifferentiated mesenchymal stem cell marker consisting of leucine-rich repeat-containing immunoglobulin superfamily (ISLR).
  2.  ISLRが、配列番号1~3のいずれかのアミノ酸配列を含む、請求項1に記載の未分化間葉系幹細胞マーカー。 The undifferentiated mesenchymal stem cell marker according to claim 1, wherein the ISLR comprises any one of the amino acid sequences of SEQ ID NOS: 1 to 3.
  3.  間葉系幹細胞を含む細胞集団から、ISLRを発現する細胞を選別し、回収するステップを含む、未分化間葉系幹細胞を調製する方法。 A method for preparing undifferentiated mesenchymal stem cells, comprising a step of selecting and collecting ISLR-expressing cells from a cell population containing mesenchymal stem cells.
  4.  間葉系幹細胞を含む細胞集団が、骨髄、歯髄、脂肪組織、子宮内膜、臍帯、骨格筋又は末梢血に由来する、請求項3に記載の方法。 The method according to claim 3, wherein the cell population containing mesenchymal stem cells is derived from bone marrow, dental pulp, adipose tissue, endometrium, umbilical cord, skeletal muscle, or peripheral blood.
  5.  ISLRの発現状態を指標として検出することを特徴とする、未分化間葉系幹細胞を検出する方法。 A method for detecting undifferentiated mesenchymal stem cells, characterized by detecting the expression state of ISLR as an index.
  6.  被検間葉系幹細胞におけるISLRの発現状態を調べるステップを含む、間葉系幹細胞の未分化性を評価する方法。 A method for evaluating the undifferentiation of mesenchymal stem cells, comprising the step of examining the expression state of ISLR in a test mesenchymal stem cell.
  7.  間葉系幹細胞がヒト細胞である、請求項3~6のいずれか一項に記載の方法。 The method according to any one of claims 3 to 6, wherein the mesenchymal stem cells are human cells.
  8.  抗ISLR抗体を含む、未分化間葉系幹細胞検出用試薬。 A reagent for detecting undifferentiated mesenchymal stem cells containing an anti-ISLR antibody.
  9.  請求項8に記載の試薬を含む、未分化間葉系幹細胞検出用キット。 A kit for detecting undifferentiated mesenchymal stem cells, comprising the reagent according to claim 8.
  10.  ISLRの発現状態を指標として検出することを特徴とする、癌又は線維化疾患の罹患部位に集積する未分化間葉系幹細胞を検出する方法。 A method for detecting undifferentiated mesenchymal stem cells that accumulate in affected sites of cancer or fibrotic diseases, characterized by detecting the expression state of ISLR as an index.
  11.  癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、請求項10に記載の方法。 The method according to claim 10, wherein the cancer is pancreatic cancer, colon cancer, or breast cancer, and the fibrosis is myocardial infarction.
  12.  ISLRからなる、癌又は線維化疾患の予後推定用バイオマーカー。 Biomarker for prognosis estimation of cancer or fibrotic disease consisting of ISLR.
  13.  癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、請求項12に記載の予後推定用バイオマーカー。 The biomarker for prognosis estimation according to claim 12, wherein the cancer is pancreatic cancer, colon cancer, or breast cancer, and the fibrotic disease is myocardial infarction.
  14.  ISLRの発現量を指標とした、癌又は線維化疾患患者の予後推定法。 A method for estimating the prognosis of patients with cancer or fibrosis using the expression level of ISLR as an index.
  15.  癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、請求項14に記載の予後推定法。 The prognostic estimation method according to claim 14, wherein the cancer is pancreatic cancer, colon cancer, or breast cancer, and the fibrosis is myocardial infarction.
  16.  抗ISLR抗体を含む、癌又は線維化疾患患者の予後推定用試薬。 A reagent for estimating the prognosis of patients with cancer or fibrotic diseases, including anti-ISLR antibodies.
  17.  癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、請求項16に記載の予後推定用試薬。 The reagent for prognosis estimation according to claim 16, wherein the cancer is pancreatic cancer, colon cancer, or breast cancer, and the fibrotic disease is myocardial infarction.
  18.  請求項16又は17に記載の試薬を含む、癌又は線維化疾患患者の予後推定用キット。 A kit for estimating the prognosis of a patient with cancer or fibrosis, comprising the reagent according to claim 16 or 17.
PCT/JP2016/071190 2015-08-03 2016-07-19 Marker for undifferentiated mesenchymal stem cells and use thereof WO2017022472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017532474A JP6841429B2 (en) 2015-08-03 2016-07-19 Undifferentiated mesenchymal stem cell markers and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015153712 2015-08-03
JP2015-153712 2015-08-03

Publications (1)

Publication Number Publication Date
WO2017022472A1 true WO2017022472A1 (en) 2017-02-09

Family

ID=57943895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071190 WO2017022472A1 (en) 2015-08-03 2016-07-19 Marker for undifferentiated mesenchymal stem cells and use thereof

Country Status (2)

Country Link
JP (1) JP6841429B2 (en)
WO (1) WO2017022472A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021654A1 (en) * 2017-07-27 2019-01-31 国立大学法人高知大学 Marker for prognosis of pancreatic cancer, kit for diagnosing prognosis of pancreatic cancer, and method for predicting prognosis of pancreatic cancer
CN109331187A (en) * 2018-12-10 2019-02-15 天津长和生物技术有限公司 The evaluation method and application of mescenchymal stem cell preparation sensitization
WO2019159825A1 (en) 2018-02-14 2019-08-22 国立大学法人名古屋大学 Biomarker for predicting effects of anti-pd-1 antibody/anti-pd-l1 antibody therapy
WO2021157601A1 (en) 2020-02-03 2021-08-12 国立大学法人東海国立大学機構 Anti-meflin antibody for use in treating cancer in subject having cancer, and pharmaceutical composition including said antibody

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949682A (en) * 2018-08-22 2018-12-07 广东唯泰生物科技有限公司 A kind of preparation, culture and the purification process of dental pulp mescenchymal stem cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261201A (en) * 2003-12-12 2005-09-29 Aichi Prefecture Method for discriminating extent of gene expression in lung cancer tissue
WO2006106823A1 (en) * 2005-03-31 2006-10-12 Japan Science And Technology Agency Method for distinguishing mesenchymal stem cell using molecular marker and use thereof
US8105777B1 (en) * 2008-02-13 2012-01-31 Nederlands Kanker Instituut Methods for diagnosis and/or prognosis of colon cancer
JP2013512000A (en) * 2009-12-01 2013-04-11 コンペンディア バイオサイエンス, インコーポレイテッド Classification of cancer
WO2014080381A1 (en) * 2012-11-26 2014-05-30 Ecole Polytechnique Federale De Lausanne (Epfl) Colorectal cancer classification with differential prognosis and personalized therapeutic responses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261201A (en) * 2003-12-12 2005-09-29 Aichi Prefecture Method for discriminating extent of gene expression in lung cancer tissue
WO2006106823A1 (en) * 2005-03-31 2006-10-12 Japan Science And Technology Agency Method for distinguishing mesenchymal stem cell using molecular marker and use thereof
US8105777B1 (en) * 2008-02-13 2012-01-31 Nederlands Kanker Instituut Methods for diagnosis and/or prognosis of colon cancer
JP2013512000A (en) * 2009-12-01 2013-04-11 コンペンディア バイオサイエンス, インコーポレイテッド Classification of cancer
WO2014080381A1 (en) * 2012-11-26 2014-05-30 Ecole Polytechnique Federale De Lausanne (Epfl) Colorectal cancer classification with differential prognosis and personalized therapeutic responses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XIXIAN ET AL.: "Effects of temocapril or olmesartan on myocardial gene expression profiling in pressure overloaded mice", EXPERIMENTAL & CLINICAL CARDIOLOGY, vol. 20, no. 5, 2014, pages 3133 - 3146, XP055363128 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021654A1 (en) * 2017-07-27 2019-01-31 国立大学法人高知大学 Marker for prognosis of pancreatic cancer, kit for diagnosing prognosis of pancreatic cancer, and method for predicting prognosis of pancreatic cancer
JPWO2019021654A1 (en) * 2017-07-27 2020-05-28 国立大学法人高知大学 Pancreatic cancer prognosis marker, pancreatic cancer prognosis kit, and method for predicting pancreatic cancer prognosis
JP7246731B2 (en) 2017-07-27 2023-03-28 国立大学法人高知大学 Pancreatic cancer prognostic marker, pancreatic cancer prognostic diagnosis kit and method for predicting pancreatic cancer prognosis
WO2019159825A1 (en) 2018-02-14 2019-08-22 国立大学法人名古屋大学 Biomarker for predicting effects of anti-pd-1 antibody/anti-pd-l1 antibody therapy
JPWO2019159825A1 (en) * 2018-02-14 2021-02-04 国立大学法人東海国立大学機構 Biomarker predicting the effect of anti-PD-1 antibody / anti-PD-L1 antibody therapy
EP3754031A4 (en) * 2018-02-14 2021-11-10 National University Corporation Tokai National Higher Education and Research System Biomarker for predicting effects of anti-pd-1 antibody/anti-pd-l1 antibody therapy
CN109331187A (en) * 2018-12-10 2019-02-15 天津长和生物技术有限公司 The evaluation method and application of mescenchymal stem cell preparation sensitization
WO2021157601A1 (en) 2020-02-03 2021-08-12 国立大学法人東海国立大学機構 Anti-meflin antibody for use in treating cancer in subject having cancer, and pharmaceutical composition including said antibody

Also Published As

Publication number Publication date
JPWO2017022472A1 (en) 2018-05-31
JP6841429B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP6841429B2 (en) Undifferentiated mesenchymal stem cell markers and their uses
Paquet-Fifield et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration
US8889361B2 (en) Gene expression signatures in enriched tumor cell samples
US20190078153A1 (en) Method of analyzing genetically abnormal cells
Belluoccio et al. Sorting of growth plate chondrocytes allows the isolation and characterization of cells of a defined differentiation status
JP6478418B2 (en) Cell differentiation potential discrimination method
JP2018117582A (en) Method for evaluating quality of stem cell and kit for evaluating quality of stem cell
JP2008220334A (en) Use of cd106 as differentiation potency marker of mesenchymal stem cell
US20160370352A1 (en) Assays and monitoring paradigms for stem cell culture
EP3009521B1 (en) Marker for detecting proliferation and treatment capacities of adipose-derived stem cell cultured in medium containing egf or bfgf, and use thereof
JP6890138B2 (en) MSC Growth Predictor Assay
JP2007185127A (en) Pcnsl marker and use thereof
WO2008124494A1 (en) Enrichment of tissue-derived adult stem cells based on retained extracellular matrix material
JP6606413B2 (en) Method for detecting and separating dermal stem cells
KR102129380B1 (en) Method of Screening Highly Efficient Stem Cell Using GRP78 Protein Biomarker
KR102293079B1 (en) A use of WNT16 marker for predicting osteogenic differentiation of Tonsil-derived mesenchymal stem cells
JP2022147356A (en) Methods for detecting and recovering melanoma cell derived from yellow-skinned race, and reagent and carrier-immobilized molecule for use in those methods
JP2010216826A (en) Method for examinination of mammary cancer using novel tumor marker
WO2010024704A4 (en) A gammacarboxyglutamate-rich protein, methods and assays for its detection, purification and quantification and uses thereof
JP6719114B2 (en) Kit and method for determining the ability of mesenchymal stem cells or chondrocytes to form bone tissue or cartilage tissue
Fiévet et al. Single-cell RNA sequencing of human non-hematopoietic bone marrow cells reveals a unique set of inter-species conserved biomarkers for native mesenchymal stromal cells
Fawdar Characterisation of STRO-1 expression on human mesenchymal stem cells and identification of putative cancer stem cells in osteosarcoma: prevention by micronutrients
JP2022092366A (en) Detection method of melanoma cell, recovery method of melanoma cell, and reagent and carrier immobilization molecule used for the methods
JP5904801B2 (en) Method for predicting differentiation inducing ability to regulatory T cells, biomarker used in the method, and use thereof
KR101667001B1 (en) Secretory detection marker of proliferation and therapeutic potency of adipocyte-derived stem cells and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832751

Country of ref document: EP

Kind code of ref document: A1