WO2017020204A1 - 节点切换方法、装置及系统 - Google Patents

节点切换方法、装置及系统 Download PDF

Info

Publication number
WO2017020204A1
WO2017020204A1 PCT/CN2015/085809 CN2015085809W WO2017020204A1 WO 2017020204 A1 WO2017020204 A1 WO 2017020204A1 CN 2015085809 W CN2015085809 W CN 2015085809W WO 2017020204 A1 WO2017020204 A1 WO 2017020204A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
source
target
forwarding
access node
Prior art date
Application number
PCT/CN2015/085809
Other languages
English (en)
French (fr)
Inventor
张锦芳
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580082005.6A priority Critical patent/CN107925933B/zh
Priority to EP15899979.7A priority patent/EP3319367B1/en
Priority to PCT/CN2015/085809 priority patent/WO2017020204A1/zh
Publication of WO2017020204A1 publication Critical patent/WO2017020204A1/zh
Priority to US15/883,932 priority patent/US11122482B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality

Definitions

  • the present invention relates to the field of communications, and in particular, to a node switching method, apparatus, and system.
  • the SDP network system includes a controller, a gateway, multiple nodes, and user equipment (English: User Equipment; UE for short).
  • UE User Equipment
  • the UE may generate a service request and send the service request to the controller, where the service request may include a service quality of service (English: Quality Of Service; QOS for short) parameter.
  • service quality of service English: Quality Of Service; QOS for short
  • the controller may determine a function module corresponding to the service of the UE according to the service quality of service parameter in the service request, and configure a function module for the node currently accessed by the UE according to the function module and the network topology corresponding to the service of the UE, and according to the UE
  • the function module and the network topology of the currently accessed node are configured to configure the forwarding entries required for data transmission between the node currently accessed by the UE and the gateway, respectively, so that the gateway according to the forwarding table
  • the item sends the data stream to the node currently accessed by the UE, and the node currently accessed by the UE sends the data stream to the gateway according to the forwarding entry.
  • the node currently accessed by the UE provides services for the UE, and the data flow interaction between the UE and the gateway is implemented.
  • the SDP network system cannot perform the switch between the nodes because the SDP network system provided in the related art cannot perform the function of the SDP network system. single.
  • the present invention provides a node switching method, device and system, and the technical solution is as follows:
  • a node switching method comprising:
  • a protocol configuration request message including: a service quality parameter of the user equipment UE, where the protocol configuration request message is a handover request message sent by the target access node according to the source access node.
  • the source access node is a node that the UE accesses before the node is switched
  • the target access node is a node that the UE accesses after the node is switched;
  • a function module for the target node according to the function module and the network topology corresponding to the service of the UE, where the target node includes: the target access node, where the target node is configured to carry the service of the UE after the node is switched.
  • the target node includes: the target access node, where the target node is configured to carry the service of the UE after the node is switched.
  • the source node includes: the source access node, The source node is configured to carry a function module corresponding to the service of the UE before the node is switched;
  • the target node further includes: a target forwarding node, where the function module and the network topology corresponding to the service of the UE configure a function module for the target node, including:
  • Target forwarding node Determining a target forwarding node according to a function module and a network topology corresponding to the service of the UE, where the target forwarding node is a node between the target access node and the gateway, and capable of carrying the UE after the node switching Part of the function module corresponding to the service;
  • the module constitutes a functional module corresponding to the service of the UE.
  • the source node further includes: a source forwarding node, where the first forwarding entry group includes:
  • the source access node sends a forwarding entry required for the data flow to the source forwarding node, and the forwarding entry required by the source forwarding node and the target node for data stream transmission.
  • the source node further includes: a source forwarding node, where the first forwarding entry group includes:
  • the second forwarding entry group includes:
  • the forwarding entry of the gateway is determined.
  • a method for node switching comprising:
  • a first forwarding entry group where the first forwarding entry group is determined by the controller according to a function module configured for the target node and a network topology, where the target node is a user after the node switching a node of a function module corresponding to a service of the UE UE;
  • the source node is a source access node
  • the source access node is a node that is accessed by the UE before the node is switched, and is sent by the receiving controller.
  • the method further includes:
  • the node sends a protocol configuration request message to the controller when the UE is able to access the target access node, where the target access node is a node that the UE accesses after the node is switched.
  • a node switching apparatus includes:
  • a receiving module configured to receive a protocol configuration request message sent by the target access node, where the protocol configuration request message includes: a service quality parameter of the user equipment UE, where the protocol configuration request message is a target access node according to the source access node
  • the source access node is a node that the UE accesses before the node is handed over, and the target access node is a node that the UE accesses after the node is switched;
  • a first determining module configured to determine, according to the service quality of service parameter, a function module corresponding to the service of the UE;
  • a configuration module configured to configure a function module for the target node according to the function module and the network topology corresponding to the service of the UE, where the target node includes: the target access node, where the target node is used to perform the bearer after the node is switched. a function module corresponding to the service of the UE;
  • a second determining module configured to determine, according to the function module and the network topology configured for the target node, a first forwarding entry group required for data flow transmission between the source node and the target node, where the source node includes: a source access node, where the source node is configured to carry a function module corresponding to the service of the UE before the node is switched;
  • a third determining module configured to determine, according to the function module and the network topology configured for the target node, a second forwarding entry group required for data flow transmission between any one of the target nodes and the gateway.
  • the target node further includes: a target forwarding node, where the configuration module is configured to:
  • Target forwarding node Determining a target forwarding node according to a function module and a network topology corresponding to the service of the UE, where the target forwarding node is a node between the target access node and the gateway, and capable of carrying the UE after the node switching Part of the function module corresponding to the service;
  • the module constitutes a functional module corresponding to the service of the UE.
  • the source node further includes: a source forwarding node, where the first forwarding entry group includes:
  • the source access node sends a forwarding entry required for the data flow to the source forwarding node, and the forwarding entry required by the source forwarding node and the target node for data stream transmission.
  • the source node further includes: a source The forwarding node, the first forwarding entry group, includes:
  • the source access node sends a forwarding entry required for the data flow to the source forwarding node, and the forwarding entry required by the source forwarding node and the target forwarding node for data stream transmission.
  • the third determining module is configured to:
  • the forwarding entry of the gateway is determined.
  • a fourth aspect provides a node switching apparatus, where the node switching apparatus includes:
  • a first receiving module configured to receive a first forwarding entry group sent by the controller, where the first forwarding entry group is determined by the controller according to a functional module configured for the target node and a network topology, where the target node is a node that is a function module corresponding to a service that carries the user equipment UE after the node is switched;
  • a first sending module configured to send data cached on the source node to the target node according to the first forwarding entry group, where the source node is a node of a function module corresponding to a service that carries the UE before the node handover ;
  • a second receiving module configured to receive a downlink data stream end identifier
  • a release module configured to release, according to the downlink data flow end identifier, a function module corresponding to a service of the UE that is carried on the source node;
  • a deleting module configured to delete a third forwarding entry group required for data flow transmission between the first forwarding entry group and any one of the source nodes and the gateway.
  • the source node is a source access node
  • the source access node is a node that is accessed by the UE before the node is switched
  • the node switching device further includes:
  • a second sending module configured to send a handover request message to the target access node, where the handover request message includes: a service quality of service parameter, so that the target access node determines, according to the handover request message, whether the UE can Accessing the target access node, when the UE is able to access the target access node, sending a protocol configuration request message to the controller, where the target access node is connected to the UE after node switching Into the node.
  • a node switching system includes: a controller and a source node,
  • the controller includes: the node switching device described in the third aspect;
  • the source node includes: the node switching device of the fourth aspect.
  • a node switching apparatus comprising: at least one processor, at least one network interface, a memory, and at least one communication bus, wherein the processor is configured to execute a program stored in the memory,
  • the program includes:
  • a protocol configuration request message including: a service quality parameter of the user equipment UE, where the protocol configuration request message is a handover request message sent by the target access node according to the source access node.
  • the source access node is a node that the UE accesses before the node is switched
  • the target access node is a node that the UE accesses after the node is switched;
  • a function module for the target node according to the function module and the network topology corresponding to the service of the UE, where the target node includes: the target access node, where the target node is configured to carry the service of the UE after the node is switched.
  • the target node includes: the target access node, where the target node is configured to carry the service of the UE after the node is switched.
  • the source node includes: the source access node, The source node is configured to carry a function module corresponding to the service of the UE before the node is switched;
  • the target node further includes: a target forwarding node, where the program further includes:
  • Target forwarding node Determining a target forwarding node according to a function module and a network topology corresponding to the service of the UE, where the target forwarding node is a node between the target access node and the gateway, and capable of carrying the UE after the node switching Part of the function module corresponding to the service;
  • the module constitutes a functional module corresponding to the service of the UE.
  • the source node further includes: a source forwarding node,
  • the first forwarding entry group includes:
  • the source access node sends a forwarding entry required for the data flow to the source forwarding node, and the forwarding entry required by the source forwarding node and the target node for data stream transmission.
  • the source node further includes: a source forwarding node, where the first forwarding entry group includes:
  • the source access node sends a forwarding entry required for the data flow to the source forwarding node, and the forwarding entry required by the source forwarding node and the target forwarding node for data stream transmission.
  • the program further includes:
  • the forwarding entry of the gateway is determined.
  • a node switching apparatus comprising: at least one processor, at least one network interface, a memory, and at least one communication bus, wherein the processor is configured to execute a program stored in the memory,
  • the program includes:
  • a first forwarding entry group where the first forwarding entry group is determined by the controller according to a function module configured for the target node and a network topology, where the target node is a user after the node switching a node of a function module corresponding to a service of the UE UE;
  • the source node is a source access node
  • the source access node is a node that is accessed by the UE before the node is switched
  • the program further includes:
  • the controller sends a protocol configuration request message, where the target access node is a node that the UE accesses after the node is switched.
  • a node switching system includes: a controller and a source node,
  • the controller includes: the node switching device of the sixth aspect;
  • the source node includes: the node switching device of the seventh aspect.
  • the present invention provides a node switching method, apparatus, and system. After receiving a protocol configuration request message sent by a target access node, the controller determines a function module corresponding to the service of the UE according to the service quality parameter, and according to the service of the UE. The corresponding function module and the network topology configure a function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can send the data cached on the source node according to the first forwarding entry group to The target node performs data flow transmission between the second forwarding table group and the gateway, so that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP network system.
  • 1-1 is a schematic structural diagram of an SDP network system according to an embodiment of the present invention.
  • 1-2 is a schematic structural diagram of another SDP network system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for a node switching method according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for another node switching method according to an embodiment of the present invention.
  • 4-1 is a flowchart of still another method for node switching according to an embodiment of the present invention.
  • 4-2 is a flowchart of a method for data stream interaction according to an embodiment of the present invention.
  • 4-3 is a schematic diagram of node switching according to an embodiment of the present invention.
  • 5-1 is a flowchart of a method for switching a node according to another embodiment of the present invention.
  • FIG. 5-2 is a flowchart of another method for data stream interaction according to an embodiment of the present invention.
  • FIG. 5-3 is another schematic diagram of node switching according to an embodiment of the present invention.
  • 6-1 is a flowchart of a method for a node switching method according to another embodiment of the present invention.
  • FIG. 6-3 is still another schematic diagram of node switching according to an embodiment of the present disclosure.
  • 7-1 is a flowchart of a method for another node switching method according to another embodiment of the present invention.
  • FIG. 7-2 is a flowchart of still another method for data stream interaction according to an embodiment of the present invention.
  • FIG. 7-3 is a schematic diagram of still another node switching according to an embodiment of the present invention.
  • 8-1 is a flowchart of still another method for node switching according to another embodiment of the present invention.
  • 8-2 is a flowchart of a method for data stream interaction according to another embodiment of the present invention.
  • 8-3 is a schematic diagram of node switching according to another embodiment of the present invention.
  • 9-1 is a flowchart of a method for switching a node according to another embodiment of the present invention.
  • 9-2 is a flowchart of another method for data stream interaction according to another embodiment of the present invention.
  • 9-3 is another schematic diagram of node switching according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a node switching apparatus according to an embodiment of the present invention.
  • 11-1 is a schematic structural diagram of another node switching apparatus according to an embodiment of the present invention.
  • FIG. 11-2 is a schematic structural diagram of still another node switching apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another node switching apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a node switching apparatus according to another embodiment of the present invention.
  • an embodiment of the present invention provides an SDP network system 0, where the SDP network system System 0 may include controller 01, gateway 02, multiple nodes, and UE-04.
  • the plurality of nodes may include: a plurality of nodes directly connected to the gateway 02 (such as node 031b, node 032b, and node 033b), and a plurality of nodes indirectly connected to the gateway 02 (such as node 031a, node 031A, and node 032a). , node 032A, node 033a, node 033A), and the node currently accessed by the UE is node 032a.
  • the controller 01 is connected to the gateway 02 and each node.
  • Each node in the SDP network system 0 can be connected to the gateway 02, and the gateway 02 is connected to the Internet.
  • the UE-04 may generate a service request and send the service request to the controller 01.
  • the service request may include service quality of service information.
  • the controller 01 may determine the function module corresponding to the service of the UE-04 according to the service quality of service parameter in the service request, and determine the node 032a currently accessed by the UE-04 according to the function module and the network topology corresponding to the service of the UE-04.
  • the node 032a, the forwarding node 032b, and the gateway 02 currently accessed by the UE-04 are respectively configured with the node currently accessed by the UE-04.
  • the gateway 02 sends the data stream to the forwarding node 032b according to the forwarding entry, and the forwarding node 032b sends the data stream to the forwarding entry according to the forwarding entry.
  • the node 032a currently accessed by the UE-04; the node 032a currently accessed by the UE-04 sends the data stream to the forwarding node 032b according to the forwarding entry, and the forwarding node 032b sends the data stream to the gateway 02 according to the forwarding entry.
  • the node 032a and the forwarding node 032b currently accessed by the UE-04 carry the function module corresponding to the service of the UE-04, and provide the service for the UE-04 through the node 032a and the forwarding node 032b currently accessed by the UE-04.
  • the data stream is exchanged between UE-04 and gateway 02.
  • an embodiment of the present invention provides an SDP network system 0, where the SDP network system 0 can include a controller 01, a gateway 02, multiple nodes, and UE-04.
  • the plurality of nodes may include: a plurality of nodes directly connected to the gateway 02 (such as node 031b, node 032b, and node 033b), and a plurality of nodes indirectly connected to the gateway 02 (such as node 031a, node 031A, and node 032a).
  • the controller 01 is connected to the gateway 02 and each node, each node in the SDP network system 0 can be connected to the gateway 02, and the gateway 02 is connected to the Internet.
  • the UE-04 may generate a service request and send the service request to the controller 01, where the service request may include a service service. Quality parameters.
  • the controller 01 may determine, according to the service quality of service parameter in the service request, a function module corresponding to the service of the UE-04, and the function module and the network topology corresponding to the service of the UE-04 are currently accessed by the UE-04 among the multiple nodes.
  • the node 032b configures the function module, and configures the node 032b currently accessed by the UE-04 and the node 02 and the gateway 02 that are currently accessed by the UE-04 according to the function module and the network topology configured for the node 032b currently accessed by the UE-04.
  • the forwarding entry required for the data stream transmission is performed between the gateways 02, so that the gateway 02 sends the data stream to the node 032b currently accessed by the UE-04 according to the forwarding entry, and the node 032b currently accessed by the UE-04 according to the forwarding
  • the publication item sends the data stream to gateway 02.
  • the node 032b currently accessed by the UE-04 carries the function module corresponding to the service of the UE-04
  • the node 032b currently accessed by the UE-04 provides the service for the UE-04
  • the UE-04 and the gateway 02 are implemented. Perform data stream interactions.
  • an embodiment of the present invention provides a node switching method, which can be used in the controller 01 in the SDP network system 0 shown in FIG. 1-1 or FIG. 1-2.
  • Methods can include:
  • Step 201 Receive a protocol configuration request message sent by the target access node, where the protocol configuration request message includes: a service quality parameter of the UE, where the protocol configuration request message is generated by the target access node according to the handover request message sent by the source access node,
  • the source access node is a node that the UE accesses before the node is switched
  • the target access node is a node that the UE accesses after the node is switched.
  • Step 202 Determine a function module corresponding to the service of the UE according to the service quality parameter.
  • Step 203 Configure a function module for the target node according to the function module and the network topology corresponding to the service of the UE.
  • the target node includes: a target access node, where the target node is used to carry a function module corresponding to the service of the UE after the node is switched.
  • Step 204 Determine, according to the function module configured by the target node and the network topology, a first forwarding entry group required for data stream transmission between the source node and the target node, where the source node includes: a source access node, and the source node is used to switch at the node.
  • the function module corresponding to the service of the UE is carried.
  • Step 205 Determine, according to the function module and the network topology configured for the target node, a second forwarding entry group required for data flow transmission between any one of the target nodes and the gateway.
  • the controller determines the UE according to the service quality parameter.
  • the function module corresponding to the service and configuring the function module for the target node according to the function module and the network topology corresponding to the service of the UE, and determining the first forwarding entry group and the second forwarding entry group, so that the source node can be based on the first rotation
  • the publishing item group sends the data cached on the source node to the target node, and the target node performs data flow transmission between the second forwarding table item group and the gateway, thereby realizing the target access node to provide services for the UE, and implementing the SDP network system.
  • the switching between the nodes in the middle node enriches the functions of the SDP network system.
  • the target node may further include: a target forwarding node, where the step 203 may include:
  • Target forwarding node Determining a target forwarding node according to a function module and a network topology corresponding to the service of the UE, where the target forwarding node is a node between the target access node and the gateway, and capable of carrying a part of the function module corresponding to the service of the UE after the node switching;
  • the function module of the target forwarding node and the function module of the target access node are determined according to the function module and the network topology corresponding to the service of the UE, and the function module of the target forwarding node and the function module of the target access node form a functional module corresponding to the service of the UE.
  • the source node further includes: a source forwarding node, and a first forwarding entry group, including:
  • the source node further includes: a source forwarding node, and a first forwarding entry group, including:
  • step 205 can include:
  • the forwarding entry of the gateway is determined.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure a function module for the target node, and determine the first forwarding entry group and the second forwarding entry group.
  • the source node may send the data cached on the source node to the target node according to the first forwarding entry group, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby implementing the target access node as the UE.
  • Providing services to achieve switching between nodes in the SDP network system enriches the functions of the SDP network system.
  • the embodiment of the present invention provides another method for node switching, which can be used for a source node, where the source node is located in SDP network system 0 as shown in FIG. 1-1 or FIG. 1-2.
  • the node switching method may be: a node of a function module corresponding to the service of the UE-04 that carries the UE-04 before the node is switched.
  • Step 301 Receive a first forwarding entry group sent by the controller, where the first forwarding entry group is determined by the controller according to a function module configured for the target node and a network topology, where the target node is a service corresponding to the UE that carries the UE after the node is switched.
  • the node of the functional module is configured for the target node and a network topology, where the target node is a service corresponding to the UE that carries the UE after the node is switched.
  • Step 302 Send data buffered on the source node to the target node according to the first forwarding entry group.
  • Step 303 Receive a downlink data flow end identifier.
  • Step 304 Release, according to the downlink data flow end identifier, a function module corresponding to the service of the UE carried on the source node.
  • Step 305 Delete a third forwarding entry group required for data flow transmission between the first forwarding entry group and the source node and the gateway.
  • the source node receives the first forwarding entry group sent by the controller, and the first forwarding entry group is a function module and a network configured by the controller according to the target node.
  • the topology is determined, so that the source node may send the data buffered on the source node to the target node according to the first forwarding entry group, and then the target access node in the target node sends the data buffered on the source node to the UE, thereby implementing
  • the target access node provides services for the UE, and implements handover between nodes in the SDP network system, enriching the functions of the SDP network system.
  • the source node may be a source access node, and the source access node is a node that is accessed by the UE before the node is switched.
  • the node switching method may further include:
  • a handover request message to the target access node, where the handover request message includes: a service quality of service parameter, so that the target access node determines, according to the handover request message, whether the UE can access the target access node, and the UE can access the target access.
  • a protocol configuration request message is sent to the controller, and the target access node is a node that the UE accesses after the node is switched.
  • the source node receives the first forwarding entry group sent by the controller, and the first forwarding entry group is a function module and a network configured by the controller according to the target node.
  • the topology is determined, so that the source node may send the data buffered on the source node to the target node according to the first forwarding entry group, and then the target access node in the target node sends the data buffered on the source node to the UE, thereby implementing
  • the target access node provides services for the UE, and implements handover between nodes in the SDP network system, enriching the functions of the SDP network system.
  • the embodiment of the present invention provides another node switching method, which is used in the SDP network system 0 shown in Figure 1-1.
  • the node switching method may include:
  • Step 401 The UE performs data flow interaction between the source access node and the source forwarding node and the gateway. Go to step 402.
  • step 401 may include:
  • Step 4011 The UE sends a service request to the controller.
  • the UE can generate a service request according to the identity information of the UE and the service quality of service parameter of the service, and send the service request to the controller.
  • Step 4012 The controller determines, according to the service request, a function module corresponding to the service of the UE.
  • the controller may determine the service corresponding function module of the UE according to the identity information of the UE and the service quality of service parameter in the service request.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be disposed on each protocol layer.
  • the controller may determine, according to the identifier information of the UE and the service quality of service parameter, an access technology supported by the UE, and select, according to the access technology and the service quality of service parameter, a function module that processes the service of the UE.
  • the controller may determine, according to the service request, that the protocol layer of the processing module corresponding to the UE is a physical layer (Physical Layer; PHY for short) and media access control ( English: Media Access Control; abbreviation: MAC) layer, wireless connection control (English: Radio Link Control; abbreviation: RLC) layer and packet data convergence protocol (English: Packet Data Convergence Protocol; PDCP) layer, and according to the service A function module corresponding to the service of the UE is determined in the PHY layer, the MAC layer, the RLC layer, and the PDCP layer.
  • PHY Physical Layer
  • media access control English: Media Access Control; abbreviation: MAC
  • wireless connection control English: Radio Link Control; abbreviation: RLC
  • PDCP Packet Data Convergence Protocol
  • the protocol layer in which the processing module corresponding to the UE is located is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and the node switching method is explained.
  • the processing module corresponding to the UE may also be located in another protocol layer, which is not limited in this embodiment of the present invention.
  • Step 4013 The controller determines the source access node and the source forwarding node according to the function module and the network topology corresponding to the service of the UE.
  • the network topology of the SDP network system can be maintained on the controller, and the connection relationship between the devices in the SDP network system and the functions of each device in the SDP network system can be recorded in the network topology. Attributes.
  • the controller may determine a source access node and a source forwarding node for the function module corresponding to the service of the UE according to the function module and the network topology corresponding to the service of the UE.
  • the function module corresponding to the service of the UE determined in step 4012 is the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, And determining, according to the network topology, that the node currently accessed by the UE is the node 032a.
  • the controller determines, according to the function attribute of the node 032a currently accessed by the UE and the function module corresponding to the service of the UE, that the node 032a currently accessed by the UE can carry the function of the function module 1 and the MAC layer of the PHY layer.
  • the node 032b capable of data stream interaction with the node 032a currently accessed by the UE can be configured to carry the function module 4 of the PDCP layer. Therefore, the node 032b can be determined to be the node 032a currently accessed by the UE.
  • Corresponding forwarding node. The node 032a currently accessed by the UE and the forwarding node 032b corresponding to the node 032a currently accessed by the UE are determined as the source node.
  • the node 032a currently accessed by the UE is referred to as the source access node, and the UE is currently accessed.
  • the forwarding node 032b corresponding to the node 032a is referred to as a source forwarding node.
  • Step 4014 The controller configures a function module for the source access node and the source forwarding node.
  • the controller may configure the source access node 032a with the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and configure the PDCP layer for the source forwarding node 032b.
  • Functional module 4 the controller may generate a source access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate a source forwarding node configuration command according to the function module 4 of the PDCP layer.
  • the controller may generate source access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate source forwarding node configuration information according to the function module 4 of the PDCP layer.
  • the source access node configuration information to the source access node 032a, and sending the source forwarding node configuration information to the source forwarding node 032, so that the source access node 032a configures the corresponding functional module according to the source access node configuration information.
  • the source forwarding node 032b configures the corresponding functional module according to the source forwarding node configuration information.
  • Step 4015 The controller is a source access node, a source forwarding node, and a gateway, and configures a third forwarding entry group required for data flow transmission between the source access node, the source forwarding node, and the gateway.
  • the controller may determine, according to the network topology, a forwarding entry in the third forwarding entry group required for data flow between the source access node, the source forwarding node, and the gateway, and the third forwarding
  • the configuration information of the forwarding entry in the item group is sent to the source access node, the source forwarding node, and the gateway, respectively, so that the source access node, the source forwarding node, and the gateway configure corresponding forwarding entries according to the received configuration information.
  • the third forwarding entry group may include: a forwarding entry required for the source access node to send the data flow to the source forwarding node, and the source forwarding node sends the forwarding entry required by the data flow to the source access node, and the source The forwarding entry required by the forwarding node to send the data flow to the gateway, and the forwarding entry required by the gateway to send the data flow to the source forwarding node. Then, the configuration information of the forwarding entry required for the source access node to send the data flow to the source forwarding node is sent to the source access node, and the configuration of the forwarding entry required by the source forwarding node to send the data flow to the source access node is configured.
  • the information is sent to the source forwarding node, and the configuration information of the forwarding entry required for the source forwarding node to send the data stream to the gateway is sent to the source forwarding node, and the configuration information of the forwarding entry required for the gateway to send the data stream to the source forwarding node is sent. Send to the gateway.
  • Step 4016 The controller configures, for the UE, a function module corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are determined to be the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may generate a UE configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration command to the UE, so that The UE activates the corresponding function module according to the UE configuration command.
  • the controller may generate UE configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration information to the UE.
  • the UE is configured to configure a corresponding function module according to the UE configuration information.
  • Step 4017 The UE performs data flow interaction by using the source access node, the source forwarding node, and the gateway.
  • the source node determined in step 4013 includes: source access node 032a and source forwarding node 032b
  • the UE in step 4017, can pass through source access node 032a, source forwarding node.
  • 032b interacts with gateway 02 for data flow.
  • Step 402 The UE sends node capability information to the source access node. Go to step 403.
  • the UE may periodically obtain the capability information of each node in the UE detection range, and the capability information of the node may be the signal quality strength of the node acquired by the UE. It should be noted that the capability information of the node may also be other The information in this embodiment of the present invention is not limited thereto.
  • the UE may establish a connection with the source access node through the air interface. After the UE acquires the capability information of each node in the UE detection range, the UE may send the capability information of each node in the UE detection range to the source through the air interface. Access node.
  • Step 403 The source access node determines the target access node according to the node capability information. Go to step 404.
  • the source access node may select a node that meets the screening condition as a target in multiple nodes in the UE detection range according to a preset screening manner.
  • the source access node may store a preset capability threshold, and the source access node may compare the preset capability threshold with the capability value indicated by the capability information of each node in the UE detection range. Therefore, in the multiple nodes in the detection range of the UE, the node whose capability value indicated by the capability information is greater than the preset capability threshold is selected, and the capability information indicating that the capability value indicated by the capability information of the node is greater than the preset capability threshold is determined.
  • the node with the highest capability value is the target access node. It should be noted that if the capability value indicated by the capability information of the node in the UE detection range is less than the preset capability threshold, the source access node does not perform an action. In an actual application, the source access node may determine the target access node by using other methods, which is not limited in this embodiment of the present invention. As shown in FIG. 4-3, when UE-04 moves from near source access node 032a to near node 033a, source access node 032a determines that node 033a is the target access node.
  • Step 404 The source access node generates a handover request message according to the service quality parameter of the UE. Go to step 405.
  • the source access node may store the service quality of service parameter of the UE, and the source access node may generate a handover request message according to the service quality parameter of the UE, where the handover request message is used to indicate that the UE needs to access the target access node.
  • the source access node may further obtain a service quality of service parameter of the UE from the UE.
  • Step 405 The source access node sends a handover request message to the target access node. Go to step 406.
  • the source access node may, according to the identity of the target access node, The handover request message is sent to the target access node.
  • the handover request message may be sent to the target access node in the form of signaling.
  • Step 406 The target access node determines whether the UE can access the UE. If the target access node cannot access the UE, step 407 is performed; if the target access node can access the UE, step 408 is performed.
  • the target access node may determine, according to the service quality parameter of the UE in the handover request message, whether the target access node can access the UE, if the target access If the node cannot access the UE, step 407 is performed; if the target access node can access the UE, step 408 is performed.
  • the target access node determines, according to the service quality of service parameter of the UE in the handover request message, whether the target access node can access the UE, and the node may refer to the related technology to determine the node according to the service quality parameter. The specific steps of the accessing the UE are not described herein.
  • Step 407 The target access node indicates to the source access node that the target access node cannot access the UE.
  • the target access node may generate a message indicating that the target access node cannot access the UE, and send the message indicating that the target access node cannot access the UE to the source.
  • the access node is configured to ensure that the target access node cannot access the UE after receiving the message indicating that the target access node cannot access the UE.
  • Step 408 The target access node indicates to the source access node that the target access node can access the UE. Go to step 409.
  • the target access node may generate a handover feedback message indicating that the target access node can access the UE, and send the handover feedback message to the source access node.
  • Step 409 The source access node generates a handover command. Go to step 410.
  • the source access node may generate a handover command for instructing the UE to perform the node handover.
  • the handover command may include the identifier of the target access node. It should be noted that the switching command may also include other information, which is not limited herein.
  • Step 410 The source access node sends a handover command to the UE. Go to step 411.
  • the source access node may send the handover command generated by the source access node through an air interface. To the UE.
  • Step 411 The UE establishes a connection with the target access node according to the handover command. Go to step 412.
  • the UE may disconnect from the source access node according to the handover command, and establish a connection with the target access node. For example, the UE may also re-establish the protocol layer on the UE.
  • the specific steps of the UE to re-establish the protocol layer on the UE may refer to the specific steps of the UE to establish the protocol layer in the prior art, which is not described herein.
  • Step 412 The target access node generates a protocol configuration request message according to the handover request message. Go to step 413.
  • the target access node may generate a protocol configuration request message according to the handover request message sent by the source access node, and the handover request message and the protocol configuration request message may both include the service quality of the UE.
  • a parameter, the protocol configuration request message is used to indicate that a functional module is configured for the target access node.
  • Step 413 The target access node sends a protocol configuration request message to the controller. Go to step 414.
  • the target access node may send the generated protocol configuration request message to the controller.
  • the protocol configuration request message can be sent to the controller in a signaling manner.
  • Step 414 The controller determines, according to the protocol configuration request message, a function module corresponding to the service of the UE. Go to step 415.
  • the controller may determine, according to the service quality of service parameter of the UE in the protocol configuration request message, a function module corresponding to the service of the UE.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be configured on each protocol layer, and multiple protocol layers may be configured on the UE, and each of the UEs Multiple function modules can be set on each protocol layer, and each function module has different functions.
  • the controller may select a function module corresponding to the service of the UE according to the service quality of service parameter of the UE, and the function module corresponding to the service of the UE may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Functional module 3 and functional module 4 of the PDCP layer may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Step 415 The controller determines the target forwarding node according to the function module and the network topology corresponding to the service of the UE. Go to step 416.
  • the network topology in the SDP network system that is, the connection relationship between multiple devices in the SDP network system, and the various settings in the SDP network system can be stored and maintained on the controller.
  • the controller may determine the target forwarding node corresponding to the target access node according to the function module corresponding to the service of the UE determined in step 414 and the network topology of the SDP network system. So that the target access node can send the data stream on the target access node to the gateway. That is, the controller determines the target access node and the target forwarding node of the function module corresponding to the service of the UE after the node handover according to the function module and the network topology corresponding to the service of the UE. As shown in FIG.
  • source access node 032a determines that node 033a is the target access node.
  • the controller 01 may determine that the node 033b is the target forwarding node corresponding to the target access node 033a according to the function module corresponding to the service of the UE and the network topology.
  • Step 416 The controller configures a function module for the target access node and the target forwarding node. Go to step 417.
  • the controller may configure a function module for the target access node and the target forwarding node according to the function module and the network topology corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may configure the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer for the target access node 033a, and configure the function module of the PDCP layer for the target forwarding node 033b. 4.
  • the controller may generate a target access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate a target forwarding node configuration command according to the function module 4 of the PDCP layer. And sending the target access node configuration command to the target access node 033a, and sending the target forwarding node configuration command to the target forwarding node 033b, so that the target access node 033a activates the corresponding functional module according to the target access node configuration command. And the target forwarding node 033b activates the corresponding functional module according to the target forwarding node configuration command.
  • the controller may generate target access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate the target forwarding node configuration information according to the function module 4 of the PDCP layer. And sending the target access node configuration information to the target access node 033a, and transmitting the target forwarding node configuration information to the target forwarding node 033b, so that the target access node 033a configures the corresponding functional module according to the target access node configuration information. And the target forwarding node 033b configures the corresponding functional module according to the target forwarding node configuration information.
  • Step 417 The controller configures a first forwarding entry group for the source access node and the source forwarding node. Go to step 418.
  • the controller may determine, according to the function module and the network topology configured for the target access node and the target forwarding node, a forwarding entry required for the source access node to send the data flow to the source forwarding node, and between the source forwarding node and the target forwarding node.
  • the first forwarding entry group may include: a forwarding entry required by the source forwarding node to send the data flow to the target forwarding node, and a forwarding entry required by the source access node to send the data flow to the source forwarding node.
  • the controller may send configuration information of the forwarding entry required by the source forwarding node to the target forwarding node to send the data flow to the source forwarding node, and send the source access node to the source forwarding node to send the data stream.
  • the configuration information of the forwarding entry is sent to the source access node, so that the source access node and the source forwarding node configure corresponding forwarding entries according to the configuration information of the received forwarding entry.
  • the controller configures the forwarding entry in the third forwarding entry group for the source access node, so that the source access node can forward the forwarding entry in the third forwarding entry group.
  • the forwarding entry in the first forwarding entry group configured for the source access node in step 417 is used to forward the buffered data on the source access node, that is, the source forwarding node sends the source forwarding node to the source access node.
  • the third switch configured for the source access node in step 4015 cannot be directly used.
  • the forwarding entry in the item forwarding group forwards the data cached on the source access node, and the forwarding entry in the first forwarding entry group needs to be configured for the source access node.
  • Step 418 The source access node sends the data cached by the source access node to the source forwarding node according to the first forwarding entry group. Go to step 419.
  • the source access node may send the data cached on the source access node to the source forwarding node according to the forwarding entry in the first forwarding entry group on the source access node.
  • the gateway may send the data stream to the UE by using the source forwarding node and the source access node. For example, after the gateway sends the data stream to the source forwarding node, the source forwarding node may encrypt the data stream sent by the gateway, and The encrypted data stream is sent to the source access node, and the source access node may process the data stream encrypted by the source forwarding node and send the data stream to the UE, and may cache the data stream encrypted by the source forwarding node.
  • Step 419 The source forwarding node sends protocol state information on the source forwarding node to the target forwarding node. Go to step 420.
  • the gateway Before the node is switched, the gateway can send the data stream to the source access node through the source forwarding node.
  • the source access node sends the data stream to the UE.
  • the source forwarding node may perform protocol state information corresponding to the function of the forwarding node on the source forwarding node.
  • the data stream sent by the gateway is encrypted, and the encrypted data stream is sent to the source access node.
  • the source forwarding node may send the protocol state information corresponding to the function of the forwarding node on the source forwarding node to the target forwarding node in a signaling manner, so that the target forwarding node forwards and forwards the node according to the source forwarding node.
  • the protocol status information corresponding to the function of the node processes the data flow between the UE and the gateway.
  • Step 420 The source forwarding node sends the data cached on the source access node to the target forwarding node according to the first forwarding entry group. Go to step 421.
  • the source forwarding node may decrypt the data on the source access node and forward the data according to the source forwarding node.
  • the forwarding entry in the forwarding entry group sends the data cached on the decrypted source access node to the target forwarding node.
  • Step 421 The controller configures a second forwarding entry group for the target access node, the target forwarding node, and the gateway. Go to step 422.
  • the second forwarding entry group may include: a forwarding entry required for data transmission between the target access node and the target forwarding node, and a forwarding entry required for data transmission between the target forwarding node and the gateway.
  • the controller may determine, according to the function module and the network topology configured for the target access node and the target forwarding node, a forwarding entry required for data transmission between the target access node and the target forwarding node, and the target forwarding node and the gateway.
  • the configuration information of the required forwarding entry is sent to the target forwarding node and the gateway, respectively, so that the target access node, the target forwarding node, and the gateway configure the corresponding forwarding entry according to the configuration information of the received forwarding entry, and the completion is completed.
  • a second forwarding entry group is configured for the target access node, the target forwarding node, and the gateway.
  • the target forwarding node may perform the function of the forwarding node on the source forwarding node and the forwarding node according to the source forwarding node in step 419.
  • Corresponding protocol status information encrypts the data cached on the source access node sent by the source forwarding node in step 420.
  • the encrypted data on the source access node is sent to the target access node, and the target access node caches the data cached on the source access node.
  • the target access node may further send the data cached by the source access node to the UE.
  • Step 422 The gateway sends a downlink data flow end identifier to the source forwarding node. Go to step 423.
  • the gateway Before the node is switched, since the gateway is connected to the Internet, the gateway can receive the downlink data stream sent by the Internet, and send the downlink data stream to the source forwarding node, and the source forwarding node sends the source data to the source access node, and finally the source is connected.
  • the ingress node sends to the UE.
  • the source access node and the source forwarding node After the source access node and the source forwarding node receive the configuration information of the forwarding entry in the first forwarding entry group, and configure the corresponding forwarding entry according to the configuration information of the received forwarding entry, the source access The node may send the data cached by the source access node to the source forwarding node according to the forwarding entry in the first forwarding entry group, so that the source forwarding node may use the forwarding entry according to the forwarding entry in the first forwarding entry group. The data buffered on the access node is sent to the target forwarding node.
  • the gateway After receiving the forwarding entry configuration information of the second forwarding entry group, the gateway may generate a downlink data flow end identifier, and send the downlink data flow end identifier to the source forwarding node.
  • the source forwarding node may send the downlink data flow end identifier to the source access node.
  • the source access node may release the protocol state information on the source access node according to the downlink data flow end identifier, and may also be based on the downlink data flow.
  • the end identifier deletes the forwarding entry in the first forwarding entry group and the forwarding entry in the third forwarding entry group on the source access node.
  • the source access node may further send the downlink data stream end identifier to the source forwarding node, and after receiving the downlink data stream end identifier sent by the source access node, the source forwarding node may end the identifier release source according to the downlink data stream. Forwarding the protocol status information on the node, the source forwarding node may further delete the forwarding entry in the first forwarding entry group and the forwarding entry in the third forwarding entry group according to the downlink data flow end identifier. .
  • Step 423 The UE performs data flow interaction between the target access node and the target forwarding node and the gateway.
  • a connection is established between the UE and the target access node, and the target access node, the target forwarding node, and the gateway are configured with a second forwarding entry group required for data flow between the target node and the gateway.
  • the forwarding entry the data buffered on the source access node is sent to the target access node, and the protocol status information on the source forwarding node is sent to the target forwarding node, and the UE can pass the target.
  • the data flow is exchanged between the access node and the target forwarding node and the gateway, and the UE is switched from the source access node and the source forwarding node to the target access node and the target forwarding node.
  • the downlink data stream received by the UE may be composed of multiple downlink data packets.
  • the UE may detect whether the received downlink data stream is complete. If the UE detects that the downlink data stream received by the UE is incomplete, The UE may generate downlink data packet retransmission indication information according to the downlink data packet that is not received by the UE, and send the downlink retransmission indication information to the target access node, where the target access node and the target forwarding node according to the downlink data packet. Retransmitting the indication information, and retransmitting the downlink data packet that the UE does not receive to the UE.
  • the controller in the embodiment of the present invention can not only configure a function module for a node, but also can configure a forwarding entry for a node and a gateway.
  • the controller may include an SDP controller and an SDN controller, wherein the SDP controller is configured to configure a function module for the node, and a software defined network (English: Software Defined Network; SDN) controller is configured for the node and the gateway. Forward the entry.
  • SDN Software Defined Network
  • the source access node determines the target access node as an example, and the node handover method is explained. In an actual application, the target access node may also be determined by the controller.
  • the target forwarding node is not limited in this embodiment of the present invention.
  • the source access node corresponds to one source forwarding node
  • the target access node corresponds to a target forwarding node as an example, and the node switching method is explained.
  • the source forwarding node The number of the destination forwarding nodes may also be other values, and the number of the destination forwarding nodes may also be other values, which is not limited in the embodiment of the present invention.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure the function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can cache the source node according to the first forwarding entry group.
  • the data is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby implementing the target access node to provide services for the UE, and realizing the inter-node between the SDP network systems. Switching enriches the functionality of the SDP network system.
  • an embodiment of the present invention provides a node switching method for the SDP network system 0 shown in Figure 1-2.
  • the node switching method may include:
  • Step 501 The UE performs data flow interaction between the source access node and the gateway. Go to step 502.
  • step 501 can include:
  • Step 5011 The UE sends a service request to the controller.
  • the UE can generate a service request according to the identity information of the UE and the service quality of service parameter of the service, and send the service request to the controller.
  • Step 5012 The controller determines, according to the service request, a function module corresponding to the service of the UE.
  • the controller may determine the service corresponding function module of the UE according to the identity information of the UE and the service quality of service parameter in the service request.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be disposed on each protocol layer.
  • the controller may determine, according to the identifier information of the UE and the service quality of service parameter, an access technology supported by the UE, and select, according to the access technology and the service quality of service parameter, a function module that processes the service of the UE.
  • the controller may determine, according to the service request, that the protocol layer of the processing module corresponding to the UE is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and according to the service request, A function module corresponding to the service of the UE is determined in the PHY layer, the MAC layer, the RLC layer, and the PDCP layer.
  • the protocol layer in which the processing module corresponding to the UE is located is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and the node switching method is explained.
  • the processing module corresponding to the UE may also be located in another protocol layer, which is not limited in this embodiment of the present invention.
  • Step 5013 The controller determines the source access node according to the function module and the network topology corresponding to the service of the UE.
  • the network topology of the SDP network system can be maintained on the controller, and the connection relationship between the devices in the SDP network system and the functions of each device in the SDP network system can be recorded in the network topology. Attributes.
  • the controller may determine, according to the function module and the network topology corresponding to the service of the UE, the source access of the function module corresponding to the service that carries the UE. node.
  • the function module corresponding to the service of the UE determined in step 5012 is the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, And determining, according to the network topology, that the node currently accessed by the UE is the node 032b.
  • the controller determines that the node 032b currently accessed by the UE can carry the function module 1 and the MAC layer of the PHY layer according to the function attribute of the node 032b currently accessed by the UE and the function module corresponding to the service of the UE.
  • Module 2 functional module 3 of the RLC layer and functional module 4 of the PDCP layer.
  • Step 5014 The controller configures a function module for the source access node.
  • the controller may configure the source access node 032b with the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may generate a source access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the source access node configuration command is sent to the source access node 032b, so that the source access node 032b activates the corresponding functional module according to the source access node configuration command.
  • the controller may generate source access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and configure the source access node.
  • the configuration information is sent to the source access node 032b, so that the source access node 032b configures the corresponding functional module according to the source access node configuration information.
  • Step 5015 The controller is a source access node and a gateway, and configures a third forwarding entry group required for data flow transmission between the source access node and the gateway.
  • the controller may determine, according to the network topology, a forwarding entry in the third forwarding entry group required for data flow between the source access node and the gateway, and the third forwarding entry group
  • the configuration information of the forwarding entry is sent to the source access node and the gateway, respectively, so that the source access node and the gateway configure corresponding forwarding entries according to the received configuration information, and configure source access for the source access node and the gateway.
  • the third forwarding entry group may include: a forwarding entry required by the source access node to send the data flow to the gateway, and a forwarding entry required by the gateway to send the data flow to the source access node.
  • the configuration information of the forwarding entry required for the source access node to send the data flow to the gateway is sent to the source access node, and the configuration information of the forwarding entry required by the gateway to send the data flow to the source access node is sent to Gateway.
  • Step 5016 The controller configures, for the UE, a function module corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are determined to be the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may generate a UE configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration command to the UE, so that The UE activates the corresponding function module according to the UE configuration command.
  • the controller may generate UE configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration information to the UE.
  • the UE is configured to configure a corresponding function module according to the UE configuration information.
  • Step 5017 The UE performs data flow interaction with the gateway by using the source access node.
  • the UE can perform data flow interaction with the gateway 02 through the source access node 032b.
  • Step 502 The UE sends node capability information to the source access node. Go to step 503.
  • the UE may periodically obtain the capability information of each node in the UE detection range, and the capability information of the node acquired by the UE may be the signal quality strength of the node acquired by the UE, and the capability information of the node needs to be described. Other information may be used for the embodiments of the present invention.
  • the UE may establish a connection with the source access node through the air interface. After the UE acquires the capability information of each node in the UE detection range, the UE may send the capability information of each node in the UE detection range to the source through the air interface. Access node.
  • Step 503 The source access node determines the target access node according to the node capability information. Go to step 504.
  • the source access node may select a node that meets the screening condition as a target in multiple nodes in the UE detection range according to a preset screening manner.
  • the source access node may store a preset capability threshold, and the source access node may compare the preset capability threshold with the capability value indicated by the capability information of each node in the UE detection range. Therefore, in the multiple nodes in the detection range of the UE, the node whose capability value indicated by the capability information is greater than the preset capability threshold is selected, and the capability information indicating that the capability value indicated by the capability information of the node is greater than the preset capability threshold is determined.
  • the node with the highest capability value is the target access node. It should be noted that if the capability value indicated by the capability information of the node in the UE detection range is less than the preset capability threshold, the source access node does not perform an action. Practical applications, The source access node may also determine the target access node by other means, which is not limited in this embodiment of the present invention. As shown in FIG. 5-3, when UE-04 moves from near the source access node 032b to near the node 033a, the source access node 032b determines that the node 033a is the target access node.
  • Step 504 The source access node generates a handover request message according to the service quality parameter of the UE. Go to step 505.
  • the source access node may store the service quality of service parameter of the UE, and the source access node may generate a handover request message according to the service quality parameter of the UE, where the handover request message is used to indicate that the UE needs to access the target access node.
  • the source access node may further obtain a service quality of service parameter of the UE from the UE.
  • Step 505 The source access node sends a handover request message to the target access node. Go to step 506.
  • the source access node may, according to the identity of the target access node, The handover request message is sent to the target access node.
  • the handover request message may be sent to the target access node in the form of signaling.
  • Step 506 The target access node determines whether the UE can access the UE. If the target access node cannot access the UE, step 507 is performed; if the target access node can access the UE, step 508 is performed.
  • the target access node may determine, according to the service quality parameter of the UE in the handover request message, whether the target access node can access the UE, if the target access If the node cannot access the UE, step 507 is performed; if the target access node can access the UE, step 508 is performed.
  • the target access node determines, according to the service quality of service parameter of the UE in the handover request message, whether the target access node can access the UE, and the node may refer to the related technology to determine the node according to the service quality parameter. The specific steps of the accessing the UE are not described herein.
  • Step 507 The target access node indicates to the source access node that the target access node cannot access the UE.
  • the target access node may generate a message indicating that the target access node cannot access the UE, and send the message indicating that the target access node cannot access the UE to the source.
  • the access node is configured to ensure that the target access node cannot access the UE after receiving the message indicating that the target access node cannot access the UE.
  • Step 508 The target access node indicates to the source access node that the target access node can access the UE. Go to step 509.
  • the target access node may generate a handover feedback message indicating that the target access node can access the UE, and send the handover feedback message to the source access node.
  • Step 509 The source access node generates a handover command. Go to step 510.
  • the source access node may generate a handover command for instructing the UE to perform the node handover.
  • the handover command may include the identifier of the target access node. It should be noted that the switching command may also include other information, which is not limited herein.
  • Step 510 The source access node sends a handover command to the UE. Go to step 511.
  • the source access node may send the handover command generated by the source access node to the UE through an air interface.
  • Step 511 The UE establishes a connection with the target access node according to the handover command. Go to step 512.
  • the UE may disconnect from the source access node according to the handover command, and establish a connection with the target access node. For example, the UE may also re-establish the protocol layer on the UE.
  • the specific steps of the UE to re-establish the protocol layer on the UE may refer to the specific steps of the UE to establish the protocol layer in the prior art, which is not described herein.
  • Step 512 The target access node generates a protocol configuration request message according to the handover request message. Go to step 513.
  • the target access node may generate a protocol configuration request message according to the handover request message sent by the source access node, and the handover request message and the protocol configuration request message may both include the service quality of the UE.
  • a parameter, the protocol configuration request message is used to indicate that a functional module is configured for the target access node.
  • Step 513 The target access node sends a protocol configuration request message to the controller. Go to step 514.
  • the target access node may send the generated protocol configuration request message to the controller.
  • the protocol configuration request message can be sent to the controller in a signaling manner.
  • Step 514 The controller determines, according to the protocol configuration request message, a function module corresponding to the service of the UE. Go to step 515.
  • the controller may determine, according to the service quality of service parameter of the UE in the protocol configuration request message, a function module corresponding to the service of the UE.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be configured on each protocol layer, and the UE may be configured on the UE.
  • the controller may select a function module corresponding to the service of the UE according to the service quality of service parameter of the UE, and the function module corresponding to the service of the UE may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Functional module 3 and functional module 4 of the PDCP layer are examples of the PDCP layer.
  • Step 515 The controller determines the target forwarding node according to the function module and the network topology corresponding to the service of the UE. Go to step 516.
  • the network topology in the SDP network system may be stored and maintained on the controller.
  • the controller may determine the target forwarding node corresponding to the target access node according to the function module corresponding to the service of the UE determined in step 514 and the network topology of the SDP network system. So that the target access node can send the data stream on the target access node to the gateway. That is, the controller determines the target access node and the target forwarding node of the function module corresponding to the service of the UE after the node handover according to the function module and the network topology corresponding to the service of the UE. As shown in FIG.
  • the source access node 032b determines that the node 033a is the target access node.
  • the controller 01 may determine that the node 033b is the target forwarding node corresponding to the target access node 033a according to the function module corresponding to the service of the UE and the network topology.
  • Step 516 The controller configures a function module for the target access node and the target forwarding node. Go to step 517.
  • the controller may configure a function module for the target access node and the target forwarding node according to the function module and the network topology corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may configure the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer for the target access node 033a, and configure the function module of the PDCP layer for the target forwarding node 033b. 4.
  • the controller may generate a target access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate a target forwarding node configuration command according to the function module 4 of the PDCP layer. And sending the target access node configuration command to the target access section Point 033a, the target forwarding node configuration command is sent to the target forwarding node 033b, so that the target access node 033a activates the corresponding functional module according to the target access node configuration command, and the target forwarding node 033b activates according to the target forwarding node configuration command.
  • the corresponding function module is a target access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate a target forwarding node configuration command according to the function module 4 of the PDCP layer.
  • the controller may generate target access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate the target forwarding node configuration information according to the function module 4 of the PDCP layer. And sending the target access node configuration information to the target access node 033a, and transmitting the target forwarding node configuration information to the target forwarding node 033b, so that the target access node 033a configures the corresponding functional module according to the target access node configuration information. And the target forwarding node 033b configures the corresponding functional module according to the target forwarding node configuration information.
  • Step 517 The controller configures a first forwarding entry group for the source access node. Go to step 518.
  • the controller may determine, according to the function module and the network topology configured for the target access node and the target forwarding node, the forwarding entry in the first forwarding entry group required for data flow transmission between the source access node and the target forwarding node.
  • the first forwarding entry group may include: a forwarding entry required by the source access node to send a data flow to the target forwarding node.
  • the controller may send configuration information of the forwarding entry required for the source access node to send the data flow to the target forwarding node to the source access node, so that the source access node according to the configuration information of the forwarding entry Configure forwarding entries.
  • Step 518 The source access node sends protocol state information on the source access node to the target forwarding node. Go to step 519.
  • the gateway may send the data stream to the UE through the source access node.
  • the source access node may be based on the source access node and the forwarding node.
  • the protocol status information corresponding to the function encrypts the data stream sent by the gateway, and sends the encrypted data stream to the UE, and the data stream encrypted by the source access node may be buffered.
  • the source access node may send the protocol state information corresponding to the function of the forwarding node on the source access node to the target forwarding node in a signaling manner, so that the target forwarding node is configured according to the source access node.
  • the protocol state information corresponding to the function of the forwarding node processes the data stream between the UE and the gateway.
  • Step 519 The source access node sends the data cached on the source access node to the target forwarding node according to the first forwarding entry group. Go to step 520.
  • the source access node may decrypt the data on the source access node, and according to the forwarding entry in the first forwarding entry group on the source access node, the data cached on the source access node. Hair Send to the target access node.
  • Step 520 The controller configures a second forwarding entry group for the target access node, the target forwarding node, and the gateway. Go to step 521.
  • the second forwarding entry group may include: a forwarding entry required for data transmission between the target access node and the target forwarding node, and a forwarding entry required for data transmission between the target forwarding node and the gateway.
  • the controller may determine, according to the function module and the network topology configured for the target access node and the target forwarding node, a forwarding entry required for data transmission between the target access node and the target forwarding node, and the target forwarding node and the gateway.
  • the configuration information of the required forwarding entry is sent to the target forwarding node and the gateway, respectively, so that the target access node, the target forwarding node, and the gateway configure the second according to the configuration information of the forwarding entry in the received second forwarding entry group.
  • the forwarding entry in the forwarding entry group completes the configuration of the second forwarding entry group for the target access node, the target forwarding node, and the gateway.
  • the target forwarding node may perform the forwarding node on the source access node and the forwarding node according to the source access node in step 518.
  • the function corresponding to the protocol status information encrypts the data cached on the source access node sent by the source access node in step 419.
  • the target access node may further send the data cached by the source access node to the UE.
  • Step 521 The gateway sends a downlink data flow end identifier to the source access node. Go to step 522.
  • the gateway Before the node is switched, since the gateway is connected to the Internet, the gateway can receive the downlink data stream sent by the Internet, and send the downlink data stream to the source access node, and the source access node sends the data stream to the UE.
  • the source access node After the source access node receives the configuration information of the forwarding entry in the first forwarding entry group, and configures the corresponding forwarding entry according to the configuration information of the received forwarding entry, the source access node may be configured according to the The forwarding entry in the forwarding entry group sends the data cached on the source access node to the target forwarding node.
  • the gateway After receiving the configuration information of the forwarding entry in the second forwarding entry group, the gateway may generate a downlink data flow end identifier, and send the downlink data flow end identifier to the source access node.
  • the source access node After the source access node receives the downlink data stream end identifier sent by the gateway, the source access node sends the data buffered by the source access node to the target forwarding node, and may end the identifier release according to the downlink data stream.
  • the protocol status information on the source access node may further delete the forwarding entry in the first forwarding entry group and the forwarding entry in the third forwarding entry group on the source access node according to the downlink data flow end identifier.
  • Step 522 The UE performs data flow interaction between the target access node and the target forwarding node and the gateway.
  • a connection is established between the UE and the target access node, and the target access node, the target forwarding node, and the gateway are configured with a second forwarding entry group required for data flow between the target node and the gateway.
  • the data buffered by the source access node is sent to the target forwarding node, and after the protocol state information corresponding to the function of the forwarding node on the source access node is sent to the target forwarding node, the UE can forward through the target access node and the target.
  • the data stream is exchanged between the node and the gateway, and the UE is switched from the source access node to the target access node and the target forwarding node.
  • the downlink data stream received by the UE may be composed of multiple downlink data packets.
  • the UE may detect whether the received downlink data stream is complete. If the UE detects that the downlink data stream received by the UE is incomplete, The UE may generate downlink data packet retransmission indication information according to the downlink data packet that is not received by the UE, and send the downlink retransmission indication information to the target access node, where the target access node and the target forwarding node according to the downlink data packet. Retransmitting the indication information, and retransmitting the downlink data packet that the UE does not receive to the UE.
  • the controller in the embodiment of the present invention can not only configure a function module for a node, but also can configure a forwarding entry for a node and a gateway.
  • the controller may include an SDP controller and an SDN controller, wherein the SDP controller is configured to configure a function module for the node, and the SDN controller is configured to configure a forwarding entry for the node and the gateway.
  • the source access node determines the target access node as an example, and the node handover method is explained. In an actual application, the target access node may also be determined by the controller.
  • the target forwarding node is not limited in this embodiment of the present invention.
  • the target access node corresponds to a target forwarding node, and the node switching method is explained.
  • the number of the target forwarding node may also be other values. The embodiment does not limit this.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure the function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can cache the source node according to the first forwarding entry group.
  • the data is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the function of the network system is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the node switching method may include:
  • Step 601 The UE performs data flow interaction between the source access node and the source forwarding node and the gateway. Step 602 is performed.
  • step 601 can include:
  • Step 6011 The UE sends a service request to the controller.
  • the UE can generate a service request according to the identity information of the UE and the service quality of service parameter of the service, and send the service request to the controller.
  • Step 6012 The controller determines, according to the service request, a function module corresponding to the service of the UE.
  • the controller may determine the service corresponding function module of the UE according to the identity information of the UE and the service quality of service parameter in the service request.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be disposed on each protocol layer.
  • the controller may determine, according to the identifier information of the UE and the service quality of service parameter, an access technology supported by the UE, and select, according to the access technology and the service quality of service parameter, a function module that processes the service of the UE.
  • the controller may determine, according to the service request, that the protocol layer of the processing module corresponding to the UE is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and according to the service request, A function module corresponding to the service of the UE is determined in the PHY layer, the MAC layer, the RLC layer, and the PDCP layer.
  • the protocol layer where the processing module corresponding to the UE is located is The PHY layer, the MAC layer, the RLC layer, and the PDCP layer are used as an example to explain the node switching method.
  • the processing module corresponding to the UE may be located in another protocol layer, which is not limited in this embodiment of the present invention.
  • Step 6013 The controller determines the source access node and the source forwarding node according to the function module and the network topology corresponding to the service of the UE.
  • the network topology of the SDP network system can be maintained on the controller, and the connection relationship between the devices in the SDP network system and the functions of each device in the SDP network system can be recorded in the network topology. Attributes.
  • the controller may determine a source access node and a source forwarding node for the function module corresponding to the service of the UE according to the function module and the network topology corresponding to the service of the UE.
  • the function module corresponding to the service of the UE determined in step 6012 is the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, And determining, according to the network topology, that the node currently accessed by the UE is the node 032a.
  • the controller determines, according to the function attribute of the node 032a currently accessed by the UE and the function module corresponding to the service of the UE, that the node 032a currently accessed by the UE can carry the function of the function module 1 and the MAC layer of the PHY layer.
  • the node 032b capable of data stream interaction with the node 032a currently accessed by the UE can be configured to carry the function module 4 of the PDCP layer. Therefore, the node 032b can be determined to be the node 032a currently accessed by the UE.
  • Corresponding forwarding node. The node 032a currently accessed by the UE and the forwarding node 032b corresponding to the node 032a currently accessed by the UE are determined as the source node.
  • the node 032a currently accessed by the UE is referred to as the source access node, and the UE is currently accessed.
  • the forwarding node 032b corresponding to the node 032a is referred to as a source forwarding node.
  • Step 6014 The controller configures a function module for the source access node and the source forwarding node.
  • the controller may configure the source access node 032a with the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and configure the PDCP layer for the source forwarding node 032b.
  • Functional module 4 the controller may generate a source access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate a source forwarding node configuration command according to the function module 4 of the PDCP layer.
  • the controller may generate source access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate source forwarding node configuration information according to the function module 4 of the PDCP layer.
  • the source access node configuration information to the source access node 032a, and sending the source forwarding node configuration information to the source forwarding node 032, so that the source access node 032a configures the corresponding functional module according to the source access node configuration information.
  • the source forwarding node 032b configures the corresponding functional module according to the source forwarding node configuration information.
  • Step 6015 The controller is a source access node, a source forwarding node, and a gateway, and configures a third forwarding entry group required for data flow transmission between the source access node, the source forwarding node, and the gateway.
  • the controller may determine, according to the network topology, a forwarding entry in the third forwarding entry group required for data flow between the source access node, the source forwarding node, and the gateway, and the third forwarding
  • the configuration information of the forwarding entry in the item group is sent to the source access node, the source forwarding node, and the gateway, respectively, so that the source access node, the source forwarding node, and the gateway configure corresponding forwarding entries according to the received configuration information.
  • the third forwarding entry group may include: a forwarding entry required for the source access node to send the data flow to the source forwarding node, and the source forwarding node sends the forwarding entry required by the data flow to the source access node, and the source The forwarding entry required by the forwarding node to send the data flow to the gateway, and the forwarding entry required by the gateway to send the data flow to the source forwarding node. Then, the configuration information of the forwarding entry required for the source access node to send the data flow to the source forwarding node is sent to the source access node, and the configuration of the forwarding entry required by the source forwarding node to send the data flow to the source access node is configured.
  • the information is sent to the source forwarding node, and the configuration information of the forwarding entry required for the source forwarding node to send the data stream to the gateway is sent to the source forwarding node, and the configuration information of the forwarding entry required for the gateway to send the data stream to the source forwarding node is sent. Send to the gateway.
  • Step 6016 The controller configures, for the UE, a function module corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are determined to be the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may generate a UE configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration command to the UE, so that The UE activates the corresponding function module according to the UE configuration command.
  • the controller may be based on the functional module of the PHY layer, the functional module 2 of the MAC layer, the functional module 3 of the RLC layer, and
  • the function module 4 of the PDCP layer generates UE configuration information, and sends the UE configuration information to the UE, so that the UE configures the corresponding function module according to the UE configuration information.
  • Step 6017 The UE performs data flow interaction by using the source access node, the source forwarding node, and the gateway.
  • the source node determined in step 6013 includes: a source access node 032a and a source forwarding node 032b
  • the UE can pass the source access node 032a, the source forwarding node.
  • 032b interacts with gateway 02 for data flow.
  • Step 602 The UE sends node capability information to the source access node. Go to step 603.
  • the UE may periodically obtain the capability information of each node in the UE detection range, and the capability information of the node acquired by the UE may be the signal quality strength of the node acquired by the UE, and the capability information of the node needs to be described. Other information may be used for the embodiments of the present invention.
  • the UE may establish a connection with the source access node through the air interface. After the UE acquires the capability information of each node in the UE detection range, the UE may send the capability information of each node in the UE detection range to the source through the air interface. Access node.
  • Step 603 The source access node determines the target access node according to the node capability information. Go to step 604.
  • the source access node may select a node that meets the screening condition as a target in multiple nodes in the UE detection range according to a preset screening manner.
  • the source access node may store a preset capability threshold, and the source access node may compare the preset capability threshold with the capability value indicated by the capability information of each node in the UE detection range. Therefore, in the multiple nodes in the detection range of the UE, the node whose capability value indicated by the capability information is greater than the preset capability threshold is selected, and the capability information indicating that the capability value indicated by the capability information of the node is greater than the preset capability threshold is determined.
  • the node with the highest capability value is the target access node. It should be noted that if the capability value indicated by the capability information of the node in the UE detection range is less than the preset capability threshold, the source access node does not perform an action. In an actual application, the source access node may determine the target access node by using other methods, which is not limited in this embodiment of the present invention. As shown in Figure 6-3, when UE-04 moves from near source node 032a to near node 033b, source access node 032a determines that node 033b is the target access node.
  • Step 604 The source access node generates a handover request message according to the service quality parameter of the UE. Go to step 605.
  • the source access node may store the service quality parameter of the UE, and the source access node may be configured according to The service quality of service parameter of the UE generates a handover request message, where the handover request message is used to indicate that the UE needs to access the target access node.
  • the source access node may further obtain a service quality of service parameter of the UE from the UE.
  • Step 605 The source access node sends a handover request message to the target access node. Step 606 is performed.
  • the source access node may, according to the identifier of the target access node, The handover request message is sent to the target access node.
  • the handover request message may be sent to the target access node in the form of signaling.
  • Step 606 The target access node determines whether the UE can access the UE. If the target access node cannot access the UE, step 607 is performed; if the target access node can access the UE, step 608 is performed.
  • the target access node may determine, according to the service quality parameter of the UE in the handover request message, whether the target access node can access the UE, if the target access If the node cannot access the UE, step 607 is performed; if the target access node can access the UE, step 608 is performed.
  • the target access node determines, according to the service quality of service parameter of the UE in the handover request message, whether the target access node can access the UE, and the node may refer to the related technology to determine the node according to the service quality parameter. The specific steps of the accessing the UE are not described herein.
  • Step 607 The target access node indicates to the source access node that the target access node cannot access the UE.
  • the target access node may generate a message indicating that the target access node cannot access the UE, and send the message indicating that the target access node cannot access the UE to the source.
  • the access node is configured to ensure that the target access node cannot access the UE after receiving the message indicating that the target access node cannot access the UE.
  • Step 608 The target access node indicates to the source access node that the target access node can access the UE. Go to step 609.
  • the target access node may generate a handover feedback message indicating that the target access node can access the UE, and send the handover feedback message to the source access node.
  • Step 609 The source access node generates a handover command. Go to step 610.
  • the source access node may generate a handover command for instructing the UE to perform the node handover.
  • the handover command may include the identifier of the target access node.
  • the switching command may further include other information, which is an embodiment of the present invention. There is no limit here.
  • Step 610 The source access node sends a handover command to the UE. Go to step 611.
  • the source access node may send the handover command generated by the source access node to the UE through an air interface.
  • Step 611 The UE establishes a connection with the target access node according to the handover command. Go to step 612.
  • the UE may disconnect from the source access node according to the handover command, and establish a connection with the target access node. For example, the UE may also re-establish the protocol layer on the UE.
  • the specific steps of the UE to re-establish the protocol layer on the UE may refer to the specific steps of the UE to establish the protocol layer in the prior art, which is not described herein.
  • Step 612 The target access node generates a protocol configuration request message according to the handover request message. Go to step 613.
  • the target access node may generate a protocol configuration request message according to the handover request message sent by the source access node, and the handover request message and the protocol configuration request message may both include the service quality of the UE.
  • a parameter, the protocol configuration request message is used to indicate that a functional module is configured for the target access node.
  • Step 613 The target access node sends a protocol configuration request message to the controller. Go to step 614.
  • the target access node may send the generated protocol configuration request message to the controller.
  • the protocol configuration request message can be sent to the controller in a signaling manner.
  • Step 614 The controller determines, according to the protocol configuration request message, a function module corresponding to the service of the UE. Go to step 615.
  • the controller may determine, according to the service quality of service parameter of the UE in the protocol configuration request message, a function module corresponding to the service of the UE.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be configured on each protocol layer, and multiple protocol layers may be configured on the UE, and each of the UEs Multiple function modules can be set on each protocol layer, and each function module has different functions.
  • the controller may select a function module corresponding to the service of the UE according to the service quality of service parameter of the UE, and the function module corresponding to the service of the UE may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Functional module 3 and functional module 4 of the PDCP layer may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Step 615 The controller configures a function module for the target access node. Go to step 616.
  • the network topology in the SDP network system may be stored and maintained on the controller.
  • the controller may determine, according to the function module corresponding to the service of the UE determined in step 614 and the network topology of the SDP network system, that the target access node can carry all the functional modules corresponding to the service of the UE, and the target access node and the gateway
  • the data stream on the target access node can be sent to the gateway without forwarding the node.
  • FIG 6-3 when UE-04 moves from near source node 032a to near node 033b, source access node 032a determines that node 033b is the target access node.
  • the controller may configure a function module for the target access node according to the function module and the network topology corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may configure the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer for the target access node 033b.
  • the controller may generate a target access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and configure the target access node.
  • the command is sent to the target access node 033b so that the target access node 033b activates the corresponding functional module according to the target access node configuration command.
  • the controller may generate target access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and the target access node
  • the configuration information is sent to the target access node 033b, so that the target access node 033b configures the corresponding functional module according to the target access node configuration information.
  • Step 616 The controller configures a first forwarding entry group for the source access node and the source forwarding node. Go to step 617.
  • the controller may determine, according to the function module and the network topology configured for the target access node, a forwarding entry required for the source access node to send the data flow to the source forwarding node, and perform data flow between the source forwarding node and the target access node. Transfer the required forwarding entries.
  • the first forwarding entry group may include: a forwarding entry required by the source forwarding node to send the data flow to the target access node, and a forwarding entry required by the source access node to send the data flow to the source forwarding node.
  • the controller may send configuration information of the forwarding entry required by the source forwarding node to the target access node to send the data flow to the source And forwarding configuration information of the forwarding entry required to send the data flow to the source forwarding node to the source access node, so that the source access node and the source forwarding node according to the received forwarding Publish the configuration information of the item and configure the corresponding forwarding entry.
  • the controller configures the forwarding entry in the third forwarding entry group for the source access node, so that the source access node according to the forwarding entry in the third forwarding entry group.
  • the forwarding entry in the first forwarding entry group configured for the source access node in step 616 is used to forward data buffered on the source access node, that is, the source forwarding node sends the source forwarding node to the source access node.
  • the data on the data is different from the data sent by the UE to the source access node. Therefore, the source entry cannot be directly forwarded by using the forwarding entry in the third forwarding entry group configured for the source access node in step 6015.
  • the data cached on the node needs to be configured with the forwarding entry in the first forwarding entry group for the source access node.
  • Step 617 The source access node sends the data cached by the source access node to the source forwarding node according to the first forwarding entry group. Go to step 618.
  • the source access node may send the data cached on the source access node to the source forwarding node according to the forwarding entry in the first forwarding entry group on the source access node.
  • the gateway may send the data stream to the UE by using the source forwarding node and the source access node. For example, after the gateway sends the data stream to the source forwarding node, the source forwarding node may encrypt the data stream sent by the gateway, and The encrypted data stream is sent to the source access node, and the source access node may process the data stream encrypted by the source forwarding node and send the data stream to the UE, and may cache the data stream encrypted by the source forwarding node.
  • Step 618 The source forwarding node sends protocol state information on the source forwarding node to the target access node. Go to step 619.
  • the gateway may send the data stream to the source access node through the source forwarding node, and then the source access node sends the data stream to the UE. For example, after the gateway sends the data stream to the source forwarding node, the source forwards.
  • the node may encrypt the data stream sent by the gateway according to the protocol state information corresponding to the function of the forwarding node on the source forwarding node, and send the encrypted data stream to the source access node.
  • the source forwarding node may send the protocol state information corresponding to the function of the forwarding node on the source forwarding node to the target access node in a signaling manner, so that the target access node forwards the node according to the source.
  • the protocol status information corresponding to the function of the forwarding node processes the data stream between the UE and the gateway.
  • Step 619 The source forwarding node sends a source access section to the target access node according to the first forwarding entry group. Click on the cached data. Go to step 620.
  • the source forwarding node may decrypt the data on the source access node, and the decrypted source access node The cached data is sent to the target access node.
  • the target access node may send the source access node sent by the source forwarding node in step 619 according to the protocol state information corresponding to the function of the forwarding node on the source forwarding node sent by the source forwarding node in step 618.
  • the cached data is encrypted, and the target access node caches the data cached on the source access node.
  • the target access node may also send data buffered by the source access node to the UE.
  • Step 620 The controller configures a second forwarding entry group for the target access node and the gateway. Go to step 621.
  • the second forwarding entry group may include: a forwarding entry required for data transmission between the target access node and the gateway.
  • the controller may determine, according to the function module and the network topology configured for the target access node, a forwarding entry required for data transmission between the target access node and the gateway. And transmitting configuration information of the forwarding entry required for data transmission between the target access node and the gateway to the target access node and the gateway, respectively, so that the target access node and the gateway are configured according to the received forwarding entry.
  • the configuration information is configured with the corresponding forwarding entry
  • the second forwarding entry group is configured for the target access node and the gateway.
  • Step 621 The gateway sends a downlink data flow end identifier to the source forwarding node. Go to step 622.
  • the gateway Before the node is switched, since the gateway is connected to the Internet, the gateway can receive the downlink data stream sent by the Internet, and send the downlink data stream to the source forwarding node, and the source forwarding node sends the source data to the source access node, and finally the source is connected.
  • the ingress node sends to the UE.
  • the source access node may And sending the data cached by the source access node to the source forwarding node according to the forwarding entry in the first forwarding entry group, so that the source forwarding node accesses the source according to the forwarding entry in the first forwarding entry group.
  • the data buffered on the node is sent to the target access node.
  • the gateway may generate a downlink data flow end identifier, and send the downlink data flow end identifier to the source forwarding node.
  • the source forwarding node may send the downlink data flow end identifier to the source access node.
  • the source access node is cached on the source access node
  • the protocol status information on the source access node may be released according to the downlink data flow end identifier
  • the first forwarding entry group on the source access node may be deleted according to the downlink data flow end identifier. The forwarding entry in the forwarding entry and the forwarding entry in the third forwarding entry group.
  • the source access node may further send the downlink data stream end identifier to the source forwarding node, and after receiving the downlink data stream end identifier sent by the source access node, the source forwarding node may end the identifier release source according to the downlink data stream. Forwarding the protocol status information on the node, the source forwarding node may further delete the forwarding entry in the first forwarding entry group and the forwarding entry in the third forwarding entry group according to the downlink data flow end identifier. .
  • Step 622 The UE performs data flow interaction between the target access node and the gateway.
  • a connection is established between the UE and the target access node, and the target access node and the gateway are configured with a second forwarding entry group required for data flow between the target node and the gateway, and the source is connected.
  • the UE can perform the data flow interaction between the target access node and the gateway to The source access node and the source forwarding node switch to the target access node.
  • the downlink data stream received by the UE may be composed of multiple downlink data packets.
  • the UE may detect whether the received downlink data stream is complete. If the UE detects that the downlink data stream received by the UE is incomplete, The UE may generate the downlink data packet retransmission indication information according to the downlink data packet that is not received by the UE, and send the downlink retransmission indication information to the target access node, where the target access node retransmits the indication information according to the downlink data packet. And retransmitting the downlink data packet that the UE does not receive to the UE.
  • the controller in the embodiment of the present invention can not only configure a function module for a node, but also can configure a forwarding entry for a node and a gateway.
  • the controller may include an SDP controller and an SDN controller, wherein the SDP controller is configured to configure a function module for the node, and the SDN controller is configured to configure a forwarding entry for the node and the gateway.
  • the source access node determines the target access node as an example, and the node handover method is explained. In an actual application, the target access node may also be determined by the controller. This embodiment of the present invention does not limit this.
  • the source access node corresponds to a source forwarding node, and the method for switching the node is explained.
  • the number of the source forwarding node may be other values. This embodiment of the present invention does not limit this.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure the function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can cache the source node according to the first forwarding entry group.
  • the data is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the function of the network system is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the node switching method may include:
  • Step 701 The UE performs data flow interaction between the source access node and the source forwarding node and the gateway. Go to step 702.
  • step 701 may include:
  • Step 7011 The UE sends a service request to the controller.
  • the UE can generate a service request according to the identity information of the UE and the service quality of service parameter of the service, and send the service request to the controller.
  • Step 7012 The controller determines, according to the service request, a function module corresponding to the service of the UE.
  • the controller may determine the service corresponding function module of the UE according to the identity information of the UE and the service quality of service parameter in the service request.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be disposed on each protocol layer.
  • the controller may determine, according to the identifier information of the UE and the service quality of service parameter, an access technology supported by the UE, and select, according to the access technology and the service quality of service parameter, a function module that processes the service of the UE.
  • the controller may determine, according to the service request, that the protocol layer where the processing module corresponding to the UE is located is a PHY layer, a media access control MAC layer, an RLC layer, and a PDCP layer, and according to The service request determines a function module corresponding to the service of the UE in the PHY layer, the MAC layer, the RLC layer, and the PDCP layer.
  • the protocol layer in which the processing module corresponding to the UE is located is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and the node switching method is explained.
  • the processing module corresponding to the UE may also be located in another protocol layer, which is not limited in this embodiment of the present invention.
  • Step 7013 The controller determines the source access node and the source forwarding node according to the function module and the network topology corresponding to the service of the UE.
  • the network topology of the SDP network system can be maintained on the controller, and the connection relationship between the devices in the SDP network system and the functions of each device in the SDP network system can be recorded in the network topology. Attributes.
  • the controller may determine a source access node and a source forwarding node for the function module corresponding to the service of the UE according to the function module and the network topology corresponding to the service of the UE.
  • the function module corresponding to the service of the UE determined in step 7012 is the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, And determining, according to the network topology, that the node currently accessed by the UE is the node 032a.
  • the controller determines, according to the function attribute of the node 032a currently accessed by the UE and the function module corresponding to the service of the UE, that the node 032a currently accessed by the UE can carry the function of the function module 1 and the MAC layer of the PHY layer.
  • the node 032b capable of data stream interaction with the node 032a currently accessed by the UE can be configured to carry the function module 4 of the PDCP layer. Therefore, the node 032b can be determined to be the node 032a currently accessed by the UE.
  • Corresponding forwarding node. The node 032a currently accessed by the UE and the forwarding node 032b corresponding to the node 032a currently accessed by the UE are determined as the source node.
  • the node 032a currently accessed by the UE is referred to as the source access node, and the UE is currently accessed.
  • the forwarding node 032b corresponding to the node 032a is referred to as a source forwarding node.
  • Step 7014 The controller configures a function module for the source access node and the source forwarding node.
  • the controller may configure the source access node 032a with the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and configure the PDCP layer for the source forwarding node 032b.
  • Functional module 4 the controller may generate a source access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate a source forwarding node configuration command according to the function module 4 of the PDCP layer.
  • the source access node 032a facilitates activation of the corresponding functional module according to the source access node configuration command, and the source forwarding node 032b activates the corresponding functional module according to the source forwarding node configuration command.
  • the controller may generate source access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate source forwarding node configuration information according to the function module 4 of the PDCP layer.
  • the source access node configuration information to the source access node 032a, and sending the source forwarding node configuration information to the source forwarding node 032, so that the source access node 032a configures the corresponding functional module according to the source access node configuration information.
  • the source forwarding node 032b configures the corresponding functional module according to the source forwarding node configuration information.
  • Step 7015 The controller is a source access node, a source forwarding node, and a gateway, and configures a third forwarding entry group required for data flow transmission between the source access node, the source forwarding node, and the gateway.
  • the controller may determine, according to the network topology, a forwarding entry in the third forwarding entry group required for data flow between the source access node, the source forwarding node, and the gateway, and the third forwarding
  • the configuration information of the forwarding entry in the item group is sent to the source access node, the source forwarding node, and the gateway, respectively, so that the source access node, the source forwarding node, and the gateway configure corresponding forwarding entries according to the received configuration information.
  • the third forwarding entry group may include: a forwarding entry required for the source access node to send the data flow to the source forwarding node, and the source forwarding node sends the forwarding entry required by the data flow to the source access node, and the source The forwarding entry required by the forwarding node to send the data flow to the gateway, and the forwarding entry required by the gateway to send the data flow to the source forwarding node. Then, the configuration information of the forwarding entry required for the source access node to send the data flow to the source forwarding node is sent to the source access node, and the configuration of the forwarding entry required by the source forwarding node to send the data flow to the source access node is configured.
  • the information is sent to the source forwarding node, and the configuration information of the forwarding entry required for the source forwarding node to send the data stream to the gateway is sent to the source forwarding node, and the configuration information of the forwarding entry required for the gateway to send the data stream to the source forwarding node is sent. Send to the gateway.
  • Step 7016 The controller configures, for the UE, a function module corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are determined to be the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may generate a UE configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration command to the UE, so that The UE activates the corresponding function module according to the UE configuration command.
  • the controller can Generating UE configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and transmitting the UE configuration information to the UE, so that the UE is configured according to the UE The information configures the corresponding function module.
  • Step 7017 The UE performs data flow interaction by using the source access node, the source forwarding node, and the gateway.
  • the source node determined in step 7013 includes: a source access node 032a and a source forwarding node 032b
  • the UE can pass the source access node 032a, the source forwarding node.
  • 032b interacts with gateway 02 for data flow.
  • Step 702 The UE sends node capability information to the source access node. Go to step 703.
  • the UE may periodically obtain the capability information of each node in the UE detection range, and the capability information of the node acquired by the UE may be the signal quality strength of the node acquired by the UE, and the capability information of the node needs to be described. Other information may be used for the embodiments of the present invention.
  • the UE may establish a connection with the source access node through the air interface. After the UE acquires the capability information of each node in the UE detection range, the UE may send the capability information of each node in the UE detection range to the source through the air interface. Access node.
  • Step 703 The source access node determines the target access node according to the node capability information. Go to step 704.
  • the source access node may select a node that meets the screening condition as a target in multiple nodes in the UE detection range according to a preset screening manner.
  • the source access node may store a preset capability threshold, and the source access node may compare the preset capability threshold with the capability value indicated by the capability information of each node in the UE detection range. Therefore, in the multiple nodes in the detection range of the UE, the node whose capability value indicated by the capability information is greater than the preset capability threshold is selected, and the capability information indicating that the capability value indicated by the capability information of the node is greater than the preset capability threshold is determined.
  • the node with the highest capability value is the target access node. It should be noted that if the capability value indicated by the capability information of the node in the UE detection range is less than the preset capability threshold, the source access node does not perform an action. In an actual application, the source access node may determine the target access node by using other methods, which is not limited in this embodiment of the present invention. As shown in FIG. 7-3, when UE-04 moves from near source access node 032a to near node 032A, source access node 032a determines that node 032A is the target access node.
  • Step 704 The source access node generates a handover request message according to the service quality parameter of the UE. Go to step 705.
  • the source access node may store the service quality of service parameter of the UE, and the source access node may generate a handover request message according to the service quality parameter of the UE, where the handover request message is used to indicate that the UE needs to access the target access node.
  • the source access node may further obtain a service quality of service parameter of the UE from the UE.
  • Step 705 The source access node sends a handover request message to the target access node. Go to step 706.
  • the source access node may, according to the identifier of the target access node, The handover request message is sent to the target access node.
  • the handover request message may be sent to the target access node in the form of signaling.
  • Step 706 The target access node determines whether the UE can access the UE. If the target access node cannot access the UE, step 707 is performed; if the target access node can access the UE, step 708 is performed.
  • the target access node may determine, according to the service quality parameter of the UE in the handover request message, whether the target access node can access the UE, if the target access If the node cannot access the UE, step 707 is performed; if the target access node can access the UE, step 708 is performed.
  • the target access node determines, according to the service quality of service parameter of the UE in the handover request message, whether the target access node can access the UE, and the node may refer to the related technology to determine the node according to the service quality parameter. The specific steps of the accessing the UE are not described herein.
  • Step 707 The target access node indicates to the source access node that the target access node cannot access the UE.
  • the target access node may generate a message indicating that the target access node cannot access the UE, and send the message indicating that the target access node cannot access the UE to the source.
  • the access node is configured to ensure that the target access node cannot access the UE after receiving the message indicating that the target access node cannot access the UE.
  • Step 708 The target access node indicates to the source access node that the target access node can access the UE. Go to step 709.
  • the target access node may generate a handover feedback message indicating that the target access node can access the UE, and send the handover feedback message to the source access node.
  • Step 709 The source access node generates a handover command. Go to step 710.
  • the source access node may generate a handover command for instructing the UE to perform node handover.
  • the handover command may include target access.
  • the switching command may also include other information, which is not limited herein.
  • Step 710 The source access node sends a handover command to the UE. Go to step 711.
  • the source access node may send the handover command generated by the source access node to the UE through an air interface.
  • Step 711 The UE establishes a connection with the target access node according to the handover command. Step 712 is performed.
  • the UE may disconnect from the source access node according to the handover command, and establish a connection with the target access node. For example, the UE may also re-establish the protocol layer on the UE.
  • the specific steps of the UE to re-establish the protocol layer on the UE may refer to the specific steps of the UE to establish the protocol layer in the prior art, which is not described herein.
  • Step 712 The target access node generates a protocol configuration request message according to the handover request message. Go to step 713.
  • the target access node may generate a protocol configuration request message according to the handover request message sent by the source access node, and the handover request message and the protocol configuration request message may both include the service quality of the UE.
  • a parameter, the protocol configuration request message is used to indicate that a functional module is configured for the target access node.
  • Step 713 The target access node sends a protocol configuration request message to the controller. Go to step 714.
  • the target access node may send the generated protocol configuration request message to the controller.
  • the protocol configuration request message can be sent to the controller in a signaling manner.
  • Step 714 The controller determines, according to the protocol configuration request message, a function module corresponding to the service of the UE. Go to step 715.
  • the controller may determine, according to the service quality of service parameter of the UE in the protocol configuration request message, a function module corresponding to the service of the UE.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be configured on each protocol layer, and multiple protocol layers may be configured on the UE, and each of the UEs Multiple function modules can be set on each protocol layer, and each function module has different functions.
  • the controller may select a function module corresponding to the service of the UE according to the service quality of service parameter of the UE, and the function module corresponding to the service of the UE may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Functional module 3 and functional module 4 of the PDCP layer may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Step 715 The controller determines the target forwarding node according to the function module and the network topology corresponding to the service of the UE. Go to step 716.
  • the network topology in the SDP network system may be stored and maintained on the controller.
  • the controller may determine, according to the function module corresponding to the service of the UE determined in step 714 and the network topology of the SDP network system, a target forwarding node (ie, a source forwarding node) corresponding to the target access node. So that the target access node can send the data stream on the target access node to the gateway.
  • the controller determines the target access node and the target forwarding node (ie, the source forwarding node) of the function module corresponding to the service of the UE after the node handover according to the function module and the network topology corresponding to the service of the UE.
  • the target access node and the target forwarding node ie, the source forwarding node
  • the target access node determines that node 032A is the target access node.
  • the controller 01 may determine that the node 032b is the target forwarding node (ie, the source forwarding node) corresponding to the target access node 032A according to the function module and the network topology corresponding to the service of the UE, that is, the target forwarding node and the source forwarding node are The same node.
  • the target forwarding node ie, the source forwarding node
  • Step 716 The controller configures a function module for the target access node. Go to step 717.
  • the controller may configure a function module for the target access node according to the function module and the network topology corresponding to the service of the UE, because the target forwarding node and the target The source forwarding node is the same node, so there is no need to configure a function module for the target forwarding node (ie, the source forwarding node).
  • the function modules corresponding to the service of the UE are the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may configure the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer for the target access node 032A, because the target forwarding node 032b and the source forwarding node 032b
  • the function module 4 of the PDCP layer is disposed on the source forwarding node 032b. Therefore, the function module 4 of the PDCP layer is disposed on the target forwarding node 032b.
  • the controller may generate a target access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and send the target access node configuration command to the target access node. 032A, so that the target access node 032A activates the corresponding functional module according to the target access node configuration command.
  • the controller may generate target access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and connect the target The ingress configuration information is sent to the target access node 032A, so that the target access node 032A configures the corresponding functional module according to the target access node configuration information.
  • Step 717 The controller configures a first forwarding entry group for the source access node. Go to step 718.
  • the controller may determine, according to the functional module and the network topology configured for the target access node and the target forwarding node (ie, the source forwarding node), a forwarding table required for the source access node to send the data flow to the source forwarding node (ie, the target forwarding node).
  • the first forwarding entry group may include: a forwarding entry required by the source access node to send a data flow to the source forwarding node (ie, the target forwarding node).
  • the controller may send configuration information of the forwarding entry required by the source access node to the source forwarding node (ie, the target forwarding node) to send the data flow to the source access node, so that the source access node receives the Configure the forwarding entry of the forwarding entry to configure the corresponding forwarding entry.
  • the source forwarding node ie, the target forwarding node
  • step 7015 the controller configures the forwarding entry in the third forwarding entry group for the source access node, so that the source access node according to the forwarding entry in the third forwarding entry group
  • the data sent by the UE is sent to the source forwarding node (ie, the target forwarding node).
  • the forwarding entry in the first forwarding entry group configured for the source access node in step 717 is used to forward the buffered data on the source access node, that is, the source forwarding node sends the source forwarding node to the source access node.
  • the data on the data is different from the data sent by the UE to the source access node.
  • the source entry cannot be directly forwarded by using the forwarding entry in the third forwarding entry group configured for the source access node in step 7015.
  • the data cached on the node needs to be configured with the forwarding entry in the first forwarding entry group for the source access node.
  • Step 718 The source access node sends the data cached on the source access node to the source forwarding node according to the first forwarding entry group. Go to step 719.
  • the source access node may send the data cached on the source access node to the source forwarding node (ie, the target forwarding node) according to the forwarding entry in the first forwarding entry group.
  • the gateway may send the data stream to the UE by using the source forwarding node and the source access node. For example, after the gateway sends the data stream to the source forwarding node, the source forwarding node may encrypt the data stream sent by the gateway, and The encrypted data stream is sent to the source access node, and the source access node may process the data stream encrypted by the source forwarding node and send the data stream to the UE, and may cache the data stream encrypted by the source forwarding node.
  • Step 719 The controller configures a second forwarding entry group for the target access node and the target forwarding node. Go to step 720.
  • the second forwarding entry group may include: a forwarding entry required for data transmission between the target access node and the target forwarding node (ie, the source forwarding node).
  • the controller can access the section according to the target
  • the function module and the network topology configured by the point and destination forwarding nodes determine the forwarding entries required for data transmission between the target access node and the destination forwarding node (ie, the source forwarding node).
  • the target access node and the target forwarding node ie, the source forwarding node
  • the target access node and the target forwarding node configure corresponding forwarding entries according to the configuration information of the received forwarding entry, and complete the target access node and the target forwarding node (ie, the source forwarding node).
  • Configure the second forwarding entry group The destination forwarding node and the source forwarding node are the same node. Therefore, it is not necessary to configure the forwarding entry in the second forwarding entry group for the gateway.
  • the target forwarding node since the target forwarding node and the source forwarding node are the same node, the target forwarding node is configured.
  • the data cached by the source access node sent by the active access node is stored, and the target forwarding node (ie, the source forwarding node) may cache the data on the source access node according to the forwarding entry of the second forwarding entry group.
  • Sending to the target access node the target access node buffers the data cached on the source access node. It should be noted that after receiving the data buffered by the source access node sent by the target forwarding node (ie, the source forwarding node), the target access node may further send the data cached by the source access node to the UE.
  • Step 720 The source forwarding node sends a downlink data flow end identifier to the source access node. Go to step 721.
  • the gateway Before the node is switched, since the gateway is connected to the Internet, the gateway can receive the downlink data stream sent by the Internet, and send the downlink data stream to the source forwarding node, and the source forwarding node sends the source data to the source access node, and finally the source is connected.
  • the ingress node sends to the UE.
  • the source access node After receiving the forwarding entry configuration information of the first forwarding entry group, and configuring the corresponding forwarding entry according to the configuration information of the received forwarding entry, the source access node may perform the first forwarding according to the first forwarding
  • the forwarding entry of the publication item group sends the data cached on the source access node to the source forwarding node (ie, the destination forwarding node).
  • the source forwarding node After receiving the forwarding entry configuration information of the second forwarding entry group, the source forwarding node may generate a downlink data flow end identifier and send the downlink data flow end identifier to the source access node.
  • the source access node After the source access node sends the data buffered by the source access node to the source forwarding node (ie, the target forwarding node), the source state information of the source access node may be released according to the downlink data flow end identifier, and The forwarding entry of the first forwarding entry group and the forwarding entry of the third forwarding entry group on the source access node may be deleted according to the downlink data flow end identifier.
  • the source access node can also The end of the downlink data stream is sent to the source forwarding node (ie, the destination forwarding node), and the source forwarding node (ie, the destination forwarding node) may end according to the downlink data stream after receiving the downlink data flow end identifier sent by the source access node.
  • the source forwarding node still has the source forwarding node in the third forwarding entry group (ie, the target) Forwarding node) A forwarding entry that sends data to the gateway.
  • Step 721 The UE performs data flow interaction between the target access node and the target forwarding node and the gateway.
  • a connection is established between the UE and the target access node, and the target access node and the target forwarding node (ie, the source forwarding node) both configure a second required for data flow between the target node and the gateway.
  • Forwarding the entry group, and the data buffered on the source access node is sent to the target access node, and the UE can perform the data flow interaction between the target access node and the target forwarding node and the gateway, and the UE is accessed from the source node.
  • the source forwarding node switches to the target access node and the target forwarding node (ie, the source forwarding node).
  • the downlink data stream received by the UE may be composed of multiple downlink data packets.
  • the UE may detect whether the received downlink data stream is complete. If the UE detects that the downlink data stream received by the UE is incomplete, The UE may generate downlink data packet retransmission indication information according to the downlink data packet that is not received by the UE, and send the downlink retransmission indication information to the target access node, where the target access node and the target forwarding node (ie, the source forwarding node) And transmitting, according to the downlink data packet retransmission indication information, the downlink data packet that is not received by the UE to the UE.
  • the controller in the embodiment of the present invention can not only configure a function module for a node, but also can configure a forwarding entry for a node and a gateway.
  • the controller may include an SDP controller and an SDN controller, wherein the SDP controller is configured to configure a function module for the node, and the SDN controller is configured to configure a forwarding entry for the node and the gateway.
  • the source access node determines the target access node as an example, and the node handover method is explained. In an actual application, the target access node may also be determined by the controller.
  • the target forwarding node is not limited in this embodiment of the present invention.
  • the source access node corresponds to one source forwarding node
  • the target access node corresponds to a target forwarding node as an example, and the node switching method is explained.
  • the source forwarding node The number of the destination forwarding nodes may also be other values, and the number of the destination forwarding nodes may also be other values, which is not limited in the embodiment of the present invention.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure the function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can cache the source node according to the first forwarding entry group.
  • the data is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the function of the network system is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the node switching method may include:
  • Step 801 The UE performs data flow interaction between the source access node and the gateway. Go to step 802.
  • step 801 can include:
  • Step 8011 The UE sends a service request to the controller.
  • the UE can generate a service request according to the identity information of the UE and the service quality of service parameter of the service, and send the service request to the controller.
  • Step 8012 The controller determines, according to the service request, a function module corresponding to the service of the UE.
  • the controller may determine the service corresponding function module of the UE according to the identity information of the UE and the service quality of service parameter in the service request.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be disposed on each protocol layer.
  • the controller may determine, according to the identifier information of the UE and the service quality of service parameter, an access technology supported by the UE, and select, according to the access technology and the service quality of service parameter, a function module that processes the service of the UE.
  • the controller may determine, according to the service request, that the protocol layer of the processing module corresponding to the UE is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and according to the service request, A function module corresponding to the service of the UE is determined in the PHY layer, the MAC layer, the RLC layer, and the PDCP layer.
  • the protocol layer in which the processing module corresponding to the UE is located is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and the node switching method is explained.
  • the processing module corresponding to the UE may also be located in another protocol layer, which is not limited in this embodiment of the present invention.
  • Step 8013 The controller determines the source access node according to the function module and the network topology corresponding to the service of the UE.
  • the network topology of the SDP network system can be maintained on the controller, and the connection relationship between the devices in the SDP network system and the functions of each device in the SDP network system can be recorded in the network topology. Attributes.
  • the controller may determine, according to the function module and the network topology corresponding to the service of the UE, a source access node for carrying a function module corresponding to the service of the UE.
  • the function module corresponding to the service of the UE determined in step 8012 is the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, And determining, according to the network topology, that the node currently accessed by the UE is the node 032b.
  • the controller determines that the node 032b currently accessed by the UE can carry the function module 1 and the MAC layer of the PHY layer according to the function attribute of the node 032b currently accessed by the UE and the function module corresponding to the service of the UE.
  • Module 2 functional module 3 of the RLC layer and functional module 4 of the PDCP layer.
  • Step 8014 The controller configures a function module for the source access node.
  • the controller may configure the source access node 032b with the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may generate a source access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the source access node configuration command is sent to the source access node 032b, so that the source access node 032b activates the corresponding functional module according to the source access node configuration command.
  • the controller may generate source access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and configure the source access node.
  • the configuration information is sent to the source access node 032b, so that the source access node 032b configures the corresponding functional module according to the source access node configuration information.
  • Step 8015 The controller is a source access node and a gateway, and configures a third forwarding entry group required for data flow transmission between the source access node and the gateway.
  • the controller may determine, according to the network topology, a forwarding entry of the third forwarding entry group required for data flow between the source access node and the gateway, and convert the third forwarding entry group.
  • the configuration information of the published item is sent to the source access node and the gateway, respectively, so that the source access node and the gateway configure corresponding forwarding entries according to the received configuration information, and configure the source access node and the gateway for the source access node and the gateway.
  • the third forwarding entry group may include: a forwarding entry required by the source access node to send the data flow to the gateway, and a forwarding entry required by the gateway to send the data flow to the source access node.
  • the configuration information of the forwarding entry required for the source access node to send the data flow to the gateway is sent to the source access node, and the configuration information of the forwarding entry required by the gateway to send the data flow to the source access node is sent to Gateway.
  • Step 8016 The controller configures, for the UE, a function module corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are determined to be the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may generate a UE configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration command to the UE, so that The UE activates the corresponding function module according to the UE configuration command.
  • the controller may generate UE configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration information to the UE.
  • the UE is configured to configure a corresponding function module according to the UE configuration information.
  • Step 8017 The UE performs data flow interaction with the gateway by using the source access node.
  • the UE can perform data flow interaction with the gateway 02 through the source access node 032b.
  • Step 802 The UE sends node capability information to the source access node. Go to step 803.
  • the UE may periodically obtain the capability information of each node in the UE detection range, and the capability information of the node acquired by the UE may be the signal quality strength of the node acquired by the UE, and the capability information of the node needs to be described. Other information may be used for the embodiments of the present invention.
  • the UE may establish a connection with the source access node through the air interface. After the UE acquires the capability information of each node in the UE detection range, the UE may send the capability information of each node in the UE detection range to the source through the air interface. Access node.
  • Step 803 The source access node determines the target access node according to the node capability information. Steps 804.
  • the source access node may select a node that meets the screening condition as a target in multiple nodes in the UE detection range according to a preset screening manner.
  • the source access node may store a preset capability threshold, and the source access node may compare the preset capability threshold with the capability value indicated by the capability information of each node in the UE detection range. Therefore, in the multiple nodes in the detection range of the UE, the node whose capability value indicated by the capability information is greater than the preset capability threshold is selected, and the capability information indicating that the capability value indicated by the capability information of the node is greater than the preset capability threshold is determined.
  • the node with the highest capability value is the target access node. It should be noted that if the capability value indicated by the capability information of the node in the UE detection range is less than the preset capability threshold, the source access node does not perform an action. In an actual application, the source access node may determine the target access node by using other methods, which is not limited in this embodiment of the present invention. As shown in Figure 8-3, when UE-04 moves from near source access node 032b to near node 032a, source access node 032b determines node 032a as the target access node.
  • Step 804 The source access node generates a handover request message according to the service quality parameter of the UE. Go to step 805.
  • the source access node may store the service quality of service parameter of the UE, and the source access node may generate a handover request message according to the service quality parameter of the UE, where the handover request message is used to indicate that the UE needs to access the target access node.
  • the source access node may further obtain a service quality of service parameter of the UE from the UE.
  • Step 805 The source access node sends a handover request message to the target access node. Go to step 806.
  • the source access node may, according to the identity of the target access node, The handover request message is sent to the target access node.
  • the handover request message may be sent to the target access node in the form of signaling.
  • Step 806 The target access node determines whether the UE can access the UE. If the target access node cannot access the UE, step 807 is performed; if the target access node can access the UE, step 808 is performed.
  • the target access node may determine, according to the service quality parameter of the UE in the handover request message, whether the target access node can access the UE, if the target access If the node cannot access the UE, step 807 is performed; if the target access node can access the UE, step 808 is performed.
  • the target access node is configured according to the UE in the handover request message.
  • the specific step of determining whether the target access node can access the UE may refer to the specific step of the node in the related art to determine whether the node can access the UE according to the service quality parameter, and the embodiment of the present invention does not Make a statement.
  • Step 807 The target access node indicates to the source access node that the target access node cannot access the UE.
  • the target access node may generate a message indicating that the target access node cannot access the UE, and send the message indicating that the target access node cannot access the UE to the source.
  • the access node is configured to ensure that the target access node cannot access the UE after receiving the message indicating that the target access node cannot access the UE.
  • Step 808 The target access node indicates to the source access node that the target access node can access the UE. Go to step 809.
  • the target access node may generate a handover feedback message indicating that the target access node can access the UE, and send the handover feedback message to the source access node.
  • Step 809 The source access node generates a handover command. Go to step 810.
  • the source access node may generate a handover command for instructing the UE to perform the node handover.
  • the handover command may include the identifier of the target access node. It should be noted that the switching command may also include other information, which is not limited herein.
  • Step 810 The source access node sends a handover command to the UE. Go to step 811.
  • the source access node may send the handover command generated by the source access node to the UE through an air interface.
  • Step 811 The UE establishes a connection with the target access node according to the handover command. Go to step 812.
  • the UE may disconnect from the source access node according to the handover command, and establish a connection with the target access node. For example, the UE may also re-establish the protocol layer on the UE.
  • the specific steps of the UE to re-establish the protocol layer on the UE may refer to the specific steps of the UE to establish the protocol layer in the prior art, which is not described herein.
  • Step 812 The target access node generates a protocol configuration request message according to the handover request message. Go to step 813.
  • the target access node may generate a protocol configuration request message according to the handover request message sent by the source access node, and the handover request message and the protocol configuration request message may both include the service quality of the UE.
  • the protocol configuration request message is used to indicate the target Access node configuration function module.
  • Step 813 The target access node sends a protocol configuration request message to the controller. Go to step 814.
  • the target access node may send the generated protocol configuration request message to the controller.
  • the protocol configuration request message can be sent to the controller in a signaling manner.
  • Step 814 The controller determines, according to the protocol configuration request message, a function module corresponding to the service of the UE. Go to step 815.
  • the controller may determine, according to the service quality of service parameter of the UE in the protocol configuration request message, a function module corresponding to the service of the UE.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be configured on each protocol layer, and multiple protocol layers may be configured on the UE, and each of the UEs Multiple function modules can be set on each protocol layer, and each function module has different functions.
  • the controller may select a function module corresponding to the service of the UE according to the service quality of service parameter of the UE, and the function module corresponding to the service of the UE may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Functional module 3 and functional module 4 of the PDCP layer may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer.
  • Step 815 The controller determines the target forwarding node according to the function module and the network topology corresponding to the service of the UE. Go to step 816.
  • the network topology in the SDP network system may be stored and maintained on the controller.
  • the controller may determine the target forwarding node (ie, the source access node) corresponding to the target access node according to the function module corresponding to the service of the UE determined in step 814 and the network topology of the SDP network system. So that the target access node can send the data stream on the target access node to the gateway.
  • the controller determines the target access node and the target forwarding node (ie, the source access node) of the function module corresponding to the service of the UE after the node handover according to the function module and the network topology corresponding to the service of the UE.
  • the target access node and the target forwarding node ie, the source access node
  • the controller 01 may determine that the node 032b is the target forwarding node (ie, the source access node) corresponding to the target access node 032a according to the function module and the network topology corresponding to the service of the UE.
  • Step 816 The controller configures a function module for the target access node. Go to step 817.
  • the controller may be the target access node and the target forwarding node according to the function module and the network topology corresponding to the service of the UE. Node) Configure the function module.
  • the function modules corresponding to the service of the UE are the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may configure the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer for the target access node 032a, because the node 032b is configured before the node switching.
  • the functional module 4 of the PDCP layer therefore, does not need to configure the functional module 4 of the PDCP layer for the target forwarding node 032b (ie the source access node).
  • the controller may generate a target access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and send the target access node configuration command to the target access node. 032a, so that the target access node 032a activates the corresponding functional module according to the target access node configuration command.
  • the controller may generate target access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and send the target access node configuration information to the target access. Node 032, in order for the target access node 032a to configure a corresponding functional module according to the target access node configuration information.
  • Step 817 The controller configures a second forwarding entry group for the target access node and the target forwarding node. Go to step 818.
  • the controller may determine, according to the function module and the network topology configured for the target access node and the target forwarding node (ie, the source access node), perform data transmission between the target access node and the target forwarding node (ie, the source access node).
  • the configuration information is sent to the target access node and the target forwarding node (ie, the source access node), respectively, so that the target access node and the target forwarding node according to the received configuration information of the forwarding entry of the second forwarding entry group.
  • the corresponding forwarding entry is configured, and the second forwarding entry group is configured for the target access node and the target forwarding node (ie, the source access node). Since the target forwarding node and the source access node are the same node, and the source access node is configured with a forwarding entry of the third forwarding entry group that transmits the data flow with the gateway, there is no need to forward the node (ie, the source).
  • the access node and the gateway configure a forwarding entry of the second forwarding entry group of the data flow between the target forwarding node (ie, the source access node) and the gateway.
  • the destination is The forwarding node stores the data cached on the source access node, and after the controller configures the forwarding entry of the second forwarding entry group for the target forwarding node (ie, the source access node), the target forwarding node (ie, the source)
  • the access node may send the data buffered by the source access node to the target access node according to the forwarding entry of the second forwarding entry group, and the target access node caches the data cached by the source access node.
  • the target access node may further send the data cached by the source access node to the UE.
  • Step 818 The UE performs data flow interaction between the target access node and the target forwarding node and the gateway.
  • a connection is established between the UE and the target access node, and the target access node, the target forwarding node (ie, the source access node), and the gateway are configured to perform data flow transmission between the target node and the gateway.
  • the second forwarding entry group, and the data buffered on the source access node is sent to the target access node, and the UE can perform data flow between the target access node and the target forwarding node (ie, the source access node) and the gateway.
  • the interaction switches the UE from the source access node to the target access node and the target forwarding node (ie, the source access node).
  • the downlink data stream received by the UE may be composed of multiple downlink data packets.
  • the UE may detect whether the received downlink data stream is complete. If the UE detects that the downlink data stream received by the UE is incomplete, The UE may generate downlink data packet retransmission indication information according to the downlink data packet that is not received by the UE, and send the downlink retransmission indication information to the target access node, where the target access node and the target forwarding node (ie, source access) The node) retransmits the downlink data packet that the UE does not receive according to the downlink data packet retransmission indication information.
  • the controller in the embodiment of the present invention can not only configure a function module for a node, but also can configure a forwarding entry for a node and a gateway.
  • the controller may include an SDP controller and an SDN controller, wherein the SDP controller is configured to configure a function module for the node, and the SDN controller is configured to configure a forwarding entry for the node and the gateway.
  • the source access node determines the target access node as an example, and the node handover method is explained. In an actual application, the target access node may also be determined by the controller.
  • the target forwarding node is not limited in this embodiment of the present invention.
  • the target access node corresponds to a target forwarding node, and the node switching method is explained.
  • the number of the target forwarding node may also be other values.
  • the embodiment of the invention is not limited thereto.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure the function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can cache the source node according to the first forwarding entry group.
  • the data is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the function of the network system is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the node switching method may include:
  • Step 901 The UE performs data flow interaction between the source access node and the source forwarding node and the gateway. Go to step 902.
  • step 901 may include:
  • Step 9011 The UE sends a service request to the controller.
  • the UE can generate a service request according to the identity information of the UE and the service quality of service parameter of the service, and send the service request to the controller.
  • Step 9012 The controller determines, according to the service request, a function module corresponding to the service of the UE.
  • the controller may determine the service corresponding function module of the UE according to the identity information of the UE and the service quality of service parameter in the service request.
  • each device in the SDP network system may be configured with multiple protocol layers, and multiple functional modules may be disposed on each protocol layer.
  • the controller may determine, according to the identifier information of the UE and the service quality of service parameter, an access technology supported by the UE, and select, according to the access technology and the service quality of service parameter, a function module that processes the service of the UE.
  • the controller may determine, according to the service request, that the protocol layer of the processing module corresponding to the UE is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and according to the service request, Determining the PHY layer, the MAC layer, the RLC layer, and the PDCP layer The function module corresponding to the service of the UE.
  • the protocol layer in which the processing module corresponding to the UE is located is the PHY layer, the MAC layer, the RLC layer, and the PDCP layer, and the node switching method is explained.
  • the processing module corresponding to the UE may also be located in another protocol layer, which is not limited in this embodiment of the present invention.
  • Step 9013 The controller determines the source access node and the source forwarding node according to the function module and the network topology corresponding to the service of the UE.
  • the network topology of the SDP network system can be maintained on the controller, and the connection relationship between the devices in the SDP network system and the functions of each device in the SDP network system can be recorded in the network topology. Attributes.
  • the controller may determine a source access node and a source forwarding node for the function module corresponding to the service of the UE according to the function module and the network topology corresponding to the service of the UE.
  • the function module corresponding to the service of the UE determined in step 9012 is the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, And determining, according to the network topology, that the node currently accessed by the UE is the node 032a.
  • the controller determines, according to the function attribute of the node 032a currently accessed by the UE and the function module corresponding to the service of the UE, that the node 032a currently accessed by the UE can carry the function of the function module 1 and the MAC layer of the PHY layer.
  • the node 032b capable of data stream interaction with the node 032a currently accessed by the UE can be configured to carry the function module 4 of the PDCP layer. Therefore, the node 032b can be determined to be the node 032a currently accessed by the UE.
  • Corresponding forwarding node. The node 032a currently accessed by the UE and the forwarding node 032b corresponding to the node 032a currently accessed by the UE are determined as the source node.
  • the node 032a currently accessed by the UE is referred to as the source access node, and the UE is currently accessed.
  • the forwarding node 032b corresponding to the node 032a is referred to as a source forwarding node.
  • Step 9014 The controller configures a function module for the source access node and the source forwarding node.
  • the controller may configure the source access node 032a with the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and configure the PDCP layer for the source forwarding node 032b.
  • Functional module 4 the controller may generate a source access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate a source forwarding node configuration command according to the function module 4 of the PDCP layer.
  • the source access node configuration command Sending to the source access node 032a, transmitting the source forwarding node configuration command to the source forwarding node 032b, so that the source access node 032a activates the corresponding functional module according to the source access node configuration command, and the source forwarding node 032b according to the source
  • the forwarding node configuration command activates the corresponding function module.
  • the controller may generate source access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and generate source forwarding node configuration information according to the function module 4 of the PDCP layer.
  • the source access node configuration information to the source access node 032a, and sending the source forwarding node configuration information to the source forwarding node 032, so that the source access node 032a configures the corresponding functional module according to the source access node configuration information.
  • the source forwarding node 032b configures the corresponding functional module according to the source forwarding node configuration information.
  • Step 9015 The controller is a source access node, a source forwarding node, and a gateway, and configures a third forwarding entry group required for data flow transmission between the source access node, the source forwarding node, and the gateway.
  • the controller may determine, according to the network topology, a forwarding entry of the third forwarding entry group required for data flow transmission between the source access node, the source forwarding node, and the gateway, and the third forwarding table.
  • the configuration information of the forwarding entry of the item group is sent to the source access node, the source forwarding node, and the gateway, respectively, so that the source access node, the source forwarding node, and the gateway configure the corresponding forwarding entry as the source according to the received configuration information.
  • the access node, the source forwarding node, and the gateway configure a third forwarding entry group required for data flow between each source node and the gateway.
  • the third forwarding entry group may include: a forwarding entry required for the source access node to send the data flow to the source forwarding node, and the source forwarding node sends the forwarding entry required by the data flow to the source access node, and the source The forwarding entry required by the forwarding node to send the data flow to the gateway, and the forwarding entry required by the gateway to send the data flow to the source forwarding node. Then, the configuration information of the forwarding entry required for the source access node to send the data flow to the source forwarding node is sent to the source access node, and the configuration of the forwarding entry required by the source forwarding node to send the data flow to the source access node is configured.
  • the information is sent to the source forwarding node, and the configuration information of the forwarding entry required for the source forwarding node to send the data stream to the gateway is sent to the source forwarding node, and the configuration information of the forwarding entry required for the gateway to send the data stream to the source forwarding node is sent. Send to the gateway.
  • Step 9016 The controller configures, for the UE, a function module corresponding to the service of the UE.
  • the function modules corresponding to the service of the UE are determined to be the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may generate a UE configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration command to the UE. In order for the UE to activate the corresponding functional module according to the UE configuration command.
  • the controller may generate UE configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer, and send the UE configuration information to the UE.
  • the UE is configured to configure a corresponding function module according to the UE configuration information.
  • Step 9017 The UE performs data flow interaction by using the source access node, the source forwarding node, and the gateway.
  • the source node determined in step 9013 includes: source access node 032a and source forwarding node 032b
  • the UE in step 9017, can pass the source access node 032a, the source forwarding node. 032b interacts with gateway 02 for data flow.
  • Step 902 The UE sends node capability information to the source access node. Go to step 903.
  • the UE may periodically obtain the capability information of each node in the UE detection range, and the capability information of the node acquired by the UE may be the signal quality strength of the node acquired by the UE, and the capability information of the node needs to be described. Other information may be used for the embodiments of the present invention.
  • the UE may establish a connection with the source access node through the air interface. After the UE acquires the capability information of each node in the UE detection range, the UE may send the capability information of each node in the UE detection range to the source through the air interface. Access node.
  • Step 903 The source access node determines the target access node according to the node capability information. Go to step 904.
  • the source access node may select a node that meets the screening condition as a target in multiple nodes in the UE detection range according to a preset screening manner.
  • the source access node may store a preset capability threshold, and the source access node may compare the preset capability threshold with the capability value indicated by the capability information of each node in the UE detection range. Therefore, in the multiple nodes in the detection range of the UE, the node whose capability value indicated by the capability information is greater than the preset capability threshold is selected, and the capability information indicating that the capability value indicated by the capability information of the node is greater than the preset capability threshold is determined.
  • the node with the highest capability value is the target access node. It should be noted that if the capability value indicated by the capability information of the node in the UE detection range is less than the preset capability threshold, the source access node does not perform an action. In an actual application, the source access node may determine the target access node by using other methods, which is not limited in this embodiment of the present invention. As shown in FIG. 9-3, when UE-04 moves from near source access node 032a to near node 032b, source access node 032a determines that node 032b is the target access node (ie, the source forwarding node).
  • Step 904 The source access node generates a handover request message according to the service quality parameter of the UE. Go to step 905.
  • the source access node may store the service quality of service parameter of the UE, and the source access node may generate a handover request message according to the service quality parameter of the UE, where the handover request message is used to indicate that the UE needs to access the target access node (ie, the source). Forward node).
  • the source access node may further obtain a service quality of service parameter of the UE from the UE.
  • Step 905 The source access node sends a handover request message to the target access node. Go to step 906.
  • the source access node may connect according to the target in step 905.
  • the identifier of the ingress node ie, the source forwarding node
  • the target access node ie, the source forwarding node
  • the handover request message may be sent to the target access node in the form of signaling (ie, Source forwarding node).
  • Step 906 The target access node determines whether the UE can access the UE. If the target access node cannot access the UE, step 907 is performed; if the target access node can access the UE, step 908 is performed.
  • the target access node may determine the target access node according to the service quality parameter of the UE in the handover request message (ie, source forwarding). If the target access node (ie, the source forwarding node) can access the UE, step 908 is performed. If the target access node (ie, the source forwarding node) can access the UE, step 908 is performed. Optionally, the target access node determines, according to the service quality of service parameter of the UE in the handover request message, whether the target access node can access the UE, and the node may refer to the related technology to determine the node according to the service quality parameter. The specific steps of the accessing the UE are not described herein.
  • Step 907 The target access node indicates to the source access node that the target access node cannot access the UE. Go to step 908.
  • the target access node may generate a message indicating that the target access node cannot access the UE, and the indication is used to indicate that the target access node cannot access the UE.
  • the message of the UE is sent to the source access node, so that the source access node determines that the target access node cannot access the UE after receiving the message indicating that the target access node cannot access the UE.
  • Step 908 The target access node indicates to the source access node that the target access node can access the UE. Go to step 909.
  • the target access node (ie, the source forwarding node) may be configured to indicate that the target access node can access
  • the UE switches the feedback message and sends the handover feedback message to the source access node.
  • Step 909 The source access node generates a handover command. Go to step 910.
  • the source access node may generate a handover command for instructing the UE to perform the node handover.
  • the handover command may include the identifier of the target access node. It should be noted that the switching command may also include other information, which is not limited herein.
  • Step 910 The source access node sends a handover command to the UE. Go to step 911.
  • the source access node may send the handover command generated by the source access node to the UE through an air interface.
  • Step 911 The UE establishes a connection with the target access node according to the handover command. Go to step 912.
  • the UE may disconnect from the source access node according to the handover command, and establish a connection with the target access node (ie, the source forwarding node). For example, the UE may also re-establish the protocol layer on the UE.
  • the specific steps of the UE to re-establish the protocol layer on the UE may refer to the specific steps of the UE to establish the protocol layer in the prior art, which is not described herein.
  • Step 912 The target access node generates a protocol configuration request message according to the handover request message. Go to step 913.
  • the target access node ie, the source forwarding node
  • the target access node may generate a protocol configuration request message according to the handover request message sent by the source access node, and the handover request message and the protocol configuration request message may both be used.
  • the service quality of service parameter of the UE is included, and the protocol configuration request message is used to indicate that the function module is configured for the target access node.
  • Step 913 The target access node sends a protocol configuration request message to the controller. Go to step 914.
  • the target access node ie, the source forwarding node
  • the target access node may send the generated protocol configuration request message to the controller.
  • the protocol configuration request message can be sent to the controller in a signaling manner.
  • Step 914 The controller determines, according to the protocol configuration request message, a function module corresponding to the service of the UE. Go to step 915.
  • the controller may determine, according to the service quality of service parameter of the UE in the protocol configuration request message, a function module corresponding to the service of the UE.
  • each device in the SDP network system is Multiple protocol layers may be configured, and multiple functional modules may be disposed on each protocol layer. Multiple protocol layers may be configured on the UE, and multiple functional modules may be configured on each protocol layer of the UE. The functions of the function modules are different.
  • the controller may select a function module corresponding to the service of the UE according to the service quality of service parameter of the UE, and the function module corresponding to the service of the UE may be the function module of the PHY layer, the function module of the MAC layer, and the RLC layer. Functional module 3 and functional module 4 of the PDCP layer.
  • Step 915 The controller configures a function module for the target access node. Go to step 916.
  • the controller may configure a function module for the target access node (ie, the source forwarding node) according to the function module and the network topology corresponding to the service of the UE.
  • the network topology in the SDP network system may be stored and maintained on the controller.
  • the controller may determine, according to the function module corresponding to the service of the UE and the network topology of the SDP network system, that the target access node (ie, the source forwarding node) can carry all the functional modules corresponding to the service of the UE, and the target access node (ie, The source forwarding node can send the data stream on the target access node to the gateway without forwarding the node.
  • the target access node ie, the source forwarding node
  • the source forwarding node can send the data stream on the target access node to the gateway without forwarding the node.
  • FIG. 9-3 when UE-04 moves from near source access node 032a to near node 033a, source access node 032a determines that node 033a is the target access node (ie, the source forwarding node).
  • the function modules corresponding to the service of the UE are the function module 1 of the PHY layer, the function module 2 of the MAC layer, the function module 3 of the RLC layer, and the function module 4 of the PDCP layer.
  • the controller may configure the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer for the target access node 032b, because the target access node and the source forwarding node are the same.
  • the function module corresponding to the function of the forwarding node is configured on the target access node (ie, the source forwarding node), that is, the functional module 4 of the PDCP layer is configured on the target access node 032b, so there is no need for the target access node ( That is, the source forwarding node) configures the functional module 4 of the PDCP layer.
  • the controller may generate a target access node configuration command according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and send the target access node configuration command to the target access node. 032b, so that the target access node 032b activates the corresponding functional module according to the target access node configuration command.
  • the controller may generate target access node configuration information according to the function module 1 of the PHY layer, the function module 2 of the MAC layer, and the function module 3 of the RLC layer, and send the configuration information of the target access node.
  • the target access node 032b is sent to the target access node 032b to configure a corresponding functional module according to the target access node configuration information.
  • Step 916 The controller configures a first forwarding entry group for the source access node. Go to step 917.
  • the controller may determine, according to the function module and the network topology configured for the target access node (ie, the source forwarding node), the forwarding entry of the first forwarding entry group required by the source access node to send the data flow to the source forwarding node.
  • the first forwarding entry group may include a forwarding entry required by the source access node to send a data flow to the source forwarding node.
  • the controller may send configuration information of the forwarding entry required by the source access node to the source forwarding node to send the data flow to the source access node, so that the source access node is configured according to the received forwarding entry. Configure the corresponding forwarding entry for the configuration information.
  • the controller configures a forwarding entry of the third forwarding entry group for the source access node, so that the source access node sends the UE according to the forwarding entry of the third forwarding entry group.
  • the sent data is sent to the source forwarding node.
  • the forwarding entry of the first forwarding entry group configured for the source access node in step 916 is used to forward the buffered data on the source access node, that is, the source forwarding node sends the data to the source access node.
  • the data is different from the data sent by the UE to the source access node. Therefore, the forwarding entry of the third forwarding entry group configured for the source access node in step 9015 cannot be directly forwarded to the source access node.
  • the forwarding entry of the first forwarding entry group needs to be configured for the source access node.
  • Step 917 The source access node sends the data cached on the source access node to the source forwarding node according to the first forwarding entry group. Go to step 918.
  • the source access node may send the data buffered by the source access node to the source forwarding node according to the forwarding entry of the first forwarding entry group on the source access node.
  • the gateway may send the data stream to the UE by using the source forwarding node and the source access node. For example, after the gateway sends the data stream to the source forwarding node, the source forwarding node may encrypt the data stream sent by the gateway, and The encrypted data stream is sent to the source access node, and the source access node may process the data stream encrypted by the source forwarding node and send the data stream to the UE, and may cache the data stream encrypted by the source forwarding node.
  • the target access node receives the data cached by the source access node sent by the source access node.
  • Step 918 The source forwarding node generates a downlink data flow end identifier. Go to step 919.
  • the gateway Before the node is switched, since the gateway is connected to the Internet, the gateway can receive the downlink data stream sent by the Internet, and send the downlink data stream to the source forwarding node, and the source forwarding node sends the source to the source.
  • the access node is ultimately sent by the source access node to the UE.
  • the source access node After receiving the forwarding entry configuration information of the first forwarding entry group, and configuring the corresponding forwarding entry according to the configuration information of the received forwarding entry, the source access node may perform the first forwarding according to the first forwarding
  • the forwarding entry of the publication item group sends the data cached on the source access node to the source forwarding node (the target access node).
  • the source forwarding node After receiving the configuration information of the protocol function module, the source forwarding node (the target access node) may further generate a downlink data flow end identifier, and send the downlink data flow end identifier to the source access node.
  • the source access node may release the protocol state information on the source access node according to the downlink data flow end identifier, and may also be based on the downlink data flow.
  • the end identifier deletes the forwarding entry of the first forwarding entry group and the forwarding entry of the third forwarding entry group on the source access node.
  • the source access node may further send the downlink data stream end identifier to the source forwarding node (ie, the target access node), where the source forwarding node (ie, the target access node) receives the downlink data stream sent by the source access node.
  • the forwarding entry of the data sent by the source forwarding node to the source access node in the third forwarding entry group may be deleted according to the downlink data flow identifier, and the source forwarding node (ie, the target access node) There is still a forwarding entry in the third forwarding entry group in which the source forwarding node (ie, the target access node) sends data to the gateway.
  • Step 919 The UE performs data flow interaction between the target access node and the gateway.
  • a connection is established between the UE and the target access node (ie, the source forwarding node), and the target access node configures a second forwarding entry group required for data flow between the target node and the gateway.
  • the target access node ie, the source forwarding node
  • the UE can perform the data flow interaction between the target access node and the gateway, and the UE accesses the node and the source from the source.
  • the forwarding node switches to the target access node.
  • the downlink data stream received by the UE may be composed of multiple downlink data packets.
  • the UE may detect whether the received downlink data stream is complete. If the UE detects that the downlink data stream received by the UE is incomplete, The UE may generate downlink data packet retransmission indication information according to the downlink data packet that is not received by the UE, and send the downlink retransmission indication information to the target access node, where the target access node and the target forwarding node according to the downlink data packet. Retransmitting the indication information, and retransmitting the downlink data packet that the UE does not receive to the UE.
  • the controller in the embodiment of the present invention can not only configure a function module for a node, but also can configure a forwarding entry for a node and a gateway.
  • the controller may include an SDP controller and an SDN controller, wherein the SDP controller is configured to configure a function module for the node, and the SDN controller is used for the node and The gateway configures forwarding entries.
  • the source access node determines the target access node as an example, and the node handover method is explained. In an actual application, the target access node may also be determined by the controller. This embodiment of the present invention does not limit this.
  • the source access node corresponds to a source forwarding node, and the method for switching the node is explained.
  • the number of the source forwarding node may be other values.
  • the embodiment of the invention is not limited thereto.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure the function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can cache the source node according to the first forwarding entry group.
  • the data is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the function of the network system is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the node switching method provided by the embodiment of the present invention can be applied to the node switching device described below.
  • an embodiment of the present invention provides a node switching apparatus 100, which is used in a controller in a node switching system as shown in FIG. 1 or FIG. 2, and the node switching apparatus 10 may include:
  • the receiving module 1001 is configured to receive a protocol configuration request message sent by the target access node, where the protocol configuration request message includes: a service quality parameter of the UE, where the protocol configuration request message is a handover request message sent by the target access node according to the source access node.
  • the generated source access node is a node that the UE accesses before the node is switched
  • the target access node is a node that the UE accesses after the node is switched.
  • the first determining module 1002 is configured to determine a service pair of the UE according to the service quality of service parameter.
  • the functional module should be.
  • the configuration module 1003 is configured to configure a function module for the target node according to the function module and the network topology corresponding to the service of the UE, where the target node includes: a target access node, and the target node is used to perform a function module corresponding to the service of the UE after the node is switched. .
  • the second determining module 1004 is configured to determine, according to the function module configured by the target node and the network topology, a first forwarding entry group required for data source transmission between the source node and the target node, where the source node includes: a source access node, and a source node.
  • a functional module corresponding to the service carrying the UE before the node is switched.
  • the third determining module 1005 is configured to determine, according to the function module and the network topology configured for the target node, a second forwarding entry group required for data flow transmission between any one of the target nodes and the gateway.
  • the first determining module determines a function module corresponding to the service of the UE according to the service quality parameter
  • the configuration module targets the function module and the network topology corresponding to the service of the UE.
  • the node configuration function module, the second determining module and the third determining module determine the first forwarding entry group and the second forwarding entry group, so that the source node can send the data cached on the source node to the target according to the first forwarding entry group.
  • the node and the target node perform data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the function of the SDP network system. .
  • the target node may further include: a target forwarding node, where the configuration module 1003 is configured to:
  • Target forwarding node Determining a target forwarding node according to a function module and a network topology corresponding to the service of the UE, where the target forwarding node is a node between the target access node and the gateway, and capable of carrying a part of the function module corresponding to the service of the UE after the node switching;
  • the function module of the target forwarding node and the function module of the target access node are determined according to the function module and the network topology corresponding to the service of the UE, and the function module of the target forwarding node and the function module of the target access node form a functional module corresponding to the service of the UE.
  • the source node further includes: a source forwarding node, and a first forwarding entry group, including:
  • the source node further includes: a source forwarding node, and a first forwarding entry group, including:
  • the third determining module 1005 can be configured to:
  • the forwarding entry of the gateway is determined.
  • the first determining module determines a function module corresponding to the service of the UE according to the service quality parameter
  • the configuration module targets the function module and the network topology corresponding to the service of the UE.
  • the node configuration function module, the second determining module and the third determining module determine the first forwarding entry group and the second forwarding entry group, so that the source node can send the data cached on the source node to the target according to the first forwarding entry group.
  • the node and the target node perform data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the function of the SDP network system. .
  • an embodiment of the present invention provides another node switching apparatus 110, which is used for a source node, where the source node may be multiple nodes of the node switching system shown in FIG. 1 or FIG.
  • the node switching device 110 may include:
  • the first receiving module 1101 is configured to receive the first forwarding entry group sent by the controller, where the first forwarding entry group is determined by the controller according to the function module configured for the target node and the network topology, and the target node is after the node switching.
  • the first sending module 1102 is configured to send data cached on the source node to the target node according to the first forwarding entry group.
  • the second receiving module 1103 is configured to receive a downlink data stream end identifier.
  • the release module 1104 is configured to release, according to the downlink data flow end identifier, a function module corresponding to the service of the UE carried on the source node.
  • the deleting module 1105 is configured to delete a third forwarding entry group required for data flow between the first forwarding entry group and the source node and the gateway.
  • the first receiving module receives the first forwarding entry group sent by the controller, and the first forwarding entry group is a function module configured by the controller according to the target node. And determining, by the network topology, the first sending module may send the data buffered on the source node to the target node according to the first forwarding entry group, and then send, by the target access node in the target node, the data buffered on the source node to the UE. Therefore, the target access node is provided to provide services for the UE, and the switching between nodes in the SDP network system is realized, thereby enriching the functions of the SDP network system.
  • the embodiment of the present invention provides another node switching apparatus 110, which is used for a source access node, and the source access node may be multiple of the node switching system shown in FIG. 1 or FIG.
  • the node switching device 110 may include:
  • the first receiving module 1101 is configured to receive the first forwarding entry group sent by the controller, where the first forwarding entry group is determined by the controller according to the function module configured for the target node and the network topology, and the target node is after the node switching.
  • the first sending module 1102 is configured to send data cached on the source node to the target node according to the first forwarding entry group.
  • the second receiving module 1103 is configured to receive a downlink data stream end identifier.
  • the release module 1104 is configured to release, according to the downlink data flow end identifier, a function module corresponding to the service of the UE carried on the source node.
  • the deleting module 1105 is configured to delete a third forwarding entry group required for data flow between the first forwarding entry group and the source node and the gateway.
  • the second sending module 1106 is configured to send a handover request message to the target access node, where the handover request message includes: a service quality of service parameter, so that the target access node determines, according to the handover request message, whether the UE can access the target access node, When the UE can access the target access node, the protocol configuration request message is sent to the controller, where the target access node is a node that the UE accesses after the node is switched.
  • the first receiving module receives the first forwarding entry group sent by the controller, and the first forwarding entry group is configured as a controller according to the target node.
  • the first sending module may send the information on the source node to the target node according to the first forwarding entry group, and then the target access node in the target node buffers the data cached on the source node.
  • the device is sent to the UE, so that the target access node provides services for the UE, and the switching between nodes in the SDP network system is realized, which enriches the functions of the SDP network system.
  • the embodiment of the present invention provides a node switching system.
  • the node switching system may include: a controller and a source node.
  • the controller is the node switching device 100 shown in FIG. 10, and the source node is FIG. 11-1 or FIG.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure the function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can cache the source node according to the first forwarding entry group.
  • the data is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the function of the network system is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • an embodiment of the present invention provides another node switching apparatus, which may include at least one processor 1201 (for example, a CPU), at least one network interface 1202 or other communication interface, a memory 1203, and at least A communication bus 1204 is used to implement connection communication between these devices.
  • the processor 1201 is configured to execute an executable module, such as a computer program, stored in the memory 1203.
  • the memory 1203 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • the communication connection between the node switching device and at least one other network element is implemented by at least one network interface 1202 (which may be wired or wireless), and may use an Internet, a wide area network, a local network, a metropolitan area network, or the like.
  • the memory 1203 stores a program 12031, and the program 12031 can be executed by the processor 1201.
  • the program 12031 can include:
  • the information includes: a service quality of service parameter of the user equipment UE, where the protocol configuration request message is generated by the target access node according to the handover request message sent by the source access node, where the source access node is the UE before the node is switched.
  • a function module for the target node according to the function module and the network topology corresponding to the service of the UE, where the target node includes: the target access node, where the target node is configured to carry the service of the UE after the node is switched.
  • the target node includes: the target access node, where the target node is configured to carry the service of the UE after the node is switched.
  • the source node includes: the source access node, The source node is configured to carry a function module corresponding to the service of the UE before the node is switched;
  • the target node may further include: a target forwarding node, where the program 12031 may further include:
  • Target forwarding node Determining a target forwarding node according to a function module and a network topology corresponding to the service of the UE, where the target forwarding node is a node between the target access node and the gateway, and capable of carrying the UE after the node switching Part of the function module corresponding to the service;
  • the module constitutes a functional module corresponding to the service of the UE.
  • the source node further includes: a source forwarding node, where the first forwarding entry group includes:
  • the source access node sends a forwarding entry required for the data flow to the source forwarding node, and the forwarding entry required by the source forwarding node and the target node for data stream transmission.
  • the source node further includes: a source forwarding node, where the first forwarding entry group includes:
  • the source access node sends a forwarding entry required for the data flow to the source forwarding node, and the forwarding entry required by the source forwarding node and the target forwarding node for data stream transmission.
  • the program 12031 may further include:
  • the forwarding entry of the gateway is determined.
  • the processor determines the function module corresponding to the service of the UE according to the service quality parameter, and configures the function module according to the function module and the network topology corresponding to the service of the UE. Determining the first forwarding entry group and the second forwarding entry group, so that the source node may send the data cached on the source node to the target node according to the first forwarding entry group, and the target node according to the second forwarding entry group and the gateway The data flow is transmitted between the nodes, so that the target access node provides services for the UE, and the switching between nodes in the SDP network system is realized, which enriches the functions of the SDP network system.
  • a node switching apparatus which may include at least one processor 1301 (eg, a CPU), at least one network interface 1302 or other communication interface, a memory 1303, and At least one communication bus 1304 is used to implement connection communication between these devices.
  • the processor 1301 is configured to execute an executable module, such as a computer program, stored in the memory 1303.
  • the memory 1303 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • the communication connection between the node switching device and at least one other network element is implemented by at least one network interface 1302 (which may be wired or wireless), and an Internet, a wide area network, a local network, a metropolitan area network, or the like may be used.
  • the memory 1303 stores a program 13031, and the program 13031 can be executed by the processor 1301.
  • the program 13031 can include:
  • a first forwarding entry group where the first forwarding entry group is determined by the controller according to a function module configured for the target node and a network topology, where the target node is a user after the node switching a node of a function module corresponding to a service of the UE UE;
  • the source node may be a source access node, where the source access node is a node that is accessed by the UE before the node is switched, and the program 13031 may further include:
  • the node sends a protocol configuration request message to the controller when the UE is able to access the target access node, where the target access node is a node that the UE accesses after the node is switched.
  • the processor sends the information on the source node to the target node according to the first forwarding entry group, and then the source node is configured by the target access node in the target node.
  • the cached data is sent to the UE, so that the target access node provides services for the UE, and the switching between nodes in the SDP network system is realized, which enriches the functions of the SDP network system.
  • the embodiment of the present invention provides a node switching system.
  • the node switching system may include: a controller and a source node.
  • the controller may be the node switching device 120 shown in FIG. 12, and the source node may be the node shown in FIG. Switching device 130.
  • the controller determines the function module corresponding to the service of the UE according to the service quality parameter, and according to the The function module and the network topology corresponding to the service of the UE configure the function module for the target node, and determine the first forwarding entry group and the second forwarding entry group, so that the source node can cache the source node according to the first forwarding entry group.
  • the data is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the function of the network system is sent to the target node, and the target node performs data flow transmission between the second forwarding entry group and the gateway, thereby realizing that the target access node provides services for the UE, implements switching between nodes in the SDP network system, and enriches the SDP.
  • the functional modules in various embodiments of the present invention may be integrated into one processing module, or each module may be physically included separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种节点切换方法、装置及系统,属于通信技术领域。该方法包括:接收目标接入节点发送的协议配置请求消息,协议配置请求消息包括:UE的业务服务质量参数;根据业务服务质量参数确定UE的业务对应的功能模块;根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块;根据为目标节点配置的功能模块和网络拓扑确定源节点与目标节点中任一节点进行数据流传输所需的第一转发表项组;根据为目标节点配置的功能模块和网络拓扑确定目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。本发明解决了SDP网络系统的功能较单一的问题,实现了丰富SDP网络系统功能的效果,本发明用于节点的切换。

Description

节点切换方法、装置及系统 技术领域
本发明涉及通信领域,特别涉及一种节点切换方法、装置及系统。
背景技术
随着无线接入技术的更新与发展,软件定义协议栈(英文:Software Defined Protocol;简称:SDP)网络系统得到了应用。
SDP网络系统包括控制器、网关、多个节点和用户设备(英文:User Equipment;简称:UE)。当UE需要与网关之间进行数据流的交互时,该UE可以生成业务请求,并将该业务请求发送至控制器,该业务请求可以包括业务服务质量(英文:Quality Of Service;简称:QOS)参数。控制器可以根据该业务请求中的业务服务质量参数确定所述UE的业务对应的功能模块,根据UE的业务对应的功能模块和网络拓扑为UE当前接入的节点配置功能模块,并根据为UE当前接入的节点配置的功能模块和网络拓扑为UE当前接入的节点和网关分别配置UE当前接入的节点和网关之间进行数据流传输所需的转发表项,以使得网关根据转发表项将数据流发送至UE当前接入的节点,以及UE当前接入的节点根据转发表项将数据流发送至网关。通过UE当前接入的节点为UE提供服务,实现了UE与网关之间进行数据流的交互。
在UE需要从当前接入的节点切换到另一节点,由该另一节点为UE提供服务时,由于相关技术中提供的SDP网络系统无法实现节点间的切换,因此,SDP网络系统的功能较单一。
发明内容
为了解决SDP网络系统的功能较单一的问题,本发明提供了一种节点切换方法、装置及系统,所述技术方案如下:
第一方面,提供了一种节点切换方法,所述方法包括:
接收目标接入节点发送的协议配置请求消息,所述协议配置请求消息包括:用户设备UE的业务服务质量参数,所述协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,所述源接入节点为所述UE在节点切换前接入的节点,所述目标接入节点为所述UE在节点切换后接入的节点;
根据所述业务服务质量参数确定所述UE的业务对应的功能模块;
根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,所述目标节点包括:所述目标接入节点,所述目标节点用于在节点切换后,承载所述UE的业务对应的功能模块;
根据为所述目标节点配置的功能模块和网络拓扑确定源节点与所述目标节点进行数据流传输所需的第一转发表项组,所述源节点包括:所述源接入节点,所述源节点用于在节点切换前,承载所述UE的业务对应的功能模块;
根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
结合第一方面,在第一种可实现方式中,所述目标节点还包括:目标转发节点,所述根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,包括:
根据所述UE的业务对应的功能模块和网络拓扑确定目标转发节点,所述目标转发节点为所述目标接入节点与所述网关之间的节点,且能够在节点切换后承载所述UE的业务对应的功能模块中一部分;
根据所述UE的业务对应的功能模块和网络拓扑确定所述目标转发节点的功能模块和所述目标接入节点的功能模块,所述目标转发节点的功能模块和所述目标接入节点的功能模块组成所述UE的业务对应的功能模块。
结合第一方面,在第二种可实现方式中,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标节点进行数据流传输所需的转发表项。
结合第一种可实现方式,在第三种可实现方式中,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
所述源接入节点向所述源转发节点发送数据流所需的转发表项,以 及所述源转发节点和所述目标转发节点进行数据流传输所需的转发表项。
结合第一方面,在第四种可实现方式中,根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与所述网关之间进行数据流传递所需的第二转发表项组,包括:
根据所述为所述目标节点配置的功能模块和所述网络拓扑确定所述目标节点中任一节点的转发表项;
判断切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点是否为同一节点;
若切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点不为同一节点,确定所述网关的转发表项。
第二方面,提供了一种节点切换方法,所述方法包括:
接收控制器发送的第一转发表项组,所述第一转发表项组为所述控制器根据为目标节点配置的功能模块和网络拓扑确定的,所述目标节点为在节点切换后承载用户设备UE的业务对应的功能模块的节点;
根据所述第一转发表项组向目标节点发送源节点上缓存的数据,所述源节点为在节点切换前承载所述UE的业务对应的功能模块的节点;
接收下行数据流结束标识;
根据所述下行数据流结束标识释放所述源节点上承载的所述UE的业务对应的功能模块;
删除所述第一转发表项组和所述源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
结合第二方面,在第一种可实现方式中,所述源节点为源接入节点,所述源接入节点为节点切换前所述UE接入的节点,在所述接收控制器发送的第一转发表项组之前,所述方法还包括:
向目标接入节点发送切换请求消息,所述切换请求消息包括:业务服务质量参数,以便于所述目标接入节点根据所述切换请求消息,判断所述UE是否能够接入所述目标接入节点,在所述UE能够接入所述目标接入节点时,向所述控制器发送协议配置请求消息,所述目标接入节点为所述UE在节点切换后接入的节点。
第三方面,提供了一种节点切换装置,所述节点切换装置包括:
接收模块,用于接收目标接入节点发送的协议配置请求消息,所述协议配置请求消息包括:用户设备UE的业务服务质量参数,所述协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,所述源接入节点为所述UE在节点切换前接入的节点,所述目标接入节点为所述UE在节点切换后接入的节点;
第一确定模块,用于根据所述业务服务质量参数确定所述UE的业务对应的功能模块;
配置模块,用于根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,所述目标节点包括:所述目标接入节点,所述目标节点用于在节点切换后,承载所述UE的业务对应的功能模块;
第二确定模块,用于根据为所述目标节点配置的功能模块和网络拓扑确定源节点与所述目标节点进行数据流传输所需的第一转发表项组,所述源节点包括:所述源接入节点,所述源节点用于在节点切换前,承载所述UE的业务对应的功能模块;
第三确定模块,用于根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
结合第三方面,在第一种可实现方式中,所述目标节点还包括:目标转发节点,所述配置模块用于:
根据所述UE的业务对应的功能模块和网络拓扑确定目标转发节点,所述目标转发节点为所述目标接入节点与所述网关之间的节点,且能够在节点切换后承载所述UE的业务对应的功能模块中一部分;
根据所述UE的业务对应的功能模块和网络拓扑确定所述目标转发节点的功能模块和所述目标接入节点的功能模块,所述目标转发节点的功能模块和所述目标接入节点的功能模块组成所述UE的业务对应的功能模块。
结合第三方面,在第二种可实现方式中,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标节点进行数据流传输所需的转发表项。
结合第一种可实现方式,在第三种可实现方式中,所述源节点还包括:源 转发节点,所述第一转发表项组,包括:
所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标转发节点进行数据流传输所需的转发表项。
结合第三方面,在第四种可实现方式中,所述第三确定模块用于:
根据所述为所述目标节点配置的功能模块和所述网络拓扑确定所述目标节点中任一节点的转发表项;
判断切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点是否为同一节点;
若切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点不为同一节点,确定所述网关的转发表项。
第四方面,提供了一种节点切换装置,所述节点切换装置包括:
第一接收模块,用于接收控制器发送的第一转发表项组,所述第一转发表项组为所述控制器根据为目标节点配置的功能模块和网络拓扑确定的,所述目标节点为在节点切换后承载用户设备UE的业务对应的功能模块的节点;
第一发送模块,用于根据所述第一转发表项组向目标节点发送所述源节点上缓存的数据,所述源节点为在节点切换前承载所述UE的业务对应的功能模块的节点;
第二接收模块,用于接收下行数据流结束标识;
释放模块,用于根据所述下行数据流结束标识释放所述源节点上承载的所述UE的业务对应的功能模块;
删除模块,用于删除所述第一转发表项组和所述源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
结合第四方面,在第一种可实现方式中,所述源节点为源接入节点,所述源接入节点为节点切换前所述UE接入的节点,所述节点切换装置还包括:
第二发送模块,用于向目标接入节点发送切换请求消息,所述切换请求消息包括:业务服务质量参数,以便于所述目标接入节点根据所述切换请求消息,判断所述UE是否能够接入所述目标接入节点,在所述UE能够接入所述目标接入节点时,向所述控制器发送协议配置请求消息,所述目标接入节点为所述UE在节点切换后接入的节点。
第五方面,提供了一种节点切换系统,所述节点切换系统包括:控制器和源节点,
所述控制器包括:第三方面所述的节点切换装置;
所述源节点包括:第四方面所述的节点切换装置。
第六方面,提供了一种节点切换装置,所述节点切换装置包括:至少一个处理器、至少一个网络接口、存储器和至少一个通信总线,所述处理器用于执行所述存储器中存储的程序,所述程序包括:
接收目标接入节点发送的协议配置请求消息,所述协议配置请求消息包括:用户设备UE的业务服务质量参数,所述协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,所述源接入节点为所述UE在节点切换前接入的节点,所述目标接入节点为所述UE在节点切换后接入的节点;
根据所述业务服务质量参数确定所述UE的业务对应的功能模块;
根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,所述目标节点包括:所述目标接入节点,所述目标节点用于在节点切换后,承载所述UE的业务对应的功能模块;
根据为所述目标节点配置的功能模块和网络拓扑确定源节点与所述目标节点进行数据流传输所需的第一转发表项组,所述源节点包括:所述源接入节点,所述源节点用于在节点切换前,承载所述UE的业务对应的功能模块;
根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
结合第六方面,在第一种可实现方式中,所述目标节点还包括:目标转发节点,所述程序还包括:
根据所述UE的业务对应的功能模块和网络拓扑确定目标转发节点,所述目标转发节点为所述目标接入节点与所述网关之间的节点,且能够在节点切换后承载所述UE的业务对应的功能模块中一部分;
根据所述UE的业务对应的功能模块和网络拓扑确定所述目标转发节点的功能模块和所述目标接入节点的功能模块,所述目标转发节点的功能模块和所述目标接入节点的功能模块组成所述UE的业务对应的功能模块。
结合第六方面,在第二种可实现方式中,所述源节点还包括:源转发节点, 所述第一转发表项组,包括:
所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标节点进行数据流传输所需的转发表项。
结合第一种可实现方式,在第三种可实现方式中,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标转发节点进行数据流传输所需的转发表项。
结合第六方面,在第四种可实现方式中,所述程序还包括:
根据所述为所述目标节点配置的功能模块和所述网络拓扑确定所述目标节点中任一节点的转发表项;
判断切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点是否为同一节点;
若切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点不为同一节点,确定所述网关的转发表项。
第七方面,提供了一种节点切换装置,所述节点切换装置包括:至少一个处理器、至少一个网络接口、存储器和至少一个通信总线,所述处理器用于执行所述存储器中存储的程序,所述程序包括:
接收控制器发送的第一转发表项组,所述第一转发表项组为所述控制器根据为目标节点配置的功能模块和网络拓扑确定的,所述目标节点为在节点切换后承载用户设备UE的业务对应的功能模块的节点;
根据所述第一转发表项组向目标节点发送源节点上缓存的数据,所述源节点为在节点切换前承载所述UE的业务对应的功能模块的节点;
接收下行数据流结束标识;
根据所述下行数据流结束标识释放所述源节点上承载的所述UE的业务对应的功能模块;
删除所述第一转发表项组和所述源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
结合第七方面,在第一种可实现方式中,所述源节点为源接入节点,所述源接入节点为节点切换前所述UE接入的节点,所述程序还包括:
向目标接入节点发送切换请求消息,所述切换请求消息包括:业务 服务质量参数,以便于所述目标接入节点根据所述切换请求消息,判断所述UE是否能够接入所述目标接入节点,在所述UE能够接入所述目标接入节点时,向所述控制器发送协议配置请求消息,所述目标接入节点为所述UE在节点切换后接入的节点。
第八方面,提供了一种节点切换系统,所述节点切换系统包括:控制器和源节点,
所述控制器包括:第六方面所述的节点切换装置;
所述源节点包括:第七方面所述的节点切换装置。
本发明提供了一种节点切换方法、装置及系统,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1是本发明实施例提供的一种SDP网络系统的结构示意图;
图1-2是本发明实施例提供的另一种SDP网络系统的结构示意图;
图2是本发明实施例提供的一种节点切换方法的方法流程图;
图3是本发明实施例提供的另一种节点切换方法的方法流程图;
图4-1是本发明实施例提供的又一种节点切换方法的方法流程图;
图4-2是本发明实施例提供的一种数据流交互的方法流程图;
图4-3是本发明实施例提供的一种节点切换示意图;
图5-1是本发明实施例提供的再一种节点切换方法的方法流程图;
图5-2是本发明实施例提供的另一种数据流交互的方法流程图;
图5-3是本发明实施例提供的另一种节点切换示意图;
图6-1是本发明另一实施例提供的一种节点切换方法的方法流程图;
图6-2是本发明实施例提供的又一种数据流交互的方法流程图;
图6-3是本发明实施例提供的又一种节点切换示意图;
图7-1是本发明另一实施例提供的另一种节点切换方法的方法流程图;
图7-2是本发明实施例提供的再一种数据流交互的方法流程图;
图7-3是本发明实施例提供的再一种节点切换示意图;
图8-1是本发明另一实施例提供的又一种节点切换方法的方法流程图;
图8-2是本发明另一实施例提供的一种数据流交互的方法流程图;
图8-3是本发明另一实施例提供的一种节点切换示意图;
图9-1是本发明另一实施例提供的再一种节点切换方法的方法流程图;
图9-2是本发明另一实施例提供的另一种数据流交互的方法流程图;
图9-3是本发明另一实施例提供的另一种节点切换示意图;
图10是本发明实施例提供的一种节点切换装置的结构示意图;
图11-1是本发明实施例提供的另一种节点切换装置的结构示意图;
图11-2是本发明实施例提供的又一种节点切换装置的结构示意图;
图12是本发明实施例提供的再一种节点切换装置的结构示意图;
图13是本发明另一实施例提供的一种节点切换装置的结构示意图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
如图1-1所示,本发明实施例提供了一种SDP网络系统0,该SDP网络系 统0可以包括控制器01、网关02、多个节点和UE-04。其中,该多个节点可以包括:多个与网关02直接连接的节点(如节点031b、节点032b和节点033b),和多个与网关02间接连接的节点(如节点031a、节点031A、节点032a、节点032A、节点033a、节点033A),且UE当前接入的节点为节点032a。该控制器01与网关02和每个节点相连接,该SDP网络系统0中的每个节点均能够与网关02相连接,网关02与因特网相连接。当UE-04需要与网关02之间进行数据流的交互时,该UE-04可以生成业务请求,并将该业务请求发送至控制器01,示例的,该业务请求可以包括业务服务质量信息。
控制器01可以根据该业务请求中的业务服务质量参数确定所述UE-04的业务对应的功能模块,根据UE-04的业务对应的功能模块和网络拓扑确定UE-04当前接入的节点032a对应的转发节点032b,并为UE-04当前接入的节点032a以及转发节点032b配置功能模块。根据网络拓扑以及为UE-04当前接入的节点032a和转发节点032b配置的功能模块,为UE-04当前接入的节点032a、转发节点032b和网关02分别配置UE-04当前接入的节点032a、转发节点032b和网关02之间进行数据流传输所需的转发表项,以使得网关02根据转发表项将数据流发送至转发节点032b,转发节点032b根据转发表项将数据流发送至UE-04当前接入的节点032a;UE-04当前接入的节点032a根据转发表项将数据流发送至转发节点032b,转发节点032b根据转发表项将数据流发送至网关02。此时,UE-04当前接入的节点032a和转发节点032b承载UE-04的业务对应的功能模块,通过UE-04当前接入的节点032a与转发节点032b为UE-04提供服务,实现了UE-04与网关02之间进行数据流的交互。
如图1-2所示,本发明实施例提供了一种SDP网络系统0,该SDP网络系统0可以包括控制器01、网关02、多个节点和UE-04。其中,该多个节点可以包括:多个与网关02直接连接的节点(如节点031b、节点032b和节点033b),和多个与网关02间接连接的节点(如节点031a、节点031A、节点032a、节点032A、节点033a、节点033A),该控制器01与网关02和每个节点相连接,该SDP网络系统0中的每个节点均能够与网关02相连接,网关02与因特网相连接。当UE-04需要与网关02之间进行数据流的交互时,该UE-04可以生成业务请求,并将该业务请求发送至控制器01,该业务请求可以包括业务服务 质量参数。
控制器01可以根据该业务请求中的业务服务质量参数确定UE-04的业务对应的功能模块,根据UE-04的业务对应的功能模块和网络拓扑为多个节点中UE-04当前接入的节点032b配置功能模块,并根据为UE-04当前接入的节点032b配置的功能模块和网络拓扑为UE-04当前接入的节点032b和网关02分别配置UE-04当前接入的节点032b和网关02之间进行数据流传输所需的转发表项,以使得网关02根据转发表项将数据流发送至UE-04当前接入的节点032b,以及UE-04当前接入的节点032b根据转发表项将数据流发送至网关02。此时,UE-04当前接入的节点032b承载UE-04的业务对应的功能模块,通过UE-04当前接入的节点032b为UE-04提供服务,实现了UE-04与网关02之间进行数据流的交互。
如图2所示,本发明实施例提供了一种节点切换方法,该节点切换方法可以用于图1-1或图1-2所示的SDP网络系统0中的控制器01,该节点切换方法可以包括:
步骤201、接收目标接入节点发送的协议配置请求消息,协议配置请求消息包括:UE的业务服务质量参数,协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,源接入节点为UE在节点切换前接入的节点,目标接入节点为UE在节点切换后接入的节点。
步骤202、根据业务服务质量参数确定UE的业务对应的功能模块。
步骤203、根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,目标节点包括:目标接入节点,目标节点用于在节点切换后,承载UE的业务对应的功能模块。
步骤204、根据为目标节点配置的功能模块和网络拓扑确定源节点与目标节点进行数据流传输所需的第一转发表项组,源节点包括:源接入节点,源节点用于在节点切换前,承载UE的业务对应的功能模块。
步骤205、根据为目标节点配置的功能模块和网络拓扑确定目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
综上所述,由于本发明实施例提供的节点切换方法中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE 的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
可选的,该目标节点还可以包括:目标转发节点,步骤203可以包括:
根据UE的业务对应的功能模块和网络拓扑确定目标转发节点,目标转发节点为目标接入节点与网关之间的节点,且能够在节点切换后承载UE的业务对应的功能模块中一部分;
根据UE的业务对应的功能模块和网络拓扑确定目标转发节点的功能模块和目标接入节点的功能模块,目标转发节点的功能模块和目标接入节点的功能模块组成UE的业务对应的功能模块。
示例的,源节点还包括:源转发节点,第一转发表项组,包括:
源接入节点向源转发节点发送数据流所需的转发表项,以及源转发节点和目标节点进行数据流传输所需的转发表项。
可选的,源节点还包括:源转发节点,第一转发表项组,包括:
源接入节点向源转发节点发送数据流所需的转发表项,以及源转发节点和目标转发节点进行数据流传输所需的转发表项。
可选的,步骤205可以包括:
根据为目标节点配置的功能模块和网络拓扑确定目标节点中任一节点的转发表项;
判断切换前与网关最近连接的源节点和切换后与网关最近连接的目标节点是否为同一节点;
若切换前与网关最近连接的源节点和切换后与网关最近连接的目标节点不为同一节点,确定网关的转发表项。
综上所述,由于本发明实施例提供的节点切换方法中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组, 使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图3所示,本发明实施例提供了另一种节点切换方法,可以用于源节点,源节点位于如图1-1或图1-2所示的SDP网络系统0中,该源节点可以为多个节点中在节点切换前承载UE-04的业务对应的功能模块的节点,该节点切换方法可以包括:
步骤301、接收控制器发送的第一转发表项组,第一转发表项组为控制器根据为目标节点配置的功能模块和网络拓扑确定的,目标节点为在节点切换后承载UE的业务对应的功能模块的节点。
步骤302、根据第一转发表项组向目标节点发送源节点上缓存的数据。
步骤303、接收下行数据流结束标识。
步骤304、根据下行数据流结束标识释放源节点上承载的UE的业务对应的功能模块。
步骤305、删除第一转发表项组和源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
综上所述,由于本发明实施例提供的节点切换方法中,源节点接收控制器发送的第一转发表项组,第一转发表项组为控制器根据为目标节点配置的功能模块和网络拓扑确定的,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,进而由目标节点中的目标接入节点将源节点上缓存的数据发送至UE,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
可选的,该源节点可以为源接入节点,源接入节点为节点切换前,UE接入的节点,在步骤301之前,该节点切换方法还可以包括:
向目标接入节点发送切换请求消息,切换请求消息包括:业务服务质量参数,以便于目标接入节点根据切换请求消息,判断UE是否能够接入目标接入节点,在UE能够接入目标接入节点时,向控制器发送协议配置请求消息,目标接入节点为UE在节点切换后接入的节点。
综上所述,由于本发明实施例提供的节点切换方法中,源节点接收控制器发送的第一转发表项组,第一转发表项组为控制器根据为目标节点配置的功能模块和网络拓扑确定的,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,进而由目标节点中的目标接入节点将源节点上缓存的数据发送至UE,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图4-1所示,本发明实施例提供了又一种节点切换方法,用于如图1-1所示的SDP网络系统0。示例的,该节点切换方法可以包括:
步骤401、UE通过源接入节点和源转发节点与网关之间进行数据流的交互。执行步骤402。
可选的,如图4-2所示,步骤401可以包括:
步骤4011、UE向控制器发送业务请求。
当UE需要执行业务时,UE能够根据UE的标识信息以及该业务的业务服务质量参数生成业务请求,并将该业务请求发送至控制器。
步骤4012、控制器根据业务请求,确定所述UE的业务对应的功能模块。
示例的,控制器可以根据业务请求中的UE的标识信息和业务服务质量参数确定UE的业务对应功能模块。需要说明的是,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块。可选的,控制器可以根据UE的标识信息和业务服务质量参数确定UE支持的接入技术,并根据接入技术以及业务服务质量参数选择处理UE的业务对应的功能模块。例如,当控制器接收到UE发送业务请求后,控制器可以根据业务请求,确定该UE对应的处理模块所在的协议层为物理(英文:Physical Layer;简称:PHY)层、媒体接入控制(英文:Media Access Control;简称:MAC)层、无线连接控制(英文:Radio Link Control;简称:RLC)层和分组数据汇聚协议(英文:Packet Data Convergence Protocol;简称:PDCP)层,并根据该业务请求在该PHY层、MAC层、RLC层和PDCP层中确定该UE的业务对应的功能模块。
需要说明的是,本发明实施例中,以该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层为例,对该节点切换方法进行解释说 明,实际应用中,该UE对应的处理模块还可以位于其他协议层,本发明实施例对此不作限定。
步骤4013、控制器根据UE的业务对应的功能模块和网络拓扑确定源接入节点和源转发节点。
需要说明的是,该控制器上可以维护有该SDP网络系统的网络拓扑,该网络拓扑中可以记载了该SDP网络系统中各个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。示例的,控制器可以根据UE的业务对应的功能模块和网络拓扑确定用于承载该UE的业务对应的功能模块的源接入节点和源转发节点。
如图1-1所示,若步骤4012中确定的UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4,且根据网络拓扑确定UE当前接入的节点为节点032a。控制器根据网络拓扑上记载的UE当前接入的节点032a的功能属性以及该UE的业务对应的功能模块,确定该UE当前接入的节点032a能够承载PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,但是该UE当前接入的节点032a无法承载PDCP层的功能模块4。此时,根据网络拓扑可以得知与UE当前接入的节点032a之间能够进行数据流交互的节点032b能够承载PDCP层的功能模块4,所以,可以确定节点032b为UE当前接入的节点032a对应的转发节点。并将UE当前接入的节点032a和UE当前接入的节点032a对应的转发节点032b确定为源节点,此时,该UE当前接入的节点032a称为源接入节点,UE当前接入的节点032a对应的转发节点032b称为源转发节点。
步骤4014、控制器为源接入节点和源转发节点配置功能模块。
示例的,如图1-1所示,控制器可以为源接入节点032a配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,为源转发节点032b配置PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成源接入节点配置命令,根据PDCP层的功能模块4生成源转发节点配置命令。并将该源接入节点配置命令发送至源接入节点032a,将源转发节点配置命令发送至源转发节点032b,以便于源接入节点032a根据该源接入节点配置命令激活相应的功能模块,以及源转发节点032b根据该源转发节点配置命令激活相应的功能模块。另一方面, 控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成源接入节点配置信息,根据PDCP层的功能模块4生成源转发节点配置信息。并将该源接入节点配置信息发送至源接入节点032a,将源转发节点配置信息发送至源转发节点032,以便于源接入节点032a根据该源接入节点配置信息配置相应的功能模块,以及源转发节点032b根据该源转发节点配置信息配置相应的功能模块。
步骤4015、控制器为源接入节点、源转发节点和网关,配置源接入节点、源转发节点和网关之间进行数据流传递所需的第三转发表项组。
控制器在确定了源节点后,可以根据网络拓扑确定源接入节点、源转发节点和网关之间进行数据流传递所需的第三转发表项组中的转发表项,并将第三转发表项组中的转发表项的配置信息分别发送至源接入节点、源转发节点和网关,以便于源接入节点、源转发节点和网关根据接收到的配置信息,配置相应的转发表项。具体的,该第三转发表项组可以包括:源接入节点向源转发节点发送数据流所需的转发表项,源转发节点向源接入节点发送数据流所需的转发表项,源转发节点向网关发送数据流所需的转发表项,以及网关向源转发节点发送数据流所需的转发表项。然后,将源接入节点向源转发节点发送数据流所需的转发表项的配置信息发送至源接入节点,将源转发节点向源接入节点发送数据流所需的转发表项的配置信息发送至源转发节点,将源转发节点向网关发送数据流所需的转发表项的配置信息发送至源转发节点,以及将网关向源转发节点发送数据流所需的转发表项的配置信息发送至网关。
步骤4016、控制器为UE配置UE的业务对应的功能模块。
若确定UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置命令,并将该UE配置命令发送至UE,以便于UE根据该UE配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置信息,并将该UE配置信息发送至UE,以便于UE根据该UE配置信息配置相应的功能模块。
步骤4017、UE通过源接入节点、源转发节点与网关进行数据流的交互。
示例的,如图1-1所示,由于步骤4013中确定的源节点包括:源接入节点032a和源转发节点032b,因此在步骤4017中,UE能够通过源接入节点032a、源转发节点032b与网关02进行数据流的交互。
步骤402、UE向源接入节点发送节点能力信息。执行步骤403。
示例的,UE可以定时的获取UE检测范围内的每个节点的能力信息,节点的能力信息可以为UE获取的该节点的信号质量强度,需要说明的是,该节点的能力信息还可以为其他信息,本发明实施例对此不做限定。UE可以通过空口与源接入节点之间建立连接,在UE获取了UE检测范围内的每个节点的能力信息后,UE可以通过空口将UE检测范围内的每个节点的能力信息发送至源接入节点。
步骤403、源接入节点根据节点能力信息,确定目标接入节点。执行步骤404。
在源接入节点接收到UE发送的UE检测范围内的节点的能力信息后,可以按照预设筛选方式,在该UE检测范围内的多个节点中筛选出一个满足筛选条件的节点作为目标接入节点。示例的,该源接入节点上可以存储有预设能力阈值,该源接入节点可以将该预设能力阈值与该UE检测范围内的每个节点的能力信息所指示的能力值进行比较,从而在UE检测范围内的多个节点中,筛选出能力信息指示的能力值大于预设能力阈值的节点,并确定节点的能力信息指示的能力值大于预设能力阈值的节点中,能力信息指示的能力值最大的节点为目标接入节点。需要说明的是,若该UE检测范围内的节点的能力信息所指示的能力值均小于预设能力阈值,则该源接入节点不执行动作。实际应用中,该源接入节点还可以通过其他方式确定目标接入节点,本发明实施例对此不做限定。如图4-3所示,当UE-04从源接入节点032a附近移动至节点033a附近时,源接入节点032a确定节点033a为目标接入节点。
步骤404、源接入节点根据UE的业务服务质量参数生成切换请求消息。执行步骤405。
源接入节点上可以存储有UE的业务服务质量参数,源接入节点可以根据UE的业务服务质量参数生成切换请求消息,该切换请求消息用于指示UE需要接入目标接入节点。可选的,该源接入节点还可以从UE上获取UE的业务服务质量参数。
步骤405、源接入节点向目标接入节点发送切换请求消息。执行步骤406。
由于步骤403中源接入节点确定了目标接入节点,且步骤405中该源接入节点生成了切换请求消息,所以在步骤405中该源接入节点可以根据目标接入节点的标识,将该切换请求消息发送至目标接入节点,示例的,该切换请求消息可以以信令的形式发送至目标接入节点。
步骤406、目标接入节点判断是否能够接入UE。若目标接入节点不能接入UE,则执行步骤407;若目标接入节点能够接入UE,则执行步骤408。
目标接入节点在接收到该源接入节点发送的切换请求消息后,可以根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE,若目标接入节点不能接入UE,则执行步骤407;若目标接入节点能够接入UE,则执行步骤408。可选的,目标接入节点根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE的具体步骤可以参考相关技术中节点根据业务服务质量参数判断该节点能否接入UE的具体步骤,本发明实施例在此不做赘述。
步骤407、目标接入节点向源接入节点指示目标接入节点不能接入UE。
若目标接入节点不能接入UE,则目标接入节点可以生成用于指示目标接入节点不能接入UE的消息,并将该用于指示目标接入节点不能接入UE的消息发送至源接入节点,以便于源接入节点在接收到该用于指示目标接入节点不能接入UE的消息后,确定目标接入节点不能接入UE。
步骤408、目标接入节点向源接入节点指示目标接入节点能够接入UE。执行步骤409。
目标接入节点可以生成用于指示目标接入节点能够接入UE的切换反馈消息,并将该切换反馈消息发送至源接入节点。
步骤409、源接入节点生成切换命令。执行步骤410。
该源接入节点在接收到目标接入节点发送的切换反馈消息后,可以生成用于指示UE进行节点切换的切换命令,示例的,该切换命令可以包括目标接入节点的标识。需要说明的是,该切换命令还可以包含其他信息,本发明实施例在此不做限定。
步骤410、源接入节点向UE发送切换命令。执行步骤411。
示例的,该源接入节点可以通过空口将该源接入节点生成的切换命令发送 至UE。
步骤411、UE根据切换命令与目标接入节点建立连接。执行步骤412。
UE在接收到用于指示UE进行节点切换的切换命令后,可以根据该切换命令与源接入节点断开连接,并与该目标接入节点建立连接。示例的,UE还可以重建该UE上的协议层,UE重建UE上的协议层的具体步骤可以参考现有技术中UE建立协议层的具体步骤,本发明实施例在此不做赘述。
步骤412、目标接入节点根据切换请求消息生成协议配置请求消息。执行步骤413。
若目标接入节点能够接入UE,则目标接入节点可以根据源接入节点发送的切换请求消息生成协议配置请求消息,该切换请求消息和该协议配置请求消息均可以包括UE的业务服务质量参数,该协议配置请求消息用于指示为目标接入节点配置功能模块。
步骤413、目标接入节点向控制器发送协议配置请求消息。执行步骤414。
可选的,目标接入节点可以将生成的协议配置请求消息发送至控制器。示例的,该协议配置请求消息可以以信令的方式发送至控制器。
步骤414、控制器根据协议配置请求消息确定UE的业务对应的功能模块。执行步骤415。
控制器可以根据协议配置请求消息中的UE的业务服务质量参数确定UE的业务对应的功能模块。可选的,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块,UE上可以设置有多个协议层,且UE的每个协议层上均可以设置有多个功能模块,每个功能模块的功能均不同。示例的,控制器可以根据UE的业务服务质量参数选择处理UE的业务对应的功能模块,该UE的业务对应的功能模块可以为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。
步骤415、控制器根据UE的业务对应的功能模块和网络拓扑确定目标转发节点。执行步骤416。
控制器上可以存储并维护有该SDP网络系统中的网络拓扑,即该SDP网络系统中多个设备之间的连接关系,以及该SDP网络系统中各个设 备的功能属性。控制器可以根据步骤414中确定的UE的业务对应的功能模块以及该SDP网络系统的网络拓扑确定该目标接入节点对应的目标转发节点。以使得该目标接入节点能够将目标接入节点上的数据流发送至网关。即控制器根据UE的业务对应的功能模块和网络拓扑确定在节点切换后承载UE的业务对应的功能模块的目标接入节点和目标转发节点。如图4-3所示,当UE-04从源接入节点032a附近移动至节点033a附近时,源接入节点032a确定节点033a为目标接入节点。此时,控制器01可以根据UE的业务对应的功能模块和网络拓扑确定节点033b为该目标接入节点033a对应的目标转发节点。
步骤416、控制器为目标接入节点和目标转发节点配置功能模块。执行步骤417。
控制器在确定了目标接入节点和目标转发节点后,可以根据UE的业务对应的功能模块和网络拓扑,为该目标接入节点和目标转发节点配置功能模块。
示例的,假设UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。如图4-3所示,控制器可以为目标接入节点033a配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,为目标转发节点033b配置PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置命令,根据PDCP层的功能模块4生成目标转发节点配置命令。并将该目标接入节点配置命令发送至目标接入节点033a,将目标转发节点配置命令发送至目标转发节点033b,以便于目标接入节点033a根据该目标接入节点配置命令激活相应的功能模块,以及目标转发节点033b根据该目标转发节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置信息,根据PDCP层的功能模块4生成目标转发节点配置信息。并将该目标接入节点配置信息发送至目标接入节点033a,将目标转发节点配置信息发送至目标转发节点033b,以便于目标接入节点033a根据该目标接入节点配置信息配置相应的功能模块,以及目标转发节点033b根据该目标转发节点配置信息配置相应的功能模块。
步骤417、控制器为源接入节点和源转发节点配置第一转发表项组。执行步骤418。
控制器可以根据为目标接入节点和目标转发节点配置的功能模块和网络拓扑,确定源接入节点向源转发节点发送数据流所需的转发表项,以及源转发节点与目标转发节点之间进行数据流传输所需的转发表项。示例的,该第一转发表项组可以包括:源转发节点向目标转发节点发送数据流所需的转发表项,以及源接入节点向源转发节点发送数据流所需的转发表项。然后,控制器可以将该源转发节点向目标转发节点发送数据流所需的转发表项的配置信息发送至该源转发节点,以及将该源接入节点向源转发节点发送数据流所需的转发表项的配置信息发送至该源接入节点,以便于该源接入节点和源转发节点根据接收到的转发表项的配置信息配置相应的转发表项。
需要说明的是,在步骤4015中,控制器为源接入节点配置了第三转发表项组中的转发表项,以便于源接入节点根据该第三转发表项组中的转发表项将UE发送的数据发送至该源转发节点。但是在步骤417中为该源接入节点配置的第一转发表项组中的转发表项,是用于转发该源接入节点上缓存的数据,即该源转发节点发送至源接入节点上的数据,该源转发节点发送至源接入节点上的数据与UE发送给源接入节点上的数据的不同,因此,不能直接使用步骤4015中为该源接入节点配置的第三转发表项组中的转发表项转发该源接入节点上缓存的数据,需要为该源接入节点配置该第一转发表项组中的转发表项。
步骤418、源接入节点根据第一转发表项组向源转发节点发送源接入节点上缓存的数据。执行步骤419。
源接入节点可以根据该源接入节点上的第一转发表项组中转发表项,将该源接入节点上缓存的数据发送至源转发节点。网关可以通过源转发节点和源接入节点将数据流发送至UE,示例的,在网关将数据流发送至源转发节点后,源转发节点可以对该网关发送的数据流进行加密处理,并将加密处理后的数据流发送至源接入节点,该源接入节点可以将源转发节点加密后的数据流进行处理并发送至UE,并且可以将该源转发节点加密后的数据流进行缓存。
步骤419、源转发节点向目标转发节点发送源转发节点上的协议状态信息。执行步骤420。
在节点切换前,网关可以通过源转发节点将数据流发送至源接入节点,进 而由源接入节点将数据流发送至UE,示例的,在网关将数据流发送至源转发节点后,源转发节点可以根据该源转发节点上与转发节点的功能相对应的协议状态信息对该网关发送的数据流进行加密处理,并将加密处理后的数据流发送至源接入节点。可选的,该源转发节点可以以信令的形式将该源转发节点上与转发节点的功能相对应的协议状态信息发送至目标转发节点,以便于目标转发节点根据该源转发节点上与转发节点的功能相对应的协议状态信息对UE与网关之间的数据流进行处理。
步骤420、源转发节点根据第一转发表项组向目标转发节点发送源接入节点上缓存的数据。执行步骤421。
示例的,在源接入节点将源接入节点上缓存的数据发送至源转发节点后,源转发节点可以对该源接入节点上的数据进行解密,并根据该源转发节点上的第一转发表项组中的转发表项将解密后的源接入节点上缓存的数据发送至目标转发节点。
步骤421、控制器为目标接入节点、目标转发节点和网关配置第二转发表项组。执行步骤422。
第二转发表项组可以包括:目标接入节点与目标转发节点之间进行数据流传输所需的转发表项,以及目标转发节点与网关之间进行数据流传输所需的转发表项。控制器可以根据为目标接入节点和目标转发节点配置的功能模块和网络拓扑,确定目标接入节点与目标转发节点之间进行数据流传输所需的转发表项,以及目标转发节点与网关之间进行数据流传输所需的转发表项。并将目标接入节点与目标转发节点之间进行数据流传输所需的转发表项的配置信息分别发送至目标接入节点与目标转发节点,以及将目标转发节点与网关之间进行数据流传输所需的转发表项的配置信息分别发送至目标转发节点与网关,以便于该目标接入节点、目标转发节点和网关根据接收到的转发表项的配置信息配置相应的转发表项,完成了为目标接入节点、目标转发节点和网关配置第二转发表项组。
需要说明的是,在控制器为目标转发节点配置第二转发表项组中的转发表项后,该目标转发节点可以根据步骤419中源转发节点发送的该源转发节点上与转发节点的功能相对应的协议状态信息,对步骤420中源转发节点发送的源接入节点上缓存的数据进行加密。并根据该第二转发表项组中的转发表项,将 加密后的源接入节点上缓存的数据发送至目标接入节点,由目标接入节点缓存该源接入节点上缓存的数据。需要说明的是,目标接入节点在接收到目标转发节点发送的源接入节点上缓存的数据后,还可以向UE发送该源接入节点上缓存的数据。
步骤422、网关向源转发节点发送下行数据流结束标识。执行步骤423。
在节点切换之前,由于网关与因特网相连接,网关可以接收因特网发送的下行数据流,并将该下行数据流发送至源转发节点,由该源转发节点发送至源接入节点,最终由源接入节点发送至UE。源接入节点和源转发节点在接收到第一转发表项组中的转发表项的配置信息,并根据接收到的转发表项的配置信息配置了相应的转发表项后,该源接入节点可以根据第一转发表项组中的转发表项向源转发节点发送该源接入节点上缓存的数据,以便于该源转发节点根据第一转发表项组中的转发表项将该源接入节点上缓存的数据发送至目标转发节点。网关在收到第二转发表项组的转发表项配置信息之后,可以生成下行数据流结束标识,并将该下行数据流结束标识发送至源转发节点。
该源转发节点在接收到网关发送的下行数据流结束标识后,可以将该下行数据流结束标识发送至源接入节点。该源接入节点在将该源接入节点上缓存的数据发送至该源转发节点后,可以根据该下行数据流结束标识释放源接入节点上的协议状态信息,还可以根据该下行数据流结束标识删除源接入节点上的第一转发表项组中的转发表项和第三转发表项组中的转发表项。该源接入节点还可以将该下行数据流结束标识发送至源转发节点,该源转发节点在接收到源接入节点发送的下行数据流结束标识后,可以根据该下行数据流结束标识释放源转发节点上的协议状态信息,该源转发节点还可以根据该下行数据流结束标识删除源转发节上的第一转发表项组中的转发表项和第三转发表项组中的转发表项。
步骤423、UE通过目标接入节点和目标转发节点与网关之间进行数据流的交互。
示例的,在UE与目标接入节点之间建立连接,且目标接入节点、目标转发节点与网关均配置了目标节点与所述网关之间进行数据流传递所需的第二转发表项组中的转发表项,且源接入节点上缓存的数据发送至目标接入节点,源转发节点上的协议状态信息发送至目标转发节点之后,UE即可以通过目标 接入节点和目标转发节点与网关之间进行数据流的交互,将UE从源接入节点和源转发节点切换至目标接入节点和目标转发节点。
进一步的,UE接收到的下行数据流可以由多个下行数据包组成,在步骤423之后,UE可以检测接收到的下行数据流是否完整,若UE检测到UE接收到的下行数据流不完整,则UE可以根据UE未接收到的下行数据包生成下行数据包重传指示信息,并将该下行重传指示信息发送至目标接入节点,由目标接入节点和目标转发节点根据该下行数据包重传指示信息,重新向UE传输UE未接收到的下行数据包。
本发明实施例中的控制器不仅能够为节点配置功能模块,并且能够为节点和网关配置转发表项。实际应用中,该控制器可以包括SDP控制器和SDN控制器,其中SDP控制器用于为节点配置功能模块,软件定义网络(英文:Software Defined Network;简称:SDN)控制器用于为节点和网关配置转发表项。需要说明的是,一方面,本发明实施例中以源接入节点确定目标接入节点为例,对该节点切换方法进行解释说明,实际应用中,也可以由控制器确定目标接入节点和目标转发节点,本发明实施例对此不做限定。另一方面,本发明实施例中以该源接入节点对应一个源转发节点,目标接入节点对应一个目标转发节点为例,对该节点切换方法进行解释说明,实际应用中,该源转发节点的个数还可以为其他数值,目标转发节点的个数也可以为其他数值,本发明实施例对此不作限定。
需要说明的是,本发明实施例提供的节点切换方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
综上所述,由于本发明实施例提供的节点切换方法中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的 切换,丰富了SDP网络系统的功能。
如图5-1所示,本发明实施例提供了再一种节点切换方法,用于如图1-2所示的SDP网络系统0。示例的,该节点切换方法可以包括:
步骤501、UE通过源接入节点与网关之间进行数据流的交互。执行步骤502。
可选的,如图5-2所示,步骤501可以包括:
步骤5011、UE向控制器发送业务请求。
当UE需要执行业务时,UE能够根据UE的标识信息以及该业务的业务服务质量参数生成业务请求,并将该业务请求发送至控制器。
步骤5012、控制器根据业务请求,确定所述UE的业务对应的功能模块。
示例的,控制器可以根据业务请求中的UE的标识信息和业务服务质量参数确定UE的业务对应功能模块。需要说明的是,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块。可选的,控制器可以根据UE的标识信息和业务服务质量参数确定UE支持的接入技术,并根据接入技术以及业务服务质量参数选择处理UE的业务对应的功能模块。例如,当控制器接收到UE发送业务请求后,控制器可以根据业务请求,确定该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层,并根据该业务请求在该PHY层、MAC层、RLC层和PDCP层中确定该UE的业务对应的功能模块。
需要说明的是,本发明实施例中,以该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层为例,对该节点切换方法进行解释说明,实际应用中,该UE对应的处理模块还可以位于其他协议层,本发明实施例对此不作限定。
步骤5013、控制器根据UE的业务对应的功能模块和网络拓扑确定源接入节点。
需要说明的是,该控制器上可以维护有该SDP网络系统的网络拓扑,该网络拓扑中可以记载了该SDP网络系统中各个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。示例的,控制器可以根据UE的业务对应的功能模块和网络拓扑确定用于承载该UE的业务对应的功能模块的源接入 节点。
如图1-2所示,若步骤5012中确定的UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4,且根据网络拓扑确定UE当前接入的节点为节点032b。控制器根据网络拓扑上记载的UE当前接入的节点032b的功能属性以及该UE的业务对应的功能模块,确定该UE当前接入的节点032b能够承载PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。
步骤5014、控制器为源接入节点配置功能模块。
示例的,如图1-2所示,控制器可以为源接入节点032b配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4生成源接入节点配置命令。并将该源接入节点配置命令发送至源接入节点032b,以便于源接入节点032b根据该源接入节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4生成源接入节点配置信息,并将该源接入节点配置信息发送至源接入节点032b,以便于源接入节点032b根据该源接入节点配置信息配置相应的功能模块。
步骤5015、控制器为源接入节点和网关,配置源接入节点和网关之间进行数据流传递所需的第三转发表项组。
控制器在确定了源节点后,可以根据网络拓扑确定源接入节点和网关之间进行数据流传递所需的第三转发表项组中的转发表项,并将第三转发表项组中的转发表项的配置信息分别发送至源接入节点和网关,以便于该源接入节点和网关根据接收到的配置信息配置相应的转发表项,为源接入节点和网关配置源接入节点与网关之间进行数据流传递所需的第三转发表项组。具体的,该第三转发表项组可以包括:源接入节点向网关发送数据流所需的转发表项,以及网关向源接入节点发送数据流所需的转发表项。然后,将源接入节点向网关发送数据流所需的转发表项的配置信息发送至源接入节点,以及将网关向源接入节点发送数据流所需的转发表项的配置信息发送至网关。
步骤5016、控制器为UE配置UE的业务对应的功能模块。
若确定UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置命令,并将该UE配置命令发送至UE,以便于UE根据该UE配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置信息,并将该UE配置信息发送至UE,以便于UE根据该UE配置信息配置相应的功能模块。
步骤5017、UE通过源接入节点与网关进行数据流的交互。
示例的,如图1-2所示,由于步骤5013中确定的源节点包括:源接入节点032b,因此在步骤5017中,UE能够通过源接入节点032b与网关02进行数据流的交互。
步骤502、UE向源接入节点发送节点能力信息。执行步骤503。
示例的,UE可以定时的获取UE检测范围内的每个节点的能力信息,UE获取的该节点的能力信息可以为UE获取的该节点的信号质量强度,需要说明的是,该节点的能力信息还可以为其他信息,本发明实施例对此不做限定。UE可以通过空口与源接入节点之间建立连接,在UE获取了UE检测范围内的每个节点的能力信息后,UE可以通过空口将UE检测范围内的每个节点的能力信息发送至源接入节点。
步骤503、源接入节点根据节点能力信息,确定目标接入节点。执行步骤504。
在源接入节点接收到UE发送的UE检测范围内的节点的能力信息后,可以按照预设筛选方式,在该UE检测范围内的多个节点中筛选出一个满足筛选条件的节点作为目标接入节点。示例的,该源接入节点上可以存储有预设能力阈值,该源接入节点可以将该预设能力阈值与该UE检测范围内的每个节点的能力信息所指示的能力值进行比较,从而在UE检测范围内的多个节点中,筛选出能力信息指示的能力值大于预设能力阈值的节点,并确定节点的能力信息指示的能力值大于预设能力阈值的节点中,能力信息指示的能力值最大的节点为目标接入节点。需要说明的是,若该UE检测范围内的节点的能力信息所指示的能力值均小于预设能力阈值,则该源接入节点不执行动作。实际应用中, 该源接入节点还可以通过其他方式确定目标接入节点,本发明实施例对此不做限定。如图5-3所示,当UE-04从源接入节点032b附近移动至节点033a附近时,源接入节点032b确定节点033a为目标接入节点。
步骤504、源接入节点根据UE的业务服务质量参数生成切换请求消息。执行步骤505。
源接入节点上可以存储有UE的业务服务质量参数,源接入节点可以根据UE的业务服务质量参数生成切换请求消息,该切换请求消息用于指示UE需要接入目标接入节点。可选的,该源接入节点还可以从UE上获取UE的业务服务质量参数。
步骤505、源接入节点向目标接入节点发送切换请求消息。执行步骤506。
由于步骤503中源接入节点确定了目标接入节点,且步骤505中该源接入节点生成了切换请求消息,所以在步骤505中该源接入节点可以根据目标接入节点的标识,将该切换请求消息发送至目标接入节点,示例的,该切换请求消息可以以信令的形式发送至目标接入节点。
步骤506、目标接入节点判断是否能够接入UE。若目标接入节点不能接入UE,则执行步骤507;若目标接入节点能够接入UE,则执行步骤508。
目标接入节点在接收到该源接入节点发送的切换请求消息后,可以根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE,若目标接入节点不能接入UE,则执行步骤507;若目标接入节点能够接入UE,则执行步骤508。可选的,目标接入节点根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE的具体步骤可以参考相关技术中节点根据业务服务质量参数判断该节点能否接入UE的具体步骤,本发明实施例在此不做赘述。
步骤507、目标接入节点向源接入节点指示目标接入节点不能接入UE。
若目标接入节点不能接入UE,则目标接入节点可以生成用于指示目标接入节点不能接入UE的消息,并将该用于指示目标接入节点不能接入UE的消息发送至源接入节点,以便于源接入节点在接收到该用于指示目标接入节点不能接入UE的消息后,确定目标接入节点不能接入UE。
步骤508、目标接入节点向源接入节点指示目标接入节点能够接入UE。执行步骤509。
目标接入节点可以生成用于指示目标接入节点能够接入UE的切换反馈消息,并将该切换反馈消息发送至源接入节点。
步骤509、源接入节点生成切换命令。执行步骤510。
该源接入节点在接收到目标接入节点发送的切换反馈消息后,可以生成用于指示UE进行节点切换的切换命令,示例的,该切换命令可以包括目标接入节点的标识。需要说明的是,该切换命令还可以包含其他信息,本发明实施例在此不做限定。
步骤510、源接入节点向UE发送切换命令。执行步骤511。
示例的,该源接入节点可以通过空口将该源接入节点生成的切换命令发送至UE。
步骤511、UE根据切换命令与目标接入节点建立连接。执行步骤512。
UE在接收到用于指示UE进行节点切换的切换命令后,可以根据该切换命令与源接入节点断开连接,并与该目标接入节点建立连接。示例的,UE还可以重建该UE上的协议层,UE重建UE上的协议层的具体步骤可以参考现有技术中UE建立协议层的具体步骤,本发明实施例在此不做赘述。
步骤512、目标接入节点根据切换请求消息生成协议配置请求消息。执行步骤513。
若目标接入节点能够接入UE,则目标接入节点可以根据源接入节点发送的切换请求消息生成协议配置请求消息,该切换请求消息和该协议配置请求消息均可以包括UE的业务服务质量参数,该协议配置请求消息用于指示为目标接入节点配置功能模块。
步骤513、目标接入节点向控制器发送协议配置请求消息。执行步骤514。
可选的,目标接入节点可以将生成的协议配置请求消息发送至控制器。示例的,该协议配置请求消息可以以信令的方式发送至控制器。
步骤514、控制器根据协议配置请求消息确定UE的业务对应的功能模块。执行步骤515。
控制器可以根据协议配置请求消息中的UE的业务服务质量参数确定UE的业务对应的功能模块。可选的,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块,UE上可 以设置有多个协议层,且UE的每个协议层上均可以设置有多个功能模块,每个功能模块的功能均不同。示例的,控制器可以根据UE的业务服务质量参数选择处理UE的业务对应的功能模块,该UE的业务对应的功能模块可以为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。
步骤515、控制器根据UE的业务对应的功能模块和网络拓扑确定目标转发节点。执行步骤516。
控制器上可以存储并维护有该SDP网络系统中的网络拓扑,即该SDP网络系统中多个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。控制器可以根据步骤514中确定的UE的业务对应的功能模块以及该SDP网络系统的网络拓扑确定该目标接入节点对应的目标转发节点。以使得该目标接入节点能够将目标接入节点上的数据流发送至网关。即控制器根据UE的业务对应的功能模块和网络拓扑确定在节点切换后承载UE的业务对应的功能模块的目标接入节点和目标转发节点。如图5-3所示,当UE-04从源接入节点032b附近移动至节点033a附近时,源接入节点032b确定节点033a为目标接入节点。此时,控制器01可以根据UE的业务对应的功能模块和网络拓扑确定节点033b为该目标接入节点033a对应的目标转发节点。
步骤516、控制器为目标接入节点和目标转发节点配置功能模块。执行步骤517。
控制器在确定了目标接入节点和目标转发节点后,可以根据UE的业务对应的功能模块和网络拓扑,为该目标接入节点和目标转发节点配置功能模块。
示例的,假设UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。如图5-3所示,控制器可以为目标接入节点033a配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,为目标转发节点033b配置PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置命令,根据PDCP层的功能模块4生成目标转发节点配置命令。并将该目标接入节点配置命令发送至目标接入节 点033a,将目标转发节点配置命令发送至目标转发节点033b,以便于目标接入节点033a根据该目标接入节点配置命令激活相应的功能模块,以及目标转发节点033b根据该目标转发节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置信息,根据PDCP层的功能模块4生成目标转发节点配置信息。并将该目标接入节点配置信息发送至目标接入节点033a,将目标转发节点配置信息发送至目标转发节点033b,以便于目标接入节点033a根据该目标接入节点配置信息配置相应的功能模块,以及目标转发节点033b根据该目标转发节点配置信息配置相应的功能模块。
步骤517、控制器为源接入节点配置第一转发表项组。执行步骤518。
控制器可以根据为目标接入节点和目标转发节点配置的功能模块和网络拓扑,确定源接入节点与目标转发节点之间进行数据流传输所需的第一转发表项组中的转发表项。示例的,该第一转发表项组可以包括:源接入节点向目标转发节点发送数据流所需的转发表项。然后,控制器可以将该源接入节点向目标转发节点发送数据流所需的转发表项的配置信息发送至该源接入节点,以便于该源接入节点根据该转发表项的配置信息配置转发表项。
步骤518、源接入节点向目标转发节点发送源接入节点上的协议状态信息。执行步骤519。
在节点切换前,网关可以通过源接入节点将数据流发送至UE,示例的,在网关将数据流发送至源接入节点后,源接入节点可以根据源接入节点上与转发节点的功能相对应的协议状态信息对该网关发送的数据流进行加密处理,并将加密处理后的数据流发送至UE,并且可以将该源接入节点加密后的数据流进行缓存。可选的,该源接入节点可以以信令的方式将该源接入节点上与转发节点的功能相对应的协议状态信息发送至目标转发节点,以便于目标转发节点根据该源接入节点上与转发节点的功能相对应的协议状态信息对UE与网关之间的数据流进行处理。
步骤519、源接入节点根据第一转发表项组向目标转发节点发送源接入节点上缓存的数据。执行步骤520。
示例的,源接入节点可以对该源接入节点上的数据进行解密,并根据该源接入节点上该第一转发表项组中的转发表项将源接入节点上上缓存的数据发 送至目标接入节点。
步骤520、控制器为目标接入节点、目标转发节点和网关配置第二转发表项组。执行步骤521。
该第二转发表项组可以包括:目标接入节点与目标转发节点之间进行数据流传输所需的转发表项,以及目标转发节点与网关之间进行数据流传输所需的转发表项。控制器可以根据为目标接入节点和目标转发节点配置的功能模块和网络拓扑,确定目标接入节点与目标转发节点之间进行数据流传输所需的转发表项,以及目标转发节点与网关之间进行数据流传输所需的转发表项。并将目标接入节点与目标转发节点之间进行数据流传输所需的转发表项的配置信息分别发送至目标接入节点与目标转发节点,以及将目标转发节点与网关之间进行数据流传输所需的转发表项的配置信息分别发送至目标转发节点与网关,以便于该目标接入节点、目标转发节点和网关根据接收到的第二转发表项组中转发表项的配置信息配置第二转发表项组中的转发表项,完成了为目标接入节点、目标转发节点和网关配置第二转发表项组。
需要说明的是,在控制器为目标转发节点配置第二转发表项组中的转发表项后,该目标转发节点可以根据步骤518中源接入节点发送的该源接入节点上与转发节点的功能相对应的协议状态信息,对步骤419中源接入节点发送的源接入节点上缓存的数据进行加密。并根据该第二转发表项组的转发表项后,将加密后的源接入节点上缓存的数据发送至目标接入节点,由目标接入节点缓存该源接入节点上缓存的数据。需要说明的是,目标接入节点在接收到目标转发节点发送的源接入节点上缓存的数据后,还可以向UE发送该源接入节点上缓存的数据。
步骤521、网关向源接入节点发送下行数据流结束标识。执行步骤522。
在节点切换之前,由于网关与因特网相连接,网关可以接收因特网发送的下行数据流,并将该下行数据流发送至源接入节点,由该源接入节点发送至UE。源接入节点在接收到第一转发表项组中的转发表项的配置信息,并根据接收到的转发表项的配置信息配置了相应的转发表项后,该源接入节点可以根据第一转发表项组中的转发表项向目标转发节点发送该源接入节点上缓存的数据。网关在收到第二转发表项组中的转发表项的配置信息之后,可以生成下行数据流结束标识,并将该下行数据流结束标识发送至源接入节点。
该源接入节点在接收到网关发送的下行数据流结束标识后,该源接入节点将该源接入节点上缓存的数据发送至该目标转发节点后,可以根据该下行数据流结束标识释放源接入节点上的协议状态信息,还可以根据该下行数据流结束标识删除源接入节点上的第一转发表项组中的转发表项和第三转发表项组中的转发表项。
步骤522、UE通过目标接入节点和目标转发节点与网关之间进行数据流的交互。
示例的,在UE与目标接入节点之间建立连接,且目标接入节点、目标转发节点与网关均配置了目标节点与所述网关之间进行数据流传递所需的第二转发表项组,且源接入节点上缓存的数据发送至目标转发节点,源接入节点上与转发节点的功能相对应的协议状态信息发送至目标转发节点之后,UE即可以通过目标接入节点和目标转发节点与网关之间进行数据流的交互,将UE从源接入节点切换至目标接入节点和目标转发节点。
进一步的,UE接收到的下行数据流可以由多个下行数据包组成,在步骤522之后,UE可以检测接收到的下行数据流是否完整,若UE检测到UE接收到的下行数据流不完整,则UE可以根据UE未接收到的下行数据包生成下行数据包重传指示信息,并将该下行重传指示信息发送至目标接入节点,由目标接入节点和目标转发节点根据该下行数据包重传指示信息,重新向UE传输UE未接收到的下行数据包。
本发明实施例中的控制器不仅能够为节点配置功能模块,并且能够为节点和网关配置转发表项。实际应用中,该控制器可以包括SDP控制器和SDN控制器,其中SDP控制器用于为节点配置功能模块,SDN控制器用于为节点和网关配置转发表项。需要说明的是,一方面,本发明实施例中以源接入节点确定目标接入节点为例,对该节点切换方法进行解释说明,实际应用中,也可以由控制器确定目标接入节点和目标转发节点,本发明实施例对此不做限定。另一方面,本发明实施例中以目标接入节点对应一个目标转发节点为例,对该节点切换方法进行解释说明,实际应用中,该目标转发节点的个数也可以为其他数值,本发明实施例对此不作限定。
需要说明的是,本发明实施例提供的节点切换方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术 人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
综上所述,由于本发明实施例提供的节点切换方法中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图6-1所示,本发明另一实施例提供了一种节点切换方法,用于如图1-1所示的SDP网络系统0。示例的,该节点切换方法可以包括:
步骤601、UE通过源接入节点和源转发节点与网关之间进行数据流的交互。执行步骤602。
可选的,如图6-2所示,步骤601可以包括:
步骤6011、UE向控制器发送业务请求。
当UE需要执行业务时,UE能够根据UE的标识信息以及该业务的业务服务质量参数生成业务请求,并将该业务请求发送至控制器。
步骤6012、控制器根据业务请求,确定所述UE的业务对应的功能模块。
示例的,控制器可以根据业务请求中的UE的标识信息和业务服务质量参数确定UE的业务对应功能模块。需要说明的是,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块。可选的,控制器可以根据UE的标识信息和业务服务质量参数确定UE支持的接入技术,并根据接入技术以及业务服务质量参数选择处理UE的业务对应的功能模块。例如,当控制器接收到UE发送业务请求后,控制器可以根据业务请求,确定该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层,并根据该业务请求在该PHY层、MAC层、RLC层和PDCP层中确定该UE的业务对应的功能模块。
需要说明的是,本发明实施例中,以该UE对应的处理模块所在的协议层 为PHY层、MAC层、RLC层和PDCP层为例,对该节点切换方法进行解释说明,实际应用中,该UE对应的处理模块还可以位于其他协议层,本发明实施例对此不作限定。
步骤6013、控制器根据UE的业务对应的功能模块和网络拓扑确定源接入节点和源转发节点。
需要说明的是,该控制器上可以维护有该SDP网络系统的网络拓扑,该网络拓扑中可以记载了该SDP网络系统中各个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。示例的,控制器可以根据UE的业务对应的功能模块和网络拓扑确定用于承载该UE的业务对应的功能模块的源接入节点和源转发节点。
如图1-1所示,若步骤6012中确定的UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4,且根据网络拓扑确定UE当前接入的节点为节点032a。控制器根据网络拓扑上记载的UE当前接入的节点032a的功能属性以及该UE的业务对应的功能模块,确定该UE当前接入的节点032a能够承载PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,但是该UE当前接入的节点032a无法承载PDCP层的功能模块4。此时,根据网络拓扑可以得知与UE当前接入的节点032a之间能够进行数据流交互的节点032b能够承载PDCP层的功能模块4,所以,可以确定节点032b为UE当前接入的节点032a对应的转发节点。并将UE当前接入的节点032a和UE当前接入的节点032a对应的转发节点032b确定为源节点,此时,该UE当前接入的节点032a称为源接入节点,UE当前接入的节点032a对应的转发节点032b称为源转发节点。
步骤6014、控制器为源接入节点和源转发节点配置功能模块。
示例的,如图1-1所示,控制器可以为源接入节点032a配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,为源转发节点032b配置PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成源接入节点配置命令,根据PDCP层的功能模块4生成源转发节点配置命令。并将该源接入节点配置命令发送至源接入节点032a,将源转发节点配置命令发送至源转发节点032b,以便于源接入节点032a根据该源接入节点配置命令激活相应的功能模块,以及 源转发节点032b根据该源转发节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成源接入节点配置信息,根据PDCP层的功能模块4生成源转发节点配置信息。并将该源接入节点配置信息发送至源接入节点032a,将源转发节点配置信息发送至源转发节点032,以便于源接入节点032a根据该源接入节点配置信息配置相应的功能模块,以及源转发节点032b根据该源转发节点配置信息配置相应的功能模块。
步骤6015、控制器为源接入节点、源转发节点和网关,配置源接入节点、源转发节点和网关之间进行数据流传递所需的第三转发表项组。
控制器在确定了源节点后,可以根据网络拓扑确定源接入节点、源转发节点和网关之间进行数据流传递所需的第三转发表项组中的转发表项,并将第三转发表项组中的转发表项的配置信息分别发送至源接入节点、源转发节点和网关,以便于该源接入节点、源转发节点和网关根据接收到的配置信息配置相应的转发表项,为源接入节点、源转发节点和网关配置每个源节点与网关之间进行数据流传递所需的第三转发表项组。具体的,该第三转发表项组可以包括:源接入节点向源转发节点发送数据流所需的转发表项,源转发节点向源接入节点发送数据流所需的转发表项,源转发节点向网关发送数据流所需的转发表项,以及网关向源转发节点发送数据流所需的转发表项。然后,将源接入节点向源转发节点发送数据流所需的转发表项的配置信息发送至源接入节点,将源转发节点向源接入节点发送数据流所需的转发表项的配置信息发送至源转发节点,将源转发节点向网关发送数据流所需的转发表项的配置信息发送至源转发节点,以及将网关向源转发节点发送数据流所需的转发表项的配置信息发送至网关。
步骤6016、控制器为UE配置UE的业务对应的功能模块。
若确定UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置命令,并将该UE配置命令发送至UE,以便于UE根据该UE配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及 PDCP层的功能模块4生成UE配置信息,并将该UE配置信息发送至UE,以便于UE根据该UE配置信息配置相应的功能模块。
步骤6017、UE通过源接入节点、源转发节点与网关进行数据流的交互。
示例的,如图1-1所示,由于步骤6013中确定的源节点包括:源接入节点032a和源转发节点032b,因此在步骤6017中,UE能够通过源接入节点032a、源转发节点032b与网关02进行数据流的交互。
步骤602、UE向源接入节点发送节点能力信息。执行步骤603。
示例的,UE可以定时的获取UE检测范围内的每个节点的能力信息,UE获取的该节点的能力信息可以为UE获取的该节点的信号质量强度,需要说明的是,该节点的能力信息还可以为其他信息,本发明实施例对此不做限定。UE可以通过空口与源接入节点之间建立连接,在UE获取了UE检测范围内的每个节点的能力信息后,UE可以通过空口将UE检测范围内的每个节点的能力信息发送至源接入节点。
步骤603、源接入节点根据节点能力信息,确定目标接入节点。执行步骤604。
在源接入节点接收到UE发送的UE检测范围内的节点的能力信息后,可以按照预设筛选方式,在该UE检测范围内的多个节点中筛选出一个满足筛选条件的节点作为目标接入节点。示例的,该源接入节点上可以存储有预设能力阈值,该源接入节点可以将该预设能力阈值与该UE检测范围内的每个节点的能力信息所指示的能力值进行比较,从而在UE检测范围内的多个节点中,筛选出能力信息指示的能力值大于预设能力阈值的节点,并确定节点的能力信息指示的能力值大于预设能力阈值的节点中,能力信息指示的能力值最大的节点为目标接入节点。需要说明的是,若该UE检测范围内的节点的能力信息所指示的能力值均小于预设能力阈值,则该源接入节点不执行动作。实际应用中,该源接入节点还可以通过其他方式确定目标接入节点,本发明实施例对此不做限定。如图6-3所示,当UE-04从源接入节点032a附近移动至节点033b附近时,源接入节点032a确定节点033b为目标接入节点。
步骤604、源接入节点根据UE的业务服务质量参数生成切换请求消息。执行步骤605。
源接入节点上可以存储有UE的业务服务质量参数,源接入节点可以根据 UE的业务服务质量参数生成切换请求消息,该切换请求消息用于指示UE需要接入目标接入节点。可选的,该源接入节点还可以从UE上获取UE的业务服务质量参数。
步骤605、源接入节点向目标接入节点发送切换请求消息。执行步骤606。
由于步骤603中源接入节点确定了目标接入节点,且步骤605中该源接入节点生成了切换请求消息,所以在步骤605中该源接入节点可以根据目标接入节点的标识,将该切换请求消息发送至目标接入节点,示例的,该切换请求消息可以以信令的形式发送至目标接入节点。
步骤606、目标接入节点判断是否能够接入UE。若目标接入节点不能接入UE,则执行步骤607;若目标接入节点能够接入UE,则执行步骤608。
目标接入节点在接收到该源接入节点发送的切换请求消息后,可以根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE,若目标接入节点不能接入UE,则执行步骤607;若目标接入节点能够接入UE,则执行步骤608。可选的,目标接入节点根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE的具体步骤可以参考相关技术中节点根据业务服务质量参数判断该节点能否接入UE的具体步骤,本发明实施例在此不做赘述。
步骤607、目标接入节点向源接入节点指示目标接入节点不能接入UE。
若目标接入节点不能接入UE,则目标接入节点可以生成用于指示目标接入节点不能接入UE的消息,并将该用于指示目标接入节点不能接入UE的消息发送至源接入节点,以便于源接入节点在接收到该用于指示目标接入节点不能接入UE的消息后,确定目标接入节点不能接入UE。
步骤608、目标接入节点向源接入节点指示目标接入节点能够接入UE。执行步骤609。
目标接入节点可以生成用于指示目标接入节点能够接入UE的切换反馈消息,并将该切换反馈消息发送至源接入节点。
步骤609、源接入节点生成切换命令。执行步骤610。
该源接入节点在接收到目标接入节点发送的切换反馈消息后,可以生成用于指示UE进行节点切换的切换命令,示例的,该切换命令可以包括目标接入节点的标识。需要说明的是,该切换命令还可以包含其他信息,本发明实施例 在此不做限定。
步骤610、源接入节点向UE发送切换命令。执行步骤611。
示例的,该源接入节点可以通过空口将该源接入节点生成的切换命令发送至UE。
步骤611、UE根据切换命令与目标接入节点建立连接。执行步骤612。
UE在接收到用于指示UE进行节点切换的切换命令后,可以根据该切换命令与源接入节点断开连接,并与该目标接入节点建立连接。示例的,UE还可以重建该UE上的协议层,UE重建UE上的协议层的具体步骤可以参考现有技术中UE建立协议层的具体步骤,本发明实施例在此不做赘述。
步骤612、目标接入节点根据切换请求消息生成协议配置请求消息。执行步骤613。
若目标接入节点能够接入UE,则目标接入节点可以根据源接入节点发送的切换请求消息生成协议配置请求消息,该切换请求消息和该协议配置请求消息均可以包括UE的业务服务质量参数,该协议配置请求消息用于指示为目标接入节点配置功能模块。
步骤613、目标接入节点向控制器发送协议配置请求消息。执行步骤614。
可选的,目标接入节点可以将生成的协议配置请求消息发送至控制器。示例的,该协议配置请求消息可以以信令的方式发送至控制器。
步骤614、控制器根据协议配置请求消息确定UE的业务对应的功能模块。执行步骤615。
控制器可以根据协议配置请求消息中的UE的业务服务质量参数确定UE的业务对应的功能模块。可选的,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块,UE上可以设置有多个协议层,且UE的每个协议层上均可以设置有多个功能模块,每个功能模块的功能均不同。示例的,控制器可以根据UE的业务服务质量参数选择处理UE的业务对应的功能模块,该UE的业务对应的功能模块可以为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。
步骤615、控制器为目标接入节点配置功能模块。执行步骤616。
需要说明的是,控制器上可以存储并维护有该SDP网络系统中的网络拓扑,即该SDP网络系统中多个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。控制器可以根据步骤614中确定的UE的业务对应的功能模块以及该SDP网络系统的网络拓扑确定该目标接入节点能够承载UE的业务对应的所有功能模块,且该目标接入节点与网关之间无需转发节点即可将目标接入节点上的数据流发送至网关。如图6-3所示,当UE-04从源接入节点032a附近移动至节点033b附近时,源接入节点032a确定节点033b为目标接入节点。
控制器在确定了目标接入节点后,可以根据UE的业务对应的功能模块和网络拓扑,为该目标接入节点配置功能模块。
示例的,假设UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。如图6-3所示,控制器可以为目标接入节点033b配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4生成目标接入节点配置命令,并将该目标接入节点配置命令发送至目标接入节点033b,以便于目标接入节点033b根据该目标接入节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4生成目标接入节点配置信息,并将该目标接入节点配置信息发送至目标接入节点033b,以便于目标接入节点033b根据该目标接入节点配置信息配置相应的功能模块。
步骤616、控制器为源接入节点和源转发节点配置第一转发表项组。执行步骤617。
控制器可以根据为目标接入节点配置的功能模块和网络拓扑,确定源接入节点向源转发节点发送数据流所需的转发表项,以及源转发节点与目标接入节点之间进行数据流传输所需的转发表项。示例的,该第一转发表项组可以包括:源转发节点向目标接入节点发送数据流所需的转发表项,以及源接入节点向源转发节点发送数据流所需的转发表项。然后,控制器可以将该源转发节点向目标接入节点发送数据流所需的转发表项的配置信息发送至该源 转发节点,以及将该源接入节点向源转发节点发送数据流所需的转发表项的配置信息发送至该源接入节点,以便于该源接入节点和源转发节点根据接收到的转发表项的配置信息配置相应的转发表项。
需要说明的是,在步骤6015中,控制器为源接入节点配置了第三转发表项组中的转发表项,以便于源接入节点根据该第三转发表项组中的转发表项将UE发送的数据发送至该源转发节点。但是在步骤616中为该源接入节点配置的第一转发表项组中的转发表项,是用于转发该源接入节点上缓存的数据,即该源转发节点发送至源接入节点上的数据,与UE发送给源接入节点上的数据的不同,因此,不能直接使用步骤6015中为该源接入节点配置的第三转发表项组中的转发表项转发该源接入节点上缓存的数据,需要为该源接入节点配置该第一转发表项组中的转发表项。
步骤617、源接入节点根据第一转发表项组向源转发节点发送源接入节点上缓存的数据。执行步骤618。
源接入节点可以根据该源接入节点上的第一转发表项组中的转发表项,将该源接入节点上缓存的数据发送至源转发节点。网关可以通过源转发节点和源接入节点将数据流发送至UE,示例的,在网关将数据流发送至源转发节点后,源转发节点可以对该网关发送的数据流进行加密处理,并将加密处理后的数据流发送至源接入节点,该源接入节点可以将源转发节点加密后的数据流进行处理并发送至UE,并且可以将该源转发节点加密后的数据流进行缓存。
步骤618、源转发节点向目标接入节点发送源转发节点上的协议状态信息。执行步骤619。
在节点切换前,网关可以通过源转发节点将数据流发送源接入节点,进而由源接入节点将数据流发送至UE,示例的,在网关将数据流发送至源转发节点后,源转发节点可以根据该源转发节点上与转发节点的功能相对应的协议状态信息对该网关发送的数据流进行加密处理,并将加密处理后的数据流发送至源接入节点。可选的,该源转发节点可以以信令的形式将该源转发节点上与转发节点的功能相对应的协议状态信息发送至目标接入节点,以便于目标接入节点根据该源转发节点上与转发节点的功能相对应的协议状态信息对UE与网关之间的数据流进行处理。
步骤619、源转发节点根据第一转发表项组向目标接入节点发送源接入节 点上缓存的数据。执行步骤620。
示例的,在源接入节点将源接入节点上缓存的数据发送至源转发节点后,源转发节点可以对该源接入节点上的数据进行解密,并将解密后的源接入节点上缓存的数据发送至目标接入节点。
需要说明的是,该目标接入节点可以根据步骤618中源转发节点发送的该源转发节点上与转发节点的功能相对应的协议状态信息,对步骤619中源转发节点发送的源接入节点上缓存的数据进行加密,由目标接入节点缓存该源接入节点上缓存的数据。需要说明的是,目标接入节点还可以向UE发送该源接入节点上缓存的数据。
步骤620、控制器为目标接入节点和网关配置第二转发表项组。执行步骤621。
第二转发表项组可以包括:目标接入节点与网关之间进行数据流传输所需的转发表项。控制器可以根据为目标接入节点配置的功能模块和网络拓扑,确定目标接入节点与网关之间进行数据流传输所需的转发表项。并将目标接入节点与网关之间进行数据流传输所需的转发表项的配置信息分别发送至目标接入节点与网关,以便于该目标接入节点和网关根据接收到的转发表项的配置信息配置相应的转发表项,完成了为目标接入节点和网关配置第二转发表项组。
步骤621、网关向源转发节点发送下行数据流结束标识。执行步骤622。
在节点切换之前,由于网关与因特网相连接,网关可以接收因特网发送的下行数据流,并将该下行数据流发送至源转发节点,由该源转发节点发送至源接入节点,最终由源接入节点发送至UE。源接入节点和源转发节点在接收到第一转发表项组中转发表项的配置信息,并根据接收到的转发表项的配置信息配置了相应的转发表项后,该源接入节点可以根据第一转发表项组中的转发表项向源转发节点发送该源接入节点上缓存的数据,以便于该源转发节点根据第一转发表项组中的转发表项将该源接入节点上缓存的数据发送至目标接入节点。网关在收到第二转发表项组中的转发表项的配置信息之后,可以生成下行数据流结束标识,并将该下行数据流结束标识发送至源转发节点。
该源转发节点在接收到网关发送的下行数据流结束标识后,可以将该下行数据流结束标识发送至源接入节点。该源接入节点在将该源接入节点上缓存的 数据发送至该源转发节点后,可以根据该下行数据流结束标识释放源接入节点上的协议状态信息,还可以根据该下行数据流结束标识删除源接入节点上的第一转发表项组中的转发表项和第三转发表项组中的转发表项。该源接入节点还可以将该下行数据流结束标识发送至源转发节点,该源转发节点在接收到源接入节点发送的下行数据流结束标识后,可以根据该下行数据流结束标识释放源转发节点上的协议状态信息,该源转发节点还可以根据该下行数据流结束标识删除源转发节上的第一转发表项组中的转发表项和第三转发表项组中的转发表项。
步骤622、UE通过目标接入节点与网关之间进行数据流的交互。
示例的,在UE与目标接入节点之间建立连接,且目标接入节点与网关均配置了目标节点与所述网关之间进行数据流传递所需的第二转发表项组,且源接入节点上缓存的数据发送至目标接入节点,源转发节点上的协议状态信息发送至目标接入节点之后,UE即可以通过目标接入节点与网关之间进行数据流的交互,将UE从源接入节点和源转发节点切换至目标接入节点。
进一步的,UE接收到的下行数据流可以由多个下行数据包组成,在步骤622之后,UE可以检测接收到的下行数据流是否完整,若UE检测到UE接收到的下行数据流不完整,则UE可以根据UE未接收到的下行数据包生成下行数据包重传指示信息,并将该下行重传指示信息发送至目标接入节点,由目标接入节点根据该下行数据包重传指示信息,重新向UE传输UE未接收到的下行数据包。
本发明实施例中的控制器不仅能够为节点配置功能模块,并且能够为节点和网关配置转发表项。实际应用中,该控制器可以包括SDP控制器和SDN控制器,其中SDP控制器用于为节点配置功能模块,SDN控制器用于为节点和网关配置转发表项。需要说明的是,一方面,本发明实施例中以源接入节点确定目标接入节点为例,对该节点切换方法进行解释说明,实际应用中,也可以由控制器确定目标接入节点,本发明实施例对此不做限定。另一方面,本发明实施例中,以该源接入节点对应一个源转发节点为例,对该节点切换方法进行解释说明,实际应用中,该源转发节点的个数还可以为其他数值,本发明实施例对此不作限定。
需要说明的是,本发明实施例提供的节点切换方法步骤的先后顺序可以进 行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
综上所述,由于本发明实施例提供的节点切换方法中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图7-1所示,本发明另一实施例提供了另一种节点切换方法,用于如图1-1所示的SDP网络系统0。示例的,该节点切换方法可以包括:
步骤701、UE通过源接入节点和源转发节点与网关之间进行数据流的交互。执行步骤702。
可选的,如图7-2所示,步骤701可以包括:
步骤7011、UE向控制器发送业务请求。
当UE需要执行业务时,UE能够根据UE的标识信息以及该业务的业务服务质量参数生成业务请求,并将该业务请求发送至控制器。
步骤7012、控制器根据业务请求,确定所述UE的业务对应的功能模块。
示例的,控制器可以根据业务请求中的UE的标识信息和业务服务质量参数确定UE的业务对应功能模块。需要说明的是,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块。可选的,控制器可以根据UE的标识信息和业务服务质量参数确定UE支持的接入技术,并根据接入技术以及业务服务质量参数选择处理UE的业务对应的功能模块。例如,当控制器接收到UE发送业务请求后,控制器可以根据业务请求,确定该UE对应的处理模块所在的协议层为PHY层、媒体接入控制MAC层、RLC层和PDCP层,并根据该业务请求在该PHY层、MAC层、RLC层和PDCP层中确定该UE的业务对应的功能模块。
需要说明的是,本发明实施例中,以该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层为例,对该节点切换方法进行解释说明,实际应用中,该UE对应的处理模块还可以位于其他协议层,本发明实施例对此不作限定。
步骤7013、控制器根据UE的业务对应的功能模块和网络拓扑确定源接入节点和源转发节点。
需要说明的是,该控制器上可以维护有该SDP网络系统的网络拓扑,该网络拓扑中可以记载了该SDP网络系统中各个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。示例的,控制器可以根据UE的业务对应的功能模块和网络拓扑确定用于承载该UE的业务对应的功能模块的源接入节点和源转发节点。
如图1-1所示,若步骤7012中确定的UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4,且根据网络拓扑确定UE当前接入的节点为节点032a。控制器根据网络拓扑上记载的UE当前接入的节点032a的功能属性以及该UE的业务对应的功能模块,确定该UE当前接入的节点032a能够承载PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,但是该UE当前接入的节点032a无法承载PDCP层的功能模块4。此时,根据网络拓扑可以得知与UE当前接入的节点032a之间能够进行数据流交互的节点032b能够承载PDCP层的功能模块4,所以,可以确定节点032b为UE当前接入的节点032a对应的转发节点。并将UE当前接入的节点032a和UE当前接入的节点032a对应的转发节点032b确定为源节点,此时,该UE当前接入的节点032a称为源接入节点,UE当前接入的节点032a对应的转发节点032b称为源转发节点。
步骤7014、控制器为源接入节点和源转发节点配置功能模块。
示例的,如图1-1所示,控制器可以为源接入节点032a配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,为源转发节点032b配置PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成源接入节点配置命令,根据PDCP层的功能模块4生成源转发节点配置命令。并将该源接入节点配置命令发送至源接入节点032a,将源转发节点配置命令发送至源转发节点032b,以 便于源接入节点032a根据该源接入节点配置命令激活相应的功能模块,以及源转发节点032b根据该源转发节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成源接入节点配置信息,根据PDCP层的功能模块4生成源转发节点配置信息。并将该源接入节点配置信息发送至源接入节点032a,将源转发节点配置信息发送至源转发节点032,以便于源接入节点032a根据该源接入节点配置信息配置相应的功能模块,以及源转发节点032b根据该源转发节点配置信息配置相应的功能模块。
步骤7015、控制器为源接入节点、源转发节点和网关,配置源接入节点、源转发节点和网关之间进行数据流传递所需的第三转发表项组。
控制器在确定了源节点后,可以根据网络拓扑确定源接入节点、源转发节点和网关之间进行数据流传递所需的第三转发表项组中的转发表项,并将第三转发表项组中的转发表项的配置信息分别发送至源接入节点、源转发节点和网关,以便于该源接入节点、源转发节点和网关根据接收到的配置信息配置相应的转发表项,为源接入节点、源转发节点和网关配置每个源节点与网关之间进行数据流传递所需的第三转发表项组。具体的,该第三转发表项组可以包括:源接入节点向源转发节点发送数据流所需的转发表项,源转发节点向源接入节点发送数据流所需的转发表项,源转发节点向网关发送数据流所需的转发表项,以及网关向源转发节点发送数据流所需的转发表项。然后,将源接入节点向源转发节点发送数据流所需的转发表项的配置信息发送至源接入节点,将源转发节点向源接入节点发送数据流所需的转发表项的配置信息发送至源转发节点,将源转发节点向网关发送数据流所需的转发表项的配置信息发送至源转发节点,以及将网关向源转发节点发送数据流所需的转发表项的配置信息发送至网关。
步骤7016、控制器为UE配置UE的业务对应的功能模块。
若确定UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置命令,并将该UE配置命令发送至UE,以便于UE根据该UE配置命令激活相应的功能模块。另一方面,控制器可以 根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置信息,并将该UE配置信息发送至UE,以便于UE根据该UE配置信息配置相应的功能模块。
步骤7017、UE通过源接入节点、源转发节点与网关进行数据流的交互。
示例的,如图1-1所示,由于步骤7013中确定的源节点包括:源接入节点032a和源转发节点032b,因此在步骤7017中,UE能够通过源接入节点032a、源转发节点032b与网关02进行数据流的交互。
步骤702、UE向源接入节点发送节点能力信息。执行步骤703。
示例的,UE可以定时的获取UE检测范围内的每个节点的能力信息,UE获取的该节点的能力信息可以为UE获取的该节点的信号质量强度,需要说明的是,该节点的能力信息还可以为其他信息,本发明实施例对此不做限定。UE可以通过空口与源接入节点之间建立连接,在UE获取了UE检测范围内的每个节点的能力信息后,UE可以通过空口将UE检测范围内的每个节点的能力信息发送至源接入节点。
步骤703、源接入节点根据节点能力信息,确定目标接入节点。执行步骤704。
在源接入节点接收到UE发送的UE检测范围内的节点的能力信息后,可以按照预设筛选方式,在该UE检测范围内的多个节点中筛选出一个满足筛选条件的节点作为目标接入节点。示例的,该源接入节点上可以存储有预设能力阈值,该源接入节点可以将该预设能力阈值与该UE检测范围内的每个节点的能力信息所指示的能力值进行比较,从而在UE检测范围内的多个节点中,筛选出能力信息指示的能力值大于预设能力阈值的节点,并确定节点的能力信息指示的能力值大于预设能力阈值的节点中,能力信息指示的能力值最大的节点为目标接入节点。需要说明的是,若该UE检测范围内的节点的能力信息所指示的能力值均小于预设能力阈值,则该源接入节点不执行动作。实际应用中,该源接入节点还可以通过其他方式确定目标接入节点,本发明实施例对此不做限定。如图7-3所示,当UE-04从源接入节点032a附近移动至节点032A附近时,源接入节点032a确定节点032A为目标接入节点。
步骤704、源接入节点根据UE的业务服务质量参数生成切换请求消息。执行步骤705。
源接入节点上可以存储有UE的业务服务质量参数,源接入节点可以根据UE的业务服务质量参数生成切换请求消息,该切换请求消息用于指示UE需要接入目标接入节点。可选的,该源接入节点还可以从UE上获取UE的业务服务质量参数。
步骤705、源接入节点向目标接入节点发送切换请求消息。执行步骤706。
由于步骤703中源接入节点确定了目标接入节点,且步骤705中该源接入节点生成了切换请求消息,所以在步骤705中该源接入节点可以根据目标接入节点的标识,将该切换请求消息发送至目标接入节点,示例的,该切换请求消息可以以信令的形式发送至目标接入节点。
步骤706、目标接入节点判断是否能够接入UE。若目标接入节点不能接入UE,则执行步骤707;若目标接入节点能够接入UE,则执行步骤708。
目标接入节点在接收到该源接入节点发送的切换请求消息后,可以根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE,若目标接入节点不能接入UE,则执行步骤707;若目标接入节点能够接入UE,则执行步骤708。可选的,目标接入节点根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE的具体步骤可以参考相关技术中节点根据业务服务质量参数判断该节点能否接入UE的具体步骤,本发明实施例在此不做赘述。
步骤707、目标接入节点向源接入节点指示目标接入节点不能接入UE。
若目标接入节点不能接入UE,则目标接入节点可以生成用于指示目标接入节点不能接入UE的消息,并将该用于指示目标接入节点不能接入UE的消息发送至源接入节点,以便于源接入节点在接收到该用于指示目标接入节点不能接入UE的消息后,确定目标接入节点不能接入UE。
步骤708、目标接入节点向源接入节点指示目标接入节点能够接入UE。执行步骤709。
目标接入节点可以生成用于指示目标接入节点能够接入UE的切换反馈消息,并将该切换反馈消息发送至源接入节点。
步骤709、源接入节点生成切换命令。执行步骤710。
该源接入节点在接收到目标接入节点发送的切换反馈消息后,可以生成用于指示UE进行节点切换的切换命令,示例的,该切换命令可以包括目标接入 节点的标识。需要说明的是,该切换命令还可以包含其他信息,本发明实施例在此不做限定。
步骤710、源接入节点向UE发送切换命令。执行步骤711。
示例的,该源接入节点可以通过空口将该源接入节点生成的切换命令发送至UE。
步骤711、UE根据切换命令与目标接入节点建立连接。执行步骤712。
UE在接收到用于指示UE进行节点切换的切换命令后,可以根据该切换命令与源接入节点断开连接,并与该目标接入节点建立连接。示例的,UE还可以重建该UE上的协议层,UE重建UE上的协议层的具体步骤可以参考现有技术中UE建立协议层的具体步骤,本发明实施例在此不做赘述。
步骤712、目标接入节点根据切换请求消息生成协议配置请求消息。执行步骤713。
若目标接入节点能够接入UE,则目标接入节点可以根据源接入节点发送的切换请求消息生成协议配置请求消息,该切换请求消息和该协议配置请求消息均可以包括UE的业务服务质量参数,该协议配置请求消息用于指示为目标接入节点配置功能模块。
步骤713、目标接入节点向控制器发送协议配置请求消息。执行步骤714。
可选的,目标接入节点可以将生成的协议配置请求消息发送至控制器。示例的,该协议配置请求消息可以以信令的方式发送至控制器。
步骤714、控制器根据协议配置请求消息确定UE的业务对应的功能模块。执行步骤715。
控制器可以根据协议配置请求消息中的UE的业务服务质量参数确定UE的业务对应的功能模块。可选的,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块,UE上可以设置有多个协议层,且UE的每个协议层上均可以设置有多个功能模块,每个功能模块的功能均不同。示例的,控制器可以根据UE的业务服务质量参数选择处理UE的业务对应的功能模块,该UE的业务对应的功能模块可以为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。
步骤715、控制器根据UE的业务对应的功能模块和网络拓扑确定目标转发节点。执行步骤716。
控制器上可以存储并维护有该SDP网络系统中的网络拓扑,即该SDP网络系统中多个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。控制器可以根据步骤714中确定的UE的业务对应的功能模块以及该SDP网络系统的网络拓扑确定该目标接入节点对应的目标转发节点(即源转发节点)。以使得该目标接入节点能够将目标接入节点上的数据流发送至网关。即控制器根据UE的业务对应的功能模块和网络拓扑确定在节点切换后承载UE的业务对应的功能模块的目标接入节点和目标转发节点(即源转发节点)。如图7-3所示,当UE-04从源接入节点032a附近移动至节点032A附近时,源接入节点032a确定节点032A为目标接入节点。此时,控制器01可以根据UE的业务对应的功能模块和网络拓扑确定节点032b为该目标接入节点032A对应的目标转发节点(即源转发节点),即该目标转发节点与源转发节点为同一节点。
步骤716、控制器为目标接入节点配置功能模块。执行步骤717。
控制器在确定了目标接入节点和目标转发节点(即源转发节点)后,可以根据UE的业务对应的功能模块和网络拓扑,为该目标接入节点配置功能模块,由于该目标转发节点与源转发节点为同一节点,因此,无需为该目标转发节点(即源转发节点)配置功能模块。
示例的,假设UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。如图7-3所示,控制器可以为目标接入节点032A配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,由于该目标转发节点032b与源转发节点032b为同一节点,且源转发节点032b上配置有PDCP层的功能模块4,因此,该目标转发节点032b上配置有PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置命令,并将该目标接入节点配置命令发送至目标接入节点032A,以便于目标接入节点032A根据该目标接入节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置信息,并将该目标接 入节点配置信息发送至目标接入节点032A,以便于目标接入节点032A根据该目标接入节点配置信息配置相应的功能模块。
步骤717、控制器为源接入节点配置第一转发表项组。执行步骤718。
控制器可以根据为目标接入节点和目标转发节点(即源转发节点)配置的功能模块和网络拓扑,确定源接入节点向源转发节点(即目标转发节点)发送数据流所需的转发表项。示例的,该第一转发表项组可以包括:源接入节点向源转发节点(即目标转发节点)发送数据流所需的转发表项。然后,控制器可以将该源接入节点向源转发节点(即目标转发节点)发送数据流所需的转发表项的配置信息发送至该源接入节点,以便于该源接入节点根据接收到的转发表项的配置信息配置相应的转发表项。
需要说明的是,在步骤7015中,控制器为源接入节点配置了第三转发表项组中的转发表项,以便于源接入节点根据该第三转发表项组中的转发表项将UE发送的数据发送至该源转发节点(即目标转发节点)。但是在步骤717中为该源接入节点配置的第一转发表项组中的转发表项,是用于转发该源接入节点上缓存的数据,即该源转发节点发送至源接入节点上的数据,与UE发送给源接入节点上的数据的不同,因此,不能直接使用步骤7015中为该源接入节点配置的第三转发表项组中的转发表项转发该源接入节点上缓存的数据,需要为该源接入节点配置该第一转发表项组中的转发表项。
步骤718、源接入节点根据第一转发表项组向源转发节点发送源接入节点上缓存的数据。执行步骤719。
源接入节点可以根据该第一转发表项组中的转发表项,将该源接入节点上缓存的数据发送至源转发节点(即目标转发节点)。网关可以通过源转发节点和源接入节点将数据流发送至UE,示例的,在网关将数据流发送至源转发节点后,源转发节点可以对该网关发送的数据流进行加密处理,并将加密处理后的数据流发送至源接入节点,该源接入节点可以将源转发节点加密后的数据流进行处理并发送至UE,并且可以将该源转发节点加密后的数据流进行缓存。
步骤719、控制器为目标接入节点和目标转发节点配置第二转发表项组。执行步骤720。
第二转发表项组可以包括:目标接入节点与目标转发节点(即源转发节点)之间进行数据流传输所需的转发表项。控制器可以根据为目标接入节 点和目标转发节点配置的功能模块和网络拓扑,确定目标接入节点与目标转发节点(即源转发节点)之间进行数据流传输所需的转发表项。并将目标接入节点与目标转发节点(即源转发节点)之间进行数据流传输所需的转发表项的配置信息分别发送至目标接入节点与目标转发节点(即源转发节点),以便于该目标接入节点和该目标转发节点(即源转发节点)根据接收到的转发表项的配置信息配置相应的转发表项,完成了为目标接入节点和目标转发节点(即源转发节点)配置第二转发表项组。由于该目标转发节点与源转发节点为同一节点,因此,无需为网关配置第二转发表项组中的转发表项。
需要说明的是,在控制器为目标转发节点(即源转发节点)配置第二转发表项组的转发表项后,由于该目标转发节点与源转发节点为同一节点,因此该目标转发节点上存储有源接入节点发送的源接入节点上缓存的数据,该目标转发节点(即源转发节点)可以根据该第二转发表项组的转发表项,将源接入节点上缓存的数据发送至目标接入节点,由目标接入节点缓存该源接入节点上缓存的数据。需要说明的是,目标接入节点在接收到目标转发节点(即源转发节点)发送的源接入节点上缓存的数据后,还可以向UE发送该源接入节点上缓存的数据。
步骤720、源转发节点向源接入节点发送下行数据流结束标识。执行步骤721。
在节点切换之前,由于网关与因特网相连接,网关可以接收因特网发送的下行数据流,并将该下行数据流发送至源转发节点,由该源转发节点发送至源接入节点,最终由源接入节点发送至UE。源接入节点在接收到第一转发表项组的转发表项配置信息,并根据接收到的转发表项的配置信息配置了相应的转发表项后,该源接入节点可以根据第一转发表项组的转发表项向源转发节点(即目标转发节点)发送该源接入节点上缓存的数据。源转发节点(即目标转发节点)在收到第二转发表项组的转发表项配置信息之后,可以生成下行数据流结束标识,并将该下行数据流结束标识发送至源接入节点。
该源接入节点在将该源接入节点上缓存的数据发送至该源转发节点(即目标转发节点)后,可以根据该下行数据流结束标识释放源接入节点上的协议状态信息,还可以根据该下行数据流结束标识删除源接入节点上的第一转发表项组的转发表项和第三转发表项组的转发表项。该源接入节点还可以将该下 行数据流结束标识发送至源转发节点(即目标转发节点),该源转发节点(即目标转发节点)在接收到源接入节点发送的下行数据流结束标识后,可以根据该下行数据流结束标识删除第三转发表项组中源转发节点向源接入节点发送数据的转发表项,需要说明的是,该源转发节点上仍然存在第三转发表项组中该源转发节点(即目标转发节点)向网关发送数据的转发表项。
步骤721、UE通过目标接入节点和目标转发节点与网关之间进行数据流的交互。
示例的,在UE与目标接入节点之间建立连接,且目标接入节点与目标转发节点(即源转发节点)均配置了目标节点与所述网关之间进行数据流传递所需的第二转发表项组,且源接入节点上缓存的数据发送至目标接入节点,UE即可以通过目标接入节点和目标转发节点与网关之间进行数据流的交互,将UE从源接入节点和源转发节点切换至目标接入节点和目标转发节点(即源转发节点)。
进一步的,UE接收到的下行数据流可以由多个下行数据包组成,在步骤721之后,UE可以检测接收到的下行数据流是否完整,若UE检测到UE接收到的下行数据流不完整,则UE可以根据UE未接收到的下行数据包生成下行数据包重传指示信息,并将该下行重传指示信息发送至目标接入节点,由目标接入节点和目标转发节点(即源转发节点)根据该下行数据包重传指示信息,重新向UE传输UE未接收到的下行数据包。
本发明实施例中的控制器不仅能够为节点配置功能模块,并且能够为节点和网关配置转发表项。实际应用中,该控制器可以包括SDP控制器和SDN控制器,其中SDP控制器用于为节点配置功能模块,SDN控制器用于为节点和网关配置转发表项。需要说明的是,一方面,本发明实施例中以源接入节点确定目标接入节点为例,对该节点切换方法进行解释说明,实际应用中,也可以由控制器确定目标接入节点和目标转发节点,本发明实施例对此不做限定。另一方面,本发明实施例中以该源接入节点对应一个源转发节点,目标接入节点对应一个目标转发节点为例,对该节点切换方法进行解释说明,实际应用中,该源转发节点的个数还可以为其他数值,目标转发节点的个数也可以为其他数值,本发明实施例对此不作限定。
需要说明的是,本发明实施例提供的节点切换方法步骤的先后顺序可以进 行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
综上所述,由于本发明实施例提供的节点切换方法中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图8-1所示,本发明另一实施例提供了又一种节点切换方法,用于如图1-2所示的SDP网络系统0。示例的,该节点切换方法可以包括:
步骤801、UE通过源接入节点与网关之间进行数据流的交互。执行步骤802。
可选的,如图5-2所示,步骤801可以包括:
步骤8011、UE向控制器发送业务请求。
当UE需要执行业务时,UE能够根据UE的标识信息以及该业务的业务服务质量参数生成业务请求,并将该业务请求发送至控制器。
步骤8012、控制器根据业务请求,确定所述UE的业务对应的功能模块。
示例的,控制器可以根据业务请求中的UE的标识信息和业务服务质量参数确定UE的业务对应功能模块。需要说明的是,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块。可选的,控制器可以根据UE的标识信息和业务服务质量参数确定UE支持的接入技术,并根据接入技术以及业务服务质量参数选择处理UE的业务对应的功能模块。例如,当控制器接收到UE发送业务请求后,控制器可以根据业务请求,确定该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层,并根据该业务请求在该PHY层、MAC层、RLC层和PDCP层中确定该UE的业务对应的功能模块。
需要说明的是,本发明实施例中,以该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层为例,对该节点切换方法进行解释说明,实际应用中,该UE对应的处理模块还可以位于其他协议层,本发明实施例对此不作限定。
步骤8013、控制器根据UE的业务对应的功能模块和网络拓扑确定源接入节点。
需要说明的是,该控制器上可以维护有该SDP网络系统的网络拓扑,该网络拓扑中可以记载了该SDP网络系统中各个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。示例的,控制器可以根据UE的业务对应的功能模块和网络拓扑确定用于承载该UE的业务对应的功能模块的源接入节点。
如图1-2所示,若步骤8012中确定的UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4,且根据网络拓扑确定UE当前接入的节点为节点032b。控制器根据网络拓扑上记载的UE当前接入的节点032b的功能属性以及该UE的业务对应的功能模块,确定该UE当前接入的节点032b能够承载PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。
步骤8014、控制器为源接入节点配置功能模块。
示例的,如图1-2所示,控制器可以为源接入节点032b配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4生成源接入节点配置命令。并将该源接入节点配置命令发送至源接入节点032b,以便于源接入节点032b根据该源接入节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4生成源接入节点配置信息,并将该源接入节点配置信息发送至源接入节点032b,以便于源接入节点032b根据该源接入节点配置信息配置相应的功能模块。
步骤8015、控制器为源接入节点和网关,配置源接入节点和网关之间进行数据流传递所需的第三转发表项组。
控制器在确定了源节点后,可以根据网络拓扑确定源接入节点和网关之间进行数据流传递所需的第三转发表项组的转发表项,并将第三转发表项组的转发表项的配置信息分别发送至源接入节点和网关,以便于源接入节点和网关根据接收到的配置信息配置相应的转发表项,为源接入节点和网关配置源接入节点与网关之间进行数据流传递所需的第三转发表项组。具体的,该第三转发表项组可以包括:源接入节点向网关发送数据流所需的转发表项,以及网关向源接入节点发送数据流所需的转发表项。然后,将源接入节点向网关发送数据流所需的转发表项的配置信息发送至源接入节点,以及将网关向源接入节点发送数据流所需的转发表项的配置信息发送至网关。
步骤8016、控制器为UE配置UE的业务对应的功能模块。
若确定UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置命令,并将该UE配置命令发送至UE,以便于UE根据该UE配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置信息,并将该UE配置信息发送至UE,以便于UE根据该UE配置信息配置相应的功能模块。
步骤8017、UE通过源接入节点与网关进行数据流的交互。
示例的,如图1-2所示,由于步骤8013中确定的源节点包括:源接入节点032b,因此在步骤8017中,UE能够通过源接入节点032b与网关02进行数据流的交互。
步骤802、UE向源接入节点发送节点能力信息。执行步骤803。
示例的,UE可以定时的获取UE检测范围内的每个节点的能力信息,UE获取的该节点的能力信息可以为UE获取的该节点的信号质量强度,需要说明的是,该节点的能力信息还可以为其他信息,本发明实施例对此不做限定。UE可以通过空口与源接入节点之间建立连接,在UE获取了UE检测范围内的每个节点的能力信息后,UE可以通过空口将UE检测范围内的每个节点的能力信息发送至源接入节点。
步骤803、源接入节点根据节点能力信息,确定目标接入节点。执行步骤 804。
在源接入节点接收到UE发送的UE检测范围内的节点的能力信息后,可以按照预设筛选方式,在该UE检测范围内的多个节点中筛选出一个满足筛选条件的节点作为目标接入节点。示例的,该源接入节点上可以存储有预设能力阈值,该源接入节点可以将该预设能力阈值与该UE检测范围内的每个节点的能力信息所指示的能力值进行比较,从而在UE检测范围内的多个节点中,筛选出能力信息指示的能力值大于预设能力阈值的节点,并确定节点的能力信息指示的能力值大于预设能力阈值的节点中,能力信息指示的能力值最大的节点为目标接入节点。需要说明的是,若该UE检测范围内的节点的能力信息所指示的能力值均小于预设能力阈值,则该源接入节点不执行动作。实际应用中,该源接入节点还可以通过其他方式确定目标接入节点,本发明实施例对此不做限定。如图8-3所示,当UE-04从源接入节点032b附近移动至节点032a附近时,源接入节点032b确定节点032a为目标接入节点。
步骤804、源接入节点根据UE的业务服务质量参数生成切换请求消息。执行步骤805。
源接入节点上可以存储有UE的业务服务质量参数,源接入节点可以根据UE的业务服务质量参数生成切换请求消息,该切换请求消息用于指示UE需要接入目标接入节点。可选的,该源接入节点还可以从UE上获取UE的业务服务质量参数。
步骤805、源接入节点向目标接入节点发送切换请求消息。执行步骤806。
由于步骤803中源接入节点确定了目标接入节点,且步骤805中该源接入节点生成了切换请求消息,所以在步骤805中该源接入节点可以根据目标接入节点的标识,将该切换请求消息发送至目标接入节点,示例的,该切换请求消息可以以信令的形式发送至目标接入节点。
步骤806、目标接入节点判断是否能够接入UE。若目标接入节点不能接入UE,则执行步骤807;若目标接入节点能够接入UE,则执行步骤808。
目标接入节点在接收到该源接入节点发送的切换请求消息后,可以根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE,若目标接入节点不能接入UE,则执行步骤807;若目标接入节点能够接入UE,则执行步骤808。可选的,目标接入节点根据该切换请求消息中的UE 的业务服务质量参数,判断该目标接入节点能否接入UE的具体步骤可以参考相关技术中节点根据业务服务质量参数判断该节点能否接入UE的具体步骤,本发明实施例在此不做赘述。
步骤807、目标接入节点向源接入节点指示目标接入节点不能接入UE。
若目标接入节点不能接入UE,则目标接入节点可以生成用于指示目标接入节点不能接入UE的消息,并将该用于指示目标接入节点不能接入UE的消息发送至源接入节点,以便于源接入节点在接收到该用于指示目标接入节点不能接入UE的消息后,确定目标接入节点不能接入UE。
步骤808、目标接入节点向源接入节点指示目标接入节点能够接入UE。执行步骤809。
目标接入节点可以生成用于指示目标接入节点能够接入UE的切换反馈消息,并将该切换反馈消息发送至源接入节点。
步骤809、源接入节点生成切换命令。执行步骤810。
该源接入节点在接收到目标接入节点发送的切换反馈消息后,可以生成用于指示UE进行节点切换的切换命令,示例的,该切换命令可以包括目标接入节点的标识。需要说明的是,该切换命令还可以包含其他信息,本发明实施例在此不做限定。
步骤810、源接入节点向UE发送切换命令。执行步骤811。
示例的,该源接入节点可以通过空口将该源接入节点生成的切换命令发送至UE。
步骤811、UE根据切换命令与目标接入节点建立连接。执行步骤812。
UE在接收到用于指示UE进行节点切换的切换命令后,可以根据该切换命令与源接入节点断开连接,并与该目标接入节点建立连接。示例的,UE还可以重建该UE上的协议层,UE重建UE上的协议层的具体步骤可以参考现有技术中UE建立协议层的具体步骤,本发明实施例在此不做赘述。
步骤812、目标接入节点根据切换请求消息生成协议配置请求消息。执行步骤813。
若目标接入节点能够接入UE,则目标接入节点可以根据源接入节点发送的切换请求消息生成协议配置请求消息,该切换请求消息和该协议配置请求消息均可以包括UE的业务服务质量参数,该协议配置请求消息用于指示为目标 接入节点配置功能模块。
步骤813、目标接入节点向控制器发送协议配置请求消息。执行步骤814。
可选的,目标接入节点可以将生成的协议配置请求消息发送至控制器。示例的,该协议配置请求消息可以以信令的方式发送至控制器。
步骤814、控制器根据协议配置请求消息确定UE的业务对应的功能模块。执行步骤815。
控制器可以根据协议配置请求消息中的UE的业务服务质量参数确定UE的业务对应的功能模块。可选的,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块,UE上可以设置有多个协议层,且UE的每个协议层上均可以设置有多个功能模块,每个功能模块的功能均不同。示例的,控制器可以根据UE的业务服务质量参数选择处理UE的业务对应的功能模块,该UE的业务对应的功能模块可以为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。
步骤815、控制器根据UE的业务对应的功能模块和网络拓扑确定目标转发节点。执行步骤816。
控制器上可以存储并维护有该SDP网络系统中的网络拓扑,即该SDP网络系统中多个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。控制器可以根据步骤814中确定的UE的业务对应的功能模块以及该SDP网络系统的网络拓扑确定该目标接入节点对应的目标转发节点(即源接入节点)。以使得该目标接入节点能够将目标接入节点上的数据流发送至网关。即控制器根据UE的业务对应的功能模块和网络拓扑确定在节点切换后承载UE的业务对应的功能模块的目标接入节点和目标转发节点(即源接入节点)。如图8-3所示,当UE-04从源接入节点032b附近移动至节点032a附近时,源接入节点032b确定节点032a为目标接入节点。此时,控制器01可以根据UE的业务对应的功能模块和网络拓扑确定节点032b为该目标接入节点032a对应的目标转发节点(即源接入节点)。
步骤816、控制器为目标接入节点配置功能模块。执行步骤817。
控制器在确定了目标接入节点和目标转发节点(即源接入节点)后,可以根据UE的业务对应的功能模块和网络拓扑,为该目标接入节点和目标转发节点(即源接入节点)配置功能模块。
示例的,假设UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。如图8-3所示,控制器可以为目标接入节点032a配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,由于在节点切换前,节点032b上配置有PDCP层的功能模块4,因此无需为目标转发节点032b(即源接入节点)配置PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置命令,并将该目标接入节点配置命令发送至目标接入节点032a,以便于目标接入节点032a根据该目标接入节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置信息,并将该目标接入节点配置信息发送至目标接入节点032,以便于目标接入节点032a根据该目标接入节点配置信息配置相应的功能模块。
步骤817、控制器为目标接入节点和目标转发节点配置第二转发表项组。执行步骤818。
控制器可以根据为目标接入节点和目标转发节点(即源接入节点)配置的功能模块和网络拓扑,确定目标接入节点与目标转发节点(即源接入节点)之间进行数据流传输所需的第二转发表项组的转发表项,并将目标接入节点与目标转发节点(即源接入节点)之间进行数据流传输所需的第二转发表项组的转发表项的配置信息分别发送至目标接入节点与目标转发节点(即源接入节点),以便于该目标接入节点和目标转发节点根据接收到的第二转发表项组的转发表项的配置信息配置相应的转发表项,完成了为目标接入节点和目标转发节点(即源接入节点)配置第二转发表项组。由于目标转发节点与源接入节点为同一节点,且源接入节点上配置有与网关之间传递数据流的第三转发表项组的转发表项,因此,无需为目标转发节点(即源接入节点)和网关配置目标转发节点(即源接入节点)和网关之间传递数据流的第二转发表项组的转发表项。
需要说明的是,由于该目标转发节点与源接入节点为同一节点,因此该目 标转发节点上存储有该源接入节点上缓存的数据,在控制器为目标转发节点(即源接入节点)配置第二转发表项组的转发表项后,该目标转发节点(即源接入节点)可以根据该第二转发表项组的转发表项,将源接入节点上缓存的数据发送至目标接入节点,由目标接入节点缓存该源接入节点上缓存的数据。需要说明的是,目标接入节点在接收到目标转发节点(即源接入节点)发送的源接入节点上缓存的数据后,还可以向UE发送该源接入节点上缓存的数据。
步骤818、UE通过目标接入节点和目标转发节点与网关之间进行数据流的交互。
示例的,在UE与目标接入节点之间建立连接,且目标接入节点、目标转发节点(即源接入节点)与网关均配置了目标节点与所述网关之间进行数据流传递所需的第二转发表项组,且源接入节点上缓存的数据发送至目标接入节点,UE即可以通过目标接入节点和目标转发节点(即源接入节点)与网关之间进行数据流的交互,将UE从源接入节点切换至目标接入节点和目标转发节点(即源接入节点)。
进一步的,UE接收到的下行数据流可以由多个下行数据包组成,在步骤818之后,UE可以检测接收到的下行数据流是否完整,若UE检测到UE接收到的下行数据流不完整,则UE可以根据UE未接收到的下行数据包生成下行数据包重传指示信息,并将该下行重传指示信息发送至目标接入节点,由目标接入节点和目标转发节点(即源接入节点)根据该下行数据包重传指示信息,重新向UE传输UE未接收到的下行数据包。
本发明实施例中的控制器不仅能够为节点配置功能模块,并且能够为节点和网关配置转发表项。实际应用中,该控制器可以包括SDP控制器和SDN控制器,其中SDP控制器用于为节点配置功能模块,SDN控制器用于为节点和网关配置转发表项。需要说明的是,一方面,本发明实施例中以源接入节点确定目标接入节点为例,对该节点切换方法进行解释说明,实际应用中,也可以由控制器确定目标接入节点和目标转发节点,本发明实施例对此不做限定。另一方面,本发明实施例中以该目标接入节点对应一个目标转发节点为例,对该节点切换方法进行解释说明,实际应用中,该目标转发节点的个数也可以为其他数值,本发明实施例对此不作限定。
需要说明的是,本发明实施例提供的节点切换方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
综上所述,由于本发明实施例提供的节点切换方法中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图9-1所示,本发明另一实施例提供了再一种节点切换方法,用于如图1-1所示的SDP网络系统0。示例的,该节点切换方法可以包括:
步骤901、UE通过源接入节点和源转发节点与网关之间进行数据流的交互。执行步骤902。
可选的,如图9-2所示,步骤901可以包括:
步骤9011、UE向控制器发送业务请求。
当UE需要执行业务时,UE能够根据UE的标识信息以及该业务的业务服务质量参数生成业务请求,并将该业务请求发送至控制器。
步骤9012、控制器根据业务请求,确定所述UE的业务对应的功能模块。
示例的,控制器可以根据业务请求中的UE的标识信息和业务服务质量参数确定UE的业务对应功能模块。需要说明的是,该SDP网络系统中的每个设备均可以设置有多个协议层,且每个协议层上可以设置有多个功能模块。可选的,控制器可以根据UE的标识信息和业务服务质量参数确定UE支持的接入技术,并根据接入技术以及业务服务质量参数选择处理UE的业务对应的功能模块。例如,当控制器接收到UE发送业务请求后,控制器可以根据业务请求,确定该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层,并根据该业务请求在该PHY层、MAC层、RLC层和PDCP层中确定该 UE的业务对应的功能模块。
需要说明的是,本发明实施例中,以该UE对应的处理模块所在的协议层为PHY层、MAC层、RLC层和PDCP层为例,对该节点切换方法进行解释说明,实际应用中,该UE对应的处理模块还可以位于其他协议层,本发明实施例对此不作限定。
步骤9013、控制器根据UE的业务对应的功能模块和网络拓扑确定源接入节点和源转发节点。
需要说明的是,该控制器上可以维护有该SDP网络系统的网络拓扑,该网络拓扑中可以记载了该SDP网络系统中各个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。示例的,控制器可以根据UE的业务对应的功能模块和网络拓扑确定用于承载该UE的业务对应的功能模块的源接入节点和源转发节点。
如图1-1所示,若步骤9012中确定的UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4,且根据网络拓扑确定UE当前接入的节点为节点032a。控制器根据网络拓扑上记载的UE当前接入的节点032a的功能属性以及该UE的业务对应的功能模块,确定该UE当前接入的节点032a能够承载PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,但是该UE当前接入的节点032a无法承载PDCP层的功能模块4。此时,根据网络拓扑可以得知与UE当前接入的节点032a之间能够进行数据流交互的节点032b能够承载PDCP层的功能模块4,所以,可以确定节点032b为UE当前接入的节点032a对应的转发节点。并将UE当前接入的节点032a和UE当前接入的节点032a对应的转发节点032b确定为源节点,此时,该UE当前接入的节点032a称为源接入节点,UE当前接入的节点032a对应的转发节点032b称为源转发节点。
步骤9014、控制器为源接入节点和源转发节点配置功能模块。
示例的,如图1-1所示,控制器可以为源接入节点032a配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,为源转发节点032b配置PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成源接入节点配置命令,根据PDCP层的功能模块4生成源转发节点配置命令。并将该源接入节点配置命令 发送至源接入节点032a,将源转发节点配置命令发送至源转发节点032b,以便于源接入节点032a根据该源接入节点配置命令激活相应的功能模块,以及源转发节点032b根据该源转发节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成源接入节点配置信息,根据PDCP层的功能模块4生成源转发节点配置信息。并将该源接入节点配置信息发送至源接入节点032a,将源转发节点配置信息发送至源转发节点032,以便于源接入节点032a根据该源接入节点配置信息配置相应的功能模块,以及源转发节点032b根据该源转发节点配置信息配置相应的功能模块。
步骤9015、控制器为源接入节点、源转发节点和网关,配置源接入节点、源转发节点和网关之间进行数据流传递所需的第三转发表项组。
控制器在确定了源节点后,可以根据网络拓扑确定源接入节点、源转发节点和网关之间进行数据流传递所需的第三转发表项组的转发表项,并将第三转发表项组的转发表项的配置信息分别发送至源接入节点、源转发节点和网关,以便于源接入节点、源转发节点和网关根据接收到的配置信息配置相应的转发表项,为源接入节点、源转发节点和网关配置每个源节点与网关之间进行数据流传递所需的第三转发表项组。具体的,该第三转发表项组可以包括:源接入节点向源转发节点发送数据流所需的转发表项,源转发节点向源接入节点发送数据流所需的转发表项,源转发节点向网关发送数据流所需的转发表项,以及网关向源转发节点发送数据流所需的转发表项。然后,将源接入节点向源转发节点发送数据流所需的转发表项的配置信息发送至源接入节点,将源转发节点向源接入节点发送数据流所需的转发表项的配置信息发送至源转发节点,将源转发节点向网关发送数据流所需的转发表项的配置信息发送至源转发节点,以及将网关向源转发节点发送数据流所需的转发表项的配置信息发送至网关。
步骤9016、控制器为UE配置UE的业务对应的功能模块。
若确定UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置命令,并将该UE配置命令发送至UE, 以便于UE根据该UE配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3以及PDCP层的功能模块4生成UE配置信息,并将该UE配置信息发送至UE,以便于UE根据该UE配置信息配置相应的功能模块。
步骤9017、UE通过源接入节点、源转发节点与网关进行数据流的交互。
示例的,如图1-1所示,由于步骤9013中确定的源节点包括:源接入节点032a和源转发节点032b,因此在步骤9017中,UE能够通过源接入节点032a、源转发节点032b与网关02进行数据流的交互。
步骤902、UE向源接入节点发送节点能力信息。执行步骤903。
示例的,UE可以定时的获取UE检测范围内的每个节点的能力信息,UE获取的该节点的能力信息可以为UE获取的该节点的信号质量强度,需要说明的是,该节点的能力信息还可以为其他信息,本发明实施例对此不做限定。UE可以通过空口与源接入节点之间建立连接,在UE获取了UE检测范围内的每个节点的能力信息后,UE可以通过空口将UE检测范围内的每个节点的能力信息发送至源接入节点。
步骤903、源接入节点根据节点能力信息,确定目标接入节点。执行步骤904。
在源接入节点接收到UE发送的UE检测范围内的节点的能力信息后,可以按照预设筛选方式,在该UE检测范围内的多个节点中筛选出一个满足筛选条件的节点作为目标接入节点。示例的,该源接入节点上可以存储有预设能力阈值,该源接入节点可以将该预设能力阈值与该UE检测范围内的每个节点的能力信息所指示的能力值进行比较,从而在UE检测范围内的多个节点中,筛选出能力信息指示的能力值大于预设能力阈值的节点,并确定节点的能力信息指示的能力值大于预设能力阈值的节点中,能力信息指示的能力值最大的节点为目标接入节点。需要说明的是,若该UE检测范围内的节点的能力信息所指示的能力值均小于预设能力阈值,则该源接入节点不执行动作。实际应用中,该源接入节点还可以通过其他方式确定目标接入节点,本发明实施例对此不做限定。如图9-3所示,当UE-04从源接入节点032a附近移动至节点032b附近时,源接入节点032a确定节点032b为目标接入节点(即源转发节点)。
步骤904、源接入节点根据UE的业务服务质量参数生成切换请求消息。 执行步骤905。
源接入节点上可以存储有UE的业务服务质量参数,源接入节点可以根据UE的业务服务质量参数生成切换请求消息,该切换请求消息用于指示UE需要接入目标接入节点(即源转发节点)。可选的,该源接入节点还可以从UE上获取UE的业务服务质量参数。
步骤905、源接入节点向目标接入节点发送切换请求消息。执行步骤906。
由于步骤903中源接入节点确定了目标接入节点(即源转发节点),且步骤905中该源接入节点生成了切换请求消息,所以在步骤905中该源接入节点可以根据目标接入节点(即源转发节点)的标识,将该切换请求消息发送至目标接入节点(即源转发节点),示例的,该切换请求消息可以以信令的形式发送至目标接入节点(即源转发节点)。
步骤906、目标接入节点判断是否能够接入UE。若目标接入节点不能接入UE,则执行步骤907;若目标接入节点能够接入UE,则执行步骤908。
目标接入节点(即源转发节点)在接收到该源接入节点发送的切换请求消息后,可以根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点(即源转发节点)能否接入UE,若目标接入节点(即源转发节点)不能接入UE,则执行步骤907;若目标接入节点(即源转发节点)能够接入UE,则执行步骤908。可选的,目标接入节点根据该切换请求消息中的UE的业务服务质量参数,判断该目标接入节点能否接入UE的具体步骤可以参考相关技术中节点根据业务服务质量参数判断该节点能否接入UE的具体步骤,本发明实施例在此不做赘述。
步骤907、目标接入节点向源接入节点指示目标接入节点不能接入UE。执行步骤908。
若目标接入节点(即源转发节点)不能接入UE,则目标接入节点可以生成用于指示目标接入节点不能接入UE的消息,并将该用于指示目标接入节点不能接入UE的消息发送至源接入节点,以便于源接入节点在接收到该用于指示目标接入节点不能接入UE的消息后,确定目标接入节点不能接入UE。
步骤908、目标接入节点向源接入节点指示目标接入节点能够接入UE。执行步骤909。
目标接入节点(即源转发节点)可以生成用于指示目标接入节点能够接入 UE的切换反馈消息,并将该切换反馈消息发送至源接入节点。
步骤909、源接入节点生成切换命令。执行步骤910。
该源接入节点在接收到目标接入节点发送的切换反馈消息后,可以生成用于指示UE进行节点切换的切换命令,示例的,该切换命令可以包括目标接入节点的标识。需要说明的是,该切换命令还可以包含其他信息,本发明实施例在此不做限定。
步骤910、源接入节点向UE发送切换命令。执行步骤911。
示例的,该源接入节点可以通过空口将该源接入节点生成的切换命令发送至UE。
步骤911、UE根据切换命令与目标接入节点建立连接。执行步骤912。
UE在接收到用于指示UE进行节点切换的切换命令后,可以根据该切换命令与源接入节点断开连接,并与该目标接入节点(即源转发节点)建立连接。示例的,UE还可以重建该UE上的协议层,UE重建UE上的协议层的具体步骤可以参考现有技术中UE建立协议层的具体步骤,本发明实施例在此不做赘述。
步骤912、目标接入节点根据切换请求消息生成协议配置请求消息。执行步骤913。
若目标接入节点(即源转发节点)能够接入UE,则目标接入节点可以根据源接入节点发送的切换请求消息生成协议配置请求消息,该切换请求消息和该协议配置请求消息均可以包括UE的业务服务质量参数,该协议配置请求消息用于指示为目标接入节点配置功能模块。
步骤913、目标接入节点向控制器发送协议配置请求消息。执行步骤914。
可选的,目标接入节点(即源转发节点)可以将生成的协议配置请求消息发送至控制器。示例的,该协议配置请求消息可以以信令的方式发送至控制器。
步骤914、控制器根据协议配置请求消息确定UE的业务对应的功能模块。执行步骤915。
控制器可以根据协议配置请求消息中的UE的业务服务质量参数确定UE的业务对应的功能模块。可选的,该SDP网络系统中的每个设备均 可以设置有多个协议层,且每个协议层上可以设置有多个功能模块,UE上可以设置有多个协议层,且UE的每个协议层上均可以设置有多个功能模块,每个功能模块的功能均不同。示例的,控制器可以根据UE的业务服务质量参数选择处理UE的业务对应的功能模块,该UE的业务对应的功能模块可以为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。
步骤915、控制器为目标接入节点配置功能模块。执行步骤916。
控制器在确定了目标接入节点(即源转发节点)后,可以根据UE的业务对应的功能模块和网络拓扑,为该目标接入节点(即源转发节点)配置功能模块。
需要说明的是,控制器上可以存储并维护有该SDP网络系统中的网络拓扑,即该SDP网络系统中多个设备之间的连接关系,以及该SDP网络系统中各个设备的功能属性。控制器可以根据UE的业务对应的功能模块以及该SDP网络系统的网络拓扑确定该目标接入节点(即源转发节点)能够承载UE的业务对应的所有功能模块,且该目标接入节点(即源转发节点)与网关之间无需转发节点即可将目标接入节点上的数据流发送至网关。如图9-3所示,当UE-04从源接入节点032a附近移动至节点033a附近时,源接入节点032a确定节点033a为目标接入节点(即源转发节点)。
示例的,假设UE的业务对应的功能模块为PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3和PDCP层的功能模块4。如图9-3所示,控制器可以为目标接入节点032b配置PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3,由于目标接入节点与源转发节点为同一节点,因此目标接入节点(即源转发节点)上配置有转发节点的功能对应的功能模块,即目标接入节点032b上配置有PDCP层的功能模块4,所以,无需为目标接入节点(即源转发节点)配置PDCP层的功能模块4。一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置命令,并将该目标接入节点配置命令发送至目标接入节点032b,以便于目标接入节点032b根据该目标接入节点配置命令激活相应的功能模块。另一方面,控制器可以根据PHY层的功能模块1、MAC层的功能模块2、RLC层的功能模块3生成目标接入节点配置信息,并将该目标接入节点配置信息发 送至目标接入节点032b,以便于目标接入节点032b根据该目标接入节点配置信息配置相应的功能模块。
步骤916、控制器为源接入节点配置第一转发表项组。执行步骤917。
控制器可以根据为目标接入节点(即源转发节点)配置的功能模块和网络拓扑,确定源接入节点向源转发节点发送数据流所需的第一转发表项组的转发表项。示例的,该第一转发表项组可以包括源接入节点向源转发节点发送数据流所需的转发表项。然后,控制器可以将该源接入节点向源转发节点发送数据流所需的转发表项的配置信息发送至该源接入节点,以便于该源接入节点根据接收到的转发表项的配置信息配置相应的转发表项。
需要说明的是,在步骤9015中,控制器为源接入节点配置了第三转发表项组的转发表项,以便于源接入节点根据该第三转发表项组的转发表项将UE发送的数据发送至该源转发节点。但是在步骤916中为该源接入节点配置的第一转发表项组的转发表项,是用于转发该源接入节点上缓存的数据,即该源转发节点发送至源接入节点上的数据,与UE发送给源接入节点上的数据的不同,因此,不能直接使用步骤9015中为该源接入节点配置的第三转发表项组的转发表项转发该源接入节点上缓存的数据,需要为该源接入节点配置该第一转发表项组的转发表项。
步骤917、源接入节点根据第一转发表项组向源转发节点发送源接入节点上缓存的数据。执行步骤918。
源接入节点可以根据该源接入节点上的第一转发表项组的转发表项,将该源接入节点上缓存的数据发送至源转发节点。网关可以通过源转发节点和源接入节点将数据流发送至UE,示例的,在网关将数据流发送至源转发节点后,源转发节点可以对该网关发送的数据流进行加密处理,并将加密处理后的数据流发送至源接入节点,该源接入节点可以将源转发节点加密后的数据流进行处理并发送至UE,并且可以将该源转发节点加密后的数据流进行缓存。
由于该源转发节点与目标接入节点为同一节点,因此该目标接入节点接收到源接入节点发送的源接入节点上缓存的数据。
步骤918、源转发节点生成下行数据流结束标识。执行步骤919。
在节点切换之前,由于网关与因特网相连接,网关可以接收因特网发送的下行数据流,并将该下行数据流发送至源转发节点,由该源转发节点发送至源 接入节点,最终由源接入节点发送至UE。源接入节点在接收到第一转发表项组的转发表项配置信息,并根据接收到的转发表项的配置信息配置了相应的转发表项后,该源接入节点可以根据第一转发表项组的转发表项向源转发节点(目标接入节点)发送该源接入节点上缓存的数据。该源转发节点(目标接入节点)在收到协议功能模块配置信息后,还可以生成下行数据流结束标识,并将该下行数据流结束标识发送至源接入节点。
该源接入节点在将该源接入节点上缓存的数据发送至该源转发节点后,可以根据该下行数据流结束标识释放源接入节点上的协议状态信息,还可以根据该下行数据流结束标识删除源接入节点上的第一转发表项组的转发表项和第三转发表项组的转发表项。该源接入节点还可以将该下行数据流结束标识发送至源转发节点(即目标接入节点),该源转发节点(即目标接入节点)在接收到源接入节点发送的下行数据流结束标识后,可以根据该下行数据流结束标识删除第三转发表项组中源转发节点向源接入节点发送数据的转发表项,需要说明的是,该源转发节点(即目标接入节点)上仍然存在第三转发表项组中该源转发节点(即目标接入节点)向网关发送数据的转发表项。
步骤919、UE通过目标接入节点与网关之间进行数据流的交互。
示例的,在UE与目标接入节点(即源转发节点)之间建立连接,且目标接入节点配置了目标节点与所述网关之间进行数据流传递所需的第二转发表项组,且源接入节点上缓存的数据发送至目标接入节点(即源转发节点)之后,UE即可以通过目标接入节点与网关之间进行数据流的交互,将UE从源接入节点和源转发节点切换至目标接入节点。
进一步的,UE接收到的下行数据流可以由多个下行数据包组成,在步骤919之后,UE可以检测接收到的下行数据流是否完整,若UE检测到UE接收到的下行数据流不完整,则UE可以根据UE未接收到的下行数据包生成下行数据包重传指示信息,并将该下行重传指示信息发送至目标接入节点,由目标接入节点和目标转发节点根据该下行数据包重传指示信息,重新向UE传输UE未接收到的下行数据包。
本发明实施例中的控制器不仅能够为节点配置功能模块,并且能够为节点和网关配置转发表项。实际应用中,该控制器可以包括SDP控制器和SDN控制器,其中SDP控制器用于为节点配置功能模块,SDN控制器用于为节点和 网关配置转发表项。需要说明的是,一方面,本发明实施例中以源接入节点确定目标接入节点为例,对该节点切换方法进行解释说明,实际应用中,也可以由控制器确定目标接入节点,本发明实施例对此不做限定。另一方面,本发明实施例中以该源接入节点对应一个源转发节点为例,对该节点切换方法进行解释说明,实际应用中,该源转发节点的个数还可以为其他数值,本发明实施例对此不作限定。
需要说明的是,本发明实施例提供的节点切换方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
综上所述,由于本发明实施例提供的节点切换方法中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
本发明实施例提供的节点切换方法可以应用于下文所述的节点切换装置,本发明实施例中各个单元的工作流程和工作原理可以参见上文各实施例中的描述。
如图10所示,本发明实施例提供了一种节点切换装置100,用于如图1或图2所示的节点切换系统中的控制器,该节点切换装置10可以包括:
接收模块1001,用于接收目标接入节点发送的协议配置请求消息,协议配置请求消息包括:UE的业务服务质量参数,协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,源接入节点为UE在节点切换前接入的节点,目标接入节点为UE在节点切换后接入的节点。
第一确定模块1002,用于根据业务服务质量参数确定UE的业务对 应的功能模块。
配置模块1003,用于根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,目标节点包括:目标接入节点,目标节点用于在节点切换后,承载UE的业务对应的功能模块。
第二确定模块1004,用于根据为目标节点配置的功能模块和网络拓扑确定源节点与目标节点进行数据流传输所需的第一转发表项组,源节点包括:源接入节点,源节点用于在节点切换前,承载UE的业务对应的功能模块。
第三确定模块1005,用于根据为目标节点配置的功能模块和网络拓扑确定目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
综上所述,由于本发明实施例提供的节点切换装置中,第一确定模块根据业务服务质量参数确定UE的业务对应的功能模块,配置模块根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,第二确定模块和第三确定模块确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
可选的,目标节点还可以包括:目标转发节点,该配置模块1003可以用于:
根据UE的业务对应的功能模块和网络拓扑确定目标转发节点,目标转发节点为目标接入节点与网关之间的节点,且能够在节点切换后承载UE的业务对应的功能模块中一部分;
根据UE的业务对应的功能模块和网络拓扑确定目标转发节点的功能模块和目标接入节点的功能模块,目标转发节点的功能模块和目标接入节点的功能模块组成UE的业务对应的功能模块。
示例的,源节点还包括:源转发节点,第一转发表项组,包括:
源接入节点向源转发节点发送数据流所需的转发表项,以及源转发节点和目标节点进行数据流传输所需的转发表项。
可选的,源节点还包括:源转发节点,第一转发表项组,包括:
源接入节点向源转发节点发送数据流所需的转发表项,以及源转发节点和目标转发节点进行数据流传输所需的转发表项。
可选的,第三确定模块1005可以用于:
根据为目标节点配置的功能模块和网络拓扑确定目标节点中任一节点的转发表项;
判断切换前与网关最近连接的源节点和切换后与网关最近连接的目标节点是否为同一节点;
若切换前与网关最近连接的源节点和切换后与网关最近连接的目标节点不为同一节点,确定网关的转发表项。
综上所述,由于本发明实施例提供的节点切换装置中,第一确定模块根据业务服务质量参数确定UE的业务对应的功能模块,配置模块根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,第二确定模块和第三确定模块确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图11-1所示,本发明实施例提供了另一种节点切换装置110,用于源节点,该源节点可以为图1或图2所示的节点切换系统的多个节点中,在节点切换前承载UE的业务对应的功能模块的节点,该节点切换装置110可以包括:
第一接收模块1101,用于接收控制器发送的第一转发表项组,第一转发表项组为控制器根据为目标节点配置的功能模块和网络拓扑确定的,目标节点为在节点切换后承载UE的业务对应的功能模块的节点。
第一发送模块1102,用于根据第一转发表项组向目标节点发送源节点上缓存的数据。
第二接收模块1103,用于接收下行数据流结束标识。
释放模块1104,用于根据下行数据流结束标识释放源节点上承载的UE的业务对应的功能模块。
删除模块1105,用于删除第一转发表项组和源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
综上所述,由于本发明实施例提供的节点切换装置中,第一接收模块接收控制器发送的第一转发表项组,第一转发表项组为控制器根据为目标节点配置的功能模块和网络拓扑确定的,第一发送模块可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,进而由目标节点中的目标接入节点将源节点上缓存的数据发送至UE,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图11-2所示,本发明实施例提供了又一种节点切换装置110,用于源接入节点,该源接入节点可以为图1或图2所示的节点切换系统的多个节点中,在节点切换前UE接入的节点,该节点切换装置110可以包括:
第一接收模块1101,用于接收控制器发送的第一转发表项组,第一转发表项组为控制器根据为目标节点配置的功能模块和网络拓扑确定的,目标节点为在节点切换后承载UE的业务对应的功能模块的节点。
第一发送模块1102,用于根据第一转发表项组向目标节点发送源节点上缓存的数据。
第二接收模块1103,用于接收下行数据流结束标识。
释放模块1104,用于根据下行数据流结束标识释放源节点上承载的UE的业务对应的功能模块。
删除模块1105,用于删除第一转发表项组和源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
第二发送模块1106,用于向目标接入节点发送切换请求消息,切换请求消息包括:业务服务质量参数,以便于目标接入节点根据切换请求消息,判断UE是否能够接入目标接入节点,在UE能够接入目标接入节点时,向控制器发送协议配置请求消息,目标接入节点为UE在节点切换后接入的节点。
综上所述,由于本发明实施例提供的节点切换装置中,第一接收模块接收控制器发送的第一转发表项组,第一转发表项组为控制器根据为目标节点配 置的功能模块和网络拓扑确定的,第一发送模块可以根据第一转发表项组将源节点上的信息发送至目标节点,进而由目标节点中的目标接入节点将源节点上缓存的数据发送至UE,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
本发明实施例提供了又一种节点切换系统,该节点切换系统可以包括:控制器和源节点,控制器为图10所示的节点切换装置100,源节点为图11-1或图11-2所示的节点切换装置110。
综上所述,由于本发明实施例提供的节点切换系统中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图12所示,本发明实施例提供了再一种节点切换装置,该节点切换装置可以包括至少一个处理器1201(例如CPU),至少一个网络接口1202或者其他通信接口,存储器1203,和至少一个通信总线1204,用于实现这些装置之间的连接通信。处理器1201用于执行存储器1203中存储的可执行模块,例如计算机程序。存储器1203可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口1202(可以是有线或者无线)实现该节点切换装置与至少一个其他网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。
在一些实施方式中,存储器1203存储了程序12031,程序12031可以被处理器1201执行,这个程序12031可以包括:
接收目标接入节点发送的协议配置请求消息,所述协议配置请求消 息包括:用户设备UE的业务服务质量参数,所述协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,所述源接入节点为所述UE在节点切换前接入的节点,所述目标接入节点为所述UE在节点切换后接入的节点;
根据所述业务服务质量参数确定所述UE的业务对应的功能模块;
根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,所述目标节点包括:所述目标接入节点,所述目标节点用于在节点切换后,承载所述UE的业务对应的功能模块;
根据为所述目标节点配置的功能模块和网络拓扑确定源节点与所述目标节点进行数据流传输所需的第一转发表项组,所述源节点包括:所述源接入节点,所述源节点用于在节点切换前,承载所述UE的业务对应的功能模块;
根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
可选的,所述目标节点还可以包括:目标转发节点,所述程序12031还可以包括:
根据所述UE的业务对应的功能模块和网络拓扑确定目标转发节点,所述目标转发节点为所述目标接入节点与所述网关之间的节点,且能够在节点切换后承载所述UE的业务对应的功能模块中一部分;
根据所述UE的业务对应的功能模块和网络拓扑确定所述目标转发节点的功能模块和所述目标接入节点的功能模块,所述目标转发节点的功能模块和所述目标接入节点的功能模块组成所述UE的业务对应的功能模块。
可选的,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标节点进行数据流传输所需的转发表项。
可选的,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标转发节点进行数据流传输所需的转发表项。
可选的,所述程序12031还可以包括:
根据所述为所述目标节点配置的功能模块和所述网络拓扑确定所述目标节点中任一节点的转发表项;
判断切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点是否为同一节点;
若切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点不为同一节点,确定所述网关的转发表项。
综上所述,由于本发明实施例提供的节点切换装置中,处理器根据业务服务质量参数确定UE的业务对应的功能模块,根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
如图13所示,本发明另一实施例提供了一种节点切换装置,该节点切换装置可以包括至少一个处理器1301(例如CPU),至少一个网络接口1302或者其他通信接口,存储器1303,和至少一个通信总线1304,用于实现这些装置之间的连接通信。处理器1301用于执行存储器1303中存储的可执行模块,例如计算机程序。存储器1303可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口1302(可以是有线或者无线)实现该节点切换装置与至少一个其他网元之间的通信连接,可以使用互联网,广域网,本地网,城域网等。
在一些实施方式中,存储器1303存储了程序13031,程序13031可以被处理器1301执行,这个程序13031可以包括:
接收控制器发送的第一转发表项组,所述第一转发表项组为所述控制器根据为目标节点配置的功能模块和网络拓扑确定的,所述目标节点为在节点切换后承载用户设备UE的业务对应的功能模块的节点;
根据所述第一转发表项组向目标节点发送源节点上缓存的数据,所述源节点为在节点切换前承载所述UE的业务对应的功能模块的节点;
接收下行数据流结束标识;
根据所述下行数据流结束标识释放所述源节点上承载的所述UE的业务对 应的功能模块;
删除所述第一转发表项组和所述源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
可选的,所述源节点可以为源接入节点,所述源接入节点为节点切换前所述UE接入的节点,所述程序13031还可以包括:
向目标接入节点发送切换请求消息,所述切换请求消息包括:业务服务质量参数,以便于所述目标接入节点根据所述切换请求消息,判断所述UE是否能够接入所述目标接入节点,在所述UE能够接入所述目标接入节点时,向所述控制器发送协议配置请求消息,所述目标接入节点为所述UE在节点切换后接入的节点。
综上所述,由于本发明实施例提供的节点切换装置中,处理器根据第一转发表项组将源节点上的信息发送至目标节点,进而由目标节点中的目标接入节点将源节点上缓存的数据发送至UE,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
本发明实施例提供了再一种节点切换系统,该节点切换系统可以包括:控制器和源节点,控制器可以为图12所示的节点切换装置120,源节点可以为图13所示的节点切换装置130。
综上所述,由于本发明实施例提供的节点切换系统中,控制器在接收到目标接入节点发送的协议配置请求消息后,根据业务服务质量参数确定UE的业务对应的功能模块,并根据UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,以及确定第一转发表项组和第二转发表项组,使得源节点可以根据第一转发表项组将源节点上缓存的数据发送至目标节点,目标节点根据第二转发表项组与网关之间进行数据流传递,从而实现了目标接入节点为UE提供服务,实现了SDP网络系统中节点间的切换,丰富了SDP网络系统的功能。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,在此不再一一赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的节点切换系统和节点切换装置,以及节点切换装置中各个模块的具体工作过程,可以参考前述节点切换方法实施例中的对应过程,在此不再赘述。
在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理包括,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护。

Claims (23)

  1. 一种节点切换方法,其特征在于,所述方法包括:
    接收目标接入节点发送的协议配置请求消息,所述协议配置请求消息包括:用户设备UE的业务服务质量参数,所述协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,所述源接入节点为所述UE在节点切换前接入的节点,所述目标接入节点为所述UE在节点切换后接入的节点;
    根据所述业务服务质量参数确定所述UE的业务对应的功能模块;
    根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,所述目标节点包括:所述目标接入节点,所述目标节点用于在节点切换后,承载所述UE的业务对应的功能模块;
    根据为所述目标节点配置的功能模块和网络拓扑确定源节点与所述目标节点进行数据流传输所需的第一转发表项组,所述源节点包括:所述源接入节点,所述源节点用于在节点切换前,承载所述UE的业务对应的功能模块;
    根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
  2. 根据权利要求1所述的节点切换方法,其特征在于,所述目标节点还包括:目标转发节点,所述根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,包括:
    根据所述UE的业务对应的功能模块和网络拓扑确定目标转发节点,所述目标转发节点为所述目标接入节点与所述网关之间的节点,且能够在节点切换后承载所述UE的业务对应的功能模块中一部分;
    根据所述UE的业务对应的功能模块和网络拓扑确定所述目标转发节点的功能模块和所述目标接入节点的功能模块,所述目标转发节点的功能模块和所述目标接入节点的功能模块组成所述UE的业务对应的功能模块。
  3. 根据权利要求1所述的节点切换方法,其特征在于,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
    所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标节点进行数据流传输所需的转发表项。
  4. 根据权利要求2所述的节点切换方法,其特征在于,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
    所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标转发节点进行数据流传输所需的转发表项。
  5. 根据权利要求1所述的节点切换方法,其特征在于,根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与所述网关之间进行数据流传递所需的第二转发表项组,包括:
    根据所述为所述目标节点配置的功能模块和所述网络拓扑确定所述目标节点中任一节点的转发表项;
    判断切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点是否为同一节点;
    若切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点不为同一节点,确定所述网关的转发表项。
  6. 一种节点切换方法,其特征在于,所述方法包括:
    接收控制器发送的第一转发表项组,所述第一转发表项组为所述控制器根据为目标节点配置的功能模块和网络拓扑确定的,所述目标节点为在节点切换后承载用户设备UE的业务对应的功能模块的节点;
    根据所述第一转发表项组向目标节点发送源节点上缓存的数据,所述源节点为在节点切换前承载所述UE的业务对应的功能模块的节点;
    接收下行数据流结束标识;
    根据所述下行数据流结束标识释放所述源节点上承载的所述UE的业务对应的功能模块;
    删除所述第一转发表项组和所述源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
  7. 根据权利要求6所述的节点切换方法,其特征在于,所述源节点为源接 入节点,所述源接入节点为节点切换前所述UE接入的节点,在所述接收控制器发送的第一转发表项组之前,所述方法还包括:
    向目标接入节点发送切换请求消息,所述切换请求消息包括:业务服务质量参数,以便于所述目标接入节点根据所述切换请求消息,判断所述UE是否能够接入所述目标接入节点,在所述UE能够接入所述目标接入节点时,向所述控制器发送协议配置请求消息,所述目标接入节点为所述UE在节点切换后接入的节点。
  8. 一种节点切换装置,其特征在于,所述节点切换装置包括:
    接收模块,用于接收目标接入节点发送的协议配置请求消息,所述协议配置请求消息包括:用户设备UE的业务服务质量参数,所述协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,所述源接入节点为所述UE在节点切换前接入的节点,所述目标接入节点为所述UE在节点切换后接入的节点;
    第一确定模块,用于根据所述业务服务质量参数确定所述UE的业务对应的功能模块;
    配置模块,用于根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,所述目标节点包括:所述目标接入节点,所述目标节点用于在节点切换后,承载所述UE的业务对应的功能模块;
    第二确定模块,用于根据为所述目标节点配置的功能模块和网络拓扑确定源节点与所述目标节点进行数据流传输所需的第一转发表项组,所述源节点包括:所述源接入节点,所述源节点用于在节点切换前,承载所述UE的业务对应的功能模块;
    第三确定模块,用于根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
  9. 根据权利要求8所述的节点切换装置,其特征在于,所述目标节点还包括:目标转发节点,所述配置模块用于:
    根据所述UE的业务对应的功能模块和网络拓扑确定目标转发节点,所述目标转发节点为所述目标接入节点与所述网关之间的节点,且能够在节点 切换后承载所述UE的业务对应的功能模块中一部分;
    根据所述UE的业务对应的功能模块和网络拓扑确定所述目标转发节点的功能模块和所述目标接入节点的功能模块,所述目标转发节点的功能模块和所述目标接入节点的功能模块组成所述UE的业务对应的功能模块。
  10. 根据权利要求8所述的节点切换装置,其特征在于,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
    所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标节点进行数据流传输所需的转发表项。
  11. 根据权利要求9所述的节点切换装置,其特征在于,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
    所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标转发节点进行数据流传输所需的转发表项。
  12. 根据权利要求8所述的节点切换装置,其特征在于,所述第三确定模块用于:
    根据所述为所述目标节点配置的功能模块和所述网络拓扑确定所述目标节点中任一节点的转发表项;
    判断切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点是否为同一节点;
    若切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点不为同一节点,确定所述网关的转发表项。
  13. 一种节点切换装置,其特征在于,所述节点切换装置包括:
    第一接收模块,用于接收控制器发送的第一转发表项组,所述第一转发表项组为所述控制器根据为目标节点配置的功能模块和网络拓扑确定的,所述目标节点为在节点切换后承载用户设备UE的业务对应的功能模块的节点;
    第一发送模块,用于根据所述第一转发表项组向目标节点发送源节点上缓存的数据,所述源节点为在节点切换前承载所述UE的业务对应的功能模块的节点;
    第二接收模块,用于接收下行数据流结束标识;
    释放模块,用于根据所述下行数据流结束标识释放所述源节点上承载的所述UE的业务对应的功能模块;
    删除模块,用于删除所述第一转发表项组和所述源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
  14. 根据权利要求13所述的节点切换装置,其特征在于,所述源节点为源接入节点,所述源接入节点为节点切换前,所述UE接入的节点,所述节点切换装置还包括:
    第二发送模块,用于向目标接入节点发送切换请求消息,所述切换请求消息包括:业务服务质量参数,以便于所述目标接入节点根据所述切换请求消息,判断所述UE是否能够接入所述目标接入节点,在所述UE能够接入所述目标接入节点时,向所述控制器发送协议配置请求消息,所述目标接入节点为所述UE在节点切换后接入的节点。
  15. 一种节点切换系统,其特征在于,所述节点切换系统包括:控制器和源节点,
    所述控制器包括:权利要求8至12任一权利要求所述的节点切换装置;
    所述源节点包括:权利要求13或14所述的节点切换装置。
  16. 一种节点切换装置,其特征在于,所述节点切换装置包括:至少一个处理器、至少一个网络接口、存储器和至少一个通信总线,所述处理器用于执行所述存储器中存储的程序,所述程序包括:
    接收目标接入节点发送的协议配置请求消息,所述协议配置请求消息包括:用户设备UE的业务服务质量参数,所述协议配置请求消息是目标接入节点根据源接入节点发送的切换请求消息生成的,所述源接入节点为所述UE在节点切换前接入的节点,所述目标接入节点为所述UE在节点切换后接入的节点;
    根据所述业务服务质量参数确定所述UE的业务对应的功能模块;
    根据所述UE的业务对应的功能模块和网络拓扑为目标节点配置功能模块,所述目标节点包括:所述目标接入节点,所述目标节点用于在节点切换后,承载所述UE的业务对应的功能模块;
    根据为所述目标节点配置的功能模块和网络拓扑确定源节点与所述目标节点进行数据流传输所需的第一转发表项组,所述源节点包括:所述源接入节点,所述源节点用于在节点切换前,承载所述UE的业务对应的功能模块;
    根据所述为所述目标节点配置的功能模块和网络拓扑确定所述目标节点中任一节点与网关之间进行数据流传递所需的第二转发表项组。
  17. 根据权利要求16所述的节点切换装置,其特征在于,所述目标节点还包括:目标转发节点,所述程序还包括:
    根据所述UE的业务对应的功能模块和网络拓扑确定目标转发节点,所述目标转发节点为所述目标接入节点与所述网关之间的节点,且能够在节点切换后承载所述UE的业务对应的功能模块中一部分;
    根据所述UE的业务对应的功能模块和网络拓扑确定所述目标转发节点的功能模块和所述目标接入节点的功能模块,所述目标转发节点的功能模块和所述目标接入节点的功能模块组成所述UE的业务对应的功能模块。
  18. 根据权利要求16所述的节点切换装置,其特征在于,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
    所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标节点进行数据流传输所需的转发表项。
  19. 根据权利要求17所述的节点切换装置,其特征在于,所述源节点还包括:源转发节点,所述第一转发表项组,包括:
    所述源接入节点向所述源转发节点发送数据流所需的转发表项,以及所述源转发节点和所述目标转发节点进行数据流传输所需的转发表项。
  20. 根据权利要求16所述的节点切换装置,其特征在于,所述程序还包括:
    根据所述为所述目标节点配置的功能模块和所述网络拓扑确定所述目标节点中任一节点的转发表项;
    判断切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点是否为同一节点;
    若切换前与所述网关最近连接的源节点和切换后与所述网关最近连接的目标节点不为同一节点,确定所述网关的转发表项。
  21. 一种节点切换装置,其特征在于,所述节点切换装置包括:至少一个处理器、至少一个网络接口、存储器和至少一个通信总线,所述处理器用于执行所述存储器中存储的程序,所述程序包括:
    接收控制器发送的第一转发表项组,所述第一转发表项组为所述控制器根据为目标节点配置的功能模块和网络拓扑确定的,所述目标节点为在节点切换后承载用户设备UE的业务对应的功能模块的节点;
    根据所述第一转发表项组向目标节点发送源节点上缓存的数据,所述源节点为在节点切换前承载所述UE的业务对应的功能模块的节点;
    接收下行数据流结束标识;
    根据所述下行数据流结束标识释放所述源节点上承载的所述UE的业务对应的功能模块;
    删除所述第一转发表项组和所述源节点中任一节点与网关之间进行数据流传递所需的第三转发表项组。
  22. 根据权利要求21所述的节点切换装置,其特征在于,所述源节点为源接入节点,所述源接入节点为节点切换前所述UE接入的节点,所述程序还包括:
    向目标接入节点发送切换请求消息,所述切换请求消息包括:业务服务质量参数,以便于所述目标接入节点根据所述切换请求消息,判断所述UE是否能够接入所述目标接入节点,在所述UE能够接入所述目标接入节点时,向所述控制器发送协议配置请求消息,所述目标接入节点为所述UE在节点切换后接入的节点。
  23. 一种节点切换系统,其特征在于,所述节点切换系统包括:控制器和源节点,
    所述控制器包括:权利要求16至20任一所述的节点切换装置;
    所述源节点包括:权利要求21或22所述的节点切换装置。
PCT/CN2015/085809 2015-07-31 2015-07-31 节点切换方法、装置及系统 WO2017020204A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580082005.6A CN107925933B (zh) 2015-07-31 2015-07-31 节点切换方法、装置及系统
EP15899979.7A EP3319367B1 (en) 2015-07-31 2015-07-31 Node switching method, device, and system
PCT/CN2015/085809 WO2017020204A1 (zh) 2015-07-31 2015-07-31 节点切换方法、装置及系统
US15/883,932 US11122482B2 (en) 2015-07-31 2018-01-30 Node handover method, apparatus, and system in a software defined protocol network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085809 WO2017020204A1 (zh) 2015-07-31 2015-07-31 节点切换方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/883,932 Continuation US11122482B2 (en) 2015-07-31 2018-01-30 Node handover method, apparatus, and system in a software defined protocol network

Publications (1)

Publication Number Publication Date
WO2017020204A1 true WO2017020204A1 (zh) 2017-02-09

Family

ID=57942234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085809 WO2017020204A1 (zh) 2015-07-31 2015-07-31 节点切换方法、装置及系统

Country Status (4)

Country Link
US (1) US11122482B2 (zh)
EP (1) EP3319367B1 (zh)
CN (1) CN107925933B (zh)
WO (1) WO2017020204A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3583804B1 (en) * 2017-02-14 2021-03-24 Telefonaktiebolaget LM Ericsson (PUBL) Method and network nodes to manage qoe measurement collection during relocation or handover
CN113347099A (zh) * 2021-05-31 2021-09-03 中国工商银行股份有限公司 一种分布式网络流量转发方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110211583A1 (en) * 2010-03-01 2011-09-01 Deutsche Telekom Ag Apparatus, method, manufacture, and system for providing network services from building blocks
CN103857004A (zh) * 2012-12-03 2014-06-11 华为技术有限公司 处理无线网络用户接入的方法、装置及系统
WO2014166402A1 (en) * 2013-04-10 2014-10-16 Huawei Technologies Co., Ltd. System and method for providing a software defined protocol stack
WO2014197778A1 (en) * 2013-06-06 2014-12-11 Huawei Technologies Co., Ltd. System and method for mapping a service-level topology to a service-specific data plane logical topology

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4452315B2 (ja) * 2008-02-04 2010-04-21 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
CN101730150B (zh) * 2009-01-19 2013-08-07 中兴通讯股份有限公司 业务流迁移时对网络资源进行控制的方法
KR102088721B1 (ko) * 2013-06-25 2020-03-13 삼성전자주식회사 SDN 기반 LTE Network 구조 및 동작 방안
US9998967B2 (en) * 2013-07-17 2018-06-12 Interdigital Patent Holdings, Inc. Software defined networking distributed and dynamic mobility management
EP3036938A4 (en) * 2013-08-23 2017-04-12 Samsung Electronics Co., Ltd. Mobile software defined networking (mobisdn)
WO2016165123A1 (en) * 2015-04-17 2016-10-20 Mediatek Singapore Pte. Ltd. Enhancement for harq with channel repetitions
US11026133B2 (en) * 2015-04-24 2021-06-01 Nokia Solutions And Networks Oy Flexible quality of service for inter-base station handovers within wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110211583A1 (en) * 2010-03-01 2011-09-01 Deutsche Telekom Ag Apparatus, method, manufacture, and system for providing network services from building blocks
CN103857004A (zh) * 2012-12-03 2014-06-11 华为技术有限公司 处理无线网络用户接入的方法、装置及系统
WO2014166402A1 (en) * 2013-04-10 2014-10-16 Huawei Technologies Co., Ltd. System and method for providing a software defined protocol stack
WO2014197778A1 (en) * 2013-06-06 2014-12-11 Huawei Technologies Co., Ltd. System and method for mapping a service-level topology to a service-specific data plane logical topology

Also Published As

Publication number Publication date
US11122482B2 (en) 2021-09-14
CN107925933B (zh) 2019-11-01
EP3319367B1 (en) 2020-07-22
EP3319367A1 (en) 2018-05-09
EP3319367A4 (en) 2018-06-13
US20180160351A1 (en) 2018-06-07
CN107925933A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP5874851B2 (ja) 通信システム、転送ノード、制御装置及び通信方法
CN108601043B (zh) 用于控制无线接入点的方法和设备
JP6936393B2 (ja) パラメータ保護方法及びデバイス、並びに、システム
US10530699B2 (en) Processing method, apparatus, and system for a service flow processing policy
US10897509B2 (en) Dynamic detection of inactive virtual private network clients
JP6131484B2 (ja) ユーザ端末のアクセスを制御するための方法、装置、およびシステム
JP6468618B2 (ja) 無線ローカルエリアネットワークの並行処理能力を高めるための方法、装置、およびシステム
WO2019157968A1 (zh) 一种通信方法、装置及系统
JP6637196B2 (ja) ネットワークにおいてパケットフロー群を転送する方法及びネットワークシステム
WO2018099291A1 (zh) 数据传输方法、装置及系统、存储介质
KR101658824B1 (ko) 소프트웨어 정의 네트워크에서 플로우 룰을 변경하는 방법, 장치 및 컴퓨터 프로그램
JP2016524412A (ja) パケットを処理するための方法およびフォワーダ
JP6480452B2 (ja) パケット処理方法および装置
WO2018120183A1 (zh) 数据传输的方法及装置
WO2015003393A1 (zh) 报文处理方法及设备
WO2017020204A1 (zh) 节点切换方法、装置及系统
WO2018098630A1 (zh) 一种x2业务传输方法及网络设备
WO2015103869A1 (zh) 一种软件定义网络中OpenFlow消息跟踪和过滤的方法
JP2024506102A (ja) 進化型パケットシステム非アクセス層セキュリティアルゴリズムを構成する方法、および関連装置
WO2018176187A1 (zh) 数据传输方法、用户设备和控制面节点
WO2017091986A1 (zh) 业务流转发功能部署方法、装置及系统
KR101969304B1 (ko) 패킷-아웃 메시지를 이용한 소프트웨어 정의 네트워킹 환경에서의 장애 처리 방법 및 컴퓨터 프로그램
WO2018228309A1 (zh) 缓存控制方法、网元及控制器
WO2011035719A1 (zh) 一种释放本地连接的方法及系统
KR20160063166A (ko) Sdn 기반의 제어기의 데이터 경로 변경 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015899979

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE