WO2017022303A1 - 情報処理装置、情報処理方法およびプログラム - Google Patents
情報処理装置、情報処理方法およびプログラム Download PDFInfo
- Publication number
- WO2017022303A1 WO2017022303A1 PCT/JP2016/065383 JP2016065383W WO2017022303A1 WO 2017022303 A1 WO2017022303 A1 WO 2017022303A1 JP 2016065383 W JP2016065383 W JP 2016065383W WO 2017022303 A1 WO2017022303 A1 WO 2017022303A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- display
- user
- range
- information processing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/128—Adjusting depth or disparity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/172—Processing image signals image signals comprising non-image signal components, e.g. headers or format information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/327—Calibration thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/398—Synchronisation thereof; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/366—Image reproducers using viewer tracking
- H04N13/383—Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N2013/0074—Stereoscopic image analysis
- H04N2013/0081—Depth or disparity estimation from stereoscopic image signals
Definitions
- This disclosure relates to an information processing apparatus, an information processing method, and a program.
- a display device that display an image so that the image is visually recognized as being superimposed on an external image (hereinafter also referred to as superimposing an image).
- a display device for example, there is a display device that has a half mirror that displays an image (virtual image) while transmitting external light and is mounted on the head.
- Patent Document 1 depending on the observation position of the user, the optical axis of the image light and the optical axis of the image light parallel to the image light are moved in a direction horizontal to these optical axes.
- An invention relating to a glasses-type display device is disclosed. For this reason, the burden on the user is reduced by adjusting the difference between the convergence angle for the image and the convergence angle for the external image.
- Patent Document 1 while the burden on the user is reduced, there is a possibility that the user may feel uncomfortable. For example, when the convergence angle of the image changes, the position in the depth direction of the image changes, and the mode of the image observed by the user, for example, the size of the image changes. As described above, when the image mode changes, the user may feel uncomfortable.
- the present disclosure proposes a new and improved information processing apparatus, information processing method, and program capable of reducing user discomfort while reducing the burden on the user.
- the first display control unit that performs the first control on the position in the depth direction perceived by the user based on the eye movement of the display object, and the position in the depth direction are not included as aspects.
- An information processing apparatus is provided that performs control based on a first relationship and performs control based on a second relationship that is different from the first relationship in a second range in the depth direction that is different from the first range.
- the display control unit performs the first control on the position of the display object in the depth direction perceived by the user based on the eyeball movement, and uses the position in the depth direction as an aspect. Performing the second control on the display object aspect not included, performing the control based on the first relationship in the first range in the depth direction, and performing the second in the depth direction different from the first range.
- an information processing method is provided that includes performing control based on a second relationship different from the first relationship.
- the first display control function for performing the first control on the position in the depth direction perceived by the user based on the eye movement of the display object, and the position in the depth direction as an aspect.
- the second display control function that performs the second control on the display object aspect that is not included, the first display control function, and the second display control function.
- an information processing apparatus an information processing method, and a program capable of suppressing a user's uncomfortable feeling while reducing a user's burden are provided.
- the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
- FIG. 2 is a block diagram illustrating an example of a schematic functional configuration of an information processing apparatus according to a first embodiment of the present disclosure.
- FIG. It is a figure which illustrates the basic process of the display control of the stereoscopic object which concerns on the embodiment. It is a figure for demonstrating the example of the display control process of the stereoscopic object according to the correlation in the information processing apparatus which concerns on the embodiment. It is a figure for demonstrating the example of the display control process of the stereoscopic object according to the 1st correspondence in the information processing apparatus which concerns on the embodiment. It is a figure for demonstrating the example of the display control process of the stereoscopic object according to the 2nd correspondence in the information processing apparatus which concerns on the embodiment.
- FIG. 3 is a flowchart conceptually showing processing of the information processing apparatus according to the embodiment. It is a figure for demonstrating the example of the display control process of the stereoscopic vision object in the information processing apparatus which concerns on the modification of the embodiment. It is a figure for demonstrating the other example of the display control process of the stereoscopic vision object in the information processing apparatus which concerns on the modification of the embodiment. It is a block diagram showing an example of rough functional composition of an information processor concerning a 2nd embodiment of this indication. 3 is a flowchart conceptually showing processing of the information processing apparatus according to the embodiment. It is a block diagram showing an example of rough functional composition of an information processor concerning a 3rd embodiment of this indication. 3 is a flowchart conceptually showing processing of the information processing apparatus according to the embodiment. FIG. 3 is an explanatory diagram illustrating a hardware configuration of an information processing apparatus according to an embodiment of the present disclosure.
- each of the information processing apparatuses 100 according to the first to third embodiments is suffixed with a number corresponding to the embodiment, such as the information processing apparatuses 100-1 to 100-3. To distinguish.
- FIG. 1 is a block diagram illustrating an example of a schematic functional configuration of the information processing apparatus 100-1 according to the first embodiment of the present disclosure.
- the information processing apparatus 100-1 includes an image generation unit 102, a display control unit 104, a storage unit 106, and a display unit 108.
- the image generation unit 102 generates an image to be displayed on the display unit 108. Specifically, the image generation unit 102 generates an image for making the user perceive a stereoscopic object as a display object based on an instruction from the display control unit 104. For example, when the generation of an image for stereoscopic viewing is instructed from the display control unit 104, the image generation unit 102 performs the left eye image and the right eye image based on information related to the image stored in the storage unit 106. (Hereinafter, collectively referred to as a stereoscopic image) is generated. Note that a stereoscopic image may be stored in the storage unit 106, or the stereoscopic image may be acquired from an external device by a communication unit or the like instead of the image generation unit 102.
- the display control unit 104 performs display control of an image obtained from the image generation unit 102. Specifically, the display control unit 104 performs control (first control) on the position in the depth direction perceived by the user based on eye movements as the first display control unit. More specifically, the display control unit 104 controls the display position in the horizontal direction of each of the stereoscopic image generated by the image generation unit 102, that is, the left-eye image and the right-eye image. Controls the position of the perceived stereoscopic object in the depth direction. Further, the stereoscopic object display control process will be described in detail with reference to FIG. FIG. 2 is a diagram illustrating a basic process of stereoscopic object display control according to the present embodiment.
- the display control unit 104 performs processing for stereoscopic display on the acquired stereoscopic image. Specifically, when the stereoscopic image is set to be displayed on the virtual screen 1 as illustrated in FIG. 2, the display control unit 104 displays the stereoscopic image, that is, the left eye image and the right eye image. The parallax between the image for the left eye and the image for the right eye is controlled by shifting each display position in the horizontal direction, that is, the long side direction of the virtual screen 1. The position of the virtual screen 1 can be set optically, but may be variable.
- the display control unit 104 horizontally sets the left-eye image to the right in the horizontal direction and the right-eye image to the horizontal. Shift left in each direction. In this case, the user perceives a stereoscopic object 10A that jumps out from the virtual screen 1 as shown in FIG.
- the display image for the left eye is set to the left in the horizontal direction and the image for the right eye is displayed. Shift horizontally to the right respectively.
- the user perceives the stereoscopic object 10 ⁇ / b> C that retracts from the virtual screen 1 as shown in FIG. 2 toward the user.
- a planar stereoscopic image is perceived.
- the user can see the stereoscopic image on the virtual screen 1 as shown in FIG.
- the convergence angle of the person who perceives the stereoscopic object also changes.
- the convergence angle R A user of the stereoscopic object 10A located in front of the stereoscopic object 10B (closer to the user side) is smaller than the convergence angle R B for stereoscopic object 10B.
- the user's burden is imposed by the change in the convergence angle. For example, when a plurality of stereoscopic objects having different convergence angles are displayed, the user changes the convergence angle when viewing each of the plurality of stereoscopic objects.
- the information processing apparatus 100 can reduce the burden on the user without giving a sense of incongruity to the user by having the technical features described below.
- the storage unit 106 stores information related to an image displayed on the display unit 108 and information related to display control of the image. To do.
- the display unit 108 displays an image based on an instruction from the display control unit 104. Specifically, the display unit 108 displays the stereoscopic image provided from the display control unit 104 in a predetermined stereoscopic method.
- the predetermined stereoscopic method may be a scope method such as an HMD (Head Mount Display) worn on the user's head, but a glasses method such as a liquid crystal shutter or a polarizing filter, or a lenticular or parallax barrier. Other methods such as the naked eye method may be used.
- the display method of the display unit 108 may be a so-called optical see-through method in which a virtual image is displayed while transmitting an external image by using a half mirror or the like, but other display methods may be used.
- the display method may be a so-called video see-through method in which an external image is acquired using an imaging device and a real image obtained by superimposing an image on the acquired external image is displayed.
- a retinal projection method in which an image is formed by irradiating the retina with image light may be used.
- the display control unit 104 performs first control and second control on the display object.
- the first control is control regarding the position in the depth direction described above
- the second control is control regarding the aspect of the stereoscopic object that does not include the position in the depth direction as an aspect.
- position means “position in the depth direction” unless otherwise specified.
- the display control unit 104 controls the aspect of the stereoscopic object that does not include the position in the depth direction as the aspect.
- the aspect of the stereoscopic object is the size of the stereoscopic object.
- the display control unit 104 controls the size of the stereoscopic object by controlling the size of the stereoscopic image related to the stereoscopic object.
- the aspect of the stereoscopic object may be another aspect as long as the user feels the depth (perspective) of the stereoscopic object.
- the aspect of the stereoscopic object may be the color, brightness, shadow, density, or speed of movement of the stereoscopic object.
- the display control unit 104 performs different display control depending on each range in the depth direction. Specifically, the display control unit 104 performs control based on the first relationship in the first range in the depth direction, and is different from the first relationship in the second range in the depth direction different from the first range. Control based on the second relationship is performed. Further, in the third range in the depth direction, the display control unit 104 performs control based on a correspondence relationship regarding the presence or absence of control between the first control and the second control.
- display control in each range will be described in detail.
- the display control in the first range has a relative relationship with the second range. Specifically, in the control based on the first relationship performed in the first range, the position of the first control with respect to the position in the depth direction (hereinafter also referred to as a reference position) where the display object is perceived.
- the amount related to the change is smaller than the amount related to the change of the position in the control based on the second relationship.
- the amount related to the change in the aspect with respect to the aspect of the display object at the reference position is larger than the amount related to the change in the aspect in the control based on the second relationship.
- the first range is a range closer to the user in the depth direction than the second range.
- the relationship (first relationship) between the first control and the second control in the first range is a correlation with respect to the control amount between the first control and the second control.
- the correlation is a control amount according to a difference between one control amount of the first control and the second control and the other control amount at the reference position. It is a relationship.
- the display control unit 104 controls the stereoscopic object to a size corresponding to the difference between the control amount of the position in the depth direction for a position in the depth direction of the stereoscopic object and the control amount for the reference position.
- the relationship (second relationship) between the first control and the second control in the second range is a correspondence relationship regarding the presence or absence of control.
- a first correspondence relationship described later that is, a change in the position in the depth direction with respect to the reference position for the first control is performed, and the aspect of the aspect of the stereoscopic object at the reference position for the second control is It is a relationship where no change is made.
- the second relationship may be a correlation as in the first range.
- FIG. 3 is a diagram for explaining an example of the stereoscopic object display control process in the first range and the second range of the information processing apparatus 100-1 according to the present embodiment.
- 3 is a diagram illustrating a perceived stereoscopic object
- the lower diagram is a diagram illustrating a stereoscopic object after control according to the present embodiment.
- the display control unit 104 determines whether the reference position is closer to the user than the first position. For example, in the display control unit 104, the perceived reference position Px of the stereoscopic object 10D is closer to the user wearing the information processing apparatus 100-1 than the first position P1 as shown in the upper diagram of FIG. Determine whether.
- the first range is a range closer to the user than the first position
- the second range is a range farther from the user than the first position.
- the first position may be a position at which the user begins to feel a burden on viewing the stereoscopic object.
- the first position may be a position whose distance in the depth direction from the user is 1.5 to 3 meters.
- the suitable 1st position may change according to various factors, the distance of the depth direction from a user to the 1st position may be shorter or longer than the illustrated length.
- the above determination process may be performed based on the distance from the user to the reference position (hereinafter also referred to as an observation distance).
- the observation distance can be calculated from the amount of projection from the virtual screen 1 on which the stereoscopic image is displayed, where the distance from the user is fixed.
- the observation distance is calculated by calculating the distance to the position in the real space corresponding to the position of the stereoscopic object using a distance sensor or the like. Also good.
- the display control unit 104 may determine whether there is a reference position between the first position and a second position described later.
- the display control unit 104 determines the control amounts of the first control and the second control based on the reference position. Specifically, the display control unit 104 determines the first control amount as an amount corresponding to a predetermined ratio with respect to the first control amount at the reference position. The predetermined ratio is smaller than the ratio in the second range. For example, the display control unit 104 determines the parallax amount to be a predetermined ratio of the parallax amount at the reference position Px as shown in the upper diagram of FIG. 3, for example, an amount corresponding to 0.9 (90%). A predetermined difference value may be used instead of the predetermined rate of change. In this case, for example, the display control unit 104 determines the amount of parallax to be an amount obtained by subtracting a predetermined difference value from the amount of parallax at the reference position.
- the amount related to the change may be a variable amount based on the reference position.
- the ease of occurrence of an uncomfortable feeling with respect to the first and second controls can vary depending on the reference position.
- the display control unit 104 determines the amount related to the change based on the reference position.
- the display control unit 104 determines the rate of change with respect to the reference position according to the observation distance. In this case, by determining the first control and the second control amount based on the reference position, it is possible to suppress the occurrence of the user's uncomfortable feeling.
- the burden on the user is emphasized, the amount related to the change in position may be increased as the reference position is closer to the second position.
- the display control unit 104 determines the control amount of the aspect of the stereoscopic object based on the reference position. Specifically, the display control unit 104 determines the amount of the second control to an amount corresponding to a predetermined ratio with respect to the aspect at the reference position. The predetermined ratio is larger than the ratio in the second range. For example, the display control unit 104 corresponds to the size of the stereoscopic object with respect to the size at the reference position Px as shown in the upper diagram of FIG. 3, for example, 1.1 (110%). Decide on quantity. A predetermined difference value may be used instead of the predetermined rate of change. In this case, for example, the display control unit 104 determines the size of the stereoscopic object to be obtained by adding a predetermined difference value from the size at the reference position.
- the display control unit 104 determines one control amount of the first control and the second control based on the reference position, and determines the other control amount according to the determined one control amount. May be. Specifically, the display control unit 104 determines the control amount of the aspect of the stereoscopic object according to the difference between the determined control amount of the position in the depth direction and the control amount of the position in the depth direction with respect to the reference position. . For example, the display control unit 104 causes the control object to perceive a stereoscopic object at the position Py as shown in the lower diagram of FIG. 3 and causes the stereoscopic object to be perceived at the position Px as shown in the upper diagram of FIG. The control amount (for example, the enlargement ratio) of the size of the stereoscopic object is determined according to the difference from the control amount for that purpose.
- the display control unit 104 performs the first control and the second control based on the determined control amount. For example, as illustrated in FIG. 3, the display control unit 104 arranges the stereoscopic object 10d at a position Py farther from the user than the position Px. Further, as illustrated in FIG. 3, the display control unit 104 enlarges the stereoscopic object 10d more than the stereoscopic object 10D at the position Px.
- control is performed based on a correspondence relationship regarding the presence or absence of control between the first control and the second control. Specifically, one of the change in the position in the depth direction with respect to the reference position for the first control and the change in the aspect with respect to the aspect of the stereoscopic object at the reference position for the second control are performed as the correspondence relationship. This is a relationship in which the other is not performed.
- the third range includes a range closer to the user in the depth direction than the first range (near range) and a range farther from the user in the depth direction than the first range (far range).
- the first correspondence relationship is a relationship in which a change in the position in the depth direction with respect to the reference position for the first control is performed, and a change in the aspect with respect to the aspect of the stereoscopic object at the reference position for the second control is not performed. is there.
- FIG. 4 an example of the stereoscopic object display control process according to the first correspondence will be described in detail.
- FIG. 4 is a diagram for explaining an example of a stereoscopic object display control process in accordance with the first correspondence relationship in the information processing apparatus 100-1 according to the present embodiment.
- the display control unit 104 determines whether the reference position is closer to the user than the second position. For example, the display control unit 104 determines whether the perceived position Px of the stereoscopic object 10E is closer to the user than the position P2 as illustrated in FIG.
- the second position may be a position whose depth direction distance from the user is 0.5 to 1 meter, for example.
- the suitable second position can change depending on various factors, and therefore the distance in the depth direction from the user to the second position is longer or shorter than the exemplified length. May be.
- the display control unit 104 determines the control amount of the first control based on the reference position. For example, the display control unit 104 determines the first control amount so that the stereoscopic object is perceived at the reference position only by the first control. In this case, the display control unit 104 does not perform the second control. Note that the display control unit 104 may prevent the aspect of the stereoscopic object from being changed at the reference position for the second control by setting the amount of the second control to zero.
- the display control unit 104 performs the first control based on the determined control amount. For example, the display control unit 104 controls the amount of parallax between the stereoscopic image, that is, the left-eye image and the right-eye image so that the position in the depth direction becomes the reference position, so that the position as illustrated in FIG. Let Px cause the user to perceive the stereoscopic object 10E.
- the display control unit 104 performs the first control and the second control according to the second correspondence relationship in the far range of the third range.
- the second correspondence relationship is a relationship in which the aspect of the stereoscopic object at the reference position for the second control is changed, and the position in the depth direction is not changed with respect to the reference position for the first control. is there.
- FIG. 5 is a diagram for explaining an example of a stereoscopic object display control process according to the second correspondence relationship in the information processing apparatus 100-1 according to the present embodiment.
- the display control unit 104 determines whether the reference position is farther from the user than the third position. For example, the display control unit 104 determines whether the perceived position Px of the stereoscopic object 10F is closer to the user than the virtual screen 1 shown in the upper diagram of FIG.
- the third position may be a position different from the position of the virtual screen 1.
- the display control unit 104 determines the control amount of the second control based on the reference position. For example, the display control unit 104 determines the amount of the second control so that the stereoscopic object is perceived at the reference position only by the second control. In this case, the display control unit 104 does not perform the first control. Note that the display control unit 104 may prevent the position in the depth direction from changing with respect to the reference position for the first control by setting the amount of the first control to zero.
- the display control unit 104 performs the second control based on the determined control amount. For example, the display control unit 104 reduces the stereoscopic object like a stereoscopic object 10f as shown in the lower diagram of FIG. 5, thereby reducing the stereoscopic object 10E to the position Px as shown in the upper diagram of FIG. The user is made to perceive a stereoscopic object so that there is.
- the modes of the first control and the second control are also determined by information related to depth perception (hereinafter also referred to as depth perception information). Based on the depth perception information, the display control unit 104 performs the following determination process for the first control and the second control.
- the display control unit 104 determines the relationship between the first control and the second control described above based on the depth perception information.
- the display control unit 104 determines the first range and the second range based on the depth perception information. Specifically, the display control unit 104 determines the first position described above based on the depth perception information.
- the display control unit 104 adjusts the control amounts of the first control and the second control based on the depth perception information. Specifically, the display control unit 104 changes the control amount determined by the display control based on the relationship in each range described above based on the depth perception information.
- the depth perception information includes information related to the stereoscopic object.
- the information related to the stereoscopic object includes information related to the property of the stereoscopic object. More specifically, the property of the stereoscopic object is the type of the stereoscopic object, and the display control unit 104 determines the relationship corresponding to the type when the type of the stereoscopic object is a predetermined type. select. For example, when the stereoscopic object is a character or a graphic, the display control unit 104 selects the second correspondence described above and performs only the second control, that is, the control of the aspect of the stereoscopic object.
- Types of stereoscopic objects include types of contents such as characters (text), figures, symbols, or photographs, types of display changes of contents such as still images or moving images, or objects that actually have objects related to stereoscopic objects There are types of objects such as (including similar objects).
- the display control unit 104 reduces the first range, suppresses the amount of the second control in the control based on the first relationship, or selects the first correspondence relationship.
- the properties of the stereoscopic object include the resolution, frame rate, material, importance, presence / absence of continuous display, etc. in addition to the type of the stereoscopic object.
- information related to the stereoscopic object there is information related to the visual aspect of the stereoscopic object in addition to information related to the property of the stereoscopic object.
- the visual aspect of the stereoscopic object includes the color, brightness, shadow, density, or speed of movement of the stereoscopic object.
- the display control unit 104 performs the first control and the second control based on the above-described relationship.
- FIG. 6 is a flowchart conceptually showing processing of the information processing apparatus 100-1 according to the present embodiment. Note that description of processing that is substantially the same as the processing described above is omitted.
- the information processing apparatus 100-1 determines whether the stereoscopic object is a character (step S502). Specifically, the display control unit 104 determines whether the stereoscopic object is a character based on information indicating the content of the stereoscopic image related to the stereoscopic object.
- the information processing apparatus 100-1 determines the first position based on the type of the object related to the stereoscopic object (step S504). Specifically, the display control unit 104 determines the first position based on whether or not an object related to the stereoscopic object actually exists. For example, when the object is an object that actually exists, the display control unit 104 brings the first position closer to the user.
- the information processing apparatus 100-1 determines whether the reference position is closer to the user than the second position (step S506). Specifically, the display control unit 104 performs the determination using the coordinate information of the reference position and the second position.
- the information processing apparatus 100-1 determines a position in the depth direction (step S508). Specifically, the display control unit 104 determines the position in the depth direction where the stereoscopic object is arranged, that is, the amount of parallax, based on the reference position.
- the information processing apparatus 100-1 determines whether the reference position is closer to the user than the first position (step S510).
- the information processing apparatus 100-1 determines the position in the depth direction and the size of the stereoscopic object based on the first relationship (step S512). ). Specifically, the display control unit 104 determines the position in the depth direction as a position farther from the user than the reference position, and determines the size of the stereoscopic object to be larger than the size at the reference position.
- the information processing apparatus 100-1 determines whether the reference position is closer to the user than the third position (step S514).
- the information processing apparatus 100-1 determines a position in the depth direction (step S516). Note that the processing in this step is substantially the same as the processing in step S508.
- the information processing apparatus 100-1 determines the stereoscopic object.
- the size is determined (step S518). Specifically, the display control unit 104 determines the size of the stereoscopic object based on the reference position.
- the information processing apparatus 100-1 performs display processing with the determined position in the depth direction and the size of the stereoscopic object (step S520). Specifically, the display control unit 104 causes the display unit 108 to display a stereoscopic object at the determined size in the determined depth direction.
- the information processing apparatus 100-1 performs the first control on the position of the display object in the depth direction perceived by the user based on the eye movement.
- the second control is performed on the display object mode that does not include the position in the depth direction as the mode.
- the information processing apparatus 100-1 performs control based on the first relationship in the first range in the depth direction, and performs the second control in the depth direction different from the first range. In this range, control based on a second relationship different from the first relationship is performed.
- the first control and the second control can be performed according to different relationships depending on the range in the depth direction.
- the first control can be suppressed and the second control can be performed in a range that is a burden on the user.
- the amount related to the change in position with respect to the reference position in the depth direction in which the display object is perceived is the change in the position in the control based on the second relationship.
- Including the control that is smaller than the amount and the amount related to the change in the aspect with respect to the aspect of the display object at the reference position is larger than the amount related to the change in the aspect in the control based on the second relationship. .
- the first control is suppressed and the second control is performed, so that both the reduction of the burden on the user and the suppression of the user's discomfort can be achieved.
- the first range includes a range closer to the user in the depth direction than the second range. For this reason, the first control is suppressed in a range close to the user where the user's burden is likely to increase, and the second control is performed, whereby the burden on the user can be further reduced.
- the first relationship includes a correlation regarding the control amount between the first control and the second control. For this reason, it is possible to more effectively suppress the occurrence of the user's uncomfortable feeling by controlling the position in the depth direction and the aspect of the display object in correlation.
- the correlation includes a relationship in which one control amount of the first control and the second control is a control amount according to a difference between the other control amount and the other control amount at the reference position. For this reason, the first and second controls are performed so that the display object is perceived at the reference position, thereby further suppressing the user's uncomfortable feeling.
- the information processing apparatus 100-1 performs the control between the first control and the second control as the first control and the second control in the third range in the depth direction different from the first range. Control based on the correspondence between the presence and absence of For this reason, depending on the range in the depth direction, both the first control and the second control may be performed, which may cause a user's uncomfortable feeling or a burden on the user, but this can be prevented.
- one of the change of the position in the depth direction with respect to the reference position for the first control and the change of the aspect with respect to the aspect of the stereoscopic object at the reference position for the second control is performed, and the other is Includes relationships that do not take place. For this reason, it is possible to prevent the burden on the user or the user from feeling uncomfortable due to the control for the other by performing the control related to the change with respect to the reference position for only one of the first and second controls. It becomes possible.
- the correspondence relationship the position in the depth direction with respect to the reference position for the first control is changed, and the aspect of the stereoscopic object at the reference position for the second control is not changed.
- the correspondence range is included, and the third range includes a range closer to the user in the depth direction than the first range.
- the information processing apparatus 100-1 performs the first control and the second control based on the first correspondence relationship.
- the display object becomes close to the user to some extent, the user becomes sharply aware of the aspect of the display object, for example, the size. Therefore, in this configuration, when the reference position is closer to the user than the position where the perception of the display object aspect becomes sharp, the aspect change with respect to the stereoscopic object aspect at the reference position for the second control is not performed. Thus, it is possible to prevent the user from feeling uncomfortable due to the second control.
- the third range includes a correspondence relationship, and includes a range farther from the user in the depth direction than the first range.
- the information processing apparatus 100-1 performs the first control and the second control based on the second correspondence relationship.
- control of the display object mode includes control of the size of the display object. For this reason, by controlling the size of the display object that is a clue to the user recognizing the depth, it is possible to reduce the possibility of giving the user a sense of discomfort due to the second control.
- the display object includes a stereoscopic object
- the first control includes control of parallax between the left-eye image and the right-eye image related to the stereoscopic object. For this reason, it is possible to obtain a greater reduction effect on the user's burden by applying the above-described configuration to the stereoscopic object that is easily burdened by the user who visually recognizes the display object.
- the information processing apparatus 100-1 determines the first control mode and the second control mode based on the depth perception information related to the depth perception of the user. For this reason, by further determining the first control and the second control according to the user's sense of depth (perspective), it is possible to reduce the burden and suppress the sense of discomfort that is more appropriate for the situation.
- the information processing apparatus 100-1 determines the first range and the second range based on the depth perception information. For this reason, by controlling only the range, it is possible to reduce the burden and suppress the uncomfortable feeling suitable for the situation while suppressing the complexity of the processing.
- the depth perception information includes information related to the nature of the display object or information related to the visual aspect of the display object. For this reason, the first and second control modes are determined based on information that directly affects the user's sense of depth (perspective), thereby suppressing the occurrence of the user's discomfort more effectively. It becomes possible to do.
- the information processing apparatus 100-1 includes an information processing apparatus worn on the user's head. For this reason, it is possible to give the user a sense of reality with respect to the display by performing the display close to the user.
- the information processing apparatus 100-1 may perform the first control and the second control so that the positions in the depth direction of two or more stereoscopic objects are within a predetermined range.
- the display control unit 104 sets the first and second stereoscopic objects so that the positions in the depth direction of the first stereoscopic object and the second stereoscopic object are within a predetermined range.
- the first control and the second control are performed in accordance with the above-described correlation.
- FIG. 7 is a diagram for describing an example of a stereoscopic object display control process in the information processing apparatus 100-1 according to the modification of the present embodiment.
- the display control unit 104 calculates a distance between reference positions for the plurality of stereoscopic objects. For example, when the display of each of the plurality of stereoscopic objects 20A to 20C as shown in the upper diagram of FIG. 7 is scheduled, the display control unit 104 uses the reference positions P A to P of the stereoscopic objects 20A to 20C. Each distance between C is calculated.
- the display control unit 104 determines whether the calculated distance between the reference positions is greater than or equal to a threshold value. For example, the display control unit 104 determines whether each of the calculated distances between the reference positions P A to P C is equal to or greater than a threshold value.
- the threshold value may be set by the user or may be a fixed value determined in advance.
- the display control unit 104 compresses the space including the plurality of stereoscopic objects in the depth direction. Specifically, the display control unit 104 correlates a stereoscopic object other than a reference stereoscopic object (hereinafter also referred to as a reference stereoscopic object) based on the reference position of the reference stereoscopic object. Accordingly, the first control and the second control are performed.
- a reference stereoscopic object hereinafter also referred to as a reference stereoscopic object
- the display control unit 104 selects one of the stereoscopic objects 20A to 20C, for example, The stereoscopic object 20A is selected as the reference stereoscopic object.
- the display control unit 104 changes the space 30 as shown in the upper diagram of FIG. 7 into the space 32 as shown in the lower diagram in the depth direction. Determining positions P b and P c in the depth direction so as to be compressed.
- the display control unit 104 determines respectively the size of the stereoscopic object according to the position P b and P c in the depth direction that is the determined. Then, the display control unit 104, the determined depth direction position P b and the size determined for P c the stereoscopic object 20b and 20c, as shown below in Figure 7 are arranged, respectively, the reference position P The stereoscopic object 20a is arranged without changing the size to a.
- the reference stereoscopic object can be selected based on the observation distance. For example, a stereoscopic object whose observation distance is shorter than any other stereoscopic object is selected as the reference stereoscopic object.
- the control relating to the change in the reference position with respect to the first control and the second control is not performed on the stereoscopic object closer to the user than any other stereoscopic object, so that the processing according to this modification example is performed. It is possible to suppress the occurrence of the user's uncomfortable feeling.
- the first control and the second control based on the predetermined relationship are performed for the stereoscopic objects other than the reference stereoscopic object.
- the first control and the second control are performed for all of the plurality of stereoscopic objects.
- the second control may be performed.
- FIG. 8 is a diagram for explaining another example of the stereoscopic object display control process in the information processing apparatus 100-1 according to the modification of the present embodiment.
- the display control unit 104 causes the display unit 108 to display a stereoscopic object at a certain time.
- the display control unit 104 without performing the second control, the stereoscopic object 20D by performing the first control, as perceived in the reference position P D as shown in the upper left diagram of FIG. 8 Deploy. Therefore, the position P d of the stereoscopic object 20d to be perceived corresponds to the reference position P D.
- the display control unit 104 displays the stereoscopic object displayed at the next time (hereinafter also referred to as the stereoscopic object at the next time) and the previous time.
- the distance in the depth direction between the stereoscopic object (hereinafter also referred to as the stereoscopic object of the previous time) that has been used is calculated.
- the display control unit 104 determines the position P d in the depth direction of the stereoscopic object 20D at the previous time. It calculates the distance between the reference position P E of the stereoscopic object 20E.
- the display control unit 104 determines whether the calculated distance in the depth direction is greater than or equal to a threshold value. For example, the display control unit 104 determines whether the distance between the position P D and the reference position P E in the depth direction is not less than the threshold value.
- the display control unit 104 compresses the space including the stereoscopic object at the next time in the depth direction. Specifically, the display control unit 104 performs the first control and the second control according to the correlation on the stereoscopic object at the next time based on the position in the depth direction of the stereoscopic object at the previous time. I do. For example, when it is determined that the distance between the position P d and the reference position P E is equal to or greater than the threshold, the display control unit 104 shows the stereoscopic object 20E at the next time as shown in the upper right diagram of FIG.
- the display control unit 104 determines the size of the stereoscopic object according to the depth direction of the position P e is the determined determined. Then, the display control unit 104 displays a stereoscopic object 20e as shown in the right lower part of FIG. 8 on the display unit 108 by the size of the stereoscopic object in the position P e of the determined depth direction.
- the information processing apparatus 100-1 ensures that the positions of the first stereoscopic object and the second stereoscopic object in the depth direction are within a predetermined range.
- the first control and the second control are performed according to the correlation with respect to at least one of the first and second stereoscopic objects. For this reason, when the position of the display object in the depth direction is brought close to each other, the function of the eye such as adjustment of the convergence angle of the user who visually recognizes both the first and second display objects is reduced, and the user It becomes possible to reduce the burden.
- the second display object includes other display objects that are displayed at the same timing as the first display object. For this reason, when a plurality of display objects are displayed at the same timing, it is possible to reduce the burden on the user by reducing the amount of eye adjustment for visually recognizing each display object.
- the second stereoscopic object is displayed at a timing adjacent to the display timing of the first stereoscopic object. For this reason, when the display of the display object is switched, the amount of eye adjustment before and after switching is reduced, thereby reducing the burden on the user.
- Second Embodiment (Control Based on Predetermined Relationship and User Information)>
- the information processing apparatus 100-1 according to the first embodiment of the present disclosure has been described above. Subsequently, the information processing apparatus 100-2 according to the second embodiment of the present disclosure will be described.
- FIG. 9 is a block diagram illustrating an example of a schematic functional configuration of the information processing apparatus 100-2 according to the second embodiment of the present disclosure.
- the information processing apparatus 100-2 includes a user information acquisition unit 120 in addition to the image generation unit 102, the display control unit 104, the storage unit 106, and the display unit 108.
- the user information acquisition unit 120 acquires information related to the user of the information processing apparatus 100-2.
- the information relating to the user includes information relating to the aspect of the user.
- the user's aspect is the user's behavior. For example, user actions include walking, running or stationary movements, tennis, swimming or stairs climbing movements, use of moving means such as escalators or elevators, movie watching in movie theaters or restaurants. There are behaviors estimated from the user's position such as meals.
- the user's state includes an external state such as the user's posture, line of sight, presence / absence of exercise or amount of exercise, an internal state (biological information) such as the user's body temperature, sweating or pulse, or an emotion estimated based on these There are internal states.
- the user's posture includes the presence or absence of the stereoscopic object or the angle of looking down.
- the information related to the user includes information related to the attribute of the user.
- user attributes include the user's age, generation, gender, race, nationality, and the like.
- the information relating to the user includes information relating to the property of the user.
- the user's properties include the user's eyesight or facial features.
- the information related to the user includes user setting information.
- the display control unit 104 determines the first and second control modes based on information related to the user. Specifically, the depth perception information includes information about the user acquired by the user information acquisition unit 120, and the display control unit 104 responds to the action when the user's action is a predetermined action. The relationship between the first control and the second control to be performed is selected. For example, when the user's action is traveling, the display control unit 104 selects the first correspondence relationship described above, and performs only the first control, that is, the position control in the depth direction. This is because when the user is exercising, the motion parallax works, so that the user can easily perceive a sense of depth (perspective).
- the display control unit 104 determines the first range and the second range based on information related to the user. Specifically, the display control unit 104 determines the first position based on the user's age. For example, when the user's age is a child's age, the display control unit 104 brings the first position closer to the user. This is because the distance between the pupils is shorter than that of an adult, that is, the angle of convergence is small and the child is less burdensome.
- the first position may be determined based on other information that changes according to the interpupillary distance. Further, the first position may be determined directly based on the distance between the pupils of the user.
- the display control unit 104 adjusts the control amounts of the first control and the second control based on information related to the user. Specifically, when the user's action is stationary, the display control unit 104 selects the correlation, and determines the amount of the first control and the second control determined based on the first relationship. Adjust based on visual acuity. For example, the display control unit 104 changes the position determined based on the first relationship in a direction away from the user when the difference in visual acuity between the user's left and right is equal to or greater than a threshold value. This is because when the difference between the left and right visual acuity is large, stereoscopic viewing is difficult and the burden on the user is likely to increase as compared with the case where there is no difference between the left and right visual acuity.
- FIG. 10 is a flowchart conceptually showing processing of the information processing apparatus 100-2 according to the present embodiment. Note that description of processing that is substantially the same as the processing described above is omitted.
- the information processing apparatus 100-2 determines whether the user is stationary (step S602). Specifically, the display control unit 104 determines whether the information related to the user's behavior acquired by the user information acquisition unit 120 indicates the user's stillness. Note that information (for example, acceleration information or position information) for recognizing the user's action may be acquired by the user information acquisition unit 120, and in that case, the user may be acquired by the action recognition unit provided separately in the information processing apparatus 100-2. May be recognized.
- the information processing apparatus 100-2 determines the first position based on the user's age (step S604). Specifically, when the age of the user indicated by the information related to the user attribute acquired by the user information acquisition unit 120 is the age of a child, the display control unit 104 brings the first position closer to the user. Further, when the user's age is an adult age, the display control unit 104 does not change the first position or moves the first position away from the user. Note that the first position may be determined based on the distance between the pupils of the user instead of the age of the user.
- the information processing apparatus 100-2 determines whether the reference position is closer to the user than the first position (step S606).
- the information processing apparatus 100-2 determines the position in the depth direction and the size of the stereoscopic object based on the user's visual acuity and the first relationship. Determination is made (step S608). Specifically, the display control unit 104 sets the position in the depth direction to the first position when the difference between the left and right visual acuities of the user indicated by the information related to the user attribute acquired by the user information acquisition unit 120 is greater than or equal to the threshold value. The position is changed to a position farther from the user than the position determined based on the relationship. Further, the display control unit 104 changes the size of the stereoscopic object to a size larger than the size determined based on the first relationship.
- step S606 If it is determined in step S606 that the reference position is not closer to the user than the first position, or if it is determined in step S602 that the user is not stationary, the information processing apparatus 100-2
- the position in the depth direction is determined (step S610). Specifically, when the user's action is an exercise related to movement such as walking or an exercise such as sports, the display control unit 104 selects the first correspondence and sets the position in the depth direction based on the reference position. decide.
- the information processing apparatus 100-2 performs display processing with the determined position in the depth direction and the size of the stereoscopic object (step S612).
- step S602 when it is determined in step S602 that the user is not stationary, that is, is exercising, only the first control is performed according to the first correspondence relationship.
- the control unit 104 may not perform the first and second controls. This is because during exercise, from the viewpoint of safety, the user should be able to pay attention to the surroundings, and it is desirable to stop the stereoscopic display that is likely to lead to gaze.
- the depth perception information includes information relating to user attributes or information relating to user aspects. For this reason, by determining the first and second control modes suitable for each user, it is possible to reduce the burden according to the user and to suppress a sense of discomfort.
- FIG. 11 is a block diagram illustrating an example of a schematic functional configuration of an information processing device 100-3 according to the third embodiment of the present disclosure.
- the information processing apparatus 100-3 includes an environment information acquisition unit 130 in addition to the image generation unit 102, the display control unit 104, the storage unit 106, and the display unit 108.
- the environment information acquisition unit 130 acquires information related to the environment around the user (hereinafter also referred to as environment information).
- the environment information includes information relating to a visual aspect of a space in which the stereoscopic object is displayed (hereinafter also referred to as a display space).
- the visual aspect of the display space includes a non-material aspect or a material aspect such as a color or luminance of the display space. Examples of material aspects include the presence / absence of an object, number, arrangement, density, movement, or changes thereof.
- the arrangement of objects includes whether or not the arrangement of objects in the depth direction is equally spaced.
- the environmental information includes information related to the type of display space.
- the type of display space includes a type inside a building such as a corridor or a room, a type inside or outside a building such as indoor or outdoor, and a type of medium such as air or water existing in the display space.
- the display control unit 104 determines the first and second control modes based on the environment information.
- the depth perception information includes environment information acquired by the environment information acquisition unit 130, and the display control unit 104 determines that the type of display space indicated by the environment information is a predetermined type.
- the relationship between the first control and the second control corresponding to the aspect is selected. For example, when the display space is outdoors, the display control unit 104 selects the first correspondence relationship described above, and performs only the first control, that is, the position control in the depth direction. This is because a vehicle such as a bicycle or an automobile may pass outside in addition to a person outdoors, so that the burden on the user is reduced and the user is less likely to get sick from the viewpoint of safety.
- the display control unit 104 determines the first range and the second range based on the environment information. Specifically, the display control unit 104 determines the first position based on the material aspect of the display space. For example, when an object exists in the display space, the display control unit 104 brings the first position closer to the user. This is because when there is an object other than a stereoscopic object, in particular, an object in real space, the user can easily perceive depth, and the possibility of feeling uncomfortable increases.
- the display control unit 104 adjusts the control amounts of the first control and the second control based on the environment information. Specifically, when the display space is indoors, the display control unit 104 selects a correlation, and adjusts the first control amount determined based on the first relationship based on the luminance of the display space. To do. For example, when the brightness of the display space is greater than or equal to the threshold value, the display control unit 104 changes the position determined based on the first relationship in a direction approaching the user. This is because the peripheral information that can be grasped by the user increases as the brightness of the display space, that is, the real space on which the stereoscopic object is superimposed, increases, and the user's sense of depth (perspective) becomes easier to perceive.
- FIG. 12 is a flowchart conceptually showing processing of the information processing apparatus 100-3 according to this embodiment. Note that description of processing that is substantially the same as the processing described above is omitted.
- the information processing apparatus 100-3 determines whether the display space is indoors (step S702). Specifically, the display control unit 104 determines whether the information related to the type of display space acquired by the environment information acquisition unit 130 indicates indoors.
- the information processing apparatus 100-3 determines the first position based on the presence / absence of an object in the display space (step S704). Specifically, when the information related to the object in the display space acquired by the environment information acquisition unit 130 indicates the presence of the object, the display control unit 104 brings the first position closer to the user.
- the information processing apparatus 100-3 determines whether the reference position is closer to the user than the first position (step S706).
- the information processing apparatus 100-3 determines the position in the depth direction and the size of the stereoscopic object based on the luminance of the display space and the first relationship. Is determined (step S708). Specifically, when the luminance of the display space indicated by the information related to the visual aspect of the display space acquired by the environment information acquisition unit 130 is equal to or higher than the threshold, the display control unit 104 sets the position in the depth direction to the first position. To a position farther from the user than the position determined based on the relationship. Further, the display control unit 104 changes the size of the stereoscopic object to a size larger than the size determined based on the first relationship.
- step S706 If it is determined in step S706 that the reference position is not closer to the user than the first position, or if it is determined in step S702 that the display space is outdoor, the information processing apparatus 100-3 The direction position is determined (step S710). Specifically, when the information related to the type of display space indicates the outdoors, the display control unit 104 selects the first correspondence relationship and determines the position in the depth direction based on the reference position.
- the information processing apparatus 100-3 performs a display process with the determined position in the depth direction and the size of the stereoscopic object (step S712).
- the depth perception information includes environment information related to the environment of the display space. For this reason, the first control and the second control are performed according to the situation of the display destination of the stereoscopic object, thereby preventing the effect of reducing the burden on the user and suppressing the uncomfortable feeling under the situation. It becomes possible to do.
- the environmental information includes information relating to the visual aspect of the display space or information relating to the type of the display space. For this reason, by adjusting the amount of the first control and the second control according to the situation of the space visually recognized by the user, it is possible to suppress the burden on the user and the uncomfortable feeling suitable for the display space.
- the display space is a real space.
- the display space may be a virtual space.
- FIG. 13 is an explanatory diagram illustrating a hardware configuration of the information processing apparatus 100 according to an embodiment of the present disclosure.
- the information processing apparatus 100 includes a CPU (Central Processing Unit) 142, a ROM (Read Only Memory) 144, a RAM (Random Access Memory) 146, a bridge 148, a bus 150, and an interface. 152, an input device 154, an output device 156, a storage device 158, a drive 160, a connection port 162, and a communication device 164.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the CPU 142 functions as an arithmetic processing unit, and realizes operations of the image generation unit 102 and the display control unit 104 in the information processing apparatus 100 in cooperation with various programs.
- the CPU 142 may be a microprocessor.
- the ROM 144 stores programs or calculation parameters used by the CPU 142.
- the RAM 146 temporarily stores programs used in the execution of the CPU 142 or parameters that change as appropriate during the execution. Part of the storage unit 106 in the information processing apparatus 100 is realized by the ROM 144 and the RAM 146.
- the CPU 142, the ROM 144, and the RAM 146 are connected to each other by an internal bus including a CPU bus.
- the input device 154 generates an input signal based on an input by the user, such as a mouse, a keyboard, a touch panel, a button, a microphone, a switch, and a lever, and input by the user, and outputs the input signal to the CPU 142. It consists of a control circuit.
- a user of the information processing apparatus 100 can input various data or instruct a processing operation to the information processing apparatus 100 by operating the input device 154.
- the output device 156 performs output to a device such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, or a lamp as an example of the display unit 108 in the information processing device 100. Further, the output device 156 may output sound such as a speaker and headphones.
- a device such as a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device, or a lamp as an example of the display unit 108 in the information processing device 100. Further, the output device 156 may output sound such as a speaker and headphones.
- LCD liquid crystal display
- OLED Organic Light Emitting Diode
- the storage device 158 is a device for storing data.
- the storage device 158 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
- the storage device 158 stores programs executed by the CPU 142 and various data.
- the drive 160 is a reader / writer for a storage medium, and is built in or externally attached to the information processing apparatus 100.
- the drive 160 reads information recorded on a mounted removable storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 146.
- the drive 160 can also write information to a removable storage medium.
- connection port 162 is, for example, a bus for connecting to an information processing apparatus outside the information processing apparatus 100 or a peripheral device.
- the connection port 162 may be a USB (Universal Serial Bus).
- the communication device 164 is a communication interface configured by a communication device for connecting to a network, for example. Whether the communication device 164 is an infrared communication compatible device, a wireless LAN (Local Area Network) compatible communication device, or an LTE (Long Term Evolution) compatible communication device, wire communication that performs wired communication It may be a device.
- a wireless LAN Local Area Network
- LTE Long Term Evolution
- the first control is suppressed in a range that is a burden on the user by performing the first control and the second control according to different relationships depending on the range in the depth direction.
- the second control can be performed. As a result, it is possible to suppress the user's uncomfortable feeling while reducing the burden on the user.
- the first and second control modes suitable for each user are determined, so that the burden according to the user can be reduced and the uncomfortable feeling can be suppressed. Become.
- the first control and the second control are performed according to the situation of the display destination of the stereoscopic object, thereby reducing the burden on the user and suppressing the uncomfortable feeling. It is possible to prevent the effect from decreasing under the circumstances.
- the display object is a stereoscopic object, but the present technology is not limited to such an example.
- the display object may be an image that is not stereoscopically viewed by the user.
- the display object may be a real image image projected onto a display screen or a virtual image image projected onto a place without a screen.
- the depth perception information may be information related to a display device, a display method, or an application that displays a display object.
- the display device include an HMD, a 3D (three dimensional) television, or a 3D movie projector.
- the display method there are an optical see-through method, a video see-through method, a retinal projection method, and the like as described above.
- the application include navigation, behavior tracking, browser, e-mail software or game (particularly AR (Augmented Reality) game).
- the first and second control modes may be determined depending on whether navigation is being performed, that is, the user is moving.
- the processing when the number of display objects is singular has been mainly described.
- the first and the first display objects specified based on the user's line of sight Two controls may be performed.
- the information processing apparatus 100 may be applied to the medical field, the aircraft field, the agricultural field, or the automobile field.
- the information processing apparatus 100 superimposes a display object on a radiograph or MRI (Magnetic Resonance Imaging) image, or superimposes a display object on a surgical image or an operating room space.
- the discomfort is suppressed while the burden on the operator who visually recognizes the display object is reduced. Safety can be maintained.
- the information processing apparatus 100 is applied to a simulated flight apparatus.
- the simulated flight device displays a virtual view image that would be seen from the cockpit of the airplane to the trainee.
- it is possible to reduce the burden while suppressing the discomfort of the trainee who visually recognizes the displayed view field image, thereby maintaining the accuracy required for training for a long period of time. Training is possible.
- the information processing apparatus 100 displays a display object indicating the traveling route of the cultivator.
- plowing is performed without the cultivator deviating from the travel route by suppressing a sense of discomfort while reducing the burden on the farmer who visually recognizes the display object Work efficiency in agriculture can be improved.
- the information processing apparatus 100 displays a display object indicating a route to the destination.
- the burden on the driver who visually recognizes the display object is suppressed, and the burden is reduced, thereby improving safety in driving for a long time.
- a first display control unit that performs a first control on the position of the display object in the depth direction perceived by the user based on the eye movement
- a second display control unit that performs second control on the aspect of the display object that does not include the position in the depth direction as an aspect
- the first display control unit and the second display control unit are: In the first range in the depth direction, control based on the first relationship is performed, An information processing apparatus that performs control based on a second relationship different from the first relationship in a second range in the depth direction that is different from the first range.
- Control based on the first relationship is: For the first control, an amount related to a change in position relative to a reference position in the depth direction in which the display object is perceived is smaller than an amount related to the change in position in the control based on the second relationship,
- the second control includes a control in which an amount related to a change in the aspect with respect to the aspect of the display object at the reference position is larger than an amount related to the change in the aspect in the control based on the second relationship.
- the information processing apparatus according to 1).
- the information processing apparatus according to (2), wherein the first range includes a range closer to the user in the depth direction than the second range.
- the information processing apparatus according to (2) or (3), wherein the first relationship includes a correlation regarding a control amount between the first control and the second control.
- the correlation is a relationship in which one control amount of the first control and the second control is a control amount according to a difference between the other control amount and the other control amount at the reference position.
- the information processing apparatus according to (4) including: (6)
- the first display control unit and the second display control unit are: In the third range in the depth direction different from the first range, the control based on the correspondence relationship between the first control and the second control is performed (4) or
- the correspondence relationship includes a relationship in which one of the change in the position with respect to the first control and the change in the aspect with respect to the second control is performed and the other is not performed.
- the correspondence relationship includes a first correspondence relationship in which the change of the position with respect to the first control is performed and the change of the aspect with respect to the second control is not performed.
- the third range includes a range closer to the user in the depth direction than the first range, In the third range, the first display control unit and the second display control unit perform the first control and the second control based on the first correspondence relationship, (7) The information processing apparatus described in 1.
- the correspondence relationship includes a second correspondence relationship in which the change of the aspect with respect to the second control is performed and the change of the position with respect to the first control is not performed
- the third range includes a range farther from the user in the depth direction than the first range
- the first display control unit and the second display control unit perform the first control and the second control based on the second correspondence relationship, (7) Or the information processing apparatus according to (8).
- the first display control unit and the second display control unit are configured to control the first display object and the second display object so that the positions in the depth direction of each of the first display object and the second display object are within a predetermined range.
- the second control includes control of a size of the display object.
- the display object includes a stereoscopic object, The information processing apparatus according to any one of (1) to (12), wherein the first control includes control of parallax between a left-eye image and a right-eye image related to the stereoscopic object.
- the first display control unit and the second display control unit determine a mode of the first control and the second control based on depth perception information related to the perception of the depth of the user.
- the information processing apparatus according to any one of (1) to (13).
- the depth perception information includes information relating to a property of the display object or information relating to a visual aspect of the display object.
- the depth perception information includes information related to an attribute of the user or information related to an aspect of the user.
- the depth perception information includes information related to an environment around the user. (19) Performing a first control on the position of the display object in the depth direction perceived by the user based on the eye movement; Performing a second control on the aspect of the display object that does not include the position in the depth direction as an aspect; In the first range in the depth direction, control based on the first relationship is performed, In a second range in the depth direction different from the first range, performing control based on a second relationship different from the first relationship; Including an information processing method.
- a first display control function for performing a first control on the position of the display object in the depth direction perceived by the user based on the eye movement;
- a second display control function for performing second control on the aspect of the display object that does not include the position in the depth direction as an aspect;
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Architecture (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Controls And Circuits For Display Device (AREA)
Abstract
【課題】ユーザの負担を軽減しながら、ユーザの違和感を抑制することが可能な情報処理装置、情報処理方法およびプログラムを提供する。 【解決手段】表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御部と、前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御部と、を備え、前記第1の表示制御部および前記第2の表示制御部は、前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う、情報処理装置。
Description
本開示は、情報処理装置、情報処理方法およびプログラムに関する。
近年、撮像光学系技術の発達に伴い、画像が外界像に重畳されているように視認されるよう画像を表示する(以下、画像を重畳するとも称する。)表示装置についての研究開発が行われている。このような表示装置としては、例えば外光を透過させながら画像(虚像)を表示するハーフミラー等を有し、頭部に装着される表示装置がある。
しかし、外界像に画像が重畳される場合、外界像についての輻輳角と画像についての輻輳角との間の差が大きくなるほど、画像および外界像を観察するユーザの負担が大きくなる。
これに対して、特許文献1では、ユーザの観察位置に依存して、画像光の光軸と当該画像光に平行な画像光の光軸とをこれら光軸に対して水平な方向に移動させる眼鏡型の表示装置に係る発明が開示されている。このため、画像についての輻輳角と外界像についての輻輳角との差が縮まるように調整されることにより、ユーザの負担が軽減される。
しかし、特許文献1で開示される発明では、ユーザの負担が軽減される一方で、当該ユーザに違和感を与える可能性がある。例えば、画像についての輻輳角が変化すると、画像の奥行き方向の位置が変化し、ユーザが観察する画像の態様、例えば画像の大きさが変化する。このように、画像の態様が変化すると、ユーザに違和感を与えかねない。
そこで、本開示では、ユーザの負担を軽減しながら、ユーザの違和感を抑制することが可能な、新規かつ改良された情報処理装置、情報処理方法およびプログラムを提案する。
本開示によれば、表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御部と、前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御部と、を備え、前記第1の表示制御部および前記第2の表示制御部は、前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う、情報処理装置が提供される。
また、本開示によれば、表示制御部によって、表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行うことと、前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行うことと、前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行うことと、を含む、情報処理方法が提供される。
また、本開示によれば、表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御機能と、前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御機能と、前記第1の表示制御機能および前記第2の表示制御機能によって、前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う機能と、をコンピュータに実現させるためのプログラムが提供される。
以上説明したように本開示によれば、ユーザの負担を軽減しながら、ユーザの違和感を抑制することが可能な情報処理装置、情報処理方法およびプログラムが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
なお、説明は以下の順序で行うものとする。
1.第1の実施形態(所定の関係に基づく位置および態様の制御)
2.第2の実施形態(所定の関係とユーザ情報とに基づく制御)
3.第3の実施形態(所定の関係とユーザ周辺環境とに基づく制御)
4.本開示の一実施形態に係る情報処理装置のハードウェア構成
5.むすび
1.第1の実施形態(所定の関係に基づく位置および態様の制御)
2.第2の実施形態(所定の関係とユーザ情報とに基づく制御)
3.第3の実施形態(所定の関係とユーザ周辺環境とに基づく制御)
4.本開示の一実施形態に係る情報処理装置のハードウェア構成
5.むすび
また、説明の便宜上、第1~第3の実施形態による情報処理装置100の各々を、情報処理装置100-1~情報処理装置100-3のように、末尾に実施形態に対応する番号を付することにより区別する。
<1.第1の実施形態(所定の関係に基づく位置および態様の制御)>
まず、本開示の第1の実施形態に係る情報処理装置100-1について説明する。
まず、本開示の第1の実施形態に係る情報処理装置100-1について説明する。
<1-1.装置の構成>
図1を参照して、本開示の第1の実施形態に係る情報処理装置100-1の機能構成について説明する。図1は、本開示の第1の実施形態に係る情報処理装置100-1の概略的な機能構成の例を示すブロック図である。
図1を参照して、本開示の第1の実施形態に係る情報処理装置100-1の機能構成について説明する。図1は、本開示の第1の実施形態に係る情報処理装置100-1の概略的な機能構成の例を示すブロック図である。
図1に示したように、情報処理装置100-1は、画像生成部102、表示制御部104、記憶部106および表示部108を備える。
画像生成部102は、表示部108に表示される画像を生成する。具体的には、画像生成部102は、表示制御部104の指示に基づいて、表示オブジェクトとしての立体視オブジェクトをユーザに知覚せるための画像を生成する。例えば、画像生成部102は、表示制御部104から立体視のための画像の生成が指示されると、記憶部106に記憶される画像に係る情報に基づいて左眼用画像および右眼用画像(以下、まとめて立体視用画像とも称する。)を生成する。なお、記憶部106に立体視用画像が記憶されていてもよく、画像生成部102の代わりに通信部等によって外部装置から立体視用画像が取得されてもよい。
表示制御部104は、画像生成部102から得られる画像の表示制御を行う。具体的には、表示制御部104は、第1の表示制御部として、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての制御(第1の制御)を行う。より具体的には、表示制御部104は、画像生成部102によって生成される立体視用画像すなわち左眼用画像および右眼用画像の各々の水平方向の表示位置を制御することにより、ユーザに知覚される立体視オブジェクトの奥行き方向の位置を制御する。さらに、図2を参照して、立体視オブジェクトの表示制御処理について詳細に説明する。図2は、本実施形態に係る立体視オブジェクトの表示制御の基本処理を例示する図である。
表示制御部104は、取得される立体視用画像について立体表示のための処理を行う。具体的には、立体視用画像が図2に示すような仮想スクリーン1に表示されるように設定される場合、表示制御部104は、立体視用画像すなわち左眼用画像および右眼用画像の各々の表示位置を水平方向すなわち当該仮想スクリーン1の長辺方向にずらすことによって、左眼用画像と右眼用画像との間の視差を制御する。なお、仮想スクリーン1の位置は、光学的に設定され得るが、可変であってもよい。
例えば、表示制御部104は、立体視オブジェクトが仮想スクリーン1よりも手前に位置する、すなわちユーザに向かって飛び出すように知覚させる場合、左眼用画像を水平方向右に、右眼用画像を水平方向左にそれぞれシフトする。この場合、ユーザは、図2に示すような仮想スクリーン1からユーザに向かって飛び出す立体視オブジェクト10Aを知覚する。
また、例えば、表示制御部104は、立体視オブジェクトが仮想スクリーン1よりも奥に位置する、すなわちユーザに向かって引っ込むように知覚させる場合、左眼用画像を水平方向左に、右眼用画像を水平方向右にそれぞれシフトする。この場合、ユーザは、図2に示すような仮想スクリーン1からユーザに向かって引っ込む立体視オブジェクト10Cを知覚する。
なお、左眼用画像および右眼用画像の視差がない場合または人間にとって知覚されない程度に小さい場合には、平面の立体視用画像が知覚される。この場合、例えば、ユーザは図2に示したような仮想スクリーン1に立体視用画像が見える。
ここで、立体視オブジェクトの奥行き方向の位置が変化すると、当該立体視オブジェクトを知覚する人間の輻輳角も変化する。例えば、立体視オブジェクト10Bよりも手前(ユーザに近い側)に位置する立体視オブジェクト10Aについてのユーザの輻輳角RAは、立体視オブジェクト10Bについての輻輳角RBよりも小さい。
これに対し、輻輳角が大きくなるほど、ユーザの負担が大きくなることが知られている。例えば、輻輳角が大きいほど、観察時間を短くすることが推奨される。
また、輻輳角の変化によって、ユーザの負担がかかることも知られている。例えば、輻輳角の異なる複数の立体視オブジェクトが表示される場合、ユーザは、当該複数の立体視オブジェクトの各々を見る際にそれぞれ輻輳角を変更することになる。
一方で、ユーザの負担を軽減するために、輻輳角を変更する情報処理装置がある。しかし、画像についての輻輳角が変化すると、画像の奥行き方向の位置が変化し、その結果、画像の見え方が変化する。そのため、当該情報処理装置では、画像の見え方についてユーザに違和感を与える可能性がある。
そこで、本開示の各実施形態に係る情報処理装置100では、後述するような技術的特徴を有することにより、ユーザに違和感を与えることなく、ユーザの負担を軽減することが可能となる。
図1を参照して、情報処理装置100-1の機能構成についての説明に戻ると、記憶部106は、表示部108に表示される画像に係る情報および当該画像の表示制御に係る情報を記憶する。
表示部108は、表示制御部104の指示に基づいて画像を表示する。具体的には、表示部108は、表示制御部104から提供される立体視用画像を所定の立体視方式で表示する。例えば、当該所定の立体視方式は、ユーザの頭部に装着されるHMD(Head Mount Display)等のスコープ方式であり得るが、液晶シャッタもしくは偏光フィルタ等の眼鏡方式、またはレンチキュラもしくはパララックスバリア等の裸眼方式等の他の方式であってもよい。
また、表示部108の表示方式は、ハーフミラー等を利用することにより外界像を透過しながら虚像の画像を表示する、いわゆる光学シースルー方式であり得るが、その他の表示方式であってもよい。例えば、表示方式は、撮像装置を用いて外界像を取得し、取得される外界像に画像を重畳させることにより得られる実像の画像を表示する、いわゆるビデオシースルー方式であってもよく、直接的に網膜に画像光を照射することにより画像を結像させる網膜投射方式であってもよい。
<1-2.技術的特徴>
次に、本実施形態に係る情報処理装置100-1の技術的特徴について説明する。
次に、本実施形態に係る情報処理装置100-1の技術的特徴について説明する。
表示制御部104は、表示オブジェクトについての第1の制御および第2の制御を行う。具体的には、第1の制御は、上述した奥行き方向の位置についての制御であり、第2の制御は、当該奥行き方向の位置を態様として含まない立体視オブジェクトの態様についての制御である。なお、以下では、特に言及がない限り、「位置」は「奥行き方向の位置」を意味する。
((第2の制御:表示オブジェクトの態様についての制御))
まず、立体視オブジェクトの態様についての制御について説明する。表示制御部104は、第2の表示制御部として、奥行き方向の位置を態様として含まない立体視オブジェクトの態様についての制御を行う。具体的には、立体視オブジェクトの態様は、立体視オブジェクトの大きさである。表示制御部104は、立体視オブジェクトに係る立体視用画像の大きさを制御することにより、立体視オブジェクトの大きさを制御する。
まず、立体視オブジェクトの態様についての制御について説明する。表示制御部104は、第2の表示制御部として、奥行き方向の位置を態様として含まない立体視オブジェクトの態様についての制御を行う。具体的には、立体視オブジェクトの態様は、立体視オブジェクトの大きさである。表示制御部104は、立体視オブジェクトに係る立体視用画像の大きさを制御することにより、立体視オブジェクトの大きさを制御する。
なお、立体視オブジェクトの態様は、立体視オブジェクトについてユーザが奥行き(遠近)を感じる態様であれば、他の態様であってもよい。例えば、立体視オブジェクトの態様は、立体視オブジェクトの色彩、輝度、陰影、密集度または移動の速さであり得る。
((表示制御の範囲と関係))
表示制御部104は、奥行き方向における各範囲によって異なる表示制御を行う。具体的には、表示制御部104は、奥行き方向の第1の範囲では第1の関係に基づく制御を行い、第1の範囲と異なる奥行き方向の第2の範囲では、第1の関係と異なる第2の関係に基づく制御を行う。また、表示制御部104は、奥行き方向の第3の範囲では、第1の制御と2の制御との間における制御の有無についての対応関係に基づく制御を行う。以下、各範囲における表示制御について詳細に説明する。
表示制御部104は、奥行き方向における各範囲によって異なる表示制御を行う。具体的には、表示制御部104は、奥行き方向の第1の範囲では第1の関係に基づく制御を行い、第1の範囲と異なる奥行き方向の第2の範囲では、第1の関係と異なる第2の関係に基づく制御を行う。また、表示制御部104は、奥行き方向の第3の範囲では、第1の制御と2の制御との間における制御の有無についての対応関係に基づく制御を行う。以下、各範囲における表示制御について詳細に説明する。
(第1の範囲および第2の範囲)
第1の範囲における表示制御は、第2の範囲と相対的な関係を有する。具体的には、第1の範囲で行われる第1の関係に基づく制御においては、第1の制御について、表示オブジェクトが知覚される奥行き方向の位置(以下、基準位置とも称する。)に対する位置の変化に係る量が、第2の関係に基づく制御における当該位置の変化に係る量よりも小さい。また、第2の制御について、基準位置におけるに対する表示オブジェクトの態様に対する態様の変化に係る量が、第2の関係に基づく制御における当該態様の変化に係る量よりも大きい。さらに、第1の範囲は、第2の範囲よりも奥行方向についてユーザに近い範囲である。
第1の範囲における表示制御は、第2の範囲と相対的な関係を有する。具体的には、第1の範囲で行われる第1の関係に基づく制御においては、第1の制御について、表示オブジェクトが知覚される奥行き方向の位置(以下、基準位置とも称する。)に対する位置の変化に係る量が、第2の関係に基づく制御における当該位置の変化に係る量よりも小さい。また、第2の制御について、基準位置におけるに対する表示オブジェクトの態様に対する態様の変化に係る量が、第2の関係に基づく制御における当該態様の変化に係る量よりも大きい。さらに、第1の範囲は、第2の範囲よりも奥行方向についてユーザに近い範囲である。
また、第1の範囲における第1の制御と第2の制御との関係(第1の関係)は、第1の制御と第2の制御との間における制御量についての相関関係である。具体的には、当該相関関係は、第1の制御および第2の制御のうちの一方の制御量が、他方の制御量と基準位置における当該他方の制御量との差分に応じた制御量である関係である。例えば、表示制御部104は、立体視オブジェクトの奥行き方向のある位置についての奥行き方向の位置の制御量と基準位置についての当該制御量との差分に応じた大きさに立体視オブジェクトを制御する。
また、第2の範囲における第1の制御と第2の制御との関係(第2の関係)は、制御の有無についての対応関係である。具体的には、後述する第1の対応関係、すなわち第1の制御についての基準位置に対する奥行き方向の位置の変化が行われ、第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われない関係である。なお、第2の関係は、第1の範囲と同様に相関関係であってもよい。
さらに、図3を参照して、第1の範囲および第2の範囲における立体視オブジェクトの表示制御処理について詳細に説明する。図3は、本実施形態に係る情報処理装置100-1の第1の範囲および第2の範囲における立体視オブジェクトの表示制御処理の例を説明するための図である。なお、図3の上図は、知覚される立体視オブジェクトを示す図であり、下図は、本実施形態に係る制御後の立体視オブジェクトを示す図である。
まず、表示制御部104は、基準位置が第1の位置よりもユーザに近いかを判定する。例えば、表示制御部104は、知覚される立体視オブジェクト10Dの基準位置Pxが、図3の上図に示したような第1の位置P1よりも情報処理装置100-1を装着したユーザに近いかを判定する。第1の範囲は、第1の位置よりもユーザに近い範囲であり、第2の範囲は、第1の位置よりもユーザから遠い範囲である。なお、第1の位置は、ユーザが立体視オブジェクトの視認について負担を感じ始める位置であり得る。例えば、第1の位置は、ユーザからの奥行き方向の距離が1.5~3メートルの位置であり得る。当然ながら、様々な要因に応じて適した第1の位置は変わり得るため、ユーザから第1の位置への奥行き方向の距離は例示した長さよりも短くても長くてもよい。
なお、ユーザから基準位置までの距離(以下、観察距離とも称する。)に基づいて上記の判定処理が行われてもよい。例えば、観察距離は、ユーザからの距離が固定される、立体視用画像の表示される仮想スクリーン1からの飛出し量から算出され得る。また、立体視オブジェクトの位置が現実空間とマッピングされる場合には、距離センサ等を用いて立体視オブジェクトの位置に相当する現実空間における位置までの距離を算出することにより観察距離が算出されてもよい。また、表示制御部104は、第1の位置と後述する第2の位置との間に基準位置があるかを判定してもよい。
基準位置が第1の位置よりも近いと判定される場合、表示制御部104は、基準位置に基づいて第1の制御および第2の制御の制御量を決定する。具体的には、表示制御部104は、第1の制御の量を、基準位置における第1の制御の量に対する所定の割合に相当する量に決定する。所定の割合は、第2の範囲における割合よりも小さい。例えば、表示制御部104は、視差量を、図3の上図に示したような基準位置Pxにおける視差量の所定の割合、例えば0.9(90%)に相当する量に決定する。なお、変化の所定の割合の代わりに、所定の差分値が用いられてもよい。この場合、表示制御部104は、例えば、視差量を、基準位置における視差量から所定の差分値を減算して得られる量に決定する。
なお、上記の変化に係る量は、基準位置に基づく可変量であってもよい。ここで、第1および第2の制御に対する違和感の発生のしやすさが基準位置によって変わり得る。例えば、基準位置が上述した第2の位置寄りである場合、表示オブジェクトの大きさの制御についてユーザが違和感を覚えやすくなる。そこで、表示制御部104は、基準位置に基づいて上記の変化に係る量を決定する。例えば、表示制御部104は、観察距離に応じて基準位置に対する変化の割合を決定する。この場合、基準位置に基づいて第1の制御および第2の制御量が決定されることにより、ユーザの違和感の発生を抑制することが可能となる。なお、基準位置が上述した第2の位置寄りである場合、ユーザの輻輳角が大きくなることにより、負担が大きくなる。そのため、ユーザの負担が重視される場合は、基準位置が第2の位置寄りになるほど、位置の変化に係る量を増加させてもよい。
また、表示制御部104は、基準位置に基づいて立体視オブジェクトの態様の制御量を決定する。具体的には、表示制御部104は、第2の制御の量を、基準位置における態様に対する所定の割合に相当する量に決定する。所定の割合は、第2の範囲における割合よりも大きい。例えば、表示制御部104は、立体視オブジェクトの大きさを、図3の上図に示したような基準位置Pxにおける大きさに対して所定の割合、例えば1.1(110%)に相当する量に決定する。なお、変化の所定の割合の代わりに、所定の差分値が用いられてもよい。この場合、表示制御部104は、例えば、立体視オブジェクトの大きさを、基準位置における大きさから所定の差分値を加算して得られる大きさに決定する。
なお、表示制御部104は、基準位置に基づいて第1の制御および第2の制御のうちの一方の制御量を決定し、決定された一方の制御量に応じて他方の制御量を決定してもよい。具体的には、表示制御部104は、決定された奥行き方向の位置の制御量と基準位置についての奥行き方向の位置の制御量との差分に応じて立体視オブジェクトの態様の制御量を決定する。例えば、表示制御部104は、図3の下図に示したような位置Pyに立体視オブジェクトを知覚させるための制御量と図3の上図に示したような位置Pxに立体視オブジェクトを知覚させるための制御量との差分に応じて、立体視オブジェクトの大きさの制御量(例えば拡大率)を決定する。
次に、表示制御部104は、決定された制御量に基づいて第1の制御および第2の制御を行う。例えば、表示制御部104は、図3に示したように、位置Pxよりもユーザから遠い位置Pyに立体視オブジェクト10dを配置する。また、表示制御部104は、図3に示したように、立体視オブジェクト10dを位置Pxにおける立体視オブジェクト10Dよりも拡大する。
(第3の範囲)
第3の範囲では、第1の制御と第2の制御との間における制御の有無についての対応関係に基づく制御が行われる。具体的には、対応関係は、第1の制御についての基準位置に対する奥行き方向の位置の変化および第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化のうちの一方が行われ、他方が行われない関係である。なお、第3の範囲は、第1の範囲よりも奥行き方向においてユーザに近い範囲(近範囲)と、第1の範囲よりも奥行き方向においてユーザから遠い範囲(遠範囲)とを含む。以下に、第3の範囲における対応関係に基づく表示制御処理について詳細に説明する。なお、上述した相関関係における処理と実質的に同一である処理については説明を省略する。
第3の範囲では、第1の制御と第2の制御との間における制御の有無についての対応関係に基づく制御が行われる。具体的には、対応関係は、第1の制御についての基準位置に対する奥行き方向の位置の変化および第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化のうちの一方が行われ、他方が行われない関係である。なお、第3の範囲は、第1の範囲よりも奥行き方向においてユーザに近い範囲(近範囲)と、第1の範囲よりも奥行き方向においてユーザから遠い範囲(遠範囲)とを含む。以下に、第3の範囲における対応関係に基づく表示制御処理について詳細に説明する。なお、上述した相関関係における処理と実質的に同一である処理については説明を省略する。
(第3の範囲:近範囲)
表示制御部104は、第3の範囲のうちの近範囲では、第1の対応関係に従って第1の制御および第2の制御を行う。第1の対応関係は、第1の制御についての基準位置に対する奥行き方向の位置の変化が行われ、第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われない関係である。図4を参照して、第1の対応関係に従った立体視オブジェクトの表示制御処理の例について詳細に説明する。図4は、本実施形態に係る情報処理装置100-1における第1の対応関係に従った立体視オブジェクトの表示制御処理の例を説明するための図である。
表示制御部104は、第3の範囲のうちの近範囲では、第1の対応関係に従って第1の制御および第2の制御を行う。第1の対応関係は、第1の制御についての基準位置に対する奥行き方向の位置の変化が行われ、第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われない関係である。図4を参照して、第1の対応関係に従った立体視オブジェクトの表示制御処理の例について詳細に説明する。図4は、本実施形態に係る情報処理装置100-1における第1の対応関係に従った立体視オブジェクトの表示制御処理の例を説明するための図である。
まず、表示制御部104は、基準位置が第2の位置よりもユーザに近いかを判定する。例えば、表示制御部104は、知覚される立体視オブジェクト10Eの位置Pxが、図4に示したような位置P2よりもユーザに近いかを判定する。なお、第2の位置は、例えばユーザからの奥行き方向の距離が、0.5~1メートルの位置であり得る。当然ながら、第1の位置と同様に、様々な要因に応じて適した第2の位置は変わり得るため、ユーザから第2の位置への奥行き方向の距離は例示した長さよりも短くても長くてもよい。
基準位置が第2の位置よりも近いと判定される場合、表示制御部104は、基準位置に基づいて第1の制御の制御量を決定する。例えば、表示制御部104は、第1の制御のみによって基準位置に立体視オブジェクトが知覚されるように第1の制御の量を決定する。この場合、表示制御部104は、第2の制御を行わない。なお、表示制御部104は、第2の制御の量をゼロにすることにより、第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われないようにしてもよい。
次に、表示制御部104は、決定された制御量に基づいて第1の制御を行う。例えば、表示制御部104は、奥行き方向の位置が基準位置となるように立体視用画像すなわち左眼用画像および右眼用画像の視差量を制御することにより、図4に示したような位置Pxに立体視オブジェクト10Eをユーザに知覚させる。
(第3の範囲:遠範囲)
表示制御部104は、第3の範囲のうちの遠範囲では、第2の対応関係に従って第1の制御および第2の制御を行う。第2の対応関係は、第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われ、第1の制御についての基準位置に対する奥行き方向の位置の変化が行われない関係である。図5を参照して、第2の対応関係に従った立体視オブジェクトの表示制御処理の例について詳細に説明する。図5は、本実施形態に係る情報処理装置100-1における第2の対応関係に従った立体視オブジェクトの表示制御処理の例を説明するための図である。
表示制御部104は、第3の範囲のうちの遠範囲では、第2の対応関係に従って第1の制御および第2の制御を行う。第2の対応関係は、第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われ、第1の制御についての基準位置に対する奥行き方向の位置の変化が行われない関係である。図5を参照して、第2の対応関係に従った立体視オブジェクトの表示制御処理の例について詳細に説明する。図5は、本実施形態に係る情報処理装置100-1における第2の対応関係に従った立体視オブジェクトの表示制御処理の例を説明するための図である。
まず、表示制御部104は、基準位置が第3の位置よりもユーザから遠いかを判定する。例えば、表示制御部104は、知覚される立体視オブジェクト10Fの位置Pxが、図5の上図に示したような仮想スクリーン1よりもユーザに近いかを判定する。なお、当然ながら、第3の位置は、仮想スクリーン1の位置と異なる位置であってもよい。
基準位置が第3の位置よりも遠いと判定される場合、表示制御部104は、基準位置に基づいて第2の制御の制御量を決定する。例えば、表示制御部104は、第2の制御のみによって基準位置に立体視オブジェクトが知覚されるように第2の制御の量を決定する。この場合、表示制御部104は、第1の制御を行わない。なお、表示制御部104は、第1の制御の量をゼロにすることにより、第1の制御についての基準位置に対する奥行き方向の位置の変化が行われないようにしてもよい。
次に、表示制御部104は、決定された制御量に基づいて第2の制御を行う。例えば、表示制御部104は、図5の下図に示したような立体視オブジェクト10fのように立体視オブジェクトを縮小することにより、図5の上図に示したような位置Pxに立体視オブジェクト10Eがあるようにユーザに立体視オブジェクトを知覚させる。
((制御態様の決定))
第1の制御および第2の制御の態様は、奥行きの知覚に係る情報(以下、奥行き知覚情報とも称する。)によっても決定される。表示制御部104は、当該奥行き知覚情報に基づいて、以下のような、第1の制御および第2の制御の態様の決定処理を行う。
第1の制御および第2の制御の態様は、奥行きの知覚に係る情報(以下、奥行き知覚情報とも称する。)によっても決定される。表示制御部104は、当該奥行き知覚情報に基づいて、以下のような、第1の制御および第2の制御の態様の決定処理を行う。
まず、表示制御部104は、奥行き知覚情報に基づいて、上述した第1の制御と第2の制御との関係を決定する。
また、表示制御部104は、奥行き知覚情報に基づいて、第1の範囲および第2の範囲を決定する。具体的には、表示制御部104は、奥行き知覚情報に基づいて、上述した第1の位置を決定する。
また、表示制御部104は、奥行き知覚情報に基づいて、第1の制御および第2の制御の制御量を調整する。具体的には、表示制御部104は、上述した各範囲における関係に基づく表示制御により決定された制御量を、奥行き知覚情報に基づいて変更する。
ここで、奥行き知覚情報は、立体視オブジェクトに係る情報を含む。具体的には、立体視オブジェクトに係る情報は、立体視オブジェクトの性質に係る情報を含む。より具体的には、立体視オブジェクトの性質は、立体視オブジェクトの種類であり、表示制御部104は、立体視オブジェクトの種類が予め決定される種類である場合に、当該種類に対応する関係を選択する。例えば、表示制御部104は、立体視オブジェクトが文字または図形である場合、上述した第2の対応関係を選択し、第2の制御すなわち立体視オブジェクトの態様の制御のみを行う。
立体視オブジェクトの種類としては、文字(文章)、図形、記号もしくは写真等のコンテンツの種類、静止画もしくは動画等のコンテンツの表示変化の種類、または立体視オブジェクトに係る物体が現実に存在する物体(類似する物体も含む。)であるか否か等の物体の種類等がある。特に、立体視オブジェクトが、現実に存在する物体の中でも、大きさが知覚されやすい物体、例えば手で触れる機会が多い、缶、ペットボトル、コインまたは筆記用具等の物体である場合、表示制御部104は、第1の範囲を小さくするか、第1の関係に基づく制御では第2の制御の量を抑制するか、または第1の対応関係を選択する。
また、立体視オブジェクトの性質としては、立体視オブジェクトの種類の他に、立体視オブジェクトの解像度、フレームレート、材質、重要度、または継続表示の有無等がある。
また、立体視オブジェクトに係る情報としては、立体視オブジェクトの性質に係る情報の他に、立体視オブジェクトの視覚的態様に係る情報がある。例えば、立体視オブジェクトの視覚的態様としては、立体視オブジェクトの色彩、輝度、陰影、密集度または移動の速さ等がある。
なお、奥行き知覚情報が予め決定される条件を満たさない場合は、表示制御部104は、上述した関係に基づく第1の制御および第2の制御を行う。
<1-3.装置の処理>
次に、図6を参照して、本実施形態に係る情報処理装置100-1の処理について説明する。図6は、本実施形態に係る情報処理装置100-1の処理を概念的に示すフローチャートである。なお、上述した処理と実質的に同一である処理については、説明を省略する。
次に、図6を参照して、本実施形態に係る情報処理装置100-1の処理について説明する。図6は、本実施形態に係る情報処理装置100-1の処理を概念的に示すフローチャートである。なお、上述した処理と実質的に同一である処理については、説明を省略する。
まず、情報処理装置100-1は、立体視オブジェクトが文字であるかを判定する(ステップS502)。具体的には、表示制御部104は、立体視オブジェクトに係る立体視用画像の内容を示す情報に基づいて、当該立体視オブジェクトが文字であるかを判定する。
立体視オブジェクトが文字でないと判定されると、情報処理装置100-1は、立体視オブジェクトに係る物体の種類に基づいて第1の位置を決定する(ステップS504)。具体的には、表示制御部104は、立体視オブジェクトに係る物体が現実に存在するか否かに基づいて第1の位置を決定する。例えば、表示制御部104は、当該物体が現実に存在する物体である場合、第1の位置をユーザに近づける。
次に、情報処理装置100-1は、基準位置が第2の位置よりもユーザに近いかを判定する(ステップS506)。具体的には、表示制御部104は、基準位置および第2の位置の座標情報を用いて当該判定を行う。
基準位置が第2の位置よりもユーザに近いと判定されると、情報処理装置100-1は、奥行き方向の位置を決定する(ステップS508)。具体的には、表示制御部104は、基準位置に基づいて立体視オブジェクトが配置される奥行き方向の位置すなわち視差量を決定する。
基準位置が第2の位置よりもユーザに近くにないと判定されると、情報処理装置100-1は、基準位置が第1の位置よりもユーザに近いかを判定する(ステップS510)。
基準位置が第1の位置よりもユーザに近いと判定されると、情報処理装置100-1は、第1の関係に基づいて奥行き方向の位置および立体視オブジェクトの大きさを決定する(ステップS512)。具体的には、表示制御部104は、奥行き方向の位置を基準位置よりもユーザから遠い位置に決定し、立体視オブジェクトのサイズを基準位置におけるサイズよりも大きいサイズに決定する。
基準位置が第1の位置よりもユーザに近くにないと判定されると、情報処理装置100-1は、基準位置が第3の位置よりもユーザに近いかを判定する(ステップS514)。
基準位置が第3の位置よりもユーザに近いと判定されると、情報処理装置100-1は、奥行き方向の位置を決定する(ステップS516)。なお、当ステップにおける処理は、ステップS508における処理と実質的に同一である。
基準位置が第3の位置よりもユーザに近くにないと判定される場合、またはステップS502にて立体視オブジェクトが文字であると判定される場合、情報処理装置100-1は、立体視オブジェクトの大きさを決定する(ステップS518)。具体的には、表示制御部104は、基準位置に基づいて立体視オブジェクトの大きさを決定する。
次に、情報処理装置100-1は、決定された奥行き方向の位置および立体視オブジェクトの大きさで表示処理を行う(ステップS520)。具体的には、表示制御部104は、決定された奥行き方向の位置に、決定された大きさで立体視オブジェクトを表示部108に表示させる。
<1-4.第1の実施形態のまとめ>
このように、本開示の第1の実施形態によれば、情報処理装置100-1は、表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行い、奥行き方向の位置を態様として含まない表示オブジェクトの態様についての第2の制御を行う。そして、情報処理装置100-1は、第1の制御および第2の制御として、奥行き方向の第1の範囲では第1の関係に基づく制御を行い、第1の範囲と異なる奥行き方向の第2の範囲では、第1の関係と異なる第2の関係に基づく制御を行う。このため、奥行き方向の範囲によって異なる関係に従って第1の制御および第2の制御が行われることにより、ユーザの負担となる範囲では第1の制御が抑制され、第2の制御が行われ得る。その結果、ユーザの負担を軽減しながら、ユーザの違和感を抑制することが可能となる。
このように、本開示の第1の実施形態によれば、情報処理装置100-1は、表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行い、奥行き方向の位置を態様として含まない表示オブジェクトの態様についての第2の制御を行う。そして、情報処理装置100-1は、第1の制御および第2の制御として、奥行き方向の第1の範囲では第1の関係に基づく制御を行い、第1の範囲と異なる奥行き方向の第2の範囲では、第1の関係と異なる第2の関係に基づく制御を行う。このため、奥行き方向の範囲によって異なる関係に従って第1の制御および第2の制御が行われることにより、ユーザの負担となる範囲では第1の制御が抑制され、第2の制御が行われ得る。その結果、ユーザの負担を軽減しながら、ユーザの違和感を抑制することが可能となる。
また、第1の関係に基づく制御は、第1の制御について、表示オブジェクトが知覚される奥行き方向の基準位置に対する位置の変化に係る量が、第2の関係に基づく制御における当該位置の変化に係る量よりも小さく、第2の制御について、基準位置における表示オブジェクトの態様に対する態様の変化に係る量が、第2の関係に基づく制御における当該態様の変化に係る量よりも大きい、制御を含む。このため、第1の範囲では、第1の制御が抑制され、第2の制御が行われることにより、ユーザの負担の軽減とユーザの違和感の抑制との両立が可能となる。
また、第1の範囲は、第2の範囲よりも奥行き方向においてユーザに近い範囲を含む。このため、ユーザの負担が大きくなりやすいユーザに近い範囲にて第1の制御が抑制され、第2の制御が行われることにより、ユーザの負担をより軽減することが可能となる。
また、第1の関係は、第1の制御と第2の制御との間における制御量についての相関関係を含む。このため、奥行き方向の位置と表示オブジェクトの態様とが相関して制御されることにより、ユーザの違和感の発生をより効果的に抑制することが可能となる。
また、相関関係は、第1の制御および第2の制御のうちの一方の制御量が、他方の制御量と基準位置における他方の制御量との差分に応じた制御量である関係を含む。このため、基準位置に表示オブジェクトが知覚されるように第1および第2の制御が行われることにより、ユーザの違和感の発生をさらに抑制することが可能となる。
また、情報処理装置100-1は、第1の制御および第2の制御として、第1の範囲と異なる奥行き方向の第3の範囲では、第1の制御と第2の制御との間における制御の有無についての対応関係に基づく制御を行う。このため、奥行き方向の範囲よっては、第1の制御および第2の制御の両方が行われることにより、ユーザの違和感またはユーザの負担が発生し得るが、これを防止することが可能となる。
また、対応関係は、第1の制御についての基準位置に対する奥行き方向の位置の変化および第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化のうちの一方が行われ、他方が行われない関係を含む。このため、第1及び第2の制御のうちのいずれか一方のみについて基準位置に対する変化に係る制御が行われることにより、他方についての制御によるユーザの負担またはユーザの違和感の発生を防止することが可能となる。
また、対応関係は、第1の制御についての基準位置に対する奥行き方向の位置の変化が行われ、第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われない第1の対応関係を含み、第3の範囲は、第1の範囲よりも奥行き方向においてユーザに近い範囲を含む。そして、情報処理装置100-1は、第3の範囲では、第1の対応関係に基づく第1の制御および第2の制御を行う。ここで、表示オブジェクトがユーザにある程度近くなると、ユーザは表示オブジェクトの態様、例えば大きさについての知覚が鋭くなる。そこで、本構成では、表示オブジェクトの態様についての知覚が鋭くなる位置よりも基準位置がユーザに近い場合に第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われないことにより、第2の制御によるユーザの違和感の発生を防止することが可能となる。
また、対応関係は、第2の制御についての基準位置における立体視オブジェクトの態様に対する態様の変化が行われ、第1の制御についての基準位置に対する奥行き方向の位置の変化が行われない第2の対応関係を含み、第3の範囲は、第1の範囲よりも奥行き方向においてユーザから遠い範囲を含む。そして、情報処理装置100-1は、第3の範囲では、第2の対応関係に基づく第1の制御および第2の制御を行う。ここで、表示オブジェクトがユーザからある程度離れると、ユーザは表示オブジェクトの奥行き方向の位置についての知覚が鈍くなる。そこで、本構成では、表示オブジェクトの奥行き方向の位置についての知覚が鈍くなる位置よりも基準位置がユーザから遠い場合に第1の制御についての基準位置に対する奥行き方向の位置の変化が行われないことにより、第1の制御によるユーザの負担の発生を防止することが可能となる。
また、表示オブジェクトの態様の制御は、表示オブジェクトの大きさの制御を含む。このため、ユーザが奥行きを認識する手がかりとなる表示オブジェクトの大きさが制御されることにより、第2の制御によるユーザに違和感を与える可能性を低下させることが可能となる。
また、表示オブジェクトは、立体視オブジェクトを含み、第1の制御は、立体視オブジェクトに係る左眼用画像および右眼用画像の視差の制御を含む。このため、表示オブジェクトを視認するユーザに負担がかかりやすい立体視オブジェクトについて、上述の構成が適用されることにより、ユーザの負担についてのより大きな軽減効果を得ることが可能となる。
また、情報処理装置100-1は、ユーザの奥行きの知覚に係る奥行き知覚情報に基づいて、第1の制御および第2の制御の態様を決定する。このため、さらにユーザの奥行き感(遠近感)に応じて第1の制御および第2の制御の態様が判断されることにより、状況により適した負担軽減および違和感の抑制が可能となる。
また、情報処理装置100-1は、奥行き知覚情報に基づいて、第1の範囲および第2の範囲を決定する。このため、範囲のみを制御することにより、処理の複雑化を抑制しながら、状況に適した負担軽減および違和感の抑制が可能となる。
また、奥行き知覚情報は、表示オブジェクトの性質に係る情報または表示オブジェクトの視覚的態様に係る情報を含む。このため、ユーザの奥行き感(遠近感)に直接的に影響を与えやすい情報に基づいて第1および第2の制御の態様が決定されることにより、ユーザの違和感の発生をより効果的に抑制することが可能となる。
また、情報処理装置100-1は、ユーザの頭部に装着される情報処理装置を含む。このため、ユーザの間近で表示が行われることにより、表示に対する臨場感をユーザに与えることが可能となる。
<1-5.変形例>
以上、本開示の第1の実施形態について説明した。なお、本実施形態は、上述の例に限定されない。以下に、本実施形態の変形例について説明する。
以上、本開示の第1の実施形態について説明した。なお、本実施形態は、上述の例に限定されない。以下に、本実施形態の変形例について説明する。
本実施形態の変形例として、情報処理装置100-1は、2つ以上の立体視オブジェクトの奥行き方向の位置が所定の範囲内に収まるように第1の制御および第2の制御を行ってもよい。具体的には、表示制御部104は、第1の立体視オブジェクトおよび第2の立体視オブジェクトの各々の奥行き方向の位置が所定の範囲内に収まるように、第1および第2の立体視オブジェクトの少なくとも一方について、上述の相関関係に従って第1の制御および第2の制御を行う。
(同じタイミングに表示される表示オブジェクト間の制御)
例えば、第2の立体視オブジェクトは、第1の立体視オブジェクトと同じタイミングで表示される。さらに、図7を参照して、本変形例の処理の例について詳細に説明する。図7は、本実施形態の変形例に係る情報処理装置100-1における立体視オブジェクトの表示制御処理の例を説明するための図である。
例えば、第2の立体視オブジェクトは、第1の立体視オブジェクトと同じタイミングで表示される。さらに、図7を参照して、本変形例の処理の例について詳細に説明する。図7は、本実施形態の変形例に係る情報処理装置100-1における立体視オブジェクトの表示制御処理の例を説明するための図である。
表示制御部104は、複数の立体視オブジェクトが同じタイミングで表示される場合、当該複数の立体視オブジェクトについての基準位置間の距離を算出する。例えば、表示制御部104は、図7の上図に示したような複数の立体視オブジェクト20A~20Cの各々の表示が予定される場合、当該立体視オブジェクト20A~20Cの基準位置PA~PCの間の距離をそれぞれ算出する。
次に、表示制御部104は、算出される基準位置間の距離が閾値以上であるかを判定する。例えば、表示制御部104は、算出された基準位置PA~PCの間の距離の各々がそれぞれ閾値以上であるかを判定する。なお、閾値は、ユーザによって設定されてもよく、予め決定される固定値であってもよい。
算出される基準位置間の距離が閾値以上であると判定される場合、表示制御部104は、複数の立体視オブジェクトの含まれる空間を奥行き方向で圧縮する。具体的には、表示制御部104は、基準となる立体視オブジェクト(以下、基準立体視オブジェクトとも称する。)以外の立体視オブジェクトについて、当該基準立体視オブジェクトの基準位置に基づいて、相関関係に従った第1の制御および第2の制御を行う。例えば、表示制御部104は、基準位置PA~PCの間の距離の各々のうちの少なくとも1つが閾値以上であると判定された場合、立体視オブジェクト20A~20Cのうちの1つ、例えば立体視オブジェクト20Aを基準立体視オブジェクトとして選択する。次に、表示制御部104は、選択された立体視オブジェクト20A以外の立体視オブジェクト20Bおよび20Cについて、図7の上図に示したような空間30が下図に示したような空間32に奥行き方向について圧縮されるように奥行き方向の位置PbおよびPcを決定する。また、表示制御部104は、当該決定される奥行き方向の位置PbおよびPcに応じて立体視オブジェクトの大きさをそれぞれ決定する。そして、表示制御部104は、決定された奥行き方向の位置PbおよびPcに決定された大きさで図7の下図に示したような立体視オブジェクト20bおよび20cをそれぞれ配置し、基準位置Paに大きさを変えることなく立体視オブジェクト20aを配置する。
なお、基準立体視オブジェクトは、観察距離に基づいて選択され得る。例えば、観察距離がいずれの他の立体視オブジェクトよりも短い立体視オブジェクトが基準立体視オブジェクトとして選択される。この場合、いずれの他の立体視オブジェクトよりもユーザに近い立体視オブジェクトについて第1の制御および第2の制御についての基準位置に対する変化に係る制御が行われないことにより、本変形例の処理によるユーザの違和感の発生を抑制することが可能となる。
また、上記では、基準立体視オブジェクト以外の立体視オブジェクトについて所定の関係に基づく第1の制御および第2の制御が行われるとしたが、複数の立体視オブジェクトの全てについて当該第1の制御および第2の制御が行われてもよい。
(異なるタイミングで表示される表示オブジェクト間の制御)
上記では、同じタイミングで表示される立体視オブジェクト間で奥行き方向の位置が寄せられる例を説明したが、異なるタイミングで表示される立体視オブジェクトの間で奥行き方向の位置が寄せられてもよい。具体的には、上記の第2の立体視オブジェクトは、上記の第1の立体視オブジェクトの表示されるタイミングと隣接するタイミングで表示される。さらに、図8を参照して、本変形例の処理の他の例について詳細に説明する。図8は、本実施形態の変形例に係る情報処理装置100-1における立体視オブジェクトの表示制御処理の他の例を説明するための図である。
上記では、同じタイミングで表示される立体視オブジェクト間で奥行き方向の位置が寄せられる例を説明したが、異なるタイミングで表示される立体視オブジェクトの間で奥行き方向の位置が寄せられてもよい。具体的には、上記の第2の立体視オブジェクトは、上記の第1の立体視オブジェクトの表示されるタイミングと隣接するタイミングで表示される。さらに、図8を参照して、本変形例の処理の他の例について詳細に説明する。図8は、本実施形態の変形例に係る情報処理装置100-1における立体視オブジェクトの表示制御処理の他の例を説明するための図である。
まず、表示制御部104は、ある時間において立体視オブジェクトを表示部108に表示させる。例えば、表示制御部104は、第2の制御を行うことなく、図8の左上図に示したような基準位置PDに知覚されるように第1の制御を行うことにより立体視オブジェクト20Dを配置する。そのため、知覚される立体視オブジェクト20dの位置Pdは基準位置PDに相当する。
次に、表示制御部104は、立体視オブジェクトの表示を切り替える際に、次の時間に表示される立体視オブジェクト(以下、次の時間の立体視オブジェクトとも称する。)と前の時間に表示されていた立体視オブジェクト(以下、前の時間の立体視オブジェクトとも称する。)との間の奥行き方向の距離を算出する。例えば、表示制御部104は、次の時間に、図8の右上図に示したような立体視オブジェクト20Eの表示が予定される場合、前の時間の立体視オブジェクト20Dの奥行き方向の位置Pdと立体視オブジェクト20Eの基準位置PEとの間の距離を算出する。
次に、表示制御部104は、算出される奥行き方向の距離が閾値以上であるかを判定する。例えば、表示制御部104は、奥行き方向の位置PDと基準位置PEとの間の距離が閾値以上であるかを判定する。
算出される奥行き方向の距離が閾値以上であると判定される場合、表示制御部104は、次の時間の立体視オブジェクトの含まれる空間を奥行き方向で圧縮する。具体的には、表示制御部104は、前の時間の立体視オブジェクトの奥行き方向の位置に基づいて、次の時間の立体視オブジェクトについて、相関関係に従った第1の制御および第2の制御を行う。例えば、表示制御部104は、位置Pdと基準位置PEとの間の距離が閾値以上であると判定された場合、次の時間の立体視オブジェクト20Eについて、図8の右上図に示したような空間34が右下図に示したような空間36に奥行き方向について圧縮されるように奥行き方向の位置Peを決定する。また、表示制御部104は、決定された当該決定される奥行き方向の位置Peに応じて立体視オブジェクトの大きさを決定する。そして、表示制御部104は、決定された奥行き方向の位置Peに立体視オブジェクトの大きさで図8の右下図に示したような立体視オブジェクト20eを表示部108に表示させる。
このように、本実施形態の変形例によれば、情報処理装置100-1は、第1の立体視オブジェクトおよび第2の立体視オブジェクトの各々の奥行き方向の位置が所定の範囲内に収まるように、第1および第2の立体視オブジェクトの少なくとも一方について、相関関係に従って第1の制御および第2の制御を行う。このため、表示オブジェクトの奥行き方向の位置が互いに近くに寄せられることにより、第1および第2の表示オブジェクトの両方を視認するユーザの輻輳角の調節のような眼の働きが低減され、当該ユーザの負担を軽減することが可能となる。
また、第2の表示オブジェクトは、第1の表示オブジェクトと同じタイミングで表示される他の表示オブジェクトを含む。このため、複数の表示オブジェクトが同じタイミングで表示される場合に、表示オブジェクトの各々を視認するための眼の調節量が低減されることにより、ユーザの負担を軽減することが可能となる。
また、第2の立体視オブジェクトは、第1の立体視オブジェクトの表示されるタイミングと隣接するタイミングで表示される。このため、表示オブジェクトの表示が切り替わった際に、切り替え前後での眼の調節量が低減されることにより、ユーザの負担を軽減することが可能となる。
<2.第2の実施形態(所定の関係とユーザ情報とに基づく制御)>
以上、本開示の第1の実施形態に係る情報処理装置100-1について説明した。続いて、本開示の第2の実施形態に係る情報処理装置100-2について説明する。
以上、本開示の第1の実施形態に係る情報処理装置100-1について説明した。続いて、本開示の第2の実施形態に係る情報処理装置100-2について説明する。
<2-1.装置の構成>
まず、図9を参照して、本開示の第2の実施形態に係る情報処理装置100-2の機能構成について説明する。図9は、本開示の第2の実施形態に係る情報処理装置100-2の概略的な機能構成の例を示すブロック図である。
まず、図9を参照して、本開示の第2の実施形態に係る情報処理装置100-2の機能構成について説明する。図9は、本開示の第2の実施形態に係る情報処理装置100-2の概略的な機能構成の例を示すブロック図である。
図9に示したように、情報処理装置100-2は、画像生成部102、表示制御部104、記憶部106および表示部108に加えて、ユーザ情報取得部120を備える。
ユーザ情報取得部120は、情報処理装置100-2のユーザに係る情報を取得する。具体的には、ユーザに係る情報は、ユーザの態様に係る情報を含む。より具体的には、ユーザの態様は、ユーザの行動である。例えば、ユーザの行動としては、歩行、走行もしくは静止等の移動に係る行動、テニス、水泳もしくは階段昇降等の運動、エスカレータもしくはエレベータ等の移動手段の利用または映画館での映画鑑賞もしくは飲食店での食事等のユーザの位置から推定される行動等がある。
また、ユーザの態様としては、ユーザの行動の他に、ユーザの状態がある。例えば、ユーザの状態としては、ユーザの姿勢、視線、運動の有無もしくは運動量等の外的状態またはユーザの体温、発汗もしくは脈拍等の体内状態(生体情報)もしくはこれらに基づいて推定される感情等の内的状態等がある。特に、ユーザの姿勢としては、立体視オブジェクトの見下ろしの有無または見下ろし角度がある。
また、ユーザに係る情報は、ユーザの属性に係る情報を含む。例えば、ユーザの属性としては、ユーザの年齢、世代、性別、人種または国籍等がある。また、ユーザに係る情報は、ユーザの性質に係る情報を含む。例えば、ユーザの性質としては、ユーザの視力または顔立ち等がある。また、ユーザに係る情報は、ユーザの設定情報を含む。
<2-2.技術的特徴>
次に、本実施形態に係る情報処理装置100-2の技術的特徴について説明する。なお、第1の実施形態における技術的特徴と実質的に同一である特徴については説明を省略する。
次に、本実施形態に係る情報処理装置100-2の技術的特徴について説明する。なお、第1の実施形態における技術的特徴と実質的に同一である特徴については説明を省略する。
(制御態様の決定)
表示制御部104は、ユーザに係る情報に基づいて第1および第2の制御の態様を決定する。具体的には、奥行き知覚情報は、ユーザ情報取得部120によって取得されるユーザに係る情報を含み、表示制御部104は、ユーザの行動が予め決定される行動である場合に、当該行動に対応する第1の制御と第2の制御との関係を選択する。例えば、表示制御部104は、ユーザの行動が走行である場合、上述した第1の対応関係を選択し、第1の制御すなわち奥行き方向の位置の制御のみを行う。これは、ユーザが運動している場合、運動視差が働くことにより、ユーザは奥行き感(遠近感)を知覚しやすくなるからである。
表示制御部104は、ユーザに係る情報に基づいて第1および第2の制御の態様を決定する。具体的には、奥行き知覚情報は、ユーザ情報取得部120によって取得されるユーザに係る情報を含み、表示制御部104は、ユーザの行動が予め決定される行動である場合に、当該行動に対応する第1の制御と第2の制御との関係を選択する。例えば、表示制御部104は、ユーザの行動が走行である場合、上述した第1の対応関係を選択し、第1の制御すなわち奥行き方向の位置の制御のみを行う。これは、ユーザが運動している場合、運動視差が働くことにより、ユーザは奥行き感(遠近感)を知覚しやすくなるからである。
また、表示制御部104は、ユーザに係る情報に基づいて第1の範囲および第2の範囲を決定する。具体的には、表示制御部104は、ユーザの年齢に基づいて第1の位置を決定する。例えば、表示制御部104は、ユーザの年齢が子供の年齢である場合、第1の位置をユーザに近づける。これは、子供は、大人よりも瞳孔間距離が短い、すなわち輻輳角が小さく、負担がかかりにくいからである。なお、瞳孔間距離に応じて変化する他の情報に基づいて第1の位置が決定されてもよい。また、直接的にユーザの瞳孔間距離に基づいて第1の位置が決定されてもよい。
また、表示制御部104は、ユーザに係る情報に基づいて第1の制御および第2の制御の制御量を調整する。具体的には、表示制御部104は、ユーザの行動が静止である場合、相関関係を選択し、第1の関係に基づいて決定される第1の制御および第2の制御の量をユーザの視力に基づいて調整する。例えば、表示制御部104は、ユーザの左右の視力の差が閾値以上である場合、第1の関係に基づいて決定される位置をユーザから遠ざかる方向に変更する。これは、左右の視力の差が大きい場合、左右の視力差が無い場合と比べて立体視が困難であり、ユーザの負担が大きくなりやすいからである。
<2-3.装置の処理>
次に、図10を参照して、本実施形態に係る情報処理装置100-2の処理について説明する。図10は、本実施形態に係る情報処理装置100-2の処理を概念的に示すフローチャートである。なお、上述した処理と実質的に同一である処理については、説明を省略する。
次に、図10を参照して、本実施形態に係る情報処理装置100-2の処理について説明する。図10は、本実施形態に係る情報処理装置100-2の処理を概念的に示すフローチャートである。なお、上述した処理と実質的に同一である処理については、説明を省略する。
まず、情報処理装置100-2は、ユーザが静止しているかを判定する(ステップS602)。具体的には、表示制御部104は、ユーザ情報取得部120によって取得されるユーザの行動に係る情報がユーザの静止を示すかを判定する。なお、ユーザの行動を認識するための情報(例えば加速度情報または位置情報等)がユーザ情報取得部120によって取得されてもよく、その場合、情報処理装置100-2の別途備える行動認識部によってユーザの行動が認識されてもよい。
ユーザが静止していると判定されると、情報処理装置100-2は、ユーザの年齢に基づいて第1の位置を決定する(ステップS604)。具体的には、表示制御部104は、ユーザ情報取得部120によって取得されたユーザの属性に係る情報の示すユーザの年齢が子供の年齢である場合、第1の位置をユーザに近づける。また、表示制御部104は、ユーザの年齢が大人の年齢である場合、第1の位置を変更しないか、または第1の位置をユーザから遠ざける。なお、ユーザの年齢に代えて、ユーザの瞳孔間距離に基づいて第1の位置が決定されてもよい。
次に、情報処理装置100-2は、基準位置が第1の位置よりもユーザに近いかを判定する(ステップS606)。
基準位置が第1の位置よりもユーザに近いと判定されると、情報処理装置100-2は、ユーザの視力と第1の関係とに基づいて奥行き方向の位置および立体視オブジェクトの大きさを決定する(ステップS608)。具体的には、表示制御部104は、ユーザ情報取得部120によって取得されたユーザの属性に係る情報の示すユーザの左右の視力の差が閾値以上である場合、奥行き方向の位置を、第1の関係に基づいて決定される位置よりもユーザから遠い位置に変更する。また、表示制御部104は、立体視オブジェクトのサイズを、第1の関係に基づいて決定されたサイズよりも大きいサイズに変更する。
ステップS606にて基準位置が第1の位置よりもユーザの近くにないと判定されるか、またはステップS602にて、ユーザが静止していないと判定されると、情報処理装置100-2は、奥行き方向の位置を決定する(ステップS610)。具体的には、表示制御部104は、ユーザの行動が歩行等の移動に係る運動またはスポーツ等の運動である場合、第1の対応関係を選択し、基準位置に基づいて奥行き方向の位置を決定する。
次に、情報処理装置100-2は、決定された奥行き方向の位置および立体視オブジェクトの大きさで表示処理を行う(ステップS612)。
なお、上記では、ステップS602にてユーザが静止していない、すなわち運動していると判定される場合、第1の対応関係に従って第1の制御のみが行われるとしたが、この場合に、表示制御部104は、第1および第2の制御を行わないとしてもよい。これは、運動中においては、安全の観点から、ユーザは周辺に注意を配ることができる状態であるべきであり、注視につながりやすい立体表示は停止されることが望ましいからである。
<2-4.第2の実施形態のまとめ>
このように、本開示の第2の実施形態によれば、奥行き知覚情報は、ユーザの属性に係る情報またはユーザの態様に係る情報を含む。このため、個々のユーザに適した第1および第2の制御の態様が決定されることにより、ユーザに応じた負担の軽減および違和感の抑制が可能となる。
このように、本開示の第2の実施形態によれば、奥行き知覚情報は、ユーザの属性に係る情報またはユーザの態様に係る情報を含む。このため、個々のユーザに適した第1および第2の制御の態様が決定されることにより、ユーザに応じた負担の軽減および違和感の抑制が可能となる。
<3.第3の実施形態(所定の関係とユーザ周辺環境とに基づく制御)>
以上、本開示の第2の実施形態に係る情報処理装置100-2について説明した。続いて、本開示の第3の実施形態に係る情報処理装置100-3について説明する。
以上、本開示の第2の実施形態に係る情報処理装置100-2について説明した。続いて、本開示の第3の実施形態に係る情報処理装置100-3について説明する。
<3-1.装置の構成>
まず、図11を参照して、本開示の第3の実施形態に係る情報処理装置100-3の機能構成について説明する。図11は、本開示の第3の実施形態に係る情報処理装置100-3の概略的な機能構成の例を示すブロック図である。
まず、図11を参照して、本開示の第3の実施形態に係る情報処理装置100-3の機能構成について説明する。図11は、本開示の第3の実施形態に係る情報処理装置100-3の概略的な機能構成の例を示すブロック図である。
図11に示したように、情報処理装置100-3は、画像生成部102、表示制御部104、記憶部106および表示部108に加えて、環境情報取得部130を備える。
環境情報取得部130は、ユーザの周辺の環境に係る情報(以下、環境情報とも称する。)を取得する。具体的には、環境情報は、立体視オブジェクトが表示される空間(以下、表示空間とも称する。)の視覚的態様に係る情報を含む。例えば、表示空間の視覚的態様としては、表示空間の色彩もしくは輝度等の物質的でない態様または物質的な態様がある。物質的な態様としては、物体の有無、数、配置、密集度、動きまたはこれらの変化等がある。特に、物体の配置としては、物体の奥行き方向の配置が等間隔であるか否かがある。
また、環境情報は、表示空間の種類に係る情報を含む。例えば、表示空間の種類としては、廊下もしくは部屋等の建物内部の種類、屋内もしくは屋外等の建物内外の種類、表示空間に存在する空気もしくは水等の媒体の種類等がある。
<3-2.技術的特徴>
表示制御部104は、環境情報に基づいて第1および第2の制御の態様を決定する。具体的には、奥行き知覚情報は、環境情報取得部130によって取得される環境情報を含み、表示制御部104は、環境情報の示す表示空間の種類が予め決定される種類である場合に、当該態様に対応する第1の制御と第2の制御との関係を選択する。例えば、表示制御部104は、表示空間が屋外である場合、上述した第1の対応関係を選択し、第1の制御すなわち奥行き方向の位置の制御のみを行う。これは、屋外では、人以外に自転車または自動車等の乗り物が通行する可能性があるため、安全の観点から、ユーザの負担を軽減し、ユーザが酔いにくいようにするためである。
表示制御部104は、環境情報に基づいて第1および第2の制御の態様を決定する。具体的には、奥行き知覚情報は、環境情報取得部130によって取得される環境情報を含み、表示制御部104は、環境情報の示す表示空間の種類が予め決定される種類である場合に、当該態様に対応する第1の制御と第2の制御との関係を選択する。例えば、表示制御部104は、表示空間が屋外である場合、上述した第1の対応関係を選択し、第1の制御すなわち奥行き方向の位置の制御のみを行う。これは、屋外では、人以外に自転車または自動車等の乗り物が通行する可能性があるため、安全の観点から、ユーザの負担を軽減し、ユーザが酔いにくいようにするためである。
また、表示制御部104は、環境情報に基づいて第1の範囲および第2の範囲を決定する。具体的には、表示制御部104は、表示空間の物質的な態様に基づいて第1の位置を決定する。例えば、表示制御部104は、表示空間に物体が存在する場合、第1の位置をユーザに近づける。これは、立体視オブジェクトの他に物体、特に現実空間の物体が存在する場合、ユーザは奥行きを知覚しやすくなり、違和感を覚える可能性が高まるからである。
また、表示制御部104は、環境情報に基づいて第1の制御および第2の制御の制御量を調整する。具体的には、表示制御部104は、表示空間が屋内である場合、相関関係を選択し、第1の関係に基づいて決定される第1の制御の量を表示空間の輝度に基づいて調整する。例えば、表示制御部104は、表示空間の輝度が閾値以上である場合、第1の関係に基づいて決定される位置をユーザに近づく方向に変更する。これは、表示空間すなわち立体視オブジェクトの重畳先である現実空間の輝度が高いほど、ユーザが把握可能な周辺情報が増加し、ユーザの奥行き感(遠近感)が知覚されやすくなるからである。
<3-3.装置の処理>
次に、図12を参照して、本実施形態に係る情報処理装置100-3の処理について説明する。図12は、本実施形態に係る情報処理装置100-3の処理を概念的に示すフローチャートである。なお、上述した処理と実質的に同一である処理については、説明を省略する。
次に、図12を参照して、本実施形態に係る情報処理装置100-3の処理について説明する。図12は、本実施形態に係る情報処理装置100-3の処理を概念的に示すフローチャートである。なお、上述した処理と実質的に同一である処理については、説明を省略する。
まず、情報処理装置100-3は、表示空間が屋内であるかを判定する(ステップS702)。具体的には、表示制御部104は、環境情報取得部130によって取得される表示空間の種類に係る情報が屋内を示すかを判定する。
表示空間が屋内であると判定されると、情報処理装置100-3は、表示空間の物体有無に基づいて第1の位置を決定する(ステップS704)。具体的には、表示制御部104は、環境情報取得部130によって取得された表示空間の物体に係る情報が物体の存在を示す場合、第1の位置をユーザに近づける。
次に、情報処理装置100-3は、基準位置が第1の位置よりもユーザに近いかを判定する(ステップS706)。
基準位置が第1の位置よりもユーザに近いと判定されると、情報処理装置100-3は、表示空間の輝度と第1の関係とに基づいて奥行き方向の位置および立体視オブジェクトの大きさを決定する(ステップS708)。具体的には、表示制御部104は、環境情報取得部130によって取得された表示空間の視覚的態様に係る情報の示す表示空間の輝度が閾値以上である場合、奥行き方向の位置を、第1の関係に基づいて決定された位置よりもユーザから遠い位置に変更する。また、表示制御部104は、立体視オブジェクトのサイズを、第1の関係に基づいて決定されたサイズよりも大きいサイズに変更する。
ステップS706にて基準位置が第1の位置よりもユーザの近くにないと判定されるか、またはステップS702にて表示空間が屋外であると判定されると、情報処理装置100-3は、奥行き方向の位置を決定する(ステップS710)。具体的には、表示制御部104は、表示空間の種類に係る情報が屋外を示す場合、第1の対応関係を選択し、基準位置に基づいて奥行き方向の位置を決定する。
次に、情報処理装置100-3は、決定された奥行き方向の位置および立体視オブジェクトの大きさで表示処理を行う(ステップS712)。
<3-4.第3の実施形態のまとめ>
このように、本開示の第3の実施形態によれば、奥行き知覚情報は、表示空間の環境に係る環境情報を含む。このため、立体視オブジェクトの表示先の状況に応じて第1の制御および第2の制御が行われることにより、ユーザの負担の軽減および違和感の抑制の効果が当該状況下で低下することを防止することが可能となる。
このように、本開示の第3の実施形態によれば、奥行き知覚情報は、表示空間の環境に係る環境情報を含む。このため、立体視オブジェクトの表示先の状況に応じて第1の制御および第2の制御が行われることにより、ユーザの負担の軽減および違和感の抑制の効果が当該状況下で低下することを防止することが可能となる。
また、環境情報は、表示空間の視覚的態様に係る情報または表示空間の種類に係る情報を含む。このため、ユーザの視認する空間の状況に合わせて第1の制御および第2の制御の量が調整されることにより、表示空間に適したユーザの負担および違和感の抑制が可能となる。
なお、上記では、表示空間が現実空間である例を説明したが、表示空間は仮想空間であってもよい。
<4.本開示の一実施形態に係る情報処理装置のハードウェア構成>
以上、本開示の各実施形態に係る情報処理装置100について説明した。上述した情報処理装置100の処理は、ソフトウェアと、以下に説明する情報処理装置100のハードウェアとの協働により実現される。
以上、本開示の各実施形態に係る情報処理装置100について説明した。上述した情報処理装置100の処理は、ソフトウェアと、以下に説明する情報処理装置100のハードウェアとの協働により実現される。
図13は、本開示の一実施形態に係る情報処理装置100のハードウェア構成を示した説明図である。図13に示したように、情報処理装置100は、CPU(Central Processing Unit)142と、ROM(Read Only Memory)144と、RAM(Random Access Memory)146と、ブリッジ148と、バス150と、インターフェース152と、入力装置154と、出力装置156と、ストレージ装置158と、ドライブ160と、接続ポート162と、通信装置164とを備える。
CPU142は、演算処理装置として機能し、各種プログラムと協働して情報処理装置100内の画像生成部102および表示制御部104の動作を実現する。また、CPU142は、マイクロプロセッサであってもよい。ROM144は、CPU142が使用するプログラムまたは演算パラメータ等を記憶する。RAM146は、CPU142の実行にいて使用するプログラムまたは実行において適宜変化するパラメータ等を一時記憶する。ROM144およびRAM146により、情報処理装置100内の記憶部106の一部が実現される。CPU142、ROM144およびRAM146は、CPUバスなどから構成される内部バスにより相互に接続されている。
入力装置154は、例えば、マウス、キーボード、タッチパネル、ボタン、マイクロホン、スイッチおよびレバーなどユーザが情報を入力するための入力手段、およびユーザによる入力に基づいて入力信号を生成し、CPU142に出力する入力制御回路などから構成されている。情報処理装置100のユーザは、入力装置154を操作することにより、情報処理装置100に対して各種のデータを入力したり処理動作を指示したりすることができる。
出力装置156は、例えば情報処理装置100内の表示部108の一例として、液晶ディスプレイ(LCD)装置、OLED(Organic Light Emitting Diode)装置、ランプなどの装置への出力を行う。さらに、出力装置156は、スピーカおよびヘッドフォンなどの音声出力を行ってもよい。
ストレージ装置158は、データ格納用の装置である。ストレージ装置158は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されるデータを削除する削除装置等を含んでもよい。ストレージ装置158は、CPU142が実行するプログラムや各種データを格納する。
ドライブ160は、記憶媒体用リーダライタであり、情報処理装置100に内蔵、あるいは外付けされる。ドライブ160は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記憶媒体に記録されている情報を読み出して、RAM146に出力する。また、ドライブ160は、リムーバブル記憶媒体に情報を書込むこともできる。
接続ポート162は、例えば、情報処理装置100の外部の情報処理装置または周辺機器と接続するためのバスである。また、接続ポート162は、USB(Universal Serial Bus)であってもよい。
通信装置164は、例えば、ネットワークに接続するための通信デバイスで構成される通信インターフェースである。通信装置164は、赤外線通信対応装置であっても、無線LAN(Local Area Network)対応通信装置であっても、LTE(Long Term Evolution)対応通信装置であっても、有線による通信を行うワイヤー通信装置であってもよい。
<5.むすび>
以上、本開示の第1の実施形態によれば、奥行き方向の範囲によって異なる関係に従って第1の制御および第2の制御が行われることにより、ユーザの負担となる範囲では第1の制御が抑制され、第2の制御が行われ得る。その結果、ユーザの負担を軽減しながら、ユーザの違和感を抑制することが可能となる。
以上、本開示の第1の実施形態によれば、奥行き方向の範囲によって異なる関係に従って第1の制御および第2の制御が行われることにより、ユーザの負担となる範囲では第1の制御が抑制され、第2の制御が行われ得る。その結果、ユーザの負担を軽減しながら、ユーザの違和感を抑制することが可能となる。
また、本開示の第2の実施形態によれば、個々のユーザに適した第1および第2の制御の態様が決定されることにより、ユーザに応じた負担の軽減および違和感の抑制が可能となる。
また、本開示の第3の実施形態によれば、立体視オブジェクトの表示先の状況に応じて第1の制御および第2の制御が行われることにより、ユーザの負担の軽減および違和感の抑制の効果が当該状況下で低下することを防止することが可能となる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
例えば、上記実施形態では、表示オブジェクトが立体視オブジェクトであるとしたが、本技術はかかる例に限定されない。例えば、表示オブジェクトはユーザに立体視されない画像であってもよい。例えば、表示オブジェクトは、表示画面に投影される実像の画像であったり、画面のない場所に投影される虚像の画像であったりする。
上記実施形態では、表示オブジェクト、ユーザまたは表示空間の環境に係る情報のような様々な奥行き知覚情報について説明したが、奥行き知覚情報は他の情報であってもよい。例えば、奥行き知覚情報は、表示オブジェクトを表示する表示装置、表示方式またはアプリケーションに係る情報であり得る。表示装置としては、HMD、3D(three dimensional)テレビジョンまたは3D映画の映写機等がある。また、表示方式としては、上述したような光学シースルー方式、ビデオシースルー方式または網膜投射方式等がある。また、アプリケーションとしては、ナビゲーション、行動追跡、ブラウザ、電子メールソフトウェアまたはゲーム(特にAR(Augmented Reality)ゲーム)等がある。例えば、情報処理装置100で起動しているアプリケーションがナビゲーションである場合、ナビゲーション中すなわちユーザが移動中であるかに応じて第1および第2の制御の態様が決定され得る。
また、上記実施形態では、奥行き知覚情報に基づいて第1の制御および第2の制御の態様についての3種の決定処理を行う例を説明したが、当該3種の決定処理のうちの1種または2種の決定処理が行われてもよく、奥行き知覚情報に基づく当該決定処理が行われなくてもよい。
また、上記実施形態では、主に表示オブジェクトが単数である場合の処理について説明したが、複数の表示オブジェクトが存在する場合には、ユーザの視線に基づいて特定される表示オブジェクトについて第1および第2の制御が行われてもよい。
また、本開示の各実施形態に係る情報処理装置100は、医療分野、航空機分野、農業分野または自動車分野に適用されてもよい。例えば、医療分野においては、情報処理装置100によって、レントゲン写真またはMRI(Magnetic Resonance Imaging)画像に表示オブジェクトが重畳されたり、手術映像または手術室の空間に表示オブジェクトが重畳されたりする。この場合、本開示の各実施形態の構成によれば、表示オブジェクトを視認する術者等の負担が軽減されながら違和感が抑制されることにより、医療行為が長時間にわたる場合であっても医療の安全性が維持され得る。
また、航空機分野においては、例えば、情報処理装置100が模擬飛行装置に適用される。模擬飛行装置は、飛行機の操縦席から見えるであろう仮想的な視界画像を訓練者に表示する。この場合、本開示の各実施形態の構成によれば、表示される視界画像を視認する訓練者の違和感が抑制されながら負担が軽減されることにより、訓練に要求される精度を保ちながら長期間にわたる訓練が可能となる。
また、農業分野においては、例えば、田畑を耕耘する際に、情報処理装置100によって、耕運機の走行ルートを示す表示オブジェクトが表示される。この場合、本開示の各実施形態の構成によれば、表示オブジェクトを視認する農作業者等の負担が軽減されながら違和感が抑制されることにより、耕運機が走行ルートから外れることなく耕耘が行われ、農業における作業効率が改善され得る。
また、自動車分野においては、例えば、情報処理装置100によって、目的地までのルートを示す表示オブジェクトが表示される。この場合、本開示の各実施形態の構成によれば、表示オブジェクトを視認する運転手の違和感が抑制されながら負担が軽減されることにより、長時間の運転における安全性が向上され得る。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
また、上記の実施形態のフローチャートに示されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的にまたは個別的に実行される処理をも含む。また時系列的に処理されるステップでも、場合によっては適宜順序を変更することが可能であることは言うまでもない。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御部と、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御部と、を備え、
前記第1の表示制御部および前記第2の表示制御部は、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う、情報処理装置。
(2)
前記第1の関係に基づく制御は、
第1の制御について、前記表示オブジェクトが知覚される奥行き方向の基準位置に対する位置の変化に係る量が、前記第2の関係に基づく制御における前記位置の変化に係る量よりも小さく、
第2の制御について、前記基準位置における前記表示オブジェクトの態様に対する態様の変化に係る量が、前記第2の関係に基づく制御における前記態様の変化に係る量よりも大きい、制御を含む、前記(1)に記載の情報処理装置。
(3)
前記第1の範囲は、前記第2の範囲よりも前記奥行き方向において前記ユーザに近い範囲を含む、前記(2)に記載の情報処理装置。
(4)
前記第1の関係は、前記第1の制御と前記第2の制御との間における制御量についての相関関係を含む、前記(2)または(3)に記載の情報処理装置。
(5)
前記相関関係は、前記第1の制御および前記第2の制御のうちの一方の制御量が、他方の制御量と前記基準位置における前記他方の制御量との差分に応じた制御量である関係を含む、前記(4)に記載の情報処理装置。
(6)
前記第1の表示制御部および前記第2の表示制御部は、
前記第1の範囲と異なる前記奥行き方向の第3の範囲では、前記第1の制御と前記第2の制御との間における制御の有無についての対応関係に基づく制御を行う、前記(4)または(5)に記載の情報処理装置。
(7)
前記対応関係は、前記第1の制御についての前記位置の変化および前記第2の制御についての前記態様の変化のうちの一方が行われ、他方が行われない関係を含む、前記(6)に記載の情報処理装置。
(8)
前記対応関係は、前記第1の制御についての前記位置の変化が行われ、前記第2の制御についての前記態様の変化が行われない第1の対応関係を含み、
前記第3の範囲は、前記第1の範囲よりも前記奥行き方向において前記ユーザに近い範囲を含み、
前記第1の表示制御部および前記第2の表示制御部は、前記第3の範囲では、前記第1の対応関係に基づく前記第1の制御および前記第2の制御を行う、前記(7)に記載の情報処理装置。
(9)
前記対応関係は、前記第2の制御についての前記態様の変化が行われ、前記第1の制御についての前記位置の変化が行われない第2の対応関係を含み、
前記第3の範囲は、前記第1の範囲よりも前記奥行き方向において前記ユーザから遠い範囲を含み、
前記第1の表示制御部および前記第2の表示制御部は、前記第3の範囲では、前記第2の対応関係に基づく前記第1の制御および前記第2の制御を行う、前記(7)または(8)に記載の情報処理装置。
(10)
前記第1の表示制御部および前記第2の表示制御部は、第1の表示オブジェクトおよび第2の表示オブジェクトの各々の前記奥行き方向の位置が所定の範囲内に収まるように、前記第1の表示オブジェクトおよび前記第2の表示オブジェクトの少なくとも一方について、前記相関関係に従って前記第1の制御および前記第2の制御を行う、前記(4)~(9)のいずれか1項に記載の情報処理装置。
(11)
前記第2の表示オブジェクトは、前記第1の表示オブジェクトと同じタイミングで表示される他の前記表示オブジェクトを含む、前記(10)に記載の情報処理装置。
(12)
前記第2の制御は、前記表示オブジェクトの大きさの制御を含む、前記(1)~(11)のいずれか1項に記載の情報処理装置。
(13)
前記表示オブジェクトは、立体視オブジェクトを含み、
前記第1の制御は、前記立体視オブジェクトに係る左眼用画像および右眼用画像の視差の制御を含む、前記(1)~(12)のいずれか1項に記載の情報処理装置。
(14)
前記第1の表示制御部および前記第2の表示制御部は、前記ユーザの前記奥行きの知覚に係る奥行き知覚情報に基づいて、前記第1の制御および前記第2の制御の態様を決定する、前記(1)~(13)のいずれか1項に記載の情報処理装置。
(15)
前記第1の表示制御部および前記第2の表示制御部は、前記奥行き知覚情報に基づいて、前記第1の範囲および前記第2の範囲を決定する、前記(14)に記載の情報処理装置。
(16)
前記奥行き知覚情報は、前記表示オブジェクトの性質に係る情報または前記表示オブジェクトの視覚的態様に係る情報を含む、前記(14)または(15)に記載の情報処理装置。
(17)
前記奥行き知覚情報は、前記ユーザの属性に係る情報または前記ユーザの態様に係る情報を含む、前記(14)~(16)のいずれか1項に記載の情報処理装置。
(18)
前記奥行き知覚情報は、前記ユーザの周辺の環境に係る情報を含む、前記(14)~(17)のいずれか1項に記載の情報処理装置。
(19)
表示制御部によって、表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行うことと、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行うことと、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行うことと、
を含む、情報処理方法。
(20)
表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御機能と、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御機能と、
前記第1の表示制御機能および前記第2の表示制御機能によって、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う機能と、
をコンピュータに実現させるためのプログラム。
(1)
表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御部と、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御部と、を備え、
前記第1の表示制御部および前記第2の表示制御部は、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う、情報処理装置。
(2)
前記第1の関係に基づく制御は、
第1の制御について、前記表示オブジェクトが知覚される奥行き方向の基準位置に対する位置の変化に係る量が、前記第2の関係に基づく制御における前記位置の変化に係る量よりも小さく、
第2の制御について、前記基準位置における前記表示オブジェクトの態様に対する態様の変化に係る量が、前記第2の関係に基づく制御における前記態様の変化に係る量よりも大きい、制御を含む、前記(1)に記載の情報処理装置。
(3)
前記第1の範囲は、前記第2の範囲よりも前記奥行き方向において前記ユーザに近い範囲を含む、前記(2)に記載の情報処理装置。
(4)
前記第1の関係は、前記第1の制御と前記第2の制御との間における制御量についての相関関係を含む、前記(2)または(3)に記載の情報処理装置。
(5)
前記相関関係は、前記第1の制御および前記第2の制御のうちの一方の制御量が、他方の制御量と前記基準位置における前記他方の制御量との差分に応じた制御量である関係を含む、前記(4)に記載の情報処理装置。
(6)
前記第1の表示制御部および前記第2の表示制御部は、
前記第1の範囲と異なる前記奥行き方向の第3の範囲では、前記第1の制御と前記第2の制御との間における制御の有無についての対応関係に基づく制御を行う、前記(4)または(5)に記載の情報処理装置。
(7)
前記対応関係は、前記第1の制御についての前記位置の変化および前記第2の制御についての前記態様の変化のうちの一方が行われ、他方が行われない関係を含む、前記(6)に記載の情報処理装置。
(8)
前記対応関係は、前記第1の制御についての前記位置の変化が行われ、前記第2の制御についての前記態様の変化が行われない第1の対応関係を含み、
前記第3の範囲は、前記第1の範囲よりも前記奥行き方向において前記ユーザに近い範囲を含み、
前記第1の表示制御部および前記第2の表示制御部は、前記第3の範囲では、前記第1の対応関係に基づく前記第1の制御および前記第2の制御を行う、前記(7)に記載の情報処理装置。
(9)
前記対応関係は、前記第2の制御についての前記態様の変化が行われ、前記第1の制御についての前記位置の変化が行われない第2の対応関係を含み、
前記第3の範囲は、前記第1の範囲よりも前記奥行き方向において前記ユーザから遠い範囲を含み、
前記第1の表示制御部および前記第2の表示制御部は、前記第3の範囲では、前記第2の対応関係に基づく前記第1の制御および前記第2の制御を行う、前記(7)または(8)に記載の情報処理装置。
(10)
前記第1の表示制御部および前記第2の表示制御部は、第1の表示オブジェクトおよび第2の表示オブジェクトの各々の前記奥行き方向の位置が所定の範囲内に収まるように、前記第1の表示オブジェクトおよび前記第2の表示オブジェクトの少なくとも一方について、前記相関関係に従って前記第1の制御および前記第2の制御を行う、前記(4)~(9)のいずれか1項に記載の情報処理装置。
(11)
前記第2の表示オブジェクトは、前記第1の表示オブジェクトと同じタイミングで表示される他の前記表示オブジェクトを含む、前記(10)に記載の情報処理装置。
(12)
前記第2の制御は、前記表示オブジェクトの大きさの制御を含む、前記(1)~(11)のいずれか1項に記載の情報処理装置。
(13)
前記表示オブジェクトは、立体視オブジェクトを含み、
前記第1の制御は、前記立体視オブジェクトに係る左眼用画像および右眼用画像の視差の制御を含む、前記(1)~(12)のいずれか1項に記載の情報処理装置。
(14)
前記第1の表示制御部および前記第2の表示制御部は、前記ユーザの前記奥行きの知覚に係る奥行き知覚情報に基づいて、前記第1の制御および前記第2の制御の態様を決定する、前記(1)~(13)のいずれか1項に記載の情報処理装置。
(15)
前記第1の表示制御部および前記第2の表示制御部は、前記奥行き知覚情報に基づいて、前記第1の範囲および前記第2の範囲を決定する、前記(14)に記載の情報処理装置。
(16)
前記奥行き知覚情報は、前記表示オブジェクトの性質に係る情報または前記表示オブジェクトの視覚的態様に係る情報を含む、前記(14)または(15)に記載の情報処理装置。
(17)
前記奥行き知覚情報は、前記ユーザの属性に係る情報または前記ユーザの態様に係る情報を含む、前記(14)~(16)のいずれか1項に記載の情報処理装置。
(18)
前記奥行き知覚情報は、前記ユーザの周辺の環境に係る情報を含む、前記(14)~(17)のいずれか1項に記載の情報処理装置。
(19)
表示制御部によって、表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行うことと、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行うことと、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行うことと、
を含む、情報処理方法。
(20)
表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御機能と、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御機能と、
前記第1の表示制御機能および前記第2の表示制御機能によって、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う機能と、
をコンピュータに実現させるためのプログラム。
100 情報処理装置
102 画像生成部
104 表示制御部
106 記憶部
108 表示部
120 ユーザ情報取得部
130 環境情報取得部
102 画像生成部
104 表示制御部
106 記憶部
108 表示部
120 ユーザ情報取得部
130 環境情報取得部
Claims (20)
- 表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御部と、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御部と、を備え、
前記第1の表示制御部および前記第2の表示制御部は、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う、情報処理装置。 - 前記第1の関係に基づく制御は、
第1の制御について、前記表示オブジェクトが知覚される奥行き方向の基準位置に対する位置の変化に係る量が、前記第2の関係に基づく制御における前記位置の変化に係る量よりも小さく、
第2の制御について、前記基準位置における前記表示オブジェクトの態様に対する態様の変化に係る量が、前記第2の関係に基づく制御における前記態様の変化に係る量よりも大きい、制御を含む、請求項1に記載の情報処理装置。 - 前記第1の範囲は、前記第2の範囲よりも前記奥行き方向において前記ユーザに近い範囲を含む、請求項2に記載の情報処理装置。
- 前記第1の関係は、前記第1の制御と前記第2の制御との間における制御量についての相関関係を含む、請求項2に記載の情報処理装置。
- 前記相関関係は、前記第1の制御および前記第2の制御のうちの一方の制御量が、他方の制御量と前記基準位置における前記他方の制御量との差分に応じた制御量である関係を含む、請求項4に記載の情報処理装置。
- 前記第1の表示制御部および前記第2の表示制御部は、
前記第1の範囲と異なる前記奥行き方向の第3の範囲では、前記第1の制御と前記第2の制御との間における制御の有無についての対応関係に基づく制御を行う、請求項4に記載の情報処理装置。 - 前記対応関係は、前記第1の制御についての前記位置の変化および前記第2の制御についての前記態様の変化のうちの一方が行われ、他方が行われない関係を含む、請求項6に記載の情報処理装置。
- 前記対応関係は、前記第1の制御についての前記位置の変化が行われ、前記第2の制御についての前記態様の変化が行われない第1の対応関係を含み、
前記第3の範囲は、前記第1の範囲よりも前記奥行き方向において前記ユーザに近い範囲を含み、
前記第1の表示制御部および前記第2の表示制御部は、前記第3の範囲では、前記第1の対応関係に基づく前記第1の制御および前記第2の制御を行う、請求項7に記載の情報処理装置。 - 前記対応関係は、前記第2の制御についての前記態様の変化が行われ、前記第1の制御についての前記位置の変化が行われない第2の対応関係を含み、
前記第3の範囲は、前記第1の範囲よりも前記奥行き方向において前記ユーザから遠い範囲を含み、
前記第1の表示制御部および前記第2の表示制御部は、前記第3の範囲では、前記第2の対応関係に基づく前記第1の制御および前記第2の制御を行う、請求項7に記載の情報処理装置。 - 前記第1の表示制御部および前記第2の表示制御部は、第1の表示オブジェクトおよび第2の表示オブジェクトの各々の前記奥行き方向の位置が所定の範囲内に収まるように、前記第1の表示オブジェクトおよび前記第2の表示オブジェクトの少なくとも一方について、前記相関関係に従って前記第1の制御および前記第2の制御を行う、請求項4に記載の情報処理装置。
- 前記第2の表示オブジェクトは、前記第1の表示オブジェクトと同じタイミングで表示される他の前記表示オブジェクトを含む、請求項10に記載の情報処理装置。
- 前記第2の制御は、前記表示オブジェクトの大きさの制御を含む、請求項1に記載の情報処理装置。
- 前記表示オブジェクトは、立体視オブジェクトを含み、
前記第1の制御は、前記立体視オブジェクトに係る左眼用画像および右眼用画像の視差の制御を含む、請求項1に記載の情報処理装置。 - 前記第1の表示制御部および前記第2の表示制御部は、前記ユーザの前記奥行きの知覚に係る奥行き知覚情報に基づいて、前記第1の制御および前記第2の制御の態様を決定する、請求項1に記載の情報処理装置。
- 前記第1の表示制御部および前記第2の表示制御部は、前記奥行き知覚情報に基づいて、前記第1の範囲および前記第2の範囲を決定する、請求項14に記載の情報処理装置。
- 前記奥行き知覚情報は、前記表示オブジェクトの性質に係る情報または前記表示オブジェクトの視覚的態様に係る情報を含む、請求項14に記載の情報処理装置。
- 前記奥行き知覚情報は、前記ユーザの属性に係る情報または前記ユーザの態様に係る情報を含む、請求項14に記載の情報処理装置。
- 前記奥行き知覚情報は、前記ユーザの周辺の環境に係る情報を含む、請求項14に記載の情報処理装置。
- 表示制御部によって、表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行うことと、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行うことと、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行うことと、
を含む、情報処理方法。 - 表示オブジェクトの、眼球運動に基づいてユーザに知覚される奥行き方向の位置についての第1の制御を行う第1の表示制御機能と、
前記奥行き方向の位置を態様として含まない前記表示オブジェクトの態様についての第2の制御を行う第2の表示制御機能と、
前記第1の表示制御機能および前記第2の表示制御機能によって、
前記奥行き方向の第1の範囲では第1の関係に基づく制御を行い、
前記第1の範囲と異なる前記奥行き方向の第2の範囲では、前記第1の関係と異なる第2の関係に基づく制御を行う機能と、
をコンピュータに実現させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/743,439 US10602116B2 (en) | 2015-08-03 | 2016-05-25 | Information processing apparatus, information processing method, and program for performing display control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015153201 | 2015-08-03 | ||
JP2015-153201 | 2015-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017022303A1 true WO2017022303A1 (ja) | 2017-02-09 |
Family
ID=57942733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065383 WO2017022303A1 (ja) | 2015-08-03 | 2016-05-25 | 情報処理装置、情報処理方法およびプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US10602116B2 (ja) |
WO (1) | WO2017022303A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200112837A (ko) | 2018-01-30 | 2020-10-05 | 소니 주식회사 | 정보 처리 장치, 정보 처리 방법 및 프로그램 |
WO2021200270A1 (ja) * | 2020-03-31 | 2021-10-07 | ソニーグループ株式会社 | 情報処理装置、及び情報処理方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019032363A1 (en) * | 2017-08-09 | 2019-02-14 | Geodynamics, Inc. | MOLDED TOOL AND METHOD OF MANUFACTURE |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001238231A (ja) * | 2000-02-24 | 2001-08-31 | Sharp Corp | 立体映像視覚効果付加装置及び方法 |
JP2011250059A (ja) * | 2010-05-26 | 2011-12-08 | Sharp Corp | 画像処理装置、画像表示装置および画像撮像装置 |
WO2012020558A1 (ja) * | 2010-08-10 | 2012-02-16 | 株式会社ニコン | 画像処理装置、画像処理方法、表示装置、表示方法およびプログラム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2395765B1 (en) * | 2010-06-14 | 2016-08-24 | Nintendo Co., Ltd. | Storage medium having stored therein stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method |
JP5059922B2 (ja) * | 2010-09-15 | 2012-10-31 | シャープ株式会社 | 立体画像生成装置、立体画像表示装置、立体画像調整方法、立体画像調整方法をコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体 |
JP5723721B2 (ja) * | 2010-09-28 | 2015-05-27 | 富士フイルム株式会社 | 立体画像編集装置および立体画像編集方法 |
US8654181B2 (en) * | 2011-03-28 | 2014-02-18 | Avid Technology, Inc. | Methods for detecting, visualizing, and correcting the perceived depth of a multicamera image sequence |
US9532027B2 (en) * | 2011-05-27 | 2016-12-27 | Warner Bros. Entertainment Inc. | Methods for controlling scene, camera and viewing parameters for altering perception of 3D imagery |
JP5818531B2 (ja) * | 2011-06-22 | 2015-11-18 | 株式会社東芝 | 画像処理システム、装置及び方法 |
CN103135889B (zh) * | 2011-12-05 | 2017-06-23 | Lg电子株式会社 | 移动终端及其3d图像控制方法 |
KR101873747B1 (ko) * | 2011-12-27 | 2018-07-03 | 엘지전자 주식회사 | 이동 단말기 및 그 제어방법 |
US9118911B2 (en) * | 2013-02-07 | 2015-08-25 | Delphi Technologies, Inc. | Variable disparity three-dimensional (3D) display system and method of operating the same |
KR101413244B1 (ko) * | 2013-02-19 | 2014-06-30 | 한국과학기술연구원 | 변형된 공통시역을 이용하는 다시점 3차원 영상표시장치 |
US20150022631A1 (en) * | 2013-07-17 | 2015-01-22 | Htc Corporation | Content-aware display adaptation methods and editing interfaces and methods for stereoscopic images |
WO2015050016A1 (ja) * | 2013-10-02 | 2015-04-09 | オリンパスメディカルシステムズ株式会社 | 3次元画像システム |
JP6304628B2 (ja) * | 2014-05-12 | 2018-04-04 | パナソニックIpマネジメント株式会社 | 表示装置および表示方法 |
US9998724B2 (en) * | 2014-12-15 | 2018-06-12 | Canon Kabushiki Kaisha | Image processing apparatus and method for processing three-dimensional data that describes a space that includes physical objects |
-
2016
- 2016-05-25 US US15/743,439 patent/US10602116B2/en active Active
- 2016-05-25 WO PCT/JP2016/065383 patent/WO2017022303A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001238231A (ja) * | 2000-02-24 | 2001-08-31 | Sharp Corp | 立体映像視覚効果付加装置及び方法 |
JP2011250059A (ja) * | 2010-05-26 | 2011-12-08 | Sharp Corp | 画像処理装置、画像表示装置および画像撮像装置 |
WO2012020558A1 (ja) * | 2010-08-10 | 2012-02-16 | 株式会社ニコン | 画像処理装置、画像処理方法、表示装置、表示方法およびプログラム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200112837A (ko) | 2018-01-30 | 2020-10-05 | 소니 주식회사 | 정보 처리 장치, 정보 처리 방법 및 프로그램 |
US11327317B2 (en) | 2018-01-30 | 2022-05-10 | Sony Corporation | Information processing apparatus and information processing method |
WO2021200270A1 (ja) * | 2020-03-31 | 2021-10-07 | ソニーグループ株式会社 | 情報処理装置、及び情報処理方法 |
Also Published As
Publication number | Publication date |
---|---|
US10602116B2 (en) | 2020-03-24 |
US20180205930A1 (en) | 2018-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11562528B2 (en) | Devices, methods, and graphical user interfaces for interacting with three-dimensional environments | |
Yao et al. | Oculus vr best practices guide | |
CN109643162B (zh) | 用现实世界内容增强虚拟现实内容 | |
US11061240B2 (en) | Head-mountable apparatus and methods | |
JP5475893B2 (ja) | 視覚疲労度測定装置およびその方法 | |
WO2017090373A1 (ja) | 画像表示方法及びプログラム | |
JP7355006B2 (ja) | 情報処理装置、情報処理方法、および記録媒体 | |
CN108463839B (zh) | 信息处理装置和用户指南呈现方法 | |
US11570426B2 (en) | Computer-readable non-transitory storage medium, web server, and calibration method for interpupillary distance | |
JP2018526716A (ja) | 媒介現実 | |
JP6963399B2 (ja) | プログラム、記録媒体、画像生成装置、画像生成方法 | |
US20180364488A1 (en) | Display device | |
WO2017022303A1 (ja) | 情報処理装置、情報処理方法およびプログラム | |
JP2010259017A (ja) | 表示装置、表示方法、および表示プログラム | |
US10659755B2 (en) | Information processing device, information processing method, and program | |
JP2019212137A (ja) | ヒートマップ提示装置およびヒートマップ提示用プログラム | |
JP2016005007A (ja) | ヘッドマウントディスプレイおよび画像処理装置 | |
US20220049947A1 (en) | Information processing apparatus, information processing method, and recording medium | |
JP2014071546A (ja) | 触錯覚呈示装置および触錯覚呈示プログラム | |
JP2017097918A (ja) | 画像表示方法及びプログラム | |
JP6814686B2 (ja) | 立体画像表示制御装置、立体画像表示制御方法及び立体画像表示制御プログラム | |
Budhiraja | Software techniques for improving head mounted displays to create comfortable user experiences in virtual reality | |
CN118844058A (zh) | 用于显示与媒体内容相关的用户界面元素的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16832582 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15743439 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16832582 Country of ref document: EP Kind code of ref document: A1 |