WO2017018992A1 - Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant - Google Patents
Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant Download PDFInfo
- Publication number
- WO2017018992A1 WO2017018992A1 PCT/US2015/042005 US2015042005W WO2017018992A1 WO 2017018992 A1 WO2017018992 A1 WO 2017018992A1 US 2015042005 W US2015042005 W US 2015042005W WO 2017018992 A1 WO2017018992 A1 WO 2017018992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- flow
- fuel
- separating wall
- slip
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/46—Details, e.g. noise reduction means
- F23D14/48—Nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/283—Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/343—Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/346—Feeding into different combustion zones for staged combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/36—Supply of different fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00002—Gas turbine combustors adapted for fuels having low heating value [LHV]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00005—Preventing fatigue failures or reducing mechanical stress in gas turbine components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00012—Details of sealing devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Definitions
- Disclosed embodiments are generally related to combustion turbine engines, such as gas turbine engines, and, more particularly, to a dual stage, multi-fuel nozzle including a flow-separating wall with a slip-fit joint.
- fuel is delivered from a fuel source to a combustion section where the fuel is mixed with air and ignited to generate hot combustion products that define working gases.
- the working gases are directed to a turbine section where they effect rotation of a turbine rotor.
- Fuel nozzles are employed to introduce the fuel into the combustion section. Thermal gradients typically
- FIG. 1 is a cut away, side view of a disclosed multi-fuel nozzle embodying aspects of the present invention.
- FIG. 2 is a zoomed-in view of a portion of FIG. 1 for illustrating non- limiting structural features involving slip-fit joints that may be used in a multi-fuel nozzle embodying aspects of the present invention.
- FIG. 3 illustrates an alternative non-limiting embodiment of a slip-fit joint that may be used in a multi-fuel nozzle embodying aspects of the present invention.
- FIG. 4 is a fragmentary cut away, side view of a further disclosed multi- fuel nozzle embodying aspects of the present invention.
- the inventors of the present invention have recognized certain issues that can arise in nozzles that may involve a dual stage design, such as may be used in combustion turbine engines capable of multi-fuel operation.
- internal wal l structures of the nozzle may be subject to varying thermal stresses due to varying temperatures across the nozzle.
- Certain prior art nozzles involve bellows or piston rings to accommodate variable thermal expansion of the wall structures.
- the present inventors have cleverly recognized that the use of such bellows or piston rings can impose substantial cross-sectional constraints in the flow passages that in certain applications could impede appropriate fuel flow through such passages.
- the present inventors propose an improved multi-fuel nozzle including slip-fit joints not subject to the above-discussed cross-sectional constraints and that can accommodate thermally- induced movement (e.g., axial
- FIG, 1 is a cut away, side view of a disclosed multi-fuel nozzle 10, as may be used in a combustion turbine engine, such as a gas turbine engine that in one non- limiting application may be part of an Integrated Gasification Combined Cycle (IGCC) power plant.
- multi-fuel nozzle 10 includes a support flange 12 that may be disposed between an upstream end of the nozzle and a downstream end the nozzle to be mounted onto a respective combustor (not shown).
- Multi-fuel nozzle 10 includes a first fuel-injecting stage 14 defining a first conduit extending along a longitudinal axis 15 of the nozzle to convey a first fluid, to a downstream end of the nozzle, in one non-limiting application, the first fluid may be a gaseous fuel having a relatively higher heating value (HHV), such as natural gas,
- HHV heating value
- Multi-fuel nozzle 10 further includes a second fuel-injecting stage 16 defining a second conduit annularly disposed about the first fuel-injecting stage to convey a second fluid to the downstream end of the nozzle.
- second fuel-injecting stage 16 may comprise a relatively larger size stage compared to first fuel-injecting stage 14 and the second fluid may be a gaseous fuel having a relatively lower heating value (LHV), such as syngas/hydrogen fuel .
- LHV relatively lower heating value
- a centrally disposed lance 17 may be used to convey a liquid fuel (e.g., oil) to the downstream end of the nozzle.
- a liquid fuel e.g., oil
- each of stages 14, 16 may convey syngas/hydrogen fuel while during a natural gas mode of operation of the combustion turbine engine, one of stages 14, 16 may convey the natural gas while the other stage may convey a suitable diluent, such as nitrogen (N2) or steam.
- N2 nitrogen
- First and second fuel-injecting stages 14, 16 mutually share a flow- separating wall 18 between one another.
- Flow-separating wall 18 extends along the longitudinal axis of the nozzle.
- flow-separating wall 18 may be a longitudinally bifurcated (i.e., split) flow-separating wall, such as may include a first wall section 19 extending from a downstream side of support flange 12 towards the downstream end of the nozzle, and a second wall section 21 extending from an upstream side of side support flange 12 towards the upstream end of the nozzle.
- Slip-fit joints 20 may be disposed to mechanically couple flow-separating wall. 18 to support flange 12.
- Slip-fit joints 20 are configured with a relatively small cross-sectional radial profile to accommodate thermally-induced movement (e.g., axial expansion/contraction) of the flow- separating wall in the varying thermal env ironment of the turbine engine while providing a cost-effective and reliable seal to fluids passing by the joints.
- FIG. 2 provides a zoomed-in view of the section of multi-fuel nozzle 10 within oval line 25 ( FIG. 1 ), for illustrating non-limiting structural features in connection with slip-fit joints that may be used in a multi-fuel nozzle embodying aspects of the present invention.
- support flange 12 includes a slot 30 to receive a corresponding end of flow-separating wall 18.
- support flange 12 may further include a guide member 32 located to guide insertion into the slot of the corresponding end of the flow-separating wall.
- flow-separating wall 18 may be a cylindrical w r all and slip-fit joint 20 may be a knife edge seal, as illustrated in FIG. 2.
- Slip fit joints 20 may be configured so that the respective wall sections 19, 21 of flow- separating wall 18 engage sufficiently tightly into corresponding slots 30 in support flange 12. As the respective wail sections of flow-separating wall 18 expand and contract over the operation range, the respective wall sections of flow-separating wall 18 would slide within respective slots 30.
- Slot depth may be configured so that it is sufficiently deep to accept the respective ends of flow-separating wall 18 without interference during periods of maximum expansion. Conversely, the travel engagement between the respective ends of flow-separating wall.
- slots 30 may be configured so that it is sufficiently long to ensure that the respective ends of flow- separating wall 18 remain seated within slots 30 during periods of maximum contraction.
- the slip-fit joint could be implemented by way of a trombone-seal 34, as schematically illustrated in FIG. 3.
- slip-fit joints 20 may facilitate performing servicing and repair operations in connection with multi-fuel nozzle 10, such as servicing and repair of a nozzle cap 40 of multi-fuel nozzle 10.
- nozzle cap 40 may be attached to first wall section 19 of flow-separating wall 18.
- a cutting operation may, for example, be performed across points 42 (labeled with the letter x) on an outer wall. 44 of multi-fuel nozzle 10 to gain access to inner structures of the nozzle.
- One may then perform straightforward and user-friendly slidable removal by way of slip-fit joint 20 of first wal l section 19 of flow-separating wal l 18 together with nozzle cap 40 of multi-fuel nozzle 10. This would then allow repair and/or replacement of cap 40, without having to deal with burdensome and time-consuming actions that otherwise would be encountered if flow-separating wall 18 involved bellows in lieu of the disclosed slip- fit.
- FIG. 4 is a fragmentary cut away, side view of a further disclosed multi- fuel nozzle embodying aspects of the present invention.
- further slip-fit joints 20' may be arranged in an inwardly flow-separating wall 52, such as may separate the respective flows through the conduit defined by the centrally disposed lance 17 and the conduit defined by first fuel-injecting stage 14.
- FIG. 4 illustrates just the slip-fit joints 20' disposed at the downstream end of flange 12. It will be appreciated, however, that the upstream end of flange 12 can be similarly arranged to provide a slip-fit connection to the upstream section of inwardly flow-separating wall 52. It will be appreciated that this embodiment allows elimination of the bellows 54 illustrated in FIG.
- the cross-sectional area of the first conduit can also be unimpeded by the incremental radial profile that otherwise would be taken by such bellows.
- disclosed embodiments are expected to provide a versatile dual stage, multi-fuel nozzle 10 that can accommodate thermally-induced axial expansion'' contraction of flow-separating wall 18 and/or inwardly flow-separating wall 52 in the varying thermal environment of the combustion turbine engine while providing a cost-effective and reliable seal to fluids passing by the joints.
- the cross-sectional area of the second conduit can establish a sufficient flow of the second fluid, particularly when the second fluid comprises a gaseous fuel having a relatively lower heating value (LHV).
- LHV relatively lower heating value
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
L'invention concerne un injecteur de carburants multiples pour un moteur de turbine à combustion et un procédé associé à de tels injecteurs de carburants multiples. L'injecteur comprend une bride de support (12). Un premier étage d'injection de carburant (14) définit une première conduite s'étendant le long d'un axe longitudinal de l'injecteur. Un second étage d'injection de carburant (16) définit une seconde conduite disposée de façon coaxiale autour du premier étage d'injection de carburant. Les premier et second étages d'injection de carburant partagent mutuellement une paroi de séparation de flux (18) entre eux. Un joint à ajustement glissant (20) est destiné à accoupler mécaniquement la paroi de séparation de flux à la bride de support. Le joint à ajustement glissant est conçu pour s'adapter au mouvement axial induit par voie thermique de la paroi de séparation de flux dans l'environnement thermique variable du moteur de turbine à combustion.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/042005 WO2017018992A1 (fr) | 2015-07-24 | 2015-07-24 | Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant |
SA518390752A SA518390752B1 (ar) | 2015-07-24 | 2018-01-16 | منفث ذو مرحلة مزدوجة متعدد الوقود يتضمن جدار فصل تدفق مزود بوصلة توافق انزلاقي |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2015/042005 WO2017018992A1 (fr) | 2015-07-24 | 2015-07-24 | Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018992A1 true WO2017018992A1 (fr) | 2017-02-02 |
Family
ID=53794515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/042005 WO2017018992A1 (fr) | 2015-07-24 | 2015-07-24 | Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant |
Country Status (2)
Country | Link |
---|---|
SA (1) | SA518390752B1 (fr) |
WO (1) | WO2017018992A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110529879A (zh) * | 2019-07-31 | 2019-12-03 | 中国航发南方工业有限公司 | 双相燃料喷嘴 |
US11156164B2 (en) | 2019-05-21 | 2021-10-26 | General Electric Company | System and method for high frequency accoustic dampers with caps |
US11174792B2 (en) | 2019-05-21 | 2021-11-16 | General Electric Company | System and method for high frequency acoustic dampers with baffles |
US11287128B2 (en) | 2019-01-03 | 2022-03-29 | Carrier Corporation | Inward fired low NOX premix burner |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4607849A (en) * | 1985-03-07 | 1986-08-26 | Southwest Aerospace Corporation | Jet exhaust simulator |
US20040148937A1 (en) * | 2003-01-31 | 2004-08-05 | Mancini Alfred Albert | Cooled purging fuel injectors |
US20070151255A1 (en) * | 2006-01-04 | 2007-07-05 | General Electric Company | Combustion turbine engine and methods of assembly |
US20120204571A1 (en) * | 2011-02-15 | 2012-08-16 | General Electric Company | Combustor and method for introducing a secondary fluid into a fuel nozzle |
FR3009341A1 (fr) * | 2013-08-05 | 2015-02-06 | Snecma | Dispositif d'etancheite entre deux parties d'une machine comportant deux pieces, formant traversee coulissante et coupelle de retenue |
-
2015
- 2015-07-24 WO PCT/US2015/042005 patent/WO2017018992A1/fr active Application Filing
-
2018
- 2018-01-16 SA SA518390752A patent/SA518390752B1/ar unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4607849A (en) * | 1985-03-07 | 1986-08-26 | Southwest Aerospace Corporation | Jet exhaust simulator |
US20040148937A1 (en) * | 2003-01-31 | 2004-08-05 | Mancini Alfred Albert | Cooled purging fuel injectors |
US20070151255A1 (en) * | 2006-01-04 | 2007-07-05 | General Electric Company | Combustion turbine engine and methods of assembly |
US20120204571A1 (en) * | 2011-02-15 | 2012-08-16 | General Electric Company | Combustor and method for introducing a secondary fluid into a fuel nozzle |
FR3009341A1 (fr) * | 2013-08-05 | 2015-02-06 | Snecma | Dispositif d'etancheite entre deux parties d'une machine comportant deux pieces, formant traversee coulissante et coupelle de retenue |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11287128B2 (en) | 2019-01-03 | 2022-03-29 | Carrier Corporation | Inward fired low NOX premix burner |
US11156164B2 (en) | 2019-05-21 | 2021-10-26 | General Electric Company | System and method for high frequency accoustic dampers with caps |
US11174792B2 (en) | 2019-05-21 | 2021-11-16 | General Electric Company | System and method for high frequency acoustic dampers with baffles |
CN110529879A (zh) * | 2019-07-31 | 2019-12-03 | 中国航发南方工业有限公司 | 双相燃料喷嘴 |
CN110529879B (zh) * | 2019-07-31 | 2020-12-25 | 中国航发南方工业有限公司 | 双相燃料喷嘴 |
Also Published As
Publication number | Publication date |
---|---|
SA518390752B1 (ar) | 2021-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10145308B2 (en) | Gas turbine engine ring seal | |
WO2017018992A1 (fr) | Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant | |
US9528701B2 (en) | System for tuning a combustor of a gas turbine | |
US9400114B2 (en) | Combustor support assembly for mounting a combustion module of a gas turbine | |
US9115595B2 (en) | Clearance control system for a gas turbine | |
EP2660427B1 (fr) | Système de turbine comprenant un conduit de transition avec un joint d'étanchéité de convolution | |
EP3088804A1 (fr) | Système d'alimentation en carburant pour un moteur à turbine à gaz | |
CN101769174B (zh) | 用于减小喷嘴应力的方法和装置 | |
US9273868B2 (en) | System for supporting bundled tube segments within a combustor | |
US10190598B2 (en) | Intermittent spigot joint for gas turbine engine casing connection | |
EP2615255B1 (fr) | Ensemble turbine et procédé de régulation de la température d'un ensemble | |
US20140123619A1 (en) | Combustor assembly | |
US9677428B2 (en) | Removal device | |
EP2752558A2 (fr) | Conduit de transition articulé dans une turbomachine | |
EP2184542A2 (fr) | Ensemble de buse à carburant à utiliser avec un moteur de turbine à gaz et son procédé d'assemblage | |
US9618209B2 (en) | Gas turbine engine fuel injector with an inner heat shield | |
EP2592345A1 (fr) | Chambre de combustion et procédé pour fournir du carburant à une chambre de combustion | |
EP2578940A2 (fr) | Chambre de combustion et procédé pour fournir du débit dans une chambre de combustion | |
US20130283798A1 (en) | Combustor and a method for assembling the combustor | |
EP2615374A2 (fr) | Chambre de combustion et procédé pour réduire les contraintes thermiques dans une chambre de combustion | |
JP2019219162A (ja) | 連続的に湾曲したライナセグメントを有する一体型燃焼器ノズル | |
US8974179B2 (en) | Convolution seal for transition duct in turbine system | |
US10775043B2 (en) | Combustor and method for damping vibrational modes under high-frequency combustion dynamics | |
US20110179804A1 (en) | Radial turbine engine floating ring seal | |
US20150260096A1 (en) | Tool for manipulating cross-fire tube in combustor assembly, combustor maintenance assembly and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15748127 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15748127 Country of ref document: EP Kind code of ref document: A1 |