WO2017022062A1 - Strain wave gearing device - Google Patents

Strain wave gearing device Download PDF

Info

Publication number
WO2017022062A1
WO2017022062A1 PCT/JP2015/072001 JP2015072001W WO2017022062A1 WO 2017022062 A1 WO2017022062 A1 WO 2017022062A1 JP 2015072001 W JP2015072001 W JP 2015072001W WO 2017022062 A1 WO2017022062 A1 WO 2017022062A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
helical
external
rigid
flexible
Prior art date
Application number
PCT/JP2015/072001
Other languages
French (fr)
Japanese (ja)
Inventor
純 半田
木村 浩明
崇太郎 三宅
小林 優
達郎 保科
啓 長井
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to PCT/JP2015/072001 priority Critical patent/WO2017022062A1/en
Publication of WO2017022062A1 publication Critical patent/WO2017022062A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling

Definitions

  • the present invention relates to a wave gear device using a helical gear as a flexible gear.
  • a flat type wave gear device including two rigid internal gears and a cylindrical flexible external gear arranged inside thereof is known.
  • a thrust force is generated in the external gear during operation.
  • the restricting members are arranged on both sides of the external gear so that the external gear does not move in the axial direction by the thrust force.
  • the cup-shaped wave gear apparatus provided with the cup-shaped flexible external gear of patent document 3 and the silk hat-shaped flexible external gear of patent document 4 are used.
  • a top-hat type wave gear device provided is known.
  • the external gear includes a flexible cylindrical body having external teeth formed on the outer peripheral surface, and a diaphragm extending radially inward or outward from the rear end of the cylindrical body. External teeth are formed on the outer peripheral surface portion on the opening end side.
  • the external gear Since the external gear is bent in an elliptical shape by a wave generator fitted inside the external tooth forming portion, the external tooth forming portion of the cylindrical body portion is directed from the diaphragm side toward the opening end side.
  • the amount of bending in the radial direction increases substantially in proportion to the distance from.
  • Thrust force is generated. Due to the thrust force, the stress generated in the portion between the cylindrical body portion of the external gear and the diaphragm is increased.
  • a restricting member is arranged to restrict movement in the axial direction due to the thrust force acting on the external gear, the size of the device and the cost increase accordingly.
  • the thrust force acting on the external gear acts on a wave generator that is bending the external gear. Therefore, the life of the support portion such as the support bearing of the wave generator is reduced. In order to avoid shortening the service life, when the components of the support mechanism are strengthened, the apparatus is increased in size and cost.
  • an object of the present invention is to provide a flat wave gear device configured such that a flexible gear does not move in the axial direction without using a separate member.
  • Another object of the present invention is to provide a wave gear device configured such that the axial movement of the flexible gear due to the thrust force acting on the inner peripheral surface of the flexible gear is canceled by the meshing tooth surfaces of both gears.
  • the flat wave gear device of the present invention at least one of the first and second rigid gears, the first rigid gear, and the first flexible gear meshing with the first rigid gear in the flexible gear.
  • the portion is a helical gear or a helical gear.
  • the flat wave gear device includes a first and second rigid gears and a first flexible gear that is bent in a non-circular shape and a part of the circumferential direction meshes with the first rigid gear. And a flexible gear with a second flexible gear portion meshing with the portion and the second rigid gear.
  • the first rigid gear and the first flexible gear portion are any one of a spur gear, a helical gear, and a toothed gear.
  • the second rigid gear and the second flexible gear part are blind gears.
  • the second rigid gear and the second flexible gear part are the first rigid gear and the first flexible gear part.
  • a helical gear having a twist direction opposite to that of the flexible gear portion is used.
  • the second rigid gear and the second flexible gear portion are either a spur gear or a toothed gear. Or one.
  • the helical force or the helical gear is used for the first and second rigid gears and the flexible gear, so that the thrust force applied to the flexible gear during operation is reduced. It is countered or the thrust force is reduced. Moreover, the movement of the flexible gear in the axial direction is restrained with respect to the rigid gear due to the meshing of the toothed gears. As a result, the flexible gear can be prevented or suppressed from moving in the axial direction without arranging another member.
  • the thrust force generated in the flexible gear is canceled or reduced, it is possible to avoid or reduce the thrust force from acting on a support mechanism such as a bearing of a wave generator supporting the flexible gear. Therefore, it is possible to prevent or suppress the component parts of the support mechanism from being shortened due to the thrust force. In addition, it is possible to avoid or suppress the increase in size and cost of the apparatus due to the arrangement of components having a large load capacity in order to receive a large thrust force.
  • the helical angle of the helical gear or the helical gear is a value within a range of 5 deg to 20 deg. If it is less than 5 deg, the thrust force generated by the meshing between the first and second rigid gears and the flexible gear cannot be sufficiently suppressed. Conversely, if it exceeds 20 deg, the efficiency deteriorates, which is not preferable.
  • the cup-type or top-hat type wave gear device of the present invention includes a rigid gear and a cup-shaped or top-hat-shaped shape that is bent in a non-circular shape and part of the circumferential direction meshes with the rigid gear. It has a flexible gear.
  • the flexible gear is a helical gear, and a tooth portion of the flexible gear has a first helical tooth portion formed on one side in a tooth trace direction, and a second portion formed on the other side.
  • the first helical portion and the second helical portion have different twist angles.
  • the tooth portion of the rigid gear includes a helical tooth portion that can mesh with the first helical gear portion and a helical tooth portion that can mesh with the second helical gear portion.
  • FIG. 1 is a perspective view which shows the internal gear and external gear of FIG. 1, and shows the state which cut off a part of internal gear
  • (b) is explanatory drawing which shows the tooth
  • (A) is a perspective view which shows another example of the internal gear of FIG. 1, and an external gear, and shows it in the state which cut off a part of internal gear, (b) is explanatory drawing which shows the tooth
  • (A) is a perspective view which shows another example of the internal gear of FIG.
  • (A) is a half sectional view showing another example of a flat wave gear device to which the present invention is applicable, and (b) is a half front view thereof. It is the longitudinal cross-sectional view which shows an example of the cup type wave gear apparatus to which this invention is applied, and an exploded perspective view. It is a perspective view which shows the flexible external gear of FIG. 6, the partial side view which shows the tooth part, and the partial longitudinal cross-sectional view which shows a tooth part.
  • FIG. 1 is a longitudinal sectional view showing a flat wave gear device according to the first embodiment.
  • the flat wave gear device 1 has a first internal gear 2 (C / SS) and a second internal gear 3 (C / SD), which are rigid gears, and a cylindrical shape coaxially disposed inside these.
  • an external gear 4 that is a flexible gear, and a wave generator 5 that is fitted inside the external gear 4.
  • One internal gear for example, the first internal gear 2 is fixed to a fixing member such as a device housing (not shown), and the other second internal gear 3 is rotatably supported by a device housing (not shown). Connected to the driven member side.
  • the external gear 4 includes a cylindrical body 4c that can be bent in the radial direction, and first external teeth 4a and second external teeth 4b that are formed on a circular outer peripheral surface of the cylindrical body 4c.
  • the first external teeth 4 a can mesh with the first internal teeth 2 a of the first internal gear 2
  • the second external teeth 4 b can mesh with the second internal teeth 3 a of the second internal gear 3.
  • a first external gear portion 4A is formed by the cylindrical body portion 4c and the first external teeth 4a
  • a second external gear portion 4B is formed by the cylindrical body portion 4c and the second external teeth 4b.
  • the wave generator 5 includes a rigid plug 5a having an elliptical outer peripheral surface and a pair of wave generator bearings 5b and 5c attached to the elliptical outer peripheral surface of the plug 5a.
  • the wave generator bearings 5b and 5c are bent in an elliptical shape along the elliptical outer peripheral surface of the plug 5a. Therefore, the external gear 4 is also bent in an elliptical shape along the elliptical outer peripheral surface of the plug 5a, and the first and second external gears 4a and 4b at the major axis positions thereof are the first and second internal gears 2 and 3.
  • the first and second internal teeth 2a and 3a are engaged with each other.
  • the number of teeth of the second internal gear 3 is the same as that of the first and second external gear portions 4A and 4B, and the number of teeth of the other first internal gear 2 is based on the first and second external gear portions 4A and 4B. Is 2n more (n: positive integer). For example, there are two more. Accordingly, the external gear 4 (the first and second external gear portions 4A and 4B) rotates integrally with the second internal gear 3 having the same number of teeth, and between the first internal gear 2 having a large number of teeth. Causes relative rotation according to the difference in the number of teeth of both gears. Since the first internal gear 2 is fixed so as not to rotate, a reduced rotation is output from the other second internal gear 3 and transmitted to a driven member (not shown).
  • FIG. 2A is a perspective view showing the first and second internal gears 2 and 3 and the external gear 4, and the first and second internal gears 4a and 4b are shown to show the first and second external teeth 4a and 4b.
  • the gears 2 and 3 are partially cut off.
  • FIG. 2 (b) is an explanatory view showing the tooth portions of the first and second external gear portions 4 ⁇ / b> A and 4 ⁇ / b> B of the external gear 4.
  • the first and second external gear portions 4A and 4B of the external gear 4 are helical external gears, and the first and second internal gears 2 and 3 can also mesh with them.
  • This is an internal gear.
  • the first external tooth 4a of one first external gear portion 4A of the external gear 4 is a helical tooth whose tooth trace direction has a constant helix angle with respect to the direction of the central axis 1a.
  • the second external teeth 4b of the second external gear portion 4B are helical teeth extending at the same helix angle in the opposite direction to the first external teeth 4a.
  • the first and second internal teeth 2a and 3a of the first and second internal gears 2 and 3 are helical teeth twisted in directions opposite to each other.
  • the first and second external gear portions 4A and 4B are helical external gears whose torsional directions are reversed, and the first and second internal gears meshing with these are also helical teeth whose reverse torsional directions are reversed. It is an internal gear. Since the helical gears having opposite torsional directions are arranged in parallel in the direction of the central axis 1a, the thrust force generated by the meshing of the first internal gear 2 and the first external gear portion 4A, and the second internal gear 3 The thrust force generated by the meshing of the second external gear portion 4B acts in the opposite direction. Therefore, the thrust force generated by the meshing is offset or reduced.
  • FIG. 3A is a perspective view showing an example of the first and second internal gears and the external gear that can be used in place of the first and second internal gears 2 and 3 and the external gear 4.
  • FIG. 3B is an explanatory diagram showing the tooth portions of the first and second external gear portions of the external gear.
  • the first external gear portion 14A of the external gear 14 is a spur gear
  • the second external gear portion 14B is a toothed external gear
  • the first internal gear 12 is a spur gear that can mesh with the first external gear portion 14A
  • the second internal gear 13 is a toothed internal gear that can mesh with the second external gear portion 14B.
  • Thrust force generated by the meshing is offset at the meshing part between the toothed gears. Therefore, the thrust force acting on the external gear 14 is reduced as a whole. Further, the movement of the external gear 14 in the axial direction is restrained by the meshing of the toothed gears.
  • FIG. 4A is a perspective view showing another example of the first and second internal gears and the external gear that can be used in place of the first and second internal gears 2 and 3 and the external gear 4.
  • FIG. 4B is an explanatory view showing the tooth portions of the first and second external gear portions of the external gear, with a part of the first and second internal gears being cut off.
  • the first external gear portion 24A of the external gear 24 is a toothed external gear
  • the second external gear portion 24B is also a toothed external gear
  • the first internal gear 22 is a toothed internal gear that can mesh with the first external gear portion 24A
  • the second internal gear 23 is a toothed internal gear that can mesh with the second external gear portion 24B. is there.
  • Thrust force is offset by the meshing of the toothed gears. Therefore, the thrust force acting on the external gear 14 is canceled out.
  • the external gear 14 does not move in the axial direction.
  • the meshing between the first and second internal gears and the external gear is such that the meshing of the helical teeth or the meshing of the tooth teeth. ing. Therefore, the thrust force generated in the external gears 4, 14, and 24 can be offset or reduced. Therefore, a member for restricting or restraining the movement of the external gear in the axial direction can be omitted. Further, the meshing between the helical gears or between the toothed gears is smoother than the meshing between the spur gears, which is advantageous for low vibration and low noise.
  • the member for restricting the movement of the external gear can be omitted, it is possible to secure a space for distributing the lubricant on both sides in the axial direction of the meshing portion of the internal gear and the external gear. Thereby, the incidental effect that the lack of lubrication to the meshing part or the like can be solved is also obtained.
  • FIG. 5A is a half cross-sectional view showing an example of another type of flat wave gear device to which the present invention is applicable
  • FIG. 5B is a half front view thereof.
  • the flat wave gear device 30 shown in these drawings includes a first external gear 32 and a second external gear 33 that are rigid gears, and an internal gear that is a cylindrical flexible gear that is coaxially disposed on the outer sides thereof. 34 and a wave generator 35 fitted to the outside of the internal gear 34.
  • the internal gear 34 includes a cylindrical body portion 34c that can be bent in the radial direction, and first internal teeth 34a and second internal teeth 34b that are formed on the circular inner peripheral surface of the cylindrical body portion 34c.
  • the first internal teeth 34 a can mesh with the first external teeth 32 a of the first external gear 32
  • the second internal teeth 34 b can mesh with the second external teeth 33 a of the second external gear 33.
  • a first internal gear portion 34A is formed by the cylindrical body portion 34c and the first internal teeth 34a
  • a second internal gear portion 34B is formed by the cylindrical body portion 34c and the second internal teeth 34b.
  • the wave generator 5 includes a rigid plug 35a having a constant thickness provided with an elliptical inner peripheral surface, and a pair of wave generator bearings 35b attached to the elliptical inner peripheral surface of the plug 35a.
  • the wave generator bearing 35b as a whole is bent in an elliptical shape along the elliptical inner peripheral surface of the plug 35a.
  • the internal gear 34 is also bent in an elliptical shape along the elliptical inner peripheral surface of the plug 35a, and the first and second internal gears 34a and 34b at the short diameter position thereof are the first and second external gears 32. , 33 are engaged with the first and second external teeth 32a, 33a.
  • the first external gear 32 and the first internal gear portion 34A are any one of a spur gear, a helical gear, and a helical gear.
  • the second external gear 33 and the second internal gear portion 34B are bevel gears.
  • first external gear 32 and the first internal gear portion 34A are helical gears
  • the second external gear 33 and the second internal gear portion 34B are different from the first external gear 32 and the first internal gear portion 34A.
  • a helical gear having a reverse twist direction is used.
  • the second external gear 33 and the second internal gear portion 34B are either a spur gear or a toothed gear. Is done.
  • FIG. 6A is a longitudinal sectional view showing a cup-type wave gear device to which the present invention is applied
  • FIG. 6B is an exploded perspective view thereof.
  • the wave gear device 100 includes an internal gear 102 that is a rigid gear, and an external gear 103 that is a cup-shaped flexible gear disposed inside the wave gear device 100.
  • the outer gear 103 includes a cylindrical body 103a that can be bent in the radial direction, a diaphragm 103b that extends radially inward from the rear end thereof, and a thick wall formed continuously on the inner periphery of the diaphragm 103b. And an annular or disc-shaped boss 103c.
  • a portion of the cylindrical body 103a on the opening side is an external tooth forming portion 103d, and external teeth 103e are formed on the outer peripheral surface portion thereof.
  • the cylindrical body portion 103 a of the external gear 103 is bent in an elliptical shape by a wave generator 104 having an elliptical contour that is attached to the inside of the external tooth forming portion 103 d, and the external teeth 103 e are connected to the internal gear 102. It partially meshes with the internal teeth 102a.
  • the wave generator 104 When the wave generator 104 is rotated, the meshing position of the two gears 102 and 103 moves in the circumferential direction, and relative rotation corresponding to the difference in the number of teeth of the two gears 102 and 103 is generated between the two gears.
  • the internal gear 102 is fixed so as not to rotate, reduced rotation is output from the other cup-shaped external gear 103.
  • the wave generator 104 includes a ring-shaped, rigid plug 104a having a constant thickness, and a wave generator bearing 104c attached to an elliptical outer peripheral surface 104b of the plug 104a.
  • the wave generator bearing 104 c includes inner and outer rings that can be bent in the radial direction, and is mounted between the plug 104 a and the outer gear 103.
  • the external gear 103 is bent into an elliptical shape along the elliptical outer peripheral surface 104b of the plug 104a by the wave generator 104, and the external teeth 103e mesh with the internal teeth 102a of the internal gear 102 at a position on the long axis. .
  • FIG. 7A is a perspective view showing the external gear 103
  • FIGS. 7B and 7C are a partial side view and a partial cross-sectional view showing an external tooth forming portion 103d of the external gear 103.
  • FIG. 7B and 7C, the external teeth 103e are schematically shown for easy understanding of the shape of the external teeth 103e.
  • the external gear 103 is a helical external gear
  • the external tooth 103e is formed by an annular constant width groove 111 formed at the center in the direction of the tooth stripe, so that the first helical gear portion is formed.
  • 112 and the second helical tooth portion 113 are separated.
  • the first helical tooth portion 112 on the open end side of the external gear 103 is a helical tooth twisted at a constant twist angle with respect to the direction of the central axis 101a.
  • the second helical tooth portion 113 on the diaphragm side is a helical tooth having a torsion angle different from that of the first helical tooth portion 112.
  • the groove 111 is a single annular groove extending in the circumferential direction along the circular outer peripheral surface (the root circle) of the root rim 110 of the external tooth forming portion 103d.
  • the internal gear 102 is a helical internal gear that can mesh with the external gear 103 as shown in FIG.
  • the internal teeth 102 a of the internal gear 102 include a helical tooth portion 122 that can mesh with the first helical tooth portion 112 and a helical tooth portion 123 that can mesh with the second helical tooth portion 113. These are separated by a groove 121.
  • Thrust force acts on the inner peripheral surface of the tooth portion of the external gear 103 that is bent into an elliptical shape by the wave generator 104 and meshes with the internal gear 102. Between the two gears, two sets of helical teeth with different twist angles are formed. The meshing tooth surfaces of these two sets of helical teeth receive a thrust force, and the thrust force can be prevented or suppressed from acting on a portion of the external gear 103 such as the diaphragm 103b.
  • the present invention is applied to a cup-type wave gear device.
  • the present invention can be similarly applied to a top hat type wave gear device.

Abstract

A flat strain wave gearing device is provided with a first internal gear (2) that is obtained from a helical gear, and a second internal gear (3) that is obtained from a helical gear, the helix direction of which is the reverse of the first internal gear (2). The first and second external gear portions (4A, 4B) of an external gear (4) that mesh respectively with the first and second internal gears (2, 3) are also helical gears. Since the meshing of the first and second internal gears (2, 3) with the external gear (4) is a meshing between helical gears of opposite helix directions, thrusts that are generated by the meshing offset each other. Since no thrust force moving said external gear (4) in the axial direction is generated in the external gear (4), a member for preventing movement of the external gear in the axial direction is unnecessary.

Description

波動歯車装置Wave gear device
 本発明は、はす歯歯車を可撓性歯車として用いた波動歯車装置に関する。 The present invention relates to a wave gear device using a helical gear as a flexible gear.
 波動歯車装置としては、2つの剛性の内歯車と、これらの内側に配置された円筒状の可撓性の外歯車とを備えたフラット型波動歯車装置が知られている。フラット型の波動歯車装置においては、その機構上、運転中に外歯車にスラスト力が発生する。特許文献1、2に記載のフラット型の波動歯車装置においては、スラスト力によって外歯車が軸線方向に移動しないように、外歯車の両側に規制部材を配置している。 As a wave gear device, a flat type wave gear device including two rigid internal gears and a cylindrical flexible external gear arranged inside thereof is known. In the flat wave gear device, due to the mechanism, a thrust force is generated in the external gear during operation. In the flat wave gear devices described in Patent Documents 1 and 2, the restricting members are arranged on both sides of the external gear so that the external gear does not move in the axial direction by the thrust force.
 また、波動歯車装置としては、特許文献3に記載のカップ形状の可撓性の外歯車を備えたカップ型の波動歯車装置、特許文献4に記載のシルクハット形状の可撓性の外歯車を備えたシルクハット型の波動歯車装置が知られている。外歯車は外周面に外歯が形成された可撓性の円筒状胴部と、この円筒状胴部の後端から半径方向の内方あるいは外方に延びるダイヤフラムを備え、円筒状胴部の開口端の側の外周面部分に外歯が形成されている。 Moreover, as a wave gear apparatus, the cup-shaped wave gear apparatus provided with the cup-shaped flexible external gear of patent document 3 and the silk hat-shaped flexible external gear of patent document 4 are used. A top-hat type wave gear device provided is known. The external gear includes a flexible cylindrical body having external teeth formed on the outer peripheral surface, and a diaphragm extending radially inward or outward from the rear end of the cylindrical body. External teeth are formed on the outer peripheral surface portion on the opening end side.
 外歯車は、その外歯形成部分の内側に嵌めた波動発生器によって楕円状に撓められるので、円筒状胴部の外歯形成部分は、ダイヤフラムの側から開口端の側に向けて、ダイヤフラムからの距離にほぼ比例して半径方向への撓み量が増加する。このように歯筋方向の各位置において楕円量が異なるので、波動発生器によって撓められる外歯車の外歯形成部分の内周面には当該外歯形成部分を軸方向に移動させようとするスラスト力が発生する。スラスト力によって、外歯車の円筒状胴部とダイヤフラムの間の部分等に生じる応力が高くなってしまう。 Since the external gear is bent in an elliptical shape by a wave generator fitted inside the external tooth forming portion, the external tooth forming portion of the cylindrical body portion is directed from the diaphragm side toward the opening end side. The amount of bending in the radial direction increases substantially in proportion to the distance from. As described above, since the amount of ellipse is different at each position in the tooth trace direction, an attempt is made to move the external tooth forming portion in the axial direction on the inner peripheral surface of the external tooth forming portion of the external gear bent by the wave generator. Thrust force is generated. Due to the thrust force, the stress generated in the portion between the cylindrical body portion of the external gear and the diaphragm is increased.
特開2011-110976号公報JP 2011-110976 A 特開2013-177938号公報JP 2013-177938 A 特開2012-072912号公報JP 2012-0729212 A 特開2009-257510号公報JP 2009-257510 A
 フラット型波動歯車装置において、外歯車に作用するスラスト力に起因する軸線方向の移動を規制するために規制部材を配置すると、その分、装置の大型化、コスト高を招く。また、外歯車に作用するスラスト力は、当該外歯車を撓めている波動発生器に作用する。よって、波動発生器の支持ベアリング等の支持部分の寿命低下を招く。寿命低下を回避するために、支持機構の構成部品を強化する場合には、装置の大型化、コスト高を招く。 In a flat wave gear device, if a restricting member is arranged to restrict movement in the axial direction due to the thrust force acting on the external gear, the size of the device and the cost increase accordingly. The thrust force acting on the external gear acts on a wave generator that is bending the external gear. Therefore, the life of the support portion such as the support bearing of the wave generator is reduced. In order to avoid shortening the service life, when the components of the support mechanism are strengthened, the apparatus is increased in size and cost.
 また、カップ型、シルクハット型の波動歯車装置において、伝達トルクを高めるために、外歯車に作用するスラスト力に起因するダイヤフラム等に生じる応力を低減できることが望ましい。 Also, in a cup-type or top-hat type wave gear device, it is desirable that stress generated in a diaphragm or the like due to a thrust force acting on an external gear can be reduced in order to increase transmission torque.
 本発明の課題は、このような点に鑑みて、別部材を用いることなく、可撓性歯車が軸線方向に移動しないように構成したフラット型の波動歯車装置を提供することにある。 In view of these points, an object of the present invention is to provide a flat wave gear device configured such that a flexible gear does not move in the axial direction without using a separate member.
 また、本発明の課題は、可撓性歯車の内周面に作用するスラスト力による可撓性歯車の軸方向移動が両歯車のかみ合い歯面で打ち消されるように構成した波動歯車装置を提供することにある。 Another object of the present invention is to provide a wave gear device configured such that the axial movement of the flexible gear due to the thrust force acting on the inner peripheral surface of the flexible gear is canceled by the meshing tooth surfaces of both gears. There is.
 本発明のフラット型の波動歯車装置では、2つの第1、第2剛性歯車のうちの少なくとも一方の第1剛性歯車と、可撓性歯車における当該第1剛性歯車にかみ合う第1可撓性歯車部分とを、はす歯歯車あるいはやま歯歯車にしたことを特徴としている。 In the flat wave gear device of the present invention, at least one of the first and second rigid gears, the first rigid gear, and the first flexible gear meshing with the first rigid gear in the flexible gear. The portion is a helical gear or a helical gear.
 すなわち、本発明のフラット型の波動歯車装置は、第1、第2剛性歯車と、非円形に撓められて円周方向における一部分が前記第1剛性歯車にかみ合っている第1可撓性歯車部分および前記第2剛性歯車にかみ合っている第2可撓性歯車部分を備えた可撓性歯車とを有している。前記第1剛性歯車および前記第1可撓性歯車部分は、平歯車、はす歯歯車、および、やま歯歯車のうちのいずれか一つとされる。 That is, the flat wave gear device according to the present invention includes a first and second rigid gears and a first flexible gear that is bent in a non-circular shape and a part of the circumferential direction meshes with the first rigid gear. And a flexible gear with a second flexible gear portion meshing with the portion and the second rigid gear. The first rigid gear and the first flexible gear portion are any one of a spur gear, a helical gear, and a toothed gear.
 前記第1剛性歯車および前記第1可撓性歯車部分が前記平歯車の場合には、前記第2剛性歯車および前記第2可撓性歯車部分は、やま歯歯車とされる。 When the first rigid gear and the first flexible gear part are the spur gears, the second rigid gear and the second flexible gear part are blind gears.
 前記第1剛性歯車および前記第1可撓性歯車部分が前記はす歯歯車の場合には、前記第2剛性歯車および前記第2可撓性歯車部分は、前記第1剛性歯車および前記第1可撓性歯車部分とはねじれ方向が逆のはす歯歯車とされる。 When the first rigid gear and the first flexible gear part are the helical gears, the second rigid gear and the second flexible gear part are the first rigid gear and the first flexible gear part. A helical gear having a twist direction opposite to that of the flexible gear portion is used.
 前記第1剛性歯車および前記第1可撓性歯車部分が前記やま歯歯車の場合には、前記第2剛性歯車および前記第2可撓性歯車部分は、平歯車およびやま歯歯車のうちのいずれか一方とされる。 When the first rigid gear and the first flexible gear portion are the toothed gears, the second rigid gear and the second flexible gear portion are either a spur gear or a toothed gear. Or one.
 本発明のフラット型の波動歯車装置においては、第1、第2剛性歯車および可撓性歯車に、はす歯歯車あるいはやま歯歯車を用いることにより、運転時に可撓性歯車に加わるスラスト力が打ち消され、あるいは、スラスト力が低減される。また、やま歯歯車同士のかみ合いにより、剛性歯車に対して可撓性歯車の軸線方向の移動が拘束される。この結果、別部材を配置することなく、可撓性歯車が軸線方向に移動することを防止あるいは抑制できる。 In the flat wave gear device of the present invention, the helical force or the helical gear is used for the first and second rigid gears and the flexible gear, so that the thrust force applied to the flexible gear during operation is reduced. It is countered or the thrust force is reduced. Moreover, the movement of the flexible gear in the axial direction is restrained with respect to the rigid gear due to the meshing of the toothed gears. As a result, the flexible gear can be prevented or suppressed from moving in the axial direction without arranging another member.
 可撓性歯車に生じるスラスト力が打ち消され、あるいは低減されるので、可撓性歯車を支持している波動発生器の軸受け等の支持機構にスラスト力が作用することを回避あるいは低減できる。よって、支持機構の構成部品等がスラスト力に起因して寿命が短くなることを防止あるいは抑制できる。また、大きなスラスト力を受けるために負荷容量の大きな構成部品を配置することに起因する装置の大型化、コスト高等も回避あるいは抑制できる。 Since the thrust force generated in the flexible gear is canceled or reduced, it is possible to avoid or reduce the thrust force from acting on a support mechanism such as a bearing of a wave generator supporting the flexible gear. Therefore, it is possible to prevent or suppress the component parts of the support mechanism from being shortened due to the thrust force. In addition, it is possible to avoid or suppress the increase in size and cost of the apparatus due to the arrangement of components having a large load capacity in order to receive a large thrust force.
 本発明において、前記はす歯歯車あるいは前記やま歯歯車のねじれ角は、5deg~20degの範囲内の値であることが望ましい。5deg未満では、第1、第2剛性歯車と、可撓性歯車との間のかみ合いによって生じるスラスト力を十分に抑制できない。逆に、20degを超えると効率が悪化するので、好ましくない。 In the present invention, it is desirable that the helical angle of the helical gear or the helical gear is a value within a range of 5 deg to 20 deg. If it is less than 5 deg, the thrust force generated by the meshing between the first and second rigid gears and the flexible gear cannot be sufficiently suppressed. Conversely, if it exceeds 20 deg, the efficiency deteriorates, which is not preferable.
 次に、本発明のカップ型あるいはシルクハット型の波動歯車装置は、剛性歯車、および、非円形に撓められて円周方向における一部分が前記剛性歯車にかみ合っているカップ形状あるいはシルクハット形状の可撓性歯車を有している。前記可撓性歯車ははす歯歯車であり、前記可撓性歯車の歯部は、歯筋方向における一方の側に形成した第1はす歯部分と、他方の側に形成した第2はす歯部分とに分離しており、前記第1はす歯部分と前記第2はす歯部分とは、ねじれ角度が異なる。また、前記剛性歯車の歯部は、前記第1はす歯部分にかみ合い可能なはす歯部分と、前記第2はす歯部分にかみ合い可能なはす歯部分とを備えている。 Next, the cup-type or top-hat type wave gear device of the present invention includes a rigid gear and a cup-shaped or top-hat-shaped shape that is bent in a non-circular shape and part of the circumferential direction meshes with the rigid gear. It has a flexible gear. The flexible gear is a helical gear, and a tooth portion of the flexible gear has a first helical tooth portion formed on one side in a tooth trace direction, and a second portion formed on the other side. The first helical portion and the second helical portion have different twist angles. The tooth portion of the rigid gear includes a helical tooth portion that can mesh with the first helical gear portion and a helical tooth portion that can mesh with the second helical gear portion.
 剛性歯車と可撓性歯車の間は、ねじれ角の異なる2組のはす歯のかみ合いとなる。したがって、可撓性歯車に作用するスラスト力は、2組のはす歯のかみ合い歯面によって受け持たれる。よって、スラスト力が可撓性歯車の歯部以外のダイヤフラムなどの部分に作用し、それらの部分の応力が増加してしまうことを防止あるいは抑制できる。 剛性 Between the rigid gear and the flexible gear, there are two sets of helical gears with different torsion angles. Accordingly, the thrust force acting on the flexible gear is received by the meshing tooth surfaces of the two sets of helical teeth. Therefore, it can prevent or suppress that thrust force acts on parts, such as diaphragms other than the tooth | gear part of a flexible gear, and the stress of those parts will increase.
本発明を適用したフラット型波動歯車装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the flat type wave gear apparatus to which this invention is applied. (a)は、図1の内歯車と外歯車とを示す斜視図であり、内歯車の一部を切り取った状態で示し、(b)は外歯車の歯部を示す説明図である。(A) is a perspective view which shows the internal gear and external gear of FIG. 1, and shows the state which cut off a part of internal gear, (b) is explanatory drawing which shows the tooth | gear part of an external gear. (a)は図1の内歯車と外歯車の別の例を示す斜視図であり、内歯車の一部を切り取った状態で示し、(b)は外歯車の歯部を示す説明図である。(A) is a perspective view which shows another example of the internal gear of FIG. 1, and an external gear, and shows it in the state which cut off a part of internal gear, (b) is explanatory drawing which shows the tooth | gear part of an external gear. . (a)は図1の内歯車と外歯車の別の例を示す斜視図であり、内歯車の一部を切り取った状態で示し、(b)は外歯車の歯部を示す説明図である。(A) is a perspective view which shows another example of the internal gear of FIG. 1, and an external gear, and shows it in the state which cut off a part of internal gear, (b) is explanatory drawing which shows the tooth | gear part of an external gear. . (a)は本発明を適用可能なフラット型波動歯車装置の別の例を示す半断面図であり、(b)はその半正面図である。(A) is a half sectional view showing another example of a flat wave gear device to which the present invention is applicable, and (b) is a half front view thereof. 本発明を適用したカップ型波動歯車装置の一例を示す縦断面図および分解斜視図である。It is the longitudinal cross-sectional view which shows an example of the cup type wave gear apparatus to which this invention is applied, and an exploded perspective view. 図6の可撓性の外歯車を示す斜視図、その歯部を示す部分側面図および歯部を示す部分縦断面図である。It is a perspective view which shows the flexible external gear of FIG. 6, the partial side view which shows the tooth part, and the partial longitudinal cross-sectional view which shows a tooth part.
 以下に、図面を参照して、本発明を適用したフラット型波動歯車装置の実施の形態を説明する。 Hereinafter, an embodiment of a flat wave gear device to which the present invention is applied will be described with reference to the drawings.
[実施の形態1]
 図1は、実施の形態1に係るフラット型波動歯車装置を示す縦断面図である。フラット型波動歯車装置1は、剛性歯車である第1内歯車2(C/S-S)および第2内歯車3(C/S-D)と、これらの内側に同軸に配置した円筒形状をした可撓性歯車である外歯車4と、外歯車4の内側に嵌めた波動発生器5とを備えている。一方の内歯車、例えば、第1内歯車2は不図示の装置ハウジング等の固定部材に固定され、他方の第2内歯車3は不図示の装置ハウジング等によって回転自在に支持され、不図示の被駆動部材の側に連結される。
[Embodiment 1]
FIG. 1 is a longitudinal sectional view showing a flat wave gear device according to the first embodiment. The flat wave gear device 1 has a first internal gear 2 (C / SS) and a second internal gear 3 (C / SD), which are rigid gears, and a cylindrical shape coaxially disposed inside these. And an external gear 4 that is a flexible gear, and a wave generator 5 that is fitted inside the external gear 4. One internal gear, for example, the first internal gear 2 is fixed to a fixing member such as a device housing (not shown), and the other second internal gear 3 is rotatably supported by a device housing (not shown). Connected to the driven member side.
 外歯車4は、半径方向に撓み可能な円筒状胴部4cと、この円筒状胴部4cの円形外周面に形成された第1外歯4aおよび第2外歯4bとを備えている。第1外歯4aは第1内歯車2の第1内歯2aにかみ合い可能であり、第2外歯4bは第2内歯車3の第2内歯3aにかみ合い可能である。円筒状胴部4cおよび第1外歯4aによって第1外歯車部分4Aが形成され、円筒状胴部4cおよび第2外歯4bによって第2外歯車部分4Bが形成されている。 The external gear 4 includes a cylindrical body 4c that can be bent in the radial direction, and first external teeth 4a and second external teeth 4b that are formed on a circular outer peripheral surface of the cylindrical body 4c. The first external teeth 4 a can mesh with the first internal teeth 2 a of the first internal gear 2, and the second external teeth 4 b can mesh with the second internal teeth 3 a of the second internal gear 3. A first external gear portion 4A is formed by the cylindrical body portion 4c and the first external teeth 4a, and a second external gear portion 4B is formed by the cylindrical body portion 4c and the second external teeth 4b.
 波動発生器5は、楕円状外周面を備えた一定厚さの剛性のプラグ5aと、このプラグ5aの楕円状外周面に装着した一対の波動発生器軸受け5b、5cから構成されている。波動発生器軸受け5b、5cは全体として、プラグ5aの楕円状外周面に沿った楕円状に撓められている。よって、外歯車4もプラグ5aの楕円状外周面に沿った楕円状に撓められ、その長径位置の第1、第2外歯4a、4bの部分が第1、第2内歯車2、3の第1、第2内歯2a、3aのそれぞれにかみ合っている。波動発生器5を回転すると、外歯車4と第1、第2内歯車2、3との間のかみ合い位置がそれぞれ周方向に移動する。 The wave generator 5 includes a rigid plug 5a having an elliptical outer peripheral surface and a pair of wave generator bearings 5b and 5c attached to the elliptical outer peripheral surface of the plug 5a. As a whole, the wave generator bearings 5b and 5c are bent in an elliptical shape along the elliptical outer peripheral surface of the plug 5a. Therefore, the external gear 4 is also bent in an elliptical shape along the elliptical outer peripheral surface of the plug 5a, and the first and second external gears 4a and 4b at the major axis positions thereof are the first and second internal gears 2 and 3. The first and second internal teeth 2a and 3a are engaged with each other. When the wave generator 5 is rotated, the meshing positions between the external gear 4 and the first and second internal gears 2 and 3 are respectively moved in the circumferential direction.
 例えば、第2内歯車3の歯数は第1、第2外歯車部分4A、4Bと同一であり、他方の第1内歯車2の歯数は第1、第2外歯車部分4A、4Bよりも、2n枚多い(n:正の整数)。例えば、2枚多い。したがって、外歯車4(第1、第2外歯車部分4A、4B)は歯数が同一の第2内歯車3と一体となって回転し、歯数の多い第1内歯車2との間には、両歯車の歯数差に応じた相対回転が発生する。第1内歯車2は回転しないように固定されているので、他方の第2内歯車3から減速回転が出力されて不図示の被駆動部材に伝達される。 For example, the number of teeth of the second internal gear 3 is the same as that of the first and second external gear portions 4A and 4B, and the number of teeth of the other first internal gear 2 is based on the first and second external gear portions 4A and 4B. Is 2n more (n: positive integer). For example, there are two more. Accordingly, the external gear 4 (the first and second external gear portions 4A and 4B) rotates integrally with the second internal gear 3 having the same number of teeth, and between the first internal gear 2 having a large number of teeth. Causes relative rotation according to the difference in the number of teeth of both gears. Since the first internal gear 2 is fixed so as not to rotate, a reduced rotation is output from the other second internal gear 3 and transmitted to a driven member (not shown).
 図2(a)は、第1、第2内歯車2、3と外歯車4とを示す斜視図であり、第1、第2外歯4a、4bを示すために、第1、第2内歯車2、3の一部を切り取った状態で示してある。図2(b)は外歯車4の第1、第2外歯車部分4A、4Bの歯部を示す説明図である。 FIG. 2A is a perspective view showing the first and second internal gears 2 and 3 and the external gear 4, and the first and second internal gears 4a and 4b are shown to show the first and second external teeth 4a and 4b. The gears 2 and 3 are partially cut off. FIG. 2 (b) is an explanatory view showing the tooth portions of the first and second external gear portions 4 </ b> A and 4 </ b> B of the external gear 4.
 これらの図から分かるように、外歯車4の第1、第2外歯車部分4A、4Bははす歯外歯車であり、第1、第2内歯車2、3も、これらにかみ合い可能なはす歯内歯車である。外歯車4における一方の第1外歯車部分4Aの第1外歯4aは、中心軸線1aの方向に対して、歯筋方向が一定のねじれ角となっているはす歯である。これに対して、第2外歯車部分4Bの第2外歯4bは、第1外歯4aとは逆方向に同一のねじれ角で延びるはす歯である。第1、第2内歯車2、3の第1、第2内歯2a、3aも、同様に、相互に逆方向にねじれたはす歯である。 As can be seen from these drawings, the first and second external gear portions 4A and 4B of the external gear 4 are helical external gears, and the first and second internal gears 2 and 3 can also mesh with them. This is an internal gear. The first external tooth 4a of one first external gear portion 4A of the external gear 4 is a helical tooth whose tooth trace direction has a constant helix angle with respect to the direction of the central axis 1a. On the other hand, the second external teeth 4b of the second external gear portion 4B are helical teeth extending at the same helix angle in the opposite direction to the first external teeth 4a. Similarly, the first and second internal teeth 2a and 3a of the first and second internal gears 2 and 3 are helical teeth twisted in directions opposite to each other.
 このように、第1、第2外歯車部分4A、4Bは、ねじれ方向が逆のはす歯外歯車であり、これらにかみ合う第1、第2内歯車も、ねじれ方向が逆のはす歯内歯車である。ねじれ方向が逆のはす歯歯車が、中心軸線1aの方向に並列配置されているので、第1内歯車2と第1外歯車部分4Aのかみ合いにより生じるスラスト力と、第2内歯車3と第2外歯車部分4Bのかみ合いにより生じるスラスト力とが逆向きに作用する。よって、かみ合いによって生じるスラスト力が相殺され、あるいは低減される。 Thus, the first and second external gear portions 4A and 4B are helical external gears whose torsional directions are reversed, and the first and second internal gears meshing with these are also helical teeth whose reverse torsional directions are reversed. It is an internal gear. Since the helical gears having opposite torsional directions are arranged in parallel in the direction of the central axis 1a, the thrust force generated by the meshing of the first internal gear 2 and the first external gear portion 4A, and the second internal gear 3 The thrust force generated by the meshing of the second external gear portion 4B acts in the opposite direction. Therefore, the thrust force generated by the meshing is offset or reduced.
(変形例1)
 図3(a)は、上記の第1、第2内歯車2、3および外歯車4の代わりに使用可能な第1、第2内歯車および外歯車の例を示す斜視図であり、第1、第2内歯車の一部を切り取った状態で示し、図3(b)は外歯車の第1、第2外歯車部分の歯部を示す説明図である。
(Modification 1)
FIG. 3A is a perspective view showing an example of the first and second internal gears and the external gear that can be used in place of the first and second internal gears 2 and 3 and the external gear 4. FIG. 3B is an explanatory diagram showing the tooth portions of the first and second external gear portions of the external gear.
 これらの図に示すように、本例では、外歯車14の第1外歯車部分14Aは平歯車であり、第2外歯車部分14Bはやま歯外歯車である。これに対応して、第1内歯車12は、第1外歯車部分14Aがかみ合い可能な平歯車であり、第2内歯車13は、第2外歯車部分14Bがかみ合い可能なやま歯内歯車である。 As shown in these drawings, in this example, the first external gear portion 14A of the external gear 14 is a spur gear, and the second external gear portion 14B is a toothed external gear. Correspondingly, the first internal gear 12 is a spur gear that can mesh with the first external gear portion 14A, and the second internal gear 13 is a toothed internal gear that can mesh with the second external gear portion 14B. .
 やま歯歯車同士のかみ合い部分においては、かみ合いによって生じるスラスト力が相殺される。よって、全体として、外歯車14に作用するスラスト力が低減される。また、やま歯歯車同士のかみ合いによって、外歯車14の軸線方向への移動が拘束される。 ス ラ Thrust force generated by the meshing is offset at the meshing part between the toothed gears. Therefore, the thrust force acting on the external gear 14 is reduced as a whole. Further, the movement of the external gear 14 in the axial direction is restrained by the meshing of the toothed gears.
(変形例2)
 図4(a)は、上記の第1、第2内歯車2、3および外歯車4の代わりに使用可能な第1、第2内歯車および外歯車の別の例を示す斜視図であり、第1、第2内歯車の一部を切り取った状態で示し、図4(b)は外歯車の第1、第2外歯車部分の歯部を示す説明図である。
(Modification 2)
FIG. 4A is a perspective view showing another example of the first and second internal gears and the external gear that can be used in place of the first and second internal gears 2 and 3 and the external gear 4. FIG. 4B is an explanatory view showing the tooth portions of the first and second external gear portions of the external gear, with a part of the first and second internal gears being cut off.
 これらの図に示すように、本例では、外歯車24の第1外歯車部分24Aはやま歯外歯車であり、第2外歯車部分24Bもやま歯外歯車である。これに対応して、第1内歯車22は、第1外歯車部分24Aがかみ合い可能なやま歯内歯車であり、第2内歯車23は、第2外歯車部分24Bがかみ合い可能なやま歯内歯車である。 As shown in these drawings, in this example, the first external gear portion 24A of the external gear 24 is a toothed external gear, and the second external gear portion 24B is also a toothed external gear. Correspondingly, the first internal gear 22 is a toothed internal gear that can mesh with the first external gear portion 24A, and the second internal gear 23 is a toothed internal gear that can mesh with the second external gear portion 24B. is there.
 やま歯歯車同士のかみ合いによってスラスト力が相殺される。よって、外歯車14に作用するスラスト力が打ち消される。外歯車14が軸線方向に移動することがない。 ス ラ Thrust force is offset by the meshing of the toothed gears. Therefore, the thrust force acting on the external gear 14 is canceled out. The external gear 14 does not move in the axial direction.
 以上説明したように、本発明のフラット型波動歯車装置においては、第1、第2内歯車と外歯車とのかみ合いが、はす歯同士のかみ合い、あるいは、やま歯同士のかみ合いとなるようにしている。したがって、外歯車4、14、24に生じるスラスト力を相殺あるいは低減できる。よって、外歯車の軸線方向の移動を規制あるいは拘束するための部材を省略できる。また、はす歯歯車同士あるいはやま歯歯車同士のかみ合いは、平歯車同士のかみ合いに比べて円滑であり、低振動、低騒音化に有利である。 As described above, in the flat wave gear device of the present invention, the meshing between the first and second internal gears and the external gear is such that the meshing of the helical teeth or the meshing of the tooth teeth. ing. Therefore, the thrust force generated in the external gears 4, 14, and 24 can be offset or reduced. Therefore, a member for restricting or restraining the movement of the external gear in the axial direction can be omitted. Further, the meshing between the helical gears or between the toothed gears is smoother than the meshing between the spur gears, which is advantageous for low vibration and low noise.
 さらに、外歯車の移動を拘束するための部材を省略できるので、内歯車と外歯車のかみ合い部分の軸線方向の両側に、潤滑剤流通用の空間を確保できる。これにより、かみ合い部分などへの潤滑不足を解消できるという付随的な効果も得られる。 Furthermore, since the member for restricting the movement of the external gear can be omitted, it is possible to secure a space for distributing the lubricant on both sides in the axial direction of the meshing portion of the internal gear and the external gear. Thereby, the incidental effect that the lack of lubrication to the meshing part or the like can be solved is also obtained.
[実施の形態2]
 図5(a)は、本発明を適用可能な別の構成のフラット型波動歯車装置の例を示す半断面図であり、図5(b)はその半正面図である。これらの図に示すフラット型波動歯車装置30は、剛性歯車である第1外歯車32および第2外歯車33と、これらの外側に同軸に配置した円筒形状をした可撓性歯車である内歯車34と、内歯車34の外側に嵌めた波動発生器35とを備えている。
[Embodiment 2]
FIG. 5A is a half cross-sectional view showing an example of another type of flat wave gear device to which the present invention is applicable, and FIG. 5B is a half front view thereof. The flat wave gear device 30 shown in these drawings includes a first external gear 32 and a second external gear 33 that are rigid gears, and an internal gear that is a cylindrical flexible gear that is coaxially disposed on the outer sides thereof. 34 and a wave generator 35 fitted to the outside of the internal gear 34.
 内歯車34は、半径方向に撓み可能な円筒状胴部34cと、この円筒状胴部34cの円形内周面に形成された第1内歯34aおよび第2内歯34bとを備えている。第1内歯34aは第1外歯車32の第1外歯32aにかみ合い可能であり、第2内歯34bは第2外歯車33の第2外歯33aにかみ合い可能である。円筒状胴部34cおよび第1内歯34aによって第1内歯車部分34Aが形成され、円筒状胴部34cおよび第2内歯34bによって第2内歯車部分34Bが形成されている。 The internal gear 34 includes a cylindrical body portion 34c that can be bent in the radial direction, and first internal teeth 34a and second internal teeth 34b that are formed on the circular inner peripheral surface of the cylindrical body portion 34c. The first internal teeth 34 a can mesh with the first external teeth 32 a of the first external gear 32, and the second internal teeth 34 b can mesh with the second external teeth 33 a of the second external gear 33. A first internal gear portion 34A is formed by the cylindrical body portion 34c and the first internal teeth 34a, and a second internal gear portion 34B is formed by the cylindrical body portion 34c and the second internal teeth 34b.
 波動発生器5は、楕円状内周面を備えた一定厚さの剛性のプラグ35aと、このプラグ35aの楕円状内周面に装着した一対の波動発生器軸受け35bから構成されている。波動発生器軸受け35bは全体として、プラグ35aの楕円状内周面に沿った楕円状に撓められている。よって、内歯車34もプラグ35aの楕円状内周面に沿った楕円状に撓められ、その短径位置の第1、第2内歯34a、34bの部分が第1、第2外歯車32、33の第1、第2外歯32a、33aのそれぞれにかみ合っている。波動発生器35を回転すると、内歯車34と第1、第2外歯車32、33との間のかみ合い位置がそれぞれ周方向に移動する。 The wave generator 5 includes a rigid plug 35a having a constant thickness provided with an elliptical inner peripheral surface, and a pair of wave generator bearings 35b attached to the elliptical inner peripheral surface of the plug 35a. The wave generator bearing 35b as a whole is bent in an elliptical shape along the elliptical inner peripheral surface of the plug 35a. Accordingly, the internal gear 34 is also bent in an elliptical shape along the elliptical inner peripheral surface of the plug 35a, and the first and second internal gears 34a and 34b at the short diameter position thereof are the first and second external gears 32. , 33 are engaged with the first and second external teeth 32a, 33a. When the wave generator 35 is rotated, the meshing positions between the internal gear 34 and the first and second external gears 32 and 33 are respectively moved in the circumferential direction.
 この構成のフラット型波動歯車装置30において、第1外歯車32および第1内歯車部分34Aは、平歯車、はす歯歯車、および、やま歯歯車のうちのいずれか一つとされる。 In the flat wave gear device 30 having this configuration, the first external gear 32 and the first internal gear portion 34A are any one of a spur gear, a helical gear, and a helical gear.
 第1外歯車32および第1内歯車部分34Aが平歯車の場合には、第2外歯車33および第2内歯車部分34Bは、やま歯歯車とされる。 When the first external gear 32 and the first internal gear portion 34A are spur gears, the second external gear 33 and the second internal gear portion 34B are bevel gears.
 第1外歯車32および第1内歯車部分34Aがはす歯歯車の場合には、第2外歯車33および第2内歯車部分34Bは、第1外歯車32および第1内歯車部分34Aとはねじれ方向が逆のはす歯歯車とされる。 When the first external gear 32 and the first internal gear portion 34A are helical gears, the second external gear 33 and the second internal gear portion 34B are different from the first external gear 32 and the first internal gear portion 34A. A helical gear having a reverse twist direction is used.
 また、第1外歯車32および第1内歯車部分34Aがやま歯歯車の場合には、第2外歯車33および第2内歯車部分34Bは、平歯車およびやま歯歯車のうちのいずれか一方とされる。 When the first external gear 32 and the first internal gear portion 34A are toothed gears, the second external gear 33 and the second internal gear portion 34B are either a spur gear or a toothed gear. Is done.
 この構成のフラット型波動歯車装置30においても、上記のフラット型波動歯車装置1の場合と同様な作用効果が得られる。 Also in the flat wave gear device 30 having this configuration, the same effects as those of the flat wave gear device 1 can be obtained.
[実施の形態3]
 図6(a)は本発明を適用したカップ型波動歯車装置を示す縦断面図であり、図6(b)はその分解斜視図である。波動歯車装置100は、剛性歯車である内歯車102、および、その内側に配置されたカップ形状の可撓性歯車である外歯車103を備えている。外歯車103は、半径方向に撓み可能な円筒状胴部103aと、この後端から半径方向の内方に延びているダイヤフラム103bと、ダイヤフラム103bの内周縁に連続して形成されている厚肉の円環状あるいは円盤状のボス103cとを備えている。円筒状胴部103aの開口側の部分が外歯形成部分103dであり、その外周面部分に外歯103eが形成されている。
[Embodiment 3]
FIG. 6A is a longitudinal sectional view showing a cup-type wave gear device to which the present invention is applied, and FIG. 6B is an exploded perspective view thereof. The wave gear device 100 includes an internal gear 102 that is a rigid gear, and an external gear 103 that is a cup-shaped flexible gear disposed inside the wave gear device 100. The outer gear 103 includes a cylindrical body 103a that can be bent in the radial direction, a diaphragm 103b that extends radially inward from the rear end thereof, and a thick wall formed continuously on the inner periphery of the diaphragm 103b. And an annular or disc-shaped boss 103c. A portion of the cylindrical body 103a on the opening side is an external tooth forming portion 103d, and external teeth 103e are formed on the outer peripheral surface portion thereof.
 外歯車103の円筒状胴部103aは、その外歯形成部分103dの内側に装着されている楕円状輪郭の波動発生器104によって楕円状に撓められており、外歯103eは内歯車102の内歯102aに対して部分的に噛み合っている。波動発生器104を回転すると、両歯車102、103のかみ合い位置が周方向に移動し、両歯車102、103の歯数差に応じた相対回転が両歯車の間に発生する。一方の歯車、例えば内歯車102を回転しないように固定しておくことで、他方のカップ形状の外歯車103から減速回転が出力される。 The cylindrical body portion 103 a of the external gear 103 is bent in an elliptical shape by a wave generator 104 having an elliptical contour that is attached to the inside of the external tooth forming portion 103 d, and the external teeth 103 e are connected to the internal gear 102. It partially meshes with the internal teeth 102a. When the wave generator 104 is rotated, the meshing position of the two gears 102 and 103 moves in the circumferential direction, and relative rotation corresponding to the difference in the number of teeth of the two gears 102 and 103 is generated between the two gears. When one gear, for example, the internal gear 102 is fixed so as not to rotate, reduced rotation is output from the other cup-shaped external gear 103.
 波動発生器104は、円環状をした一定厚さの剛性のプラグ104aと、このプラグ104aの楕円状外周面104bに装着された波動発生器軸受け104cとを備えている。波動発生器軸受け104cは、半径方向に撓み可能な内外輪を備えており、プラグ104aと外歯車103の間に装着されている。波動発生器104によって、外歯車103はプラグ104aの楕円状外周面104bに沿った楕円状に撓められ、その長軸上の位置において外歯103eが内歯車102の内歯102aにかみ合っている。 The wave generator 104 includes a ring-shaped, rigid plug 104a having a constant thickness, and a wave generator bearing 104c attached to an elliptical outer peripheral surface 104b of the plug 104a. The wave generator bearing 104 c includes inner and outer rings that can be bent in the radial direction, and is mounted between the plug 104 a and the outer gear 103. The external gear 103 is bent into an elliptical shape along the elliptical outer peripheral surface 104b of the plug 104a by the wave generator 104, and the external teeth 103e mesh with the internal teeth 102a of the internal gear 102 at a position on the long axis. .
 図7(a)は外歯車103を示す斜視図であり、図7(b)および(c)は、外歯車103の外歯形成部分103dを示す部分側面図および部分断面図である。図7(b)、(c)においては、外歯103eの形状を分かり易くするために模式的に外歯103eを示してある。 7A is a perspective view showing the external gear 103, and FIGS. 7B and 7C are a partial side view and a partial cross-sectional view showing an external tooth forming portion 103d of the external gear 103. FIG. 7B and 7C, the external teeth 103e are schematically shown for easy understanding of the shape of the external teeth 103e.
 これらの図に示すように、外歯車103ははす歯外歯車であり、その外歯103eは、歯すじ方向における中央に形成した円環状の一定幅の溝111によって、第1はす歯部分112および第2はす歯部分113に分離している。外歯車103の開口端の側の第1はす歯部分112は、中心軸線101aの方向に対して、一定のねじれ角でねじれたはす歯である。これに対して、ダイヤフラム側の第2はす歯部分113は、第1はす歯部分112とは異なるねじり角のはす歯である。溝111は、外歯形成部分103dの歯底リム110の円形外周面(歯底円)に沿って円周方向に延びる1本の環状溝である。 As shown in these drawings, the external gear 103 is a helical external gear, and the external tooth 103e is formed by an annular constant width groove 111 formed at the center in the direction of the tooth stripe, so that the first helical gear portion is formed. 112 and the second helical tooth portion 113 are separated. The first helical tooth portion 112 on the open end side of the external gear 103 is a helical tooth twisted at a constant twist angle with respect to the direction of the central axis 101a. On the other hand, the second helical tooth portion 113 on the diaphragm side is a helical tooth having a torsion angle different from that of the first helical tooth portion 112. The groove 111 is a single annular groove extending in the circumferential direction along the circular outer peripheral surface (the root circle) of the root rim 110 of the external tooth forming portion 103d.
 内歯車102は、図6(b)に示すように、外歯車103にかみ合い可能なはす歯内歯車である。内歯車102の内歯102aは、第1はす歯部分112にかみ合い可能なはす歯部分122と、第2はす歯部分113にかみ合い可能なはす歯部分123とを備えている。これらの間は溝121によって分離している。 The internal gear 102 is a helical internal gear that can mesh with the external gear 103 as shown in FIG. The internal teeth 102 a of the internal gear 102 include a helical tooth portion 122 that can mesh with the first helical tooth portion 112 and a helical tooth portion 123 that can mesh with the second helical tooth portion 113. These are separated by a groove 121.
 波動発生器104によって楕円状に撓められて内歯車102にかみ合う外歯車103の歯部の内周面にはスラスト力が作用する。両歯車の間には、ねじれ角が異なる2組のはす歯同士のかみ合いが形成される。これら2組のはす歯のかみ合い歯面がスラスト力を受け、スラスト力が外歯車103のダイヤフラム103b等の部位に作用することを防止あるいは抑制できる。 Thrust force acts on the inner peripheral surface of the tooth portion of the external gear 103 that is bent into an elliptical shape by the wave generator 104 and meshes with the internal gear 102. Between the two gears, two sets of helical teeth with different twist angles are formed. The meshing tooth surfaces of these two sets of helical teeth receive a thrust force, and the thrust force can be prevented or suppressed from acting on a portion of the external gear 103 such as the diaphragm 103b.
[その他の実施の形態]
 上記の実施の形態3は本発明をカップ型波動歯車装置に適用したものである。本発明はシルクハット型波動歯車装置に対しても同様に適用可能である。
[Other embodiments]
In the third embodiment, the present invention is applied to a cup-type wave gear device. The present invention can be similarly applied to a top hat type wave gear device.

Claims (5)

  1.  第1、第2剛性歯車、および、
     非円形に撓められて円周方向における一部分が前記第1剛性歯車にかみ合っている第1可撓性歯車部分および前記第2剛性歯車にかみ合っている第2可撓性歯車部分を備えた可撓性歯車
    を有し、
     前記第1剛性歯車および前記第1可撓性歯車部分は、平歯車、はす歯歯車、および、やま歯歯車のうちのいずれか一つであり、
     前記第1剛性歯車および前記第1可撓性歯車部分が前記平歯車の場合には、前記第2剛性歯車および前記第2可撓性歯車部分は、やま歯歯車であり、
     前記第1剛性歯車および前記第1可撓性歯車部分が前記はす歯歯車の場合には、前記第2剛性歯車および前記第2可撓性歯車部分は、前記第1剛性歯車および前記第1可撓性歯車部分とはねじれ方向が逆のはす歯歯車であり、
     前記第1剛性歯車および前記第1可撓性歯車部分が前記やま歯歯車の場合には、前記第2剛性歯車および前記第2可撓性歯車部分は、平歯車およびやま歯歯車のうちのいずれか一方である
    フラット型の波動歯車装置。
    First and second rigid gears, and
    A first flexible gear portion that is non-circularly bent and a portion of the circumferential direction meshes with the first rigid gear and a second flexible gear portion that meshes with the second rigid gear. A flexible gear,
    The first rigid gear and the first flexible gear part are any one of a spur gear, a helical gear, and a toothed gear,
    When the first rigid gear and the first flexible gear portion are the spur gear, the second rigid gear and the second flexible gear portion are toothed gears,
    When the first rigid gear and the first flexible gear part are the helical gears, the second rigid gear and the second flexible gear part are the first rigid gear and the first flexible gear part. A helical gear with a twist direction opposite to that of the flexible gear portion,
    When the first rigid gear and the first flexible gear portion are the toothed gears, the second rigid gear and the second flexible gear portion are either a spur gear or a toothed gear. On the other hand, a flat wave gear device.
  2.  前記第1、第2剛性歯車は内歯車であり、前記可撓性歯車は外歯車である請求項1に記載のフラット型の波動歯車装置。 2. The flat wave gear device according to claim 1, wherein the first and second rigid gears are internal gears, and the flexible gear is an external gear.
  3.  前記はす歯歯車あるいは前記やま歯歯車のねじれ角は、5deg~20degの範囲内の値である請求項1に記載のフラット型の波動歯車装置。 2. The flat type wave gear device according to claim 1, wherein the helical angle of the helical gear or the helical gear is a value within a range of 5 deg to 20 deg.
  4.  剛性歯車、および、
     非円形に撓められて円周方向における一部分が前記剛性歯車にかみ合っているカップ形状あるいはシルクハット形状の可撓性歯車
    を有し、
     前記可撓性歯車ははす歯歯車であり、
     前記可撓性歯車の歯部は、歯筋方向における一方の側に形成した第1はす歯部分と、他方の側に形成した第2はす歯部分とに分離しており、
     前記第1はす歯部分と前記第2はす歯部分とは、ねじれ角度が異なり、
     前記剛性歯車の歯部は、前記第1はす歯部分にかみ合い可能なはす歯部分と、前記第2はす歯部分にかみ合い可能なはす歯部分とを備えている波動歯車装置。
    Rigid gears, and
    A cup-shaped or top hat-shaped flexible gear that is bent non-circularly and a portion in the circumferential direction meshes with the rigid gear;
    The flexible gear is a helical gear;
    The tooth portion of the flexible gear is separated into a first helical tooth portion formed on one side in the tooth trace direction and a second helical tooth portion formed on the other side,
    The first helical tooth portion and the second helical tooth portion have different twist angles.
    The tooth portion of the rigid gear includes a helical gear portion that can mesh with the first helical gear portion, and a helical gear portion that can mesh with the second helical gear portion.
  5.  前記剛性歯車は内歯車であり、前記可撓性歯車は外歯車である請求項4に記載の波動歯車装置。 The wave gear device according to claim 4, wherein the rigid gear is an internal gear, and the flexible gear is an external gear.
PCT/JP2015/072001 2015-08-03 2015-08-03 Strain wave gearing device WO2017022062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072001 WO2017022062A1 (en) 2015-08-03 2015-08-03 Strain wave gearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072001 WO2017022062A1 (en) 2015-08-03 2015-08-03 Strain wave gearing device

Publications (1)

Publication Number Publication Date
WO2017022062A1 true WO2017022062A1 (en) 2017-02-09

Family

ID=57942550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072001 WO2017022062A1 (en) 2015-08-03 2015-08-03 Strain wave gearing device

Country Status (1)

Country Link
WO (1) WO2017022062A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190136946A1 (en) * 2016-04-25 2019-05-09 Jtekt Europe Cycloidal reducer with helical toothing for power steering
US11339863B2 (en) * 2019-11-26 2022-05-24 Maxon International Ag Flexible gear wheel and gear mechanism with such a flexible gear wheel
US20230383831A1 (en) * 2022-05-27 2023-11-30 Hamilton Sundstrand Corporation Harmonic gearset with split flexspline

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054757A1 (en) * 2009-12-16 2011-06-22 ZF Lenksysteme GmbH, 73527 Radial-flexible roll-off sleeve for harmonic drive of steering system for motor vehicle, has cylindrical bush comprising external teeth designed as helical gearings, where sleeve is provided at front side with wall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009054757A1 (en) * 2009-12-16 2011-06-22 ZF Lenksysteme GmbH, 73527 Radial-flexible roll-off sleeve for harmonic drive of steering system for motor vehicle, has cylindrical bush comprising external teeth designed as helical gearings, where sleeve is provided at front side with wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190136946A1 (en) * 2016-04-25 2019-05-09 Jtekt Europe Cycloidal reducer with helical toothing for power steering
US10704650B2 (en) * 2016-04-25 2020-07-07 Jtekt Europe Cycloidal reducer with helical toothing for power steering
US11339863B2 (en) * 2019-11-26 2022-05-24 Maxon International Ag Flexible gear wheel and gear mechanism with such a flexible gear wheel
US20230383831A1 (en) * 2022-05-27 2023-11-30 Hamilton Sundstrand Corporation Harmonic gearset with split flexspline

Similar Documents

Publication Publication Date Title
US10060517B2 (en) Strain wave gearing, frictional engagement wave device, and wave generator
JP5925387B2 (en) Wave generator and wave gear device
WO2015001974A1 (en) Strain wave gear device
JP6314888B2 (en) Torsional vibration reduction device
WO2010047189A1 (en) Gear transmitting device
WO2017022062A1 (en) Strain wave gearing device
US11092223B2 (en) Dual-type strain wave gearing
JP2010014177A (en) Eccentric rocking type gear transmission device
WO2019065070A1 (en) Dual-type wave gear device
JP2019027519A (en) Wave gear device
JP6091631B2 (en) Wave gear device
KR102209029B1 (en) Wave gear device
KR102440561B1 (en) hollow wave gear device
JP6599682B2 (en) Planetary gear set
WO2019013190A1 (en) Wave gear device
JP2014092208A (en) Wave gear device, and transmission ratio variable device
JP5891054B2 (en) Differential equipment
JP2017067259A (en) Support structure of double-helical gear
KR20200077231A (en) Precision reducer
WO2019013200A1 (en) Wave gear device
CN109707829B (en) Axial shifting gear device
JP2019078343A (en) Rotation transmission device by combination of inscribed planetary gear mechanisms
JP2007145067A (en) Connecting structure of rotary shaft, and transmission ratio variable device
JP2020085184A (en) Coupling device and driving device
JP2017145905A (en) Torsional vibration reduction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900375

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE