WO2017022032A1 - Partial discharge detection device and partial discharge detection method - Google Patents

Partial discharge detection device and partial discharge detection method Download PDF

Info

Publication number
WO2017022032A1
WO2017022032A1 PCT/JP2015/071859 JP2015071859W WO2017022032A1 WO 2017022032 A1 WO2017022032 A1 WO 2017022032A1 JP 2015071859 W JP2015071859 W JP 2015071859W WO 2017022032 A1 WO2017022032 A1 WO 2017022032A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial discharge
discharge detection
signal
integrated
unit
Prior art date
Application number
PCT/JP2015/071859
Other languages
French (fr)
Japanese (ja)
Inventor
村上 真一
山本 昭夫
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/071859 priority Critical patent/WO2017022032A1/en
Priority to JP2016565508A priority patent/JP6345803B2/en
Publication of WO2017022032A1 publication Critical patent/WO2017022032A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a failure detection method for electrical products such as industrial motors and inverters.
  • Rotation machine stator windings are subject to insulation deterioration due to stress during operation. And if insulation deterioration progresses, it will eventually lead to a dielectric breakdown accident.
  • a sign diagnosis technique for detecting a sign of failure by detecting a partial discharge signal generated in a rotating machine.
  • Patent Document 1 JP-A No. 11-94897 (Patent Document 1) as a prior art in this technical field.
  • an electronic calculation means for discriminating the measurement data into a signal and noise by processing, and displaying and storing the signal after noise removal as a partial discharge.
  • the signal strength of the sensing data needs to be large.
  • the signal intensity of the sensing data is weak, there is a problem that it is difficult to distinguish the partial discharge signal from the noise.
  • An object of the present invention is to provide a partial discharge detection device and a detection method capable of improving the detection accuracy of a partial discharge signal even when the signal intensity of the partial discharge included in the sensing data is weak.
  • the present invention is, as an example, a partial discharge detection device, a sensor unit that receives a partial discharge signal and a noise signal generated by voltage application to a rotating machine, and a rotating machine
  • a synchronization signal generating unit that generates a synchronization signal synchronized with the cycle of the drive voltage
  • an integration processing unit that integrates the sensor signals received by the sensor unit with the period of the synchronization signal to generate an integrated waveform
  • a partial discharge detector that calculates the partial discharge amount by separating the partial discharge and noise
  • a determination unit that determines abnormality of the rotating machine based on the partial discharge amount.
  • the present invention it is possible to provide a partial discharge detection device and a partial discharge detection method that can detect a weak partial discharge signal included in a sensor signal with high accuracy.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a partial discharge detection device according to Embodiment 1.
  • FIG. FIG. 6 is a waveform diagram illustrating an example of integration processing according to the first embodiment.
  • 3 is a flowchart illustrating an example of the operation of the partial discharge detection device according to the first embodiment.
  • FIG. 6 is an example of a display screen of the user I / F 12 according to the first embodiment.
  • FIG. FIG. 6 is a waveform diagram illustrating an example of integration processing according to the second embodiment.
  • FIG. 10 illustrates an example of a display screen of a user I / F 12 according to the second embodiment.
  • FIG. 9 is a block diagram illustrating an example of a configuration of a partial discharge detection device according to a third embodiment.
  • FIG. 10 is a timing chart illustrating an example of intersection detection processing according to the third embodiment.
  • FIG. 10 is a waveform diagram illustrating an example of compression / decompression processing according to the third embodiment.
  • FIG. 6 is a block diagram illustrating an example of a configuration of a partial discharge detection device according to a fourth embodiment.
  • FIG. 10 is a timing diagram illustrating an example of integration processing according to the fourth embodiment.
  • FIG. 10 is an example of a display screen of a user I / F 12 according to the fourth embodiment.
  • FIG. 1 is a block diagram showing a configuration of a partial discharge detection device according to the present embodiment.
  • 1 is a rotating machine
  • 2 is a driving power source for supplying three-phase power to the rotating machine
  • 3 is a power supply cable (U, V, W phase) for supplying power to the rotating machine 1 from the driving power source 2.
  • Reference numeral 4 denotes a current sensor, which functions as a partial discharge detection sensor and is installed so as to penetrate the three phases of the power feeding cable 3 all together.
  • the current sensor signal 4 a detected by the current sensor 4 includes a partial discharge signal and a noise signal, and is supplied to the predictive diagnosis unit 5.
  • the amplification unit 6 receives the current sensor signal 4 a, performs signal amplitude amplification and current / voltage conversion, and outputs the amplified signal to the A / D conversion unit 7.
  • the amplifying unit 6 includes a high-pass filter circuit, which removes low-frequency noise contained in the current sensor signal 4a and extracts a partial discharge signal composed of high-frequency components.
  • the A / D conversion unit 7 samples the analog signal from the amplification unit 6 and converts it into a digital signal and outputs it to the integration processing unit 8. Further, the A / D converter 7 may subtract the converted digital signal value and the reference value and replace the absolute value with the digital signal value.
  • the reference value is an average value of digital signal values acquired when the rotating machine 1 is not loaded, an average value of digital signal values acquired when the drive power supply 2 is stopped, or an arbitrary set value by the user.
  • the synchronization signal generator 11 generates a synchronization signal 11 a synchronized with one cycle of the AC signal driven by the drive power supply 2 and outputs the synchronization signal 11 a to the integration processor 8.
  • the synchronization signal 11a may be generated by inputting frequency information driven by the drive power source 2 to the synchronization signal generation unit 11 in advance, and generating the synchronization signal 11a by the synchronization signal generation unit 11 based on this information.
  • Means for inputting control information regarding the frequency may be provided, and the synchronization signal generator 11 may generate the control information based on this information.
  • the integration processing unit 8 executes the integration process of the digital signal from the A / D conversion unit 7 a specified number of times in synchronization with the synchronization signal 11a, and outputs the integration data for which the specified number of integrations have been completed to the partial discharge detection unit 9. To do.
  • the partial discharge detection unit 9 analyzes the integrated data, separates the partial discharge component and the noise component, and calculates the partial discharge amount.
  • the partial discharge detection unit 9 notifies the determination unit 10 of the calculated partial discharge amount, and the determination unit 10 transmits the received partial discharge amount to the partial discharge via a user I / F 12 configured by a PC, a tablet terminal, or the like. Display quantity.
  • the partial discharge detection device includes a current sensor 4, a sign diagnosis unit 5, and a user I / F 12.
  • FIG. 2 is a waveform diagram for explaining an example of integration processing and partial discharge amount calculation processing in the present embodiment.
  • FIG. 2 shows an example in which integration processing for m cycles is performed on the digital signal from the A / D conversion unit 7 in synchronization with the synchronization signal 11 a of the synchronization signal generation unit 11.
  • 21 is a partial discharge signal
  • 22 and 23 are noises (23 is a single-shot or high-frequency noise generated in synchronization with the drive frequency).
  • 24 described in the 1st to m-th cycle integrated data obtained by integrating the data from the first cycle to the m cycle is for extracting a waveform in which the amplitude of the integrated waveform, which is the peak value of the integrated waveform, is larger than the threshold value. It is an amplitude determination threshold value.
  • the partial discharge detection unit 9 extracts integrated data (25a, 25b, 25c) having an amplitude determination threshold value of 24 or more and sets it as a partial discharge component candidate.
  • the partial discharge detection unit 9 calculates a waveform width ( ⁇ Ta, ⁇ Tb, ⁇ Tc) with the amplitude determination threshold 24 as a base for the extracted partial discharge component candidates.
  • a waveform width ( ⁇ Ta, ⁇ Tb, ⁇ Tc)
  • ⁇ Tth integrated data whose waveform width is equal to or greater than the waveform width determination threshold (referred to as ⁇ Tth) is determined as the partial discharge component.
  • ⁇ Tth integrated data whose waveform width is equal to or greater than the waveform width determination threshold
  • 25a and 25c are partial discharge components
  • 25b is a noise component.
  • the waveform width determination threshold value ⁇ Tth can be arbitrarily set by the user. However, since the partial discharge phenomenon occurs with variation without being synchronized with the driving cycle of the rotating machine 1, for example, the generation timing of the partial discharge is determined by prior verification. The distribution may be confirmed, and a value smaller than the occurrence distribution width may be set as ⁇ Tth.
  • the partial discharge detection unit 9 After extracting the partial discharge components, the partial discharge detection unit 9 obtains the total value of the accumulated data of ⁇ Ta and ⁇ Tc, that is, 26a and 26c, which are the added values of the areas, and sets this as the partial discharge amount. Notice.
  • the determination unit 10 displays the received partial discharge amount via the user I / F 12. Further, when the partial discharge amount is larger than the prescribed numerical value, the determination unit 10 determines that the rotating machine 1 is malfunctioning or is a sign of failure, and stops the driving power source 2 or decreases the output by the driving power control signal 10a. Take action.
  • FIG. 3 is a flowchart showing an example of the operation of the partial discharge detection device.
  • steps S301 to S304 execute the integration process a specified number of times (S301), detect partial discharge components from the integration data based on the amplitude determination threshold 24 and the waveform width determination threshold ⁇ Tth (S302), When the partial discharge component is detected, the partial discharge amount is calculated (S303), and the partial discharge amount is notified via the user I / F 12 (S304).
  • step S305 it is determined whether or not the series of processes in steps S301 to S304 has been executed a specified number of times. If the specified number of times has been executed, the process ends. If the specified number of times has not been executed, the process proceeds to step S306. For example, after a waiting time such as one hour or half a day, steps S301 to S304 are executed. By these steps, the partial discharge amount can be measured periodically and the temporal change of the partial discharge amount can be monitored. Further, a deterioration sign can be detected by comparing the latest partial discharge amount with the partial discharge amount acquired in the past.
  • FIG. 4 is an example of a display screen of the user I / F 12.
  • 41 is a graph showing the temporal variation of the partial discharge amount.
  • a failure determination threshold value is provided. When the partial discharge amount exceeds the threshold value, it is determined that the failure is close, and the determination unit 10 determines the drive power control signal 10a. The drive power supply 2 is stopped or the output is reduced.
  • Reference numeral 42 denotes a parameter setting screen for the user to set various parameters in the sign diagnosis unit 5. Note that the reference value, the amplitude determination threshold value, and the failure determination threshold value may be set not only by the current value [A] but also by the charge amount [C]. A voltage may also be used.
  • the waveform width determination threshold value may be omitted, and the partial discharge component may be determined only by the amplitude determination threshold value. This simplifies processing. Moreover, you may judge from the graph which does not provide a failure determination threshold value and shows the time fluctuation of the partial discharge amount by the user side.
  • the present embodiment is a partial discharge detection device, which is a sensor unit that receives a partial discharge signal and a noise signal generated by voltage application to a rotating machine, and is synchronized with the cycle of the driving voltage of the rotating machine.
  • a synchronization signal generating unit that generates a signal
  • an integration processing unit that generates an integrated waveform by integrating the sensor signals received by the sensor unit with the period of the synchronous signal, and separating partial discharge and noise from the integrated waveform of the sensor signal
  • a partial discharge detector that calculates a partial discharge amount; and a determination unit that determines abnormality of the rotating machine based on the partial discharge amount.
  • a partial discharge detection method for detecting a partial discharge of a rotating machine, wherein a detection sensor signal from a partial discharge detection sensor installed in the rotating machine is integrated for each period of the driving voltage of the rotating machine to obtain an integrated waveform. Generate and separate partial discharge and noise from the integrated waveform, calculate the partial discharge amount, and determine the abnormality of the rotating machine based on the partial discharge amount.
  • the partial discharge is generated in accordance with the cycle of the drive current of the rotating machine, and therefore, the partial discharge signal can be detected with high accuracy by integrating the partial discharge signal for each cycle of the drive current.
  • the current sensor signal is integrated in synchronization with the driving signal cycle of the rotating machine, and the partial discharge signal and the noise component are separated based on the integration data, so that a weak partial discharge signal is generated. Since it can be detected with high accuracy, a failure sign of the rotating machine can be detected at an early stage. Moreover, the partial discharge detection apparatus and the partial discharge detection method which can detect the weak partial discharge signal contained in a sensor signal with high precision can be provided.
  • FIG. 5 is a waveform diagram for explaining an example of integration processing and partial discharge amount calculation processing in the present embodiment.
  • the structure of the partial discharge detection apparatus in a present Example is the same as Example 1, The description is abbreviate
  • the integration processing unit 8 equally divides one cycle section of the synchronization signal 11a from the synchronization signal generation unit 11 into small sections, and performs an integration process for each small section.
  • the integration processing unit 8 compares the digital signal from the A / D conversion unit 7 with a specified count threshold value 51 to determine the magnitude thereof, and when the small section includes a digital signal equal to or greater than the count threshold value 51. Integration processing is performed with the integrated value of the small section being 1, and when the small section does not include a digital signal equal to or greater than the count threshold 51, the integrated value of the small section is set to 0 (see reference numeral 52).
  • the partial discharge detection unit 9 separates the partial discharge component and the noise component based on the integrated data. Specifically, an integration count threshold value 53 is provided, and small sections whose integration value is greater than or equal to the integration count threshold value 53 are extracted from the integration data (54a to 54f). Next, the partial discharge detection part 9 calculates
  • the partial discharge detection unit 9 obtains the total value of the small sections 54a, 54b, 54d, 54e, and 54f, sets this as the partial discharge amount, and notifies the determination unit 10 of it.
  • the determination unit 10 displays the received partial discharge amount via the user I / F 12. Further, when the partial discharge amount is larger than the prescribed numerical value, the determination unit 10 determines that the rotating machine 1 is malfunctioning or is a sign of failure, and stops the driving power source 2 or decreases the output by the driving power control signal 10a. Take action.
  • FIG. 6 is an example of a display screen of the user I / F 12.
  • the difference from the user I / F of the first embodiment shown in FIG. 4 is the parameter setting screen 61 of the predictive diagnosis unit 5. That is, as compared with the parameter setting screen 42 in FIG. 4, instead of the amplitude determination threshold and the failure determination threshold, the count threshold 51, the integrated count threshold 53, and the continuous section determination threshold ⁇ Wth are changed.
  • the continuous section determination threshold value may be omitted, and the partial discharge component may be determined only by the integrated count threshold value. This simplifies processing.
  • the partial discharge detection device is implemented by dividing the drive signal cycle of the rotating machine 1 into a plurality of small sections and performing an integration process based on the magnitude of the signal amount for each small section. Compared with Example 1, it is possible to reduce the calculation load necessary for the integration process.
  • FIG. 7 is a configuration diagram of the partial discharge detection device in the present embodiment, and corresponding components shown in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • a feature of the present embodiment is that a current sensor 74 for detecting the phase current of the power feeding cable 3 is attached and a signal cycle detection unit 71 is provided to detect a cycle variation of the drive signal output from the drive power source 2.
  • a buffer unit 72 and a compression / decompression unit 73 are provided between the A / D conversion unit 7 and the integration processing unit 8 to perform compression / decompression processing of the digital signal. Since other configurations are the same as those in FIG. 1 of the first embodiment, detailed description thereof is omitted.
  • the current sensor 74 is attached to any of the three-phase signals (U, V, and W phases) output from the drive power supply 2, and outputs the detected current sensor signal 74 a to the signal period detection unit 71.
  • the signal cycle detection unit 71 detects a point where the current waveform of the current sensor signal 74a intersects the reference level, and outputs the intersection detection signal 71a to the buffer unit 72 when the intersection point is detected. That is, since the current sensor 4 shown in FIG. 1 is installed so as to penetrate three phases at a time, the period of the current sensor signal 4a is not known. For this purpose, the period of the current sensor signal 74a is detected by the current sensor 74 installed in any one phase.
  • FIG. 8 is a timing chart showing an example of the intersection detection process in the signal period detection unit 71.
  • the signal period detector 71 compares the current sensor signal 74a with the reference level, and detects an intersection point where the current sensor signal 74a changes from the negative side to the positive side. When detecting the intersection point, the signal period detector 71 outputs an intersection detection signal 71a.
  • the reference level is preferably set near the center of the amplitude of the current sensor signal 74a. Further, when the current sensor signal 74a includes a partial discharge signal or high frequency noise, the intersection point may be erroneously detected by these signal components generated near the reference level. For this reason, it is desirable to apply a low-pass filter to the current sensor signal 74a to remove partial discharge signals and high-frequency noise, and then detect a crossing point with the reference level.
  • the buffer unit 72 temporarily stores the digital signal from the A / D conversion unit 7.
  • the buffer unit 72 receives the crossing detection signal 71a from the signal period detection unit 71, the buffer unit 72 outputs the digital signal accumulated from the time of receiving the previous crossing detection signal 71a to the compression / decompression unit 73 by FIFO.
  • FIG. 9 is a waveform diagram showing an example of the compression / decompression process in the compression / decompression unit 73.
  • reference numeral 72a denotes a buffer output signal 72a from the buffer unit 72, which is a digital signal waveform before compression / decompression processing is performed.
  • Reference numeral 73a denotes a digital signal waveform after the compression / decompression process is performed, and is output to the integration processing unit 8 as a compression / decompression signal 73a.
  • the first cycle is defined as the integration cycle Ti, and if there is a difference from the integration cycle Ti (increase or decrease in the number of data in the buffer output signal 72a) after the second cycle, it matches the integration cycle Ti.
  • the buffer output signal 72a is compressed and expanded.
  • compression processing data thinning of the buffer output signal 72a is performed, and in the case of expansion processing, data interpolation of the buffer output signal 72a is performed.
  • the frequency of the drive signal output from the drive power supply 2 is gradually increased, and the period after the second period is shortened with respect to the first period. Thereafter, the expansion process is performed.
  • the subsequent integration processing unit 8 receives the compression / decompression signal 73a and performs the same integration processing as in the first embodiment.
  • the partial discharge detection device detects a change in the signal period output from the drive power supply 2 and performs the compression / expansion process of the current sensor signal so that the period of the integration process coincides with the signal period. . For this reason, even if the signal period of the drive power supply 2 changes, the integration process can be continuously executed without interruption.
  • FIG. 10 is a configuration diagram of the partial discharge detection device in the present embodiment, and corresponding components shown in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • a feature of the present embodiment is that a voltage sensor 102 for detecting the phase voltage of the power supply cable 3 is attached, and a drive voltage detection unit 101 is provided to detect voltage fluctuations in the drive signal output from the drive power supply 2.
  • the integration process is divided and performed according to the magnitude of the drive voltage.
  • the voltage sensor 102 is attached to any of the three-phase signals (U, V, and W phases) output from the drive power supply 2, and outputs the detected voltage sensor signal 102 a to the drive voltage detection unit 101.
  • the drive voltage detection unit 101 measures the voltage level of the voltage sensor signal 102a in the section of the synchronization signal 11a based on the voltage sensor signal 102a and the synchronization signal 11a from the synchronization signal generation unit 11, and voltage level information 101a. Is output to the integration processing unit 8.
  • As the voltage level a maximum value, an average value, an effective value, or the like is used.
  • FIG. 11 is a timing chart showing an example of integration processing in the integration processing unit 8.
  • FIG. 11A is a graph in which the horizontal axis represents time, and the vertical axis represents drive voltage (that is, voltage level information 101a received from the drive voltage detection unit 101).
  • Two voltage levels of Vth1 and Vth2 (Vth1> Vth2) are set with respect to the drive voltage, a drive voltage equal to or higher than Vth1 is a region H, a drive voltage equal to or higher than Vth2 and lower than Vth1 is a region M, and a drive voltage less than Vth2 is a region Let L be.
  • FIG. 11B shows a state in which the integration processes H, M, and L are provided and the integration process applied according to the drive voltage is switched. That is, the integration process H (H1) when the drive voltage is transiting the region H, the integration process M (M1, M2, M3) when the drive voltage is transiting the region M, and the transition when the region L is transiting Integration processing L (L1, L2) is applied.
  • the integration processes H, M, and L after performing the specified number of integration processes, output the respective integration data to the partial discharge detection unit 9, and the partial discharge amount calculation process similar to that in the other embodiments is performed for each integration process. Performed on data.
  • the threshold values of Vth1 and Vth2 may be set to a rated voltage of the rotating machine 1, and Vth2 may be set to a voltage such as 75% or 50% of the rated voltage. Further, the threshold value is not limited to two, and may be one, or may be set to three or more. Since the voltage detection process in the drive voltage detection unit 101 requires a processing time for one cycle of the drive signal, a delay of one cycle occurs with respect to the integration process in the integration processing unit 8. In order to avoid mismatch for one cycle of the voltage level information 101a, it is desirable that the integration processing unit 8 is configured to perform integration processing after delaying the digital signal from the A / D conversion unit 7 by one cycle.
  • FIG. 12 is an example of a display screen of the user I / F 12.
  • 121 is a parameter setting required to divide the integration process according to the magnitude of the drive voltage.
  • the integration is performed for each of the integration processes H, M, and L.
  • the number of times, the amplitude determination threshold value, and the waveform width determination threshold value can also be set.
  • Reference numeral 122 denotes a partial discharge amount monitoring screen, where 123 indicates the integration process H, 124 indicates the integration process M, and 125 indicates the time change of the integration process L.
  • 126 is a failure sign determination threshold, and 127 is a failure determination threshold.
  • the integration process H is a transition of the partial discharge amount with respect to a high driving voltage, a larger amount of partial discharge is detected compared to the integration process M and the integration process L. Therefore, by monitoring the time change of the integration process H, , Failure signs can be detected early. For example, when the integration process H exceeds the failure sign determination threshold 126, it can be detected early as a failure sign, and an alarm or the like can be issued from the determination unit 10, for example.
  • the integration process M and the integration process L are transitions of the partial discharge amount with respect to a drive voltage lower than that of the integration process H, the partial discharge amount is detected when the insulation deterioration of the rotating machine 1 is relatively advanced. Will start.
  • the integration process L is a transition of the partial discharge amount with respect to the lowest drive voltage, it can be used for fault diagnosis. For example, when the integration process L exceeds the failure determination threshold 127, It is determined that the failure due to the insulation deterioration is near, and the driving power source 2 is controlled from the determination unit 10 to stop the driving power source 2 or reduce the output.
  • the failure determination is not particularly performed for the partial discharge amount by the integration process M.
  • a process for assisting the failure determination of the integration processes L and H may be performed between the integration processes L and H. .
  • the partial discharge detection device can perform the integration process in a divided manner according to the drive voltage of the rotating machine 1 during operation.
  • the failure data can be detected at an early stage using the integrated data for the high drive voltage, and it is detected that the failure is approaching using the integrated data for the low drive voltage, and the operation of the drive power supply 2 is stopped, or Can be reduced.
  • the partial discharge detection device of the present embodiment can be applied to rotating machines used in railways and automobiles.
  • the partial discharge detection device attached to the railway when the integration process L exceeds the failure determination threshold value 127, it is possible to safely stop the running railway by gradually reducing the drive voltage. it can.
  • the integration process L exceeds the failure determination threshold value 127 when there is a place where the vehicle can be safely stopped, the drive voltage is gradually decreased. In conjunction with automatic driving control, the car can be safely guided to the stop location.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • DESCRIPTION OF SYMBOLS 1 ... Rotation machine, 2 ... Drive power supply, 3 ... Feeding cable, 4 ... Current sensor, 4a ... Current sensor signal, 5 ... Predictive diagnosis part, 6 ... Amplification part, 7 ... A / D conversion part, 8 ... Integration processing part DESCRIPTION OF SYMBOLS 9 ... Partial discharge detection part, 10 ... Determination part, 10a ... Drive power supply control signal, 11 ... Synchronization signal generation part, 11a ... Synchronization signal, 12 ... User I / F, 21 ... Partial discharge signal, 22, 23 ... Noise , 26a, 26c ... partial discharge amount, 41, 122 ...
  • time variation graph of partial discharge amount, 42, 61, 121 ... parameter setting screen 71 ... signal cycle detection unit, 71a ... intersection detection signal, 72 ... buffer unit, 72a ... buffer output signal, 73 ... compression / expansion unit, 73a ... compression / expansion signal, 74 ... current sensor, 74a ... current sensor signal, 101 ... drive voltage detection unit, 101a ... voltage level information, 102 ... voltage sensor, 102a The voltage sensor signal

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

The purpose of the present invention is to provide a partial discharge detection device and a partial discharge detection method, whereby weak partial discharge can be highly accurately detected. In order to achieve the purpose, this partial discharge detection device is provided with: a sensor unit that receives a partial discharge signal and a noise signal, which are generated when a voltage is applied to a rotating machine; a synchronization signal generation unit that generates a synchronization signal synchronized with the period of a driving voltage of the rotating machine; an integration processing unit that generates an integrated waveform by integrating the sensor signal with the period of the synchronization signal, said sensor signal having been received by the sensor unit; a partial discharge detection unit, which separates partial discharge and noise from the integrated waveform of the sensor signal; and a determining unit that determines abnormality of the rotating machine on the basis of a partial discharge quantity. Consequently, the partial discharge detection device and a partial discharge detection method, whereby a weak partial discharge signal included in the sensor signal can be highly accurately detected, can be provided.

Description

部分放電検出装置及び部分放電検出方法Partial discharge detection device and partial discharge detection method
 本発明は、産業用モータ、インバータ等の電機品の故障検出方式に関する。 The present invention relates to a failure detection method for electrical products such as industrial motors and inverters.
 回転機の固定子巻線は、稼働中のストレスによって絶縁劣化が発生する。そして、絶縁劣化が進展すると、最終的に絶縁破壊事故に至る。絶縁破壊を防止し、電機品の稼働率を向上させるため、回転機で発生する部分放電信号を検出して故障予兆を検出する予兆診断技術がある。 Rotation machine stator windings are subject to insulation deterioration due to stress during operation. And if insulation deterioration progresses, it will eventually lead to a dielectric breakdown accident. In order to prevent dielectric breakdown and improve the operating rate of electrical equipment, there is a sign diagnosis technique for detecting a sign of failure by detecting a partial discharge signal generated in a rotating machine.
 本技術分野に関する従来技術として、特開平11-94897号公報(特許文献1)がある。特許文献1には、「部分放電とノイズを含んだ全パルスを検出する検出手段と、前記検出手段で検出したパルスから部分放電計測に必要な信号量を取り出しデジタル化する信号処理手段と、前記信号処理手段で処理したデジタル信号を計測データとして一時保存する第1記憶手段と、前記第1記憶手段にアクセスして計測データを保存すると共に、部分放電信号とノイズの特性量に基づく第1演算処理によって前記計測データを信号とノイズとに識別し、ノイズ除去後の信号を部分放電として表示すると共に保存する電子計算手段と、を備える」ことが記載されている。 There is JP-A No. 11-94897 (Patent Document 1) as a prior art in this technical field. In Patent Document 1, “a detection means for detecting all pulses including partial discharge and noise, a signal processing means for extracting and digitizing a signal amount necessary for partial discharge measurement from the pulses detected by the detection means, A first storage means for temporarily storing the digital signal processed by the signal processing means as measurement data; and a first calculation based on the characteristic amount of the partial discharge signal and noise while accessing the first storage means to save the measurement data And an electronic calculation means for discriminating the measurement data into a signal and noise by processing, and displaying and storing the signal after noise removal as a partial discharge.
特開平11-94897号公報JP-A-11-94897
 従来の部分放電検出方法は、センシングデータから部分放電信号とノイズを適切に識別するためには、センシングデータの信号強度が大きい必要がある。センシングデータの信号強度が微弱の場合は、部分放電信号とノイズの識別が困難であるという課題があった。 In the conventional partial discharge detection method, in order to properly distinguish the partial discharge signal and noise from the sensing data, the signal strength of the sensing data needs to be large. When the signal intensity of the sensing data is weak, there is a problem that it is difficult to distinguish the partial discharge signal from the noise.
 本発明の目的は、センサシングデータに含まれる部分放電の信号強度が微弱であっても、部分放電信号の検出精度を高めることができる部分放電検出装置及び検出方法を提供することにある。 An object of the present invention is to provide a partial discharge detection device and a detection method capable of improving the detection accuracy of a partial discharge signal even when the signal intensity of the partial discharge included in the sensing data is weak.
 上記課題を解決するために、本発明は、その一例を挙げるならば、部分放電検出装置であって、回転機への電圧印加により発生する部分放電信号およびノイズ信号を受けるセンサ部と、回転機の駆動電圧の周期に同期した同期信号を生成する同期信号発生部と、センサ部で受けたセンサ信号を同期信号の周期で積算して積算波形を生成する積算処理部と、センサ信号の積算波形から部分放電とノイズを分離して部分放電量を算出する部分放電検出部と、部分放電量をもとに回転機の異常を判定する判定部とを備える。 In order to solve the above-described problems, the present invention is, as an example, a partial discharge detection device, a sensor unit that receives a partial discharge signal and a noise signal generated by voltage application to a rotating machine, and a rotating machine A synchronization signal generating unit that generates a synchronization signal synchronized with the cycle of the drive voltage, an integration processing unit that integrates the sensor signals received by the sensor unit with the period of the synchronization signal to generate an integrated waveform, and an integrated waveform of the sensor signal A partial discharge detector that calculates the partial discharge amount by separating the partial discharge and noise, and a determination unit that determines abnormality of the rotating machine based on the partial discharge amount.
 本発明によれば、センサ信号に含まれる微弱な部分放電信号を高精度に検出可能な部分放電検出装置及び部分放電検出方法を提供することができる。 According to the present invention, it is possible to provide a partial discharge detection device and a partial discharge detection method that can detect a weak partial discharge signal included in a sensor signal with high accuracy.
実施例1に係る部分放電検出装置の構成の一例を示すブロック図。1 is a block diagram illustrating an example of a configuration of a partial discharge detection device according to Embodiment 1. FIG. 実施例1に係る積算処理の一例を示す波形図。FIG. 6 is a waveform diagram illustrating an example of integration processing according to the first embodiment. 実施例1に係る部分放電検出装置の動作の一例を示すフローチャート。3 is a flowchart illustrating an example of the operation of the partial discharge detection device according to the first embodiment. 実施例1に係るユーザI/F12の表示画面の一例。FIG. 6 is an example of a display screen of the user I / F 12 according to the first embodiment. FIG. 実施例2に係る積算処理の一例を示す波形図。FIG. 6 is a waveform diagram illustrating an example of integration processing according to the second embodiment. 実施例2に係るユーザI/F12の表示画面の一例。FIG. 10 illustrates an example of a display screen of a user I / F 12 according to the second embodiment. 実施例3に係る部分放電検出装置の構成の一例を示すブロック図。FIG. 9 is a block diagram illustrating an example of a configuration of a partial discharge detection device according to a third embodiment. 実施例3に係る交差点検出処理の一例を示すタイミング図。FIG. 10 is a timing chart illustrating an example of intersection detection processing according to the third embodiment. 実施例3に係る圧縮伸張処理の一例を示す波形図。FIG. 10 is a waveform diagram illustrating an example of compression / decompression processing according to the third embodiment. 実施例4に係る部分放電検出装置の構成の一例を示すブロック図。FIG. 6 is a block diagram illustrating an example of a configuration of a partial discharge detection device according to a fourth embodiment. 実施例4に係る積算処理の一例を示すタイミング図。FIG. 10 is a timing diagram illustrating an example of integration processing according to the fourth embodiment. 実施例4に係るユーザI/F12の表示画面の一例。FIG. 10 is an example of a display screen of a user I / F 12 according to the fourth embodiment.
 以下、本発明の実施例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施例に係る部分放電検出装置の構成を示すブロック図である。図1において、1は回転機、2は回転機1に三相電力を供給する駆動電源、3は駆動電源2から回転機1に給電するための給電ケーブル(U、V、W相)である。4は電流センサであり、部分放電検出センサとして機能し、給電ケーブル3の三相分を一括して貫通するように設置されている。電流センサ4により検出された電流センサ信号4aは、部分放電信号およびノイズ信号を含んでおり、予兆診断部5に供給される。 FIG. 1 is a block diagram showing a configuration of a partial discharge detection device according to the present embodiment. In FIG. 1, 1 is a rotating machine, 2 is a driving power source for supplying three-phase power to the rotating machine 1, and 3 is a power supply cable (U, V, W phase) for supplying power to the rotating machine 1 from the driving power source 2. . Reference numeral 4 denotes a current sensor, which functions as a partial discharge detection sensor and is installed so as to penetrate the three phases of the power feeding cable 3 all together. The current sensor signal 4 a detected by the current sensor 4 includes a partial discharge signal and a noise signal, and is supplied to the predictive diagnosis unit 5.
 予兆診断部5において、増幅部6は、電流センサ信号4aを入力し、信号振幅の増幅と電流/電圧変換を施し、A/D変換部7に出力する。また、増幅部6は、ハイパスフィルタ回路を備えており、これにより電流センサ信号4aに含まれる低周波ノイズを除去し、高い周波数成分から成る部分放電信号が抽出される。A/D変換部7は、増幅部6からのアナログ信号をサンプリングしてデジタル信号に変換し、積算処理部8に出力する。また、A/D変換部7では、変換したデジタル信号値と基準値とを引き算し、その絶対値をデジタル信号値に置換してもよい。基準値とは、回転機1が無負荷時に取得したデジタル信号値の平均値、または駆動電源2の停止時に取得したデジタル信号値の平均値、またはユーザによる任意の設定値などである。上記置換処理により、電流センサ信号4aの極性を正符号のみで処理可能となる。これにより、部分放電信号が両極性で発生した場合に、積算処理部8の積算処理によって部分放電信号が相殺されてしまう事態を回避することができる。 In the predictive diagnosis unit 5, the amplification unit 6 receives the current sensor signal 4 a, performs signal amplitude amplification and current / voltage conversion, and outputs the amplified signal to the A / D conversion unit 7. The amplifying unit 6 includes a high-pass filter circuit, which removes low-frequency noise contained in the current sensor signal 4a and extracts a partial discharge signal composed of high-frequency components. The A / D conversion unit 7 samples the analog signal from the amplification unit 6 and converts it into a digital signal and outputs it to the integration processing unit 8. Further, the A / D converter 7 may subtract the converted digital signal value and the reference value and replace the absolute value with the digital signal value. The reference value is an average value of digital signal values acquired when the rotating machine 1 is not loaded, an average value of digital signal values acquired when the drive power supply 2 is stopped, or an arbitrary set value by the user. By the above replacement process, the polarity of the current sensor signal 4a can be processed only by the positive sign. Thereby, when the partial discharge signal is generated in both polarities, it is possible to avoid a situation where the partial discharge signal is canceled by the integration processing of the integration processing unit 8.
 同期信号発生部11は、駆動電源2が駆動する交流信号の1周期と同期した同期信号11aを生成し、積算処理部8に出力する。同期信号11aの生成は、駆動電源2が駆動する周波数情報を予め同期信号発生部11にインプットし、この情報をもとに同期信号発生部11で生成してもよいし、駆動電源2から駆動周波数に関する制御情報を入力する手段を設けて、この情報をもとに同期信号発生部11で生成してもよい。 The synchronization signal generator 11 generates a synchronization signal 11 a synchronized with one cycle of the AC signal driven by the drive power supply 2 and outputs the synchronization signal 11 a to the integration processor 8. The synchronization signal 11a may be generated by inputting frequency information driven by the drive power source 2 to the synchronization signal generation unit 11 in advance, and generating the synchronization signal 11a by the synchronization signal generation unit 11 based on this information. Means for inputting control information regarding the frequency may be provided, and the synchronization signal generator 11 may generate the control information based on this information.
 積算処理部8は、同期信号11aに同期して、A/D変換部7からのデジタル信号の積算処理を指定回数実行し、指定回数の積算が完了した積算データを部分放電検出部9に出力する。 The integration processing unit 8 executes the integration process of the digital signal from the A / D conversion unit 7 a specified number of times in synchronization with the synchronization signal 11a, and outputs the integration data for which the specified number of integrations have been completed to the partial discharge detection unit 9. To do.
 部分放電検出部9は、積算データを解析して部分放電成分とノイズ成分を分離し、部分放電量を算出する。部分放電検出部9は、算出した部分放電量を判定部10に通知し、判定部10は、受信した部分放電量をPCやタブレット型端末などで構成されるユーザI/F12を介して部分放電量を表示する。 The partial discharge detection unit 9 analyzes the integrated data, separates the partial discharge component and the noise component, and calculates the partial discharge amount. The partial discharge detection unit 9 notifies the determination unit 10 of the calculated partial discharge amount, and the determination unit 10 transmits the received partial discharge amount to the partial discharge via a user I / F 12 configured by a PC, a tablet terminal, or the like. Display quantity.
 図1において、部分放電検出装置としては、電流センサ4、予兆診断部5、ユーザI/F12で構成される。 1, the partial discharge detection device includes a current sensor 4, a sign diagnosis unit 5, and a user I / F 12.
 以下、図2を用いて、積算処理の詳細を説明する。図2は、本実施例における積算処理および部分放電量算出処理の一例を説明するための波形図である。図2は、同期信号発生部11の同期信号11aに同期して、A/D変換部7からのデジタル信号についてm周期分の積算処理を行ったものである。 Hereinafter, the details of the integration process will be described with reference to FIG. FIG. 2 is a waveform diagram for explaining an example of integration processing and partial discharge amount calculation processing in the present embodiment. FIG. 2 shows an example in which integration processing for m cycles is performed on the digital signal from the A / D conversion unit 7 in synchronization with the synchronization signal 11 a of the synchronization signal generation unit 11.
 図2において、21は部分放電信号、22、23はノイズ(23は、単発的または駆動周波数に同期して発生する高周波ノイズを想定)である。また、第1周期からm周期までのデータを積算した第1~m周期積算データ内に記載した24は、積算波形の波高値である積算波形の振幅が閾値よりも大きい波形を抽出するための振幅判定閾値である。部分放電検出部9は、振幅判定閾値24以上の積算データ(25a、25b、25c)を抽出し、部分放電成分の候補とする。部分放電検出部9は、続いて、抽出した部分放電成分の候補に対し、振幅判定閾値24を底辺とする波形幅(ΔTa、ΔTb、ΔTc)を算出する。この結果、波形幅が波形幅判定閾値(ΔTthと呼ぶ)以上の積算データを部分放電成分と判定する。例えば、ΔTa>ΔTth、ΔTb<ΔTth、ΔTc>ΔTthの場合、25a、25cは部分放電成分、25bはノイズ成分となる。ここで、振幅判定閾値24には、回転機1が無負荷時に取得したデジタル信号値、または駆動電源2の停止時に取得したデジタル信号値を利用してデジタル信号値の標準偏差σを求め、標準偏差σのN倍(N=124、・・・)を設定してもよいし、あるいはユーザによる任意の設定値を用いてもよい。波形幅判定閾値ΔTthについては、ユーザにより任意に設定可能であるが、部分放電現象が回転機1の駆動周期と同期せずばらつきをもって発生することから、例えば、事前検証により部分放電の発生タイミングの分布を確認し、発生分布幅よりも小さい値をΔTthに設定すればよい。 In FIG. 2, 21 is a partial discharge signal, and 22 and 23 are noises (23 is a single-shot or high-frequency noise generated in synchronization with the drive frequency). In addition, 24 described in the 1st to m-th cycle integrated data obtained by integrating the data from the first cycle to the m cycle is for extracting a waveform in which the amplitude of the integrated waveform, which is the peak value of the integrated waveform, is larger than the threshold value. It is an amplitude determination threshold value. The partial discharge detection unit 9 extracts integrated data (25a, 25b, 25c) having an amplitude determination threshold value of 24 or more and sets it as a partial discharge component candidate. Subsequently, the partial discharge detection unit 9 calculates a waveform width (ΔTa, ΔTb, ΔTc) with the amplitude determination threshold 24 as a base for the extracted partial discharge component candidates. As a result, integrated data whose waveform width is equal to or greater than the waveform width determination threshold (referred to as ΔTth) is determined as the partial discharge component. For example, when ΔTa> ΔTth, ΔTb <ΔTth, and ΔTc> ΔTth, 25a and 25c are partial discharge components, and 25b is a noise component. Here, as the amplitude determination threshold 24, the standard deviation σ of the digital signal value is obtained by using the digital signal value acquired when the rotating machine 1 is not loaded or the digital signal value acquired when the driving power source 2 is stopped. N times the deviation σ (N = 124,...) May be set, or an arbitrary set value by the user may be used. The waveform width determination threshold value ΔTth can be arbitrarily set by the user. However, since the partial discharge phenomenon occurs with variation without being synchronized with the driving cycle of the rotating machine 1, for example, the generation timing of the partial discharge is determined by prior verification. The distribution may be confirmed, and a value smaller than the occurrence distribution width may be set as ΔTth.
 部分放電検出部9は、部分放電成分を抽出後、ΔTa、ΔTcの積算データの合計値、すなわち、面積の加算値である26aと26cのを求め、これを部分放電量とし、判定部10に通知する。判定部10は、受信した部分放電量をユーザI/F12を介して部分放電量を表示する。また、判定部10は、部分放電量が規定の数値よりも大きい場合は、回転機1の故障や故障予兆と判断し、駆動電源制御信号10aにより、駆動電源2を停止、または出力低下などの対応を行う。 After extracting the partial discharge components, the partial discharge detection unit 9 obtains the total value of the accumulated data of ΔTa and ΔTc, that is, 26a and 26c, which are the added values of the areas, and sets this as the partial discharge amount. Notice. The determination unit 10 displays the received partial discharge amount via the user I / F 12. Further, when the partial discharge amount is larger than the prescribed numerical value, the determination unit 10 determines that the rotating machine 1 is malfunctioning or is a sign of failure, and stops the driving power source 2 or decreases the output by the driving power control signal 10a. Take action.
 図3は、部分放電検出装置の動作の一例を示すフローチャートである。図3において、ステップS301~S304は、上記説明のとおり、積算処理を規定回数実行し(S301)、積算データを振幅判定閾値24および波形幅判定閾値ΔTthにより部分放電成分を検出し(S302)、部分放電成分を検出した場合は部分放電量を算出し(S303)、部分放電量をユーザI/F12を介して通知する(S304)。 FIG. 3 is a flowchart showing an example of the operation of the partial discharge detection device. In FIG. 3, steps S301 to S304, as described above, execute the integration process a specified number of times (S301), detect partial discharge components from the integration data based on the amplitude determination threshold 24 and the waveform width determination threshold ΔTth (S302), When the partial discharge component is detected, the partial discharge amount is calculated (S303), and the partial discharge amount is notified via the user I / F 12 (S304).
 次に、ステップS305では、ステップS301~S304の一連の処理を規定回数実行したか否かを判定し、規定回数実行した場合は終了、規定回数実行していない場合はステップS306に進み、一定時間、例えば1時間とか半日等の待ち時間後、ステップS301~S304が実行される。これらのステップにより、定期的に部分放電量を計測し、部分放電量の時間変化をモニタリングすることができる。また、最新の部分放電量と過去に取得した部分放電量を比較することにより、劣化予兆を検出することができる。 Next, in step S305, it is determined whether or not the series of processes in steps S301 to S304 has been executed a specified number of times. If the specified number of times has been executed, the process ends. If the specified number of times has not been executed, the process proceeds to step S306. For example, after a waiting time such as one hour or half a day, steps S301 to S304 are executed. By these steps, the partial discharge amount can be measured periodically and the temporal change of the partial discharge amount can be monitored. Further, a deterioration sign can be detected by comparing the latest partial discharge amount with the partial discharge amount acquired in the past.
 図4は、ユーザI/F12の表示画面の一例である。41は、部分放電量の時間変動を示すグラフであり、故障判定閾値を設けて、部分放電量が閾値を超えた場合は、故障発生が近いと判定し、判定部10が駆動電源制御信号10aを介して駆動電源2を停止、または出力低下などの対応を行う。また、42は予兆診断部5における各種パラメータをユーザが設定するためのパラメータ設定画面である。なお、基準値や振幅判定閾値、故障判定閾値に関しては、電流値[A]による設定のほか、電荷量[C]による設定ができるようにしても良い。また電圧でも良い。 FIG. 4 is an example of a display screen of the user I / F 12. 41 is a graph showing the temporal variation of the partial discharge amount. A failure determination threshold value is provided. When the partial discharge amount exceeds the threshold value, it is determined that the failure is close, and the determination unit 10 determines the drive power control signal 10a. The drive power supply 2 is stopped or the output is reduced. Reference numeral 42 denotes a parameter setting screen for the user to set various parameters in the sign diagnosis unit 5. Note that the reference value, the amplitude determination threshold value, and the failure determination threshold value may be set not only by the current value [A] but also by the charge amount [C]. A voltage may also be used.
 なお、上記実施例において、ノイズの影響が小さい場合は、波形幅判定閾値は省略して、振幅判定閾値のみで部分放電成分と判定しても良い。これにより処理が簡単となる。また、故障判定閾値を設けず、ユーザサイドで部分放電量の時間変動を示すグラフから判断しても良い。 In the above embodiment, when the influence of noise is small, the waveform width determination threshold value may be omitted, and the partial discharge component may be determined only by the amplitude determination threshold value. This simplifies processing. Moreover, you may judge from the graph which does not provide a failure determination threshold value and shows the time fluctuation of the partial discharge amount by the user side.
 以上のように、本実施例は、部分放電検出装置であって、回転機への電圧印加により発生する部分放電信号およびノイズ信号を受けるセンサ部と、回転機の駆動電圧の周期に同期した同期信号を生成する同期信号発生部と、センサ部で受けたセンサ信号を同期信号の周期で積算して積算波形を生成する積算処理部と、センサ信号の積算波形から部分放電とノイズを分離して部分放電量を算出する部分放電検出部と、部分放電量をもとに回転機の異常を判定する判定部とを備える。 As described above, the present embodiment is a partial discharge detection device, which is a sensor unit that receives a partial discharge signal and a noise signal generated by voltage application to a rotating machine, and is synchronized with the cycle of the driving voltage of the rotating machine. A synchronization signal generating unit that generates a signal, an integration processing unit that generates an integrated waveform by integrating the sensor signals received by the sensor unit with the period of the synchronous signal, and separating partial discharge and noise from the integrated waveform of the sensor signal A partial discharge detector that calculates a partial discharge amount; and a determination unit that determines abnormality of the rotating machine based on the partial discharge amount.
 また、回転機の部分放電を検出する部分放電検出方法であって、回転機に設置された部分放電検出センサからの検出センサ信号を、回転機の駆動電圧の周期ごとに積算して積算波形を生成し、積算波形から部分放電とノイズを分離して部分放電量を算出し、部分放電量をもとに回転機の異常を判定するように構成する。 Further, it is a partial discharge detection method for detecting a partial discharge of a rotating machine, wherein a detection sensor signal from a partial discharge detection sensor installed in the rotating machine is integrated for each period of the driving voltage of the rotating machine to obtain an integrated waveform. Generate and separate partial discharge and noise from the integrated waveform, calculate the partial discharge amount, and determine the abnormality of the rotating machine based on the partial discharge amount.
 言い換えれば、本実施例は、部分放電は回転機の駆動電流の周期に応じて発生するので、駆動電流の周期毎に部分放電信号を積算することで部分放電信号を高精度に検出できる。 In other words, in this embodiment, the partial discharge is generated in accordance with the cycle of the drive current of the rotating machine, and therefore, the partial discharge signal can be detected with high accuracy by integrating the partial discharge signal for each cycle of the drive current.
 よって、本実施例によれば、回転機の駆動信号周期と同期した電流センサ信号の積算処理を行い、積算データを元に部分放電成分とノイズ成分を分別することで、微弱な部分放電信号を高精度に検出できるため、回転機の故障予兆を早期に検出することができる。また、センサ信号に含まれる微弱な部分放電信号を高精度に検出可能な部分放電検出装置及び部分放電検出方法を提供することができる。 Therefore, according to the present embodiment, the current sensor signal is integrated in synchronization with the driving signal cycle of the rotating machine, and the partial discharge signal and the noise component are separated based on the integration data, so that a weak partial discharge signal is generated. Since it can be detected with high accuracy, a failure sign of the rotating machine can be detected at an early stage. Moreover, the partial discharge detection apparatus and the partial discharge detection method which can detect the weak partial discharge signal contained in a sensor signal with high precision can be provided.
 図5は、本実施例における積算処理および部分放電量算出処理の一例を説明するための波形図である。なお、本実施例における部分放電検出装置の構成は、実施例1と同一であり、その説明は省略する。 FIG. 5 is a waveform diagram for explaining an example of integration processing and partial discharge amount calculation processing in the present embodiment. In addition, the structure of the partial discharge detection apparatus in a present Example is the same as Example 1, The description is abbreviate | omitted.
 図5において、積算処理部8は、同期信号発生部11からの同期信号11aの1周期区間を小区間に等分割し、小区間ごとに積算処理を行う。積算処理部8は、A/D変換部7からのデジタル信号と、規定のカウント閾値51とを比較してその大小を判定し、当該小区間にカウント閾値51以上のデジタル信号が含まれる場合は当該小区間の積算値を1、当該小区間にカウント閾値51以上のデジタル信号が含まれない場合は当該小区間の積算値を0として積算処理を行う(符号52を参照)。 In FIG. 5, the integration processing unit 8 equally divides one cycle section of the synchronization signal 11a from the synchronization signal generation unit 11 into small sections, and performs an integration process for each small section. The integration processing unit 8 compares the digital signal from the A / D conversion unit 7 with a specified count threshold value 51 to determine the magnitude thereof, and when the small section includes a digital signal equal to or greater than the count threshold value 51. Integration processing is performed with the integrated value of the small section being 1, and when the small section does not include a digital signal equal to or greater than the count threshold 51, the integrated value of the small section is set to 0 (see reference numeral 52).
 部分放電検出部9では、積算データをもとに部分放電成分とノイズ成分を分別する。具体的には、積算カウント閾値53を設けて、積算データの中から積算値が積算カウント閾値53以上の小区間を抽出する(54a~54f)。次に、部分放電検出部9は、抽出した小区間が隣り合う連続区間数wを求める。そして、連続区間数wが連続区間判定閾値(ΔWthと呼ぶ)以上であれば、それらの区間を部分放電成分と判定する。例えば、ΔWth=2とした場合、小区間54a、54bにより連続区間数w=2、区間54d、54e、54fにより連続区間数w=3が得られ、これらは部分放電成分と判定される。一方、小区間54cは、連続区間数w=1であるため、ノイズ成分と判定される。部分放電検出部9は、上記処理により部分放電成分を検出後、小区間54a、54b、54d、54e、54fの合計値を求め、これを部分放電量とし、判定部10に通知する。判定部10は、受信した部分放電量をユーザI/F12を介して部分放電量を表示する。また、判定部10は、部分放電量が規定の数値よりも大きい場合は、回転機1の故障や故障予兆と判断し、駆動電源制御信号10aにより、駆動電源2を停止、または出力低下などの対応を行う。 The partial discharge detection unit 9 separates the partial discharge component and the noise component based on the integrated data. Specifically, an integration count threshold value 53 is provided, and small sections whose integration value is greater than or equal to the integration count threshold value 53 are extracted from the integration data (54a to 54f). Next, the partial discharge detection part 9 calculates | requires the continuous section number w with which the extracted small area is adjacent. If the number of continuous sections w is equal to or greater than the continuous section determination threshold (referred to as ΔWth), these sections are determined as partial discharge components. For example, when ΔWth = 2, the continuous section number w = 2 is obtained by the small sections 54a and 54b, and the continuous section number w = 3 is obtained by the sections 54d, 54e, and 54f, and these are determined to be partial discharge components. On the other hand, the small section 54c is determined as a noise component because the number of continuous sections w = 1. After the partial discharge component is detected by the above processing, the partial discharge detection unit 9 obtains the total value of the small sections 54a, 54b, 54d, 54e, and 54f, sets this as the partial discharge amount, and notifies the determination unit 10 of it. The determination unit 10 displays the received partial discharge amount via the user I / F 12. Further, when the partial discharge amount is larger than the prescribed numerical value, the determination unit 10 determines that the rotating machine 1 is malfunctioning or is a sign of failure, and stops the driving power source 2 or decreases the output by the driving power control signal 10a. Take action.
 図6は、ユーザI/F12の表示画面の一例である。図4で示した実施例1のユーザI/Fとの差異は、予兆診断部5のパラメータ設定画面61である。すなわち、図4のパラメータ設定画面42と比較して、振幅判定閾値、故障判定閾値の代わりに、カウント閾値51、積算カウント閾値53、連続区間判定閾値ΔWthに変更した構成となっている。 FIG. 6 is an example of a display screen of the user I / F 12. The difference from the user I / F of the first embodiment shown in FIG. 4 is the parameter setting screen 61 of the predictive diagnosis unit 5. That is, as compared with the parameter setting screen 42 in FIG. 4, instead of the amplitude determination threshold and the failure determination threshold, the count threshold 51, the integrated count threshold 53, and the continuous section determination threshold ΔWth are changed.
 なお、上記実施例において、ノイズの影響が小さい場合は、連続区間判定閾値は省略して、積算カウント閾値のみで部分放電成分と判定しても良い。これにより処理が簡単となる。 In the above embodiment, when the influence of noise is small, the continuous section determination threshold value may be omitted, and the partial discharge component may be determined only by the integrated count threshold value. This simplifies processing.
 以上、本実施例の部分放電検出装置は、回転機1の駆動信号周期を複数の小区間に分割し、小区間ごとに信号量の大小に基づいた積算処理を行うようにしたことで、実施例1と比較して積算処理に必要な演算負荷を低減することができる。 As described above, the partial discharge detection device according to the present embodiment is implemented by dividing the drive signal cycle of the rotating machine 1 into a plurality of small sections and performing an integration process based on the magnitude of the signal amount for each small section. Compared with Example 1, it is possible to reduce the calculation load necessary for the integration process.
 図7は、本実施例における部分放電検出装置の構成図であり、実施例1の図1で示した対応する構成部分には同一の符号を付している。 FIG. 7 is a configuration diagram of the partial discharge detection device in the present embodiment, and corresponding components shown in FIG. 1 of the first embodiment are denoted by the same reference numerals.
 本実施例の特徴は、給電ケーブル3の相電流を検出するための電流センサ74を取り付け、信号周期検出部71を設けて、駆動電源2が出力する駆動信号の周期変動を検出する構成としたこと、また、A/D変換部7と積算処理部8の間に、バッファ部72と圧縮伸張部73を設けて、デジタル信号の圧縮伸張処理を施す構成としたことである。その他の構成は実施例1の図1と同じであるため、詳細な説明は省略する。 A feature of the present embodiment is that a current sensor 74 for detecting the phase current of the power feeding cable 3 is attached and a signal cycle detection unit 71 is provided to detect a cycle variation of the drive signal output from the drive power source 2. In addition, a buffer unit 72 and a compression / decompression unit 73 are provided between the A / D conversion unit 7 and the integration processing unit 8 to perform compression / decompression processing of the digital signal. Since other configurations are the same as those in FIG. 1 of the first embodiment, detailed description thereof is omitted.
 図7において、電流センサ74は、駆動電源2が出力する三相信号(U、V、W相)の何れかに取り付けられ、検出された電流センサ信号74aを信号周期検出部71に出力する。信号周期検出部71は、電流センサ信号74aの電流波形と基準レベルとが交差するポイントを検出し、交差ポイントを検出するとバッファ部72に交差検出信号71aを出力する。すなわち、図1で示した、電流センサ4は、三相分を一括して貫通するように設置されているので、その電流センサ信号4aは周期が分からない。そのために、何れか1相に設置した電流センサ74で、電流センサ信号74aの周期を検出する。 7, the current sensor 74 is attached to any of the three-phase signals (U, V, and W phases) output from the drive power supply 2, and outputs the detected current sensor signal 74 a to the signal period detection unit 71. The signal cycle detection unit 71 detects a point where the current waveform of the current sensor signal 74a intersects the reference level, and outputs the intersection detection signal 71a to the buffer unit 72 when the intersection point is detected. That is, since the current sensor 4 shown in FIG. 1 is installed so as to penetrate three phases at a time, the period of the current sensor signal 4a is not known. For this purpose, the period of the current sensor signal 74a is detected by the current sensor 74 installed in any one phase.
 図8は、信号周期検出部71における交差点検出処理の一例を示すタイミング図である。信号周期検出部71は、電流センサ信号74aと基準レベルを比較し、電流センサ信号74aが負側から正側に変化する交差ポイントを検出する。信号周期検出部71は、交差ポイントを検出すると、交差検出信号71aを出力する。なお、基準レベルは、電流センサ信号74aの振幅の中心付近に設定されることが望ましい。また、電流センサ信号74aに部分放電信号や高周波ノイズが含まれている場合、基準レベル付近で発生したこれらの信号成分により、交差ポイントを誤検出することがある。このため、電流センサ信号74aにローパスフィルタを適用して部分放電信号や高周波ノイズを除去し、その後に基準レベルとの交差ポイントを検出することが望ましい。 FIG. 8 is a timing chart showing an example of the intersection detection process in the signal period detection unit 71. The signal period detector 71 compares the current sensor signal 74a with the reference level, and detects an intersection point where the current sensor signal 74a changes from the negative side to the positive side. When detecting the intersection point, the signal period detector 71 outputs an intersection detection signal 71a. The reference level is preferably set near the center of the amplitude of the current sensor signal 74a. Further, when the current sensor signal 74a includes a partial discharge signal or high frequency noise, the intersection point may be erroneously detected by these signal components generated near the reference level. For this reason, it is desirable to apply a low-pass filter to the current sensor signal 74a to remove partial discharge signals and high-frequency noise, and then detect a crossing point with the reference level.
 バッファ部72は、A/D変換部7からのデジタル信号を一時蓄積する。バッファ部72は、信号周期検出部71からの交差検出信号71aを受信すると、1つ前の交差検出信号71aを受信した時点から蓄積されたデジタル信号をFIFOで圧縮伸張部73に出力する。 The buffer unit 72 temporarily stores the digital signal from the A / D conversion unit 7. When the buffer unit 72 receives the crossing detection signal 71a from the signal period detection unit 71, the buffer unit 72 outputs the digital signal accumulated from the time of receiving the previous crossing detection signal 71a to the compression / decompression unit 73 by FIFO.
 図9は、圧縮伸張部73における圧縮伸張処理の一例を示す波形図である。同図において、72aは、バッファ部72からのバッファ出力信号72aであり、圧縮伸張処理が行われる前のデジタル信号波形である。73aは、圧縮伸張処理が行われた後のデジタル信号波形であり、圧縮伸張信号73aとして積算処理部8に出力される。図9に示すように、第1周期を積算周期Tiと規定し、第2周期以降において積算周期Tiからの差異(バッファ出力信号72aのデータ数増減)が生じた場合は、積算周期Tiと一致するように、バッファ出力信号72aの圧縮伸張を行う。圧縮処理の場合は、バッファ出力信号72aのデータ間引き、伸張処理の場合は、バッファ出力信号72aのデータ補間などが実施される。同図の例では、駆動電源2が出力する駆動信号の周波数が徐々に高くなっていく様子を示しており、第1周期に対して第2周期以降の周期が短縮されるため、第2周期以降に対して伸張処理が施されている。後段の積算処理部8では、圧縮伸張信号73aを入力し、実施例1と同様の積算処理が行われる。 FIG. 9 is a waveform diagram showing an example of the compression / decompression process in the compression / decompression unit 73. In the figure, reference numeral 72a denotes a buffer output signal 72a from the buffer unit 72, which is a digital signal waveform before compression / decompression processing is performed. Reference numeral 73a denotes a digital signal waveform after the compression / decompression process is performed, and is output to the integration processing unit 8 as a compression / decompression signal 73a. As shown in FIG. 9, the first cycle is defined as the integration cycle Ti, and if there is a difference from the integration cycle Ti (increase or decrease in the number of data in the buffer output signal 72a) after the second cycle, it matches the integration cycle Ti. Thus, the buffer output signal 72a is compressed and expanded. In the case of compression processing, data thinning of the buffer output signal 72a is performed, and in the case of expansion processing, data interpolation of the buffer output signal 72a is performed. In the example of the figure, the frequency of the drive signal output from the drive power supply 2 is gradually increased, and the period after the second period is shortened with respect to the first period. Thereafter, the expansion process is performed. The subsequent integration processing unit 8 receives the compression / decompression signal 73a and performs the same integration processing as in the first embodiment.
 なお、本実施例は、実施例2と組合せても良い。 Note that this embodiment may be combined with the second embodiment.
 以上、本実施例の部分放電検出装置は、駆動電源2が出力する信号周期の変化を検出し、積算処理の周期が信号周期と一致するように電流センサ信号の圧縮伸張処理を施すようにした。このため、駆動電源2の信号周期が変化しても、中断なく積算処理を継続して実行することができる。 As described above, the partial discharge detection device according to the present embodiment detects a change in the signal period output from the drive power supply 2 and performs the compression / expansion process of the current sensor signal so that the period of the integration process coincides with the signal period. . For this reason, even if the signal period of the drive power supply 2 changes, the integration process can be continuously executed without interruption.
 図10は、本実施例における部分放電検出装置の構成図であり、実施例1の図1で示した対応する構成部分には同一の符号を付している。 FIG. 10 is a configuration diagram of the partial discharge detection device in the present embodiment, and corresponding components shown in FIG. 1 of the first embodiment are denoted by the same reference numerals.
 本実施例の特徴は、給電ケーブル3の相電圧を検出するための電圧センサ102を取り付け、駆動電圧検出部101を設けて、駆動電源2が出力する駆動信号の電圧変動を検出する構成としたこと、また、駆動電圧の大きさ応じて積算処理を分割して行う構成としたことである。 A feature of the present embodiment is that a voltage sensor 102 for detecting the phase voltage of the power supply cable 3 is attached, and a drive voltage detection unit 101 is provided to detect voltage fluctuations in the drive signal output from the drive power supply 2. In addition, the integration process is divided and performed according to the magnitude of the drive voltage.
 図10において、電圧センサ102は、駆動電源2が出力する三相信号(U、V、W相)の何れかに取り付けられ、検出された電圧センサ信号102aを駆動電圧検出部101に出力する。駆動電圧検出部101は、電圧センサ信号102aと、同期信号発生部11からの同期信号11aをもとに、同期信号11aの区間内における電圧センサ信号102aの電圧レベルを測定し、電圧レベル情報101aを積算処理部8に出力する。電圧レベルは、最大値、平均値、実効値などが用いられる。 10, the voltage sensor 102 is attached to any of the three-phase signals (U, V, and W phases) output from the drive power supply 2, and outputs the detected voltage sensor signal 102 a to the drive voltage detection unit 101. The drive voltage detection unit 101 measures the voltage level of the voltage sensor signal 102a in the section of the synchronization signal 11a based on the voltage sensor signal 102a and the synchronization signal 11a from the synchronization signal generation unit 11, and voltage level information 101a. Is output to the integration processing unit 8. As the voltage level, a maximum value, an average value, an effective value, or the like is used.
 図11は、積算処理部8における積算処理の一例を示すタイミング図である。図11(a)は、横軸を時間、縦軸を駆動電圧(すなわち、駆動電圧検出部101より受信した電圧レベル情報101a)としたグラフである。駆動電圧に対し、Vth1とVth2(Vth1>Vth2)の2つの電圧レベルを設定し、Vth1以上の駆動電圧を領域H、Vth2以上かつVth1未満の駆動電圧を領域M、Vth2未満の駆動電圧を領域Lとする。 FIG. 11 is a timing chart showing an example of integration processing in the integration processing unit 8. FIG. 11A is a graph in which the horizontal axis represents time, and the vertical axis represents drive voltage (that is, voltage level information 101a received from the drive voltage detection unit 101). Two voltage levels of Vth1 and Vth2 (Vth1> Vth2) are set with respect to the drive voltage, a drive voltage equal to or higher than Vth1 is a region H, a drive voltage equal to or higher than Vth2 and lower than Vth1 is a region M, and a drive voltage less than Vth2 is a region Let L be.
 図11(b)は、積算処理H、M、Lを設けて、駆動電圧に応じて適用される積分処理を切り替える様子を示している。すなわち、駆動電圧が領域Hを遷移しているときは積算処理H(H1)、領域Mを遷移しているときは積算処理M(M1、M2、M3)、領域Lを遷移しているときは積算処理L(L1、L2)が適用される。積算処理H、M、Lはそれぞれ指定回数の積算処理を行った後、それぞれの積算データを部分放電検出部9に出力し、他の実施例と同様の部分放電量の算出処理がそれぞれの積算データに対して行われる。 FIG. 11B shows a state in which the integration processes H, M, and L are provided and the integration process applied according to the drive voltage is switched. That is, the integration process H (H1) when the drive voltage is transiting the region H, the integration process M (M1, M2, M3) when the drive voltage is transiting the region M, and the transition when the region L is transiting Integration processing L (L1, L2) is applied. The integration processes H, M, and L, after performing the specified number of integration processes, output the respective integration data to the partial discharge detection unit 9, and the partial discharge amount calculation process similar to that in the other embodiments is performed for each integration process. Performed on data.
 Vth1、Vth2の閾値は、具体的には例えば、Vth1は回転機1の定格電圧、Vth2は定格電圧の75%や50%などの電圧を設定すればよい。また、閾値は2つに限定されるものではなく、1つであってもよく、また3つ以上を設定してもよい。なお、駆動電圧検出部101での電圧検出処理は、駆動信号1周期分の処理時間を要するため、積算処理部8での積算処理に対して、1周期分の遅延が発生する。電圧レベル情報101aの1周期分のミスマッチを回避するため、積算処理部8では、A/D変換部7からのデジタル信号を1周期分遅延させてから積算処理を行う構成とすることが望ましい。 Specifically, the threshold values of Vth1 and Vth2, for example, Vth1 may be set to a rated voltage of the rotating machine 1, and Vth2 may be set to a voltage such as 75% or 50% of the rated voltage. Further, the threshold value is not limited to two, and may be one, or may be set to three or more. Since the voltage detection process in the drive voltage detection unit 101 requires a processing time for one cycle of the drive signal, a delay of one cycle occurs with respect to the integration process in the integration processing unit 8. In order to avoid mismatch for one cycle of the voltage level information 101a, it is desirable that the integration processing unit 8 is configured to perform integration processing after delaying the digital signal from the A / D conversion unit 7 by one cycle.
 図12は、ユーザI/F12の表示画面の一例である。121は、駆動電圧の大きさに応じて積算処理を分割して行うために必要となるパラメータ設定であり、駆動電圧閾値Vth1、Vth2のほか、積算処理H、M、Lのそれぞれに対して積算回数、振幅判定閾値、波形幅判定閾値を設定することもできる。また、122は、部分放電量のモニタリング画面であり、123は積算処理H、124は積算処理M、125は積算処理Lの時間変化を示す。また、126は故障予兆判定閾値であり、127は故障判定閾値である。積算処理Hは、高い駆動電圧に対する部分放電量の推移であるため、積算処理M、積算処理Lと比較して部分放電量が多く検出されるため、積算処理Hの時間変化を監視することで、故障予兆を早期に検出することができる。例えば、積算処理Hが故障予兆判定閾値126を超えた場合には、故障予兆として早期に検出でき、判定部10から、例えばアラーム等を発することができる。 FIG. 12 is an example of a display screen of the user I / F 12. 121 is a parameter setting required to divide the integration process according to the magnitude of the drive voltage. In addition to the drive voltage thresholds Vth1 and Vth2, the integration is performed for each of the integration processes H, M, and L. The number of times, the amplitude determination threshold value, and the waveform width determination threshold value can also be set. Reference numeral 122 denotes a partial discharge amount monitoring screen, where 123 indicates the integration process H, 124 indicates the integration process M, and 125 indicates the time change of the integration process L. 126 is a failure sign determination threshold, and 127 is a failure determination threshold. Since the integration process H is a transition of the partial discharge amount with respect to a high driving voltage, a larger amount of partial discharge is detected compared to the integration process M and the integration process L. Therefore, by monitoring the time change of the integration process H, , Failure signs can be detected early. For example, when the integration process H exceeds the failure sign determination threshold 126, it can be detected early as a failure sign, and an alarm or the like can be issued from the determination unit 10, for example.
 一方、積算処理M、積算処理Lは、積算処理Hと比較して低い駆動電圧に対する部分放電量の推移であるため、回転機1の絶縁劣化が比較的進行した段階で部分放電量が検出され始めることになる。特に積算処理Lは、最も低い駆動電圧に対する部分放電量の推移であるため、故障診断の用途に利用することが可能であり、例えば、積算処理Lが故障判定閾値127を超えた場合には、絶縁劣化による故障発生が近いと判断し、判定部10から駆動電源2を制御して駆動電源2を停止、または出力低下などを行う。なお、本実施例では、積算処理Mによる部分放電量については、特に故障判定を行わないが、積算処理LとHの中間として、積算処理LとHの故障判定の補助を行う処理としても良い。 On the other hand, since the integration process M and the integration process L are transitions of the partial discharge amount with respect to a drive voltage lower than that of the integration process H, the partial discharge amount is detected when the insulation deterioration of the rotating machine 1 is relatively advanced. Will start. In particular, since the integration process L is a transition of the partial discharge amount with respect to the lowest drive voltage, it can be used for fault diagnosis. For example, when the integration process L exceeds the failure determination threshold 127, It is determined that the failure due to the insulation deterioration is near, and the driving power source 2 is controlled from the determination unit 10 to stop the driving power source 2 or reduce the output. In the present embodiment, the failure determination is not particularly performed for the partial discharge amount by the integration process M. However, a process for assisting the failure determination of the integration processes L and H may be performed between the integration processes L and H. .
 以上、本実施例の部分放電検出装置は、稼働中回転機1の駆動電圧の大きさに応じて積算処理を分割して行うことを可能とした。これにより、高い駆動電圧に対する積算データを利用して故障予兆を早期に検出できると共に、低い駆動電圧に対する積算データを利用して故障間近であることを検出し、駆動電源2の動作を停止、または低下させることができる。 As described above, the partial discharge detection device according to the present embodiment can perform the integration process in a divided manner according to the drive voltage of the rotating machine 1 during operation. Thereby, the failure data can be detected at an early stage using the integrated data for the high drive voltage, and it is detected that the failure is approaching using the integrated data for the low drive voltage, and the operation of the drive power supply 2 is stopped, or Can be reduced.
 さらに、本実施例の部分放電検出装置は、鉄道や自動車に用いられる回転機に対して適用が可能である。例えば、鉄道に取り付けられた部分放電検出装置において、積算処理Lが、故障判定閾値127を超えた場合、駆動電圧を徐々に低下させていくことで、走行中の鉄道を安全に停止させることができる。また、自動車に取り付けられた部分放電検出装置において、積算処理Lが故障判定閾値127を超えた場合、自車の周囲に安全に停止できる場所があるときは、駆動電圧を徐々に低下させていき、自動運転制御と連動して、停止場所まで安全に自動車を誘導することができる。もし、周囲に停止できる場所がない場合は、広範囲で停止可能な場所を検索し、停止可能な場所に到着するまで絶縁劣化による故障が生じない大きさに駆動電圧を低下させる制御を行うことで、安全に自動車を誘導することができる。 Furthermore, the partial discharge detection device of the present embodiment can be applied to rotating machines used in railways and automobiles. For example, in the partial discharge detection device attached to the railway, when the integration process L exceeds the failure determination threshold value 127, it is possible to safely stop the running railway by gradually reducing the drive voltage. it can. In addition, in the partial discharge detection device attached to the automobile, when the integration process L exceeds the failure determination threshold value 127, when there is a place where the vehicle can be safely stopped, the drive voltage is gradually decreased. In conjunction with automatic driving control, the car can be safely guided to the stop location. If there are no places that can be stopped in the surrounding area, search for a place that can be stopped in a wide range, and perform control to lower the drive voltage to a level that does not cause a failure due to insulation deterioration until it reaches the stopable place. Can guide the car safely.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1…回転機、2…駆動電源、3…給電ケーブル、4…電流センサ、4a…電流センサ信号、5…予兆診断部、6…増幅部、7…A/D変換部、8…積算処理部、9…部分放電検出部、10…判定部、10a…駆動電源制御信号、11…同期信号発生部、11a…同期信号、12…ユーザI/F、21…部分放電信号、22,23…ノイズ、26a,26c…部分放電量、41,122…部分放電量の時間変動グラフ、42,61,121…パラメータ設定画面、71…信号周期検出部、71a…交差点検出信号、72…バッファ部、72a…バッファ出力信号、73…圧縮伸張部、73a…圧縮伸張信号、74…電流センサ、74a…電流センサ信号、101…駆動電圧検出部、101a…電圧レベル情報、102…電圧センサ、102a…電圧センサ信号 DESCRIPTION OF SYMBOLS 1 ... Rotation machine, 2 ... Drive power supply, 3 ... Feeding cable, 4 ... Current sensor, 4a ... Current sensor signal, 5 ... Predictive diagnosis part, 6 ... Amplification part, 7 ... A / D conversion part, 8 ... Integration processing part DESCRIPTION OF SYMBOLS 9 ... Partial discharge detection part, 10 ... Determination part, 10a ... Drive power supply control signal, 11 ... Synchronization signal generation part, 11a ... Synchronization signal, 12 ... User I / F, 21 ... Partial discharge signal, 22, 23 ... Noise , 26a, 26c ... partial discharge amount, 41, 122 ... time variation graph of partial discharge amount, 42, 61, 121 ... parameter setting screen, 71 ... signal cycle detection unit, 71a ... intersection detection signal, 72 ... buffer unit, 72a ... buffer output signal, 73 ... compression / expansion unit, 73a ... compression / expansion signal, 74 ... current sensor, 74a ... current sensor signal, 101 ... drive voltage detection unit, 101a ... voltage level information, 102 ... voltage sensor, 102a The voltage sensor signal

Claims (14)

  1.  回転機への電圧印加により発生する部分放電信号およびノイズ信号を受けるセンサ部と、
     前記回転機の駆動電圧の周期に同期した同期信号を生成する同期信号発生部と、
     前記センサ部で受けたセンサ信号を前記同期信号の周期で積算して積算波形を生成する積算処理部と、
     前記センサ信号の積算波形から部分放電とノイズを分離して部分放電量を算出する部分放電検出部と、
     前記部分放電量をもとに回転機の異常を判定する判定部と、
     を備えたことを特徴とする部分放電検出装置。
    A sensor unit that receives a partial discharge signal and a noise signal generated by voltage application to the rotating machine;
    A synchronization signal generator for generating a synchronization signal synchronized with a cycle of the driving voltage of the rotating machine;
    An integration processing unit for generating an integrated waveform by integrating the sensor signals received by the sensor unit with a period of the synchronization signal;
    A partial discharge detector that calculates partial discharge amount by separating partial discharge and noise from the integrated waveform of the sensor signal;
    A determination unit for determining abnormality of the rotating machine based on the partial discharge amount;
    A partial discharge detection device comprising:
  2.  請求項1に記載の部分放電検出装置であって、
     前記部分放電検出部は、前記積算波形から波高値が所定の閾値よりも大きい積算波形を抽出し、抽出した積算波形の面積を部分放電量とすることを特徴とする部分放電検出装置。
    The partial discharge detection device according to claim 1,
    The partial discharge detection device, wherein the partial discharge detection unit extracts an integrated waveform having a peak value larger than a predetermined threshold value from the integrated waveform, and uses the area of the extracted integrated waveform as a partial discharge amount.
  3.  請求項1に記載の部分放電検出装置であって、
     前記部分放電検出部は、前記積算波形から波高値および波形幅がそれぞれ所定の閾値よりも大きい積算波形を抽出し、抽出した積算波形の面積を部分放電量とすることを特徴とする部分放電検出装置。
    The partial discharge detection device according to claim 1,
    The partial discharge detection unit extracts an integrated waveform having a peak value and a waveform width that are larger than a predetermined threshold value from the integrated waveform, and uses the area of the extracted integrated waveform as a partial discharge amount. apparatus.
  4.  請求項1に記載の部分放電検出装置であって、
     前記積算処理部は、前記同期信号の周期を小区間に分割し、該小区間内における所定値以上の前記センサ部で受けたセンサ信号値の有無を前記同期信号の周期で小区間ごとに積算カウントし、
     前記部分放電検出部は、前記積算カウント結果から部分放電とノイズを分離して部分放電量を算出することを特徴とする部分放電検出装置。
    The partial discharge detection device according to claim 1,
    The integration processing unit divides the period of the synchronization signal into small sections, and integrates the presence or absence of sensor signal values received by the sensor unit in the small section with a predetermined value or more for each small section with the period of the synchronization signal. Count and
    The partial discharge detection device, wherein the partial discharge detection unit calculates a partial discharge amount by separating partial discharge and noise from the integrated count result.
  5.  請求項4に記載の部分放電検出装置であって、
     前記部分放電検出部は、前記積算カウント結果から、前記積算カウント値が所定値以上、且つ、前記積算カウント値が所定値以上の小区間が所定区間連続する小区間を抽出し、抽出した小区間の積算カウントの合計値を部分放電量とすることを特徴とする部分放電検出装置。
    The partial discharge detection device according to claim 4,
    The partial discharge detection unit extracts, from the integrated count result, a small section in which the integrated count value is equal to or greater than a predetermined value and a small section in which the small count of the integrated count value is equal to or greater than the predetermined value continues for a predetermined period. A partial discharge detecting device characterized in that a total value of the integrated counts is used as a partial discharge amount.
  6.  請求項1に記載の部分放電検出装置であって、
     前記同期信号発生部における同期信号の周期が変化した場合に、基準周期の時間長となるように前記センサ信号の圧縮伸張処理を行う圧縮伸張処理部を有し、
     前記積算処理部は、前記圧縮伸張処理部からの出力信号を前記基準周期で積算することを特徴とする部分放電検出装置。
    The partial discharge detection device according to claim 1,
    A compression / decompression processing unit that performs compression / decompression processing of the sensor signal so as to be a time length of a reference cycle when the period of the synchronization signal in the synchronization signal generation unit is changed;
    The partial discharge detection device, wherein the integration processing unit integrates output signals from the compression / decompression processing unit with the reference period.
  7.  請求項1に記載の部分放電検出装置であって、
     前記回転機の駆動電圧を検出する駆動電圧検出部を有し、
     前記積算処理部は、前記駆動電圧検出部で検出された駆動電圧情報を入力し、駆動電圧を複数レベルに分割して分割電圧レベルごとに前記センサ部で受けたセンサ信号を前記同期信号の周期で積算することを特徴とする部分放電検出装置。
    The partial discharge detection device according to claim 1,
    A drive voltage detector for detecting a drive voltage of the rotating machine;
    The integration processing unit receives the drive voltage information detected by the drive voltage detection unit, divides the drive voltage into a plurality of levels, and receives the sensor signal received by the sensor unit for each divided voltage level. The partial discharge detection apparatus characterized by integrating in the above.
  8.  回転機の部分放電を検出する部分放電検出方法であって、
     前記回転機に設置された部分放電検出センサからの検出センサ信号を、
     前記回転機の駆動電圧の周期ごとに積算して積算波形を生成し、
     該積算波形から部分放電とノイズを分離して部分放電量を算出し、
     該部分放電量をもとに回転機の異常を判定することを特徴とする部分放電検出方法。
    A partial discharge detection method for detecting partial discharge of a rotating machine,
    The detection sensor signal from the partial discharge detection sensor installed in the rotating machine,
    Accumulating every cycle of the driving voltage of the rotating machine to generate an integrated waveform,
    Calculate partial discharge amount by separating partial discharge and noise from the integrated waveform,
    A partial discharge detection method, wherein abnormality of a rotating machine is determined based on the partial discharge amount.
  9.  請求項8に記載の部分放電検出方法であって、
     前記積算波形から波高値が所定の閾値よりも大きい積算波形を抽出し、抽出した積算波形の面積を部分放電量とすることを特徴とする部分放電検出方法。
    The partial discharge detection method according to claim 8,
    A partial discharge detection method, wherein an integrated waveform having a peak value larger than a predetermined threshold is extracted from the integrated waveform, and an area of the extracted integrated waveform is defined as a partial discharge amount.
  10.  請求項8に記載の部分放電検出方法であって、
     前記積算波形から波高値および波形幅がそれぞれ所定の閾値よりも大きい積算波形を抽出し、抽出した積算波形の面積を部分放電量とすることを特徴とする部分放電検出方法。
    The partial discharge detection method according to claim 8,
    A partial discharge detection method, wherein an integrated waveform having a peak value and a waveform width larger than a predetermined threshold is extracted from the integrated waveform, and an area of the extracted integrated waveform is defined as a partial discharge amount.
  11.  請求項8に記載の部分放電検出方法であって、
     前記駆動電圧の周期を小区間に分割し、該小区間内における所定値以上の前記検出センサ信号の有無を、前記駆動電圧の周期で前記小区間ごとに積算カウントし、
     前記積算カウント結果から部分放電とノイズを分離して部分放電量を算出することを特徴とする部分放電検出方法。
    The partial discharge detection method according to claim 8,
    Dividing the cycle of the drive voltage into small sections, the presence or absence of the detection sensor signal greater than or equal to a predetermined value in the small section, integrated counting for each small section in the cycle of the drive voltage,
    A partial discharge detection method, wherein the partial discharge amount is calculated by separating partial discharge and noise from the integrated count result.
  12.  請求項11に記載の部分放電検出方法であって、
    前記積算カウント結果から、前記積算カウント値が所定値以上、且つ、前記積算カウント値が所定値以上の小区間が所定区間連続する小区間を抽出し、抽出した小区間の積算カウントの合計値を部分放電量とすることを特徴とする部分放電検出方法。
    The partial discharge detection method according to claim 11,
    From the integrated count result, a small section where the integrated count value is a predetermined value or more and a small section where the integrated count value is a predetermined value or more continues for a predetermined section is extracted, and a total value of the extracted integrated counts of the small sections is calculated. A partial discharge detection method, wherein the partial discharge amount is used.
  13.  請求項8に記載の部分放電検出方法であって、
     前記駆動電圧の周期が変化した場合に、基準周期の時間長となるように、前記検出センサ信号の圧縮伸張処理を行ない、
     前記圧縮伸張処理した信号を前記基準周期で積算することを特徴とする部分放電検出方法。
    The partial discharge detection method according to claim 8,
    When the period of the drive voltage changes, the detection sensor signal is compressed and expanded so as to be the time length of the reference period,
    A partial discharge detection method, comprising: integrating the compression / decompression signal with the reference period.
  14.  請求項8に記載の部分放電検出方法であって、
     前記回転機の駆動電圧を検出し、
     該駆動電圧を複数レベルに分割して分割電圧レベルごとに前記検出センサ信号を前記回転機の駆動電圧の周期ごとに積算することを特徴とする部分放電検出方法。
    The partial discharge detection method according to claim 8,
    Detecting the driving voltage of the rotating machine;
    A partial discharge detection method, wherein the drive voltage is divided into a plurality of levels, and the detection sensor signal is integrated for each divided voltage level for each period of the drive voltage of the rotating machine.
PCT/JP2015/071859 2015-07-31 2015-07-31 Partial discharge detection device and partial discharge detection method WO2017022032A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/071859 WO2017022032A1 (en) 2015-07-31 2015-07-31 Partial discharge detection device and partial discharge detection method
JP2016565508A JP6345803B2 (en) 2015-07-31 2015-07-31 Partial discharge detection device and partial discharge detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071859 WO2017022032A1 (en) 2015-07-31 2015-07-31 Partial discharge detection device and partial discharge detection method

Publications (1)

Publication Number Publication Date
WO2017022032A1 true WO2017022032A1 (en) 2017-02-09

Family

ID=57942571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071859 WO2017022032A1 (en) 2015-07-31 2015-07-31 Partial discharge detection device and partial discharge detection method

Country Status (2)

Country Link
JP (1) JP6345803B2 (en)
WO (1) WO2017022032A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146790A (en) * 2019-05-06 2019-08-20 西安工程大学 A kind of special-shaped wave detection device and detection method of shelf depreciation
TWI676808B (en) * 2018-12-05 2019-11-11 中原大學 System for measuring electrical characteristics of electrical cable
JP2019201498A (en) * 2018-05-17 2019-11-21 大銀微系統股▲分▼有限公司Hiwin Mikrosystem Corp. Motor insulation detection method
WO2021085594A1 (en) * 2019-11-01 2021-05-06 日東工業株式会社 Electrical discharge detection system
US20210373065A1 (en) * 2018-12-12 2021-12-02 Hitachi, Ltd. Partial discharge detection apparatus and partial discharge detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102544050B1 (en) 2021-05-03 2023-06-16 주식회사 아르비젼 Display apparatus for partial discharge diagnosis and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821173A (en) * 1981-07-30 1983-02-07 Sumitomo Metal Ind Ltd Discriminator for detecting abnormality in power source system
JPH02176580A (en) * 1988-12-28 1990-07-09 Hitachi Cable Ltd Measurement of partial electric discharge
JPH04194762A (en) * 1990-11-28 1992-07-14 Toshiba Corp Device for monitoring partial discharge of electric apparatus
JPH1194897A (en) * 1997-09-17 1999-04-09 Mitsubishi Electric Corp Method and device for measuring partial discharge
JP2005274440A (en) * 2004-03-25 2005-10-06 Toyota Motor Corp Inspection device and technique of rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854468B2 (en) * 2012-01-25 2016-02-09 国立大学法人九州工業大学 Non-contact discharge evaluation method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821173A (en) * 1981-07-30 1983-02-07 Sumitomo Metal Ind Ltd Discriminator for detecting abnormality in power source system
JPH02176580A (en) * 1988-12-28 1990-07-09 Hitachi Cable Ltd Measurement of partial electric discharge
JPH04194762A (en) * 1990-11-28 1992-07-14 Toshiba Corp Device for monitoring partial discharge of electric apparatus
JPH1194897A (en) * 1997-09-17 1999-04-09 Mitsubishi Electric Corp Method and device for measuring partial discharge
JP2005274440A (en) * 2004-03-25 2005-10-06 Toyota Motor Corp Inspection device and technique of rotary electric machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019201498A (en) * 2018-05-17 2019-11-21 大銀微系統股▲分▼有限公司Hiwin Mikrosystem Corp. Motor insulation detection method
TWI676808B (en) * 2018-12-05 2019-11-11 中原大學 System for measuring electrical characteristics of electrical cable
US20210373065A1 (en) * 2018-12-12 2021-12-02 Hitachi, Ltd. Partial discharge detection apparatus and partial discharge detection method
US11644498B2 (en) * 2018-12-12 2023-05-09 Hitachi, Ltd. Partial discharge detection apparatus and partial discharge detection method
CN110146790A (en) * 2019-05-06 2019-08-20 西安工程大学 A kind of special-shaped wave detection device and detection method of shelf depreciation
CN110146790B (en) * 2019-05-06 2021-01-26 西安工程大学 Special-shaped wave detection device and method for partial discharge
WO2021085594A1 (en) * 2019-11-01 2021-05-06 日東工業株式会社 Electrical discharge detection system

Also Published As

Publication number Publication date
JPWO2017022032A1 (en) 2017-08-03
JP6345803B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6345803B2 (en) Partial discharge detection device and partial discharge detection method
JP5401250B2 (en) Ground fault detection device
US10564210B2 (en) Life determination device for dc capacitor connected to DC side of rectifier
JP5935850B2 (en) Partial discharge diagnostic device
JP2013190342A (en) Partial discharge measurement system and partial discharge measurement method by repeated impulse voltage
EP3261215A1 (en) Fault detection system for isolated two-switch exciter drive gate driver
US9350230B2 (en) Power conversion device and power conversion method with adjustable band-pass filter
JP4515937B2 (en) Voltage drop detection method and apparatus by waveform comparison
JP6316510B1 (en) Diagnostic equipment for electric motors
EP3138191B1 (en) A method for monitoring dc link capacitance in a power converters
CN109478832B (en) Diagnostic device for motor
JP4585404B2 (en) Synchronization control method, synchronization control circuit, and communication apparatus
US9285410B2 (en) Control circuit, and power generation device having the same
JP2019507344A (en) Apparatus and associated method for determining a ground fault
WO2016002216A1 (en) Electric current detection device and method for electric current detection method
US10228410B2 (en) Device for monitoring partial discharges in an electrical network
JP2004361309A (en) Motor drive unit
CN112997393B (en) Method and apparatus for circuit monitoring
JP6281704B2 (en) Isolated operation detection system for distributed power supply
JPH11160377A (en) Deterioration detection system of capacitor for power converter
CN109031180B (en) Method and device for detecting residual voltage state of capacitor voltage transformer
KR20120124569A (en) A Measuring Device For A Partial Discharge Signal Of A High Voltage Rotating Machinery And A Method Thereof
US11595138B2 (en) Monitoring device, motor driving apparatus, and monitoring method
CN107918058B (en) Filter inductor detection method and device
EP3506483B1 (en) Power conversion device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016565508

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900346

Country of ref document: EP

Kind code of ref document: A1