WO2017017744A1 - Facility planning device for heat and power facilities, and facility planning method for heat and power facilities - Google Patents

Facility planning device for heat and power facilities, and facility planning method for heat and power facilities Download PDF

Info

Publication number
WO2017017744A1
WO2017017744A1 PCT/JP2015/071181 JP2015071181W WO2017017744A1 WO 2017017744 A1 WO2017017744 A1 WO 2017017744A1 JP 2015071181 W JP2015071181 W JP 2015071181W WO 2017017744 A1 WO2017017744 A1 WO 2017017744A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
facility
heat
equipment
power
Prior art date
Application number
PCT/JP2015/071181
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 中村
勉 河村
薫 川端
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/071181 priority Critical patent/WO2017017744A1/en
Publication of WO2017017744A1 publication Critical patent/WO2017017744A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a facility planning apparatus for a thermoelectric facility and a facility plan planning method for a thermoelectric facility.
  • thermoelectric facility facility planning apparatus As a thermoelectric facility facility planning apparatus relating to the present invention, there is a technology described in Japanese Patent No. 5271162 PR (Patent Document 1) IV.
  • an equipment plan creation device for creating an equipment plan in an energy system including an energy load, an energy generation device, and an energy storage device, For the operation plan, the value of the specified evaluation function is calculated for each of the plurality of demand scenarios for which the energy demand due to the energy load is estimated, and the calculated evaluation function value and the occurrence probability of each of the plurality of demand scenarios.
  • the equipment plan creation device performs these multiple times and outputs the equipment plan with the best evaluation value among the equipment plans created multiple times. There is a description.
  • Energy network aims to save energy in the entire region by distributing and connecting multiple power generation / storage facilities including natural energy and heat source facilities such as refrigerators in the region. For this reason, various facilities in the energy network exist at positions separated from each other, but for the heat supply by the heat source facility, conveyance power corresponding to the distance is required. Therefore, when planning the layout of equipment in the energy network, it is necessary to make a plan that reduces the transport power by performing optimization including the layout.
  • Patent Document 1 energy demand is predicted by cluster analysis, a combination of an energy generation device and an energy storage device for each demand scenario is selected by a metaheuristics method, and the facility is calculated based on an expected value using the occurrence probability of each demand scenario. It describes how to create a plan. However, it does not mention how to determine the arrangement.
  • an object of the present invention is to devise a facility plan for a thermoelectric facility that simultaneously determines the arrangement position of the heat source facility in consideration of the conveyance power of the heat medium for the energy network.
  • thermoelectric facility facility planning apparatus includes a thermoelectric demand prediction unit that derives a consumer's thermoelectric demand prediction value and a thermoelectric demand prediction probability from customer information, and the thermoelectric demand prediction value.
  • thermoelectric equipment collective information that summarizes the installation candidate thermoelectric equipment, placement candidate setting information related to the placement of thermoelectric equipment, and conveyance power information that specifies information about pressure loss of the heat interchange piping and the resulting pump conveyance power
  • a facility configuration / arrangement plan calculation unit for generating a facility configuration / arrangement plan group, a facility configuration / arrangement plan group created for a plurality of the thermoelectric demand prediction values, and the thermoelectric demand prediction probability.
  • an expected cost evaluation unit for determining a final equipment configuration / arrangement plan.
  • thermoelectric facility that simultaneously optimizes the arrangement position of the heat source facility in consideration of the conveyance power of the heat medium for the energy network.
  • FIG. 1 is a configuration diagram of a thermoelectric facility facility planning apparatus 101 in Embodiment 1.
  • FIG. 3 is a flowchart showing the processing of a thermoelectric facility equipment planning apparatus 101. It is an example of the cold / heat demand calculated
  • FIG. It is an example of the prediction probability of the thermoelectric demand obtained by the thermoelectric demand prediction unit 105. It is an example of the thermoelectric installation energy consumption characteristic. It is an example of the pressure loss characteristic of the heat medium derived
  • FIG. 5 is a configuration diagram of a thermoelectric facility facility planning apparatus 101 according to a second embodiment. 7 is a flowchart showing processing of a computing facility configuration / arrangement plan computation control unit 901 and a single time problem computation unit 902.
  • the present invention relates to a facility planning apparatus for a thermoelectric facility that determines a combination of thermoelectric facilities for supplying thermoelectric to consumers.
  • a facility planning apparatus for a thermoelectric facility that determines a combination of thermoelectric facilities for supplying thermoelectric to consumers.
  • FIG. 1 is a configuration diagram of a thermoelectric facility facility planning apparatus 101 according to the present embodiment.
  • This equipment planning device 101 summarizes the thermoelectric demand forecasting unit 105 that derives the thermoelectric demand forecast value 102 and the thermoelectric demand forecast probability 103 of the customer from the customer information 104, the thermoelectric demand forecast 102, and the thermoelectric equipment that is a candidate for installation.
  • thermoelectric demand forecasts 102 Using the equipment configuration / arrangement plan calculation unit 109, the equipment configuration / arrangement plan group 110 created for a plurality of thermoelectric demand forecasts 102, the thermoelectric demand forecast value 102, and the thermoelectric demand forecast probability 103.
  • An expected cost evaluation unit 111 that determines a final equipment configuration / arrangement plan 112 is configured.
  • FIG. 2 is a flowchart showing the processing of the thermoelectric equipment facility planning apparatus 101 of the present embodiment.
  • the prediction of the thermoelectric demand and the probability that the demand will occur are obtained (201).
  • an equipment configuration / arrangement plan and its cost are obtained by using the thermoelectric demand prediction, the information on the installation candidate thermoelectric equipment, the information on the equipment arrangement candidate, and the information on the piping loss and the pump power (202).
  • a cost expectation value using the occurrence probability is derived (204).
  • an equipment configuration / arrangement plan is selected using the expected cost value (205).
  • the thermoelectric demand forecasting unit 105 obtains the forecast of the thermoelectric demand several years later and the probability required for making the equipment plan. For example, if the demand is predicted to be cold, it is given to the target year like the heat load shown in FIG. 301 represents summer heat demand, 302 represents mid-term heat demand, and 303 represents winter heat demand. In the present embodiment, these three are used, but in order to increase the accuracy, the month of January to December may be designated. On the other hand, the probability of thermoelectric demand gives the probability that the predicted demand will occur for a certain year as shown in FIG. In addition, heat and power are given in the same format.
  • the thermoelectric equipment collective information 106 is information on the capacity of various outputs such as chilled water output, hot water output, power generation amount, and energy consumption characteristics (example of water-cooled chiller) as shown in FIG. And information on the costs of installing the equipment.
  • the energy consumption characteristics are shown in Fig. 5.
  • the gas consumption with respect to the load factor in the case of gas-using equipment Represents consumption.
  • a facility that consumes two types of energy sources such as exhaust heat and gas / steam, such as an exhaust heat utilization absorption refrigerator, similarly uses the characteristics shown in FIG.
  • piecewise linear approximation as shown in 501, 502, 503 is used.
  • piecewise linear approximation as shown in 501, 502, 503 is used.
  • E represents total power consumption
  • k represents the number of heat source equipment (chiller)
  • t represents time.
  • the subscript m represents the section number of the piecewise linear approximation when considering the characteristics of a certain equipment k, and is used to derive the power of one heat source equipment by taking the sum.
  • x is the load factor
  • z is the selected variable of the section
  • a and b are input parameters that vary depending on the characteristics of the heat source equipment.
  • the conveyance power information 108 includes information on heat medium pressure loss, information on power consumption of the pump generated thereby, and connection information between pipes.
  • the first pressure loss information is derived for each interchangeable pipe, for example, using the following Hazen-Williams equation (Equation 2) to give the pressure loss of the heat medium in the heat interchangeable pipe. Give information about the characteristics as shown.
  • ⁇ P is a differential pressure in each pipe
  • p is a pipe number
  • c is a flow velocity count
  • d is a pipe diameter
  • L is a pipe length
  • is a coefficient for unit adjustment.
  • Conveyance power information The information on the power consumption of the second pump represents the power consumption characteristics of the pump shown in Equation 3.
  • Equation 1 linearly approximated proportional coefficient / intercept when using mixed integer linear programming, or Equation 2 parameter, or a coefficient that approximates it with other functions .
  • connection information between the third pipes of the conveyance power information is information representing the connection of the main heat exchange conduits as shown in FIG.
  • reference numerals 701 to 709 are nodes of the pipe network, and simply represent the branch points of the pipes or the locations where the heat source / heat demand exists.
  • the connection information is a matrix in which the pipe number and the node number are subscripts.
  • the pipe network is described by placing 1 when the pipe and the node are connected and 0 otherwise.
  • this piping network produces the same thing about each of cold water, warm water, and exhaust heat, and uses it separately.
  • the placement candidate setting information 107 is information for designating at which point the thermoelectric equipment can be installed at the nodes of the piping network shown in FIG.
  • the equipment configuration / arrangement plan calculation unit 109 that generates the equipment configuration / arrangement plan group 110 using the various information will be described below.
  • the sum of the introduction cost and the operation cost is calculated as an objective function (Equation 4), and an optimal calculation is performed to reduce this.
  • Jope represents the operation cost
  • Jinst represents the introduction cost.
  • the operating cost is calculated by multiplying the energy consumption of the thermoelectric equipment shown in Equation 1 (gas and electricity excluding intermediate energy such as steam and exhaust heat) and the electricity consumption of the pump shown in Equation 3 by the unit price of gas and electricity. It is given as the sum of the sums.
  • the introduction cost is given by (introduction cost) ⁇ ⁇ using the 0-1 variable ⁇ shown in Formula 5 indicating whether or not the installation candidate facility is used.
  • k is the number of the installation candidate equipment
  • s is the number representing each node
  • t is the time.
  • the number s representing each node is used to represent the driving of the heat source facility at that location.
  • a certain equipment k is an expression that can introduce the same equipment k at different points s.
  • the condition is specified by adding a condition that the sum of ⁇ with respect to s is 1 or less.
  • conditional branching cannot be performed as it is, it is used for optimization as a constraint condition after rewriting using an indicator variable.
  • thermoelectric demand prediction value 102 given by the thermoelectric demand prediction unit 105.
  • the thermoelectric demand forecast value 102 is given for the target year, but to create a load that increases in magnitude every few years from the current heat demand in order to assume annual demand changes, it is connected With one demand, a highly accurate solution over multiple years can be obtained.
  • the target time width for optimization increases, the computation time increases rapidly due to the increase in variables. Therefore, a load of every 10 years or every 5 years may be used in consideration of the computation time.
  • the variables indicating whether or not to install each heat source facility, the start / stop variable and load factor of the heat source facility, and the heat medium flow rate (including the pressure in the piping) in each piping are specified as optimization variables.
  • the equipment is arranged at each node in FIG.
  • the facility configuration / cascade arrangement plan group 110 is created.
  • the expected cost evaluation unit 111 selects a plan from the obtained equipment configuration / arrangement plan group 110. Since the solution of the equipment configuration / location plan group 110 is a plan corresponding to each demand forecast and only the cost for that forecast is obtained, the total cost is calculated for other demand forecasts as shown in FIG. .
  • the operation cost is calculated using the thermoelectric demand forecast value 102 and added to the introduction cost.
  • the optimization calculation as performed by the equipment configuration / arrangement plan calculation unit 109 for the set for which the cost of the heat demand prediction value 102 and the equipment configuration / arrangement plan group 110 is not derived The arrangement may be fixed) or may be obtained by forward calculation as priority operation in order to reduce the calculation load.
  • the expected value of the total cost of each equipment configuration / arrangement plan group is derived, and the lowest cost among them is selected and output as the final equipment configuration / arrangement plan 112.
  • thermoelectric facility that simultaneously determines the position of the heat source facility in consideration of the conveyance power of the heat medium.
  • Example 2 will be described with reference to FIG.
  • the equipment configuration / arrangement plan calculation unit 109 performs optimization over the entire time using various information such as the thermoelectric demand forecast value 102, but in that case, the number of variables increases, and the solution is solved in a practical time. May not be obtained. Therefore, the calculation load is reduced by the configuration of the thermoelectric facility facility planning apparatus 101 in the second embodiment.
  • the equipment configuration / arrangement plan calculation unit 109 is divided into two, an arithmetic equipment configuration / arrangement plan calculation control unit 901 and a single time problem calculation unit 902. The process flow for deriving the equipment configuration / arrangement plan group 110 in this case will be described with reference to the process flow of FIG.
  • the overall flow of the equipment configuration / arrangement plan calculation unit 109 is the same as the flow of FIG. 2, and step 202 replaces the flow of FIG.
  • the facility configuration / arrangement plan calculation control unit 901 divides the thermoelectric demand predicted value 102 into each time section, and calculates an operation plan and an arrangement plan using the single time problem calculation unit 902 respectively (901).
  • the equipment configuration / arrangement plan calculation control unit 901 that satisfies the maximum value of the thermoelectric demand forecast value 102 and has the longest operation time ( 902).
  • the operation cost over the entire time is recalculated for the set of facilities / positions obtained by the facility configuration / arrangement plan calculation control unit 901, and the total cost is derived by adding the introduction costs (903).
  • NO the candidate with the highest introduction cost is removed from all the equipment candidates (905), and the calculation of 901 is performed again. If YES, exit the loop and use the calculation results so far, and output the candidate equipment with the lowest total cost and its location as a solution (906).
  • SYMBOLS 101 Equipment planning apparatus of thermoelectric equipment of this invention, 102 ... Thermoelectric demand forecast value, 103 ... Thermoelectric demand forecast probability, 104 ... Consumer information, 105 ... Thermoelectric demand forecast part, 106 ... Thermoelectric equipment aggregate information, 107 ... Arrangement Candidate setting information, 108 ... Transport power information, 109 ... Equipment configuration / arrangement plan calculation unit, 110 ... Equipment configuration / arrangement plan group, 111 ... Estimated cost evaluation unit

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The purpose of the present invention is to create a facility plan for heat and power facilities forming an energy network, wherein the arrangement and location of the heat and power facilities are also determined by taking into account the power required to circulate the heating medium. The present invention is characterized by being provided with: a heat and power demand prediction unit which calculates a plurality of predicted values of the heat and power demands by consumers and probabilities of the plurality of predicted values of the heat and power demands, on the basis of consumer information; a facility configuration/arrangement plan calculation unit which generates groups of facility configuration/arrangement plans by using the plurality of predicted values of the heat and power demands, heat and power facility group information, which groups together heat and power facilities serving as candidates to be arranged, arrangement candidate setting information relating to the arrangement of the heat and power facilities, and circulation power information indicating information relating to both the pressure loss of the heat supply piping and the pumping power required to accommodate the pressure loss and thereby circulate the heating medium; and an expected cost value evaluation unit which determines a final facility configuration/arrangement plan by using both the groups of facility configuration/arrangement plans, which are generated based on the plurality of predicted values of the heat and power demands, and the probabilities of the plurality of predicted values of the heat and power demands. Thus, the present invention makes it possible to create a facility plan for heat and power facilities forming an energy network, wherein the arrangement and location of heat source facilities are also optimized at the same time by taking into account the power required to circulate the heating medium.

Description

熱電設備の設備計画立案装置及び熱電設備の設備計画立案方法Facility planning apparatus for thermoelectric facility and facility planning method for thermoelectric facility
 本発明は、熱電設備の設備計画立案装置及び熱電設備の設備計画立案方法に関する。 The present invention relates to a facility planning apparatus for a thermoelectric facility and a facility plan planning method for a thermoelectric facility.
 本発明に関する熱電設備の設備計画立案装置としては、特許第5271162号広報(特許文献1) に記載の技術がある。この公報には、「エネルギー負荷と、エネルギー発生装置と、エネルギー貯蔵装置とを備えたエネルギーシステムにおける設備計画を作成する設備計画作成装置であって、設備計画を作成し、作成された設備計画の運転計画について、エネルギー負荷によるエネルギー需要を推定した複数の需要シナリオ毎に、指定された評価関数の値を算出する。そして、算出された評価関数の値と、複数の需要シナリオのそれぞれの発生確率とに基づいて設備計画を評価した評価値を算出する。設備計画作成装置は、これらを複数回行い、複数回作成された設備計画のうち、評価値が最良の設備計画を出力する。」という記載がある。 As a thermoelectric facility facility planning apparatus relating to the present invention, there is a technology described in Japanese Patent No. 5271162 PR (Patent Document 1) IV. In this publication, “an equipment plan creation device for creating an equipment plan in an energy system including an energy load, an energy generation device, and an energy storage device, For the operation plan, the value of the specified evaluation function is calculated for each of the plurality of demand scenarios for which the energy demand due to the energy load is estimated, and the calculated evaluation function value and the occurrence probability of each of the plurality of demand scenarios. The equipment plan creation device performs these multiple times and outputs the equipment plan with the best evaluation value among the equipment plans created multiple times. There is a description.
特許第5271162号公報Japanese Patent No.5271162
 エネルギーネットワークは、自然エネルギーを含む複数の発電・蓄電設備や、冷凍機などの熱源設備を地域に分散して配置しそれらを結びつけることで地域全体での省エネルギーを図るものである。そのため、エネルギーネットワーク内の各種設備はそれぞれが離れた位置に存在するが、熱源設備による熱供給には、距離に応じた搬送動力が必要となる。そのため、エネルギーネットワーク内の設備の配置を計画する際には、その配置を含めた最適化を行い、その搬送動力を低減するような計画を立案する必要がある。 Energy network aims to save energy in the entire region by distributing and connecting multiple power generation / storage facilities including natural energy and heat source facilities such as refrigerators in the region. For this reason, various facilities in the energy network exist at positions separated from each other, but for the heat supply by the heat source facility, conveyance power corresponding to the distance is required. Therefore, when planning the layout of equipment in the energy network, it is necessary to make a plan that reduces the transport power by performing optimization including the layout.
 特許文献1では、エネルギー需要をクラスター分析により予測し、その各需要シナリオに対するエネルギー発生装置及びエネルギー貯蔵装置の組合せをメタヒューリスティクス手法により選定し、各需要シナリオの発生確率を利用した期待値により設備計画を作成する方法が述べられている。しかし、この中ではその配置をどのように決定するかは述べられていない。 In Patent Document 1, energy demand is predicted by cluster analysis, a combination of an energy generation device and an energy storage device for each demand scenario is selected by a metaheuristics method, and the facility is calculated based on an expected value using the occurrence probability of each demand scenario. It describes how to create a plan. However, it does not mention how to determine the arrangement.
 そこで本発明では、エネルギーネットワークを対象に、熱媒の搬送動力を考慮して熱源設備の配置位置も同時に決定する熱電設備の設備計画を立案することを目的とする。 Therefore, an object of the present invention is to devise a facility plan for a thermoelectric facility that simultaneously determines the arrangement position of the heat source facility in consideration of the conveyance power of the heat medium for the energy network.
 上記課題を解決するために、本発明の熱電設備の設備計画立案装置は、需要家の熱電需要予測値と熱電需要予想確率を需要家情報により導出する熱電需要予測部と、前記熱電需要予測値と、設置候補の熱電設備をまとめた熱電設備集合情報と、熱電設備の配置に関する配置候補設定情報と熱融通配管の圧力損失やそれによるポンプの搬送動力に関する情報を指定する搬送動力情報とを用いて、設備構成・配置計画群を生成する設備構成・配置計画演算部と、複数存在する前記熱電需要予測値に対して作成された設備構成・配置計画群と、前記熱電需要予測確率を使用して最終的な設備構成・配置計画を決定するコスト期待値評価部を備えることを特徴とする。 In order to solve the above-mentioned problems, a thermoelectric facility facility planning apparatus according to the present invention includes a thermoelectric demand prediction unit that derives a consumer's thermoelectric demand prediction value and a thermoelectric demand prediction probability from customer information, and the thermoelectric demand prediction value. And thermoelectric equipment collective information that summarizes the installation candidate thermoelectric equipment, placement candidate setting information related to the placement of thermoelectric equipment, and conveyance power information that specifies information about pressure loss of the heat interchange piping and the resulting pump conveyance power A facility configuration / arrangement plan calculation unit for generating a facility configuration / arrangement plan group, a facility configuration / arrangement plan group created for a plurality of the thermoelectric demand prediction values, and the thermoelectric demand prediction probability. And an expected cost evaluation unit for determining a final equipment configuration / arrangement plan.
 本発明によれば、エネルギーネットワークを対象として、熱媒の搬送動力を考慮して熱源設備の配置位置も同時に最適化する熱電設備の設備計画を立案することが可能となる。 According to the present invention, it is possible to devise a facility plan for a thermoelectric facility that simultaneously optimizes the arrangement position of the heat source facility in consideration of the conveyance power of the heat medium for the energy network.
実施例1における熱電設備の設備計画立案装置101の構成図である。1 is a configuration diagram of a thermoelectric facility facility planning apparatus 101 in Embodiment 1. FIG. 熱電設備の設備計画立案装置101の処理を表すフローチャートである。3 is a flowchart showing the processing of a thermoelectric facility equipment planning apparatus 101. 熱電需要予測部105によって求められる冷熱需要の例である。It is an example of the cold / heat demand calculated | required by the thermoelectric demand prediction part 105. FIG. 熱電需要予測部105によって求められる熱電需要の予測確率の例である。It is an example of the prediction probability of the thermoelectric demand obtained by the thermoelectric demand prediction unit 105. 熱電設備エネルギー消費特性の例である。It is an example of the thermoelectric installation energy consumption characteristic. 融通配管ごとに導出される熱媒の圧力損失特性の例である。It is an example of the pressure loss characteristic of the heat medium derived | led-out for every accommodation piping. 配管同士の接続情報の例である。It is an example of the connection information between piping. 設備構成・配置計画毎の需要予測の発生確率とそのコストを示す表の例である。It is an example of the table | surface which shows the generation | occurrence | production probability of the demand prediction for every equipment structure and arrangement plan, and its cost. 実施例2における熱電設備の設備計画立案装置101の構成図である。FIG. 5 is a configuration diagram of a thermoelectric facility facility planning apparatus 101 according to a second embodiment. 演算設備構成・配置計画演算統御部901と単時間問題演算部 902の処理を表すフローチャートである。7 is a flowchart showing processing of a computing facility configuration / arrangement plan computation control unit 901 and a single time problem computation unit 902.
 本発明は、熱電を需要家に供給するための熱電設備の組合せを決定する熱電設備の設備計画立案装置に関する。以下、実施例を図面を用いて説明する。 The present invention relates to a facility planning apparatus for a thermoelectric facility that determines a combination of thermoelectric facilities for supplying thermoelectric to consumers. Hereinafter, examples will be described with reference to the drawings.
 図1は、本実施例の熱電設備の設備計画立案装置101の構成図である。本設備計画立案装置101は需要家の熱電需要予測値102と熱電需要予想確率103を需要家情報104により導出する熱電需要予測部105と、熱電需要予測102と、設置候補の熱電設備をまとめた熱電設備集合情報106と、熱電設備の配置に関する配置候補設定情報107と熱融通配管の圧力損失やそれによるポンプの搬送動力に関する情報を指定する搬送動力情報108とを用いて、設備構成・配置計画を生成する設備構成・配置計画演算部109と,複数存在する熱電需要予測102に対して作成された設備構成・配置計画群110と、熱電需要予測値102と熱電需要予測確率103を使用して最終的な設備構成・配置計画112を決定するコスト期待値評価部111、により構成される。 FIG. 1 is a configuration diagram of a thermoelectric facility facility planning apparatus 101 according to the present embodiment. This equipment planning device 101 summarizes the thermoelectric demand forecasting unit 105 that derives the thermoelectric demand forecast value 102 and the thermoelectric demand forecast probability 103 of the customer from the customer information 104, the thermoelectric demand forecast 102, and the thermoelectric equipment that is a candidate for installation. Facility configuration / location plan using thermoelectric facility set information 106, placement candidate setting information 107 related to the placement of thermoelectric facilities, and transport power information 108 that specifies information related to pressure loss in the heat exchange pipes and the pump transport power caused thereby. Using the equipment configuration / arrangement plan calculation unit 109, the equipment configuration / arrangement plan group 110 created for a plurality of thermoelectric demand forecasts 102, the thermoelectric demand forecast value 102, and the thermoelectric demand forecast probability 103. An expected cost evaluation unit 111 that determines a final equipment configuration / arrangement plan 112 is configured.
 図2は、本実施例の熱電設備の設備計画立案装置101の処理を表すフローチャートである。まず需要家の情報を用いて、熱電需要の予測とその需要が発生する確率を求める(201)。次に、熱電需要予測と、設置候補の熱電設備の情報と、設備の配置候補の情報と、配管損失やポンプ動力に関する情報を用いて、設備構成・配置計画とそのコストを求める(202)。次に、全需要予測に対して設備計画立案が終了しているかを判別し(203)、終了の場合は、得られた設備構成・配置計画のコストを各熱電需要の元で演算し、その発生確率を用いたコスト期待値を導出する(204)。次に、コスト期待値を用いて設備構成・配置計画を選択する(205)。 FIG. 2 is a flowchart showing the processing of the thermoelectric equipment facility planning apparatus 101 of the present embodiment. First, using the customer information, the prediction of the thermoelectric demand and the probability that the demand will occur are obtained (201). Next, an equipment configuration / arrangement plan and its cost are obtained by using the thermoelectric demand prediction, the information on the installation candidate thermoelectric equipment, the information on the equipment arrangement candidate, and the information on the piping loss and the pump power (202). Next, it is determined whether the facility planning has been completed for all demand forecasts (203), and if it is completed, the cost of the obtained facility configuration / arrangement plan is calculated based on each thermoelectric demand. A cost expectation value using the occurrence probability is derived (204). Next, an equipment configuration / arrangement plan is selected using the expected cost value (205).
 次に、構成図に示した各要素について詳述する。 Next, each element shown in the configuration diagram will be described in detail.
 熱電需要予測部105は、設備計画の立案に必要となる数年後の熱電の需要の予測とその確率を求める。需要の予測は例えば冷熱であれば、対象となる年に対して図3に示した熱負荷のように与えられる。それぞれ301は夏の熱需要、302は中間期の熱需要、303は冬の熱需要を表す。なお本実施例ではこの3つとしているが、より精度を上げるために、1月~12月までの各月のもの等を指定してもよい。一方、熱電需要の確率は図4に示すような、ある年度に対して、予測した需要が発生する確率を与える。他、温熱や電力についても同様の形式で与える。 The thermoelectric demand forecasting unit 105 obtains the forecast of the thermoelectric demand several years later and the probability required for making the equipment plan. For example, if the demand is predicted to be cold, it is given to the target year like the heat load shown in FIG. 301 represents summer heat demand, 302 represents mid-term heat demand, and 303 represents winter heat demand. In the present embodiment, these three are used, but in order to increase the accuracy, the month of January to December may be designated. On the other hand, the probability of thermoelectric demand gives the probability that the predicted demand will occur for a certain year as shown in FIG. In addition, heat and power are given in the same format.
 そして熱電設備集合情報106は、導入対象として想定される熱電設備について、冷水出力・温水出力・発電量等の各種出力の容量や図5に示すようなエネルギー消費特性(水冷チラーの例)の情報及び、その設備を導入する際の費用に関する情報を含んでいる。エネルギー消費特性は図5に示した、負荷率(=出力/定格出力)に対する電力消費量の他に、ガス利用設備であれば負荷率に対するガス消費量を、また蒸気使用設備では負荷率に対する蒸気消費量を表す。また、排熱利用吸収冷凍機のように排熱とガス・蒸気等の2種類のエネルギー源を消費する設備でもそれぞれについて同様に、図5に示すような特性を用いる。高速求解を目的として混合整数線形計画法を用いる場合は、501,502,503に示すような区分線形近似を用いる。図5のような電力消費特性を持つ水冷チラーが複数台ある場合、その電力は以下の数1の形になる。 The thermoelectric equipment collective information 106 is information on the capacity of various outputs such as chilled water output, hot water output, power generation amount, and energy consumption characteristics (example of water-cooled chiller) as shown in FIG. And information on the costs of installing the equipment. The energy consumption characteristics are shown in Fig. 5. In addition to the power consumption with respect to the load factor (= output / rated output), the gas consumption with respect to the load factor in the case of gas-using equipment, Represents consumption. Similarly, a facility that consumes two types of energy sources such as exhaust heat and gas / steam, such as an exhaust heat utilization absorption refrigerator, similarly uses the characteristics shown in FIG. When using mixed integer linear programming for the purpose of fast solution, piecewise linear approximation as shown in 501, 502, 503 is used. When there are a plurality of water-cooled chillers with power consumption characteristics as shown in FIG.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 eは総消費電力、kは熱源設備(チラー)の番号を、tは時間を表す。添字mはある設備kの特性を考えた際の区分線形近似の区間の番号を表し、和をとることで1台の熱源設備の電力を導出するためのものである。xは負荷率を、zは区間の選択変数を、a,bは熱源設備の特性によって変化する入力パラメータである。 E represents total power consumption, k represents the number of heat source equipment (chiller), and t represents time. The subscript m represents the section number of the piecewise linear approximation when considering the characteristics of a certain equipment k, and is used to derive the power of one heat source equipment by taking the sum. x is the load factor, z is the selected variable of the section, and a and b are input parameters that vary depending on the characteristics of the heat source equipment.
 続いて、搬送動力情報108は、熱媒圧力損失の情報と、それによって発生するポンプの消費電力の情報、そして配管同士の接続情報の3つとなる。1つ目の圧力損失情報は、熱融通配管における熱媒の圧力損失を与えるために、例えば以下のHazen-Williamsの式(数2)等を用いて、融通配管ごとに導出される図6に示すような特性の情報を与える。 Subsequently, the conveyance power information 108 includes information on heat medium pressure loss, information on power consumption of the pump generated thereby, and connection information between pipes. The first pressure loss information is derived for each interchangeable pipe, for example, using the following Hazen-Williams equation (Equation 2) to give the pressure loss of the heat medium in the heat interchangeable pipe. Give information about the characteristics as shown.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここで、ΔPは各配管における差圧、pは配管番号、cは流速計数、dは配管径、Lは配管長、βは単位調整のための係数である。なお、圧力損失を表す式はその近似方法によって複数種類あり、数2に限定せず、その他の式を用いてもよい。ここで、流れの向きが逆転する場合があるため、どちらか一方の流れを正として考える。この曲線をそのまま特性として扱うために、数2のパラメータをそのまま入力としても良いが、混合整数線形計画法を用いる場合は、設備の特性と同様に図6で示したような区分近似直線の比例係数と切片が入力となる。また、間を取って2次関数等の多項式近似を行う場合には、その係数を情報として与えても良い。 Here, ΔP is a differential pressure in each pipe, p is a pipe number, c is a flow velocity count, d is a pipe diameter, L is a pipe length, and β is a coefficient for unit adjustment. Note that there are a plurality of types of expressions representing the pressure loss depending on the approximation method, and the expression is not limited to Equation 2, and other expressions may be used. Here, since the flow direction may be reversed, one of the flows is considered as positive. In order to treat this curve as a characteristic as it is, the parameter of Equation 2 may be input as it is, but when mixed integer linear programming is used, the proportionality of the piecewise approximate straight line as shown in Fig. 6 is used as well as the characteristic of the equipment. Coefficients and intercepts are input. In addition, when performing polynomial approximation such as a quadratic function at intervals, the coefficient may be given as information.
 搬送動力情報2つ目のポンプの消費電力の情報は、数3に示すポンプの電力消費特性を表すものとなる。 Conveyance power information The information on the power consumption of the second pump represents the power consumption characteristics of the pump shown in Equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、gはポンプの総消費電力、ρは熱媒の密度、nはポンプ番号、ηはポンプ効率、wnはポンプを流れる熱媒の流量、Hはポンプの揚程、αは単位換算係数を表す。なお、この式についてもこれに限定されるものではなく、インバータ特性を考慮した3次関数として近似したもの等、その他の式を用いても良い。具体的な情報としては、数1の場合と同様に、混合整数線形計画法を用いる場合の線形近似した比例係数・切片、あるいは数2のパラメータ、あるいはそれを他の関数で近似した係数となる。 Where g is the total power consumption of the pump, ρ is the density of the heat medium, n is the pump number, η is the pump efficiency, w n is the flow rate of the heat medium flowing through the pump, H is the pump head, α is the unit conversion factor Represents. Note that this formula is not limited to this, and other formulas such as an approximation as a cubic function considering the inverter characteristics may be used. As specific information, as in the case of Equation 1, linearly approximated proportional coefficient / intercept when using mixed integer linear programming, or Equation 2 parameter, or a coefficient that approximates it with other functions .
 搬送動力情報3つ目の配管同士の接続情報は、図7に示すような、対象とする主な熱融通導管の接続を表す情報である。ここで701~709は配管網の節点であり、単純に配管の分岐点、あるいは熱源・熱需要の存在箇所を表す。接続情報は、配管番号と節点番号を添字とする行列であり、配管と節点がつながっている場合は1でそれ以外は0と置くことで配管網を記述する。なお、この配管網は冷水、温水及び排熱のそれぞれについて同様のものを作成し、別個に用いる。 The connection information between the third pipes of the conveyance power information is information representing the connection of the main heat exchange conduits as shown in FIG. Here, reference numerals 701 to 709 are nodes of the pipe network, and simply represent the branch points of the pipes or the locations where the heat source / heat demand exists. The connection information is a matrix in which the pipe number and the node number are subscripts. The pipe network is described by placing 1 when the pipe and the node are connected and 0 otherwise. In addition, this piping network produces the same thing about each of cold water, warm water, and exhaust heat, and uses it separately.
 次に、配置候補設定情報107は図7で示した配管網の節点において、どの点に熱電設備を設置することができるかどうかを指定する情報である。 Next, the placement candidate setting information 107 is information for designating at which point the thermoelectric equipment can be installed at the nodes of the piping network shown in FIG.
 続いて、前記各種情報を用いて設備構成・配置計画群110を生成する設備構成・配置計画演算部109の詳細を以下に示す。この設備構成・配置計画群110では、目的関数として導入コストと運用コストの和をとり(数4)、これを低減する最適演算を行う。 Subsequently, details of the equipment configuration / arrangement plan calculation unit 109 that generates the equipment configuration / arrangement plan group 110 using the various information will be described below. In the equipment configuration / arrangement plan group 110, the sum of the introduction cost and the operation cost is calculated as an objective function (Equation 4), and an optimal calculation is performed to reduce this.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、Jopeは運用コストを、Jinstは導入コストを表す。運用コストは、数1で示した熱電設備の消費エネルギー(蒸気・排熱などの中間エネルギーを除く、ガスと電力)と数3で示したポンプによる消費電力について、それぞれガスや電力の単価をかけ合わせたものの和で与えられる。一方導入コストは、導入候補の設備を使用するか否かを表す数5に示した0-1変数δを用いて、(導入コスト)×δで与えられる。 Here, Jope represents the operation cost and Jinst represents the introduction cost. The operating cost is calculated by multiplying the energy consumption of the thermoelectric equipment shown in Equation 1 (gas and electricity excluding intermediate energy such as steam and exhaust heat) and the electricity consumption of the pump shown in Equation 3 by the unit price of gas and electricity. It is given as the sum of the sums. On the other hand, the introduction cost is given by (introduction cost) × δ using the 0-1 variable δ shown in Formula 5 indicating whether or not the installation candidate facility is used.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
ここで、kは導入候補の設備の番号、sは各節点を表す番号、tは時間を表す。各節点を表わす番号sを使用することでその場所での熱源設備の駆動を表す。なお、この定式化の場合、ある設備kは異なる地点sであれば同じ設備kを導入可能な式になっているが、全設備を1台ずつに限定して扱う場合には、制約条件としてδのsに対する和が1以下という条件を加えることでその条件を指定する。 Here, k is the number of the installation candidate equipment, s is the number representing each node, and t is the time. The number s representing each node is used to represent the driving of the heat source facility at that location. In the case of this formulation, a certain equipment k is an expression that can introduce the same equipment k at different points s. However, when all equipment is limited to one unit, it is a restriction condition. The condition is specified by adding a condition that the sum of δ with respect to s is 1 or less.
 条件分岐は、そのままでは演算できないため、インジケータ変数を用いた書換えを行った上で、制約条件として最適化に用いる。 Since conditional branching cannot be performed as it is, it is used for optimization as a constraint condition after rewriting using an indicator variable.
 その他の制約条件としては、図7で示す各地点にてボイラで生成した蒸気がその場で蒸気吸収冷凍機に消費される等の701~709の各地点における(需要)=(供給)の制約がある。一方、図7に示した熱融通導管を通して各地点間の融通があるものに対しては、(需要)=(供給)の制約式として、以下の数6が成立する。
Other restrictions include (demand) = (supply) restrictions at each point of 701 to 709, such as steam generated in the boiler at each point shown in Fig. 7 being consumed by the steam absorption refrigerator on the spot. There is. On the other hand, the following equation 6 is established as a constraint equation of (demand) = (supply) for those where there is interchange between points through the heat accommodation conduit shown in FIG.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、sは対象とする節点の番号、pは配管番号、tは時刻、wpは配管pから節点sへと流れ込む熱流量、wdは節点sに接続する供給地域が必要とする熱流量、wgは節点sに接続する熱源プラントから供給される熱流量である。これらは温水・冷水及び排温水のそれぞれについて成立する。なお、各地点が必要とする熱流量が、熱電需要予測部105によって与えられる熱電需要予測値102と対応する。熱電需要予測値102は、対象とする年度について与えられるが、年々の需要の変化を想定するために現在の熱需要から数年毎に大きさが増加していく負荷を作成して、つなぎ合わせて1つの需要とすることで、複数年にわたる精度の高い解を求めることができる。しかし、最適化の対象時間幅が増える程、変数増により演算時間が急増するため、演算時間との兼ね合いで10年毎や5年毎等の負荷を用いてもよい。 Where s is the number of the target node, p is the pipe number, t is the time, wp is the heat flow flowing from the pipe p to the node s, wd is the heat flow required by the supply area connected to the node s, wg is a heat flow rate supplied from the heat source plant connected to the node s. These hold for each of hot water, cold water and waste water. The heat flow required by each point corresponds to the thermoelectric demand prediction value 102 given by the thermoelectric demand prediction unit 105. The thermoelectric demand forecast value 102 is given for the target year, but to create a load that increases in magnitude every few years from the current heat demand in order to assume annual demand changes, it is connected With one demand, a highly accurate solution over multiple years can be obtained. However, as the target time width for optimization increases, the computation time increases rapidly due to the increase in variables. Therefore, a load of every 10 years or every 5 years may be used in consideration of the computation time.
 他に、数2の配管圧力損失の式による各節点の圧力がその点で等しいという等圧力条件が与えられる。また、ポンプによる圧力とその流量を結び付けて数3のポンプの消費エネルギーを導出するための制約としては、ポンプのQ-H(流量-揚程)特性が与えられる。 Other than that, an equal pressure condition is given in which the pressure at each node is equal at that point according to the equation of the pipe pressure loss of equation (2). In addition, the Q-H (flow-head) characteristic of the pump is given as a constraint for deriving the energy consumption of the pump of Formula 3 by combining the pressure by the pump and its flow rate.
 これらの制約式により、各熱源設備を設置するか否かを表す変数及び熱源設備の起動停止変数及び負荷率、各配管内の熱媒流量(配管内圧力含)を最適化の変数として指定することで、図7の各節点のどこに設備を配置するかが解として得られるため、それを設備構成・配置計画とする。この演算を、複数の熱電需要予測値に対して実施することで設備構成・ 配置計画群110を作成する。 Using these constraint equations, the variables indicating whether or not to install each heat source facility, the start / stop variable and load factor of the heat source facility, and the heat medium flow rate (including the pressure in the piping) in each piping are specified as optimization variables. As a result, it is obtained as a solution where the equipment is arranged at each node in FIG. By performing this calculation on a plurality of thermoelectric demand prediction values, the facility configuration / cascade arrangement plan group 110 is created.
 最後に、コスト期待値評価部111は、得られた設備構成・配置計画群110の中からある計画を選択する。設備構成・配置計画群110の解は、各需要予測に対応する計画でありその予測に対するコストしか得られていないため、図8に示すようにそのほかの需要予測に対してそのトータルコストを演算する。そのために、熱電需要予測値102を用いて運転コストを演算し、導入費用と足し合わせる。その方法は、運転コストについては、熱需要予測値102と設備構成・配置計画群110のコストが導出されていない組に対して設備構成・配置計画演算部109で実施したような最適化演算(配置については固定)を用いたり、あるいは計算負荷を減らすために優先順位運転として順計算により求めても良い。最後に図8から、各設備構成・配置計画群のトータルコストの期待値を導出し、その中で最もコストが低いものを選び最終的な設備構成・配置計画112として出力する。 Finally, the expected cost evaluation unit 111 selects a plan from the obtained equipment configuration / arrangement plan group 110. Since the solution of the equipment configuration / location plan group 110 is a plan corresponding to each demand forecast and only the cost for that forecast is obtained, the total cost is calculated for other demand forecasts as shown in FIG. . For this purpose, the operation cost is calculated using the thermoelectric demand forecast value 102 and added to the introduction cost. As for the operation cost, the optimization calculation as performed by the equipment configuration / arrangement plan calculation unit 109 for the set for which the cost of the heat demand prediction value 102 and the equipment configuration / arrangement plan group 110 is not derived ( The arrangement may be fixed) or may be obtained by forward calculation as priority operation in order to reduce the calculation load. Finally, from FIG. 8, the expected value of the total cost of each equipment configuration / arrangement plan group is derived, and the lowest cost among them is selected and output as the final equipment configuration / arrangement plan 112.
 以上のようにして、熱媒の搬送動力を考慮して熱源設備の配置位置も同時に決定する熱電設備の設備計画を立案することが可能となる。 As described above, it is possible to devise a facility plan for a thermoelectric facility that simultaneously determines the position of the heat source facility in consideration of the conveyance power of the heat medium.
 以下、実施例2について、図9を用いて説明する。実施例1において、設備構成・配置計画演算部109は熱電需要予測値102等の各種情報を用いた全時間にわたる最適化を実施するが、その場合変数数が増大し、実用的な時間で解が得られない可能性がある。そのため、本実施例2における熱電設備の設備計画立案装置101の構成により演算負荷を削減する。構成の違いとして、設備構成・配置計画演算部109を、演算設備構成・配置計画演算統御部901と単時間問題演算部902の2つに分けている。この場合の設備構成・配置計画群110導出の処理の流れを図10の処理フローを用いて説明する。設備構成・配置計画演算部109全体の流れは図2のフロー同様で、ステップ202が図10のフローと置き換わる。まず、設備構成・配置計画演算統御部901が熱電需要予測値102を各時間断面に分割し、それぞれで単時間問題演算部902を用いて運転計画と配置計画を演算する(901)。次に、得られた設備とその配置位置の組の解に対して、熱電需要予測値102の最大値を満たすもので最も運転時間が長いものを設備構成・配置計画演算統御部901で求める (902)。次に、設備構成・配置計画演算統御部901で得られた設備・位置の組に対して全時間における運転コストを再演算し、導入コストを足し合わせた総コストを導出する(903)。続いて、全設備候補の内、導入コストの高いものから順次候補から除外して前記の演算を行うループ演算に対してその除外台数が指定値に達しているかを演算する(904)。NOの場合は、全設備候補から導入コストが最も高いものを候補から外し(905)、再度901の演算を実施する。YESの場合は、ループを抜け出し、それまでの演算結果を利用して、総コストが最も低い設備候補とその配置位置を解として出力する(906)。 Hereinafter, Example 2 will be described with reference to FIG. In the first embodiment, the equipment configuration / arrangement plan calculation unit 109 performs optimization over the entire time using various information such as the thermoelectric demand forecast value 102, but in that case, the number of variables increases, and the solution is solved in a practical time. May not be obtained. Therefore, the calculation load is reduced by the configuration of the thermoelectric facility facility planning apparatus 101 in the second embodiment. As a difference in configuration, the equipment configuration / arrangement plan calculation unit 109 is divided into two, an arithmetic equipment configuration / arrangement plan calculation control unit 901 and a single time problem calculation unit 902. The process flow for deriving the equipment configuration / arrangement plan group 110 in this case will be described with reference to the process flow of FIG. The overall flow of the equipment configuration / arrangement plan calculation unit 109 is the same as the flow of FIG. 2, and step 202 replaces the flow of FIG. First, the facility configuration / arrangement plan calculation control unit 901 divides the thermoelectric demand predicted value 102 into each time section, and calculates an operation plan and an arrangement plan using the single time problem calculation unit 902 respectively (901). Next, with respect to the solution of the set of the obtained equipment and its arrangement position, the equipment configuration / arrangement plan calculation control unit 901 that satisfies the maximum value of the thermoelectric demand forecast value 102 and has the longest operation time ( 902). Next, the operation cost over the entire time is recalculated for the set of facilities / positions obtained by the facility configuration / arrangement plan calculation control unit 901, and the total cost is derived by adding the introduction costs (903). Subsequently, it is calculated whether or not the number of excluded equipment reaches a specified value for the loop operation in which all the equipment candidates are sequentially excluded from the candidates with the highest introduction cost and the above-described operation is performed (904). In the case of NO, the candidate with the highest introduction cost is removed from all the equipment candidates (905), and the calculation of 901 is performed again. If YES, exit the loop and use the calculation results so far, and output the candidate equipment with the lowest total cost and its location as a solution (906).
 続く演算は実施例1と同様の処理を行う。以上の処理により、演算負荷を削減して、熱源設備の配置位置も同時に決定する熱電設備の設備計画を立案することが可能となる。 Subsequent calculations are performed in the same manner as in the first embodiment. With the above processing, it is possible to make a facility plan for a thermoelectric facility that reduces the calculation load and simultaneously determines the location of the heat source facility.
 101…本発明の熱電設備の設備計画立案装置、102…熱電需要予測値、103…熱電需要予想確率、104…需要家情報、105…熱電需要予測部、106…熱電設備集合情報、107…配置候補設定情報、108…搬送動力情報、109…設備構成・配置計画演算部、110…設備構成・配置計画群、111…コスト期待値評価部 DESCRIPTION OF SYMBOLS 101 ... Equipment planning apparatus of thermoelectric equipment of this invention, 102 ... Thermoelectric demand forecast value, 103 ... Thermoelectric demand forecast probability, 104 ... Consumer information, 105 ... Thermoelectric demand forecast part, 106 ... Thermoelectric equipment aggregate information, 107 ... Arrangement Candidate setting information, 108 ... Transport power information, 109 ... Equipment configuration / arrangement plan calculation unit, 110 ... Equipment configuration / arrangement plan group, 111 ... Estimated cost evaluation unit

Claims (4)

  1.  エネルギーネットワークを対象に、設備導入時に熱電設備の組合せを決定する熱電設備の設備計画立案装置において、
     需要家の熱電需要予測値と熱電需要予想確率を需要家情報により導出する熱電需要予測部と、
    前記熱電需要予測値と、設置候補の熱電設備をまとめた熱電設備集合情報と、熱電設備の配置に関する配置候補設定情報と熱融通配管の圧力損失やそれによるポンプの搬送動力に関する情報を指定する搬送動力情報とを用いて、設備構成・配置計画群を生成する設備構成・配置計画演算部と、
    複数存在する前記熱電需要予測値に対して作成された設備構成・配置計画群と、前記熱電需要予測確率を使用して最終的な設備構成・配置計画を決定するコスト期待値評価部を備えることを特徴とする熱電設備の設備計画立案装置。
    In the equipment planning system for thermoelectric equipment that determines the combination of thermoelectric equipment at the time of equipment introduction for the energy network,
    A thermoelectric demand forecasting unit that derives the thermoelectric demand forecast value and the thermoelectric demand forecast probability of the consumer from the customer information;
    Transport specifying the thermoelectric demand forecast value, thermoelectric facility collective information that summarizes the thermoelectric facilities that are candidates for installation, placement candidate setting information related to the placement of thermoelectric facilities, pressure loss of heat interchange piping, and information related to the pump transport power caused thereby A facility configuration / arrangement plan calculation unit that generates a facility configuration / arrangement plan group using power information,
    A facility configuration / arrangement plan group created for a plurality of the thermoelectric demand forecast values and a cost expectation value evaluation unit that determines a final equipment configuration / arrangement plan using the thermoelectric demand forecast probability An equipment planning device for thermoelectric equipment.
  2.  請求項1記載の熱電設備の設備計画立案装置において、
    熱融通配管の圧力損失やそれによるポンプの搬送動力に関する情報を指定する前記搬送動力情報を、区分線形近似した係数により与えることを特徴とする熱電設備の設備計画立案装置。
    In the thermoelectric facility facility planning apparatus according to claim 1,
    A facility planning apparatus for a thermoelectric facility, characterized in that the transfer power information for designating information related to pressure loss in heat interchangeable piping and pump transfer power resulting from the pressure loss is given by a piecewise linear approximation coefficient.
  3.  請求項2記載の熱電設備の設備計画立案装置において、
    前記設備構成・配置計画演算部が、需要予測の各時間断面毎の運転コストを求める単時間問題演算部と、その解を用いて設備構成・配置計画を求める演算設備構成・配置計画演算統御部からなることを特徴とする熱電設備の設備計画立案装置。
    In the thermoelectric equipment facility planning apparatus according to claim 2,
    The facility configuration / arrangement plan calculation unit is a single-time problem calculation unit that calculates an operating cost for each time section of demand prediction, and an arithmetic facility configuration / location plan calculation control unit that uses the solution to determine the facility configuration / location plan An equipment planning device for thermoelectric equipment, characterized by comprising:
  4.  エネルギーネットワークを対象に、設備導入時に熱電設備の組合せを決定する熱電設備の設備計画立案方法において、
     需要家の熱電需要予測値と熱電需要予想確率を需要家情報により導出し、
    前記熱電需要予測値と、設置候補の熱電設備をまとめた熱電設備集合情報と、熱電設備の配置に関する配置候補設定情報と熱融通配管の圧力損失やそれによるポンプの搬送動力に関する情報を指定する搬送動力情報とを用いて、前記設備構成・配置計画群を生成し、
    複数存在する熱電需要予測に対して作成された前記設備構成・配置計画群と、前記熱電需要予測確率を使用して最終的な設備構成・配置計画を決定することを特徴とする熱電設備の設備計画立案方法。
    In the thermoelectric equipment facility planning method that determines the combination of thermoelectric equipment at the time of equipment introduction for the energy network,
    Deriving the thermoelectric demand forecast value and the thermoelectric demand forecast probability from the customer information,
    Transport specifying the thermoelectric demand forecast value, thermoelectric facility collective information that summarizes the thermoelectric facilities that are candidates for installation, placement candidate setting information related to the placement of thermoelectric facilities, pressure loss of heat interchange piping, and information related to the pump transport power caused thereby Using the power information, generate the equipment configuration / arrangement plan group,
    A facility of a thermoelectric facility, wherein a final facility configuration / arrangement plan is determined using the facility configuration / arrangement plan group created for a plurality of thermoelectric demand predictions and the thermoelectric demand prediction probability Planning method.
PCT/JP2015/071181 2015-07-27 2015-07-27 Facility planning device for heat and power facilities, and facility planning method for heat and power facilities WO2017017744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071181 WO2017017744A1 (en) 2015-07-27 2015-07-27 Facility planning device for heat and power facilities, and facility planning method for heat and power facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071181 WO2017017744A1 (en) 2015-07-27 2015-07-27 Facility planning device for heat and power facilities, and facility planning method for heat and power facilities

Publications (1)

Publication Number Publication Date
WO2017017744A1 true WO2017017744A1 (en) 2017-02-02

Family

ID=57884274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071181 WO2017017744A1 (en) 2015-07-27 2015-07-27 Facility planning device for heat and power facilities, and facility planning method for heat and power facilities

Country Status (1)

Country Link
WO (1) WO2017017744A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544715A (en) * 2019-05-24 2021-10-22 株式会社日立制作所 Energy plant planning device and energy plant planning method
JP7456896B2 (en) 2020-09-09 2024-03-27 株式会社日立産機システム Fluid machine evaluation device, method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157300A (en) * 2001-11-21 2003-05-30 E & E Planning:Kk Method for designing energy supply system
JP2010237745A (en) * 2009-03-30 2010-10-21 Tokyo Gas Co Ltd Method and device for optimizing energy system, and program
JP2010287031A (en) * 2009-06-11 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Equipment plan creation device and equipment plan creation method
US20120215362A1 (en) * 2011-02-22 2012-08-23 Stagner Joseph C Energy Plant Design and Operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157300A (en) * 2001-11-21 2003-05-30 E & E Planning:Kk Method for designing energy supply system
JP2010237745A (en) * 2009-03-30 2010-10-21 Tokyo Gas Co Ltd Method and device for optimizing energy system, and program
JP2010287031A (en) * 2009-06-11 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Equipment plan creation device and equipment plan creation method
US20120215362A1 (en) * 2011-02-22 2012-08-23 Stagner Joseph C Energy Plant Design and Operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544715A (en) * 2019-05-24 2021-10-22 株式会社日立制作所 Energy plant planning device and energy plant planning method
JP7456896B2 (en) 2020-09-09 2024-03-27 株式会社日立産機システム Fluid machine evaluation device, method and program

Similar Documents

Publication Publication Date Title
von Rhein et al. Development of a topology analysis tool for fifth-generation district heating and cooling networks
Fang et al. Genetic optimization of multi-plant heat production in district heating networks
US10956842B2 (en) Central plant with asset allocator
Zhang et al. Optimal operation of integrated electricity and heat system: A review of modeling and solution methods
Moghaddam et al. A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building
US11360451B2 (en) Central plant optimization planning tool with advanced user interface
Maasoumy et al. Model predictive control approach to online computation of demand-side flexibility of commercial buildings hvac systems for supply following
Wan Alwi et al. New graphical tools for process changes via load shifting for hybrid power systems based on Power Pinch Analysis
Jiang et al. Convex relaxation of combined heat and power dispatch
JP5801214B2 (en) Control device for district heat energy supply network
CN108733090A (en) Meet the control system in the natural gas line network of energy consumption limitation
US11953865B2 (en) HVAC controller with predictive cost optimization
Fooladivanda et al. Utilization of water supply networks for harvesting renewable energy
US11953871B2 (en) Building control system with automatic control problem formulation using building information model
Novitsky et al. Discrete-continuous optimization of heat network operating conditions in parallel operation of similar pumps at pumping stations
WO2017017744A1 (en) Facility planning device for heat and power facilities, and facility planning method for heat and power facilities
Cho et al. Three-stage robust unit commitment considering decreasing uncertainty in wind power forecasting
Maurer et al. Toward transactive control of coupled electric power and district heating networks
JP6661501B2 (en) Generator operation plan creation device, generator operation plan creation method, program, data, and generator control device
Zhu et al. Operation optimization research of circulating cooling water system based on superstructure and domain knowledge
Tian et al. Two-plant direct heat integration with safety redundancy based on a bilevel algorithm
Blommaert et al. An adjoint approach to thermal network topology optimization
JP6257450B2 (en) Operation plan creation apparatus and operation plan creation method for heat source equipment
JP6188653B2 (en) Energy supply system management and control support system
Zhang et al. Methodology for determining the optimal operating strategies for a chilled-water-storage system—Part I: Theoretical model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP