WO2017018992A1 - Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant - Google Patents

Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant Download PDF

Info

Publication number
WO2017018992A1
WO2017018992A1 PCT/US2015/042005 US2015042005W WO2017018992A1 WO 2017018992 A1 WO2017018992 A1 WO 2017018992A1 US 2015042005 W US2015042005 W US 2015042005W WO 2017018992 A1 WO2017018992 A1 WO 2017018992A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
flow
fuel
separating wall
slip
Prior art date
Application number
PCT/US2015/042005
Other languages
English (en)
Inventor
Timothy A. Fox
Sachin TERDALKAR
Robert H. Bartley
Jared M. Pent
Vinayak V. Barve
Rafik N. Rofail
Mario GAVIRIA
Original Assignee
Siemens Energy, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy, Inc. filed Critical Siemens Energy, Inc.
Priority to PCT/US2015/042005 priority Critical patent/WO2017018992A1/fr
Publication of WO2017018992A1 publication Critical patent/WO2017018992A1/fr
Priority to SA518390752A priority patent/SA518390752B1/ar

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00005Preventing fatigue failures or reducing mechanical stress in gas turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • Disclosed embodiments are generally related to combustion turbine engines, such as gas turbine engines, and, more particularly, to a dual stage, multi-fuel nozzle including a flow-separating wall with a slip-fit joint.
  • fuel is delivered from a fuel source to a combustion section where the fuel is mixed with air and ignited to generate hot combustion products that define working gases.
  • the working gases are directed to a turbine section where they effect rotation of a turbine rotor.
  • Fuel nozzles are employed to introduce the fuel into the combustion section. Thermal gradients typically
  • FIG. 1 is a cut away, side view of a disclosed multi-fuel nozzle embodying aspects of the present invention.
  • FIG. 2 is a zoomed-in view of a portion of FIG. 1 for illustrating non- limiting structural features involving slip-fit joints that may be used in a multi-fuel nozzle embodying aspects of the present invention.
  • FIG. 3 illustrates an alternative non-limiting embodiment of a slip-fit joint that may be used in a multi-fuel nozzle embodying aspects of the present invention.
  • FIG. 4 is a fragmentary cut away, side view of a further disclosed multi- fuel nozzle embodying aspects of the present invention.
  • the inventors of the present invention have recognized certain issues that can arise in nozzles that may involve a dual stage design, such as may be used in combustion turbine engines capable of multi-fuel operation.
  • internal wal l structures of the nozzle may be subject to varying thermal stresses due to varying temperatures across the nozzle.
  • Certain prior art nozzles involve bellows or piston rings to accommodate variable thermal expansion of the wall structures.
  • the present inventors have cleverly recognized that the use of such bellows or piston rings can impose substantial cross-sectional constraints in the flow passages that in certain applications could impede appropriate fuel flow through such passages.
  • the present inventors propose an improved multi-fuel nozzle including slip-fit joints not subject to the above-discussed cross-sectional constraints and that can accommodate thermally- induced movement (e.g., axial
  • FIG, 1 is a cut away, side view of a disclosed multi-fuel nozzle 10, as may be used in a combustion turbine engine, such as a gas turbine engine that in one non- limiting application may be part of an Integrated Gasification Combined Cycle (IGCC) power plant.
  • multi-fuel nozzle 10 includes a support flange 12 that may be disposed between an upstream end of the nozzle and a downstream end the nozzle to be mounted onto a respective combustor (not shown).
  • Multi-fuel nozzle 10 includes a first fuel-injecting stage 14 defining a first conduit extending along a longitudinal axis 15 of the nozzle to convey a first fluid, to a downstream end of the nozzle, in one non-limiting application, the first fluid may be a gaseous fuel having a relatively higher heating value (HHV), such as natural gas,
  • HHV heating value
  • Multi-fuel nozzle 10 further includes a second fuel-injecting stage 16 defining a second conduit annularly disposed about the first fuel-injecting stage to convey a second fluid to the downstream end of the nozzle.
  • second fuel-injecting stage 16 may comprise a relatively larger size stage compared to first fuel-injecting stage 14 and the second fluid may be a gaseous fuel having a relatively lower heating value (LHV), such as syngas/hydrogen fuel .
  • LHV relatively lower heating value
  • a centrally disposed lance 17 may be used to convey a liquid fuel (e.g., oil) to the downstream end of the nozzle.
  • a liquid fuel e.g., oil
  • each of stages 14, 16 may convey syngas/hydrogen fuel while during a natural gas mode of operation of the combustion turbine engine, one of stages 14, 16 may convey the natural gas while the other stage may convey a suitable diluent, such as nitrogen (N2) or steam.
  • N2 nitrogen
  • First and second fuel-injecting stages 14, 16 mutually share a flow- separating wall 18 between one another.
  • Flow-separating wall 18 extends along the longitudinal axis of the nozzle.
  • flow-separating wall 18 may be a longitudinally bifurcated (i.e., split) flow-separating wall, such as may include a first wall section 19 extending from a downstream side of support flange 12 towards the downstream end of the nozzle, and a second wall section 21 extending from an upstream side of side support flange 12 towards the upstream end of the nozzle.
  • Slip-fit joints 20 may be disposed to mechanically couple flow-separating wall. 18 to support flange 12.
  • Slip-fit joints 20 are configured with a relatively small cross-sectional radial profile to accommodate thermally-induced movement (e.g., axial expansion/contraction) of the flow- separating wall in the varying thermal env ironment of the turbine engine while providing a cost-effective and reliable seal to fluids passing by the joints.
  • FIG. 2 provides a zoomed-in view of the section of multi-fuel nozzle 10 within oval line 25 ( FIG. 1 ), for illustrating non-limiting structural features in connection with slip-fit joints that may be used in a multi-fuel nozzle embodying aspects of the present invention.
  • support flange 12 includes a slot 30 to receive a corresponding end of flow-separating wall 18.
  • support flange 12 may further include a guide member 32 located to guide insertion into the slot of the corresponding end of the flow-separating wall.
  • flow-separating wall 18 may be a cylindrical w r all and slip-fit joint 20 may be a knife edge seal, as illustrated in FIG. 2.
  • Slip fit joints 20 may be configured so that the respective wall sections 19, 21 of flow- separating wall 18 engage sufficiently tightly into corresponding slots 30 in support flange 12. As the respective wail sections of flow-separating wall 18 expand and contract over the operation range, the respective wall sections of flow-separating wall 18 would slide within respective slots 30.
  • Slot depth may be configured so that it is sufficiently deep to accept the respective ends of flow-separating wall 18 without interference during periods of maximum expansion. Conversely, the travel engagement between the respective ends of flow-separating wall.
  • slots 30 may be configured so that it is sufficiently long to ensure that the respective ends of flow- separating wall 18 remain seated within slots 30 during periods of maximum contraction.
  • the slip-fit joint could be implemented by way of a trombone-seal 34, as schematically illustrated in FIG. 3.
  • slip-fit joints 20 may facilitate performing servicing and repair operations in connection with multi-fuel nozzle 10, such as servicing and repair of a nozzle cap 40 of multi-fuel nozzle 10.
  • nozzle cap 40 may be attached to first wall section 19 of flow-separating wall 18.
  • a cutting operation may, for example, be performed across points 42 (labeled with the letter x) on an outer wall. 44 of multi-fuel nozzle 10 to gain access to inner structures of the nozzle.
  • One may then perform straightforward and user-friendly slidable removal by way of slip-fit joint 20 of first wal l section 19 of flow-separating wal l 18 together with nozzle cap 40 of multi-fuel nozzle 10. This would then allow repair and/or replacement of cap 40, without having to deal with burdensome and time-consuming actions that otherwise would be encountered if flow-separating wall 18 involved bellows in lieu of the disclosed slip- fit.
  • FIG. 4 is a fragmentary cut away, side view of a further disclosed multi- fuel nozzle embodying aspects of the present invention.
  • further slip-fit joints 20' may be arranged in an inwardly flow-separating wall 52, such as may separate the respective flows through the conduit defined by the centrally disposed lance 17 and the conduit defined by first fuel-injecting stage 14.
  • FIG. 4 illustrates just the slip-fit joints 20' disposed at the downstream end of flange 12. It will be appreciated, however, that the upstream end of flange 12 can be similarly arranged to provide a slip-fit connection to the upstream section of inwardly flow-separating wall 52. It will be appreciated that this embodiment allows elimination of the bellows 54 illustrated in FIG.
  • the cross-sectional area of the first conduit can also be unimpeded by the incremental radial profile that otherwise would be taken by such bellows.
  • disclosed embodiments are expected to provide a versatile dual stage, multi-fuel nozzle 10 that can accommodate thermally-induced axial expansion'' contraction of flow-separating wall 18 and/or inwardly flow-separating wall 52 in the varying thermal environment of the combustion turbine engine while providing a cost-effective and reliable seal to fluids passing by the joints.
  • the cross-sectional area of the second conduit can establish a sufficient flow of the second fluid, particularly when the second fluid comprises a gaseous fuel having a relatively lower heating value (LHV).
  • LHV relatively lower heating value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

L'invention concerne un injecteur de carburants multiples pour un moteur de turbine à combustion et un procédé associé à de tels injecteurs de carburants multiples. L'injecteur comprend une bride de support (12). Un premier étage d'injection de carburant (14) définit une première conduite s'étendant le long d'un axe longitudinal de l'injecteur. Un second étage d'injection de carburant (16) définit une seconde conduite disposée de façon coaxiale autour du premier étage d'injection de carburant. Les premier et second étages d'injection de carburant partagent mutuellement une paroi de séparation de flux (18) entre eux. Un joint à ajustement glissant (20) est destiné à accoupler mécaniquement la paroi de séparation de flux à la bride de support. Le joint à ajustement glissant est conçu pour s'adapter au mouvement axial induit par voie thermique de la paroi de séparation de flux dans l'environnement thermique variable du moteur de turbine à combustion.
PCT/US2015/042005 2015-07-24 2015-07-24 Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant WO2017018992A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US2015/042005 WO2017018992A1 (fr) 2015-07-24 2015-07-24 Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant
SA518390752A SA518390752B1 (ar) 2015-07-24 2018-01-16 منفث ذو مرحلة مزدوجة متعدد الوقود يتضمن جدار فصل تدفق مزود بوصلة توافق انزلاقي

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/042005 WO2017018992A1 (fr) 2015-07-24 2015-07-24 Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant

Publications (1)

Publication Number Publication Date
WO2017018992A1 true WO2017018992A1 (fr) 2017-02-02

Family

ID=53794515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/042005 WO2017018992A1 (fr) 2015-07-24 2015-07-24 Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant

Country Status (2)

Country Link
SA (1) SA518390752B1 (fr)
WO (1) WO2017018992A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110529879A (zh) * 2019-07-31 2019-12-03 中国航发南方工业有限公司 双相燃料喷嘴
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11287128B2 (en) 2019-01-03 2022-03-29 Carrier Corporation Inward fired low NOX premix burner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607849A (en) * 1985-03-07 1986-08-26 Southwest Aerospace Corporation Jet exhaust simulator
US20040148937A1 (en) * 2003-01-31 2004-08-05 Mancini Alfred Albert Cooled purging fuel injectors
US20070151255A1 (en) * 2006-01-04 2007-07-05 General Electric Company Combustion turbine engine and methods of assembly
US20120204571A1 (en) * 2011-02-15 2012-08-16 General Electric Company Combustor and method for introducing a secondary fluid into a fuel nozzle
FR3009341A1 (fr) * 2013-08-05 2015-02-06 Snecma Dispositif d'etancheite entre deux parties d'une machine comportant deux pieces, formant traversee coulissante et coupelle de retenue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4607849A (en) * 1985-03-07 1986-08-26 Southwest Aerospace Corporation Jet exhaust simulator
US20040148937A1 (en) * 2003-01-31 2004-08-05 Mancini Alfred Albert Cooled purging fuel injectors
US20070151255A1 (en) * 2006-01-04 2007-07-05 General Electric Company Combustion turbine engine and methods of assembly
US20120204571A1 (en) * 2011-02-15 2012-08-16 General Electric Company Combustor and method for introducing a secondary fluid into a fuel nozzle
FR3009341A1 (fr) * 2013-08-05 2015-02-06 Snecma Dispositif d'etancheite entre deux parties d'une machine comportant deux pieces, formant traversee coulissante et coupelle de retenue

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287128B2 (en) 2019-01-03 2022-03-29 Carrier Corporation Inward fired low NOX premix burner
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
CN110529879A (zh) * 2019-07-31 2019-12-03 中国航发南方工业有限公司 双相燃料喷嘴
CN110529879B (zh) * 2019-07-31 2020-12-25 中国航发南方工业有限公司 双相燃料喷嘴

Also Published As

Publication number Publication date
SA518390752B1 (ar) 2021-07-04

Similar Documents

Publication Publication Date Title
US10145308B2 (en) Gas turbine engine ring seal
WO2017018992A1 (fr) Injecteur de carburants multiples à double étage contenant une paroi de séparation de flux avec un arrière-plan de joint à ajustement glissant
US9528701B2 (en) System for tuning a combustor of a gas turbine
US9400114B2 (en) Combustor support assembly for mounting a combustion module of a gas turbine
US9115595B2 (en) Clearance control system for a gas turbine
EP2660427B1 (fr) Système de turbine comprenant un conduit de transition avec un joint d'étanchéité de convolution
EP3088804A1 (fr) Système d'alimentation en carburant pour un moteur à turbine à gaz
CN101769174B (zh) 用于减小喷嘴应力的方法和装置
US9273868B2 (en) System for supporting bundled tube segments within a combustor
US10190598B2 (en) Intermittent spigot joint for gas turbine engine casing connection
EP2615255B1 (fr) Ensemble turbine et procédé de régulation de la température d'un ensemble
US20140123619A1 (en) Combustor assembly
US9677428B2 (en) Removal device
EP2752558A2 (fr) Conduit de transition articulé dans une turbomachine
EP2184542A2 (fr) Ensemble de buse à carburant à utiliser avec un moteur de turbine à gaz et son procédé d'assemblage
US9618209B2 (en) Gas turbine engine fuel injector with an inner heat shield
EP2592345A1 (fr) Chambre de combustion et procédé pour fournir du carburant à une chambre de combustion
EP2578940A2 (fr) Chambre de combustion et procédé pour fournir du débit dans une chambre de combustion
US20130283798A1 (en) Combustor and a method for assembling the combustor
EP2615374A2 (fr) Chambre de combustion et procédé pour réduire les contraintes thermiques dans une chambre de combustion
JP2019219162A (ja) 連続的に湾曲したライナセグメントを有する一体型燃焼器ノズル
US8974179B2 (en) Convolution seal for transition duct in turbine system
US10775043B2 (en) Combustor and method for damping vibrational modes under high-frequency combustion dynamics
US20110179804A1 (en) Radial turbine engine floating ring seal
US20150260096A1 (en) Tool for manipulating cross-fire tube in combustor assembly, combustor maintenance assembly and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748127

Country of ref document: EP

Kind code of ref document: A1