WO2017020497A1 - 智能口罩、计算污染物吸附量的方法、智能口罩及装置 - Google Patents

智能口罩、计算污染物吸附量的方法、智能口罩及装置 Download PDF

Info

Publication number
WO2017020497A1
WO2017020497A1 PCT/CN2015/098418 CN2015098418W WO2017020497A1 WO 2017020497 A1 WO2017020497 A1 WO 2017020497A1 CN 2015098418 W CN2015098418 W CN 2015098418W WO 2017020497 A1 WO2017020497 A1 WO 2017020497A1
Authority
WO
WIPO (PCT)
Prior art keywords
air index
smart mask
wearing
amount
day
Prior art date
Application number
PCT/CN2015/098418
Other languages
English (en)
French (fr)
Inventor
赵瞳
陶群
刘华一君
Original Assignee
小米科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小米科技有限责任公司 filed Critical 小米科技有限责任公司
Priority to KR1020167004666A priority Critical patent/KR101803667B1/ko
Priority to RU2016110111A priority patent/RU2628711C1/ru
Priority to JP2017531950A priority patent/JP2017527714A/ja
Priority to MX2016003681A priority patent/MX367550B/es
Publication of WO2017020497A1 publication Critical patent/WO2017020497A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/006Indicators or warning devices, e.g. of low pressure, contamination
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/08Component parts for gas-masks or gas-helmets, e.g. windows, straps, speech transmitters, signal-devices
    • A62B18/084Means for fastening gas-masks to heads or helmets
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/08Component parts for gas-masks or gas-helmets, e.g. windows, straps, speech transmitters, signal-devices
    • A62B18/088Devices for indicating filter saturation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • A62B23/025Filters for breathing-protection purposes for respirators the filter having substantially the shape of a mask
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms

Definitions

  • the present disclosure relates to the field of terminal technologies, and in particular, to a smart mask, a method for calculating a pollutant adsorption amount, a smart mask and a device.
  • the concentration of pollutants such as PM2.5 (Fine Particulate Matter) in the air increases year by year, and the frequency of users suffering from various respiratory diseases continues to rise.
  • the mask plays a certain filtering role for the air entering the lungs, and can effectively prevent the inhalation of toxic gases, dust and other air pollutants into the lungs, and becomes an important barrier to protect the health of users.
  • a smart mask In order to overcome the problems in the related art, a smart mask, a method for calculating a pollutant adsorption amount, a smart mask and a device are disclosed.
  • a smart mask comprising a front cover body, a main cover body and a fixing band, the main cover body including a first open end and a second open end, The first open end has a smaller diameter than the second open end, the front cover is disposed at the first open end of the main cover, and the fixed strap is disposed at the second open end of the main cover;
  • the inside of the front cover body is sequentially provided with a filter and a sensor, and the sensor includes an air sensor and a flow sensor for adsorbing pollutants in the air entering the front cover, the air sensor For detecting a filtered air index, the flow sensor is used to count the total amount of breathing when the user wears the smart mask;
  • the fixing strap is configured to fix the smart mask to the nose and mouth of the user through the second open end Upper to form a closed cavity between the main cover and the user's mouth and nose.
  • the front cover body is further provided with an air exhaust device, and the filter plate is disposed between the air exhaust device and the sensor;
  • the exhaust device is a respirator or a fan, and the exhaust device is configured to discharge air exhaled by the user out of the smart mask.
  • the front cover body is further provided with a processor and a battery;
  • the processor includes an integrated circuit board and a connection module, and the integrated circuit board is at least integrated by a printed circuit board PCB and a single chip microcomputer;
  • the battery is used to power the processor.
  • the processor and the battery are disposed on an inner wall of the front cover.
  • connection module comprises one of a Bluetooth module, an infrared module, and a short-range wireless communication NFC module.
  • a method of calculating a pollutant adsorption amount the method being applied to the smart mask of the first aspect, the method comprising:
  • the method before the sending the air index and the total respiratory volume to the terminal, the method further includes:
  • the infrared function is turned on, and a connection is established with the terminal through an infrared signal.
  • a method of calculating a pollutant adsorption amount comprising:
  • the pollutant adsorption amount is calculated according to the filtered air index, the total respiratory volume, and the local air index of the day of wearing.
  • the method before the receiving the filtered air index sent by the smart mask and the total respiratory volume of the user, the method further includes:
  • the infrared function is turned on, and a connection is established with the smart mask through an infrared signal.
  • the obtaining an air index local to the day of wearing includes:
  • the local air index of the day of wearing is obtained by a built-in air sensor.
  • the calculating the pollutant adsorption amount according to the filtered air index, the total breathing amount, and the local air index of the wearing day including:
  • the pollutant adsorption amount is calculated according to the air purification degree and the total respiratory volume.
  • the method further includes:
  • a smart mask includes: a detecting module, configured to detect a filtered air index during wearing by a user;
  • a statistics module configured to count the total amount of breathing of the user
  • a sending module configured to send the filtered air index and the total breathing amount to a terminal, where the terminal calculates, according to the filtered air index, the total breathing amount, and the local air index of the day of wearing The amount of pollutants adsorbed.
  • the smart mask further includes:
  • connection module configured to enable a Bluetooth function, and establish a connection with the terminal through a Bluetooth signal
  • connection module for turning on the NFC function of the short-range wireless communication, through the NFC data channel and the The terminal establishes a connection;
  • the connection module is configured to enable an infrared function, and establish a connection with the terminal through an infrared signal.
  • an apparatus for calculating a pollutant adsorption amount comprising:
  • a first receiving module configured to receive the filtered air index sent by the smart mask and the total breathing amount of the user
  • a calculating module configured to calculate a pollutant adsorption amount according to the filtered air index, the total breathing amount, and the local air index of the day of wearing.
  • the device further includes:
  • connection module configured to enable a Bluetooth function, and establish a connection with the smart mask through a Bluetooth signal
  • connection module configured to enable a short-range wireless communication NFC function, and establish a connection with the smart mask through an NFC data channel;
  • connection module is configured to enable an infrared function, and establish a connection with the smart mask through an infrared signal.
  • the acquiring module is configured to obtain an air index of the local day of wearing the same through the Internet;
  • the user obtains an air index local to the day of wearing by using a built-in air sensor.
  • the calculating module is configured to determine an air purification degree according to the air index of the day of wearing the day and the filtered air index; and calculate the air purification degree and the total breathing amount according to the air purification degree The amount of pollutants adsorbed.
  • the device further includes:
  • the uploading module is configured to upload the pollutant adsorption amount to the server, and the server determines the adsorption quantity ranking of the pollutant adsorption amount according to the adsorption amount of the pollutants uploaded by the other terminal, and returns the adsorption quantity ranking;
  • a second receiving module configured to receive the ranking of the adsorption quantity returned by the server.
  • a smart mask including:
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • an apparatus for calculating a pollutant adsorption amount comprising:
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • the pollutant adsorption amount is calculated according to the filtered air index, the total respiratory volume, and the local air index of the day of wearing.
  • the filtered air index By sequentially providing a filter and a sensor inside the front cover of the smart mask, not only the pollutants in the air entering the front cover can be adsorbed, but also the filtered air index can be detected, and the total breathing when the user wears the smart mask can be counted. the amount.
  • the filtered air index the total amount of breathing when the user wears the smart mask, and the local air index on the day of wearing, the amount of pollutants adsorbed during the wearing of the smart mask can be calculated, thereby more intuitively showing the local air to the user. situation.
  • FIG. 1 is a schematic structural diagram of a smart mask according to an exemplary embodiment.
  • FIG. 2(A) is a schematic structural view of a main cover body according to an exemplary embodiment.
  • FIG. 2(B) is a schematic structural view of a front cover body according to an exemplary embodiment.
  • FIG. 2(C) is a schematic structural view of a front cover body according to an exemplary embodiment.
  • FIG. 2(D) is a schematic structural view of a front cover body according to an exemplary embodiment.
  • FIG. 3 is a flow chart showing a method of calculating a pollutant adsorption amount according to an exemplary embodiment.
  • FIG. 4 is a flow chart showing a method of calculating a pollutant adsorption amount according to an exemplary embodiment.
  • FIG. 5 is a flow chart showing a method of calculating a pollutant adsorption amount according to an exemplary embodiment.
  • FIG. 6 is a schematic structural diagram of a smart mask according to an exemplary embodiment.
  • FIG. 7 is a schematic structural diagram of an apparatus for calculating a pollutant adsorption amount according to an exemplary embodiment.
  • FIG. 8 is a block diagram of an apparatus for calculating a pollutant adsorption amount, according to an exemplary embodiment.
  • the embodiment of the present disclosure provides a smart mask.
  • the smart mask includes a front cover 101 , a main cover 102 , and a fixing belt 103 .
  • the main cover body 102 includes a first open end 1021 and a second open end 1022.
  • the diameter of the first open end 1021 is smaller than the diameter of the second open end 1022.
  • the front cover 101 is disposed at the first open end 1021 of the main cover, and the fixed band 103 is disposed at the second open end 1022 of the main cover.
  • the inside of the front cover 101 is provided with a filter 1011 and a sensor 1012 in this order.
  • Sensor 1012 includes an air sensor and a flow sensor.
  • the filter 1011 is used for adsorbing pollutants in the air entering the front cover 101; the air sensor has high sensitivity to various pollutants such as alcohol, cigarettes, ammonia gas, sulfide, etc., and can detect the filtered air index.
  • the flow sensor is used to count the total amount of breathing when the user wears a smart mask.
  • the strap 103 is used to secure the smart mask over the user's mouth and nose through the second open end 1022 such that a closed cavity is formed between the main shell 102 and the user's mouth and nose.
  • an air exhausting device 1013 is further disposed inside the front cover body 101, and the filter 1011 is disposed between the air exhausting device 1013 and the sensor 1012.
  • the exhaust device 1013 may be a respirator, a fan, or the like, and the exhaust device 1013 is configured to discharge the air exhaled by the user to the smart mask.
  • the front cover 101 is further provided with a processor 1014 and a battery 1015 inside.
  • the processor 1014 and the battery 1015 may be disposed on the inner wall of the front cover 101.
  • the processor 1014 includes at least one integrated circuit board and a connection module, and the integrated circuit board is integrated by a PCB (Printed Circuit Board), a single chip microcomputer, or the like.
  • the processor 1014 is a control center of the smart mask for controlling the sensor to record the wearing time of the smart mask, controlling the connection of the connection module with other terminals, and the like.
  • Battery 1015 is used to power processor 1014.
  • connection module includes one of a Bluetooth module, an infrared module, and an NFC (Near Field Communication) module.
  • the smart mask provided by the embodiment of the present disclosure can detect not only the filtered air index but also the total breathing amount when the user wears the smart mask by sequentially providing the filter and the sensor inside the front cover.
  • FIG. 3 is a flow chart showing a method for calculating a pollutant adsorption amount according to an exemplary embodiment. As shown in FIG. 3, a method for calculating a pollutant adsorption amount is used in a smart mask, and includes the following steps.
  • step 301 the filtered air index is detected during user wear.
  • step 302 the total amount of breathing of the user is counted.
  • step 303 the filtered air index and the total respiratory volume are sent to the terminal, and the terminal calculates the pollutant adsorption amount according to the filtered air index, the total respiratory volume, and the local air index of the day of wearing.
  • the method provided by the embodiment of the present disclosure detects the filtered air index and counts the total respiratory volume of the user, and then sends the filtered air index and the total respiratory volume when the user wears the smart mask to the terminal, so that the terminal can be filtered according to the After the air index, the total amount of breathing of the user, and the local air index on the day of wearing, the amount of pollutants adsorbed during the wearing of the smart mask is calculated, thereby more intuitively showing the local air condition to the user.
  • the method before the air index and the total respiratory volume are sent to the terminal, the method further includes:
  • FIG. 4 is a flowchart of a method for calculating a pollutant adsorption amount according to an exemplary embodiment. As shown in FIG. 4, a method for calculating a pollutant adsorption amount is used in a terminal, and includes the following steps.
  • step 401 the filtered air index sent by the smart mask and the total respiratory volume of the user are received.
  • step 402 an air index local to the day of wearing is obtained.
  • step 403 the amount of pollutant adsorption is calculated based on the filtered air index, the total amount of breath, and the local air index on the day of wearing.
  • the method provided by the embodiment of the present disclosure can calculate the adsorption amount of the pollutant in the wearing process of the smart mask according to the filtered air index, the total breathing amount when the user wears the smart mask, and the local air index of the wearing day, thereby making the method more intuitive.
  • the ground shows the local air condition to the user.
  • the method before receiving the filtered air index sent by the smart mask and the total respiratory volume of the user, the method further includes:
  • obtaining an air index local to the day of wearing including:
  • the built-in air sensor is used to obtain the local air index of the day of wearing.
  • the amount of pollutant adsorbed is calculated based on the filtered air index, the total amount of breath, and the local air index on the day of wearing, including:
  • the amount of pollutant adsorption is calculated based on the degree of air purification and the total amount of breathing.
  • the method further includes:
  • the pollutant adsorption amount is uploaded to the server, and the server determines the adsorption amount of the pollutant adsorption amount according to the adsorption amount of the pollutants uploaded by the other terminal, and returns the adsorption capacity ranking;
  • FIG. 5 is a flowchart of a method for calculating a pollutant adsorption amount according to an exemplary embodiment. As shown in FIG. 5, a method for calculating a pollutant adsorption amount is used in a terminal and a smart mask, and includes the following steps.
  • step 501 the smart mask detects the filtered air index during wear by the user.
  • the smart mask is internally provided with a sensor, the sensor includes an air sensor for detecting the filtered air index, and a flow sensor for counting the total amount of breathing of the user wearing the smart mask. Therefore, when the user wears the smart mask and the filter disposed in the smart mask filters the air entering the smart mask, the air sensor in the smart mask can detect the filtered air index.
  • step 502 the smart mask counts the total amount of breathing of the user.
  • the smart mask can count the total amount of breathing of the user.
  • step 501 the smart mask detects the filtered air index and the smart mask statistical user's total breathing amount in step 502 is performed simultaneously.
  • step 501 the total respiration amount of the smart mask statistical user is taken as step 502.
  • step 501 and the above step 502 do not represent a specific execution sequence.
  • step 503 the smart mask sends the filtered air index and total respiratory volume to the terminal.
  • the processor of the smart mask is internally provided with a connection module, which can be a Bluetooth module, an NFC module, an infrared module, etc., for establishing a connection with a terminal having the same connection function as a mobile phone or a personal computer.
  • a connection module which can be a Bluetooth module, an NFC module, an infrared module, etc., for establishing a connection with a terminal having the same connection function as a mobile phone or a personal computer.
  • the smart mask is connected to the terminal, including but not limited to the following ways.
  • the first way the smart mask and the terminal turn on the Bluetooth function, and discover each other during the device discovery phase. After that, the smart mask broadcasts the Bluetooth signal, and after receiving the Bluetooth signal of the smart mask broadcast, the terminal establishes the Bluetooth signal according to the received Bluetooth signal and the smart mask. connection.
  • the third way the smart mask and the terminal turn on the infrared function, and discover each other at the device discovery stage. After that, the smart mask sends an infrared signal, and the terminal receives the infrared signal sent by the smart mask, according to the connection. The received infrared signal establishes a connection with the smart mask.
  • the smart mask Based on the connection established with the terminal, the smart mask sends the filtered air index and total respiratory volume to the terminal. If the smart mask and the terminal establish a Bluetooth connection, the smart mask can send the filtered air index and the total respiratory volume to the terminal through the Bluetooth connection; if the smart mask and the terminal establish an NFC data channel, the smart mask can pass the NFC The data channel sends the filtered air index and total respiratory volume to the terminal; if the smart mask establishes an infrared connection with the terminal, the smart mask can send the filtered air index and the total respiratory volume to the terminal through the infrared connection.
  • step 504 when receiving the filtered air index sent by the smart mask and the total breathing amount of the user, the terminal obtains the local air index of the day of wearing.
  • the air index is the concentration of fine particles in the air, sulfur dioxide, nitrogen dioxide, ozone, carbon monoxide, etc., and the air index is in units of micrograms per cubic meter.
  • the terminal can determine the location of the terminal through a GPS (Global Positioning System), and then obtain the local air index according to the time of wearing from the Internet.
  • the terminal can also call the data released by the local meteorological station according to the GPS, and then obtain the local air index of the day of wearing; the terminal can also monitor the air index of the whole location of the terminal through the built-in air sensor, and store the monitored air index in the database. Further, when receiving the wearing time of the smart mask transmission, the local air index of the day of wearing is acquired from the database.
  • step 505 the terminal calculates the amount of pollutant adsorption based on the filtered air index, the total amount of breathing, and the local air index of the day of wearing.
  • the terminal can calculate the pollutant adsorption amount according to the filtered air index, the total respiratory volume, and the current local air index, and the following manner can be adopted:
  • the terminal determines the air purification degree according to the local air index and the filtered air index.
  • the terminal calculates the amount of pollutant adsorption based on the degree of air purification and the total amount of breathing.
  • the local air index is 35 micrograms per cubic meter, and the air index after filtering through the smart mask is 15 micrograms per cubic meter.
  • the total breathing volume is 10 cubic meters, and the pollutants are adsorbed.
  • the terminal After calculating the adsorption amount of the pollutant, the terminal also uploads the pollutant adsorption amount to the server, and the server according to the adsorption amount of the pollutant uploaded by the other terminal, It is possible to determine the adsorption amount of the pollutant adsorption amount of the smart mask worn by the user in all users, and to transmit the determined adsorption amount ranking to the terminal.
  • the terminal receives the ranking of the adsorption amount sent by the service, and displays the adsorption amount ranking to the user, so that the user directly knows the adsorption performance of the smart mask worn and the local air quality condition.
  • the method provided by the embodiment of the present disclosure can calculate the adsorption amount of the pollutant in the wearing process of the smart mask according to the filtered air index, the total breathing amount when the user wears the smart mask, and the local air index of the wearing day, thereby making the method more intuitive.
  • the ground shows the local air condition to the user.
  • FIG. 6 is a schematic structural diagram of a smart mask according to an exemplary embodiment.
  • the smart mask includes: a detecting module 601, a statistic module 602, and a sending module 603.
  • the detecting module 601 is configured to detect the filtered air index during the wearing process of the user;
  • the statistics module 602 is configured to count the total amount of breathing of the user
  • the sending module 603 is configured to send the filtered air index and the total breathing amount to the terminal, and the terminal calculates the pollutant adsorption amount according to the filtered air index, the total breathing amount, and the local air index of the day of wearing.
  • the smart mask further includes: a connection module.
  • the connection module is configured to enable the Bluetooth function to establish a connection with the terminal through a Bluetooth signal
  • connection module is configured to enable the NFC function of the short-range wireless communication to establish a connection with the terminal through the NFC data channel;
  • the connection module is configured to enable an infrared function to establish a connection with the terminal through an infrared signal.
  • the smart mask provided by the embodiment of the present disclosure detects the filtered air index and counts the total breathing amount of the user, and then sends the filtered air index and the total breathing amount when the user wears the smart mask to the terminal, so that the terminal can be based on
  • FIG. 7 is a schematic structural diagram of an apparatus for calculating a pollutant adsorption amount according to an exemplary embodiment.
  • the apparatus includes: a first receiving module 701, an obtaining module 702, and a calculating module 703.
  • the first receiving module 701 is configured to receive the filtered air index sent by the smart mask and the total breathing amount of the user;
  • the obtaining module 702 is configured to acquire an air index local to the day of wearing;
  • the calculation module 703 is configured to calculate the amount of pollutant adsorption based on the filtered air index, the total amount of breathing, and the local air index of the day of wearing.
  • the apparatus further includes: a connection module.
  • connection module is configured to enable the Bluetooth function to establish a connection with the smart mask through the Bluetooth signal
  • connection module is configured to enable the NFC function of the short-range wireless communication to establish a connection with the smart mask through the NFC data channel;
  • connection module is configured to turn on the infrared function and establish a connection with the smart mask through the infrared signal.
  • the obtaining module 702 is configured to acquire an air index local to the day of wearing through the Internet; or
  • the acquisition module 702 is configured to acquire an air index local to the day of wearing by the built-in air sensor.
  • the calculation module 703 is configured to determine an air purification degree according to the air index of the day of wearing and the filtered air index; and calculate the pollutant adsorption amount according to the air purification degree and the total respiratory volume. .
  • the apparatus further includes: an uploading module and a second receiving module.
  • the uploading module is configured to upload the pollutant adsorption amount to the server, and the server determines the adsorption quantity ranking of the pollutant adsorption amount according to the adsorption amount of the pollutants uploaded by the other terminal, and returns the adsorption quantity ranking;
  • the second receiving module is configured to receive a ranking of the amount of adsorption returned by the server.
  • the device provided by the embodiment of the present disclosure can calculate the adsorption amount of the pollutant in the wearing process of the smart mask according to the filtered air index, the total breathing amount when the user wears the smart mask, and the local air index on the day of wearing, thereby being more intuitive.
  • the ground shows the local air condition to the user.
  • FIG. 8 is a block diagram of an apparatus 800 for calculating a pollutant adsorption amount, according to an exemplary embodiment.
  • device 800 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 800 can include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, and Communication component 816.
  • Processing component 802 typically controls the overall operation of device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 802 can include one or more processors 820 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 802 can include one or more modules to facilitate interaction between component 802 and other components.
  • processing component 802 can include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800. Examples of such data include instructions for any application or method operating on device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Electrically erasable programmable read only memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 806 provides power to various components of device 800.
  • Power component 806 can include electricity The source management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen between the device 800 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input an audio signal.
  • the audio component 810 includes a microphone (MIC) that is configured to receive an external audio signal when the device 800 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal can be further stored in the memory.
  • 804 is transmitted via communication component 816.
  • audio component 810 also includes a speaker for outputting an audio signal.
  • the I/O interface 812 provides an interface between the processing component 802 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 814 includes one or more sensors for providing device 800 with a status assessment of various aspects.
  • sensor assembly 814 can detect an open/closed state of device 800, relative positioning of components, such as the display and keypad of device 800, and sensor component 814 can also detect a change in position of one component of device 800 or device 800. The presence or absence of user contact with device 800, device 800 orientation or acceleration/deceleration, and temperature variation of device 800.
  • Sensor assembly 814 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between device 800 and other devices letter.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 816 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 804 comprising instructions executable by processor 820 of apparatus 800 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a non-transitory computer readable storage medium when executed by a processor of a mobile terminal, enables a mobile terminal to perform a method of calculating a pollutant adsorption amount, the method comprising:
  • the amount of pollutant adsorbed is calculated based on the filtered air index, the total amount of breath, and the local air index on the day of wearing.
  • the method before receiving the filtered air index sent by the smart mask and the total respiratory volume of the user, the method further includes:
  • a local air index for the day of wearing including:
  • the built-in air sensor is used to obtain the local air index of the day of wearing.
  • Calculate the amount of pollutants adsorbed including:
  • the amount of pollutant adsorption is calculated based on the degree of air purification and the total amount of breathing.
  • the method further includes:
  • the pollutant adsorption amount is uploaded to the server, and the server determines the adsorption amount of the pollutant adsorption amount according to the adsorption amount of the pollutants uploaded by the other terminal, and returns the adsorption capacity ranking;
  • the non-transitory computer readable storage medium provided by the embodiment of the present disclosure can calculate the pollutants in the smart mask wearing process according to the filtered air index, the total breathing amount when the user wears the smart mask, and the local air index on the day of wearing.
  • the amount of adsorption makes it more intuitive to show the user the local air condition.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Pulmonology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Textile Engineering (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种智能口罩、计算污染物吸附量的方法、智能口罩及装置,属于终端技术领域。该智能口罩包括前罩体(101)、主罩体(102)及固定带(103),前罩体(101)设置于主罩体(102)的第一开口端(1021),固定带(103)设置于主罩体(102)的第二开口端(1022);前罩体(101)内部依次设置有滤片(1011)及传感器(1012),传感器(1012)包括空气传感器和流量传感器,滤片(1011)用于吸附进入前罩体(101)的空气中的污染物,空气传感器用于检测过滤后的空气指数,流量传感器用于统计用户佩戴智能口罩时的总呼吸量。智能口罩根据过滤后的空气指数、用户佩戴智能口罩时的总呼吸量以及佩戴当天本地的空气指数,可计算出智能口罩佩戴过程中污染物的吸附量,从而更为直观地向用户展示出本地的空气状况。

Description

智能口罩、计算污染物吸附量的方法、智能口罩及装置
本申请基于申请号为CN 201510463219.X、申请日为2015年7月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及终端技术领域,尤其涉及一种智能口罩、计算污染物吸附量的方法、智能口罩及装置。
背景技术
随着科技的发展,工业生产所造成的污染越来越严重,空气中PM2.5(Fine Particulate Matter,细颗粒物)等污染物的浓度逐年升高,用户患各种呼吸道疾病的频率持续上升。口罩因对进入肺部的空气起到一定的过滤作用,可有效地防止有毒气体、粉尘等空气污染物吸入肺部,成为了保护用户健康的重要屏障。
发明内容
为克服相关技术中存在的问题,公开提供一种智能口罩、计算污染物吸附量的方法、智能口罩及装置。
根据本公开实施例的第一方面,提供了一种智能口罩,所述智能口罩包括前罩体、主罩体及固定带,所述主罩体包括第一开口端和第二开口端,所述第一开口端的口径小于所述第二开口端的口径,所述前罩体设置于所述主罩体的第一开口端,所述固定带设置于所述主罩体的第二开口端;
其中,所述前罩体内部依次设置有滤片及传感器,所述传感器包括空气传感器和流量传感器,所述滤片用于吸附进入所述前罩体的空气中的污染物,所述空气传感器用于检测过滤后的空气指数,所述流量传感器用于统计用户佩戴所述智能口罩时的总呼吸量;
所述固定带用于将所述智能口罩通过所述第二开口端固定在用户的口鼻之 上,以使所述主罩体与用户的口鼻之间形成一个封闭的空腔。
可选地,所述前罩体内部还设置有排风设备,所述滤片设置于所述排风设备与所述传感器之间;
所述排风设备为呼吸器或风扇,所述排风设备用于将所述用户呼出的空气排出所述智能口罩。
可选地,所述前罩体内部还设置有处理器及电池;
其中,所述处理器包括集成电路板及连接模块,所述集成电路板至少由印刷电路板PCB、单片机集成;
所述电池用于为所述处理器供电。
可选地,所述处理器与所述电池设置于所述前罩体的内壁。
可选地,所述连接模块包括蓝牙模块、红外模块、近距离无线通信NFC模块中的一种。
根据本公开实施例的第二方面,提供一种计算污染物吸附量的方法,所述方法应用于上述第一方面所述的智能口罩中,所述方法包括:
在用户佩戴过程中,检测过滤后的空气指数;
统计所述用户的总呼吸量;
将所述过滤后的空气指数及所述总呼吸量发送至终端,由所述终端根据所述过滤后的空气指数、所述总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
可选地,所述将所述空气指数及所述总呼吸量发送至终端之前,还包括:
开启蓝牙功能,通过蓝牙信号与所述终端建立连接;或,
开启近距离无线通信NFC功能,通过NFC数据通道与所述终端建立连接;或,
开启红外功能,通过红外信号与所述终端建立连接。
根据本公开实施例的第三方面,提供一种计算污染物吸附量的方法,所述方法包括:
接收智能口罩发送的过滤后的空气指数及用户的总呼吸量;
获取佩戴当天本地的空气指数;
根据所述过滤后的空气指数、所述总呼吸量及所述佩戴当天本地的空气指数,计算污染物吸附量。
可选地,所述接收智能口罩发送的过滤后的空气指数及用户的总呼吸量之前,还包括:
开启蓝牙功能,通过蓝牙信号与所述智能口罩建立连接;或,
开启近距离无线通信NFC功能,通过NFC数据通道与所述智能口罩建立连接;或,
开启红外功能,通过红外信号与所述智能口罩建立连接。
可选地,所述获取佩戴当天本地的空气指数,包括:
通过互联网获取所述佩戴当天本地的空气指数;或者,
通过内置空气传感器获取所述佩戴当天本地的空气指数。
可选地,所述根据所述过滤后的空气指数、所述总呼吸量及所述佩戴当天本地的空气指数,计算污染物吸附量,包括:
根据所述佩戴当天本地的空气指数及所述过滤后的空气指数,确定空气净化度;
根据所述空气净化度及所述总呼吸量,计算所述污染物吸附量。
可选地,所述计算污染物吸附量之后,还包括:
将所述污染物吸附量上传至服务器,由服务器根据其他终端所上传的污染物吸附量,确定所述污染物吸附量的吸附量排名,返回所述吸附量排名;
接收所述服务器返回的所述吸附量排名。
根据本公开实施例的第四方面,提供一种智能口罩,所述智能口罩包括:检测模块,用于在用户佩戴过程中,检测过滤后的空气指数;
统计模块,用于统计所述用户的总呼吸量;
发送模块,用于将所述过滤后的空气指数及所述总呼吸量发送至终端,由所述终端根据所述过滤后的空气指数、所述总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
可选地,所述智能口罩还包括:
连接模块,用于开启蓝牙功能,通过蓝牙信号与所述终端建立连接;或,
连接模块,用于开启近距离无线通信NFC功能,通过NFC数据通道与所述 终端建立连接;或,
连接模块,用于开启红外功能,通过红外信号与所述终端建立连接。
根据本公开实施例的第五方面,提供一种计算污染物吸附量的装置,所述装置包括:
第一接收模块,用于接收智能口罩发送的过滤后的空气指数及用户的总呼吸量;
获取模块,用于获取佩戴当天本地的空气指数;
计算模块,用于根据所述过滤后的空气指数、所述总呼吸量及所述佩戴当天本地的空气指数,计算污染物吸附量。
可选地,所述装置还包括:
连接模块,用于开启蓝牙功能,通过蓝牙信号与所述智能口罩建立连接;或,
连接模块,用于开启近距离无线通信NFC功能,通过NFC数据通道与所述智能口罩建立连接;或,
连接模块,用于开启红外功能,通过红外信号与所述智能口罩建立连接。
可选地,所述获取模块,用于通过互联网获取所述佩戴当天本地的空气指数;或者,
所述获取模块,用户通过内置空气传感器获取所述佩戴当天本地的空气指数。
可选地,所述计算模块,用于根据所述佩戴当天本地的空气指数及所述过滤后的空气指数,确定空气净化度;根据所述空气净化度及所述总呼吸量,计算所述污染物吸附量。
可选地,所述装置还包括:
上传模块,用于所述污染物吸附量上传至服务器,由服务器根据其他终端所上传的污染物吸附量,确定所述污染物吸附量的吸附量排名,返回所述吸附量排名;
第二接收模块,用于接收所述服务器返回的所述吸附量排名。
根据本公开实施例的第六方面,提供一种智能口罩,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
在用户佩戴过程中,检测过滤后的空气指数;
统计所述用户的总呼吸量;
将所述过滤后的空气指数及所述总呼吸量发送至终端,由所述终端根据所述过滤后的空气指数、所述总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
根据本公开实施例的第七方面,提供一种计算污染物吸附量的装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
接收智能口罩发送的过滤后的空气指数及用户的总呼吸量;
获取佩戴当天本地的空气指数;
根据所述过滤后的空气指数、所述总呼吸量及所述佩戴当天本地的空气指数,计算污染物吸附量。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过在智能口罩的前罩体内部依次设置有滤片及传感器,不仅可吸附进入前罩体的空气中的污染物,而且可检测过滤后的空气指数,并统计用户佩戴智能口罩时的总呼吸量。根据过滤后的空气指数、用户佩戴智能口罩时的总呼吸量以及佩戴当天本地的空气指数,可计算出智能口罩佩戴过程中污染物的吸附量,从而更为直观地向用户展示出本地的空气状况。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种智能口罩的结构示意图。
图2(A)是根据一示例性实施例示出的一种主罩体的结构示意图。
图2(B)是根据一示例性实施例示出的一种前罩体的结构示意图。
图2(C)是根据一示例性实施例示出的一种前罩体的结构示意图。
图2(D)是根据一示例性实施例示出的一种前罩体的结构示意图。
图3是根据一示例性实施例示出的一种计算污染物吸附量的方法流程图。
图4是根据一示例性实施例示出的一种计算污染物吸附量的方法流程图。
图5是根据一示例性实施例示出的一种计算污染物吸附量的方法流程图。
图6是根据一示例性实施例示出的一种智能口罩的结构示意图。
图7是根据一示例性实施例示出的一种计算污染物吸附量的装置的结构示意图。
图8是根据一示例性实施例示出的一种计算污染物吸附量的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供了一种智能口罩,参见图1,该智能口罩包括:前罩体101、主罩体102及固定带103。
参见图2(A),主罩体102包括第一开口端1021和第二开口端1022。其中,第一开口端1021的口径小于第二开口端1022的口径。前罩体101设置于主罩体的第一开口端1021,固定带103设置于主罩体的第二开口端1022。
参见图2(B),前罩体101的内部依次设置有滤片1011及传感器1012。传感器1012包括空气传感器和流量传感器。其中,滤片1011用于吸附进入前罩体101的空气中的污染物;空气传感器对酒精、香烟、氨气、硫化物等各种污染物有极高的灵敏度,可检测过滤后的空气指数;流量传感用于器统计用户佩戴智能口罩时的总呼吸量。
固定带103用于将智能口罩通过第二开口端1022固定在用户的口鼻之上,以使主罩体102与用户的口鼻之间形成一个封闭的空腔。
参见图2(C),前罩体101内部还设置有排风设备1013,滤片1011设置于排风设备1013与传感器1012之间。其中,排风设备1013可以为呼吸器、风扇等,该排风设备1013用于将用户呼出的空气排出智能口罩。
在本公开的另一个实施例中,前罩体101内部还设置有处理器1014及电池1015。参见图2(D),处理器1014与电池1015可以设置于前罩体101的内壁。其中,处理器1014至少包括一个集成电路板及连接模块,该集成电路板由PCB(Printed Circuit Board,印刷电路板)、单片机等集成。处理器1014为智能口罩的控制中心,用于控制传感器记录智能口罩的佩戴时间、控制连接模块与其他终端配对连接等等。电池1015用于为处理器1014供电。
在本公开的另一个实施例中,该连接模块包括蓝牙模块、红外模块、NFC(Near Field Communication,近距离无线通信)模块中的一种。
本公开实施例提供的智能口罩,通过在前罩体的内部依次设置有滤片及传感器,不仅可检测过滤后的空气指数,而且可统计用户佩戴智能口罩时的总呼吸量。
图3是根据一示例性实施例示出的一种计算污染物吸附量的方法的流程图,如图3所示,计算污染物吸附量的方法用于智能口罩中,包括以下步骤。
在步骤301中,在用户佩戴过程中,检测过滤后的空气指数。
在步骤302中,统计用户的总呼吸量。
在步骤303中,将过滤后的空气指数及总呼吸量发送至终端,由终端根据过滤后的空气指数、总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
本公开实施例提供的方法,检测过滤后的空气指数,并统计用户的总呼吸量,进而将过滤后的空气指数及用户佩戴智能口罩时的总呼吸量发送至终端,从而使得终端可根据过滤后的空气指数、用户的总呼吸量以及佩戴当天本地的空气指数,计算出智能口罩佩戴过程中污染物的吸附量,从而更为直观地向用户展示出本地的空气状况。
在本公开的另一个实施例中,将空气指数及总呼吸量发送至终端之前,还包括:
开启蓝牙功能,通过蓝牙信号与终端建立连接;或,
开启近距离无线通信NFC功能,通过NFC数据通道与终端建立连接;或,
开启红外功能,通过红外信号与终端建立连接。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
图4是根据一示例性实施例示出的一种计算污染物吸附量的方法的流程图,如图4所示,计算污染物吸附量的方法用于终端中,包括以下步骤。
在步骤401中,接收智能口罩发送的过滤后的空气指数及用户的总呼吸量。
在步骤402中,获取佩戴当天本地的空气指数。
在步骤403中,根据过滤后的空气指数、总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
本公开实施例提供的方法,根据过滤后的空气指数、用户佩戴智能口罩时的总呼吸量以及佩戴当天本地的空气指数,可计算出智能口罩佩戴过程中污染物的吸附量,从而更为直观地向用户展示出本地的空气状况。
在本公开的另一个实施例中,接收智能口罩发送的过滤后的空气指数及用户的总呼吸量之前,还包括:
开启蓝牙功能,通过蓝牙信号与智能口罩建立连接;或,
开启近距离无线通信NFC功能,通过NFC数据通道与智能口罩建立连接;或,
开启红外功能,通过红外信号与智能口罩建立连接。
在本公开的另一个实施例中,获取佩戴当天本地的空气指数,包括:
通过互联网获取佩戴当天本地的空气指数;或者,
通过内置空气传感器获取佩戴当天本地的空气指数。
在本公开的另一个实施例中,根据过滤后的空气指数、总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量,包括:
根据佩戴当天本地的空气指数及过滤后的空气指数,确定空气净化度;
根据空气净化度及总呼吸量,计算污染物吸附量。
在本公开的另一个实施例中,计算污染物吸附量之后,还包括:
将污染物吸附量上传至服务器,由服务器根据其他终端所上传的污染物吸附量,确定污染物吸附量的吸附量排名,返回吸附量排名;
接收服务器返回的吸附量排名。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
图5是根据一示例性实施例示出的一种计算污染物吸附量的方法的流程图,如图5所示,计算污染物吸附量的方法用于终端及智能口罩中,包括以下步骤。
在步骤501中,在用户佩戴过程中,智能口罩检测过滤后的空气指数。
其中,智能口罩内部设置有传感器,该传感器包括空气传感器和流量传感器,该空气传感器用于检测过滤后的空气指数,流量传感器用于统计用户佩戴智能口罩的总呼吸量。因此,当用户佩戴智能口罩,智能口罩内设置的滤片对进入智能口罩中的空气进行过滤后,智能口罩中的空气传感器可检测过滤后的空气指数。
在步骤502中,智能口罩统计用户的总呼吸量。
基于智能口罩内设置的流量传感器,智能口罩可统计出用户的总呼吸量。
需要说明的是,上述步骤501中智能口罩检测过滤后的空气指数和步骤502中智能口罩统计用户的总呼吸量是同时进行的,在本实施例中仅将智能口罩检测过滤后的空气指数作为步骤501,将智能口罩统计用户的总呼吸量作为步骤502,上述步骤501和上述步骤502并不代表具体的执行顺序。
在步骤503中,智能口罩将过滤后的空气指数及总呼吸量发送至终端。
智能口罩的处理器的内部设置有连接模块,该连接模块可以为蓝牙模块、NFC模块、红外模块等等,用于与手机、个人电脑等同样具有连接功能的终端建立连接。
针对连接模块的不同类型,智能口罩在与终端建立连接时,包括但不限于如下几种方式。
第一种方式:智能口罩与终端开启蓝牙功能,并在设备发现阶段彼此发现,之后,智能口罩广播蓝牙信号,终端接收到智能口罩广播的蓝牙信号后,根据接收到的蓝牙信号与智能口罩建立连接。
第二种方式:智能口罩与终端开启NFC功能,通过发送数据包建立NFC数据通过通道,进而根据建立的NFC数据通道彼此之间建立连接。
第三种方式:智能口罩与终端开启红外功能,并在设备发现阶段彼此发现,之后,智能口罩发送红外信号,终端接收到智能口罩发送的红外信号,根据接 收到的红外信号与智能口罩建立连接。
当然,智能口罩与终端在建立连接时,还可采用其他方式,本实施例不再一一说明。
基于与终端所建立的连接,智能口罩将过滤后的空气指数及总呼吸量发送至终端。如果智能口罩与终端建立的是蓝牙连接,则智能口罩可通过蓝牙连接将过滤后的空气指数及总呼吸量发送至终端;如果智能口罩与终端建立的是NFC数据通道,则智能口罩可通过NFC数据通道将过滤后的空气指数及总呼吸量发送至终端;如果智能口罩与终端建立的是红外连接,则智能口罩可通过红外连接将过滤后的空气指数及总呼吸量发送至终端。
在步骤504中,当接收到智能口罩发送的过滤后的空气指数及用户的总呼吸量,终端获取佩戴当天本地的空气指数。
其中,空气指数为空气中细颗粒物、二氧化硫、二氧化氮、臭氧、一氧化碳等的浓度,空气指数的单位微克/立方米。当接收到智能口罩发送的过滤后的空气指数及用户的总呼吸量,终端可通过GPS(Global Positioning System,全球定位系统)确定出终端的所在地,进而根据从互联网上获取佩戴当天本地的空气指数;终端还可根据GPS调用本地气象台发布的数据,进而获取佩戴当天本地的空气指数;终端也可通过内置的空气传感器监测终端所在地全天的空气指数,并将监测到的空气指数存储在数据库,进而在接收到智能口罩发送的佩戴时间时,从数据库中获取佩戴当天本地的空气指数。
在步骤505中,终端根据过滤后的空气指数、总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
在本实施例中,终端根据过滤后的空气指数、总呼吸量及佩戴当前本地的空气指数,计算污染物吸附量时,可采用如下方式:
第一步,终端根据佩戴当天本地的空气指数及过滤后的空气指数,确定空气净化度。
该步骤具体实施时,终端可将佩戴当天本地的空气指数减去过滤后的空气指数,从而得到智能口罩的空气净化度,即空气净化度(微克/立方米)=佩戴当天本地的空气指数(微克/立方米)-过滤后的空气指数(微克/立方米)。
例如,用户佩戴智能口罩当天本地的空气指数为20微克/立方米,经过智能口罩过滤后的空气指数为8微克/立方米,则空气净化度=佩戴当天本地的空气指 数-过滤后的空气指数=20微克/立方米-8微克/立方米=12微克/立方米。
第二步,终端根据空气净化度及总呼吸量,计算污染物吸附量。
该步骤具体实施时,终端可将空气净化度与总呼吸量相乘,从而得到污染物吸附量,即污染物吸附量(微克)=空气净化度(微克/立方米)*总呼吸量(立方米)=(佩戴当天本地的空气指数-过滤后的空气指数)*总呼吸量。
例如,用户佩戴智能口罩当天本地的空气指数为35微克/立方米,经过智能口罩过滤后的空气指数为15微克/立方米,用户佩戴智能口罩时总呼吸量为10立方米,则污染物吸附量=(佩戴当天本地的空气指数-过滤后的空气指数)*总呼吸量=(35微克/立方米-15微克/立方米)*10立方米=200微克。
为了更为直观地展示用户所佩戴的智能口罩的污染物吸附能力,当计算出污染物吸附量之后,终端还将污染物吸附量上传至服务器,服务器根据其他终端所上传的污染物吸附量,可确定出用户所佩戴的智能口罩的污染物吸附量在所有用户中的吸附量排名,并将确定的吸附量排名发送至终端。终端在接收到服务发送的吸附量排名,将该吸附量排名显示给用户,从而使用户直接地了解到所佩戴的智能口罩的吸附性能,以及当地的空气质量状况。
本公开实施例提供的方法,根据过滤后的空气指数、用户佩戴智能口罩时的总呼吸量以及佩戴当天本地的空气指数,可计算出智能口罩佩戴过程中污染物的吸附量,从而更为直观地向用户展示出本地的空气状况。
图6是根据一示例性实施例示出的一种智能口罩的结构示意图。参照图6,该智能口罩包括:检测模块601、统计模块602和发送模块603。
该检测模块601被配置为在用户佩戴过程中,检测过滤后的空气指数;
该统计模块602被配置为统计用户的总呼吸量;
该发送模块603被配置为将过滤后的空气指数及总呼吸量发送至终端,由终端根据过滤后的空气指数、总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
在本公开的另一个实施例中,智能口罩还包括:连接模块。
该连接模块被配置为开启蓝牙功能,通过蓝牙信号与终端建立连接;或,
该连接模块被配置为开启近距离无线通信NFC功能,通过NFC数据通道与终端建立连接;或,
该连接模块被配置为开启红外功能,通过红外信号与终端建立连接。
本公开实施例提供的智能口罩,检测过滤后的空气指数,并统计用户的总呼吸量,进而将过滤后的空气指数及用户佩戴智能口罩时的总呼吸量发送至终端,从而使得终端可根据过滤后的空气指数、用户的总呼吸量以及佩戴当天本地的空气指数,计算出智能口罩佩戴过程中污染物的吸附量,从而更为直观地向用户展示出本地的空气状况。
关于上述实施例中的智能口罩,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种计算污染物吸附量的装置结构示意图。参照图7,该装置包括:第一接收模块701、获取模块702及计算模块703。
该第一接收模块701被配置为接收智能口罩发送的过滤后的空气指数及用户的总呼吸量;
该获取模块702被配置为获取佩戴当天本地的空气指数;
该计算模块703被配置为根据过滤后的空气指数、总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
在本公开的另一个实施例中,该装置还包括:连接模块。
该连接模块被配置为开启蓝牙功能,通过蓝牙信号与智能口罩建立连接;或,
该连接模块被配置为开启近距离无线通信NFC功能,通过NFC数据通道与智能口罩建立连接;或,
该连接模块被配置为开启红外功能,通过红外信号与智能口罩建立连接。
在本公开的另一个实施例中,该获取模块702被配置为通过互联网获取佩戴当天本地的空气指数;或者,
该获取模块702被配置为通过内置空气传感器获取佩戴当天本地的空气指数。
在本公开的另一个实施例中,该计算模块703被配置为根据佩戴当天本地的空气指数及过滤后的空气指数,确定空气净化度;根据空气净化度及总呼吸量,计算污染物吸附量。
在本公开的另一个实施例中,该装置还包括:上传模块和第二接收模块。
该上传模块被配置为污染物吸附量上传至服务器,由服务器根据其他终端所上传的污染物吸附量,确定污染物吸附量的吸附量排名,返回吸附量排名;
该第二接收模块被配置为接收服务器返回的吸附量排名。
本公开实施例提供的装置,根据过滤后的空气指数、用户佩戴智能口罩时的总呼吸量以及佩戴当天本地的空气指数,可计算出智能口罩佩戴过程中污染物的吸附量,从而更为直观地向用户展示出本地的空气状况。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的一种用于计算污染物吸附量的装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电 源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC,当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通 信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行一种计算污染物吸附量的方法,方法包括:
接收智能口罩发送的过滤后的空气指数及用户的总呼吸量;
获取佩戴当天本地的空气指数;
根据过滤后的空气指数、总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
可选地,接收智能口罩发送的过滤后的空气指数及用户的总呼吸量之前,还包括:
开启蓝牙功能,通过蓝牙信号与智能口罩建立连接;或,
开启近距离无线通信NFC功能,通过NFC数据通道与智能口罩建立连接;或,
开启红外功能,通过红外信号与智能口罩建立连接。
可选地,获取佩戴当天本地的空气指数,包括:
通过互联网获取佩戴当天本地的空气指数;或者,
通过内置空气传感器获取佩戴当天本地的空气指数。
可选地,根据过滤后的空气指数、总呼吸量及佩戴当天本地的空气指数, 计算污染物吸附量,包括:
根据佩戴当天本地的空气指数及过滤后的空气指数,确定空气净化度;
根据空气净化度及总呼吸量,计算污染物吸附量。
可选地,计算污染物吸附量之后,还包括:
将污染物吸附量上传至服务器,由服务器根据其他终端所上传的污染物吸附量,确定污染物吸附量的吸附量排名,返回吸附量排名;
接收服务器返回的吸附量排名。
本公开实施例提供的非临时性计算机可读存储介质,根据过滤后的空气指数、用户佩戴智能口罩时的总呼吸量以及佩戴当天本地的空气指数,可计算出智能口罩佩戴过程中污染物的吸附量,从而更为直观地向用户展示出本地的空气状况。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (21)

  1. 一种智能口罩,其特征在于,所述智能口罩包括前罩体、主罩体及固定带,所述主罩体包括第一开口端和第二开口端,所述第一开口端的口径小于所述第二开口端的口径,所述前罩体设置于所述主罩体的第一开口端,所述固定带设置于所述主罩体的第二开口端;
    其中,所述前罩体内部依次设置有滤片及传感器,所述传感器包括空气传感器和流量传感器,所述滤片用于吸附进入所述前罩体的空气中的污染物,所述空气传感器用于检测过滤后的空气指数,所述流量传感器用于统计用户佩戴所述智能口罩时的总呼吸量;
    所述固定带用于将所述智能口罩通过所述第二开口端固定在用户的口鼻之上,以使所述主罩体与用户的口鼻之间形成一个封闭的空腔。
  2. 根据权利要求1所述的智能口罩,其特征在于,所述前罩体内部还设置有排风设备,所述滤片设置于所述排风设备与所述传感器之间;
    所述排风设备为呼吸器或风扇,所述排风设备用于将所述用户呼出的空气排出所述智能口罩。
  3. 根据权利要求1所述的智能口罩,其特征在于,所述前罩体内部还设置有处理器及电池;
    其中,所述处理器包括集成电路板及连接模块,所述集成电路板至少由印刷电路板PCB、单片机集成;
    所述电池用于为所述处理器供电。
  4. 根据权利要求3所述的智能口罩,其特征在于,所述处理器与所述电池设置于所述前罩体的内壁。
  5. 根据权利要求4所述的智能口罩,其特征在于,所述连接模块包括蓝牙模块、红外模块、近距离无线通信NFC模块中的一种。
  6. 一种计算污染物吸附量的方法,其特征在于,所述方法应用于上述权利要求1至5中任一权利要求所述的智能口罩中,所述方法包括:
    在用户佩戴过程中,检测过滤后的空气指数;
    统计所述用户的总呼吸量;
    将所述过滤后的空气指数及所述总呼吸量发送至终端,由所述终端根据所述过滤后的空气指数、所述总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
  7. 根据权利要求6所述的方法,其特征在于,所述将所述空气指数及所述总呼吸量发送至终端之前,还包括:
    开启蓝牙功能,通过蓝牙信号与所述终端建立连接;或,
    开启近距离无线通信NFC功能,通过NFC数据通道与所述终端建立连接;或,
    开启红外功能,通过红外信号与所述终端建立连接。
  8. 一种计算污染物吸附量的方法,其特征在于,所述方法包括:
    接收智能口罩发送的过滤后的空气指数及用户的总呼吸量;
    获取佩戴当天本地的空气指数;
    根据所述过滤后的空气指数、所述总呼吸量及所述佩戴当天本地的空气指数,计算污染物吸附量。
  9. 根据权利要求8所述的方法,其特征在于,所述接收智能口罩发送的过滤后的空气指数及用户的总呼吸量之前,还包括:
    开启蓝牙功能,通过蓝牙信号与所述智能口罩建立连接;或,
    开启近距离无线通信NFC功能,通过NFC数据通道与所述智能口罩建立连接;或,
    开启红外功能,通过红外信号与所述智能口罩建立连接。
  10. 根据权利要求8所述的方法,其特征在于,所述获取佩戴当天本地的空气指数,包括:
    通过互联网获取所述佩戴当天本地的空气指数;或者,
    通过内置空气传感器获取所述佩戴当天本地的空气指数。
  11. 根据权利要求8所述的方法,其特征在于,所述根据所述过滤后的空气指数、所述总呼吸量及所述佩戴当天本地的空气指数,计算污染物吸附量,包括:
    根据所述佩戴当天本地的空气指数及所述过滤后的空气指数,确定空气净化度;
    根据所述空气净化度及所述总呼吸量,计算所述污染物吸附量。
  12. 根据权利要求8所述的方法,其特征在于,所述计算污染物吸附量之后,还包括:
    将所述污染物吸附量上传至服务器,由服务器根据其他终端所上传的污染物吸附量,确定所述污染物吸附量的吸附量排名,返回所述吸附量排名;
    接收所述服务器返回的所述吸附量排名。
  13. 一种智能口罩,其特征在于,所述智能口罩包括:
    检测模块,用于在用户佩戴过程中,检测过滤后的空气指数;
    统计模块,用于统计所述用户的总呼吸量;
    发送模块,用于将所述过滤后的空气指数及所述总呼吸量发送至终端,由所述终端根据所述过滤后的空气指数、所述总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
  14. 根据权利要求13所述的智能口罩,其特征在于,所述智能口罩还包括:
    连接模块,用于开启蓝牙功能,通过蓝牙信号与所述终端建立连接;或,
    连接模块,用于开启近距离无线通信NFC功能,通过NFC数据通道与所述终端建立连接;或,
    连接模块,用于开启红外功能,通过红外信号与所述终端建立连接。
  15. 一种计算污染物吸附量的装置,其特征在于,所述装置包括:
    第一接收模块,用于接收智能口罩发送的过滤后的空气指数及用户的总呼吸量;
    获取模块,用于获取佩戴当天本地的空气指数;
    计算模块,用于根据所述过滤后的空气指数、所述总呼吸量及所述佩戴当天本地的空气指数,计算污染物吸附量。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    连接模块,用于开启蓝牙功能,通过蓝牙信号与所述智能口罩建立连接;或,
    连接模块,用于开启近距离无线通信NFC功能,通过NFC数据通道与所述智能口罩建立连接;或,
    连接模块,用于开启红外功能,通过红外信号与所述智能口罩建立连接。
  17. 根据权利要求15所述的装置,其特征在于,所述获取模块,用于通过互联网获取所述佩戴当天本地的空气指数;或者,
    所述获取模块,用户通过内置空气传感器获取所述佩戴当天本地的空气指数。
  18. 根据权利要求15所述的装置,其特征在于,所述计算模块,用于根据所述佩戴当天本地的空气指数及所述过滤后的空气指数,确定空气净化度;根据所述空气净化度及所述总呼吸量,计算所述污染物吸附量。
  19. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    上传模块,用于所述污染物吸附量上传至服务器,由服务器根据其他终端所上传的污染物吸附量,确定所述污染物吸附量的吸附量排名,返回所述吸附量排名;
    第二接收模块,用于接收所述服务器返回的所述吸附量排名。
  20. 一种智能口罩,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    在用户佩戴过程中,检测过滤后的空气指数;
    统计所述用户的总呼吸量;
    将所述过滤后的空气指数及所述总呼吸量发送至终端,由所述终端根据所述过滤后的空气指数、所述总呼吸量及佩戴当天本地的空气指数,计算污染物吸附量。
  21. 一种计算污染物吸附量的装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    接收智能口罩发送的过滤后的空气指数及用户的总呼吸量;
    获取佩戴当天本地的空气指数;
    根据所述过滤后的空气指数、所述总呼吸量及所述佩戴当天本地的空气指数,计算污染物吸附量。
PCT/CN2015/098418 2015-07-31 2015-12-23 智能口罩、计算污染物吸附量的方法、智能口罩及装置 WO2017020497A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167004666A KR101803667B1 (ko) 2015-07-31 2015-12-23 스마트 마스크, 및 오염물질의 흡착량을 계산하는 방법, 스마트 마스크 및 장치
RU2016110111A RU2628711C1 (ru) 2015-07-31 2015-12-23 Интеллектуальный респиратор, способ и устройство для вычисления величины абсорбции загрязнителей
JP2017531950A JP2017527714A (ja) 2015-07-31 2015-12-23 スマートマスク、汚染物質吸着量を算出する方法、スマートマスク及び装置
MX2016003681A MX367550B (es) 2015-07-31 2015-12-23 Respirador inteligente y método, respirador inteligente y dispositivo para calcular la absorción de contaminante.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510463219.XA CN105029770B (zh) 2015-07-31 2015-07-31 智能口罩、计算污染物吸附量的方法、智能口罩及装置
CN201510463219.X 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017020497A1 true WO2017020497A1 (zh) 2017-02-09

Family

ID=54437205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098418 WO2017020497A1 (zh) 2015-07-31 2015-12-23 智能口罩、计算污染物吸附量的方法、智能口罩及装置

Country Status (8)

Country Link
US (1) US10981022B2 (zh)
EP (1) EP3124082B1 (zh)
JP (1) JP2017527714A (zh)
KR (1) KR101803667B1 (zh)
CN (1) CN105029770B (zh)
MX (1) MX367550B (zh)
RU (1) RU2628711C1 (zh)
WO (1) WO2017020497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030662A (ja) * 2017-08-08 2019-02-28 研能科技股▲ふん▼有限公司 エアフィルタ防護器の駆動及び情報伝送システム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9510024B2 (en) * 2014-09-12 2016-11-29 Spotify Ab System and method for early media buffering using prediction of user behavior
CN105029770B (zh) 2015-07-31 2016-08-17 小米科技有限责任公司 智能口罩、计算污染物吸附量的方法、智能口罩及装置
GB2540444B (en) * 2015-12-07 2017-11-29 Dobbing Christopher Respirator mask management system
CN105342037A (zh) * 2015-12-10 2016-02-24 单福琪 静电防雾霾智能面罩
CN105457177A (zh) * 2016-01-16 2016-04-06 郑辉 一种内置检测装置的智能口罩
CN105863732A (zh) * 2016-04-13 2016-08-17 孙欣 基于智能口罩的矿用井下安全监控系统
CN105840240A (zh) * 2016-04-13 2016-08-10 孙欣 基于移动设备的矿用井下安全监控系统
CN105661694B (zh) * 2016-04-13 2018-10-16 泉州市华凯智能科技有限公司 智能口罩
CN105747320B (zh) * 2016-04-13 2018-10-26 泉州市富永盛技术服务有限公司 矿用井下安全口罩
CN105822350A (zh) * 2016-04-13 2016-08-03 孙欣 基于rfid定位的矿用井下安全监控系统
DE102016223182B4 (de) * 2016-11-23 2022-12-15 Bayerische Motoren Werke Aktiengesellschaft Maskeneinheit, System und Verfahren zum Verwenden eines Systems
KR101783804B1 (ko) * 2017-01-19 2017-10-10 주식회사 스포컴 공기정화필터장치가 부착된 마스크
CN106959357A (zh) * 2017-05-03 2017-07-18 深圳市航达威电子科技有限公司 一种新型智能空气净化监测装置
CN107028251B (zh) * 2017-05-16 2018-08-17 南京信息工程大学 一种基于北斗的口罩系统和方法
CN107019854A (zh) * 2017-05-20 2017-08-08 深圳市冰夏科技有限公司 防霾智能口罩
KR101945313B1 (ko) * 2017-06-27 2019-04-17 김지은 일상생활 마스크
CN107300896A (zh) * 2017-06-30 2017-10-27 北京小米移动软件有限公司 家电控制方法及设备
TWI650152B (zh) * 2017-08-08 2019-02-11 研能科技股份有限公司 空氣過濾防護器
TWI650154B (zh) * 2017-08-08 2019-02-11 研能科技股份有限公司 空氣過濾防護器
CN107373820A (zh) * 2017-08-18 2017-11-24 北京纳米能源与系统研究所 内置呼吸传感系统的纳米纤维口罩
TWI651110B (zh) * 2017-08-22 2019-02-21 研能科技股份有限公司 空氣過濾防護器
EP3676607A4 (en) 2017-09-01 2021-06-30 3M Innovative Properties Company SENSOR ELEMENT FOR RESPIRATORY DEVICE
WO2019043581A1 (en) 2017-09-01 2019-03-07 3M Innovative Properties Company RESPIRATOR DETECTION SYSTEM
BR112020004185A2 (pt) 2017-09-01 2020-09-08 3M Innovative Properties Company sensor e sistema de detecção para método de teste de encaixe de respirador
WO2019043578A1 (en) 2017-09-01 2019-03-07 3M Innovative Properties Company RESPIRATOR ADJUSTMENT TEST METHOD WITH DETECTION SYSTEM
US11642553B2 (en) 2017-09-28 2023-05-09 Cleanspace Ip Pty Ltd. Portable personal respirator and use thereof
KR102527659B1 (ko) 2017-11-27 2023-05-03 삼성전자주식회사 공기청정기
KR102089839B1 (ko) 2017-12-12 2020-03-16 김예린 인공지능형 마스크
KR102319707B1 (ko) * 2018-01-17 2021-11-18 연세대학교 산학협력단 미세먼지 농도에 따라 반응하는 광방출부를 구비한 마스크
KR102135325B1 (ko) * 2018-05-04 2020-07-20 한국기계연구원 먼지 노출량 측정장치
US20210125468A1 (en) * 2018-06-28 2021-04-29 3M Innovative Properties Company Notification delivery for workers wearing personal protective equipment
US12017232B2 (en) 2020-03-13 2024-06-25 Julian HENLEY Electro-ionic mask devices for improved protection from airborne biopathogens
US11992585B2 (en) 2020-03-13 2024-05-28 Julian HENLEY Electro-ionic devices for improved protection from airborne biopathogens
KR102398751B1 (ko) * 2020-04-23 2022-05-20 주식회사 마스크팩토리 앱과 연계하여 활용 가능한 스마트 마스크 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130139816A1 (en) * 2011-12-06 2013-06-06 Michele Lea Proctor Portable respirators suitable for agricultural workers
CN103815588A (zh) * 2014-01-26 2014-05-28 苏州智信通电子科技有限公司 一种具有污染物浓度测量显示功能的过滤口罩
CN104585922A (zh) * 2014-12-31 2015-05-06 戈家胜 一种多功能口罩
CN204363022U (zh) * 2015-01-26 2015-06-03 昆明纳太能源科技有限公司 便携式智能监控呼吸口罩
CN105029770A (zh) * 2015-07-31 2015-11-11 小米科技有限责任公司 智能口罩、计算污染物吸附量的方法、智能口罩及装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646732A (en) * 1985-08-26 1987-03-03 Chien Chao Huei Circulative respiratory mask
SU1560234A1 (ru) * 1987-11-23 1990-04-30 Опытно-Конструкторское Бюро Киевского Научно-Исследовательского Института Гигиены Труда И Профзаболеваний Респиратор
JPH0790147B2 (ja) * 1990-01-08 1995-10-04 株式会社フジタ フィルター交換時期判別装置
JPH0549709A (ja) * 1991-08-28 1993-03-02 Nec Corp フイルタ付マスク
US5372130A (en) * 1992-02-26 1994-12-13 Djs&T Limited Partnership Face mask assembly and method having a fan and replaceable filter
AUPN191095A0 (en) * 1995-03-23 1995-04-27 Safety Equipment Australia Pty Ltd Positive air-purifying respirator management system
US6257235B1 (en) * 1999-05-28 2001-07-10 Kimberly-Clark Worldwide, Inc. Face mask with fan attachment
JP4245266B2 (ja) * 2000-10-03 2009-03-25 株式会社重松製作所 吸収缶交換時期検知装置を有する防毒マスク
GB2404866B (en) * 2003-08-15 2008-02-27 Shahar Hayek Respiratory apparatus
GB0423526D0 (en) * 2004-10-22 2004-11-24 Boc Group Plc Protectors
US7320722B2 (en) * 2004-10-29 2008-01-22 3M Innovative Properties Company Respiratory protection device that has rapid threaded clean air source attachment
US7244292B2 (en) * 2005-05-02 2007-07-17 3M Innovative Properties Company Electret article having heteroatoms and low fluorosaturation ratio
US7860662B2 (en) * 2008-12-17 2010-12-28 Scott Technologies, Inc. Systems and methods for determining filter service lives
WO2012033852A1 (en) 2010-09-07 2012-03-15 Nextteq Llc Remaining service life indication for gas mask cartridges and canisters
KR101590087B1 (ko) * 2011-02-28 2016-02-01 코겐 가부시키가이샤 공기정화장치 및 그것을 위한 파과시간을 예측하는 방법
US20120260920A1 (en) * 2011-04-15 2012-10-18 3M Innovative Properties Company Face mask having welded thermoplastic mask body
WO2013039153A1 (ja) * 2011-09-15 2013-03-21 独立行政法人国立高等専門学校機構 電動ファン付き呼吸用保護具
US8574331B2 (en) * 2011-10-26 2013-11-05 Elwha Llc Air-treatment mask systems, and related methods and air-treatment masks
EP2788089A4 (en) 2011-12-05 2016-03-09 Paftec Technologies Pty Ltd ENHANCED RESPIRATORY APPARATUS
JP5927698B2 (ja) * 2012-04-24 2016-06-01 興研株式会社 呼吸用保護具
US10213629B2 (en) * 2013-07-19 2019-02-26 Honeywell International Inc. End of service life indicator for a respirator
GB2525643B (en) 2014-05-01 2016-10-05 Univ Cape Town Method and device to monitor infectious patients

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130139816A1 (en) * 2011-12-06 2013-06-06 Michele Lea Proctor Portable respirators suitable for agricultural workers
CN103815588A (zh) * 2014-01-26 2014-05-28 苏州智信通电子科技有限公司 一种具有污染物浓度测量显示功能的过滤口罩
CN104585922A (zh) * 2014-12-31 2015-05-06 戈家胜 一种多功能口罩
CN204363022U (zh) * 2015-01-26 2015-06-03 昆明纳太能源科技有限公司 便携式智能监控呼吸口罩
CN105029770A (zh) * 2015-07-31 2015-11-11 小米科技有限责任公司 智能口罩、计算污染物吸附量的方法、智能口罩及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030662A (ja) * 2017-08-08 2019-02-28 研能科技股▲ふん▼有限公司 エアフィルタ防護器の駆動及び情報伝送システム
JP7059145B2 (ja) 2017-08-08 2022-04-25 研能科技股▲ふん▼有限公司 エアフィルタ防護器の駆動及び情報伝送システム

Also Published As

Publication number Publication date
US10981022B2 (en) 2021-04-20
EP3124082A3 (en) 2017-02-08
MX367550B (es) 2019-08-27
CN105029770A (zh) 2015-11-11
JP2017527714A (ja) 2017-09-21
MX2016003681A (es) 2017-12-07
CN105029770B (zh) 2016-08-17
KR101803667B1 (ko) 2017-11-30
EP3124082A2 (en) 2017-02-01
EP3124082B1 (en) 2018-07-04
KR20170023757A (ko) 2017-03-06
US20170028228A1 (en) 2017-02-02
RU2628711C1 (ru) 2017-08-21

Similar Documents

Publication Publication Date Title
WO2017020497A1 (zh) 智能口罩、计算污染物吸附量的方法、智能口罩及装置
KR101913485B1 (ko) 오염물질 흡착량을 계산하는 장치, 스마트 마스크, 방법 및 스마트 마스크
WO2017088375A1 (zh) 空气净化器的参数检测方法、装置及终端
WO2016065761A1 (zh) 净化空气的控制方法及装置
JP6185196B2 (ja) 空気品質取得方法、空気品質取得装置、プログラム、及び記録媒体
US9668117B2 (en) Method and device for analyzing social relationship
US9908074B2 (en) Method and device for controlling purification of air
CN104980662B (zh) 拍照过程中调整成像风格的方法、装置及摄像装置
CN106984103A (zh) 空气净化设备、滤芯的检测方法及装置
CN104332037B (zh) 告警检测的方法及装置
CN104992315A (zh) 检测结果的智能显示方法、装置以及家居设备
CN106765874B (zh) 空气净化的方法及装置
CN107019854A (zh) 防霾智能口罩
CN207137166U (zh) 防霾智能口罩
CN114239309A (zh) 过滤网寿命的确定方法、电路、装置、电路及存储介质
CN107633664A (zh) 使用手持工具提醒方法、装置及设备
CN115015072A (zh) 火灾烟雾的检测方法、装置及电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531950

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20167004666

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/003681

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016110111

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900262

Country of ref document: EP

Kind code of ref document: A1