WO2017021591A1 - Dispositif de génération d'une impulsion laser brève à haute énergie et procédé pour générer une telle impulsion - Google Patents

Dispositif de génération d'une impulsion laser brève à haute énergie et procédé pour générer une telle impulsion Download PDF

Info

Publication number
WO2017021591A1
WO2017021591A1 PCT/FR2015/052134 FR2015052134W WO2017021591A1 WO 2017021591 A1 WO2017021591 A1 WO 2017021591A1 FR 2015052134 W FR2015052134 W FR 2015052134W WO 2017021591 A1 WO2017021591 A1 WO 2017021591A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser pulse
amplifier
fiber
gain
narrow
Prior art date
Application number
PCT/FR2015/052134
Other languages
English (en)
Inventor
Pascal Dupriez
Loïc DEYRA
Original Assignee
Centre Technologique Alphanov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Technologique Alphanov filed Critical Centre Technologique Alphanov
Priority to PCT/FR2015/052134 priority Critical patent/WO2017021591A1/fr
Publication of WO2017021591A1 publication Critical patent/WO2017021591A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06725Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/08Generation of pulses with special temporal shape or frequency spectrum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Definitions

  • the present invention generally relates to a device and a method for generating a short high energy laser pulse. More particularly, the present invention relates to a device and a method for generating a high energy short laser pulse where this device comprises a non-linear fiber amplifier connected with a narrow band gain solid amplifier. State of the art
  • this publication describes a device for generating a short high energy laser pulse which comprises a fiber-shaped oscillator generating a laser pulse.
  • This laser pulse is received by a non-linear fiber amplifier that generates a laser energy boosted laser pulse by a first factor. Then, this laser pulse generated by the non-linear fiber amplifier is received by a narrow band gain solid amplifier which generates a second energy amplified energy laser pulse.
  • the solid amplifier of the aforementioned publication has a narrow gain band, it is important, in order to avoid signal losses, that the width of the spectral band of the pulse transmitted by the non-linear fiber amplifier to the solid amplifier does not exceed the width of the narrow gain band of the solid amplifier.
  • the narrow gain band of the solid amplifier imposes a strong constraint on the control of the nonlinear effects (phase auto-modulation) in the nonlinear fiber amplifier which widens the spectral band of the pulse in the amplifier non-linear bundle.
  • phase auto-modulation the nonlinear effects in the nonlinear fiber amplifier which widens the spectral band of the pulse in the amplifier non-linear bundle.
  • the spectral broadening in the non-linear fiber amplifier is monitored using pulses of 55 picosecond duration that are generated by the fiber oscillator and are transmitted to the fiber-free amplifier. -linear. It should be noted that since a spectral broadening (and not a spectral compression) of the laser pulse takes place in the nonlinear fiber amplifier of this publication, this laser pulse does not have a spectral pedestal at the output of the non-linear fiber amplifier. It is known to those skilled in the art that the spectral pedestal corresponds to the small oscillations on the edges of the main spectral component of the laser pulse.
  • the spectral broadening in the non-linear fiber amplifier results in laser pulse having a spectral bandwidth greater than the width of the narrow gain band of the solid amplifier (the width of the narrow gain band of the solid amplifier of the publication, which is an Nd type crystal amplifier: YV04, is around 0.4 nanometers).
  • the width of the narrow gain band of the solid amplifier of the publication which is an Nd type crystal amplifier: YV04, is around 0.4 nanometers.
  • the object of the invention is therefore in particular to improve the device for generating a laser pulse having a nonlinear fiber amplifier connected with a narrow band gain solid amplifier. More specifically, the object of the invention is to propose such a device and method for generating a short, high energy laser pulse with no spectral pedestal which at the same time has a spectral bandwidth less than the width of the band of narrow gain of the narrow band gain solid amplifier before being received by this solid amplifier to avoid signal losses that occur when this laser pulse is received by this solid amplifier.
  • An object of the invention relates to a device for generating a laser pulse which comprises:
  • a fiber oscillator which generates a laser pulse
  • a nonlinear fiber amplifier arranged to receive the laser pulse generated by the fiber oscillator and to generate an energy laser pulse amplified by a first factor
  • a solid gain amplifier with a narrow gain band arranged to receive the laser pulse generated by the nonlinear fiber amplifier and to generate an energy laser pulse amplified by a second factor
  • the device being characterized in that the fiber oscillator has a positive dispersion adapted to compensate for the phase auto-modulation of the non-linear fiber amplifier (20) and in that the gain of the narrow-gain solid-state amplifier is adapted to suppress the spectral pedestal of the laser pulse received by the narrow band gain solid amplifier.
  • the gain of the narrow band gain solid amplifier is between 15 and 60 dB;
  • a dispersive element is disposed at the output of the fiber oscillator
  • a dispersive element is integrated in the fiber oscillator; the dispersive element is fiberized;
  • the dispersive element is in free space
  • the narrow band gain solid amplifier is connected with compression means arranged to compress the laser pulse generated by the narrow band gain solid amplifier;
  • the compression means comprise a hollow-core fiber connected with a compressor;
  • the hollow-core fiber is filled with gas
  • the hollow core fiber has a strong beam overlap in the gas
  • the hollow-core fiber is a kagome fiber; the hollow-core fiber has a silica or quartz seal with the solid amplifier with a narrow gain band at its first face and a silica or quartz seal with the compressor at its second face.
  • Another subject of the invention concerns a method for generating a laser pulse comprising the following steps:
  • the method being characterized in that the fiber oscillator applies a positive dispersion adapted to compensate for phase auto-modulation of the non-linear fiber amplifier and in that the narrow-gain solid-state amplifier applies a gain adapted to suppress the spectral pedestal of the laser pulse transmitted to the solid amplifier with narrow gain band.
  • the gain applied by the narrow gain band solid amplifier is between 15 and 60 dB;
  • the method further comprises a step of transmitting the laser pulse generated by the narrow band gain solid amplifier to the compression means arranged to compress the laser pulse.
  • FIG. 1 illustrates a device for generating a laser pulse according to one embodiment of the invention
  • FIG. 2 illustrates a device for generating a laser pulse according to another embodiment of the invention
  • FIG. 3 illustrates a method of generating a laser pulse by the device of FIG. 1; and FIGS. 4a, 4b, 5 and 6 illustrate diagrams that represent the evolution of the width of the spectral band of the laser pulse as well as the evolution of the duration and the energy of this laser pulse during the steps of the process of Figure 3.
  • FIGS. 7 and 8 illustrate diagrams which represent the evolution of the width of the spectral band of the laser pulse as well as the evolution of the duration and the energy of this laser pulse when this laser pulse is received by the compression means of the device illustrated in FIG.
  • a device 1 for generating a laser pulse comprises a fiber oscillator 10, a nonlinear fiber amplifier 20 and a solid amplifier with a narrow gain band 30.
  • the fiber oscillator 10 of the device 1 of FIG. 1 has a positive dispersion and generates a laser pulse 15.
  • the fiber oscillator 10 is a passively-triggered mode-locked fiber oscillator by means of a fiber-optic oscillator.
  • saturable absorber type SESAM semiconductor Saturated Absorber Mirror
  • This dispersive element can be fiber-reinforced or it can be in free space.
  • this dispersive element is a Bragg grating inscribed in an optical fiber or this dispersive element is a device based on diffraction gratings or dispersive prisms.
  • This dispersive element can be arranged at the output of the fiber oscillator 10 or it can be integrated in the fiber oscillator 10. It should be noted that in another example, the fiber oscillator 10 is a fiber oscillator based on a diode modulated or based on a triggered mode oscillator and has a dispersive element according to the examples of the dispersive element mentioned above to generate a positive dispersion.
  • the laser pulse 15 has a duration of 6.3 picoseconds, a spectral band with a width of 3 nanometers and an energy of 0.03 nanojoules.
  • the fiber oscillator 10 which generates the laser pulse 15 is a passively-triggered mode-locked fiber oscillator triggered by a saturable absorber technology such as SESAM (Semiconductor Saturable Absorber Mirror) and has a positive dispersion of 2.1 ps / nm. As illustrated in FIG.
  • this laser pulse 15 is received by the nonlinear fiber-optic amplifier 20 arranged to receive this laser pulse 15.
  • the amplifier nonlinear bundle 20 is connected or fused to the fiber-optic oscillator 10 with positive dispersion to receive this laser pulse 15 so that the assembly is monolithic. This type of connection or fusion is known to those skilled in the art.
  • the non-linear fiber amplifier 20 is a rare earth-doped optical fiber amplifier (for example, Ytterbium or Neodymium) or it is an aman amplifier well known to those skilled in the art.
  • a rare earth-doped optical fiber amplifier for example, Ytterbium or Neodymium
  • it is an aman amplifier well known to those skilled in the art.
  • the laser pulse generated by the fiber oscillator 10 compensates for the phase auto-modulation of the non-linear fiber amplifier 20 since the fiber oscillator 10 has a positive dispersion.
  • the fiber oscillator 10 has a positive dispersion.
  • the spectral band of this laser pulse 15 is compressed to a spectral band with a width of 0.47 nanometers, the energy of this laser pulse 15 is amplified by a first factor of 533 at a energy of 16 nanojoules and the duration of this laser pulse 15 is slightly reduced to 6.2ps. It should be noted that this slight reduction in the duration of the laser pulse is made because of the compensation of the dispersion by the non-linear effects in the non-linear fiber amplifier 20.
  • the non-linear fiber amplifier -linear 20 generates a laser pulse 25 (see Figure 1) with a duration of 6.2 picoseconds, a spectral band with a width of 0.47 nanometers and an energy of 16 nanojoules. It should be noted that in this particular example of the device 1 of FIG. 1, the nonlinear fiber amplifier 20 is a Ytterbium doped optical fiber amplifier.
  • this laser pulse 25 is received by the narrow gain-band solid amplifier 30 arranged to receive this laser pulse 25.
  • the narrow gain narrow-band amplifier 30 is coupled in free space with the non-linear fiber amplifier 20 in order to receive this laser pulse 25.
  • This type of coupling is known to those skilled in the art .
  • the fact that there is a spectral compression of the laser pulse in the nonlinear fiber amplifier 20 results in a spectral pedestal of this laser pulse.
  • the laser pulse received by the narrow band gain solid amplifier 30 has such a spectral pedestal.
  • the gain of the narrow band gain solid amplifier 30 is adapted to suppress the spectral pedestal of the laser pulse received by the narrow gain band 30 solid amplifier.
  • the narrow band gain solid amplifier 30 selected for the device 1 of Fig. 1 is an amplifier that can provide a gain of between 15 and 60 dB.
  • the narrow-gain narrow-band solid amplifier 30 is a Nd: YVO 4 , Nd: GdVO 4 , Nd: YAG and Nd: YLF crystal amplifier.
  • These types of crystal amplifiers can provide a high gain that allows the removal of the spectral pedestal without extending the duration of the laser pulse at the output of the narrow gain band solid amplifier 30.
  • this high gain can be obtained by a combination of high-gloss pumping and low doping of the Nd: YVO 4 , Nd: GdVO 4 , Nd: YAG and Nd: YLF crystals.
  • Nd: YV04 narrow-gain narrow gain solid-state amplifier is given in Xavier Delen's thesis "Diode-pumped bulk crystal laser amplifiers: Yb: YAG crystalline fibers and Nd: YV0 crystals 4 ", dated December 4, 2013.
  • the spectral band of this laser pulse 25 is slightly compressed into a spectral band of a width of 0.3 nanometers due to the filtering of non-linear components.
  • the energy of this laser pulse 25 is amplified by a second factor of 12312 at an energy of 197 microjoules and the duration of this laser pulse 25 is slightly reduced to 6ps due to the filtering of the spectral pedestal and a slight spectral reduction by the gain of the narrow gain band 30 solid amplifier.
  • the narrow band gain solid amplifier 30 generates a laser pulse 60 (see FIG. 1) with a duration of 6 picoseconds, a spectral band with a width of 0.3 nanometers and an energy of 197 microjoules.
  • the narrow band gain solid amplifier 30 is a Nd: YV04 crystal amplifier.
  • the device 1 generates a short high-energy laser pulse (6 picoseconds) (197 microjoules), with a width of the spectral band of 0.3 nanometers and without spectral pedestal.
  • the publication of Agnesi mentioned in the state of the art fails to provide a laser pulse with the characteristics mentioned above since, as mentioned in the state of the art, in the case of use short pulses (particularly pulses less than 15 picoseconds in duration), the spectral broadening in the non-linear fiber amplifier results in a pulse having a spectral bandwidth greater than the width of the narrow gain band of the solid amplifier (around 0.4 nanometers).
  • the laser pulses of the device 1 of FIG. 1 have a spectral bandwidth less than the width of the narrow gain band of the solid amplifier before being received by this solid amplifier since instead of an enlargement spectral of the laser pulse 15 in the non-linear fiber amplifier 20 (see Agnesi publication mentioned in the state of the art) there is a spectral compression of this laser pulse in the non-linear fiber amplifier.
  • the width of the spectral band of the laser pulses of the device 1 of FIG. 1 are less than the width of the narrow gain band of the front solid amplifier to be received by this solid amplifier, in the device 1 of Figure 1 they do not appear signal losses when the laser pulses are received by the narrow band gain solid amplifier and so there is no no longer deformation of the temporal form of these laser pulses.
  • the laser pulses at the output of the narrow gain band solid amplifier 30 of the device 1 of FIG. 1 do not have a spectral pedestal since, as mentioned above, the gain of the solid band amplifier Narrow bath 30 is a gain very suitable for removing the spectral pedestal of the laser pulses received by this solid amplifier.
  • FIG. 2 represents another embodiment of the device 1 for generating a laser pulse.
  • the device 1 of FIG. 2 differs from the device 1 of FIG. 1 only in that the solid amplifier with a narrow gain band 30 is connected with compression means 40 designed to compress the laser pulse 60 generated by the solid amplifier with a narrow gain band 30.
  • the laser pulse 60 generated by the narrow gain band-shaped solid amplifier 30 is received by the compression means 40 and a compressed laser pulse 70 is generated by the compression means 40.
  • the compression means 40 comprise a hollow core fiber connected with a compressor.
  • This type of compression means 40 is well known to those skilled in the art and in one example the compressor is based on dispersive elements such as a Bragg grating inscribed in the volume (Volume Bragg Grating) or as diffraction gratings. .
  • the laser pulse 60 generated by the narrow-gain narrow-band solid amplifier 30 (laser pulse 60 having a duration of 6 picoseconds, a spectral bandwidth of 0.3 nanometers and energy of 197 microjoules) is received by the hollow-core fiber and the width of the spectral band of the laser pulse 60 is enlarged to 7.9 nanometers because of the spectral broadening in the hollow-core fiber, the duration of the laser pulse 60 remains at 6 picoseconds and the energy of the laser pulse 60 is decreased to 177 microjoules. Then, this laser pulse 60 is transmitted to the compressor and the laser pulse 70 generated at the output of the compressor (see FIG.
  • the hollow-core fiber to a length of 3 meters and is of the kagome type.
  • the compressor of this particular example is a diffraction grating compressor with 1250 lines / mm in Littrow configuration and the distance between these diffraction gratings is approximately 35mm. It should be noted that the Littrow configuration is well known to those skilled in the art.
  • the device 1 of FIG. 2 which uses the compression means 40 makes it possible to produce femtosecond laser pulses without a spectral pedestal and with high energies.
  • the hollow-core fiber of the compression means 40 may be empty or preferably it may be filled with gas.
  • the advantage of a gas filled hollow core fiber is that the spectral broadening in the hollow core fiber can be controlled by changing the proportion of gas and adjusting its pressure. It should be noted that the dispersion of a hollow core fiber filled with gas can also be controlled by adjusting its pressure.
  • the gas in the hollow-core fiber is air. Air provides a nonlinear coefficient suitable for transporting laser pulses over several meters of hollow-core fiber whose core has a diameter close to 30 ⁇ .
  • the hollow-core fiber may be a bias hold to maintain the polarization axis of the light.
  • the hollow-core fiber has a strong beam overlap in the gas.
  • the beam overlap in the gas with respect to the solid structure of the fiber corresponds to a factor greater than 1000. This makes it possible to reduce the non-linear effects and to increase the threshold of damage to the fiber. hollow heart.
  • the hollow core fiber is a kagome fiber well known to those skilled in the art (see the example mentioned above for the laser pulse 60 which is received by a hollow-core type fiber kagome).
  • the advantage of a kagome fiber in the particular case where the kagome fiber is made of silica is to obtain a recovery with very low silica, less than 0.1% while offering good beam quality.
  • the hollow core fiber is a so-called negative curvature fiber which has advantages close to the kagome fiber.
  • the hollow core fiber has a silica or quartz seal with the narrow gain band solid amplifier 30 at its first face and a silica or quartz seal with the compressor at its second face. Sealing silica or quartz is of interest to ensure excellent sealing, to offer a format extremely compact and remains compatible with glass fusion techniques commonly used in the field of optical fiber.
  • the compression means comprise a solid fiber (instead of a hollow core fiber) connected with a compressor.
  • a solid fiber is used in the case where the energy of the laser pulse 60 generated by the narrow band gain solid amplifier is low (around a few microjoules).
  • the advantage of a solid fiber over a hollow core fiber is its simplicity but it can be used only with low energies.
  • the use of a hollow-core fiber in the compression means 40 increases the damage threshold and reduces the non-linear effects, thus making it possible to transport energies exceeding 1 millijoule by the hollow-core fiber.
  • FIG. 3 illustrates a method of generating a short, high energy laser pulse with no spectral pedestal which at the same time has a spectral bandwidth less than the width of the narrow gain band of the solid amplifier prior to be received by this solid amplifier, the generation of this pulse being performed using the device 1 of Figure 1.
  • a step 100 of the method the generation of a laser pulse 15 is carried out by the fiber oscillator 10.
  • the laser pulse generated by the fiber oscillator 10 is transmitted to the non-linear fiber amplifier 20 to generate a laser pulse 25 with energy amplified by a first factor.
  • the laser pulse 25 generated by the nonlinear fiber optic amplifier 20 is transmitted to a narrow gain band solid amplifier 30 to generate a laser pulse 60 with a second factor amplified energy.
  • the fiber oscillator 10 applies a positive dispersion adapted to compensate for phase auto-modulation of the non-linear fiber amplifier 20 and the narrow gain band solid amplifier 30 applies a gain adapted to remove the spectral pedestal of the laser pulse 25 transmitted to the narrow gain band solid amplifier 30.
  • a strong gain of the solid band amplifier narrow gain 30 allows the removal of the spectral pedestal. For the reasons mentioned above, this gain is preferably between 15 and 60 dB.
  • 4a, 4b, 5 and 6 illustrate diagrams which represent the evolution of the width of the spectral band of the laser pulse generated by the positive dispersion fiber oscillator 10 as well as the evolution of the duration and the energy of this laser pulse during the steps of the method of FIG. 3, and which correspond to the case of the particular example of the device 1 of FIG. 1 mentioned above for which the positive dispersion fiber oscillator 10 generates a pulse laser with a duration of 6.3 picoseconds, a spectral band with a width of 3 nanometers and an energy of 0.03 nanojoules.
  • FIGS. 4a and 4b correspond to step 100 of the method of FIG. 3, which relates to the generation of a laser pulse by the positive dispersion fiber oscillator 10 of the device 1.
  • Figure 4a shows a time diagram (ps) versus power (Watt) and a wavelength (micrometers) versus power (Watt-ps 2 ) diagram before stretching the laser pulse by the positive dispersion of the fiber oscillator 10.
  • the duration of the laser pulse is 1 picosecond and the spectral band of the laser pulse has a width of 3 nanometers.
  • the energy of the laser pulse in Figure 4a is 0.03 nanojoules.
  • Figure 4b illustrates a time (ps) versus power (Watt) diagram and a wavelength (micrometers) versus power (Watt-ps 2 ) plot after stretching of the laser pulse by the positive dispersion of the fiber oscillator 10.
  • the duration of the laser pulse is 6.3 picoseconds and the spectral band of the laser pulse always has a width of 3 nanometers.
  • the energy of the laser pulse in Figure 4b remains at 0.03 nanojoules.
  • the fibril oscillator 10 with positive dispersion generates a laser pulse with a duration of 6.3 picoseconds, a spectral band with a width of 3 nanometers and an energy of 0.03 nanojoules.
  • FIG. 5 corresponds to step 200 of the method of FIG. 3, in which spectral compression of the spectral pulse takes place in the nonlinear fiber amplifier 20 as well as amplification of the energy of the spectral pulse by a first factor.
  • Figure 5 illustrates a time diagram (ps) versus power (kW) and a wavelength diagram (micrometers) versus power (kW-ps 2 ).
  • the width of the spectral band of the laser pulse is reduced at 0.47 nm and the duration of the laser pulse is reduced to 6.2 picoseconds.
  • the energy of the laser pulse in Figure 5 is amplified to 16 nanojoules.
  • FIG. 6 corresponds to step 300 of the method of FIG. 3, in which the spectral pedestal of the spectral pulse is suppressed by the adaptation of the gain of the narrow-gain solid amplifier 30 in order to remove this spectral pedestal as well as an amplification of the energy of the spectral pulse by a second factor.
  • FIG. 6 illustrates a time diagram (ps) with respect to the power (MW) and a wavelength diagram (micrometers) with respect to the power (GW-ps 2 ).
  • the spectral pedestal that appears in the spectral pulse of FIG. 5 is suppressed and thus an impulse laser with improved quality is obtained.
  • the width of the spectral band of the laser pulse is further reduced to 0.3 nanometers and the duration of the laser pulse is also reduced to 6 picoseconds.
  • the energy of the laser pulse in Figure 6 is 197 microjoules.
  • the gain applied by the narrow band gain solid amplifier 30 in order to suppress the spectral pedestal of the laser pulse is 40.9 d B.
  • this method further comprises a step of transmitting the laser pulse 60 generated by the narrow gain band solid amplifier 30 to the compression means 40 arranged to compress this laser pulse 60.
  • FIGS. 7 and 8 illustrate diagrams that represent the evolution of the width of the spectral band of the laser pulse as well as the evolution of the duration and the energy of this laser pulse when this laser pulse is received by the compression means 40 which comprises a hollow core fiber connected to a compressor. These diagrams correspond to the case of the particular example of the device 1 mentioned above for which the laser pulse 60 received by the compression means 40 has a duration of 6 picoseconds, a spectral band with a width of 0.3 nanometers and a energy of 197 microjoules.
  • FIG. 7 illustrates a time diagram (ps) with respect to the power (MW) and a wavelength diagram (micrometers) with respect to the power (MW-ps 2 ), these two diagrams illustrating the modifications made to the laser pulse when this laser pulse is received by the hollow-core fiber of the compression means 40.
  • the hollow-core fiber has a length of 3 meters and it is of type kagome.
  • the width of the spectral band of the laser pulse is widened to 7.9 nanometers, the duration of the laser pulse remains at 6 picoseconds and the energy of the laser pulse is decreased to 177 microjoules.
  • FIG. 8 illustrates a time diagram (ps) with respect to the power (MW) and a wavelength diagram (micrometers) with respect to the power (MW-ps 2 ), these two diagrams illustrating the modifications made to the laser pulse when it is transmitted by the hollow-core fiber to the compressor of the compression means 40.
  • the compressor is a compressor based on 1250 diffraction gratings. lines / mm in Littrow configuration and the distance between these diffraction gratings is approximately 35mm.
  • the width of the spectral band of the laser pulse remains at 7.9 nanometers, the duration of the laser pulse is reduced at 346 femtoseconds and the energy of the laser pulse is reduced to 130 microjoules.
  • FIGS. 4a, 4b, 5, 6, 7 and 8 correspond to a particular example of a laser pulse generated by the fiber dispersion oscillator 10 with positive dispersion of the device 1, this pulse having a duration of 6.3 picoseconds , a spectral band with a width of 3 nanometers and an energy of 0.03 nanojoules.
  • the values of the duration, the The spectral bandwidth as well as the energy of the laser pulse generated by the positive dispersion fiber oscillator 10 can vary in particular ranges.
  • the duration of the laser pulse can be between 2 ps and 15 ps
  • the spectral bandwidth of the laser pulse can be between 0.6 nm and 30 nm
  • the energy of The laser pulse can be between 1 ⁇ J and 10 ⁇ J.
  • the values of the duration, the spectral bandwidth and the energy of the laser pulse can vary in the ranges mentioned above depending on the structure of the fiber oscillator 10.
  • the positive dispersion of the fiber oscillator 10 can be approximately between 0.1 ps / nm. and 25 ps / nm.
  • the gain of the non-linear fiber amplifier 20 is a positive gain that can be up to 85 dB.
  • the laser pulse 60 generated by the narrow band gain solid amplifier 30 may have a duration between 2 ps and 15 ps, a spectral bandwidth between 0.1 nm and 1 nm and an energy between ⁇ and 10 mJ.
  • the values of the duration, the spectral bandwidth and the energy of the laser pulse 60 may vary in the ranges mentioned above depending on the particular structure of the nonlinear fiber amplifier 20 and the narrow band gain solid amplifier 30 which are used in the device 1.
  • the Laser pulse 70 generated at the output of the compression means 40 may have a duration between 100 fs and 5 fps, a spectral bandwidth between 0.3 and 30 nm and an energy between ⁇ and 10 mJ.
  • the values of the duration, the spectral bandwidth and the energy of the laser pulse 70 can vary in the ranges mentioned above as a function of the duration and the energy of the laser pulse 60. input of the compression means 40, depending on the structure, the composition and the length of the hollow-core optical fiber or the solid optical fiber of the compression means 40 as well as the compressor structure of the compressors. compression means 40.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

Dispositif (1) de génération d'une impulsion laser comportant: ‐ un oscillateur fibré (10) générant une impulsion laser (15); ‐ un amplificateur fibré non‐linéaire (20) agencé pour recevoir l'impulsion laser (15) générée par l'oscillateur fibré (10) et générer une impulsion laser (25) à énergie amplifiée par un premier facteur; ‐ un amplificateur solide à bande de gain étroite (30) agencé pour recevoir l'impulsion laser (25) générée par l'amplificateur fibré non‐linéaire (20) et générer une impulsion laser (60) à énergie amplifiée par un second facteur, le dispositif (1) étant caractérisé en ce que l'oscillateur fibré (10) a une dispersion positive adapté pour compenser l'automodulation de phase de l'amplificateur fibré non‐linéaire (20) et en ce que le gain de l'amplificateur solide à bande de gain étroite (30) est adapté pour supprimer le piédestal spectral de l'impulsion laser (25) reçue par l'amplificateur solide à bande de gain étroite (30).

Description

Dispositif de génération d'une impulsion laser brève à haute énergie et procédé pour générer une telle impulsion
Domaine technique La présente invention concerne en général un dispositif et un procédé de génération d'une impulsion laser brève à haute énergie. Plus particulièrement, la présente invention concerne un dispositif et un procédé de génération d'une impulsion laser brève à haute énergie où ce dispositif comporte un amplificateur fibré non-linéaire connecté avec un amplificateur solide à bande de gain étroite. Etat de la technique
L'utilisation d'un dispositif de génération d'une impulsion laser brève à haute énergie ayant un amplificateur fibré non-linéaire connecté avec un amplificateur solide à bande de gain étroite est très avantageuse car à fort gain, simple et stable.
Un exemple d'un tel dispositif est décrit dans la publication d'Agnesi et al. « Low répétition rate, hybrid fiber/solid-state, 1064 nm picosecond master oscillator power amplifier laser System », J. Opt. Soc. Am. B/Vol. 30, No 11/November 2013.
En particulier, cette publication décrit un dispositif de génération d'une impulsion laser brève à haute énergie qui comporte un oscillateur fibré générant une impulsion laser. Cette impulsion laser est reçue par un amplificateur fibré non-linéaire qui génère une impulsion laser à énergie amplifiée par un premier facteur. Ensuite, cette impulsion laser générée par l'amplificateur fibré non-linéaire est reçue par un amplificateur solide à bande de gain étroite qui génère une impulsion laser à énergie amplifiée par un second facteur.
Il est à noter que puisque l'amplificateur solide de la publication mentionnée ci-dessus a une bande de gain étroite, il est important, afin d'éviter des pertes de signal, que la largeur de la bande spectrale de l'impulsion transmise par l'amplificateur fibré non-linéaire à l'amplificateur solide n'excède pas la largeur de la bande de gain étroite de l'amplificateur solide.
Ainsi, la bande de gain étroite de l'amplificateur solide impose une forte contrainte sur le contrôle des effets non-linéaires (automodulation de phase) dans l'amplificateur fibré non- linéaire qui élargissent la bande spectrale de l'impulsion dans l'amplificateur fibré non-linéaire. En effet, plus la durée d'impulsion est courte et/ou plus l'énergie d'impulsion dans l'amplificateur fibré non-linéaire est élevée, plus l'automodulation de phase est accentuée et ainsi l'élargissement spectral dans l'amplificateur fibré non-linéaire est plus important.
Dans la publication mentionnée ci-dessus, l'élargissement spectral dans l'amplificateur fibré non-linéaire est contrôlé en utilisant des impulsions d'une durée de 55 picosecondes qui sont produites par l'oscillateur fibré et sont transmises à l'amplificateur fibré non-linéaire. Il est à noter que puisque un élargissement spectral (et pas une compression spectral) de l'impulsion laser prend lieu dans l'amplificateur fibré non-linéaire de cette publication, cette impulsion laser ne présente pas de piédestal spectral à la sortie de l'amplificateur fibré non-linéaire. Il est connu par l'homme du métier que le piédestal spectral correspond aux petites oscillations sur les bords de la composante spectrale principale de l'impulsion laser.
Cependant, dans le cas d'utilisation des impulsions laser plus courtes (en particulier des impulsions d'une durée inférieure à 15 picosecondes) dans la publication mentionnée ci- dessus, l'élargissement spectral dans l'amplificateur fibré non-linéaire résulte en une impulsion laser ayant une largeur de bande spectrale supérieure à la largeur de la bande de gain étroite de l'amplificateur solide (la largeur de la bande de gain étroite de l'amplificateur solide de la publication, qui est un amplificateur cristallin de type Nd:YV04, est autour de 0.4 nanomètres). Ainsi, des pertes de signal importantes apparaissent lorsque cette impulsion laser est reçue par l'amplificateur solide et ces pertes peuvent également induire une déformation de la forme temporelle de cette impulsion. Description de l'invention
L'invention a donc notamment pour but d'améliorer le dispositif de génération d'une impulsion laser ayant un amplificateur fibré non-linéaire connecté avec un amplificateur solide à bande de gain étroite. Plus précisément, l'invention a pour but de proposer un tel dispositif et procédé de génération d'une impulsion laser brève, à haute énergie et sans piédestal spectral qui en même temps a une largeur de bande spectrale inférieure à la largeur de la bande de gain étroite de l'amplificateur solide à bande de gain étroite avant d'être reçue par cet amplificateur solide afin d'éviter des pertes de signal qui apparaissent lorsque cette impulsion laser est reçue par cet amplificateur solide.
Un objet de l'invention concerne un dispositif de génération d'une impulsion laser qui comporte:
- un oscillateur fibré qui génère une impulsion laser ; - un amplificateur fibré non-linéaire agencé pour recevoir l'impulsion laser générée par l'oscillateur fibré et générer une impulsion laser à énergie amplifiée par un premier facteur ;
- un amplificateur solide à bande de gain étroite agencé pour recevoir l'impulsion laser générée par l'amplificateur fibré non-linéaire et générer une impulsion laser à énergie amplifiée par un second facteur, le dispositif étant caractérisé en ce que l'oscillateur fibré a une dispersion positive adapté pour compenser l'automodulation de phase de l'amplificateur fibré non-linéaire (20) et en ce que le gain de l'amplificateur solide à bande de gain étroite est adapté pour supprimer le piédestal spectral de l'impulsion laser reçue par l'amplificateur solide à bande de gain étroite. Des caractéristiques ou des modes de réalisation particuliers du dispositif, utilisables seuls ou en combinaison, sont :
- le gain de l'amplificateur solide à bande de gain étroite est compris entre 15 et 60 dB ;
- un élément dispersif est disposé à la sortie de l'oscillateur fibré ;
- un élément dispersif est intégré dans l'oscillateur fibré ; - l'élément dispersif est fibré ;
- l'élément dispersif est en espace libre ;
- l'amplificateur solide à bande de gain étroite est connecté avec des moyens de compression agencés pour compresser l'impulsion laser générée par l'amplificateur solide à bande de gain étroite ; - les moyens de compression comportent une fibre à cœur creux connectée avec un compresseur ;
- la fibre à cœur creux est remplie de gaz ;
- la fibre à cœur creux présente un recouvrement de faisceau fort dans le gaz ;
- la fibre à cœur creux est une fibre kagome ; - la fibre à cœur creux présente un scellement en silice ou en quartz avec l'amplificateur solide à bande de gain étroite à sa première face et un scellement en silice ou en quartz avec le compresseur à sa deuxième face. Un autre objet de l'invention concerne un procédé pour générer une impulsion laser comportant les étapes suivantes :
- génération d'une impulsion laser par un oscillateur fibré ;
- transmission de l'impulsion laser générée par l'oscillateur fibré à un amplificateur fibré non- linéaire afin de générer une impulsion laser à énergie amplifiée par un premier facteur ;
- transmission de l'impulsion laser générée par l'amplificateur fibré non-linéaire à un amplificateur solide à bande de gain étroite afin de générer une impulsion laser à énergie amplifiée par un second facteur, le procédé étant caractérisé en ce que l'oscillateur fibré applique une dispersion positive adapté pour compenser l'automodulation de phase de l'amplificateur fibré non-linéaire et en ce que l'amplificateur solide à bande de gain étroite applique un gain adapté pour supprimer le piédestal spectral de l'impulsion laser transmise à l'amplificateur solide à bande de gain étroite.
Des caractéristiques ou des modes de réalisation particuliers du procédé, utilisables seuls ou en combinaison, sont :
- le gain appliqué par l'amplificateur solide à bande de gain étroite est compris entre 15 et 60 dB ;
- le procédé comporte en outre une étape de transmission de l'impulsion laser générée par l'amplificateur solide à bande de gain étroite aux moyens de compression agencés pour compresser l'impulsion laser.
Brève description des figures
L'invention sera mieux comprise à la lecture de la description qui suit, faite uniquement à titre d'exemple, et en référence aux figures en annexe dans lesquelles :
- La figure 1 illustre un dispositif de génération d'une impulsion laser selon un mode de réalisation de l'invention ;
- La figure 2 illustre un dispositif de génération d'une impulsion laser selon un autre mode de réalisation de l'invention ;
- La figure 3 illustre un procédé de génération d'une impulsion laser par le dispositif de la figure 1 ; et - Les figures 4a, 4b, 5 et 6 illustrent des diagrammes qui représentent l'évolution de la largeur de la bande spectrale de l'impulsion laser ainsi que l'évolution de la durée et de l'énergie de cette impulsion laser pendant les étapes du procédé de la figure 3.
- Les figures 7 et 8 illustrent des diagrammes qui représentent l'évolution de la largeur de la bande spectrale de l'impulsion laser ainsi que l'évolution de la durée et de l'énergie de cette impulsion laser lorsque cette impulsion laser est reçue par les moyens de compression du dispositif illustré dans la figure 2.
Modes de réalisation
Comme illustré dans la figure 1, un dispositif 1 de génération d'une impulsion laser selon un mode de réalisation comporte un oscillateur fibré 10, un amplificateur fibré non-linéaire 20 et un amplificateur solide à bande de gain étroite 30.
En particulier, l'oscillateur fibré 10 du dispositif 1 de la figure 1 a une dispersion positive et il génère une impulsion laser 15. Selon un exemple, l'oscillateur fibré 10 est un oscillateur fibré à verrouillage de mode déclenché passivement par une technologie d'absorbant saturable type SESAM (Semiconductor Saturable Absorber Mirror) et comporte un élément dispersif pour générer une dispersion positive. Cet élément dispersif peut être fibré ou il peut être en espace libre. Selon un exemple, cet élément dispersif est un réseau de Bragg inscrit dans une fibre optique ou cet élément dispersif est un dispositif basé sur des réseaux de diffraction ou de prismes dispersifs. Cet élément dispersif peut être disposé à la sortie de l'oscillateur fibré 10 ou il peut être intégré dans l'oscillateur fibré 10. Il est à noter que dans un autre exemple, l'oscillateur fibré 10 est un oscillateur fibré à base de diode modulée ou à base d'un oscillateur à mode déclenché et comporte un élément dispersif selon les exemples de l'élément dispersif mentionnés ci-dessus afin de générer une dispersion positive.
Selon un exemple particulier du dispositif 1 de la figure 1, l'impulsion laser 15 a une durée de 6.3 picosecondes, une bande spectrale d'une largeur de 3 nanomètres et une énergie de 0.03 nanojoules. Il est à noter que dans cet exemple particulier du dispositif 1 de la figure 1, l'oscillateur fibré 10 qui génère l'impulsion laser 15 est un oscillateur fibré à verrouillage de mode déclenché passivement par une technologie d'absorbant saturable type SESAM (Semiconductor Saturable Absorber Mirror) et a une dispersion positive de 2.1 ps/nm. Comme illustré dans la figure 1, suite à la génération de l'impulsion laser 15 par l'oscillateur fibré 10 à dispersion positive, cette impulsion laser 15 est reçue par l'amplificateur fibré non- linéaire 20 agencé pour recevoir cette impulsion laser 15. Selon un exemple, l'amplificateur fibré non-linéaire 20 est connecté ou fusionné à l'oscillateur fibré 10 à dispersion positive afin de recevoir cette impulsion laser 15 de façon à ce que l'assemblage soit monolithique. Ce type de connexion ou fusion est connu par l'homme du métier.
Selon un exemple, l'amplificateur fibré non-linéaire 20 est un amplificateur à fibre optique dopée aux terres-rares (par exemple Ytterbium ou Néodyme) ou il est un amplificateur aman bien connu par l'homme du métier.
Il est à noter que l'impulsion laser 15 générée par l'oscillateur fibré 10 compense l'automodulation de phase de l'amplificateur fibré non-linéaire 20 puisque l'oscillateur fibré 10 a une dispersion positive. Ainsi, au lieu d'un élargissement spectral de l'impulsion laser 15 dans l'amplificateur fibré non-linéaire 20 (voir la publication d'Agnesi mentionnée dans l'état de la technique), il y a une compression spectrale de cette impulsion laser 15 dans l'amplificateur fibré non-linéaire 20.
En particulier, suite à l'amplification de l'impulsion laser 15 de l'exemple mentionné ci-dessus (impulsion laser 15 ayant une durée de 6.3 picosecondes, une bande spectrale d'une largeur de 3 nanomètres et une énergie de 0.03 nanojoules) dans l'amplificateur fibré non-linéaire 20, la bande spectrale de cette impulsion laser 15 est compressée à une bande spectrale d'une largeur de 0.47 nanomètres, l'énergie de cette impulsion laser 15 est amplifiée par un premier facteur de 533 à une énergie de 16 nanojoules et la durée de cette impulsion laser 15 est légèrement réduite à 6.2ps. Il est à noter que cette réduction légère de la durée de l'impulsion laser 15 est faite à cause de la compensation de la dispersion par les effets non-linéaires dans l'amplificateur fibré non-linéaire 20. Ainsi, l'amplificateur fibré non-linéaire 20 génère une impulsion laser 25 (voir figure 1) d'une durée de 6.2 picosecondes, d'une bande spectrale d'une largeur de 0.47 nanomètres et d'une énergie de 16 nanojoules. Il est à noter que dans cet exemple particulier du dispositif 1 de la figure 1, l'amplificateur fibré non-linéaire 20 est un amplificateur à fibre optique dopée Ytterbium.
Comme illustré dans la figure 1, suite à la génération de l'impulsion laser 25 par l'amplificateur fibré non-linéaire 20, cette impulsion laser 25 est reçue par l'amplificateur solide à bande de gain étroite 30 agencé pour recevoir cette impulsion laser 25. Selon un exemple, l'amplificateur solide à bande de gain étroite 30 est couplé en espace libre avec l'amplificateur fibré non-linéaire 20 afin de recevoir cette impulsion laser 25. Ce type de couplage est connu par l'homme du métier. Il est à noter que le fait qu'il y a une compression spectrale de l'impulsion laser dans l'amplificateur fibré non-linéaire 20 résulte en un piédestal spectral de cette impulsion laser. Ainsi, l'impulsion laser 25 reçue par l'amplificateur solide à bande de gain étroite 30 présente un tel piédestal spectral. Afin de surmonter ce problème du piédestal spectral, le gain de l'amplificateur solide à bande de gain étroite 30 est adapté pour supprimer le piédestal spectral de l'impulsion laser 25 reçue par l'amplificateur solide à bande de gain étroite 30.
Il a été constaté qu'un gain fort de l'amplificateur solide à bande de gain étroite 30 permet la suppression du piédestal spectral. En particulier, il a été constaté qu'un gain de l'amplificateur solide à bande de gain étroite 30 qui est entre 15 et 60 dB permet la suppression du piédestal spectral sans élargir la durée de l'impulsion laser à la sortie de l'amplificateur solide à bande de gain étroite 30 et sans réduire l'efficacité de suppression du piédestal spectral. Plus particulièrement, il a été constaté qu'un gain supérieur à 60 dB peut être aussi utilisé afin de supprimer le piédestal spectral mais dans ce cas là la durée d'impulsion laser est élargie. En outre, il a été constaté qu'un gain inférieur à 15 dB peut être aussi utilisé afin de supprimer le piédestal spectral mais dans ce cas là l'efficacité de suppression du piédestal spectral est réduite. Ainsi, préférablement, l'amplificateur solide à bande de gain étroite 30 choisi pour le dispositif 1 de la figure 1 est un amplificateur qui peut fournir un gain entre 15 et 60 dB.
Selon un exemple, l'amplificateur solide à bande de gain étroite 30 est un amplificateur cristallin de type Nd:YV04, Nd:GdV04, Nd:YAG et Nd:YLF. Ces types d'amplificateurs cristallins peuvent fournir un fort gain qui permet la suppression du piédestal spectral sans élargir la durée de l'impulsion laser à la sortie de l'amplificateur solide à bande de gain étroite 30. Comme il est connu par l'homme du métier, ce fort gain peut être obtenu par une combinaison de pompage haute brillance et d'un dopage faible des cristaux Nd:YV04, Nd:GdV04, Nd:YAG et Nd:YLF. Un exemple particulier d'un amplificateur solide à bande de gain étroite de type Nd:YV04 avec un fort gain est donné dans la thèse de Xavier Delen « Amplificateurs laser à cristaux massifs pompés par diode : fibres cristallines Yb :YAG et cristaux Nd :YV04 », datée le 4 décembre 2013.
Suite à l'amplification de l'impulsion laser 25 de l'exemple mentionné ci-dessus (impulsion laser 25 ayant une durée de 6.2 picosecondes, une bande spectrale d'une largeur de 0.47 nanomètres et une énergie de 16 nanojoules) dans l'amplificateur solide à bande de gain étroite 30, la bande spectrale de cette impulsion laser 25 est légèrement compressée en une bande spectrale d'une largeur de 0.3 nanomètres en raison du filtrage des composantes non- linéaires du spectre de l'impulsion laser 25 par le gain de l'amplificateur solide à bande de gain étroite 30, l'énergie de cette impulsion laser 25 est amplifiée par un second facteur de 12312 à une énergie de 197 microjoules et la durée de cette impulsion laser 25 est légèrement réduite à 6ps en raison du filtrage du piédestal spectral et d'une légère réduction spectrale par le gain de l'amplificateur solide à bande de gain étroite 30. Ainsi, l'amplificateur solide à bande de gain étroite 30 génère une impulsion laser 60 (voir figure 1) d'une durée de 6 picosecondes, d'une bande spectrale d'une largeur de 0.3 nanomètres et d'une énergie de 197 microjoules. Il est à noter que dans cet exemple particulier du dispositif 1 de la figure 1, l'amplificateur solide à bande de gain étroite 30 est un amplificateur cristallin de type Nd:YV04. Ainsi, dans l'exemple particulier du dispositif 1 de la figure 1 mentionné ci-dessus, le dispositif 1 génère une impulsion laser brève (6 picosecondes) à haute énergie (197 microjoules), d'une largeur de la bande spectrale de 0.3 nanomètres et sans piédestal spectral.
Au contraire, la publication d'Agnesi mentionnée dans l'état de la technique n'arrive pas à fournir une impulsion laser avec les caractéristiques mentionnées ci-dessus puisque, comme mentionné dans l'état de la technique, dans le cas d'utilisation des impulsions courtes (en particulier des impulsions d'une durée inférieure à 15 picosecondes), l'élargissement spectral dans l'amplificateur fibré non-linéaire résulte à une impulsion ayant une largeur de bande spectrale supérieure à la largeur de la bande de gain étroite de l'amplificateur solide (autour de 0.4 nanomètres). Ainsi, au contraire de la publication d'Agnesi, le dispositif 1 de la figure 1 permet de produire des impulsions laser brèves qui sont inférieures à 15 picosecondes avec une qualité améliorée (sans piédestal spectral), lesquels impulsions laser ont une haute énergie et en même temps ont une largeur de bande spectrale inférieure à la largeur de la bande de gain étroite de l'amplificateur solide avant d'être reçues par cet amplificateur solide, malgré les effets non- linéaires présents dans l'amplificateur fibré non-linéaire. En particulier, les impulsions laser du dispositif 1 de la figure 1 ont une largeur de bande spectrale inférieure à la largeur de la bande de gain étroite de l'amplificateur solide avant d'être reçues par cet amplificateur solide puisque au lieu d'un élargissement spectral de l'impulsion laser 15 dans l'amplificateur fibré non-linéaire 20 (voir la publication d'Agnesi mentionnée dans l'état de la technique) il y a une compression spectrale de cette impulsion laser 15 dans l'amplificateur fibré non-linéaire 20, à cause de l'utilisation d'un oscillateur fibré 10 a dispersion positive dans le dispositif 1. Il est à noter que puisque la largeur de la bande spectrale des impulsions laser du dispositif 1 de la figure 1 sont inférieures à la largeur de la bande de gain étroite de l'amplificateur solide avant d'être reçues par cet amplificateur solide, dans le dispositif 1 de la figure 1 ils n'apparaissent pas des pertes de signal lorsque les impulsions laser sont reçues par l'amplificateur solide à bande de gain étroite et ainsi il n'y a pas non plus de déformation de la forme temporelle de ces impulsions laser. En outre, les impulsions laser à la sortie de l'amplificateur solide à bande de gain étroite 30 du dispositif 1 de la figure 1 ne présentent pas de piédestal spectral puisque, comme mentionné ci-dessus, le gain de l'amplificateur solide à bande de bain étroite 30 est un gain fort adapté à supprimer le piédestal spectral des impulsions laser reçues par cet amplificateur solide.
La figure 2 représente un autre mode de réalisation du dispositif 1 de génération d'une impulsion laser.
En particulier, le dispositif 1 de la figure 2 diffère du dispositif 1 de la figure 1 seulement en ce que l'amplificateur solide à bande de gain étroite 30 est connecté avec des moyens de compression 40 agencés pour compresser l'impulsion laser 60 générée par l'amplificateur solide à bande de gain étroite 30. Comme illustré dans la figure 2, l'impulsion laser 60 générée par l'amplificateur solide à bande de gain étroite 30 est reçue par les moyens de compression 40 et une impulsion laser 70 compressée est générée par les moyens de compression 40.
Selon un exemple, les moyens de compression 40 comportent une fibre à cœur creux connectée avec un compresseur. Ce type des moyens de compression 40 est bien connu par l'homme du métier et selon un exemple le compresseur est basé sur des éléments dispersifs comme un réseau de Bragg inscrit dans le volume (Volume Bragg Grating en anglais) ou comme des réseaux de diffraction.
En prenant en compte l'exemple particulier mentionné ci-dessus pour le dispositif 1 de la figure 1, l'impulsion laser 60 générée par l'amplificateur solide à bande de gain étroite 30 (impulsion laser 60 ayant une durée de 6 picosecondes, une bande spectrale d'une largeur de 0.3 nanomètres et une énergie de 197 microjoules) est reçue par la fibre à cœur creux et la largeur de la bande spectrale de l'impulsion laser 60 est élargie à 7.9 nanomètres à cause de l'élargissement spectral dans la fibre à cœur creux, la durée de l'impulsion laser 60 reste à 6 picosecondes et l'énergie de l'impulsion laser 60 est diminuée à 177 microjoules. Ensuite, cette impulsion laser 60 est transmise au compresseur et l'impulsion laser 70 générée à la sortie du compresseur (voir figure 2) a une durée de 346 femtosecondes, une bande spectrale d'une largeur de 7.9 nanomètres et une énergie de 130 microjoules. Dans cet exemple particulier, la fibre à cœur creux à une longueur de 3 mètres et elle est de type kagome. En outre, le compresseur de cet exemple particulier est un compresseur basé sur des réseaux de diffraction avec 1250 lignes/mm en configuration Littrow et la distance entre ces réseaux de diffraction est approximativement 35mm. Il est à noter que la configuration Littrow est bien connue par l'homme du métier.
Ainsi, le dispositif 1 de la figure 2 qui utilise les moyens de compression 40 permet de produire des impulsions laser femtosecondes sans piédestal spectral et avec des énergies hautes.
Selon un exemple, la fibre à cœur creux des moyens de compression 40 peut être vide ou préférablement il peut être remplie de gaz. L'avantage d'une fibre à cœur creux remplie de gaz est que l'élargissement spectral dans la fibre à cœur creux peut être contrôlé en changeant la proportion de gaz et en ajustant sa pression. Il est à noter que la dispersion d'une fibre à cœur creux remplie de gaz peut être également contrôlée en ajustant sa pression. Dans un exemple particulier, le gaz dans la fibre à cœur creux est de l'air. L'air fournit un coefficient non-linéaire adapté pour le transport des impulsions laser sur plusieurs mètres de fibre à cœur creux dont le cœur est d'un diamètre proche de 30 μιη. Dans un autre exemple, la fibre à cœur creux peut être un maintien de polarisation pour conserver l'axe de polarisation de la lumière.
En outre, selon un exemple, la fibre à cœur creux présente un recouvrement de faisceau fort dans le gaz. Dans un exemple particulier, le recouvrement de faisceau dans le gaz par rapport à la structure solide de la fibre correspond à un facteur supérieur à 1000. Ceci permet de réduire les effets non-linéaires et d'augmenter le seuil d'endommagement de la fibre à cœur creux.
En outre, dans un exemple, la fibre à cœur creux est une fibre kagome bien connue par l'homme du métier (voir l'exemple mentionné ci-dessus pour l'impulsion laser 60 qui est reçue par une fibre à cœur creux de type kagome). L'avantage d'une fibre kagome dans le cas particulier où la fibre kagome est en silice est l'obtention d'un recouvrement avec la silice très faible, inférieur à 0,1% tout en offrant une bonne qualité de faisceau. Dans un autre exemple, la fibre à cœur creux est une fibre dite à courbure négative qui présente des avantages proches de la fibre kagome.
Par ailleurs, selon un autre exemple, la fibre à cœur creux présente un scellement en silice ou en quartz avec l'amplificateur solide à bande de gain étroite 30 à sa première face et un scellement en silice ou en quartz avec le compresseur à sa deuxième face. Le scellement en silice ou en quartz présente l'intérêt de garantir une excellente étanchéité, d'offrir un format extrêmement compact et reste compatible avec des techniques de fusion de verre couramment employées dans le domaine de la fibre optique.
Selon un autre exemple des moyens de compression 40, les moyens de compression comportent une fibre solide (au lieu d'une fibre à cœur creux) connecté avec un compresseur. II est à noter qu'une fibre solide est utilisée dans le cas où l'énergie de l'impulsion laser 60 générée par l'amplificateur solide à bande de gain étroite est faible (autour de quelques microjoules). L'avantage d'une fibre solide par rapport à une fibre à cœur creux est sa simplicité mais il peut être utilisé seulement avec des énergies faibles. Cependant, l'utilisation d'une fibre à cœur creux dans les moyens de compression 40 augmente le seuil d'endommagement et réduit les effets non-linéaires, ainsi permettant de transporter des énergies dépassant 1 millijoule par la fibre à cœur creux.
La figure 3 illustre un procédé de génération d'une impulsion laser brève, à haute énergie et sans piédestal spectral qui en même temps a une largeur de bande spectrale inférieure à la largeur de la bande de gain étroite de l'amplificateur solide avant d'être reçue par cet amplificateur solide, la génération de cette impulsion étant effectué en utilisant le dispositif 1 de la figure 1.
En particulier, dans une étape 100 du procédé, la génération d'une impulsion laser 15 est effectuée par l'oscillateur fibré 10.
Dans une étape 200 du procédé, l'impulsion laser 15 générée par l'oscillateur fibré 10 est transmise à l'amplificateur fibré non-linéaire 20 afin de générer une impulsion laser 25 à énergie amplifiée par un premier facteur.
Dans une étape 300 du procédé, l'impulsion laser 25 générée par l'amplificateur fibré non- linéaire 20 est transmise à un amplificateur solide à bande de gain étroite 30 afin de générer une impulsion laser 60 à énergie amplifiée par un second facteur. II est à noter que dans le procédé mentionné ci-dessus, l'oscillateur fibré 10 applique une dispersion positive adapté pour compenser l'automodulation de phase de l'amplificateur fibré non-linéaire 20 et l'amplificateur solide à bande de gain étroite 30 applique un gain adapté pour supprimer le piédestal spectral de l'impulsion laser 25 transmise à l'amplificateur solide à bande de gain étroite 30. Comme mentionné ci-dessus, il a été constaté qu'un gain fort de l'amplificateur solide à bande de gain étroite 30 permet la suppression du piédestal spectral. Pour les raisons mentionnées ci-dessus, ce gain est préférablement entre 15 et 60 dB. Les figures 4a, 4b, 5 et 6 illustrent des diagrammes qui représentent l'évolution de la largeur de la bande spectrale de l'impulsion laser générée par l'oscillateur fibré 10 à dispersion positive ainsi que l'évolution de la durée et de l'énergie de cette impulsion laser pendant les étapes du procédé de la figure 3, et qui correspondent au cas de l'exemple particulier du dispositif 1 de la figure 1 mentionné ci-dessus pour lequel l'oscillateur fibré 10 à dispersion positive génère une impulsion laser 15 d'une durée de 6.3 picosecondes, d'une bande spectrale d'une largeur de 3 nanomètres et d'une énergie de 0.03 nanojoules.
En particulier, les figures 4a et 4b correspond à l'étape 100 du procédé de la figure 3 qui concerne la génération d'une impulsion laser par l'oscillateur fibré 10 à dispersion positive du dispositif 1.
La figure 4a illustre un diagramme de temps (ps) par rapport à la puissance (Watt) et un diagramme de longueur d'onde (micromètres) par rapport à la puissance (Watt-ps2) avant l'étirement de l'impulsion laser par la dispersion positive de l'oscillateur fibré 10. Comme illustré dans la figure 4a, avant l'étirement de l'impulsion laser, la durée de l'impulsion laser est 1 picoseconde et la bande spectrale de l'impulsion laser a une largeur de 3 nanomètres. En outre, l'énergie de l'impulsion laser dans la figure 4a est 0.03 nanojoules.
En outre, la figure 4b illustre un diagramme de temps (ps) par rapport à la puissance (Watt) et un diagramme de longueur d'onde (micromètres) par rapport à la puissance (Watt-ps2) après l'étirement de l'impulsion laser par la dispersion positive de l'oscillateur fibré 10. Comme illustré dans la figure 4b, après l'étirement de l'impulsion laser, la durée de l'impulsion laser est 6.3 picosecondes et la bande spectrale de l'impulsion laser a toujours une largeur de 3 nanomètres. En outre, l'énergie de l'impulsion laser dans la figure 4b reste à 0.03 nanojoules. Ainsi, comme illustré dans la figure 4b, l'oscillateur fibré 10 à dispersion positive génère une impulsion laser d'une durée de 6.3 picosecondes, d'une bande spectrale d'une largeur de 3 nanomètres et d'une énergie de 0.03 nanojoules.
Par ailleurs, la figure 5 correspond à l'étape 200 du procédé de la figure 3 où prend lieu une compression spectrale de l'impulsion spectrale dans l'amplificateur fibré non-linéaire 20 ainsi qu'une amplification de l'énergie de l'impulsion spectrale par un premier facteur.
En particulier, la figure 5 illustre un diagramme de temps (ps) par rapport à la puissance (kW) et un diagramme de longueur d'onde (micromètres) par rapport à la puissance (kW-ps2). Comme illustré dans la figure 5, la largeur de la bande spectrale de l'impulsion laser est réduite à 0,47 nanomètre et la durée de l'impulsion laser est réduite à 6.2 picosecondes. En outre, l'énergie de l'impulsion laser dans la figure 5 est amplifiée à 16 nanojoules.
Par ailleurs, la figure 6 correspond à l'étape 300 du procédé de la figure 3 où prend lieu une suppression du piédestal spectral de l'impulsion spectrale par l'adaptation du gain de l'amplificateur solide à bande de gain étroite 30 afin de supprimer ce piédestal spectral ainsi qu'une amplification de l'énergie de l'impulsion spectrale par un second facteur.
En particulier, la figure 6 illustre un diagramme de temps (ps) par rapport à la puissance (MW) et un diagramme de longueur d'onde (micromètres) par rapport à la puissance (GW-ps2). Comme illustré dans la figure 6, le piédestal spectral qui apparaît dans l'impulsion spectrale de la figure 5 (voir les petites oscillations sur les bords de la composante spectrale principale de l'impulsion spectrale de la figure 5) est supprimé et ainsi une impulsion laser avec une qualité améliorée est obtenue. Aussi, la largeur de la bande spectrale de l'impulsion laser est encore réduite à 0.3 nanomètres et la durée de l'impulsion laser est également réduite à 6 picosecondes. En outre, l'énergie de l'impulsion laser dans la figure 6 est 197 microjoules. Il est à noter que dans l'exemple de la figure 6, le gain appliqué par l'amplificateur solide à bande de gain étroite 30 afin de supprimer le piédestal spectral de l'impulsion laser est 40.9 d B.
Par ailleurs, selon un autre exemple du procédé de la figure 3, ce procédé comporte en outre une étape de transmission de l'impulsion laser 60 générée par l'amplificateur solide à bande de gain étroite 30 aux moyens de compression 40 agencés pour compresser cette impulsion laser 60.
Les figures 7 et 8 illustrent des diagrammes qui représentent l'évolution de la largeur de la bande spectrale de l'impulsion laser ainsi que l'évolution de la durée et de l'énergie de cette impulsion laser lorsque cette impulsion laser est reçue par les moyens de compression 40 qui comporte une fibre à cœur creux connecté à un compresseur. Ces diagrammes correspondent au cas de l'exemple particulier du dispositif 1 mentionné ci-dessus pour lequel l'impulsion laser 60 reçue par les moyens de compression 40 a une durée de 6 picosecondes, une bande spectrale d'une largeur de 0.3 nanomètres et une énergie de 197 microjoules.
En particulier, la figure 7 illustre un diagramme de temps (ps) par rapport à la puissance (MW) et un diagramme de longueur d'onde (micromètres) par rapport à la puissance (MW-ps2), ces deux diagrammes illustrant les modifications effectuées à l'impulsion laser lorsque cette impulsion laser est reçue par la fibre à cœur creux des moyens de compression 40. Comme mentionné ci-dessus, dans l'exemple particulier du dispositif 1, la fibre à cœur creux à une longueur de 3 mètres et elle est de type kagome. Comme illustré dans la figure 7, la largeur de la bande spectrale de l'impulsion laser est élargie à 7.9 nanomètres, la durée de l'impulsion laser reste à 6 picosecondes et l'énergie de l'impulsion laser est diminuée à 177 microjoules.
La figure 8 illustre un diagramme de temps (ps) par rapport à la puissance (MW) et un diagramme de longueur d'onde (micromètres) par rapport à la puissance (MW-ps2), ces deux diagrammes illustrant les modifications effectuées à l'impulsion laser lorsque elle est transmise par la fibre à cœur creux au compresseur des moyens de compression 40. Comme mentionné ci-dessus, dans l'exemple particulier du dispositif 1, le compresseur est un compresseur basé sur des réseaux de diffraction avec 1250 lignes/mm en configuration Littrow et la distance entre ces réseaux de diffraction est approximativement 35mm. Comme illustré dans la figure 8, la largeur de la bande spectrale de l'impulsion laser reste à 7.9 nanomètres, la durée de l'impulsion laser est réduite au 346 femtosecondes et l'énergie de l'impulsion laser est diminuée à 130 microjoules.
Il est à noter que les figures 4a, 4b, 5, 6, 7 et 8 correspondent un exemple particulier d'une impulsion laser 15 générée par l'oscillateur fibré 10 à dispersion positive du dispositif 1, cette impulsion ayant une durée de 6.3 picosecondes, une bande spectrale d'une largeur de 3 nanomètres et une énergie de 0.03 nanojoules.
Cependant, il est à noter qu'afin d'obtenir l'avantage du dispositif 1 et du procédé de la figure 3 (production des impulsions qui sont brèves, à haute énergie et sans piédestal spectral et en même temps ont une largeur de bande spectrale inférieure à la largeur de la bande de gain étroite de l'amplificateur solide avant d'être reçues par cet amplificateur solide, malgré les effets non-linéaires présents dans l'amplificateur fibré non-linéaire), les valeurs de la durée, de la largeur de bande spectrale ainsi que de l'énergie de l'impulsion laser 15 générées par l'oscillateur fibré 10 à dispersion positive peuvent varier dans des gammes particulières. En particulier, il a été constaté que la durée de l'impulsion laser 15 peut être entre 2 ps et 15 ps, la largeur de bande spectrale de l'impulsion laser 15 peut être entre 0.6 nm et 30 nm et l'énergie de l'impulsion laser 15 peut être entre 1 pJ et 10 nJ. Il est à noter que les valeurs de la durée, de la largeur de bande spectrale et de l'énergie de l'impulsion laser 15 peuvent varier dans les gammes mentionnées ci-dessus en fonction de la structure de l'oscillateur fibré 10. En outre, il a été constaté que pour obtenir ces valeurs de la durée, de la largeur de bande spectrale et de l'énergie de l'impulsion laser 15, la dispersion positive de l'oscillateur fibré 10 peut être approximativement entre 0.1 ps/nm et 25 ps/nm. En outre, il est à noter que pour une valeur donnée de dispersion positive de l'oscillateur fibré 10 qui est inclue dans la gamme de la dispersion positive mentionnée ci-dessus, il y a un gain particulier de l'amplificateur fibré non-linéaire 20 qui est utilisée afin d'obtenir l'avantage mentionnée ci-dessus pour le dispositif 1. En particulier, il a été constaté que le gain de l'amplificateur fibré non-linéaire 20 est un gain positif qui peut aller jusqu'à 85 dB. II est à noter que pour une impulsion laser 15 générée par l'oscillateur fibré 10 à dispersion positive qui a une durée, une largeur de bande spectrale et une énergie inclus dans les gammes particulières mentionnées ci-dessus, l'impulsion laser 60 générée par l'amplificateur solide à bande de gain étroite 30 peut avoir une durée entre 2 ps et 15 ps, une largeur de bande spectrale entre 0.1 nm et 1 nm et une énergie entre Ιμϋ et lOmJ. Les valeurs de la durée, de la largeur de bande spectrale et de l'énergie de l'impulsion laser 60 peuvent varier dans les gammes mentionnées ci-dessus en fonction de la structure particulière de l'amplificateur fibré non-linéaire 20 et de l'amplificateur solide à bande de gain étroite 30 qui sont utilisés dans le dispositif 1.
En outre, il est à noter que pour une impulsion laser 60 générée par l'amplificateur solide à bande de gain étroite 30 qui a une durée, une largeur de bande spectrale et une énergie inclus dans les gammes particulières mentionnées ci-dessus, l'impulsion laser 70 générée à la sortie des moyens de compression 40 peut avoir une durée entre lOOfs et 5ps, une largeur de bande spectrale entre 0.3 et 30 nm et une énergie entre Ιμϋ et lOmJ. Les valeurs de la durée, de la largeur de bande spectrale et de l'énergie de l'impulsion laser 70 peuvent varier dans les gammes mentionnées ci-dessus en fonction de la durée et de l'énergie de l'impulsion laser 60 à l'entrée des moyens de compression 40, en fonction de la structure, de la composition et de la longueur de la fibre optique à cœur creux ou de la fibre optique solide des moyens de compression 40 ainsi qu'en fonction de la structure du compresseur des moyens de compression 40.

Claims

REVENDICATIONS
1. Dispositif (1) de génération d'une impulsion laser comportant:
- un oscillateur fibré (10) générant une impulsion laser (15) ; - un amplificateur fibré non-linéaire (20) agencé pour recevoir l'impulsion laser (15) générée par l'oscillateur fibré (10) et générer une impulsion laser (25) à énergie amplifiée par un premier facteur ;
- un amplificateur solide à bande de gain étroite (30) agencé pour recevoir l'impulsion laser (25) générée par l'amplificateur fibré non-linéaire (20) et générer une impulsion laser (60) à énergie amplifiée par un second facteur, le dispositif (1) étant caractérisé en ce que l'oscillateur fibré (10) a une dispersion positive adapté pour compenser l'automodulation de phase de l'amplificateur fibré non-linéaire (20) et en ce que le gain de l'amplificateur solide à bande de gain étroite (30) est adapté pour supprimer le piédestal spectral de l'impulsion laser (25) reçue par l'amplificateur solide à bande de gain étroite (30).
2. Le dispositif de la revendication 1, dans lequel le gain de l'amplificateur solide à bande de gain étroite (30) est compris entre 15 et 60 dB.
3. Le dispositif selon la revendication 1, dans lequel un élément dispersif est disposé à la sortie de l'oscillateur fibré (10).
4. Le dispositif selon la revendication 1, dans lequel un élément dispersif est intégré dans l'oscillateur fibré (10).
5. Le dispositif selon l'une quelconque des revendications 3 ou 4, dans lequel l'élément dispersif est fibré.
6. Le dispositif selon l'une quelconque des revendications 3 ou 4, dans lequel l'élément dispersif est en espace libre.
7. Le dispositif selon l'une quelconque des revendications précédentes, dans lequel l'amplificateur solide à bande de gain étroite (30) est connecté avec des moyens de compression (40) agencés pour compresser l'impulsion laser (60) générée par l'amplificateur solide à bande de gain étroite (30).
8. Le dispositif selon la revendication 7, dans lequel les moyens de compression (40) comportent une fibre à cœur creux connectée avec un compresseur.
9. Le dispositif selon la revendication 8, dans lequel la fibre à cœur creux est remplie de gaz.
10. Le dispositif selon la revendication 9, dans lequel la fibre à cœur creux présente un recouvrement de faisceau fort dans le gaz.
11. Le dispositif selon la revendication 10, dans lequel la fibre à cœur creux est une fibre kagome.
12. Le dispositif selon les revendications 7 à 11, dans lequel la fibre à cœur creux présente un scellement en silice ou en quartz avec l'amplificateur solide à bande de gain étroite (30) à sa première face et un scellement en silice ou en quartz avec le compresseur à sa deuxième face.
13. Procédé pour générer une impulsion laser comportant les étapes suivantes :
- génération (100) d'une impulsion laser (15) par un oscillateur fibré (10) ;
- transmission (200) de l'impulsion laser (15) générée par l'oscillateur fibré (10) à un amplificateur fibré non-linéaire (20) afin de générer une impulsion laser (25) à énergie amplifiée par un premier facteur ;
- transmission (300) de l'impulsion laser (25) générée par l'amplificateur fibré non-linéaire (20) à un amplificateur solide à bande de gain étroite (30) afin de générer une impulsion laser (60) à énergie amplifiée par un second facteur, le procédé étant caractérisé en ce que l'oscillateur fibré (10) applique une dispersion positive adapté pour compenser l'automodulation de phase de l'amplificateur fibré non-linéaire (20) et en ce que l'amplificateur solide à bande de gain étroite (30) applique un gain adapté pour supprimer le piédestal spectral de l'impulsion laser (25) transmise à l'amplificateur solide à bande de gain étroite (30).
14. Le procédé selon la revendication 13, dans lequel le gain appliqué par l'amplificateur solide à bande de gain étroite (30) est compris entre 15 et 60 dB.
15. Le procédé selon l'une quelconque des revendications 13 ou 14, comportant en outre une étape de transmission de l'impulsion laser (60) générée par l'amplificateur solide à bande de gain étroite (30) aux moyens de compression (40) agencés pour compresser l'impulsion laser (60).
PCT/FR2015/052134 2015-07-31 2015-07-31 Dispositif de génération d'une impulsion laser brève à haute énergie et procédé pour générer une telle impulsion WO2017021591A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2015/052134 WO2017021591A1 (fr) 2015-07-31 2015-07-31 Dispositif de génération d'une impulsion laser brève à haute énergie et procédé pour générer une telle impulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2015/052134 WO2017021591A1 (fr) 2015-07-31 2015-07-31 Dispositif de génération d'une impulsion laser brève à haute énergie et procédé pour générer une telle impulsion

Publications (1)

Publication Number Publication Date
WO2017021591A1 true WO2017021591A1 (fr) 2017-02-09

Family

ID=54783948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052134 WO2017021591A1 (fr) 2015-07-31 2015-07-31 Dispositif de génération d'une impulsion laser brève à haute énergie et procédé pour générer une telle impulsion

Country Status (1)

Country Link
WO (1) WO2017021591A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289870B2 (en) * 2019-02-07 2022-03-29 Institut National De La Recherche Scientifique Method and system for generating tunable ultrafast optical pulses

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AGNESI E: "Low repetition rate, hybrid fiber/solid-state, 1064 nm picosecond master oscillator power amplifier laser system", J. OPT. SOC. AM. B, vol. 30, no. 11, November 2013 (2013-11-01)
ANTONIO AGNESI ET AL: "Low repetition rate, hybrid fiber/solid-state, 1064??nm picosecond master oscillator power amplifier laser system", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA - B., vol. 30, no. 11, 24 October 2013 (2013-10-24), US, pages 2960, XP055250238, ISSN: 0740-3224, DOI: 10.1364/JOSAB.30.002960 *
CHARLES W RUDY ET AL: "Amplified 2- $\mu{\rm m}$ Thulium-Doped All-Fiber Mode-Locked Figure-Eight Laser", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 31, no. 11, 1 June 2013 (2013-06-01), pages 1809 - 1812, XP011507565, ISSN: 0733-8724, DOI: 10.1109/JLT.2013.2258891 *
D. J. RICHARDSON ET AL: "High power fiber lasers: current status and future perspectives [Invited]", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B, vol. 27, no. 11, 22 October 2010 (2010-10-22), pages B63, XP055007201, ISSN: 0740-3224, DOI: 10.1364/JOSAB.27.000B63 *
DUPRIEZ P ET AL: "321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fiber MOPA source", 2005 OPTICAL FIBER COMMUNICATIONS CONFERENCE TECHNICAL DIGEST (IEEE CAT. NO. 05CH37672) IEEE PISCATAWAY, NJ, USA, IEEE, vol. 6, 6 March 2005 (2005-03-06), pages 7 - 9, XP010833500, ISBN: 978-1-55752-783-7 *
GEROME F ET AL: "High Power Pulse Compression with Soliton Delivery in Hollow-Core Photonic Bandgap Fiber", LASERS AND ELECTRO-OPTICS SOCIETY, 2007. LEOS 2007. THE 20TH ANNUAL ME ETING OF THE IEEE, IEEE, PI, 1 October 2007 (2007-10-01), pages 550 - 551, XP031160698, ISBN: 978-1-4244-0924-2 *
KATZ ET AL: "Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control", OPTICS COMMUNICATIONS, NORTH-HOLLAND PUBLISHING CO. AMSTERDAM, NL, vol. 281, no. 10, 14 February 2008 (2008-02-14), pages 2874 - 2878, XP022561884, ISSN: 0030-4018 *
P. ST. J. RUSSELL ET AL: "Hollow-core photonic crystal fibres for gas-based nonlinear optics", NATURE PHOTONICS, vol. 8, no. 4, 28 March 2014 (2014-03-28), pages 278 - 286, XP055168268, ISSN: 1749-4885, DOI: 10.1038/nphoton.2013.312 *
SU RONGTAO ET AL: "High Power Narrow-Linewidth Nanosecond All-Fiber Lasers and their Actively Coherent Beam Combination", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 20, no. 5, 1 September 2014 (2014-09-01), pages 1 - 13, XP011547376, ISSN: 1077-260X, [retrieved on 20140507], DOI: 10.1109/JSTQE.2014.2312927 *
XAVIER DÉLEN ET AL: "Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, US, vol. 38, no. 6, 15 March 2013 (2013-03-15), pages 995 - 997, XP001580711, ISSN: 0146-9592, DOI: HTTP://DX.DOI.ORG/OL.38.000995 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289870B2 (en) * 2019-02-07 2022-03-29 Institut National De La Recherche Scientifique Method and system for generating tunable ultrafast optical pulses

Similar Documents

Publication Publication Date Title
EP3738180B1 (fr) Systeme laser et procede de generation d'impulsions laser de tres haute cadence
EP2798710B1 (fr) Source laser a puissance crete superieure a 100 terawatt et haut contraste
EP2158651B1 (fr) Source d'impulsions lumineuses ultrabreves de forte puissance
EP2837071B1 (fr) Système et procédé d'amplification optique d'impulsions lumineuses ultra-brèves au-delà de la limite de la bande spectrale de gain
EP2232654B1 (fr) Amplificateur a fibre a derive de frequence a compensation non lineaire
EP2089943B1 (fr) Système laser à emission d'impulsions picosecondes
EP2695253B1 (fr) Oscillateur laser a fibre optique
WO2017021591A1 (fr) Dispositif de génération d'une impulsion laser brève à haute énergie et procédé pour générer une telle impulsion
WO2007077392A2 (fr) Dispositif laser a seuil reduit
EP2676338B1 (fr) Laser a fibre optique de forte puissance
Lin et al. Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier
EP3999906B1 (fr) Système de génération d'impulsion lumineuse ultra-courte de forte énergie avec module de mise en forme spectrale
Kim et al. Development of a femtosecond high-power ytterbium-doped fiber laser system and study on spiky spectral modulation in highly nonlinear chirped-pulse fiber amplifiers
EP2439820B1 (fr) Procédé de génération d'un rayonnement laser de courte durée, de moins de 100ns, à une cadence élevée, de plus de 50kHz
CN103296565B (zh) 一种带通滤波的光纤激光器
WO2022248801A1 (fr) Oscillateur laser a impulsions ultra-courtes de type mamyshev et son dispositif de demarrage
FR2858721A1 (fr) Laser a pompage intracavite
Jheng et al. External-Cavity Cr4+: YAG Double-Clad Crystal Fiber Laser
FR2858720A1 (fr) Laser a pompage intracavite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15805239

Country of ref document: EP

Kind code of ref document: A1