WO2017020183A1 - Method and apparatus for performing radio resource measurement - Google Patents

Method and apparatus for performing radio resource measurement Download PDF

Info

Publication number
WO2017020183A1
WO2017020183A1 PCT/CN2015/085761 CN2015085761W WO2017020183A1 WO 2017020183 A1 WO2017020183 A1 WO 2017020183A1 CN 2015085761 W CN2015085761 W CN 2015085761W WO 2017020183 A1 WO2017020183 A1 WO 2017020183A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
candidate measurement
candidate
time position
determining
Prior art date
Application number
PCT/CN2015/085761
Other languages
French (fr)
Inventor
Hongmei Liu
Lei Jiang
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2015/085761 priority Critical patent/WO2017020183A1/en
Publication of WO2017020183A1 publication Critical patent/WO2017020183A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • Embodiments of the present invention generally relate to communication techniques. More particularly, embodiments of the present invention relate to a method and apparatus for performing radio resource measurement for Licensed-Assisted Access (LAA) .
  • LAA Licensed-Assisted Access
  • a licensed band represents a frequency band that is exclusively licensed to a specific operator to provide specific wireless services.
  • an unlicensed band represents a frequency band that is not allocated to a specific operator, but is opened so that all entities meeting the predefined requirements may use the frequency band.
  • LAA is a technology that relates to fair spectrum sharing, for example, how to access the unlicensed and licensed bands.
  • RRM Radio Resource Management
  • DRSs Discovery Reference Signals
  • BS base station
  • UE user equipment
  • the present invention proposes a solution regarding radio resource measurement. Specifically, the present invention provides a method and apparatus for performing radio resource measurement for LAA with improved measurement/reporting accuracy.
  • embodiments of the invention provide a method for performing radio resource measurement for LAA.
  • the method may comprise: determining a candidate measurement based on one or more potential time positions; and reporting the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.
  • embodiments of the invention provide a method for performing radio resource measurement for LAA.
  • the method may comprise: receiving a candidate measurement from the user equipment, wherein the candidate measurement is determined based on one or more potential time positions that include one or more actual time positions, and an actual time position is a time position at which a base station sends a reference signal; and determining a target measurement based on the candidate measurement.
  • embodiments of the invention provide an apparatus for performing radio resource measurement for LAA.
  • the apparatus may comprise: a candidate measurement determining unit configured to determine a candidate measurement based on one or more potential time positions; and a reporting unit configured to report the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.
  • embodiments of the invention provide an apparatus for performing radio resource measurement for LAA.
  • the apparatus may comprise: a receiving unit configured to receive a candidate measurement from the user equipment, wherein the candidate measurement is determined based on one or more potential time positions that include one or more actual time positions, and an actual time position is a time position at which a base station sends a reference signal; and a target measurement determining unit configured to determine a target measurement based on the candidate measurement.
  • FIG. 1 illustrates a schematic diagram of an environment 100 of embodiments of the present invention
  • FIG. 2 illustrates a flow chart of a method 200 for performing radio resource measurement at a UE according to embodiments of the invention
  • FIG. 3 illustrates a flow chart of a method 300 for performing radio resource measurement at a UE according to embodiments of the invention
  • FIG. 4 illustrates a flow chart of a method 400 for performing radio resource measurement at a UE according to embodiments of the invention
  • FIG. 5 illustrates a flow chart of a method 500 for performing radio resource measurement at a UE according to embodiments of the invention
  • FIG. 6 illustrates a flow chart of a method 600 for performing radio resource measurement at a UE according to embodiments of the invention
  • FIG. 7 illustrates a flow chart of a method 700 for performing radio resource measurement at a BS according to embodiments of the invention
  • FIG. 8 illustrates a flow chart of a method 800 for performing radio resource measurement at a BS according to embodiments of the invention
  • FIG. 9 illustrates a flow chart of a method 900 for performing radio resource measurement at a BS according to embodiments of the invention.
  • FIG. 10 illustrates a flow chart of a method 1000 for performing radio resource measurement at a BS according to embodiments of the invention
  • FIG. 11 illustrates a flow chart of a method 1100 for performing radio resource measurement at a BS according to embodiments of the invention
  • FIG. 12 illustrates a block diagram of an apparatus 1200 for performing radio resource measurement at a UE according to embodiments of the invention
  • FIG. 13 illustrates a block diagram of an apparatus 1300 for performing radio resource measurement at a BS according to embodiments of the invention
  • FIG. 14 illustrates a schematic diagram 1400 of an embodiment of the present invention
  • FIG. 15 illustrates a schematic diagram 1500 of an embodiment of the present invention
  • FIG. 16 illustrates a schematic diagram 1600 of an embodiment of the present invention.
  • FIG. 17 illustrates a schematic diagram 1700 of an embodiment of the present invention.
  • UE user equipment
  • MT Mobile Terminal
  • SS Subscriber Station
  • PSS Portable Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • BS base station
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • Embodiments of the present invention may be applied in various communication systems, including but not limited to a Long Term Evolution (LTE) system or a Long Term Evolution Advanced (LTE-A) system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • FIG. 1 illustrates a schematic diagram of an environment 100 of embodiments of the present invention.
  • a BS 120 transmits reference signals (for example, DRSs) to a UE 110, and in response, the UE 110 reports to the BS 120 RRM measurement based on the reference signals.
  • DRSs reference signals
  • the UE 110 and the BS 120 may have different understandings on the DRS existence and measurement/reporting accuracy may be reduced.
  • embodiments of the present invention provides solutions as discussed below.
  • FIG. 2 illustrates a flow chart of a method 200 for performing radio resource measurement at a UE according to embodiments of the invention.
  • the UE may be implemented as the UE 110 shown in FIG. 1.
  • the method 200 starts in step 210, in which a candidate measurement is determined based on one or more potential time positions.
  • a potential time position is a time instant at which it is possible for a BS to transmit a reference signal to a UE.
  • a potential time position may be an actual time position at which the BS transmits the reference signal to the UE, or may be an invalid time position at which the BS does not transmit any reference signal to the UE.
  • Information about the one or more potential time positions may be obtained by the UE in various ways. In some embodiments, such information may be transmitted from the BS to the UE before the start of the method 200. Alternatively, the information about the one or more potential time positions may be predefined at both the BS and UE sides, as long as both sides have the same information.
  • the candidate measurement may be determined in multiple ways.
  • the UE may measure signals received at the one or more potential time positions and determine the candidate measurement based on each of the measured signals.
  • the UE may measure signals received at the one or more potential time positions, and divide the measured signals into a predetermined number of groups. Then, the UE may select a largest measured signal from measured signals in each of the predetermined number of groups, and determine the largest measured signal as a candidate measurement.
  • the UE may measure signals received at the one or more potential time positions first. In response to receiving a triggering signal from the base station, the UE may determine a triggering time position from the one or more potential time positions based on the triggering signal. The triggering signal may indicate a triggering time position at which the candidate measurement is to be determined. Then, the UE may determine the candidate measurement based on the measured signal corresponding to the triggering time position.
  • the UE may measure signals received at the one or more potential time positions. Either before or after the measurement on the received signals, the UE may receive information about one or more actual time positions from the base station.
  • An actual time position is a time position at which the base station sends a reference signal.
  • the UE will report the measurement on the received signals if it receives from the BS reporting signal indicating that the candidate measurement is requested to report or if the measurement exceeds a threshold.
  • the candidate measurement may be determined based on the potential time positions in other suitable ways.
  • step 220 the candidate measurement is reported to a base station, so that the base station determines a target measurement based on the candidate measurement.
  • a measuring result may be obtained in step 210.
  • the UE may determine a measuring result as a candidate measurement and report the candidate measurement to the BS in step 220.
  • the UE may determine a measuring time position corresponding to the candidate measurement and report the candidate measurement together with the measuring time position to the BS.
  • FIG. 3 illustrates a flow chart of a method 300 for performing radio resource measurement at a UE according to embodiments of the invention.
  • the method 300 may be considered as a specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • step 310 signals received at the one or more potential time positions are measured.
  • the UE may assume that DRS exists at all the potential time positions, and measure each of the signals received at the one or more potential time positions.
  • step 320 the candidate measurement is determined based on each of the measured signals.
  • each of the measured signals may be considered as a candidate measurement.
  • there may be one or more candidate measurements for example one-shot RRM measurements.
  • step 330 the candidate measurement is reported to a base station, so that the base station determines a target measurement based on the candidate measurement.
  • Step 330 is similar to step 220.
  • the UE may report one or more candidate measurements determined in step 320 to the BS. The reporting may be performed on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status.
  • the BS may choose a suitable candidate measurement as a target measurement according to actual DRS transmission.
  • FIG. 14 a schematic diagram 1400 of an embodiment of the present invention is illustrated.
  • Cell 1 DRS configuration indicates information about the potential time positions, which exemplarily comprises time position 1, time position 2, time position 3 and time position 4.
  • Cell 1 DRS transmission indicates information about actual time positions which are time positions at which the base station actually sends a reference signal.
  • DRS measurement timing configuration (DMTC) is used to configure the UE when and where to measure the DRS.
  • DMTC may contain a periodicity, offset, duration and detailed time/frequency resources within a single subframe.
  • the actual time positions exemplarily comprise time position 1 and time position 4.
  • the BS actually sends the DRS to the UE at time position 1 and time position 4.
  • the Cell 1 DRS transmission information is not sent to the UE.
  • the UE measures a signal received at each of the potential time positions (time positions 1 to 4) , determines each the measured results as a candidate measurement and reports the candidate measurements to the BS.
  • UE reporting positions include all of the time positions 1 to 4.
  • the BS may determine one or more target measurement from the candidate measurements according to actual DRS transmission.
  • the BS since the BS actually sends the DRS to the UE at time position 1 and time position 4, the BS may determine candidate measurements corresponding to time positions 1 and 4 as the target measurements. In this way, the accuracy of radio resource measurement for LAA can be improved simply.
  • FIG. 4 illustrates a flow chart of a method 400 for performing radio resource measurement at a UE according to embodiments of the invention.
  • the method 400 may be considered as a further specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • step 410 signals received at the one or more potential time positions are measured.
  • the UE may assume that DRS exists at all the potential time positions, and measure each of the signals received at the one or more potential time positions. As such, one or more RRM measurements may be obtained.
  • the measured signals are divided into a predetermined number of groups.
  • the predetermined number may be set according to system requirements, specifications, channel quality, and so on. For instance, assuming that there are four potential time positions, that is, time positions 1 to 4, the measured signals (also referred to as “measurements” or “RRM measurements” ) may be divided into two groups according to the potential time positions to which they correspond. More specifically, the RRM measurements corresponding to time positions 1 and 2 may be in a group, and the RRM measurements corresponding to time positions 3 and 4 may be in another group.
  • a largest one from measured signals in each of the predetermined number of groups is determined as a candidate measurement.
  • the largest RRM measurement may be selected as a candidate measurement.
  • the RRM measurements in one group may be compared with a predetermined threshold first. Then, a largest RRM measurement may be selected from those RRM measurements exceeding the predetermined threshold. If there is only one RRM measurement exceeding the predetermined threshold, it may be determined as the candidate measurement corresponding to the group. In this way, with respect to the predetermined number of groups, the predetermined number of candidate measurements may be determined. Additionally and alternatively, if there is no RRM measurement exceeding the predetermined threshold, there is no candidate measurement corresponding to the group. As such, the number of candidate measurements may be less than the predetermined number of groups.
  • a measuring time position corresponding to the candidate measurement is determined.
  • a measuring time position refers to a time position at which a candidate measurement is obtained.
  • the corresponding time position may be determined. For example, with regard to a group including the RRM measurements corresponding to time positions 1 and 2, if the RRM measurement corresponding to time position 1 is determined as the candidate measurement, then time position 1 may be determined as a measuring time position.
  • the candidate measurement is reported together with the measuring time position to the base station.
  • the reporting may be performed on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status.
  • the BS may choose a suitable candidate measurement as a target measurement according to actual DRS transmission.
  • FIG. 15 a schematic diagram 1500 of an embodiment of the present invention is illustrated.
  • Cell 1 DRS configuration indicates information about the potential time positions, which exemplarily comprises time position 1, time position 2, time position 3 and time position 4.
  • Cell 1 DRS transmission indicates information about actual time positions which are time positions at which the base station actually sends a reference signal.
  • the actual time positions exemplarily comprise time position 1 and time position 4. That is, the BS actually sends the DRS to the UE at time position 1 and time position 4. Similar to the embodiment of FIG. 14, in this embodiment, the Cell 1 DRS transmission information is still not sent to the UE.
  • the UE measures a signal received at each of the potential time positions (time positions 1 to 4) , divides the measured signals (RRM measurements) into N groups (N ⁇ 1) , and determines a largest RRM measurement in each of the N groups as a candidate measurement. In this way, the UE may obtain M (M ⁇ N) candidate measurements and their corresponding time positions, and report the M candidate measurements together with their corresponding time positions to the BS.
  • the RRM measurements are divided into 2 groups, a first group including the RRM measurements corresponding to time positions 1 and 2, and a second group including the RRM measurements corresponding to time positions 3 and 4.
  • the first group the RRM measurement corresponding to time position 1 is determined as a candidate measurement.
  • the second group the RRM measurement corresponding to time position 3 is determined as a candidate measurement.
  • the UE reports the candidate measurements together with their measuring time positions (time positions 1 and 3) to the BS.
  • the BS may determine one or more target measurement from the candidate measurements according to actual DRS transmission.
  • the BS since the BS actually sends the DRS to the UE at time position 1 and time position 4, the BS may determine the candidate measurement corresponding to time position 1 as a target measurement, and the candidate measurement corresponding to time position 3 is not a target measurement.
  • FIG. 5 illustrates a flow chart of a method 500 for performing radio resource measurement at a UE according to embodiments of the invention.
  • the method 500 may be considered as a further specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • step 510 signals received at the one or more potential time positions are measured.
  • the UE may assume that DRS exists at all the potential time positions, and measure each of the signals received at the one or more potential time positions. As such, one or more RRM measurements may be obtained.
  • a triggering time position is determined from the one or more potential time positions based on the triggering signal.
  • the triggering signal indicates a triggering time position at which the candidate measurement is to be determined. More specifically, the triggering time position may refer to a time position at which the BS wants the UE to report the corresponding RRM measurement.
  • the BS may send the triggering signal indicating the triggering time position to the UE.
  • the UE may understand that the BS requests report of the RRM measurement corresponding to the triggering time position, and may identify the triggering time position from the potential time positions.
  • the triggering signal may be transmitted on a licensed carrier or an unlicensed cartier, which depends on traffic and channel status.
  • the candidate measurement is determined based on the measured signal corresponding to the triggering time position.
  • the UE does not report the RRM measurements obtained in step 510, until receiving the triggering time position.
  • the UE understands that the BS requests that the RRM measurement corresponding to the triggering time position is to be reported.
  • the UE may determine the RRM measurement corresponding to the triggering time position as the candidate measurement, and report the candidate measurement to the BS in the following step 540.
  • the candidate measurement is reported to a base station, so that the base station determines a target measurement based on the candidate measurement.
  • the reporting may be performed on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status.
  • the BS may determine the candidate measurement (s) as the target measurement (s) directly, instead of determining the target measurement (s) based on the candidate measurement (s) according to actual DRS transmission as discussed with reference to FIGs. 3 and 4.
  • Cell 1 DRS configuration indicates information about the potential time positions, which exemplarily comprises time position 1, time position 2, time position 3 and time position 4.
  • Cell 1 DRS transmission indicates information about actual time positions which are time positions at which the base station actually sends a reference signal.
  • the actual time positions exemplarily comprise time position 1 and time position 4. That is, the BS actually sends the DRS to the UE at time position 1 and time position 4.
  • the Cell 1 DRS transmission information is not sent to the UE. Instead, the BS sends one or more triggering signals to the UE to indicate one or more triggering time positions.
  • the BS sends two triggering signals to the UE, one for time position 1 and the other one for time position 4.
  • the UE determines the RRM measurements corresponding to the triggering time positions (time positions 1 and 4) as the candidate measurements and report the candidate measurements to the BS. In this way, the accuracy of radio resource measurement for LAA can be improved with reduced signaling overhead.
  • FIG. 6 illustrates a flow chart of a method 600 for performing radio resource measurement at a UE according to embodiments of the invention.
  • the method 600 may be considered as a further specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • step 610 signals received at the one or more potential time positions are measured.
  • the UE may assume that DRS exists at all the potential time positions, and measure each of the signals received at the one or more potential time positions. As such, one or more RRM measurements may be obtained.
  • an actual time position may refer to a time position at which the base station actually sends a reference signal.
  • the information about the actual time positions may be transmitted from the BS to the UE before or after the transmission of reference signals. Alternatively, the information about the actual time positions and reference signals may be transmitted simultaneously. According to embodiments of the present invention, the information about the actual time positions may be transmitted on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status.
  • step 630 in response to receiving a reporting signal from the base station, the candidate measurement is determined based on the measured signals corresponding to the actual time positions, wherein the reporting signal indicates that the candidate measurement is requested to report.
  • the reporting signal indicates that the candidate measurement is requested to report. More specifically, the reporting signal may be used by the BS to requests the UE to report the candidate measurement. When the BS wants the UE to report the candidate measurement, the BS may send the reporting signal to the UE. Upon receiving the reporting signal, the UE may understand that the BS requests report of the candidate measurement. At this time, the UE may determine the measured signals (also referred as the RRM measurements) corresponding to the actual time positions. The RRM measurements determined by the UE may be obtained at all actual time positions preceding the reporting signal or a part of the actual time positions. In some embodiment, the part of the actual time positions may include the actual time positions within a predefined time period, or a predetermined number of the actual time positions.
  • the UE may determine the candidate measurement based on determined RRM measurements.
  • there may be only one determined RRM measurement thus the UE may directly determine this RRM measurement as a candidate measurement.
  • an average of a plurality of determined RRM measurements may be detemrind as a candidate measurement.
  • some larger RRM measurements may be selected from the determined RRM measurements, and the averaging operation may be performed only on the larger RRM measurements.
  • the largest RRM measurement may be selected from the determined RRM measurements as the candidate measurement.
  • the candidate measurement is determined based on an average of the measured signals corresponding to the actual time positions. It is to be noted that, this is only for illustration rather than limitation. Those skilled in the art will understand that the candidate measurement may be determined based on the RRM measurements corresponding to the actual time positions in several ways, especially the embodiments described above.
  • the triggering signal may be transmitted on a licensed cartier or an unlicensed carrier, which depends on traffic and channel status.
  • step 630 is optional rather than essential for the method 600.
  • the UE may determine a candidate measurement without the reporting signal. For example, after the UE determines RRM measurements corresponding to the actual time positions, it may select one or more RRM measurements exceeding a predetermined threshold from the determined RRM measurements as candidate measurement (s) . Alternatively, the UE may determine an average of the selected RRM measurements as a candidate measurement.
  • step 640 the candidate measurement is reported to a base station, so that the base station determines a target measurement based on the candidate measurement.
  • the reporting may be performed on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status.
  • the BS may determine the candidate measurement as the target measurement directly.
  • Cell 1 DRS configuration indicates information about the potential time positions, which exemplarily comprises time position 1, time position 2, time position 3 and time position 4.
  • Cell 1 DRS transmission indicates information about actual time positions which are time positions at which the base station actually sends a reference signal.
  • the actual time positions exemplarily comprise time position 1 and time position 4. That is, the BS actually sends the DRS to the UE at time position 1 and time position 4.
  • the Cell 1 DRS transmission information is sent from the BS to the UE.
  • the BS may send reporting signal (s) to request the UE to report the candidate measurement.
  • the BS sends information about actual time positions to the UE.
  • the information indicates DRS presence on time positions 1 and 4.
  • the BS sends a reporting signal to trigger the report of the candidate measurement.
  • the UE determines the RRM measurements corresponding to the actual time positions (time positions 1 and 4) and calculate an average of these RRM measurements as the candidate measurement. Then the UE reports the candidate measurement to the BS.
  • the accuracy of radio resource measurement for LAA can be further improved.
  • FIG. 7 illustrates a flow chart of a method 700 for performing radio resource measurement at a BS according to embodiments of the invention.
  • the method 700 may be performed at a BS or other suitable device.
  • a candidate measurement is received from a UE.
  • the UE may determine the candidate measurement based on one or more potential time positions that include one or more actual time positions.
  • An actual time position may refer to a time position at which the BS actually sends a reference signal.
  • a target measurement is determined based on the candidate measurement.
  • the candidate measurement may be determined based on each of signals received at the one or more potential time positions in step 720. In these embodiments, it may be determined whether the candidate measurement corresponds to an actual time position. If yes, the candidate measurement may be determined as a target measurement.
  • a candidate measurement may be received together with a measuring time position corresponding to the candidate measurement.
  • it may be determined whether the measuring time position is an actual time position. If yes, the candidate measurement may be determined as a target measurement.
  • the BS may send a triggering signal to the UE.
  • the triggering signal indicates a triggering time position at which the candidate measurement is to be determined.
  • the UE may determine the candidate measurement based on the triggering signal. In this event, the BS may determine the candidate measurement as the target measurement in step 720.
  • the BS sends information about one or more actual time positions and a reporting signal to the UE.
  • the reporting signal may indicate that the candidate measurement is requested to report.
  • the UE may determine the candidate measurement based on the information about one or more actual time positions and the reporting signal.
  • the BS may determine the candidate measurement as the target measurement in step 720.
  • the BS sends information about one or more actual time positions to the UE, without the reporting signal.
  • the UE may determine the candidate measurement based on the information about one or more actual time positions. For example, after the UE determines RRM measurements corresponding to the actual time positions, it may select a RRM measurement exceeding a predetermined threshold from the determined RRM measurements as candidate measurement (s) . In this case, the BS may determine the candidate measurement as the target measurement in step 720.
  • FIG. 8 illustrates a flow chart of a method 800 for performing radio resource measurement at a BS according to embodiments of the invention.
  • the method 800 may be considered as a further specific implementation of the method 700 described above with reference to Fig. 7. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • the UE assumes that DRS exists at all the potential time positions, and measures each of the signals received at the one or more potential time positions as the candidate measurements.
  • the BS may choose a suitable candidate measurement as a target measurement according to actual DRS transmission. More specifically, in this case, the BS may perform the following steps 810-830.
  • a candidate measurement is received from the user equipment.
  • the candidate measurement is determined as a target measurement.
  • the method 800 may be performed by a BS (for example the BS 120) when its UE (for example the UE 110) performs the method 300.
  • a BS for example the BS 120
  • the UE obtains RRM measurements corresponding to all potential time positions, determine the RRM measurements as candidate measurements and reports the candidate measurements to the BS.
  • the BS may determine one or more target measurement from the candidate measurements according to actual DRS transmission. In this embodiment, since the BS actually sends the DRS to the UE at time position 1 and time position 4, the BS may determine candidate measurements corresponding to time positions 1 and 4 as the target measurements.
  • FIG. 9 illustrates a flow chart of a method 900 for performing radio resource measurement at a BS according to embodiments of the invention.
  • the method 900 may be considered as a further specific implementation of the method 700 described above with reference to Fig. 7. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • the UE measures each of the signals received at the potential time positions, thus one or more RRM measurements may be obtained. Then the UE divides the RRM measurements into a plurality of groups and selects a largest RRM measurement for each group. The UE may determine the largest RRM measurement as a candidate measurement and report it to the BS. Upon receipt of the candidate measurement reported by the UE, the BS may determine whether a candidate measurement is a target measurement according to actual DRS transmission. More specifically, in this case, the BS may perform the following steps 910-930. In step 910, a candidate measurement is received together with a measuring time position corresponding to the candidate measurement. In step 920, it is determined whether the measuring time position is an actual time position. In step 930, in response to determining that the measuring time position is an actual time position, the candidate measurement is determined as a target measurement.
  • the method 900 may be performed by a BS (for example the BS 120) when its UE (for example the UE 110) performs the method 400.
  • UE obtains RRM measurements corresponding to all potential time positions, and divide the RRM measurements into 2 groups, a first group including the RRM measurements corresponding to time positions 1 and 2, and a second group including the RRM measurements corresponding to time positions 3 and 4.
  • the UE determines that the RRM measurement corresponding to time position 1 is larger than that corresponds to time position 2.
  • the UE determine the RRM measurement corresponding to time position 1 as a candidate measurement.
  • the UE determine the RRM measurement corresponding to time position 3 as a candidate measurement. Then, the UE reports the candidate measurements together with their measuring time positions (time positions 1 and 3) to the BS.
  • the BS may determine one or more target measurement from the candidate measurements according to actual DRS transmission. In this embodiment, since the BS actually sends the DRS to the UE at time position 1 and time position 4, the BS may determine the candidate measurement corresponding to time position 1 as a target measurement, and discards the candidate measurement corresponding to time position 3 because time position 3 is not an actual time position. In this way, the accuracy of radio resource measurement for LAA can be improved with reduced signaling overhead.
  • FIG. 10 illustrates a flow chart of a method 1000 for performing radio resource measurement at a BS according to embodiments of the invention.
  • the method 1000 may be considered as a further specific implementation of the method 700 described above with reference to Fig. 7. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • the BS sends a triggering signal to the UE, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined.
  • the UE measures signals received at each of the potential time position, and reports the RRM measurements according to the triggering signal received from the BS. More specifically, in this case, the BS may perform the following steps 1010-1030.
  • a triggering signal is sent to the UE.
  • the UE may determine the candidate measurement based on the received triggering signal.
  • a candidate measurement is received from the UE.
  • the candidate measurement is determined as the target measurement.
  • the method 1000 may be performed by a BS (for example the BS 120) when its UE (for example the UE 110) performs the method 500.
  • a BS for example the BS 120
  • the UE for example the UE 110
  • FIG. 16 the BS sends two triggering signals to the UE, one for time position 1 and the other one for time position 4.
  • the UE determines the RRM measurements corresponding to the triggering time positions (time positions 1 and 4) as the candidate measurements and report the candidate measurements to the BS.
  • the BS may determine them as the target measurements directly.
  • FIG. 11 illustrates a flow chart of a method 1100 for performing radio resource measurement at a B S according to embodiments of the invention.
  • the method 1100 may be considered as a further specific implementation of the method 700 described above with reference to Fig. 7. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • the BS indicates UE the DRS presence, for example by sending information about one or more actual time positions to the UE.
  • the BS may send a reporting signal to the UE.
  • the UE may understand that the BS requests report of the candidate measurement.
  • the UE determines the measured signals (also referred to as the RRM measurements) corresponding to the actual time positions.
  • the UE may average the determined RRM measurements and report the averaging result to the BS. More specifically, in this case, the BS may perform the following steps 1110-1130.
  • step 1110 information about one or more actual time positions and a reporting signal are sent to the UE.
  • the UE may determine the candidate measurement based on the information about one or more actual time positions and the reporting signal.
  • a candidate measurement is received from the UE.
  • the candidate measurement is determined as the target measurement.
  • the method 1100 may be performed by a BS (for example the BS 120) when its UE (for example the UE 110) performs the method 600.
  • the BS sends information about actual time positions to the UE. The information indicates DRS presence on time positions 1 and 4. Additionally, the BS sends a reporting signal to trigger the report of the candidate measurement. Upon receipt of the reporting signal, the UE determines the RRM measurements corresponding to the actual time positions (time positions 1 and 4) and calculate an average of these RRM measurements as the candidate measurement. Then the UE reports the candidate measurement to the BS. Upon receipt of the candidate measurement, the BS may determine it as the target measurement directly.
  • the BS may send only information about one or more actual time positions to the UE, without the reporting signal.
  • the UE may determine RRM measurements corresponding to the actual time positions. Then the UE may select one or more RRM measurements exceeding a predetermined threshold from the determined RRM measurements as candidate measurement (s) , determine an average of the selected RRM measurements as a candidate measurement.
  • FIG. 12 illustrates a block diagram of an apparatus 1200 for performing radio resource measurement at a UE according to embodiments of the invention.
  • the apparatus 1200 may be implemented at a UE or any other applicable device.
  • the apparatus 1200 comprises: a candidate measurement determining unit 1210 configured to determine a candidate measurement based on one or more potential time positions; and a reporting unit 1220 configured to report the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.
  • the candidate measurement determining unit 1210 may comprise: a measuring unit configured to measure signals received at the one or more potential time positions; and a determining unit configured to determine the candidate measurement based on each of the measured signals.
  • the candidate measurement determining unit 1210 may comprise: a measuring unit configured to measure signals received at the one or more potential time positions; a dividing unit configured to divide the measured signals into a predetermined number of groups; and wherein the candidate measurement determining unit is further configured to determine, as a candidate measurement, a largest one from measured signals in each of the predetermined number of groups.
  • the reporting unit 1220 may comprise: a measuring time position determining unit configured to determine a measuring time position corresponding to the candidate measurement; and wherein the reporting unit is further configured to report the candidate measurement together with the measuring time position to the base station.
  • the candidate measurement determining unit 1210 may comprise: a measuring unit configured to measure signals received at the one or more potential time positions; a triggering time position determining unit configured to determine, in response to receiving a triggering signal from the base station, a triggering time position from the one or more potential time positions based on the triggering signal, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined; and wherein the candidate measurement determining unit is further configured to determine the candidate measurement based on the measured signal corresponding to the triggering time position.
  • the candidate measurement determining unit 1210 may comprise: a measuring unit configured to measure signals received at the one or more potential time positions; an information receiving unit configured to receive information about one or more actual time positions from the base station, wherein an actual time position is a time position at which the base station sends a reference signal; and wherein the candidate measurement determining unit is further configured to determine, in response to receiving a reporting signal from the base station, the candidate measurement based on the measured signals corresponding to the actual time positions, wherein the reporting signal indicates that the candidate measurement is requested to report.
  • FIG. 13 illustrates a block diagram of an apparatus 1300 for performing radio resource measurement at a BS according to embodiments of the invention.
  • the apparatus 1300 may be implemented at a BS or any other applicable device.
  • the apparatus 1300 comprises: a receiving unit 1310 configured to receive a candidate measurement from the user equipment, wherein the candidate measurement is determined based on one or more potential time positions that include one or more actual time positions, and an actual time position is a time position at which a base station sends a reference signal; and a target measurement determining unit 1320 configured to determine a target measurement based on the candidate measurement.
  • the candidate measurement is determined based on each of signals received at the one or more potential time positions.
  • the target measurement determining unit 1320 may comprise: a judging unit configured to determine whether the candidate measurement corresponds to an actual time position; and wherein the target measurement determining unit is further configured to, in response to determining that the candidate measurement corresponds to an actual time position, determine the candidate measurement as a target measurement.
  • the receiving unit 1310 is further configured to receive a candidate measurement together with a measuring time position corresponding to the candidate measurement.
  • the target measurement determining unit 1320 may comprise: a judging unit configured to determine whether the measuring time position is an actual time position.
  • the target measurement determining unit 1320 may be further configured to, in response to determining that the measuring time position is an actual time position, determine the candidate measurement as a target measurement.
  • the apparatus 1300 may further comprise a triggering signal sending unit configured to send a triggering signal to the user equipment, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined.
  • a triggering signal sending unit configured to send a triggering signal to the user equipment, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined.
  • the candidate measurement may be determined based on the triggering signal.
  • the target measurement determining unit 1320 may be further configured to determine the candidate measurement as the target measurement.
  • the apparatus 1300 may further comprise an information and reporting signal sending unit configured to send information about one or more actual time positions and a reporting signal to the user equipment, wherein the reporting signal indicates that the candidate measurement is requested to report.
  • the candidate measurement may be determined based on the information about one or more actual time positions and the reporting signal.
  • the target measurement determining unit 1320 may be further configured to determine the candidate measurement as the target measurement.
  • apparatuses 1200 and 1300 may be respectively implemented by any suitable technique either known at present or developed in the future. Further, a single device shown in FIG. 12 or FIG. 13 may be alternatively implemented in multiple devices separately, and multiple separated devices may be implemented in a single device. The scope of the present invention is not limited in these regards.
  • the apparatus 1200 may be configured to implement functionalities as described with reference to FIGs. 2-6, and the apparatus 1300 may be configured to implement functionalities as described with reference to FIGs. 7-11. Therefore, the features discussed with respect to the methods 200-600 may apply to the corresponding components of the apparatus 1200, and the features discussed with respect to the methods 700-1100 may apply to the corresponding components of the apparatus 800. It is further noted that the components of the apparatus 1200 or the apparatus 1300 may be embodied in hardware, software, firmware, and/or any combination thereof. For example, the components of the apparatus 1200 or the apparatus 1300 may be respectively implemented by a circuit, a processor or any other appropriate device. Those skilled in the art will appreciate that the aforesaid examples are only for illustration not limitation.
  • the apparatus 1200 or the apparatus 1300 may comprise at least one processor.
  • the at least one processor suitable for use with embodiments of the present disclosure may include, by way of example, both general and special purpose processors already known or developed in the future.
  • the apparatus 1200 or the apparatus 1300 may further comprise at least one memory.
  • the at least one memory may include, for example, semiconductor memory devices, e.g., RAM, ROM, EPROM, EEPROM, and flash memory devices.
  • the at least one memory may be used to store program of computer executable instructions.
  • the program can be written in any high-level and/or low-level compliable or interpretable programming languages.
  • the computer executable instructions may be configured, with the at least one processor, to cause the apparatus 1200 to at least perform according to the methods 200-600 as discussed above, or to cause the apparatus 1300 to at least perform according to the methods 700-1100 as discussed above.
  • the present disclosure may be embodied in an apparatus, a method, or a computer program product.
  • the various exemplary embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto.
  • FIGs. 1-11 may be viewed as method steps, and/or as operations that result from operation of computer program code, and/or as a plurality of coupled logic circuit elements constructed to carry out the associated function (s) .
  • At least some aspects of the exemplary embodiments of the disclosures may be practiced in various components such as integrated circuit chips and modules, and that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, FPGA or ASIC that is configurable to operate in accordance with the exemplary embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the disclosure provide a method and apparatus for performing radio resource measurement for LAA. The method may comprise: determining a candidate measurement based on one or more potential time positions; and reporting the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.

Description

METHOD AND APPARATUS FOR PERFORMING RADIO RESOURCE MEASUREMENT FIELD OF THE INVENTION
Embodiments of the present invention generally relate to communication techniques. More particularly, embodiments of the present invention relate to a method and apparatus for performing radio resource measurement for Licensed-Assisted Access (LAA) .
BACKGROUND OF THE INVENTION
In wireless communication, the spectrum is very rare resource. A licensed band represents a frequency band that is exclusively licensed to a specific operator to provide specific wireless services. On the other hand, an unlicensed band represents a frequency band that is not allocated to a specific operator, but is opened so that all entities meeting the predefined requirements may use the frequency band.
LAA is a technology that relates to fair spectrum sharing, for example, how to access the unlicensed and licensed bands. For LAA, there is a need to support Radio Resource Management (RRM) measurement/reporting, which is essential for UE cell selection/association.
However, for LAA, transmission of reference signals, such as Discovery Reference Signals (DRSs) on an unlicensed carrier is uncertain. A base station (BS) and user equipment (UE) may have different understandings on the DRS existence. As such, RRM measurement/reporting accuracy may be degraded.
Therefore, there is a need to perform radio resource measurement for LAA with improved measurement/reporting accuracy.
SUMMARY OF THE INVENTION
The present invention proposes a solution regarding radio resource measurement. Specifically, the present invention provides a method and apparatus for performing radio resource measurement for LAA with improved measurement/reporting accuracy.
According to a first aspect of embodiments of the present invention, embodiments of the invention provide a method for performing radio resource measurement for LAA. The method may comprise: determining a candidate measurement based on one or more potential time positions; and reporting the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.
According to a second aspect of embodiments of the present invention, embodiments of the invention provide a method for performing radio resource measurement for LAA. The method may comprise: receiving a candidate measurement from the user equipment, wherein the candidate measurement is determined based on one or more potential time positions that include one or more actual time positions, and an actual time position is a time position at which a base station sends a reference signal; and determining a target measurement based on the candidate measurement.
According to a third aspect of embodiments of the present invention, embodiments of the invention provide an apparatus for performing radio resource measurement for LAA. The apparatus may comprise: a candidate measurement determining unit configured to determine a candidate measurement based on one or more potential time positions; and a reporting unit configured to report the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.
According to a fourth aspect of embodiments of the present invention, embodiments of the invention provide an apparatus for performing radio resource measurement for LAA. The apparatus may comprise: a receiving unit configured to receive a candidate measurement from the user equipment, wherein the candidate measurement is determined based on one or more potential time positions that include one or more actual time positions, and an actual time position is a time position at which a base station sends a reference signal; and a target measurement determining unit configured to determine a target measurement based on the candidate measurement.
Other features and advantages of the embodiments of the present invention will also be apparent from the following description of specific embodiments when read in  conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the invention are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying drawings, where
FIG. 1 illustrates a schematic diagram of an environment 100 of embodiments of the present invention;
FIG. 2 illustrates a flow chart of a method 200 for performing radio resource measurement at a UE according to embodiments of the invention;
FIG. 3 illustrates a flow chart of a method 300 for performing radio resource measurement at a UE according to embodiments of the invention;
FIG. 4 illustrates a flow chart of a method 400 for performing radio resource measurement at a UE according to embodiments of the invention;
FIG. 5 illustrates a flow chart of a method 500 for performing radio resource measurement at a UE according to embodiments of the invention;
FIG. 6 illustrates a flow chart of a method 600 for performing radio resource measurement at a UE according to embodiments of the invention;
FIG. 7 illustrates a flow chart of a method 700 for performing radio resource measurement at a BS according to embodiments of the invention;
FIG. 8 illustrates a flow chart of a method 800 for performing radio resource measurement at a BS according to embodiments of the invention;
FIG. 9 illustrates a flow chart of a method 900 for performing radio resource measurement at a BS according to embodiments of the invention;
FIG. 10 illustrates a flow chart of a method 1000 for performing radio resource measurement at a BS according to embodiments of the invention;
FIG. 11 illustrates a flow chart of a method 1100 for performing radio resource measurement at a BS according to embodiments of the invention;
FIG. 12 illustrates a block diagram of an apparatus 1200 for performing radio resource measurement at a UE according to embodiments of the invention;
FIG. 13 illustrates a block diagram of an apparatus 1300 for performing radio resource measurement at a BS according to embodiments of the invention;
FIG. 14 illustrates a schematic diagram 1400 of an embodiment of the present invention;
FIG. 15 illustrates a schematic diagram 1500 of an embodiment of the present invention;
FIG. 16 illustrates a schematic diagram 1600 of an embodiment of the present invention; and
FIG. 17 illustrates a schematic diagram 1700 of an embodiment of the present invention.
Throughout the figures, same or similar reference numbers indicate same or similar elements.
DETAILED DESCRIPTION OF EMBODIMENTS
The subject matter described herein will now be discussed with reference to several example embodiments. It should be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a, ” an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises, ” “comprising, ” “includes” and/or “including, ” when used herein, specify the presence of stated features, integers, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two functions or acts shown in succession may in fact be executed concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
In the disclosure, user equipment (UE) may refer to a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station (PSS) , Mobile Station (MS) , and/or an Access Terminal (AT) . A base station (BS) may refer to a node B (NodeB or NB) , or an evolved NodeB (eNodeB or eNB) .
Embodiments of the present invention may be applied in various communication systems, including but not limited to a Long Term Evolution (LTE) system or a Long Term Evolution Advanced (LTE-A) system. Given the rapid development in communications, there will of course also be future type wireless communication technologies and systems with which the present invention may be embodied. It should not be seen as limiting the scope of the invention to only the aforementioned system.
Now some exemplary embodiments of the present invention will be described below with reference to the figures. Reference is first made to FIG. 1, which illustrates a schematic diagram of an environment 100 of embodiments of the present invention. As shown in FIG. 1, a BS 120 transmits reference signals (for example, DRSs) to a UE 110, and in response, the UE 110 reports to the BS 120 RRM measurement based on the reference signals. As discussed above, conventionally, for LAA, DRS transmission on an unlicensed carrier is uncertain. Thus, the UE 110 and the BS 120 may have different understandings on the DRS existence and measurement/reporting accuracy may be reduced. To improve the measurement/reporting accuracy, embodiments of the present invention provides solutions as discussed below.
Reference is now made to FIG. 2, which illustrates a flow chart of a method 200 for performing radio resource measurement at a UE according to embodiments of the invention. By way of example, the UE may be implemented as the UE 110 shown in FIG. 1.
The method 200 starts in step 210, in which a candidate measurement is  determined based on one or more potential time positions.
According to embodiments of the present invention, a potential time position is a time instant at which it is possible for a BS to transmit a reference signal to a UE. In other words, a potential time position may be an actual time position at which the BS transmits the reference signal to the UE, or may be an invalid time position at which the BS does not transmit any reference signal to the UE.
Information about the one or more potential time positions may be obtained by the UE in various ways. In some embodiments, such information may be transmitted from the BS to the UE before the start of the method 200. Alternatively, the information about the one or more potential time positions may be predefined at both the BS and UE sides, as long as both sides have the same information.
According to embodiments of the present invention, the candidate measurement may be determined in multiple ways. In some embodiments, the UE may measure signals received at the one or more potential time positions and determine the candidate measurement based on each of the measured signals.
Additionally or alternatively, in some embodiments, the UE may measure signals received at the one or more potential time positions, and divide the measured signals into a predetermined number of groups. Then, the UE may select a largest measured signal from measured signals in each of the predetermined number of groups, and determine the largest measured signal as a candidate measurement.
Additionally or alternatively, in some embodiments, the UE may measure signals received at the one or more potential time positions first. In response to receiving a triggering signal from the base station, the UE may determine a triggering time position from the one or more potential time positions based on the triggering signal. The triggering signal may indicate a triggering time position at which the candidate measurement is to be determined. Then, the UE may determine the candidate measurement based on the measured signal corresponding to the triggering time position.
Additionally or alternatively, in some embodiments, the UE may measure signals received at the one or more potential time positions. Either before or after the measurement on the received signals, the UE may receive information about one or  more actual time positions from the base station. An actual time position is a time position at which the base station sends a reference signal. In these embodiments, the UE will report the measurement on the received signals if it receives from the BS reporting signal indicating that the candidate measurement is requested to report or if the measurement exceeds a threshold.
It is to be noted that the above examples are illustrated for example, rather than limitation. It can be appreciated that, in alternative embodiments, the candidate measurement may be determined based on the potential time positions in other suitable ways.
In step 220, the candidate measurement is reported to a base station, so that the base station determines a target measurement based on the candidate measurement.
In some embodiments, by measuring one signal received at one potential time position, a measuring result may be obtained in step 210. In this event, the UE may determine a measuring result as a candidate measurement and report the candidate measurement to the BS in step 220.
As an alternative, in the case that the UE determines the largest measured signal in each of the predetermined number of groups as a candidate measurement in step 210, in step 220, the UE may determine a measuring time position corresponding to the candidate measurement and report the candidate measurement together with the measuring time position to the BS.
More exemplary embodiments of the present invention will be described below with reference to FIGs. 3-6 and 14-17. Reference is now made to FIG. 3, which illustrates a flow chart of a method 300 for performing radio resource measurement at a UE according to embodiments of the invention. The method 300 may be considered as a specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
In step 310, signals received at the one or more potential time positions are measured. In some embodiments of the present invention, the UE may assume that DRS exists at all the potential time positions, and measure each of the signals received at the one or more potential time positions. In step 320, the candidate measurement is  determined based on each of the measured signals. By way of example, each of the measured signals may be considered as a candidate measurement. Thus, with respect to measured signals that correspond to one or more potential time positions respectively, there may be one or more candidate measurements, for example one-shot RRM measurements.
In step 330, the candidate measurement is reported to a base station, so that the base station determines a target measurement based on the candidate measurement. Step 330 is similar to step 220. In step 330, the UE may report one or more candidate measurements determined in step 320 to the BS. The reporting may be performed on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status. Upon receipt of the candidate measurements, the BS may choose a suitable candidate measurement as a target measurement according to actual DRS transmission.
To better understand the method 300, reference is now made to FIG. 14, in which a schematic diagram 1400 of an embodiment of the present invention is illustrated. In FIG. 14, Cell 1 DRS configuration indicates information about the potential time positions, which exemplarily comprises time position 1, time position 2, time position 3 and time position 4. Furthermore, Cell 1 DRS transmission indicates information about actual time positions which are time positions at which the base station actually sends a reference signal. Still further, DRS measurement timing configuration (DMTC) is used to configure the UE when and where to measure the DRS. DMTC may contain a periodicity, offset, duration and detailed time/frequency resources within a single subframe. As shown in FIG. 14, the actual time positions exemplarily comprise time position 1 and time position 4. That is, the BS actually sends the DRS to the UE at time position 1 and time position 4. In this embodiment, the Cell 1 DRS transmission information is not sent to the UE. Thus, no matter what the actual time positions are, the UE measures a signal received at each of the potential time positions (time positions 1 to 4) , determines each the measured results as a candidate measurement and reports the candidate measurements to the BS. As shown in FIG. 14, UE reporting positions include all of the time positions 1 to 4. The BS may determine one or more target measurement from the candidate measurements according to actual DRS transmission. In this embodiment, since the BS actually sends the DRS to the UE at time position 1 and time position 4, the BS may determine candidate measurements corresponding to  time positions  1 and 4 as the target measurements. In this way, the accuracy of radio resource measurement for LAA can be improved simply.
Reference is now made to FIG. 4, which illustrates a flow chart of a method 400 for performing radio resource measurement at a UE according to embodiments of the invention. The method 400 may be considered as a further specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
In step 410, signals received at the one or more potential time positions are measured. In the embodiments, the UE may assume that DRS exists at all the potential time positions, and measure each of the signals received at the one or more potential time positions. As such, one or more RRM measurements may be obtained.
In step 420, the measured signals are divided into a predetermined number of groups. According to embodiments of the present invention, the predetermined number may be set according to system requirements, specifications, channel quality, and so on. For instance, assuming that there are four potential time positions, that is, time positions 1 to 4, the measured signals (also referred to as “measurements” or “RRM measurements” ) may be divided into two groups according to the potential time positions to which they correspond. More specifically, the RRM measurements corresponding to  time positions  1 and 2 may be in a group, and the RRM measurements corresponding to  time positions  3 and 4 may be in another group.
In step 430, a largest one from measured signals in each of the predetermined number of groups is determined as a candidate measurement. In some embodiments, for the RRM measurements in each group, the largest RRM measurement may be selected as a candidate measurement. Alternatively, in some other embodiments, the RRM measurements in one group may be compared with a predetermined threshold first. Then, a largest RRM measurement may be selected from those RRM measurements exceeding the predetermined threshold. If there is only one RRM measurement exceeding the predetermined threshold, it may be determined as the candidate measurement corresponding to the group. In this way, with respect to the predetermined number of groups, the predetermined number of candidate measurements  may be determined. Additionally and alternatively, if there is no RRM measurement exceeding the predetermined threshold, there is no candidate measurement corresponding to the group. As such, the number of candidate measurements may be less than the predetermined number of groups.
In step 440, a measuring time position corresponding to the candidate measurement is determined. According to embodiments of the present invention, a measuring time position refers to a time position at which a candidate measurement is obtained. In the determination of the candidate measurement, the corresponding time position may be determined. For example, with regard to a group including the RRM measurements corresponding to  time positions  1 and 2, if the RRM measurement corresponding to time position 1 is determined as the candidate measurement, then time position 1 may be determined as a measuring time position.
In step 450, the candidate measurement is reported together with the measuring time position to the base station. The reporting may be performed on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status. Upon receipt of the candidate measurements, the BS may choose a suitable candidate measurement as a target measurement according to actual DRS transmission.
To better understand the method 400, reference is now made to FIG. 15, in which a schematic diagram 1500 of an embodiment of the present invention is illustrated. As shown in FIG. 15, Cell 1 DRS configuration indicates information about the potential time positions, which exemplarily comprises time position 1, time position 2, time position 3 and time position 4. Furthermore, Cell 1 DRS transmission indicates information about actual time positions which are time positions at which the base station actually sends a reference signal. As shown in FIG. 15, the actual time positions exemplarily comprise time position 1 and time position 4. That is, the BS actually sends the DRS to the UE at time position 1 and time position 4. Similar to the embodiment of FIG. 14, in this embodiment, the Cell 1 DRS transmission information is still not sent to the UE. Thus, no matter what the actual time positions are, the UE measures a signal received at each of the potential time positions (time positions 1 to 4) , divides the measured signals (RRM measurements) into N groups (N≥1) , and determines a largest RRM measurement in each of the N groups as a candidate  measurement. In this way, the UE may obtain M (M≤N) candidate measurements and their corresponding time positions, and report the M candidate measurements together with their corresponding time positions to the BS.
As shown in FIG. 15, the RRM measurements are divided into 2 groups, a first group including the RRM measurements corresponding to  time positions  1 and 2, and a second group including the RRM measurements corresponding to  time positions  3 and 4. With regard to the first group, the RRM measurement corresponding to time position 1 is determined as a candidate measurement. With regard to the second group, the RRM measurement corresponding to time position 3 is determined as a candidate measurement. Thus, the UE reports the candidate measurements together with their measuring time positions (time positions 1 and 3) to the BS. The BS may determine one or more target measurement from the candidate measurements according to actual DRS transmission. In this embodiment, since the BS actually sends the DRS to the UE at time position 1 and time position 4, the BS may determine the candidate measurement corresponding to time position 1 as a target measurement, and the candidate measurement corresponding to time position 3 is not a target measurement.
Reference is now made to FIG. 5, which illustrates a flow chart of a method 500 for performing radio resource measurement at a UE according to embodiments of the invention. The method 500 may be considered as a further specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
In step 510, signals received at the one or more potential time positions are measured. In the embodiments, the UE may assume that DRS exists at all the potential time positions, and measure each of the signals received at the one or more potential time positions. As such, one or more RRM measurements may be obtained.
In step 520, in response to receiving a triggering signal from the base station, a triggering time position is determined from the one or more potential time positions based on the triggering signal.
According to embodiments of the present invention, the triggering signal indicates a triggering time position at which the candidate measurement is to be  determined. More specifically, the triggering time position may refer to a time position at which the BS wants the UE to report the corresponding RRM measurement. When the BS requests report of the RRM measurement corresponding to the triggering time position, the BS may send the triggering signal indicating the triggering time position to the UE. Upon receiving the triggering signal, the UE may understand that the BS requests report of the RRM measurement corresponding to the triggering time position, and may identify the triggering time position from the potential time positions.
According embodiments of the present invention, the triggering signal may be transmitted on a licensed carrier or an unlicensed cartier, which depends on traffic and channel status.
In step 530, the candidate measurement is determined based on the measured signal corresponding to the triggering time position. In the embodiments of FIG. 5, the UE does not report the RRM measurements obtained in step 510, until receiving the triggering time position. Upon receiving the triggering signal, the UE understands that the BS requests that the RRM measurement corresponding to the triggering time position is to be reported. Thus, the UE may determine the RRM measurement corresponding to the triggering time position as the candidate measurement, and report the candidate measurement to the BS in the following step 540.
In step 540, the candidate measurement is reported to a base station, so that the base station determines a target measurement based on the candidate measurement. The reporting may be performed on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status. Upon receipt of the candidate measurements, the BS may determine the candidate measurement (s) as the target measurement (s) directly, instead of determining the target measurement (s) based on the candidate measurement (s) according to actual DRS transmission as discussed with reference to FIGs. 3 and 4.
To better understand the method 500, reference is now made to FIG. 16, in which a schematic diagram 1600 of an embodiment of the present invention is illustrated. As shown in FIG. 16, Cell 1 DRS configuration indicates information about the potential time positions, which exemplarily comprises time position 1, time position 2, time position 3 and time position 4. Furthermore, Cell 1 DRS transmission indicates  information about actual time positions which are time positions at which the base station actually sends a reference signal. As shown in FIG. 16, the actual time positions exemplarily comprise time position 1 and time position 4. That is, the BS actually sends the DRS to the UE at time position 1 and time position 4. In this embodiment, the Cell 1 DRS transmission information is not sent to the UE. Instead, the BS sends one or more triggering signals to the UE to indicate one or more triggering time positions. In the embodiment shown in FIG. 16, the BS sends two triggering signals to the UE, one for time position 1 and the other one for time position 4. Upon receipt of the two triggering signals, the UE determines the RRM measurements corresponding to the triggering time positions (time positions 1 and 4) as the candidate measurements and report the candidate measurements to the BS. In this way, the accuracy of radio resource measurement for LAA can be improved with reduced signaling overhead.
Reference is now made to FIG. 6, which illustrates a flow chart of a method 600 for performing radio resource measurement at a UE according to embodiments of the invention. The method 600 may be considered as a further specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
In step 610, signals received at the one or more potential time positions are measured. In the embodiments, the UE may assume that DRS exists at all the potential time positions, and measure each of the signals received at the one or more potential time positions. As such, one or more RRM measurements may be obtained.
In step 620, information about one or more actual time positions is received from the base station. According embodiments of the present invention, an actual time position may refer to a time position at which the base station actually sends a reference signal. The information about the actual time positions may be transmitted from the BS to the UE before or after the transmission of reference signals. Alternatively, the information about the actual time positions and reference signals may be transmitted simultaneously. According to embodiments of the present invention, the information about the actual time positions may be transmitted on a licensed carrier or an unlicensed  carrier, which depends on traffic and channel status.
In step 630, in response to receiving a reporting signal from the base station, the candidate measurement is determined based on the measured signals corresponding to the actual time positions, wherein the reporting signal indicates that the candidate measurement is requested to report.
According to embodiments of the present invention, the reporting signal indicates that the candidate measurement is requested to report. More specifically, the reporting signal may be used by the BS to requests the UE to report the candidate measurement. When the BS wants the UE to report the candidate measurement, the BS may send the reporting signal to the UE. Upon receiving the reporting signal, the UE may understand that the BS requests report of the candidate measurement. At this time, the UE may determine the measured signals (also referred as the RRM measurements) corresponding to the actual time positions. The RRM measurements determined by the UE may be obtained at all actual time positions preceding the reporting signal or a part of the actual time positions. In some embodiment, the part of the actual time positions may include the actual time positions within a predefined time period, or a predetermined number of the actual time positions.
Then, the UE may determine the candidate measurement based on determined RRM measurements. In an embodiment, there may be only one determined RRM measurement, thus the UE may directly determine this RRM measurement as a candidate measurement. In an alterntive embodiment, an average of a plurality of determined RRM measurements may be detemrind as a candidate measurement. In a further alternative embodiment, some larger RRM measurements may be selected from the determined RRM measurements, and the averaging operation may be performed only on the larger RRM measurements. In a still further alternative embodiment, the largest RRM measurement may be selected from the determined RRM measurements as the candidate measurement. For purpose of brief, the following description may describe that the candidate measurement is determined based on an average of the measured signals corresponding to the actual time positions. It is to be noted that, this is only for illustration rather than limitation. Those skilled in the art will understand that the candidate measurement may be determined based on the RRM measurements  corresponding to the actual time positions in several ways, especially the embodiments described above.
According embodiments of the present invention, the triggering signal may be transmitted on a licensed cartier or an unlicensed carrier, which depends on traffic and channel status.
It is to be noted that, step 630 is optional rather than essential for the method 600. In alternative embodiments, the UE may determine a candidate measurement without the reporting signal. For example, after the UE determines RRM measurements corresponding to the actual time positions, it may select one or more RRM measurements exceeding a predetermined threshold from the determined RRM measurements as candidate measurement (s) . Alternatively, the UE may determine an average of the selected RRM measurements as a candidate measurement.
In step 640, the candidate measurement is reported to a base station, so that the base station determines a target measurement based on the candidate measurement.
The reporting may be performed on a licensed carrier or an unlicensed carrier, which depends on traffic and channel status. Upon receipt of the candidate measurement, the BS may determine the candidate measurement as the target measurement directly.
To better understand the method 600, reference is now made to FIG. 17, in which a schematic diagram 1700 of an embodiment of the present invention is illustrated. As shown in FIG. 17, Cell 1 DRS configuration indicates information about the potential time positions, which exemplarily comprises time position 1, time position 2, time position 3 and time position 4. Furthermore, Cell 1 DRS transmission indicates information about actual time positions which are time positions at which the base station actually sends a reference signal. As shown in FIG. 17, the actual time positions exemplarily comprise time position 1 and time position 4. That is, the BS actually sends the DRS to the UE at time position 1 and time position 4. In this embodiment, the Cell 1 DRS transmission information is sent from the BS to the UE. In addition, the BS may send reporting signal (s) to request the UE to report the candidate measurement.
In the embodiment shown in FIG. 17, the BS sends information about actual time  positions to the UE. The information indicates DRS presence on  time positions  1 and 4. Additionally, the BS sends a reporting signal to trigger the report of the candidate measurement. Upon receipt of the reporting signal, the UE determines the RRM measurements corresponding to the actual time positions (time positions 1 and 4) and calculate an average of these RRM measurements as the candidate measurement. Then the UE reports the candidate measurement to the BS. By means of averaging on RRM measurements corresponding to actual time positions, the accuracy of radio resource measurement for LAA can be further improved.
Reference is now made to FIG. 7, which illustrates a flow chart of a method 700 for performing radio resource measurement at a BS according to embodiments of the invention. The method 700 may be performed at a BS or other suitable device.
In step 710, a candidate measurement is received from a UE. According to embodiments of the present invention, the UE may determine the candidate measurement based on one or more potential time positions that include one or more actual time positions. An actual time position may refer to a time position at which the BS actually sends a reference signal. In step 720, a target measurement is determined based on the candidate measurement.
In some embodiments, the candidate measurement may be determined based on each of signals received at the one or more potential time positions in step 720. In these embodiments, it may be determined whether the candidate measurement corresponds to an actual time position. If yes, the candidate measurement may be determined as a target measurement.
Alternatively or additionally, in some embodiments, in step 710, a candidate measurement may be received together with a measuring time position corresponding to the candidate measurement. In these embodiments, in step 720, it may be determined whether the measuring time position is an actual time position. If yes, the candidate measurement may be determined as a target measurement.
Alternatively or additionally, in some embodiments, the BS may send a triggering signal to the UE. The triggering signal indicates a triggering time position at which the candidate measurement is to be determined. In these embodiments, the UE may determine the candidate measurement based on the triggering signal. In this  event, the BS may determine the candidate measurement as the target measurement in step 720.
Alternatively or additionally, in some embodiments, the BS sends information about one or more actual time positions and a reporting signal to the UE. The reporting signal may indicate that the candidate measurement is requested to report. In these embodiments, the UE may determine the candidate measurement based on the information about one or more actual time positions and the reporting signal. In this case, the BS may determine the candidate measurement as the target measurement in step 720.
Alternatively or additionally, in some embodiments, the BS sends information about one or more actual time positions to the UE, without the reporting signal. In these embodiments, the UE may determine the candidate measurement based on the information about one or more actual time positions. For example, after the UE determines RRM measurements corresponding to the actual time positions, it may select a RRM measurement exceeding a predetermined threshold from the determined RRM measurements as candidate measurement (s) . In this case, the BS may determine the candidate measurement as the target measurement in step 720.
FIG. 8 illustrates a flow chart of a method 800 for performing radio resource measurement at a BS according to embodiments of the invention. The method 800 may be considered as a further specific implementation of the method 700 described above with reference to Fig. 7. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
In the embodiments illustrated in FIG. 8, the UE assumes that DRS exists at all the potential time positions, and measures each of the signals received at the one or more potential time positions as the candidate measurements. Upon receipt of the candidate measurements reported by the UE, the BS may choose a suitable candidate measurement as a target measurement according to actual DRS transmission. More specifically, in this case, the BS may perform the following steps 810-830. In step 810, a candidate measurement is received from the user equipment. In step 820, it is determined whether the candidate measurement corresponds to an actual time position. In step 830, in response to determining that the candidate measurement corresponds to  an actual time position, the candidate measurement is determined as a target measurement.
The method 800 may be performed by a BS (for example the BS 120) when its UE (for example the UE 110) performs the method 300. To better understand the method 800, reference may be made to FIG. 14 again. As discussed, the UE obtains RRM measurements corresponding to all potential time positions, determine the RRM measurements as candidate measurements and reports the candidate measurements to the BS. The BS may determine one or more target measurement from the candidate measurements according to actual DRS transmission. In this embodiment, since the BS actually sends the DRS to the UE at time position 1 and time position 4, the BS may determine candidate measurements corresponding to  time positions  1 and 4 as the target measurements.
FIG. 9 illustrates a flow chart of a method 900 for performing radio resource measurement at a BS according to embodiments of the invention. The method 900 may be considered as a further specific implementation of the method 700 described above with reference to Fig. 7. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
In the embodiments illustrated in FIG. 9, the UE measures each of the signals received at the potential time positions, thus one or more RRM measurements may be obtained. Then the UE divides the RRM measurements into a plurality of groups and selects a largest RRM measurement for each group. The UE may determine the largest RRM measurement as a candidate measurement and report it to the BS. Upon receipt of the candidate measurement reported by the UE, the BS may determine whether a candidate measurement is a target measurement according to actual DRS transmission. More specifically, in this case, the BS may perform the following steps 910-930. In step 910, a candidate measurement is received together with a measuring time position corresponding to the candidate measurement. In step 920, it is determined whether the measuring time position is an actual time position. In step 930, in response to determining that the measuring time position is an actual time position, the candidate measurement is determined as a target measurement.
The method 900 may be performed by a BS (for example the BS 120) when its  UE (for example the UE 110) performs the method 400. To better understand the method 900, reference may be made to FIG. 15 again. In the embodiments of FIG. 15, UE obtains RRM measurements corresponding to all potential time positions, and divide the RRM measurements into 2 groups, a first group including the RRM measurements corresponding to  time positions  1 and 2, and a second group including the RRM measurements corresponding to  time positions  3 and 4. With regard to the first group, the UE determines that the RRM measurement corresponding to time position 1 is larger than that corresponds to time position 2. Thus, the UE determine the RRM measurement corresponding to time position 1 as a candidate measurement. With regard to the second group, the UE determine the RRM measurement corresponding to time position 3 as a candidate measurement. Then, the UE reports the candidate measurements together with their measuring time positions (time positions 1 and 3) to the BS. The BS may determine one or more target measurement from the candidate measurements according to actual DRS transmission. In this embodiment, since the BS actually sends the DRS to the UE at time position 1 and time position 4, the BS may determine the candidate measurement corresponding to time position 1 as a target measurement, and discards the candidate measurement corresponding to time position 3 because time position 3 is not an actual time position. In this way, the accuracy of radio resource measurement for LAA can be improved with reduced signaling overhead.
FIG. 10 illustrates a flow chart of a method 1000 for performing radio resource measurement at a BS according to embodiments of the invention. The method 1000 may be considered as a further specific implementation of the method 700 described above with reference to Fig. 7. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
In the embodiments illustrated in FIG. 10, the BS sends a triggering signal to the UE, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined. The UE measures signals received at each of the potential time position, and reports the RRM measurements according to the triggering signal received from the BS. More specifically, in this case, the BS may perform the following steps 1010-1030. In step 1010, a triggering signal is sent to the UE. According to embodiments of the present invention, the UE may determine the  candidate measurement based on the received triggering signal, In step 1020, a candidate measurement is received from the UE. In step 1030, the candidate measurement is determined as the target measurement.
The method 1000 may be performed by a BS (for example the BS 120) when its UE (for example the UE 110) performs the method 500. To better understand the method 900, reference may be made to FIG. 16 again. In the embodiments of FIG. 16, the BS sends two triggering signals to the UE, one for time position 1 and the other one for time position 4. Upon receipt of the two triggering signals, the UE determines the RRM measurements corresponding to the triggering time positions (time positions 1 and 4) as the candidate measurements and report the candidate measurements to the BS. Upon receipt of the candidate measurements, the BS may determine them as the target measurements directly.
FIG. 11 illustrates a flow chart of a method 1100 for performing radio resource measurement at a B S according to embodiments of the invention. The method 1100 may be considered as a further specific implementation of the method 700 described above with reference to Fig. 7. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
In the embodiments illustrated in FIG. 11, the BS indicates UE the DRS presence, for example by sending information about one or more actual time positions to the UE. In addition, when the BS wants the UE to report the candidate measurement, the BS may send a reporting signal to the UE. Upon receiving the reporting signal, the UE may understand that the BS requests report of the candidate measurement. At this time, the UE determines the measured signals (also referred to as the RRM measurements) corresponding to the actual time positions. Then the UE may average the determined RRM measurements and report the averaging result to the BS. More specifically, in this case, the BS may perform the following steps 1110-1130. In step 1110, information about one or more actual time positions and a reporting signal are sent to the UE. According to embodiments of the present invention, the UE may determine the candidate measurement based on the information about one or more actual time positions and the reporting signal. In step 1120, a candidate measurement is received from the UE. In step 1130, the candidate measurement is determined as the target  measurement.
The method 1100 may be performed by a BS (for example the BS 120) when its UE (for example the UE 110) performs the method 600. To better understand the method 900, reference may be made to FIG. 17 again. In the embodiments of FIG. 17, the BS sends information about actual time positions to the UE. The information indicates DRS presence on  time positions  1 and 4. Additionally, the BS sends a reporting signal to trigger the report of the candidate measurement. Upon receipt of the reporting signal, the UE determines the RRM measurements corresponding to the actual time positions (time positions 1 and 4) and calculate an average of these RRM measurements as the candidate measurement. Then the UE reports the candidate measurement to the BS. Upon receipt of the candidate measurement, the BS may determine it as the target measurement directly.
According to embodiments of the present invention, an an alternative to step 1110, the BS may send only information about one or more actual time positions to the UE, without the reporting signal. In this case, upon receipt the information, the UE may determine RRM measurements corresponding to the actual time positions. Then the UE may select one or more RRM measurements exceeding a predetermined threshold from the determined RRM measurements as candidate measurement (s) , determine an average of the selected RRM measurements as a candidate measurement.
FIG. 12 illustrates a block diagram of an apparatus 1200 for performing radio resource measurement at a UE according to embodiments of the invention. In accordance with embodiments of the present invention, the apparatus 1200 may be implemented at a UE or any other applicable device.
As shown, the apparatus 1200 comprises: a candidate measurement determining unit 1210 configured to determine a candidate measurement based on one or more potential time positions; and a reporting unit 1220 configured to report the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.
According to embodiments of the present invention, the candidate measurement determining unit 1210 may comprise: a measuring unit configured to measure signals received at the one or more potential time positions; and a determining  unit configured to determine the candidate measurement based on each of the measured signals.
According to embodiments of the present invention, the candidate measurement determining unit 1210 may comprise: a measuring unit configured to measure signals received at the one or more potential time positions; a dividing unit configured to divide the measured signals into a predetermined number of groups; and wherein the candidate measurement determining unit is further configured to determine, as a candidate measurement, a largest one from measured signals in each of the predetermined number of groups.
According to embodiments of the present invention, the reporting unit 1220 may comprise: a measuring time position determining unit configured to determine a measuring time position corresponding to the candidate measurement; and wherein the reporting unit is further configured to report the candidate measurement together with the measuring time position to the base station.
According to embodiments of the present invention, the candidate measurement determining unit 1210 may comprise: a measuring unit configured to measure signals received at the one or more potential time positions; a triggering time position determining unit configured to determine, in response to receiving a triggering signal from the base station, a triggering time position from the one or more potential time positions based on the triggering signal, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined; and wherein the candidate measurement determining unit is further configured to determine the candidate measurement based on the measured signal corresponding to the triggering time position.
According to embodiments of the present invention, the candidate measurement determining unit 1210 may comprise: a measuring unit configured to measure signals received at the one or more potential time positions; an information receiving unit configured to receive information about one or more actual time positions from the base station, wherein an actual time position is a time position at which the base station sends a reference signal; and wherein the candidate measurement determining unit is further configured to determine, in response to receiving a reporting  signal from the base station, the candidate measurement based on the measured signals corresponding to the actual time positions, wherein the reporting signal indicates that the candidate measurement is requested to report.
FIG. 13 illustrates a block diagram of an apparatus 1300 for performing radio resource measurement at a BS according to embodiments of the invention. In accordance with embodiments of the present invention, the apparatus 1300 may be implemented at a BS or any other applicable device.
As shown, the apparatus 1300 comprises: a receiving unit 1310 configured to receive a candidate measurement from the user equipment, wherein the candidate measurement is determined based on one or more potential time positions that include one or more actual time positions, and an actual time position is a time position at which a base station sends a reference signal; and a target measurement determining unit 1320 configured to determine a target measurement based on the candidate measurement.
According to embodiments of the present invention, the candidate measurement is determined based on each of signals received at the one or more potential time positions. The target measurement determining unit 1320 may comprise: a judging unit configured to determine whether the candidate measurement corresponds to an actual time position; and wherein the target measurement determining unit is further configured to, in response to determining that the candidate measurement corresponds to an actual time position, determine the candidate measurement as a target measurement.
According to embodiments of the present invention, the receiving unit 1310 is further configured to receive a candidate measurement together with a measuring time position corresponding to the candidate measurement.
According to embodiments of the present invention, the target measurement determining unit 1320 may comprise: a judging unit configured to determine whether the measuring time position is an actual time position. The target measurement determining unit 1320 may be further configured to, in response to determining that the measuring time position is an actual time position, determine the candidate measurement as a target measurement.
According to embodiments of the present invention, the apparatus 1300 may  further comprise a triggering signal sending unit configured to send a triggering signal to the user equipment, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined.
According to embodiments of the present invention, the candidate measurement may be determined based on the triggering signal. The target measurement determining unit 1320 may be further configured to determine the candidate measurement as the target measurement.
According to embodiments of the present invention, the apparatus 1300 may further comprise an information and reporting signal sending unit configured to send information about one or more actual time positions and a reporting signal to the user equipment, wherein the reporting signal indicates that the candidate measurement is requested to report.
According to embodiments of the present invention, the candidate measurement may be determined based on the information about one or more actual time positions and the reporting signal. In the embodiments, the target measurement determining unit 1320 may be further configured to determine the candidate measurement as the target measurement.
It is also to be noted that the  apparatuses  1200 and 1300 may be respectively implemented by any suitable technique either known at present or developed in the future. Further, a single device shown in FIG. 12 or FIG. 13 may be alternatively implemented in multiple devices separately, and multiple separated devices may be implemented in a single device. The scope of the present invention is not limited in these regards.
It is noted that the apparatus 1200 may be configured to implement functionalities as described with reference to FIGs. 2-6, and the apparatus 1300 may be configured to implement functionalities as described with reference to FIGs. 7-11. Therefore, the features discussed with respect to the methods 200-600 may apply to the corresponding components of the apparatus 1200, and the features discussed with respect to the methods 700-1100 may apply to the corresponding components of the apparatus 800. It is further noted that the components of the apparatus 1200 or the apparatus 1300 may be embodied in hardware, software, firmware, and/or any  combination thereof. For example, the components of the apparatus 1200 or the apparatus 1300 may be respectively implemented by a circuit, a processor or any other appropriate device. Those skilled in the art will appreciate that the aforesaid examples are only for illustration not limitation.
In some embodiment of the present disclosure, the apparatus 1200 or the apparatus 1300 may comprise at least one processor. The at least one processor suitable for use with embodiments of the present disclosure may include, by way of example, both general and special purpose processors already known or developed in the future. The apparatus 1200 or the apparatus 1300 may further comprise at least one memory. The at least one memory may include, for example, semiconductor memory devices, e.g., RAM, ROM, EPROM, EEPROM, and flash memory devices. The at least one memory may be used to store program of computer executable instructions. The program can be written in any high-level and/or low-level compliable or interpretable programming languages. In accordance with embodiments, the computer executable instructions may be configured, with the at least one processor, to cause the apparatus 1200 to at least perform according to the methods 200-600 as discussed above, or to cause the apparatus 1300 to at least perform according to the methods 700-1100 as discussed above.
Based on the above description, the skilled in the art would appreciate that the present disclosure may be embodied in an apparatus, a method, or a computer program product. In general, the various exemplary embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto. While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The various blocks shown in FIGs. 1-11 may be viewed as method steps, and/or as operations that result from operation of computer program code, and/or as a plurality of coupled logic circuit elements constructed to carry out the associated function (s) . At least some aspects of the exemplary embodiments of the disclosures may be practiced in various components such as integrated circuit chips and modules, and that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, FPGA or ASIC that is configurable to operate in accordance with the exemplary embodiments of the present disclosure.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any disclosure or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular disclosures. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
Various modifications, adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the  foregoing description, when read in conjunction with the accompanying drawings. Any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure. Furthermore, other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which these embodiments of the disclosure pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the embodiments of the disclosure are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are used herein, they are used in a generic and descriptive sense only and not for purpose of limitation.

Claims (28)

  1. A method of performing radio resource measurement for Licensed-Assisted Access (LAA) , comprising:
    determining a candidate measurement based on one or more potential time positions; and
    reporting the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.
  2. The method of Claim 1, wherein determining a candidate measurement based on one or more potential time positions comprises:
    measuring signals received at the one or more potential time positions; and
    determining the candidate measurement based on each of the measured signals.
  3. The method of Claim 1, wherein determining a candidate measurement based on one or more potential time positions comprises:
    measuring signals received at the one or more potential time positions;
    dividing the measured signals into a predetermined number of groups; and
    determining, as a candidate measurement, a largest one from measured signals in each of the predetermined number of groups.
  4. The method of Claim 3, wherein reporting the candidate measurement comprises:
    determining a measuring time position corresponding to the candidate measurement; and
    reporting the candidate measurement together with the measuring time position to the base station.
  5. The method of Claim 1, wherein determining a candidate measurement based on one or more potential time positions comprises:
    measuring signals received at the one or more potential time positions;
    in response to receiving a triggering signal from the base station, determining a  triggering time position from the one or more potential time positions based on the triggering signal, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined; and
    determining the candidate measurement based on the measured signal corresponding to the triggering time position.
  6. The method of Claim 1, wherein determining a candidate measurement based on one or more potential time positions comprises:
    measuring signals received at the one or more potential time positions;
    receiving information about one or more actual time positions from the base station, wherein an actual time position is a time position at which the base station sends a reference signal; and
    in response to receiving a reporting signal from the base station, determining the candidate measurement based on the measured signals corresponding to the actual time positions, wherein the reporting signal indicates that the candidate measurement is requested to report.
  7. A method of performing radio resource measurement for Licensed-Assisted Access (LAA) , comprising:
    receiving a candidate measurement from the user equipment, wherein the candidate measurement is determined based on one or more potential time positions that include one or more actual time positions, and an actual time position is a time position at which a base station sends a reference signal; and
    determining a target measurement based on the candidate measurement.
  8. The method of Claim 7, wherein the candidate measurement is determined based on each of signals received at the one or more potential time positions, and wherein determining a target measurement based on the candidate measurement comprises:
    determining whether the candidate measurement corresponds to an actual time position; and
    in response to determining that the candidate measurement corresponds to an actual time position, determining the candidate measurement as a target measurement.
  9. The method of Claim 7, wherein receiving a candidate measurement from the user equipment comprises:
    receiving a candidate measurement together with a measuring time position corresponding to the candidate measurement.
  10. The method of Claim 9, wherein determining a target measurement based on the candidate measurement comprises:
    determining whether the measuring time position is an actual time position; and
    in response to determining that the measuring time position is an actual time position, determining the candidate measurement as a target measurement.
  11. The method of Claim 7, further comprising:
    sending a triggering signal to the user equipment, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined.
  12. The method of Claim 11, wherein the candidate measurement is determined based on the triggering signal, and wherein determining a target measurement based on the candidate measurement comprises:
    determining the candidate measurement as the target measurement.
  13. The method of Claim 7, further comprising:
    sending information about one or more actual time positions and a reporting signal to the user equipment, wherein the reporting signal indicates that the candidate measurement is requested to report.
  14. The method of Claim 13, wherein the candidate measurement is determined based on the information about one or more actual time positions and the reporting signal, and wherein determining a target measurement based on the candidate measurement comprises:
    determining the candidate measurement as the target measurement.
  15. An apparatus for performing radio resource measurement for Licensed-Assisted Access (LAA) , comprising:
    a candidate measurement determining unit configured to determine a candidate measurement based on one or more potential time positions; and
    a reporting unit configured to report the candidate measurement to a base station, so that the base station determines a target measurement based on the candidate measurement.
  16. The apparatus of Claim 15, wherein the candidate measurement determining unit comprises:
    a measuring unit configured to measure signals received at the one or more potential time positions; and
    a determining unit configured to determine the candidate measurement based on each of the measured signals.
  17. The apparatus of Claim 15, wherein the candidate measurement determining unit comprises:
    a measuring unit configured to measure signals received at the one or more potential time positions;
    a dividing unit configured to divide the measured signals into a predetermined number of groups; and
    wherein the candidate measurement determining unit is further configured to determine, as a candidate measurement, a largest one from measured signals in each of the predetermined number of groups.
  18. The apparatus of Claim 17, wherein the reporting unit comprises:
    a measuring time position determining unit configured to determine a measuring time position corresponding to the candidate measurement; and
    wherein the reporting unit is further configured to report the candidate measurement together with the measuring time position to the base station.
  19. The apparatus of Claim 15, wherein the candidate measurement determining unit comprises:
    a measuring unit configured to measure signals received at the one or more potential time positions;
    a triggering time position determining unit configured to determine, in response to receiving a triggering signal from the base station, a triggering time position from the one or more potential time positions based on the triggering signal, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined; and
    wherein the candidate measurement determining unit is further configured to determine the candidate measurement based on the measured signal corresponding to the triggering time position.
  20. The apparatus of Claim 15, wherein the candidate measurement determining unit comprises:
    a measuring unit configured to measure signals received at the one or more potential time positions;
    an information receiving unit configured to receive information about one or more actual time positions from the base station, wherein an actual time position is a time position at which the base station sends a reference signal; and
    wherein the candidate measurement determining unit is further configured to determine, in response to receiving a reporting signal from the base station, the candidate measurement based on the measured signals corresponding to the actual time positions, wherein the reporting signal indicates that the candidate measurement is requested to report.
  21. An apparatus for performing radio resource measurement for Licensed-Assisted Access (LAA) , comprising:
    a receiving unit configured to receive a candidate measurement from the user equipment, wherein the candidate measurement is determined based on one or more potential time positions that include one or more actual time positions, and an actual time position is a time position at which a base station sends a reference signal; and
    a target measurement determining unit configured to determine a target measurement based on the candidate measurement.
  22. The apparatus of Claim 21, wherein the candidate measurement is determined based on each of signals received at the one or more potential time positions, and wherein the target measurement determining unit comprises:
    a judging unit configured to determine whether the candidate measurement corresponds to an actual time position; and
    wherein the target measurement determining unit is further configured to, in response to determining that the candidate measurement corresponds to an actual time position, determine the candidate measurement as a target measurement.
  23. The apparatus of Claim 21, wherein the receiving unit is further configured to receive a candidate measurement together with a measuring time position corresponding to the candidate measurement.
  24. The apparatus of Claim 23, wherein the target measurement determining unit comprises:
    a judging unit configured to determine whether the measuring time position is an actual time position; and
    wherein the target measurement determining unit is further configured to, in response to determining that the measuring time position is an actual time position, determine the candidate measurement as a target measurement.
  25. The apparatus of Claim 21, further comprising:
    a triggering signal sending unit configured to send a triggering signal to the user equipment, wherein the triggering signal indicates a triggering time position at which the candidate measurement is to be determined.
  26. The apparatus of Claim 25, wherein the candidate measurement is determined based on the triggering signal, and wherein the target measurement determining unit is further configured to determine the candidate measurement as the target measurement.
  27. The apparatus of Claim 21, further comprising:
    an information and reporting signal sending unit configured to send information about one or more actual time positions and a reporting signal to the user equipment, wherein the reporting signal indicates that the candidate measurement is requested to report.
  28. The apparatus of Claim 27, wherein the candidate measurement is determined based on the information about one or more actual time positions and the reporting signal, and wherein the target measurement determining unit is further configured to determine the candidate measurement as the target measurement.
PCT/CN2015/085761 2015-07-31 2015-07-31 Method and apparatus for performing radio resource measurement WO2017020183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085761 WO2017020183A1 (en) 2015-07-31 2015-07-31 Method and apparatus for performing radio resource measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085761 WO2017020183A1 (en) 2015-07-31 2015-07-31 Method and apparatus for performing radio resource measurement

Publications (1)

Publication Number Publication Date
WO2017020183A1 true WO2017020183A1 (en) 2017-02-09

Family

ID=57942197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085761 WO2017020183A1 (en) 2015-07-31 2015-07-31 Method and apparatus for performing radio resource measurement

Country Status (1)

Country Link
WO (1) WO2017020183A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635950A (en) * 2009-08-14 2010-01-27 中兴通讯股份有限公司 Method and device for determining positions of cell reference signals
CN102869105A (en) * 2011-07-07 2013-01-09 华为技术有限公司 Method for reference signal configuration, UE and eNB
WO2014020996A1 (en) * 2012-07-31 2014-02-06 株式会社エヌ・ティ・ティ・ドコモ Communication system, macro base station, mobile terminal, and communication method
CN104159241A (en) * 2013-05-13 2014-11-19 华为技术有限公司 Determination method and device of measurement cell
WO2015061955A1 (en) * 2013-10-29 2015-05-07 华为技术有限公司 Method and terminal for measuring reception quality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635950A (en) * 2009-08-14 2010-01-27 中兴通讯股份有限公司 Method and device for determining positions of cell reference signals
CN102869105A (en) * 2011-07-07 2013-01-09 华为技术有限公司 Method for reference signal configuration, UE and eNB
WO2014020996A1 (en) * 2012-07-31 2014-02-06 株式会社エヌ・ティ・ティ・ドコモ Communication system, macro base station, mobile terminal, and communication method
CN104159241A (en) * 2013-05-13 2014-11-19 华为技术有限公司 Determination method and device of measurement cell
WO2015061955A1 (en) * 2013-10-29 2015-05-07 华为技术有限公司 Method and terminal for measuring reception quality

Similar Documents

Publication Publication Date Title
US11323998B2 (en) Hidden node detection in LTE licensed assisted access
EP3668205A1 (en) Positioning and measurement reporting method and apparatus
US10771206B2 (en) Method and apparatus for performing fractional subframe transmission
US11071135B2 (en) Uplink transmission method based on uplink reference signal, terminal, and network device
US10517117B2 (en) Wireless communications system, base station, terminal, and processing method
US11856563B2 (en) Method and apparatus for performing fractional subframe transmission
EP3018954A1 (en) Indication of in/out of dual connectivity synchronized condition
WO2021099040A1 (en) Methods for interference coordination of a side-link and related network node, wireless nodes and user equipment
WO2017020183A1 (en) Method and apparatus for performing radio resource measurement
WO2016119193A1 (en) Method and apparatus for performing fractional subframe transmission
WO2017024911A1 (en) Method and device for performing measurement reporting
US11595841B2 (en) Method and device for interference measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899960

Country of ref document: EP

Kind code of ref document: A1