WO2017017267A1 - Device for emitting a light beam intended to produce an image, and corresponding display - Google Patents

Device for emitting a light beam intended to produce an image, and corresponding display Download PDF

Info

Publication number
WO2017017267A1
WO2017017267A1 PCT/EP2016/068224 EP2016068224W WO2017017267A1 WO 2017017267 A1 WO2017017267 A1 WO 2017017267A1 EP 2016068224 W EP2016068224 W EP 2016068224W WO 2017017267 A1 WO2017017267 A1 WO 2017017267A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
polarization
optical component
optical
image
Prior art date
Application number
PCT/EP2016/068224
Other languages
French (fr)
Inventor
Paul DEBA
Original Assignee
Valeo Comfort And Driving Assistance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Comfort And Driving Assistance filed Critical Valeo Comfort And Driving Assistance
Publication of WO2017017267A1 publication Critical patent/WO2017017267A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3066Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state involving the reflection of light at a particular angle of incidence, e.g. Brewster's angle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility

Definitions

  • the present invention relates to a device for emitting a light beam 5 intended to form an image, and a display device using such a device.
  • It relates more particularly to a device for emitting a light beam intended to form an image, comprising at least one source emitting a light beam, and attenuation means configured to vary the optical power of the light beam by modifying the light beam. an orientation of a polarization of the light beam with respect to a polarization element.
  • the invention applies particularly advantageously in a head-up display for a motor vehicle.
  • a head-up display device uses a partial reflection on an element situated in front of the driver, for example the windshield of the vehicle, to project an image comprising the information to be displayed, so that it is superimposed visually on the environment facing the vehicle.
  • a device comprising a liquid crystal cell followed by a polarizing filter.
  • This device comprises at least one light source producing a light beam, of partially rectilinear polarization, intended to form the image to be projected.
  • the orientation of the polarization of this beam is modified by the liquid crystal cell, which causes, after crossing the polarizing filter, a change in the optical power of the light beam, in this case attenuation.
  • the value of the corresponding attenuation coefficient can be adjusted by controlling the liquid crystal cell.
  • the present invention proposes a device for emitting a light beam intended to form an image, as defined in the introduction, further comprising an optical component:
  • the polarization of said light beam is made more rectilinear by this reflection on the optical component, substantially at Brewster incidence, whereby the power of this beam can be modified, by said attenuation means, to advantageously large proportions.
  • the ratio between the maximum power and the minimum power that can be imposed on the light beam is even greater than the light beam has a purely rectilinear polarization.
  • the power of the light beam intended to form an image, produced by this emission device can be modified in a particularly large ratio, sufficient to adapt the brightness of the projected image to the large variations in brightness between a daytime driving. and night driving, and this even if the source or sources of this emission device initially produce a beam whose polarization is only partially straight.
  • a source based on a laser diode, and which is therefore very bright and inexpensive can thus advantageously be used in such a device.
  • said light beam has a polarization substantially rectilinear upstream of the optical component
  • the orientation of said substantially rectilinear polarization is substantially perpendicular to an incidence plane containing the principal ray of the incident light beam on the diopter of said optical component and a direction perpendicular to this diopter;
  • the transmission device comprises means for indexing the orientation of said substantially rectilinear polarization, and said optical component is arranged according to said indexing;
  • the beam emitted by said source is collimated
  • said source comprises a laser diode
  • the value of the optical index of the material in which said optical component is formed is greater than 2;
  • said optical component is made of silicon
  • said optical component is a prism
  • said optical component is a blade with substantially parallel faces
  • the polarizing element has a direction of passing polarization, and transmits only a component of the polarization light beam oriented parallel to said direction of passing polarization;
  • said modification of an orientation of a polarization of the light beam is carried out by a liquid crystal cell
  • the transmission device comprises at least one other source emitting another beam, said light beam intended to form an image being obtained by combining the beams emitted respectively by each of the sources of the transmission device;
  • said combination is performed upstream of said attenuation means
  • the invention also proposes a display, in particular a head-up display, comprising a device for emitting a light beam as described above, and an imaging system adapted to form an image from said light beam.
  • an element of said imaging system may be placed upstream of said attenuation means.
  • FIG. 1 is a first schematic representation of a display according to the invention, comprising a device for emitting a light beam intended to form an image,
  • FIG. 2 is a second schematic representation of the display of FIG. 1, and
  • FIG. 3 schematically represents a reflection coefficient of the optical power of a light beam, reflected on a diopter, as a function of an angle of incidence of this beam on this diopter.
  • Figures 1 and 2 show schematically the main elements of a display 1, here a head-up display for a motor vehicle.
  • Such a display head 1 includes:
  • an emission device 2 designed to generate a light beam 50 adapted to form an image (as explained hereinafter), and
  • an imaging system 3 adapted to form an image from said light beam 50 and adapted to project this image into the field of vision of the driver of the vehicle.
  • the imaging system 3 comprises for example a scanning module, here a movable mirror 4, and a diffuser 7.
  • the light beam 50 generated by the emission device 2 is reflected here on the mobile mirror 4.
  • This mobile mirror 4 is controllable, so that the light beam 50, once reflected by the movable mirror 4, sweeps the rear face of the diffuser 7.
  • the diffuser 7 thus emits on the front face another light beam representing an image to be displayed (this other beam having at each point a slight angular spread due to the action of the diffuser 7).
  • This image is projected into the field of view of the driver by means in particular of a reflecting mirror 5, and a semi-transparent plate 6 located between the windshield 8 of the vehicle and the driver.
  • the reflecting mirror 5 is arranged so as to send back light beam emitted by the diffuser 7 towards the semitransparent blade 6.
  • the reflecting mirror could return the light beam emitted by the diffuser directly on the windshield (in which case the semitransparent blade is omitted).
  • the emission device 2 of this light beam 50 comprises at least one source 20, 20 ', 20 "emitting a beam, here a beam of the laser type 23, 23', 23", said device 2 being configured here to form said light beam 50 for forming an image from said laser beam 23, 23 ', 23 ".
  • the emission device 2 of this light beam 50 comprises three such sources 20, 20 ', 20 ", each of these sources emitting for example a laser beam 23, 23', 23" substantially monochromatic.
  • the laser beams 23, 23 ', 23 "emitted respectively by the three aforementioned sources 20, 20', 20" have a color respectively corresponding to a red, a green, and a blue.
  • Each of said sources 20, 20 ', 20 here comprises a laser diode 21, 21', 21" followed by a collimation device 22, 22 ', 22 ", such as a lens, for example an aspherical lens, or such as a multi-lens collimation lens.
  • This collimation device 22, 22 ', 22 "corrects the possible angular dispersion of the beam 24, 24', 24" produced by said laser diode 21, 21 ', 21 ", so that the laser beam 23, 23', 23" finally emitted by this source 20, 20 ', 20 “is substantially collimated and, otherwise formulated, this laser beam 23, 23', 23” is composed of light rays that are substantially parallel to each other.
  • this residual angular dispersion is, for example, less than 10 degrees.
  • each of said sources comprises, instead of a laser diode, a device of another type producing a beam of the laser type, substantially collimated.
  • each of said sources comprises a device, for example a light emitting diode, of a beam of another type than a laser beam.
  • Each of said laser beams 23, 23 ', 23 "here has a partially rectilinear polarization.
  • each of these beams has here an elliptical polarization.
  • any laser beam or light beam can be decomposed into two components, each polarized rectilinearly, these two rectilinear polarizations being oriented perpendicular to one another.
  • main has a polarization (rectilinear) whose orientation, among the various possible orientations, is that for which the optical power of this main component is maximum.
  • the other of these two components has a polarization (rectilinear) whose orientation, among the different possible orientations, is that for which the optical power of this residual component is minimal.
  • the polarization extinction rate of any laser beam or light beam corresponds to the ratio between:
  • the polarization extinction ratio of each of said laser beams 23, 23 ', 23 has values greater than approximately 10, under current operating conditions of the emission device 2, it can in particular reach a value of the order of 10.
  • this polarization extinction rate may reach values of less than about 10.
  • the main components of said laser beams 23, 23 ', 23 "have rectilinear polarizations oriented substantially parallel to each other.
  • the emission device 2 of said light beam 50 comprises indexing means (not shown) of the orientation common to these rectilinear polarizations.
  • these indexing means comprise for example, made on each of the laser diodes 20, 20 ', 20 ", at least one rib or flat.
  • the laser beams 23, 23 ', 23 "emitted respectively by the three sources 20, 20', 20" are combined, for example using semi-reflecting elements 25, 25 ', 25 "such as mirrors. dichroic, intercepting these laser beams 23, 23 ', 23 "to combine them to form the light beam 50 for forming an image.
  • the light beam 50 obtained by combining these laser beams 23, 23 ', 23 "thus also has a partially rectilinear polarization, More precisely, the TEP polarization extinction ratio of this light beam 50 has here values greater than 10. approximately, it can in particular reach a value of the order of 10.
  • this light beam 50 is substantially collimated. More precisely, here it also exhibits a residual angular dispersion of less than 4 degrees.
  • this light beam 50 is also polychromatic.
  • the optical power of this light beam can be controlled by attenuation means 40 of this emission device 2.
  • Attenuation means 40 located downstream of said sources 20, 20 ', 20 ", are configured to vary the optical power of said light beam 50, by changing a polarization orientation of this light beam 50 relative to to a polarization element 42.
  • This polarization element 42 here has a direction of passing polarization, and transmits only a component of the light beam 50 corresponding to a rectilinear polarization oriented parallel to said passing polarization direction.
  • the polarization element 42 is for example a polarizing film or a thin film polarizer.
  • Said modification of an orientation of a polarization of this light beam 50 is carried out here by means of a liquid crystal cell 41 traversed by this beam.
  • This cell 41 makes it possible to modify the orientation of the rectilinear polarization of the main component of this light beam 50, as a function of the value of a control voltage V.
  • the orientation of the rectilinear polarization the residual component of this light beam 50 is also modified at the crossing of this cell.
  • Such a change in the orientation of the rectilinear polarization of the main component of this light beam 50 causes, after passing through the polarizing element 42, a change in the optical power of this beam.
  • the optical power of the light beam 50 at the output of the transmission device 2, that is to say here just after the polarization element 42, can thus be modified, via the value of the control voltage V, between :
  • the ratio between the maximum power and the minimum power thus imparted to the light beam 50 is therefore substantially equal to the polarization extinction rate TEP 'of this light beam just before it passes through said attenuation means 40.
  • said attenuation means comprise only the polarization element, in this case a polarizing film, mounted to rotate about an axis perpendicular to the mean plane of this polarization element.
  • the power of the light beam delivered by the emission device is controlled by a rotation of this polarization element about said axis.
  • said attenuation means comprise any device known to those skilled in the art, adapted to vary the optical power of said light beam by changing an orientation of a polarization of this light beam relative to the light beam. polarization element.
  • the emission device 2 of the light beam 50 intended to form an image comprises an optical component 30:
  • This optical component 30 is here formed of silicon. As a variant, it is formed in another material, for example in a material having an optical index greater than 2 in the visible radiation range.
  • This optical component 30 is here a prism, one of whose faces constitutes said diopter 31 plane.
  • this optical component is a plate with substantially parallel faces, one of these faces then constituting said plane diopter.
  • the light beam 50 formed by combining the laser beams 23, 23 ', 23 "emitted by the three sources 20, 20', 20" of the emission device 2, is reflected by the diopter 31 of this optical component 30. towards the attenuation means 40.
  • this light beam thus comprises an incident beam 60 on this dioptre 31, and a beam reflected 70 therefrom.
  • the incident 60 and reflected 70 beams are schematically represented by the corresponding principal ray (or "chief ray"), that is to say by the radius corresponding to the average direction of the this beam.
  • the main beam of this incident beam 60 and a direction 33 perpendicular to the diopter 31 are both contained in a plane, said plane of incidence.
  • P-type polarization corresponding to a rectilinear polarization oriented in a direction 61, 71 parallel to this plane of incidence
  • type S polarization corresponding to a rectilinear polarization oriented in a direction 62, perpendicular to this plane of incidence.
  • the optical component 30 is arranged in such a way that said plane of incidence, defined by the reflection of the light beam 50 on this optical component 30, is perpendicular to the direction of the rectilinear polarization of the main component of the light beam 50 incident on the diopter 31 of this component 30.
  • the optical component 30 is arranged for this taking into account the aforementioned indexing means, which is recalled here that they identify the orientation of the linear polarization of the main components of said laser beams 23, 23 ', 23 ", and here, that the orientation of the rectilinear polarization of the main component of the light beam 50.
  • the main component of the light beam 50 polarized rectilinearly, is oriented perpendicular to this plane of incidence: its polarization is of type S, while
  • the residual component of the light beam 50 polarized rectilinearly, is oriented parallel to this plane of incidence: its polarization is of type P.
  • this angle of incidence AGL is advantageously equal to the Brewster angle AGBR associated with this dioptre 31, the power reflection coefficient of the component of the incident beam 60 having a P-type polarization, in this case the component residual of this beam, is zero or at least particularly close to 0.
  • the polarization extinction rate TEP 'of the light beam 50 after reflection on this dioptre 31 is therefore higher than the PET before reflection.
  • the optical component 30 thus plays a role of linear polarization purifier.
  • the incident beam 60 which is reminded that it has a slight residual angular dispersion, comprises a plurality of light rays each having a direction that can deviate slightly from the direction of the main beam of this beam 60.
  • the value of the angle of incidence A1 on the diopter 31 thus has, on all these light rays, a slight dispersion around the Brewster angle.
  • This dispersion takes into account in particular the residual angular dispersion of the incident beam 60 and possible tolerances or misalignments of the optical component 30.
  • the value of the angle of incidence A1 on the diopter 31 varies here, over all these light rays, by plus or minus 2 degrees around the Brewster angle AGBR.
  • Reflection coefficients RP, RS are plotted in FIG. 3, respectively in solid and dashed lines, as a function of angle of incidence A1 of such a light beam, expressed in degrees, for a reflection on the diopter 31, when the light beam 50 is substantially monochromatic, with an average wavelength ⁇ equal to 445 nm.
  • the value of the optical index Nm of the material forming the optical component 30, here of silicon is equal to 4.7; the value of the Brewster angle AGBR associated with this dioptre 31 is then equal to 78 degrees.
  • the reflection coefficients RP and RS correspond, respectively for a P-type polarization and for an S-type polarization, to the ratio of the optical power after reflection, divided by the optical power before reflection.
  • a mean reflection coefficient RPM for a P-type polarization equal to the average of the associated reflection coefficients RP respectively to each of the light rays that includes the incident beam 60, for a P-type polarization
  • a mean reflection coefficient RSM for a type S polarization equal to the average of the reflection coefficients RS respectively associated with each of the light rays constituting the incident beam 60, for a type S polarization.
  • a purification factor FPUR equal to the ratio of this average reflection coefficient RSM for a type S polarization, divided by the average reflection coefficient RPM in average power for a polarization type P, for this same beam:
  • the value of the purification factor FPUR is substantially equal to 350, for a substantially monochromatic light beam 50. , of average wavelength ⁇ equal to 445 nm.
  • the polarization extinction rate TEP 'of the light beam 50 after reflection on this dioptre 31 is equal to its polarization extinction rate PET. before reflection multiplied by the purification factor FPUR:
  • PET FPUR. PET (F4)
  • the optical component 30 is here arranged so that the value of the incidence angle AGL of the main beam of the incident beam 60 is equal to the value of the Brewster angle AGBR corresponding to the value the optical index Nm of said material 32 at the average wavelength ⁇ of the light beam 50.
  • the value of the optical index Nm of the material 32 here silicon
  • the value of the optical index Nm of the material 32 varies respectively between 4.7 and 3.85 and, consequently, the corresponding Brewster's AGBR angle value varies between 78 degrees and 75 degrees respectively.
  • This variation of the value of the Brewster angle AGBR with the wavelength is here reduced, so that the purification factor FPUR has a value which is advantageously high, as well for a component of the light beam 50 whose length of wave is equal to said average wavelength ⁇ , that for another component of this light beam 50 having a different wavelength.
  • optical index Nm of the material 32 forming the optical component 30 here has advantageously large values for a radiation of the visible range.
  • the reflection coefficient RS for an S-type polarization has high values in the vicinity of the Brewster angle AGBR.
  • the optical component 30 purifies the polarization of the light beam 50, making it more rectilinear, without causing significant power loss for the main component of this beam 50.
  • the reflection coefficient RS for a type S bias is 83% at the Brewster angle AGBR, so that the power loss for the main component of the light beam 50 is only 17% during this reflection.
  • Such an optical component is moreover advantageously simple and robust. It supports without damaging high surface powers, especially surface powers which would deteriorate for example a polarized stretched polymer film.
  • optical component 30 is located in the path of the light beam 50, after the combination of the laser beams 23, 23 ', 23 "produced by the three sources 20, 20 ', 20 ".
  • An image forming light source comprises three sources, and three optical components such as that described above.
  • the polarization of each of the laser beams, emitted by one of these sources, is purified by means of one of these optical components, placed at the output of the corresponding source, and this before combining these three laser beams to form said light beam.
  • the device for emitting a light beam intended to form an image comprises a source only.
  • the device for transmitting a light beam intended to form an image comprises one or more reflecting mirrors for modifying the direction of said light beam.
  • the imaging system 3 adapted to form an image from said light beam 50 is located downstream of the attenuation means 40.
  • At least part of the components of said imaging system is located upstream of the attenuation means.
  • said attenuation means can be placed at any position along said light beam, after reflection of this light beam on the optical component.

Abstract

The invention relates to a device (2) for emitting a light beam (50) intended for producing an image, said device comprising at least one source (20, 20', 20") emitting a light beam (23, 23', 23"), and further comprising attenuation means (40) situated downstream of said source (20, 20', 20"), which means are designed to vary the optical power of the light beam (50) by modifying an orientation of a polarization of the light beam (50) in relation to a polarization element (42). According to the invention, the device further comprises an optical component (30) which is located upstream of the attenuation means (40), has a flat boundary (31) and is arranged such that the light beam (50) is refracted on said flat boundary (31) substantially at Brewster's angle of incidence. The invention also relates to a display (1) comprising an emission device (2) of this type.

Description

Dispositif d'émission d'un faisceau lumineux destiné à former une image et afficheur associé  Device for emitting a light beam intended to form an image and associated display
DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION La présente invention concerne un dispositif d'émission d'un faisceau 5 lumineux destiné à former une image, et un afficheur utilisant un tel dispositif. TECHNICAL FIELD TO WHICH THE INVENTION RELATES The present invention relates to a device for emitting a light beam 5 intended to form an image, and a display device using such a device.
Elle concerne plus particulièrement un dispositif d'émission d'un faisceau lumineux destiné à former une image, comprenant au moins une source émettant un faisceau lumineux, et des moyens d'atténuation configurés pour faire varier la puissance optique du faisceau lumineux par modification d'une orientation d'une0 polarisation du faisceau lumineux par rapport à un élément de polarisation.  It relates more particularly to a device for emitting a light beam intended to form an image, comprising at least one source emitting a light beam, and attenuation means configured to vary the optical power of the light beam by modifying the light beam. an orientation of a polarization of the light beam with respect to a polarization element.
L'invention s'applique particulièrement avantageusement dans un afficheur tête haute pour véhicule automobile.  The invention applies particularly advantageously in a head-up display for a motor vehicle.
ARRIERE-PLAN TECHNOLOGIQUE  BACKGROUND
Pour le conducteur d'un véhicule automobile, il est particulièrement5 confortable de pouvoir visualiser des informations supplémentaires, relatives au fonctionnement du véhicule, à l'état du trafic, ou autres, sans avoir pour cela à détourner son regard de la route faisant face au véhicule.  For the driver of a motor vehicle, it is particularly comfortable to be able to view additional information relating to the operation of the vehicle, the state of the traffic, or the like, without having to look away from the road facing the road. vehicle.
Il est connu dans ce but d'équiper un véhicule automobile avec un dispositif d'affichage dit tête haute. Un tel dispositif utilise une réflexion partielle0 sur un élément situé devant le conducteur, par exemple le parebrise du véhicule, pour projeter une image comportant les informations à afficher, de manière à ce qu'elle se superpose visuellement à l'environnement faisant face au véhicule.  It is known for this purpose to equip a motor vehicle with a so-called head-up display device. Such a device uses a partial reflection on an element situated in front of the driver, for example the windshield of the vehicle, to project an image comprising the information to be displayed, so that it is superimposed visually on the environment facing the vehicle. .
Pour que les informations ainsi affichées soient suffisamment lumineuses pour être correctement visualisées, sans pour autant risquer d'éblouir le5 conducteur, il est nécessaire d'adapter la luminosité de l'image projetée à la luminosité de l'environnement extérieur du véhicule, qui varie fortement entre une conduite de jour et une conduite de nuit ou dans un tunnel.  In order for the information thus displayed to be sufficiently bright to be correctly displayed, without risk of dazzling the driver, it is necessary to adapt the brightness of the projected image to the brightness of the external environment of the vehicle, which varies strongly between day driving and night driving or in a tunnel.
Ainsi, il est souhaitable de pouvoir faire varier la luminosité d'une telle image projetée dans un rapport de l'ordre de 1000. Thus, it is desirable to be able to vary the brightness of such a projected image in a ratio of the order of 1000.
0 Pour commander la luminosité d'une telle image projetée, il est connu du document FR 2 993 675 un dispositif comprenant une cellule à cristaux liquides suivi d'un filtre polarisant. Ce dispositif comprend au moins une source lumineuse produisant un faisceau lumineux, de polarisation partiellement rectiligne, destiné à former l'image à projeter. L'orientation de la polarisation de ce faisceau est modifiée par la cellule à cristaux liquides, ce qui entraine, après la traversée du filtre polarisant, une modification de la puissance optique de ce faisceau lumineux, en l'occurrence une atténuation. La valeur du coefficient d'atténuation correspondant peut être ajustée en commandant la cellule à cristaux liquides. To control the brightness of such a projected image, it is known from FR 2 993 675 a device comprising a liquid crystal cell followed by a polarizing filter. This device comprises at least one light source producing a light beam, of partially rectilinear polarization, intended to form the image to be projected. The orientation of the polarization of this beam is modified by the liquid crystal cell, which causes, after crossing the polarizing filter, a change in the optical power of the light beam, in this case attenuation. The value of the corresponding attenuation coefficient can be adjusted by controlling the liquid crystal cell.
OBJET DE L'INVENTION  OBJECT OF THE INVENTION
Dans ce contexte, la présente invention propose un dispositif d'émission d'un faisceau lumineux destiné à former une image, tel que défini en introduction, comprenant de plus un composant optique :  In this context, the present invention proposes a device for emitting a light beam intended to form an image, as defined in the introduction, further comprising an optical component:
- situé en amont des moyens d'atténuation,  - located upstream of the attenuation means,
- présentant un dioptre plan séparant un milieu de propagation du faisceau lumineux et un matériau dans lequel est formé ledit composant optique, l'indice optique de ce matériau étant plus grand que l'indice optique dudit milieu de propagation, et  having a plane diopter separating a propagation medium from the light beam and a material in which said optical component is formed, the optical index of this material being larger than the optical index of said propagation medium, and
- disposé de sorte que ledit faisceau lumineux se réfléchisse sur ce dioptre plan sensiblement à l'incidence de Brewster.  arranged so that said light beam is reflected on this plane dioptre substantially at the incidence of Brewster.
La polarisation dudit faisceau lumineux est rendue plus rectiligne par cette réflexion sur le composant optique, sensiblement à l'incidence de Brewster, grâce à quoi la puissance de ce faisceau peut être modifiée, par lesdits moyens d'atténuation, dans des proportions avantageusement grandes.  The polarization of said light beam is made more rectilinear by this reflection on the optical component, substantially at Brewster incidence, whereby the power of this beam can be modified, by said attenuation means, to advantageously large proportions.
En effet, pour de tels moyens d'atténuation, le rapport entre la puissance maximale et la puissance minimale pouvant être imposées au faisceau lumineux est d'autant plus grand que le faisceau lumineux présente une polarisation purement rectiligne.  Indeed, for such attenuation means, the ratio between the maximum power and the minimum power that can be imposed on the light beam is even greater than the light beam has a purely rectilinear polarization.
Ainsi, la puissance du faisceau lumineux destiné à former une image, produit par ce dispositif d'émission, peut être modifiée dans un rapport particulièrement grand, suffisant pour adapter la luminosité de l'image projetée aux fortes variations de luminosité entre une conduite de jour et une conduite de nuit, et cela même si la ou les sources de ce dispositif d'émission produisent initialement un faisceau dont la polarisation n'est que partiellement rectiligne. En particulier, une source basée sur une diode laser, et qui est donc très lumineuse et peu coûteuse, peut ainsi avantageusement être utilisée dans un tel dispositif.  Thus, the power of the light beam intended to form an image, produced by this emission device, can be modified in a particularly large ratio, sufficient to adapt the brightness of the projected image to the large variations in brightness between a daytime driving. and night driving, and this even if the source or sources of this emission device initially produce a beam whose polarization is only partially straight. In particular, a source based on a laser diode, and which is therefore very bright and inexpensive, can thus advantageously be used in such a device.
D'autres caractéristiques non limitatives et avantageuses du dispositif d'émission conforme à l'invention sont les suivantes :  Other non-limiting and advantageous features of the transmission device according to the invention are the following:
- ledit faisceau lumineux présente une polarisation sensiblement rectiligne en amont du composant optique ; said light beam has a polarization substantially rectilinear upstream of the optical component;
- l'orientation de ladite polarisation sensiblement rectiligne est sensiblement perpendiculaire à un plan d'incidence contenant le rayon principal du faisceau lumineux incident sur le dioptre dudit composant optique et une direction perpendiculaire à ce dioptre ;  the orientation of said substantially rectilinear polarization is substantially perpendicular to an incidence plane containing the principal ray of the incident light beam on the diopter of said optical component and a direction perpendicular to this diopter;
- le dispositif d'émission comprend des moyens d'indexation de l'orientation de ladite polarisation sensiblement rectiligne, et ledit composant optique est disposé en fonction de ladite indexation ;  the transmission device comprises means for indexing the orientation of said substantially rectilinear polarization, and said optical component is arranged according to said indexing;
- le faisceau émis par ladite source est collimaté ;  the beam emitted by said source is collimated;
- ladite source comprend une diode laser ;  said source comprises a laser diode;
- la valeur de l'indice optique du matériau dans lequel est formé ledit composant optique est supérieure à 2 ;  the value of the optical index of the material in which said optical component is formed is greater than 2;
- ledit composant optique est formé de silicium ;  said optical component is made of silicon;
- ledit composant optique est un prisme ;  said optical component is a prism;
- ledit composant optique est une lame à faces sensiblement parallèles ; said optical component is a blade with substantially parallel faces;
- l'élément polarisant présente une direction de polarisation passante, et transmet seulement une composante du faisceau lumineux de polarisation orientée parallèlement à ladite direction de polarisation passante ; the polarizing element has a direction of passing polarization, and transmits only a component of the polarization light beam oriented parallel to said direction of passing polarization;
- ladite modification d'une orientation d'une polarisation du faisceau lumineux est réalisée par une cellule à cristaux liquides ;  said modification of an orientation of a polarization of the light beam is carried out by a liquid crystal cell;
- le dispositif d'émission comprend au moins une autre source émettant un autre faisceau, ledit faisceau lumineux destiné à former une image étant obtenu par combinaison des faisceaux émis respectivement par chacune des sources du dispositif d'émission ;  the transmission device comprises at least one other source emitting another beam, said light beam intended to form an image being obtained by combining the beams emitted respectively by each of the sources of the transmission device;
- ladite combinaison est réalisée en amont desdits moyens d'atténuation ;  said combination is performed upstream of said attenuation means;
- ladite combinaison est réalisée en amont dudit composant optique. L'invention propose également un afficheur, notamment un afficheur tête haute, comprenant un dispositif d'émission d'un faisceau lumineux tel que décrit ci-dessus, et un système d'imagerie adapté à former une image à partir dudit faisceau lumineux.  said combination is performed upstream of said optical component. The invention also proposes a display, in particular a head-up display, comprising a device for emitting a light beam as described above, and an imaging system adapted to form an image from said light beam.
Dans cet afficheur, on prévoit qu'un élément dudit système d'imagerie peut être placé en amont desdits moyens d'atténuation.  In this display, it is expected that an element of said imaging system may be placed upstream of said attenuation means.
DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATION La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée. DETAILED DESCRIPTION OF AN EXEMPLARY EMBODIMENT The following description with reference to the accompanying drawings, given as non-limiting examples, will make it clear what the invention consists of and how it can be achieved.
Sur les dessins annexés :  In the accompanying drawings:
- la figure 1 est une première représentation schématique d'un afficheur selon l'invention, comprenant un dispositif d'émission d'un faisceau lumineux destiné à former une image,  FIG. 1 is a first schematic representation of a display according to the invention, comprising a device for emitting a light beam intended to form an image,
- la figure 2 est une deuxième représentation schématique de l'afficheur de la figure 1 , et  FIG. 2 is a second schematic representation of the display of FIG. 1, and
- la figure 3 représente schématiquement un coefficient de réflexion de la puissance optique d'un faisceau lumineux, réfléchi sur un dioptre, en fonction d'un angle d'incidence de ce faisceau sur ce dioptre.  FIG. 3 schematically represents a reflection coefficient of the optical power of a light beam, reflected on a diopter, as a function of an angle of incidence of this beam on this diopter.
Les figures 1 et 2 représentent schématiquement les éléments principaux d'un afficheur 1 , ici un afficheur tête haute pour véhicule automobile.  Figures 1 and 2 show schematically the main elements of a display 1, here a head-up display for a motor vehicle.
Un tel afficheur 1 tête haute comprend :  Such a display head 1 includes:
- un dispositif d'émission 2 conçu pour générer un faisceau lumineux 50 adapté à former une image (comme expliqué ci-après), et  an emission device 2 designed to generate a light beam 50 adapted to form an image (as explained hereinafter), and
- un système d'imagerie 3 adapté à former une image à partir dudit faisceau lumineux 50 et adapté à projeter cette image dans le champ de vision du conducteur du véhicule.  an imaging system 3 adapted to form an image from said light beam 50 and adapted to project this image into the field of vision of the driver of the vehicle.
Le système d'imagerie 3 comprend par exemple un module de balayage, ici un miroir mobile 4, et un diffuseur 7.  The imaging system 3 comprises for example a scanning module, here a movable mirror 4, and a diffuser 7.
Le faisceau lumineux 50 généré par le dispositif d'émission 2 se réfléchit ici sur le miroir mobile 4.  The light beam 50 generated by the emission device 2 is reflected here on the mobile mirror 4.
L'orientation de ce miroir mobile 4 est commandable, de manière à ce que le faisceau lumineux 50, une fois réfléchi par le miroir mobile 4, balaie la face arrière du diffuseur 7.  The orientation of this mobile mirror 4 is controllable, so that the light beam 50, once reflected by the movable mirror 4, sweeps the rear face of the diffuser 7.
Le diffuseur 7 émet ainsi en face avant un autre faisceau lumineux représentant une image à afficher (cet autre faisceau ayant en chaque point un léger étalement angulaire du fait de l'action du diffuseur 7).  The diffuser 7 thus emits on the front face another light beam representing an image to be displayed (this other beam having at each point a slight angular spread due to the action of the diffuser 7).
Cette image est projetée dans le champ de vision du conducteur au moyen notamment d'un miroir de renvoi 5, et d'une lame semi-transparente 6 située entre le pare-brise 8 du véhicule et le conducteur.  This image is projected into the field of view of the driver by means in particular of a reflecting mirror 5, and a semi-transparent plate 6 located between the windshield 8 of the vehicle and the driver.
Dans ce cas, le miroir de renvoi 5 est disposé de manière à renvoyer faisceau lumineux émis par le diffuseur 7 en direction de la lame semi- transparente 6. In this case, the reflecting mirror 5 is arranged so as to send back light beam emitted by the diffuser 7 towards the semitransparent blade 6.
En variante, le miroir de renvoi pourrait renvoyer le faisceau lumineux émis par le diffuseur directement sur le pare-brise (auquel cas la lame semi- transparente est omise).  Alternatively, the reflecting mirror could return the light beam emitted by the diffuser directly on the windshield (in which case the semitransparent blade is omitted).
Le dispositif d'émission 2 de ce faisceau lumineux 50 comprend au moins une source 20, 20', 20" émettant un faisceau, ici un faisceau du type laser 23, 23', 23", ledit dispositif 2 étant configuré ici pour former ledit faisceau lumineux 50 destiné à former une image à partir dudit faisceau laser 23, 23', 23".  The emission device 2 of this light beam 50 comprises at least one source 20, 20 ', 20 "emitting a beam, here a beam of the laser type 23, 23', 23", said device 2 being configured here to form said light beam 50 for forming an image from said laser beam 23, 23 ', 23 ".
Ici, le dispositif d'émission 2 de ce faisceau lumineux 50 comprend trois telles sources 20, 20', 20", chacune de ces sources émettant par exemple un faisceau laser 23, 23', 23" sensiblement monochromatique.  Here, the emission device 2 of this light beam 50 comprises three such sources 20, 20 ', 20 ", each of these sources emitting for example a laser beam 23, 23', 23" substantially monochromatic.
Préférentiellement, les faisceaux laser 23, 23', 23" émis respectivement par les trois sources susmentionnées 20, 20', 20" présentent une couleur correspondant respectivement à un rouge, un vert, et un bleu.  Preferably, the laser beams 23, 23 ', 23 "emitted respectively by the three aforementioned sources 20, 20', 20" have a color respectively corresponding to a red, a green, and a blue.
Chacune desdites sources 20, 20', 20" comprend ici une diode laser 21 , 21 ', 21 " suivie d'un dispositif de collimation 22, 22', 22", tel qu'une lentille, par exemple une lentille asphérique, ou tel qu'un objectif de collimation à plusieurs lentilles.  Each of said sources 20, 20 ', 20 "here comprises a laser diode 21, 21', 21" followed by a collimation device 22, 22 ', 22 ", such as a lens, for example an aspherical lens, or such as a multi-lens collimation lens.
Ce dispositif de collimation 22, 22', 22" corrige la dispersion angulaire éventuelle du faisceau 24, 24', 24" produit par ladite diode laser 21 , 21 ', 21 ", si bien que le faisceau laser 23, 23', 23" émis finalement par cette source 20, 20', 20" est sensiblement collimaté. Autrement formulé, ce faisceau laser 23, 23', 23" est composé de rayons lumineux sensiblement parallèles entre eux.  This collimation device 22, 22 ', 22 "corrects the possible angular dispersion of the beam 24, 24', 24" produced by said laser diode 21, 21 ', 21 ", so that the laser beam 23, 23', 23" finally emitted by this source 20, 20 ', 20 "is substantially collimated and, otherwise formulated, this laser beam 23, 23', 23" is composed of light rays that are substantially parallel to each other.
Ici, la dispersion angulaire résiduelle de chacun de ces faisceaux laser Here, the residual angular dispersion of each of these laser beams
23, 23', 23" est inférieure à 4 degrés. 23, 23 ', 23 "is less than 4 degrees.
En variante, cette dispersion angulaire résiduelle est par exemple inférieure à 10 degrés.  As a variant, this residual angular dispersion is, for example, less than 10 degrees.
Selon une autre variante, chacune desdites sources comprend, au lieu d'une diode laser, un dispositif d'un autre type produisant un faisceau du type laser, sensiblement collimaté.  According to another variant, each of said sources comprises, instead of a laser diode, a device of another type producing a beam of the laser type, substantially collimated.
Selon encore une autre variante, chacune desdites sources comprend un dispositif, exemple une diode électroluminescente, d'un faisceau d'un autre type qu'un faisceau laser. Chacun desdits faisceaux laser 23, 23', 23" présente ici une polarisation partiellement rectiligne. According to yet another variant, each of said sources comprises a device, for example a light emitting diode, of a beam of another type than a laser beam. Each of said laser beams 23, 23 ', 23 "here has a partially rectilinear polarization.
Plus particulièrement, chacun de ces faisceaux présente ici une polarisation elliptique.  More particularly, each of these beams has here an elliptical polarization.
De manière générale, on rappel qu'un quelconque faisceau laser ou faisceau lumineux peut être décomposé en deux composantes, chacune polarisée rectilignement, ces deux polarisations rectilignes étant orientées perpendiculairement l'une à l'autre.  In general, it is recalled that any laser beam or light beam can be decomposed into two components, each polarized rectilinearly, these two rectilinear polarizations being oriented perpendicular to one another.
L'une de ces deux composantes, dite principale, présente une polarisation (rectiligne) dont l'orientation, parmi les différentes orientations possibles, est celle pour laquelle la puissance optique de cette composante principale est maximale.  One of these two components, called main, has a polarization (rectilinear) whose orientation, among the various possible orientations, is that for which the optical power of this main component is maximum.
L'autre de ces deux composantes, dite résiduelle, présente une polarisation (rectiligne) dont l'orientation, parmi les différentes orientations possibles, est celle pour laquelle la puissance optique de cette composante résiduelle est minimale.  The other of these two components, called residual, has a polarization (rectilinear) whose orientation, among the different possible orientations, is that for which the optical power of this residual component is minimal.
Le taux d'extinction de polarisation d'un quelconque faisceau laser ou faisceau lumineux correspond au rapport entre :  The polarization extinction rate of any laser beam or light beam corresponds to the ratio between:
- la puissance optique de la composante principale, polarisée rectilignement, de ce faisceau,  the optical power of the principal component, polarized rectilinearly, of this beam,
- divisée par la puissance optique de la composantes résiduelle de ce faisceau.  - divided by the optical power of the residual component of this beam.
Ici, le taux d'extinction de polarisation de chacun desdits faisceaux laser 23, 23', 23" présente des valeurs supérieures à 10 environ, dans des conditions courantes de fonctionnement du dispositif d'émission 2 ; il peut en particulier atteindre une valeur de l'ordre de 10.  Here, the polarization extinction ratio of each of said laser beams 23, 23 ', 23 "has values greater than approximately 10, under current operating conditions of the emission device 2, it can in particular reach a value of the order of 10.
En variante, ce taux d'extinction de polarisation peut atteindre des valeurs inférieures à 10 environ.  Alternatively, this polarization extinction rate may reach values of less than about 10.
Ici, les composantes principales desdits faisceaux laser 23, 23', 23", présentent des polarisations rectilignes orientées sensiblement parallèlement entre elles.  Here, the main components of said laser beams 23, 23 ', 23 "have rectilinear polarizations oriented substantially parallel to each other.
De façon avantageuse, le dispositif d'émission 2 dudit faisceau lumineux 50 comprend des moyens d'indexation (non représentés) de l'orientation commune à ces polarisations rectilignes. Ici, ces moyens d'indexation comprennent par exemple, réalisés sur chacune des diodes laser 20, 20', 20", au moins une nervure ou un méplat. Advantageously, the emission device 2 of said light beam 50 comprises indexing means (not shown) of the orientation common to these rectilinear polarizations. Here, these indexing means comprise for example, made on each of the laser diodes 20, 20 ', 20 ", at least one rib or flat.
Ici, les faisceaux laser 23, 23', 23" émis respectivement par les trois sources 20, 20', 20" sont combinés, par exemple à l'aide d'éléments semi- réfléchissants 25, 25', 25" tels des miroirs dichroïques, interceptant ces faisceaux lasers 23, 23', 23" pour les combiner afin de former le faisceau lumineux 50 destiné à former une image.  Here, the laser beams 23, 23 ', 23 "emitted respectively by the three sources 20, 20', 20" are combined, for example using semi-reflecting elements 25, 25 ', 25 "such as mirrors. dichroic, intercepting these laser beams 23, 23 ', 23 "to combine them to form the light beam 50 for forming an image.
Le faisceau lumineux 50 obtenu par combinaison de ces faisceaux laser 23, 23', 23" présente ainsi lui aussi une polarisation partiellement rectiligne. Plus précisément, le taux d'extinction de polarisation TEP de ce faisceau lumineux 50 présente ici des valeurs supérieures à 10 environ ; il peut en particulier atteindre une valeur de l'ordre de 10.  The light beam 50 obtained by combining these laser beams 23, 23 ', 23 "thus also has a partially rectilinear polarization, More precisely, the TEP polarization extinction ratio of this light beam 50 has here values greater than 10. approximately, it can in particular reach a value of the order of 10.
D'autre part, ce faisceau lumineux 50 est sensiblement collimaté. Plus précisément, ici, il présente lui aussi une dispersion angulaire résiduelle inférieure à 4 degrés.  On the other hand, this light beam 50 is substantially collimated. More precisely, here it also exhibits a residual angular dispersion of less than 4 degrees.
Ici, ce faisceau lumineux 50 est par ailleurs polychromatique.  Here, this light beam 50 is also polychromatic.
La puissance optique de ce faisceau lumineux peut être commandée par des moyens d'atténuation 40 de ce dispositif d'émission 2.  The optical power of this light beam can be controlled by attenuation means 40 of this emission device 2.
Ces moyens d'atténuation 40, situés en aval desdites sources 20, 20', 20", sont configurés pour faire varier la puissance optique dudit faisceau lumineux 50, par modification d'une orientation d'une polarisation de ce faisceau lumineux 50 par rapport à un élément de polarisation 42.  These attenuation means 40, located downstream of said sources 20, 20 ', 20 ", are configured to vary the optical power of said light beam 50, by changing a polarization orientation of this light beam 50 relative to to a polarization element 42.
Cet élément de polarisation 42 présente ici une direction de polarisation passante, et transmet seulement une composante du faisceau lumineux 50 correspondant à une polarisation rectiligne orientée parallèlement à ladite direction de polarisation passante.  This polarization element 42 here has a direction of passing polarization, and transmits only a component of the light beam 50 corresponding to a rectilinear polarization oriented parallel to said passing polarization direction.
L'élément de polarisation 42 est par exemple un film polarisant ou un polariseur à couche mince métallique.  The polarization element 42 is for example a polarizing film or a thin film polarizer.
Ladite modification d'une orientation d'une polarisation de ce faisceau lumineux 50 est réalisée ici au moyen d'une cellule 41 à cristaux liquides traversée par ce faisceau.  Said modification of an orientation of a polarization of this light beam 50 is carried out here by means of a liquid crystal cell 41 traversed by this beam.
Cette cellule 41 permet de modifier l'orientation de la polarisation rectiligne de la composante principale de ce faisceau lumineux 50, en fonction de la valeur d'une tension de commande V. L'orientation de la polarisation rectiligne de la composante résiduelle de ce faisceau lumineux 50 est aussi modifiée à la traversée de cette cellule. This cell 41 makes it possible to modify the orientation of the rectilinear polarization of the main component of this light beam 50, as a function of the value of a control voltage V. The orientation of the rectilinear polarization the residual component of this light beam 50 is also modified at the crossing of this cell.
Une telle modification de l'orientation de la polarisation rectiligne de la composante principale de ce faisceau lumineux 50 entraine, après traversée de l'élément polarisant 42, une modification de la puissance optique de ce faisceau.  Such a change in the orientation of the rectilinear polarization of the main component of this light beam 50 causes, after passing through the polarizing element 42, a change in the optical power of this beam.
La puissance optique du faisceau lumineux 50 à la sortie du dispositif d'émission 2, c'est-à-dire ici juste après l'élément de polarisation 42, peut ainsi être modifiée, via la valeur de la tension de commande V, entre :  The optical power of the light beam 50 at the output of the transmission device 2, that is to say here just after the polarization element 42, can thus be modified, via the value of the control voltage V, between :
- une puissance maximale sensiblement égale à la puissance optique de la composante principale du faisceau lumineux 50 juste avant qu'il traverse lesdits moyens d'atténuation 40, et  a maximum power substantially equal to the optical power of the main component of the light beam 50 just before it passes through said attenuation means 40, and
- une puissance minimale, sensiblement égale à la puissance optique de la composante résiduelle du faisceau lumineux 50 juste avant qu'il traverse lesdits moyens d'atténuation 40.  a minimum power substantially equal to the optical power of the residual component of the light beam 50 just before it passes through said attenuation means 40.
Le rapport entre la puissance maximale et la puissance minimale ainsi imparties au faisceau lumineux 50 est donc sensiblement égale au taux d'extinction de polarisation TEP' de ce faisceau lumineux juste avant qu'il traverse lesdits moyens d'atténuation 40.  The ratio between the maximum power and the minimum power thus imparted to the light beam 50 is therefore substantially equal to the polarization extinction rate TEP 'of this light beam just before it passes through said attenuation means 40.
En variante, lesdits moyens d'atténuation comprennent seulement l'élément de polarisation, en l'occurrence un film polarisant, monté mobile en rotation autour d'un axe perpendiculaire au plan moyen de cet élément de polarisation. Dans le cadre de cette variante, la puissance du faisceau lumineux délivré par le dispositif d'émission est commandée par une rotation de cet élément de polarisation autour dudit axe.  In a variant, said attenuation means comprise only the polarization element, in this case a polarizing film, mounted to rotate about an axis perpendicular to the mean plane of this polarization element. In the context of this variant, the power of the light beam delivered by the emission device is controlled by a rotation of this polarization element about said axis.
Selon une autre variante, lesdits moyens d'atténuation comprennent un quelconque dispositif connu de l'homme du métier, adapté à faire varier la puissance optique dudit faisceau lumineux par modification d'une orientation d'une polarisation de ce faisceau lumineux par rapport à l'élément de polarisation.  According to another variant, said attenuation means comprise any device known to those skilled in the art, adapted to vary the optical power of said light beam by changing an orientation of a polarization of this light beam relative to the light beam. polarization element.
De manière remarquable, le dispositif d'émission 2 du faisceau lumineux 50 destiné à former une image comprend un composant optique 30 :  Remarkably, the emission device 2 of the light beam 50 intended to form an image comprises an optical component 30:
- situé en amont des moyens d'atténuation 40,  located upstream of the attenuation means 40,
- présentant un dioptre 31 plan séparant un milieu de propagation 90 du faisceau lumineux 50 et un matériau 32 dans lequel est formé ledit composant 30, l'indice optique Nm de ce matériau 32 étant plus grand que l'indice optique Np dudit milieu de propagation 90, et having a diopter 31 plane separating a propagation medium 90 from the light beam 50 and a material 32 in which said component 30 is formed, the optical index Nm of this material 32 being larger than the optical index Np said propagation medium 90, and
- disposé de sorte que ledit faisceau lumineux 50 se réfléchisse sur ce dioptre 31 plan sensiblement à l'incidence de Brewster.  arranged so that said light beam 50 is reflected on this dioptre 31 plane substantially at the incidence of Brewster.
Ce composant optique 30 est ici formé en silicium. En variante, il est formé dans un autre matériau, par exemple dans un matériau présentant un indice optique supérieur à 2 dans le domaine de rayonnement du visible.  This optical component 30 is here formed of silicon. As a variant, it is formed in another material, for example in a material having an optical index greater than 2 in the visible radiation range.
Ce composant optique 30 est ici un prisme, dont une des faces constitue ledit dioptre 31 plan. En variante, ce composant optique est une lame à faces sensiblement parallèles, l'une de ces faces constituant alors ledit dioptre plan.  This optical component 30 is here a prism, one of whose faces constitutes said diopter 31 plane. In a variant, this optical component is a plate with substantially parallel faces, one of these faces then constituting said plane diopter.
Le milieu de propagation 90 du faisceau lumineux 50 est ici constitué d'air, et son indice optique Np présente donc une valeur égale à 1 : Np = 1.  The propagation medium 90 of the light beam 50 is constituted by air, and its optical index Np thus has a value equal to 1: Np = 1.
Ici, le faisceau lumineux 50, formé par combinaison des faisceaux laser 23, 23', 23" émis par les trois sources 20, 20', 20" du dispositif d'émission 2, est réfléchi par le dioptre 31 de ce composant optique 30 en direction des moyens d'atténuation 40.  Here, the light beam 50, formed by combining the laser beams 23, 23 ', 23 "emitted by the three sources 20, 20', 20" of the emission device 2, is reflected by the diopter 31 of this optical component 30. towards the attenuation means 40.
Sur son trajet entre ces sources 20, 20', 20" et les moyens d'atténuation 40, ce faisceau lumineux comprend ainsi un faisceau incident 60 sur ce dioptre 31 , et un faisceau réfléchi 70 par celui-ci.  On its path between these sources 20, 20 ', 20 "and the attenuation means 40, this light beam thus comprises an incident beam 60 on this dioptre 31, and a beam reflected 70 therefrom.
Sur la figure 2, les faisceaux incidents 60 et réfléchi 70 sont représentés schématiquement par le rayon principal (ou « chief ray » selon la dénomination anglo-saxonne) correspondant, c'est-à-dire par le rayon correspondant à la direction moyenne de ce faisceau.  In FIG. 2, the incident 60 and reflected 70 beams are schematically represented by the corresponding principal ray (or "chief ray"), that is to say by the radius corresponding to the average direction of the this beam.
Le rayon principal de ce faisceau incident 60 et une direction 33 perpendiculaire au dioptre 31 sont contenus tous deux dans un plan, dit plan d'incidence.  The main beam of this incident beam 60 and a direction 33 perpendicular to the diopter 31 are both contained in a plane, said plane of incidence.
Pour ce faisceau incident 60 et ce faisceau réfléchi 70, on définit : For this incident beam 60 and this reflected beam 70, we define:
- une polarisation dite de type P, correspondant à une polarisation rectiligne orientée selon une direction 61 , 71 parallèle à ce plan d'incidence, et a so-called P-type polarization, corresponding to a rectilinear polarization oriented in a direction 61, 71 parallel to this plane of incidence, and
- une polarisation dite de type S, correspondant à une polarisation rectiligne orientée selon une direction 62, 72 perpendiculaire à ce plan d'incidence.  a so-called type S polarization, corresponding to a rectilinear polarization oriented in a direction 62, perpendicular to this plane of incidence.
Ici, le composant optique 30 est disposé de manière à ce que ledit plan d'incidence, défini par la réflexion du faisceau lumineux 50 sur ce composant optique 30, soit perpendiculaire à la direction de la polarisation rectiligne de la composant principale du faisceau lumineux 50 incident sur le dioptre 31 de ce composant 30. Here, the optical component 30 is arranged in such a way that said plane of incidence, defined by the reflection of the light beam 50 on this optical component 30, is perpendicular to the direction of the rectilinear polarization of the main component of the light beam 50 incident on the diopter 31 of this component 30.
Préférentiellement, le composant optique 30 est disposé pour cela en tenant compte des moyens d'indexation susmentionnés, dont on rappelle qu'ils repèrent ici l'orientation de la polarisation rectiligne des composantes principales desdits faisceaux lasers 23, 23', 23", ainsi, ici, que l'orientation de la polarisation rectiligne de la composante principale du faisceau lumineux 50.  Preferably, the optical component 30 is arranged for this taking into account the aforementioned indexing means, which is recalled here that they identify the orientation of the linear polarization of the main components of said laser beams 23, 23 ', 23 ", and here, that the orientation of the rectilinear polarization of the main component of the light beam 50.
Ainsi, avant réflexion sur le composant optique 30 :  Thus, before thinking about the optical component 30:
- la composant principale du faisceau lumineux 50, polarisée rectilignement, est orientée perpendiculairement à ce plan d'incidence : sa polarisation est de type S, tandis que  the main component of the light beam 50, polarized rectilinearly, is oriented perpendicular to this plane of incidence: its polarization is of type S, while
- la composant résiduelle du faisceau lumineux 50, polarisée rectilignement, est orientée parallèlement à ce plan d'incidence : sa polarisation est de type P.  the residual component of the light beam 50, polarized rectilinearly, is oriented parallel to this plane of incidence: its polarization is of type P.
L'angle d'incidence AGL, formé entre :  The angle of incidence AGL, formed between:
- la direction 33 perpendiculaire au dioptre 31 et  the direction 33 perpendicular to the diopter 31 and
- le rayon principal du faisceau incident 60  the main beam of the incident beam 60
est égal à l'angle de Brewster AGBR associé à ce dioptre 31 :  is equal to the Brewster angle AGBR associated with this diopter 31:
AGL = AGBR (Fl)  AGL = AGBR (Fl)
dont on rappelle qu'il est déterminé par la formule F2 suivante :  it is recalled that it is determined by the following formula F2:
AGBR = arctan(Nm/Np) (F2)  AGBR = arctan (Nm / Np) (F2)
Comme cet angle d'incidence AGL est avantageusement à égal à l'angle de Brewster AGBR associé à ce dioptre 31 , le coefficient de réflexion en puissance de la composante du faisceau incident 60 présentant une polarisation de type P, en l'occurrence la composante résiduelle de ce faisceau, est nul ou tout au moins particulièrement proche de 0.  Since this angle of incidence AGL is advantageously equal to the Brewster angle AGBR associated with this dioptre 31, the power reflection coefficient of the component of the incident beam 60 having a P-type polarization, in this case the component residual of this beam, is zero or at least particularly close to 0.
Le taux d'extinction de polarisation TEP' du faisceau lumineux 50 après réflexion sur ce dioptre 31 est donc plus élevé que celui TEP avant réflexion.  The polarization extinction rate TEP 'of the light beam 50 after reflection on this dioptre 31 is therefore higher than the PET before reflection.
Le composant optique 30 joue ainsi un rôle de purificateur de polarisation linéaire.  The optical component 30 thus plays a role of linear polarization purifier.
Augmenter ainsi le taux d'extinction de polarisation du faisceau lumineux 50 est particulièrement intéressant, car cela augmente d'autant le rapport entre les puissances maximale et minimale pouvant être obtenues pour le faisceau lumineux 50 après traversée des moyens d'atténuation 40. Le faisceau incident 60, dont on rappelle qu'il présente une légère dispersion angulaire résiduelle, comprend une pluralité de rayons lumineux présentant chacun une de direction pouvant s'écarter légèrement de la direction du rayon principal de ce faisceau 60. Thus increasing the polarization extinction rate of the light beam 50 is particularly advantageous, since it increases by the same ratio between the maximum and minimum powers that can be obtained for the light beam 50 after passing through the attenuation means 40. The incident beam 60, which is reminded that it has a slight residual angular dispersion, comprises a plurality of light rays each having a direction that can deviate slightly from the direction of the main beam of this beam 60.
La valeur de l'angle d'incidence Al sur le dioptre 31 présente ainsi, sur l'ensemble de ces rayons lumineux, une légère dispersion autour de l'angle de Brewster.  The value of the angle of incidence A1 on the diopter 31 thus has, on all these light rays, a slight dispersion around the Brewster angle.
Cette dispersion tient compte notamment de la dispersion angulaire résiduelle du faisceau incident 60 et de tolérances ou défauts d'alignement éventuels du composant optique 30.  This dispersion takes into account in particular the residual angular dispersion of the incident beam 60 and possible tolerances or misalignments of the optical component 30.
Plus particulièrement, la valeur de l'angle d'incidence Al sur le dioptre 31 varie ici, sur l'ensemble de ces rayons lumineux, de plus ou moins 2 degrés autour de l'angle de Brewster AGBR.  More particularly, the value of the angle of incidence A1 on the diopter 31 varies here, over all these light rays, by plus or minus 2 degrees around the Brewster angle AGBR.
Des coefficients de réflexion RP, RS sont tracés sur la figure 3, respectivement en traits pleins et en tirets, en fonction de angle d'incidence Al d'un tel rayon lumineux, exprimé en degrés, pour une réflexion sur le dioptre 31 , lorsque le faisceau lumineux 50 est sensiblement monochromatique, de longueur d'onde moyenne λλ égale à 445 nm.  Reflection coefficients RP, RS are plotted in FIG. 3, respectively in solid and dashed lines, as a function of angle of incidence A1 of such a light beam, expressed in degrees, for a reflection on the diopter 31, when the light beam 50 is substantially monochromatic, with an average wavelength λλ equal to 445 nm.
Pour un tel rayonnement de longueur d'onde λ1 , la valeur de l'indice optique Nm du matériau formant le composant optique 30, ici du silicium, est égale à 4,7 ; la valeur de l'angle de Brewster AGBR associée à ce dioptre 31 est alors égale à 78 degrés.  For such a radiation of wavelength λ1, the value of the optical index Nm of the material forming the optical component 30, here of silicon, is equal to 4.7; the value of the Brewster angle AGBR associated with this dioptre 31 is then equal to 78 degrees.
Pour un tel rayon lumineux, les coefficients de réflexion RP et RS correspondent, respectivement pour une polarisation de type P et pour une polarisation de type S, au rapport de la puissance optique après réflexion, divisée par la puissance optique avant réflexion.  For such a light beam, the reflection coefficients RP and RS correspond, respectively for a P-type polarization and for an S-type polarization, to the ratio of the optical power after reflection, divided by the optical power before reflection.
Dans l'exemple correspondant à la figure 3, lorsque cet angle d'incidence Al est égal à l'angle de Brewster AGBR, le coefficient de réflexion RP correspondant à une polarisation de type P est nul, tandis que celui RS correspondant à une polarisation de type S est égal à 83 % environ.  In the example corresponding to FIG. 3, when this angle of incidence Al is equal to the Brewster angle AGBR, the reflection coefficient RP corresponding to a polarization of type P is zero, while that RS corresponding to a polarization type S is about 83%.
Les variations de puissance du faisceau lumineux 50, introduites par la réflexion sur le dioptre 31 , sont décrites :  The power variations of the light beam 50, introduced by the reflection on the diopter 31, are described:
- par un coefficient de réflexion moyen RPM pour une de polarisation de type P, égal à la moyenne des coefficients de réflexion RP associés respectivement à chacun des rayons lumineux que comprend le faisceau incident 60, pour une de polarisation de type P, et by a mean reflection coefficient RPM for a P-type polarization, equal to the average of the associated reflection coefficients RP respectively to each of the light rays that includes the incident beam 60, for a P-type polarization, and
- par un coefficient de réflexion moyen RSM pour une de polarisation de type S, égal à la moyenne des coefficients de réflexion RS associés respectivement à chacun des rayons lumineux composant le faisceau incident 60, pour une de polarisation de type S.  by a mean reflection coefficient RSM for a type S polarization, equal to the average of the reflection coefficients RS respectively associated with each of the light rays constituting the incident beam 60, for a type S polarization.
La purification de polarisation obtenue au moyen du composant optique 30 est décrite ici par un facteur de purification FPUR égal au rapport de ce coefficient de réflexion moyen RSM pour une de polarisation de type S, divisé par le coefficient de réflexion moyen RPM en puissance moyen pour une de polarisation de type P, pour ce même faisceau :  The polarization purification obtained by means of the optical component 30 is described here by a purification factor FPUR equal to the ratio of this average reflection coefficient RSM for a type S polarization, divided by the average reflection coefficient RPM in average power for a polarization type P, for this same beam:
FPUR = RSM/RPM (F3)  FPUR = RSM / RPM (F3)
Ici, étant donné la valeur de la dispersion de l'angle d'incidence Al sur l'ensemble des rayons lumineux que comprend le faisceau incident 60, la valeur du facteur de purification FPUR est sensiblement égale à 350, pour faisceau lumineux 50 sensiblement monochromatique, de longueur d'onde moyenne λλ égale à 445 nm.  Here, given the value of the dispersion of the angle of incidence A1 on all the light rays that the incident beam 60 comprises, the value of the purification factor FPUR is substantially equal to 350, for a substantially monochromatic light beam 50. , of average wavelength λλ equal to 445 nm.
Ici, comme la polarisation de la composante principale du faisceau incident 60 est une polarisation de type S, le taux d'extinction de polarisation TEP' du faisceau lumineux 50 après réflexion sur ce dioptre 31 est égal à son taux d'extinction de polarisation TEP avant réflexion multiplié par le facteur de purification FPUR :  Here, since the polarization of the main component of the incident beam 60 is an S-type polarization, the polarization extinction rate TEP 'of the light beam 50 after reflection on this dioptre 31 is equal to its polarization extinction rate PET. before reflection multiplied by the purification factor FPUR:
TEP = FPUR . TEP (F4)  PET = FPUR. PET (F4)
Lorsque le faisceau lumineux 50 est polychromatique, le composant optique 30 est ici disposé de sorte que la valeur de l'angle d'incidence AGL du rayon principal du faisceau incident 60 soit égale à valeur de l'angle de Brewster AGBR correspondant à la valeur de l'indice optique Nm dudit matériau 32 à la longueur d'onde moyenne ληι du faisceau lumineux 50.  When the light beam 50 is polychromatic, the optical component 30 is here arranged so that the value of the incidence angle AGL of the main beam of the incident beam 60 is equal to the value of the Brewster angle AGBR corresponding to the value the optical index Nm of said material 32 at the average wavelength ληι of the light beam 50.
Pour des longueurs d'onde dont les valeurs sont comprises entre 445 nanomètres et 650 nanomètres, la valeur de l'indice optique Nm du matériau 32, ici du silicium, varie respectivement entre 4,7 et 3,85 et, en conséquence, la valeur de l'angle de Brewster AGBR correspondant varie respectivement entre 78 degrés et 75 degrés. Cette variation de la valeur de l'angle de Brewster AGBR avec la longueur d'onde est ici réduite, si bien que le facteur de purification FPUR présente une valeur avantageusement élevée, aussi bien pour une composante du faisceau lumineux 50 dont la longueur d'onde est égale à ladite longueur d'onde moyenne λιτι, que pour une autre composante de ce faisceau lumineux 50 présentant une longueur d'onde différente. For wavelengths whose values are between 445 nanometers and 650 nanometers, the value of the optical index Nm of the material 32, here silicon, varies respectively between 4.7 and 3.85 and, consequently, the corresponding Brewster's AGBR angle value varies between 78 degrees and 75 degrees respectively. This variation of the value of the Brewster angle AGBR with the wavelength is here reduced, so that the purification factor FPUR has a value which is advantageously high, as well for a component of the light beam 50 whose length of wave is equal to said average wavelength λιτι, that for another component of this light beam 50 having a different wavelength.
Par ailleurs, l'indice optique Nm du matériau 32 formant le composant optique 30 présente ici des valeurs avantageusement grandes pour un rayonnement du domaine du visible.  Furthermore, the optical index Nm of the material 32 forming the optical component 30 here has advantageously large values for a radiation of the visible range.
Grâce à cette disposition, le coefficient de réflexion RS pour une polarisation de type S présente des valeurs élevées au voisinage de l'angle de Brewster AGBR.  With this arrangement, the reflection coefficient RS for an S-type polarization has high values in the vicinity of the Brewster angle AGBR.
Ainsi, le composant optique 30 purifie la polarisation du faisceau lumineux 50, en la rendant plus rectiligne, et cela sans causer de perte de puissance notable pour la composante principale de ce faisceau 50.  Thus, the optical component 30 purifies the polarization of the light beam 50, making it more rectilinear, without causing significant power loss for the main component of this beam 50.
Par exemple, dans le cas de la figure 3, le coefficient de réflexion RS pour une polarisation de type S est égal à 83 % à l'angle de Brewster AGBR, si bien que la perte de puissance pour la composante principale du faisceau lumineux 50 est de seulement 17% lors de cette réflexion.  For example, in the case of FIG. 3, the reflection coefficient RS for a type S bias is 83% at the Brewster angle AGBR, so that the power loss for the main component of the light beam 50 is only 17% during this reflection.
Un tel composant optique est par ailleurs avantageusement simple et robuste. Il supporte sans dommage des puissances surfaciques élevées, notamment des puissances surfaciques qui détérioreraient par exemple un film polarisant en polymère étiré.  Such an optical component is moreover advantageously simple and robust. It supports without damaging high surface powers, especially surface powers which would deteriorate for example a polarized stretched polymer film.
D'autre part, son coût est compétitif par rapport à d'autres dispositifs polarisants, en particulier lorsqu'il est réalisé en silicium.  On the other hand, its cost is competitive with other polarizing devices, especially when made of silicon.
Enfin, un facteur de purification très élevé peut être obtenu au moyen de ce dispositif, même si son alignement présente de légers défauts, de l'ordre du degré, comme cela a été illustré ci-dessus. Le montage de ce composant 30 est donc simple et peu coûteux.  Finally, a very high purification factor can be obtained by means of this device, even if its alignment has slight defects, of the order of degree, as has been illustrated above. The mounting of this component 30 is therefore simple and inexpensive.
Dans l'exemple de réalisation représenté schématiquement sur les figures 1 et 2, on rappelle que le composant optique 30 est situé sur le trajet du faisceau lumineux 50, après la combinaison des faisceaux lasers 23, 23', 23" produits par les trois sources 20, 20', 20".  In the embodiment shown schematically in Figures 1 and 2, it is recalled that the optical component 30 is located in the path of the light beam 50, after the combination of the laser beams 23, 23 ', 23 "produced by the three sources 20, 20 ', 20 ".
Dans une variante non représentée, le dispositif d'émission d'un faisceau lumineux destiné à formé une image comprend trois sources, et trois composants optiques tels que celui décrit ci-dessus. In a variant not shown, the device for transmitting a beam An image forming light source comprises three sources, and three optical components such as that described above.
Dans le cadre de cette variante, la polarisation de chacun des faisceaux laser, émis par l'une de ces sources, est purifiée au moyen de l'un de ces composants optiques, placé en sortie de la source correspondante, et cela avant de combiner ces trois faisceaux laser pour former ledit faisceau lumineux.  In the context of this variant, the polarization of each of the laser beams, emitted by one of these sources, is purified by means of one of these optical components, placed at the output of the corresponding source, and this before combining these three laser beams to form said light beam.
Dans une autre variante non représentée, le dispositif d'émission d'un faisceau lumineux destiné à formé une image comprend une source seulement.  In another variant not shown, the device for emitting a light beam intended to form an image comprises a source only.
Selon encore une autre variante, non représentée le dispositif d'émission d'un faisceau lumineux destiné à formé une image comprend un ou plusieurs miroirs de renvoi permettant de modifier la direction dudit faisceau lumineux.  According to yet another variant, not shown, the device for transmitting a light beam intended to form an image comprises one or more reflecting mirrors for modifying the direction of said light beam.
Dans l'exemple de réalisation d'un afficheur représenté schématiquement sur les figures 1 et 2, le système d'imagerie 3 adapté à former une image à partir dudit faisceau lumineux 50 est situé en aval des moyens d'atténuation 40.  In the exemplary embodiment of a display shown diagrammatically in FIGS. 1 and 2, the imaging system 3 adapted to form an image from said light beam 50 is located downstream of the attenuation means 40.
En variante, une partie au moins des composants dudit système d'imagerie est située en amont des moyens d'atténuation.  Alternatively, at least part of the components of said imaging system is located upstream of the attenuation means.
De manière générale, lesdits moyens d'atténuation peuvent être placés à une position quelconque le long dudit faisceau lumineux, après réflexion de ce faisceau lumineux sur le composant optique.  In general, said attenuation means can be placed at any position along said light beam, after reflection of this light beam on the optical component.

Claims

REVENDICATIONS
1 . Dispositif d'émission (2) d'un faisceau lumineux (50) destiné à former une image, ledit dispositif comprenant au moins une source (20, 20', 20") émettant un faisceau lumineux (23, 23', 23"), et comprenant des moyens d'atténuation (40), situés en aval de ladite source (20, 20', 20"), configurés pour faire varier la puissance optique du faisceau lumineux (50) par modification d'une orientation d'une polarisation de ce faisceau lumineux (50) par rapport à un élément de polarisation (42),  1. Apparatus for transmitting (2) a light beam (50) for forming an image, said device comprising at least one source (20, 20 ', 20 ") emitting a light beam (23, 23', 23") , and comprising attenuation means (40), located downstream of said source (20, 20 ', 20 "), configured to vary the optical power of the light beam (50) by changing an orientation of a polarization of this light beam (50) with respect to a polarization element (42),
caractérisé en ce que ledit dispositif comprend de plus un composant optique (30) :  characterized in that said device further comprises an optical component (30):
- situé en amont des moyens d'atténuation (40),  located upstream of the attenuation means (40),
- présentant un dioptre (31 ) plan séparant un milieu de propagation du faisceau lumineux (50) et un matériau (32) dans lequel est formé ledit composant optique (30), l'indice optique (Nm) de ce matériau (32) étant plus grand que l'indice optique (Np) dudit milieu de propagation, et  having a diopter plane separating a propagation medium from the light beam and a material in which said optical component is formed, the optical index (Nm) of this material being greater than the optical index (Np) of said propagation medium, and
- disposé de sorte que ledit faisceau lumineux (50) se réfléchisse sur ce dioptre (31 ) plan sensiblement à l'incidence de Brewster.  - arranged so that said light beam (50) is reflected on this dioptre (31) plane substantially at the incidence of Brewster.
2. Dispositif selon la revendication 1 , dans lequel ledit faisceau lumineux (50) présente une polarisation sensiblement rectiligne en amont du composant optique (30).  2. Device according to claim 1, wherein said light beam (50) has a substantially straight polarization upstream of the optical component (30).
3. Dispositif selon la revendication 2, dans lequel l'orientation de ladite polarisation sensiblement rectiligne est sensiblement perpendiculaire à un plan d'incidence contenant le rayon principal du faisceau lumineux (50) incident sur le dioptre (31 ) dudit composant optique (30) et une direction perpendiculaire (33) à ce dioptre (31 ).  3. Device according to claim 2, wherein the orientation of said substantially rectilinear polarization is substantially perpendicular to an incidence plane containing the main ray of the light beam (50) incident on the diopter (31) of said optical component (30). and a direction perpendicular (33) to this dioptre (31).
4. Dispositif selon l'une des revendications 2 et 3, comprenant des moyens d'indexation de l'orientation de ladite polarisation sensiblement rectiligne, et dans lequel ledit composant optique (30) est disposé en fonction de ladite indexation.  4. Device according to one of claims 2 and 3, comprising means for indexing the orientation of said substantially rectilinear polarization, and wherein said optical component (30) is arranged according to said indexing.
5. Dispositif selon l'une des revendications 1 à 4, dans lequel le faisceau 5. Device according to one of claims 1 to 4, wherein the beam
(23, 23', 23") émis par ladite source (20, 20', 20") est collimaté. (23, 23 ', 23 ") emitted by said source (20, 20', 20") is collimated.
6. Dispositif selon l'une des revendications 1 à 5, dans lequel ladite source (20, 20', 20") comprend une diode laser.  6. Device according to one of claims 1 to 5, wherein said source (20, 20 ', 20 ") comprises a laser diode.
7. Dispositif selon l'une des revendications 1 à 6, dans lequel la valeur de l'indice optique (Nm) du matériau (31 ) dans lequel est formé ledit composant optique (30) est supérieure à 2. 7. Device according to one of claims 1 to 6, wherein the value of the optical index (Nm) of the material (31) in which said optical component (30) is formed is greater than 2.
8. Dispositif selon l'une des revendications 1 à 7, dans lequel ledit composant optique (30) est formé de silicium.  8. Device according to one of claims 1 to 7, wherein said optical component (30) is formed of silicon.
9. Dispositif selon l'une des revendications 1 à 8, dans lequel ledit composant optique (30) est un prisme.  9. Device according to one of claims 1 to 8, wherein said optical component (30) is a prism.
10. Dispositif selon l'une des revendications 1 à 9, dans lequel l'élément polarisant (42) présente une direction de polarisation passante, et transmet seulement une composante du faisceau lumineux (50) de polarisation orientée parallèlement à ladite direction de polarisation passante.  10. Device according to one of claims 1 to 9, wherein the polarizing element (42) has a direction of passing polarization, and transmits only a component of the polarization light beam (50) oriented parallel to said direction of polarization passing .
1 1 . Dispositif selon l'une des revendications 1 à 10, dans lequel ladite modification d'une orientation d'une polarisation du faisceau lumineux (50) est réalisée par une cellule (41 ) à cristaux liquides.  1 1. Device according to one of claims 1 to 10, wherein said modification of an orientation of a polarization of the light beam (50) is performed by a cell (41) liquid crystal.
12. Dispositif selon l'une des revendications 1 à 1 1 , comprenant au moins une autre source (20, 20', 20") émettant un autre faisceau (23, 23', 23"), ledit faisceau lumineux (50) destiné à former une image étant obtenu par combinaison des faisceaux (23, 23', 23") émis respectivement par chacune des sources (20, 20', 20") du dispositif d'émission (2).  12. Device according to one of claims 1 to 1 1, comprising at least one other source (20, 20 ', 20 ") emitting another beam (23, 23', 23"), said light beam (50) intended forming an image being obtained by combining the beams (23, 23 ', 23 ") emitted respectively by each of the sources (20, 20', 20") of the transmitting device (2).
13. Dispositif selon la revendication 12, dans lequel ladite combinaison est réalisée en amont desdits moyens d'atténuation (40).  The device of claim 12, wherein said combination is performed upstream of said attenuating means (40).
14. Dispositif selon l'une des revendications 12 ou 13, dans lequel ladite combinaison est réalisée en amont dudit composant optique (30).  14. Device according to one of claims 12 or 13, wherein said combination is performed upstream of said optical component (30).
15. Afficheur (1 ), notamment afficheur tête haute, comprenant un dispositif d'émission (2) d'un faisceau lumineux (50) selon l'une des revendications 1 à 14, et un système d'imagerie (3) adapté à former une image à partir dudit faisceau lumineux (50).  15. Display (1), in particular head-up display, comprising a device (2) for transmitting (2) a light beam (50) according to one of claims 1 to 14, and an imaging system (3) adapted to forming an image from said light beam (50).
1 6. Afficheur selon la revendication 15, dans lequel un élément dudit système d'imagerie (3) est placé en amont desdits moyens d'atténuation (40).  The display of claim 15, wherein an element of said imaging system (3) is placed upstream of said attenuating means (40).
PCT/EP2016/068224 2015-07-29 2016-07-29 Device for emitting a light beam intended to produce an image, and corresponding display WO2017017267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557267A FR3039658B1 (en) 2015-07-29 2015-07-29 DEVICE FOR TRANSMITTING A LIGHT BEAM FOR FORMING AN IMAGE AND ASSOCIATED DISPLAY
FR1557267 2015-07-29

Publications (1)

Publication Number Publication Date
WO2017017267A1 true WO2017017267A1 (en) 2017-02-02

Family

ID=55236452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/068224 WO2017017267A1 (en) 2015-07-29 2016-07-29 Device for emitting a light beam intended to produce an image, and corresponding display

Country Status (2)

Country Link
FR (1) FR3039658B1 (en)
WO (1) WO2017017267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002412A1 (en) * 2017-06-28 2019-01-03 Valeo Comfort And Driving Assistance Image-generating unit and head-up display comprising such an image-generating unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012682A1 (en) * 2003-07-17 2005-01-20 Jenson Barton James Visual display system for displaying virtual images onto a field of vision

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050012682A1 (en) * 2003-07-17 2005-01-20 Jenson Barton James Visual display system for displaying virtual images onto a field of vision

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019002412A1 (en) * 2017-06-28 2019-01-03 Valeo Comfort And Driving Assistance Image-generating unit and head-up display comprising such an image-generating unit
FR3068488A1 (en) * 2017-06-28 2019-01-04 Valeo Comfort And Driving Assistance IMAGE GENERATING UNIT AND HEAD DISPLAY COMPRISING SUCH AN IMAGE GENERATING UNIT

Also Published As

Publication number Publication date
FR3039658B1 (en) 2018-02-09
FR3039658A1 (en) 2017-02-03

Similar Documents

Publication Publication Date Title
FR2873212A1 (en) OPTHALMIC LENS FOR REALIZING AN OPTICAL DISPLAY
WO2008003903A2 (en) Ophthalmic lens with integrated optical insert intended for projecting information
EP2273303B1 (en) Head-up display providing protection against solar radiation
FR3060774A1 (en) METHOD FOR ADJUSTING HIGH-LEVEL REALITY HEAD DISPLAY DEVICE
FR3064339A1 (en) LUMINOUS MODULE WITH CHROMATISM CORRECTION
WO2017017267A1 (en) Device for emitting a light beam intended to produce an image, and corresponding display
EP3685216B1 (en) Head-up display device
EP2873992B1 (en) System for displaying an image on a windscreen
FR2997515A1 (en) Optical system for displaying three-dimensional image to observer within car, has image generator generating auto-stereoscopic image with two distinct objects, where each object includes three-dimensional depth about accommodation plane
FR3064081B1 (en) HIGH HEAD DISPLAY
EP3273286B1 (en) Head-up display
WO2020141076A1 (en) Method and device for generating an image in strips for a head-up display system
FR3068488B1 (en) IMAGE GENERATING UNIT AND HEAD DISPLAY COMPRISING SUCH AN IMAGE GENERATING UNIT
FR3058237B1 (en) DISPLAY
FR3079314A1 (en) HIGH HEAD DISPLAY DEVICE
EP0371873A1 (en) Display system for two positions of a vehicle
EP3396444B1 (en) Device for producing a polarised light beam, image generation device, and head-up display
EP3380882B1 (en) Head-up display for a vehicle and vehicle equipped with such a device
EP3440485B1 (en) Heads-up display
EP3329318A1 (en) Device for forming an image and head-up display comprising a device of this kind
WO2020126352A1 (en) Power mirror for a head-up display device, head-up display device comprising such a mirror and mould for manufacturing such a mirror
WO2023111149A1 (en) Head-up display
FR3097977A1 (en) Head-up display device
EP3662318A1 (en) Image-generating unit and head-up display equipped with such an image-generating unit
FR3043798A1 (en) COMBINER, HIGH HEAD DISPLAY, AND METHOD FOR MANUFACTURING A COMBINER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16745729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16745729

Country of ref document: EP

Kind code of ref document: A1