WO2017016486A1 - System and method for variable lane architecture - Google Patents

System and method for variable lane architecture Download PDF

Info

Publication number
WO2017016486A1
WO2017016486A1 PCT/CN2016/091922 CN2016091922W WO2017016486A1 WO 2017016486 A1 WO2017016486 A1 WO 2017016486A1 CN 2016091922 W CN2016091922 W CN 2016091922W WO 2017016486 A1 WO2017016486 A1 WO 2017016486A1
Authority
WO
WIPO (PCT)
Prior art keywords
computing nodes
task
computing
node
memory
Prior art date
Application number
PCT/CN2016/091922
Other languages
French (fr)
Inventor
Sushma WOKHLU
Alan Gatherer
Ashish Rai Shrivastava
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to JP2018504845A priority Critical patent/JP2018521427A/en
Priority to CN201680044636.3A priority patent/CN107924309B/en
Priority to EP16829851.1A priority patent/EP3320429B1/en
Publication of WO2017016486A1 publication Critical patent/WO2017016486A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3867Concurrent instruction execution, e.g. pipeline or look ahead using instruction pipelines
    • G06F9/3869Implementation aspects, e.g. pipeline latches; pipeline synchronisation and clocking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/3004Arrangements for executing specific machine instructions to perform operations on memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3836Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3836Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution
    • G06F9/3851Instruction issuing, e.g. dynamic instruction scheduling or out of order instruction execution from multiple instruction streams, e.g. multistreaming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3877Concurrent instruction execution, e.g. pipeline or look ahead using a slave processor, e.g. coprocessor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
    • G06F9/3887Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple data lanes [SIMD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline or look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
    • G06F9/3893Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator
    • G06F9/3895Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator for complex operations, e.g. multidimensional or interleaved address generators, macros
    • G06F9/3897Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled in tandem, e.g. multiplier-accumulator for complex operations, e.g. multidimensional or interleaved address generators, macros with adaptable data path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues

Definitions

  • the present invention relates generally to computer architectures, and, in particular embodiments, to a system and method for variable lane architecture.
  • real-time systems such as wireless baseband (BB) systems are data-flow systems.
  • sequential data symbols such as symbols in a radio frame
  • shared memory is typically located far from where such computations are performed
  • specific memory is typically located near where such computations are performed.
  • SIMD single instruction, multiple data
  • a processor In accordance with a preferred embodiment of the present invention, a processor
  • GPCU global program controller unit
  • a method includes receiving program code for a task; assigning a plurality of computing nodes to perform the task; dispatching first fetch packets for the program code and first respective data pointers for the first fetch packets to each of the plurality of computing nodes; receiving a beat from each node of the plurality of computing nodes in response to each node completing execution of the first fetch packets dispatched to the node; and tracking execution of the program code by the plurality of computing nodes in accordance with the received beats.
  • a program control unit includes a very long instruction word (VLIW) bundle dispatcher configured to decode program code for a first task; a data address generation and organization (DAGO) unit configured to assign data pointers for the program code; and a scheduler configured to be coupled to a plurality of computing nodes, the scheduler configured to allocate the plurality of computing nodes to execute the program code, the scheduler configured to allocate a first thread to a first subset of the plurality of computing nodes, and to allocate a second thread to a second subset of the plurality of computing nodes.
  • VLIW very long instruction word
  • DAGO data address generation and organization
  • Figure 1 is a diagram of a data-flow system
  • FIGS. 2-5 are block diagrams of a processing system
  • Figure 6 is a block diagram of a RIMD computing node
  • Figure 7 is a timing diagram for RIMD instruction execution
  • Figure 8 is a flow diagram for a RIMD processing method
  • Figure 9 is a block diagram of a processing system.
  • vector data may be stored in high-speed memory and near computing elements. Storing data near computing elements may allow for efficient and deterministic task execution on non-uniform memory access (NUMA) architectures.
  • High-speed memory may include caches, private L1 (PL1) memory, and the like. Storing data in high-speed memory allows the data to be accessed very quickly, but may require the entire data set to be loaded prior to task execution.
  • High-speed memory may be small, limiting the size of tasks that will fit in the high-speed memory, and stalling the execution of tasks when data in the high-speed memory is flushed out to higher capacity memory.
  • Ping-pong scheduling schemes may improve the latency of loading data sets prior to execution, but such schemes have increased memory requirements, as they require data for the current job and the next job to be loaded in memory.
  • Centralized shared memory schemes attempt to solve capacity issues, but may suffer from longer latencies. Larger caches may help solve capacity and latency problems, but adding an additional level of design may increase complexity and cause coherency issues.
  • Figure 1 is a diagram of a data-flow system 100.
  • the data-flow system 100 illustrates operations occurring during vector computations in a wireless baseband system. Each element in the vector may have the same computations performed on it when an instruction is executed. As such, a vector computation system may be referred to as including multiple lanes, where each lane executes instructions for an element of the vector.
  • the data-flow system 100 includes an antenna space, a beam space, and a user space. Data flows through each space during a transmission. For example, vector data first flows through the antenna space, where an antenna is selected. The vector data then flows through the beam space, where a beam for the antenna is selected. The vector data then flows through the user space, where a broadcast code or sequence is selected.
  • the vector data in the data-flow system 100 must be manipulated and/or reorganized at points 102 and 104 of the data-flow system 100, e.g., between each space.
  • the vector data is manipulated so that it can be prepared for algorithms in each subsequent space.
  • algorithms in each space may operate on data vectors of different sizes.
  • data may need to be pre-fetched at points 102 and 104.
  • Embodiments provide a scalable, variable length multi-lane architecture based on dynamically programmable and distributed computing nodes.
  • Embodiment multi-lane systems may be referred to as “relaxed instruction multiple data” (RIMD) systems.
  • RIMD architectures may be more efficient than SIMD architectures.
  • RIMD computing nodes are co-located with system memory.
  • the RIMD computing nodes may directly access remote memory banks without first copying the data to nearby memory banks. Moving or copying data from remote memory banks to nearby memory banks may be a slow operation. Locating the computing nodes closer to memory may reduce the amount of data movement, increasing access speed.
  • instructions for a task or program are propagated from a global program controller unit (GPCU) , through memory, and to the computing nodes.
  • GPCU global program controller unit
  • Embodiments split the pipeline of a processor into a scalar processing portion and a vector processing portion.
  • the vector processing portion is a RIMD pipeline.
  • SIMD processors typically perform computations on a data vector in lock-step execution, where each element in the vector is processed before the SIMD pipeline continues.
  • Embodiments remove the need for lock-step execution, allowing a variable length multi-lane to include any number of computing nodes and thus process any length of data vector.
  • Scalar processing portions of the processor configure the vector processing portion of the processor and dispatch programming to the vector processing portion.
  • Each computing node in the RIMD pipeline executes instructions independent of other computing nodes.
  • all lanes of an RIMD pipeline may or may not execute instructions simultaneously or in the same clock cycle.
  • the various lanes of an RIMD pipeline are shifted in the time domain. The shift can be as small as one clock cycle, and up to a maximum number of clock cycles as determined by the ability of the RIMD system to buffer instructions and/or data at the computing nodes.
  • RIMD processors may have an overall performance increase compared to SIMD processors. Such processors may be referred to as split latency adaptive pipeline (SLAP) processors.
  • SLAP split latency adaptive pipeline
  • FIG. 2 is a block diagram of a processing system 200.
  • the processing system 200 performs multiple-data computations for one or more of the spaces in the data-flow system 100.
  • the processing system 200 includes a GPCU 202, a vector instruction pipeline 204, and memory 206.
  • the GPCU 202 is coupled to the vector instruction pipeline 204 and to the memory 206.
  • the memory 206 may also be coupled to the vector instruction pipeline 204.
  • the GPCU 202 tracks and manages the execution of instructions in the processing system 200. Data processing may stall at one or more of the lanes in the processing system 200. The GPCU 202 tracks the stalls in each lane, and distributes instructions to each lane for processing based on the progress of each lane.
  • Function units that form a scalar instruction pipeline are included with the GPCU 202, which may be used to perform control operations that create and maintain the vector instruction pipeline 204. Control operations may include changing program flow; input and output data address calculations and/or manipulations; operations that interact with local, centralized, or distributed operating systems; interrupt handling; memory allocations; and the like. Scalar control operations use and manipulate standard data types, such as C data types.
  • the GPCU 202 is a system running an operating system such as Linux.
  • the vector instruction pipeline 204 includes multiple lanes that each perform mathematical computations on vector data types.
  • the vector instruction pipeline 204 is a RIMD pipeline with multiple computing nodes, where each computing node processes instructions independent of the other computing nodes.
  • the computing nodes in the vector instruction pipeline 204 may not operate in a lock-step manner, and may each execute instructions in the same or different cycles.
  • a task or thread may be constructed for execution with any quantity of RIMD computing nodes in the vector instruction pipeline 204.
  • the GPCU 202 may dynamically group a variable quantity of RIMD computing nodes in the vector instruction pipeline 204 to form a pipeline that is similar to a SIMD machine.
  • the formed pipeline may not have the drawbacks that SIMD has, such as requiring data to be re-organized so that it is compatible with SIMD.
  • the vector instruction pipeline 204 may be scalable, flexible, and efficient for different types of algorithms.
  • the number of RIMD compute nodes allocated in the vector instruction pipeline 204 for a particular algorithm may be variable, and may be selected to optimize the quantity of lanes for that algorithm. Optimizing the quantity of RIMD computing nodes may increase power savings, as unneeded nodes may be powered down.
  • the memory 206 may be remote memory, or may be nearby memory such as a cache.
  • the memory 206 is shared memory that includes multiple memory blocks. Each RIMD in the vector instruction pipeline 204 accesses the memory 206 independently. As such, data may not need to be reorganized, manipulated, or aligned for the vector instruction pipeline 204 to properly access the memory 206.
  • the shared memory is distributed, and may not have a central location that each RIMD in the vector instruction pipeline 204 accesses. Although they are illustrated as separate blocks, it should be appreciated that the computing nodes of the vector instruction pipeline 204 are located in the memory 206. Memory banks or nodes in the memory 206 are shared by nearby computing nodes. Locating the computing nodes of the vector instruction pipeline 204 in the memory 206 may increase performance, reduce the cost of data movement, and reduce the quantity of memory access operations.
  • FIG. 3 is a block diagram of a processing system 300.
  • the processing system 300 is similar to the processing system 200, except the vector instruction pipeline 204 includes computing nodes 302, an instruction buffer 304, and a data buffer 306.
  • the GPCU 202 sends instructions for the computing nodes 302 to the instruction buffer 304.
  • the instruction buffer 304 may be, e.g., a queue.
  • the computing nodes 302 each fetch more instructions for execution from the instruction buffer 304 when those computing nodes complete execution of their current instructions. As such, the buffered instructions may be referred to as fetch packets.
  • the data buffer 306 may be a queue, and buffers data that the computing nodes 302 store in the memory 206.
  • the data buffer 306 may buffer read data from the memory 206, and may re-order the data read from the memory 206.
  • the GPCU 202 dispatches read requests for data to the data buffer 306 so that the data arrives at the appropriate computing nodes 302 in the proper order.
  • the GPCU 202 may schedule the computing nodes 302 in several manners. In some embodiments, the GPCU 202 schedules the computing nodes 302 semi-randomly. In some embodiments, the GPCU 202 attempts to put a best effort into coordinating instructions at computing nodes 302 that are located near banks of the memory 206 that the instructions will access.
  • the vector instruction pipeline 204 also includes arbiters (not shown) that efficiently distribute instructions to the computing nodes 302.
  • the computing nodes 302 use direct memory access (DMA) to copy data from portions of the memory 206 near one of the computing nodes 302 to portions of the memory 206 near another computing node. Directly copying data may allow faster access to the memory by avoiding an intermediate copy operation.
  • DMA operations may be scheduled to computing nodes 302 that have less open DMA connections, balancing the quantity of DMA masters in the computing nodes 302.
  • FIG. 4 is a block diagram of a processing system 400.
  • the processing system 400 is similar to the processing system 300, except each of the computing nodes 302 have their own instruction buffer 402 and data buffer 404.
  • the computing nodes 302 are further isolated from one another and the GPCU 202. As such, stalls in one of the lanes of the vector instruction pipeline 204 may not cause stalls in the other lanes.
  • Each instruction buffer 402 includes a beat mechanism to help the GPCU 202 keep track of program execution.
  • the instruction buffer 402 sends a beat to the GPCU 202 each time a computing node 302 finishes executing an instruction in the instruction buffer 402.
  • a beat may be, e.g., a 1-bit even notification.
  • the GPCU 202 tracks stalls in each of the computing nodes 302 by counting the beats sent from the instruction buffers 402.
  • the GPCU may slow or halt scheduling of instructions to the instruction buffers 402 when the quantity of counted beats exceeds a threshold, e.g., when the computing nodes 302 are too far behind.
  • the instruction buffers 402 may each buffer a full fetch packet.
  • the computing nodes 302 execute instructions independent of one another, and so may stall independently of one another. Independent stalling may reduce the overall effect of stalls in the processing system 400. Although the computing nodes 302 execute the same program, the computing nodes 302 may be halted or clocked independently, have their memory access reduced, and access unique patterns of data different from other computing nodes 302. Such independent execution and stalling may reduce power consumption in RIMD systems and allow multiple ones of the computing nodes 302 to access data in a same memory bank on a single instruction.
  • the GPCU 202 may access common data in the memory and then broadcast the data to all requesting nodes using the instruction buffers 402.
  • the data may be a field in instructions in the instruction buffers 402.
  • the GPCU 202 may use the beats from each of the instruction buffers 402 to form a barrier amongst a subset of the computing nodes 302.
  • the barrier may be used to synchronize the computing nodes 302 with the GPCU 202.
  • the GPCU 202 forms a barrier in the instruction flow by not sending further instructions until all of the computing nodes 302 have synchronized to a common (barrier) instruction.
  • the GPCU 202 counts the beats (discussed above) from each of the computing nodes 302 to determine when each node has synchronized to the common instruction. Once each of the computing nodes 302 have reached the barrier, the GPCU 202 resumes sending instructions and allows the computing nodes 302 to flow asynchronously again.
  • Synchronizing the computing nodes 302 decreases the risk of the nodes accessing stale data that was previously produced by the other nodes. As such, in embodiments where a barrier is formed, memory access operations from the computing nodes are synchronized so that they are performed in the proper order.
  • FIG. 5 is a block diagram of a processing system 500.
  • the processing system 500 includes a control unit 502 and a vector instruction pipeline 504.
  • the control unit 502 manages and dispatches instructions to the vector instruction pipeline 504.
  • the vector instruction pipeline 504 is located with memory, such that computing nodes in the vector instruction pipeline 504 are distributed among memory sub-banks.
  • the control unit 502 includes a GPCU 512, a scheduler core 514, a partially decoded very long instruction word (VLIW) bundle dispatch unit 516, a data address generation and organization (DAGO) unit 518, a VLIW bundle and data address queue 520, and a DMA controller 522.
  • VLIW very long instruction word
  • DAGO data address generation and organization
  • the GPCU 512 controls instruction decoding and dispatching.
  • the scheduler core 514 schedules the RIMD computing nodes 534 (discussed below) for a particular job or task.
  • the partially decoded VLIW bundle dispatch unit 516 extracts instructions from a VLIW instruction bundle and sends them to the VLIW bundle and data address queue 520.
  • the DAGO 518 generates and assigns memory addresses (or “data pointers” ) to the computing units, and sends them to the VLIW bundle and data address queue 520.
  • the DAGO 518 may also perform any needed memory operation reorganization.
  • a program for execution may be split into global and local controllers. There may be some overlap between some stages to relax the complexity and provide best performance.
  • the vector instruction pipeline 504 includes instruction routers 532, RIMD computing nodes 534, memory sub-banks 536, and smart router and prefetcher units 538.
  • the instruction routers 532 receive instructions from the VLIW bundle and data address queue 520 and distribute them to the RIMD computing nodes 534. There may be one or more of the instruction routers 532.
  • Each of the RIMD computing nodes 534 executes the instructions independently of one another. Clock gating for each of the RIMD computing node 534 may be flexible, such that each node has its own input clock connection that is gated for the node when the node is not used.
  • the RIMD computing nodes 534 are coupled to the partially decoded VLIW bundle dispatch unit 516. Each time the RIMD computing nodes 534 finish executing instructions, they notify the partially decoded VLIW bundle dispatch unit 516. In some embodiments, the notification is a 1-bit beat.
  • the GPCU 512 counts the number of beats and dispatches more instructions to the vector instruction pipeline 504 according to the quantity of received beats.
  • the RIMD computing nodes 534 access the memory sub-banks 536. Each of the RIMD computing nodes 534 are near at least one of the memory sub-banks 536 that can be accessed more quickly by the respective RIMD computing nodes 534. The RIMD computing nodes 534 may access other memory sub-banks 536 that are further away through the smart router and prefetcher units 538.
  • Distributing the RIMD computing nodes 534 among the memory sub-banks 536 may result in the RIMD computing nodes 534 having variable latencies.
  • splitting the pipeline between a scalar pipeline (e.g., GPCU) and a vector pipeline (e.g., independent RIMD computing nodes) may result in a scalable and high performance system, notwithstanding the any additional expense of memory operations.
  • the smart router and prefetcher units 538 route and arbitrate memory access operations, and perform some memory prefetching, write buffering, and data merging.
  • the smart router and prefetcher units 538 are programmable prefetchers, and work with each of the RIMD computing nodes 534 to reduce the latency associated with accessing far data nodes.
  • the smart router and prefetcher units 538 prefetch data based on a stride or offset from a base memory address. In some embodiments, the smart router and prefetcher units 538 merge write operations from several compute nodes, which may reduce the total quantity of access to memory.
  • the DMA controller 522 is a helper module that allows the RIMD computing nodes 534 to perform DMA through the smart router and prefetcher units 538.
  • the smart router and prefetcher units 538 may be referred to as smart arbiter and prefetchers (SAPs) .
  • FIG. 6 is a block diagram of a RIMD computing node 600.
  • the RIMD computing node 600 includes a RIMD interface 602, a queue 604, a local program control unit (LPCU) 606, a compute unit 608, and an optional data buffer 610.
  • the RIMD interface 602 interfaces the RIMD computing node 600 with other devices in a processor, e.g., the instruction routers 532.
  • the queue 604 receives instructions and data from the instruction routers 532 and buffers them. Buffering instructions and input data allows the RIMD computing node 600 to operate independently of other RIMD computing nodes in a RIMD processor.
  • the queue 604 localizes any stalls in the RIMD computing node 600, so that other RIMD computing nodes are not affected.
  • the queue 604 includes an instruction buffer 612 (or “instruction queue” ) and an input data buffer 614 (or “result queue” ) .
  • the instruction buffer 612 buffers instructions, and the input data buffer 614 buffers data that is needed to execute the instructions.
  • the LPCU 606 includes instruction decoding and dispatching functionality.
  • the LPCU 606 includes logic to send a beat to the GPCU 512 each time the RIMD computing node 600 completes an instruction in the instruction buffer 612.
  • the compute unit 608 includes function units that perform the main computations in the RIMD computing node 600.
  • the compute unit 608 includes a multiplexing unit, registers, and load/store units.
  • the compute unit 608 has a dedicated load/store path for the load/store units, so that the compute unit 608 may access memory independently of other RIMD computing units.
  • the data buffer 610 may be similar to the input data buffer 614, and may be in the load/store path, to buffer memory access operations. Use of the data buffer 610 may prevent the RIMD computing node 600 from stalling when it attempts to access memory that another RIMD computing node is accessing. Variable memory latencies may cause back-to-back read operations to return data to the compute unit 608 out of order. Buffering read data temporarily allows the memory to be read by the compute unit 608 in order.
  • the data buffer 610 may be, e.g., a content-addressable memory (CAM) cache, a first-in-first-out (FIFO) buffer, or the like.
  • the data buffer 610 may be small, such as less than about 1 kilobyte (KB) in size.
  • the size of the data buffer 610 may be determined according to the latency to memory banks. In some embodiments, the furthest latency to the memory bank may be used to determine the size of the data buffer 610. In some embodiments, the data buffer 610 may be less than or equal to about double the size of the instruction buffer 612. The data buffer 610 also buffer write operations.
  • FIG. 7 is a timing diagram 700 for RIMD instruction execution.
  • the timing diagram 700 shows timing states of the system clock and nine computing nodes.
  • the timing diagram 700 illustrates how RIMD computing nodes may execute instructions independently.
  • a program is dispatched by the GPCU at cycle 1.
  • Computing nodes 1, 2, and 3 receive the program and being executing it at cycle 2.
  • Computing nodes 4, 5, and 6 receive the program and being executing it at cycle 3.
  • Computing nodes 7, 8, and 9 receive the program and being executing it at cycle 4.
  • the program reaches different computing nodes at different times based on, e.g , where the computing nodes are physically located in the processor. Further nodes may have higher latencies. Other factors may also affect when the computing nodes receive the program and begin executing it.
  • the quantity of RIMD computing nodes selected for a task is dynamically configurable, and may be based on, e.g., task requirements. In the timing diagram 700, nine threads are configured to run the program. This quantity may change for different tasks. Additionally, the RIMD computing nodes may be further divided into parallel threads. The number of parallel threads allocated from a RIMD cluster is also configurable, e.g., a maximum limit may be put on the quantity of allocated threads.
  • the RIMD cluster could have been divided in several manners: (1) all of the RIMD computing nodes may be running same thread; (2) all of the RIMD computing nodes may be running different threads; (3) some units may be running a first thread, and other units may be running a second thread; and (4) some units may be running a first and second thread, and others may be powered down. Other configurations may also be possible.
  • FIG 8 is a flow diagram for a RIMD processing method 800. It should be appreciated that the RIMD processing method 800 does not show a sequence of steps. Rather, blocks in the RIMD processing method 800 could be operating in parallel.
  • a program for execution is moved to global program memory by the GPCU (step 802) .
  • the program may be in far memory, or may be fetched from a program cache or memory for programming. In embodiments where the program is in memory, it may be fetched through DMA.
  • data needed for execution of the program is moved from far memory (step 804) . In some embodiments, moving may be accomplished by copying the data with DMA.
  • the scheduler schedules a task at one or more RIMD computing nodes (step 806) . The scheduler selects the quantity of computing nodes for the task, and assigns an identifier (ID) to each node.
  • the GPCU fetches program code for the task, and dispatches it to the scheduled RIMD computing nodes with a data address for the task (step 808) .
  • the program code is then pushed to each RIMD computing node. Because the RIMD computing nodes are in distributed shared memory, programming may not need to be copied to the nodes using expensive operations such caching or DMA.
  • Each RIMD computing node receives and buffers the program code and data address (step 810) .
  • the RIMD computing nodes decode and execute the program code dispatched to them (step 812) .
  • the RIMD computing nodes access data during execution using the received data address, at an offset from the data address that is computed using the ID assigned to each computing node (step 814) .
  • Accessed data may be brought nearer to the RIMD computing node with a SAP (step 816) .
  • the SAP may prefetch data by communicating with other SAPs in the memory.
  • Each RIMD computing node sends a beat to the GPCU when it is finished executing or dispatching an instruction (step 818) .
  • the GPCU keeps track of the progress of each RIMD computing node by counting the quantity of beats each sends (step 820) .
  • the GPCU dispatches more program code and data address to the RIMD computing nodes as they complete instructions in their buffers.
  • the GPCU may also use the beats from the RIMD computing nodes to synchronize the nodes, if needed (step 822) .
  • the GPCU may schedule the RIMD computing nodes for another task by repeating steps 802-822, or may power down the nodes if there are no more tasks (step 824) .
  • Figure 9 is a block diagram of a processing system 900 for performing methods described herein, which may be installed in a host device.
  • the processing system 900 includes a processor 902, a memory 904, and interfaces 906-910, which may (or may not) be arranged as shown in Figure 9.
  • the processor 902 may be any component or collection of components adapted to perform computations and/or other processing related tasks
  • the memory 904 may be any component or collection of components adapted to store programming and/or instructions for execution by the processor 902.
  • the memory 904 includes a non-transitory computer readable medium.
  • the interfaces 906, 908, 910 may be any component or collection of components that allow the processing system 900 to communicate with other devices/components and/or a user.
  • one or more of the interfaces 906, 908, 910 may be adapted to communicate data, control, or management messages from the processor 902 to applications installed on the host device and/or a remote device.
  • one or more of the interfaces 906, 908, 910 may be adapted to allow a user or user device (e.g., personal computer (PC) , etc. ) to interact/communicate with the processing system 900.
  • the processing system 900 may include additional components not depicted in Figure 9, such as long term storage (e.g., non-volatile memory, etc. ) .
  • the processing system 900 is included in a network device that is accessing, or part otherwise of, a telecommunications network.
  • the processing system 900 is in a network-side device in a wireless or wireline telecommunications network, such as a base station, a relay station, a scheduler, a controller, a gateway, a router, an applications server, or any other device in the telecommunications network.
  • the processing system 900 is in a user-side device accessing a wireless or wireline telecommunications network, such as a mobile station, a user equipment (UE) , a personal computer (PC) , a tablet, a wearable communications device (e g., a smartwatch, etc. ) , or any other device adapted to access a telecommunications network.
  • the processing system 900 includes a code reception module receiving program code for a task, an assignment module assigning a plurality of computing nodes to perform the task, a dispatch module dispatching first fetch packets for the program code and first respective data pointers for the first fetch packets to each of the plurality of computing nodes, a beat module receiving a beat from each node of the plurality of computing nodes in response to each node completing execution of the first fetch packets dispatched to the node, and a tracking module tracking execution of the program code by the plurality of computing nodes in accordance with the received beats.
  • the processing system 900 may include other or additional modules for performing any one of or combination of steps described in the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Advance Control (AREA)
  • Multi Processors (AREA)
  • Devices For Executing Special Programs (AREA)

Abstract

A system and method for variable lane architecture are provided, wherein the system includes memory blocks located in a memory bank, and one or more computing nodes forming a vector instruction pipeline for executing a task. Each of the computing nodes locates in the memory bank, and each of the computing nodes executes a portion of the task independently of other ones of the computing nodes. Furthermore, the system comprises a global program controller unit (GPCU) forming a scalar instruction pipeline for executing the task, the GPCU is configured to schedule instructions for the task at one or more of the computing nodes, and the GPCU is further configured to dispatch an address for the memory blocks used by each of the computing nodes to the computing nodes.

Description

SYSTEM AND METHOD FOR VARIABLE LANE ARCHITECTURE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U. S. non-provisional patent application Serial No. 15/220,067, filed on July 26, 2016, and entitled “System and Method for Variable Lane Architecture, ” which in turn claims priority to U. S. Provisional Application No. 62/198,886, filed on July 30, 2015, which application is hereby incorporated herein by reference.
TECHNICAL FIELD
The present invention relates generally to computer architectures, and, in particular embodiments, to a system and method for variable lane architecture.
BACKGROUND
Generally, real-time systems such as wireless baseband (BB) systems are data-flow systems. In data-flow systems, sequential data symbols, such as symbols in a radio frame, are usually different, and are typically moved from a shared memory location to a specific memory location for deterministic computations. Shared memory is typically located far from where such computations are performed, and specific memory is typically located near where such computations are performed.
In a wireless BB system, multiple users are supported with different radio resource allocations. These different allocations can be computed as a group, with some restrictions, in a single instruction, multiple data (SIMD) system. SIMD computations require a large amount of data movement, manipulation, and reorganization to support SIMD instructions, which increases power consumption, and requires extra memory to hold redundant copies of data in multiple places. Scheduling tasks in a large SIMD processor may be more complex. Further, algorithms must be created and compiled to utilize SIMD efficiently. As a result, although large SIMD processors can theoretically increase performance of data-flow systems, it is impractical and difficult to obtain these performance increases.
SUMMARY
In accordance with a preferred embodiment of the present invention, a processor 
includes memory blocks located in a memory bank; one or more computing nodes forming a vector instruction pipeline for executing a task, each of the computing nodes located in the memory bank, each of the computing nodes executing a portion of the task independently of other ones of the computing nodes; and a global program controller unit (GPCU) forming a scalar instruction pipeline for executing the task, the GPCU configured to schedule instructions for the task at one or more of the computing nodes, the GPCU further configured to dispatch an address for the memory blocks used by each of the computing nodes to the computing nodes.
In accordance with a preferred embodiment of the present invention, a method includes receiving program code for a task; assigning a plurality of computing nodes to perform the task; dispatching first fetch packets for the program code and first respective data pointers for the first fetch packets to each of the plurality of computing nodes; receiving a beat from each node of the plurality of computing nodes in response to each node completing execution of the first fetch packets dispatched to the node; and tracking execution of the program code by the plurality of computing nodes in accordance with the received beats.
In accordance with a preferred embodiment of the present invention, a program control unit includes a very long instruction word (VLIW) bundle dispatcher configured to decode program code for a first task; a data address generation and organization (DAGO) unit configured to assign data pointers for the program code; and a scheduler configured to be coupled to a plurality of computing nodes, the scheduler configured to allocate the plurality of computing nodes to execute the program code, the scheduler configured to allocate a first thread to a first subset of the plurality of computing nodes, and to allocate a second thread to a second subset of the plurality of computing nodes.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Figure 1 is a diagram of a data-flow system;
Figures 2-5 are block diagrams of a processing system;
Figure 6 is a block diagram of a RIMD computing node;
Figure 7 is a timing diagram for RIMD instruction execution;
Figure 8 is a flow diagram for a RIMD processing method; and
Figure 9 is a block diagram of a processing system.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
According to various embodiments, vector data may be stored in high-speed memory and near computing elements. Storing data near computing elements may allow for efficient and deterministic task execution on non-uniform memory access (NUMA) architectures. High-speed memory may include caches, private L1 (PL1) memory, and the like. Storing data in high-speed memory allows the data to be accessed very quickly, but may require the entire data set to be loaded prior to task execution. High-speed memory may be small, limiting the size of tasks that will fit in the high-speed memory, and stalling the execution of tasks when data in the high-speed memory is flushed out to higher capacity memory. Ping-pong scheduling schemes may improve the latency of loading data sets prior to execution, but such schemes have increased memory requirements, as they require data for the current job and the next job to be loaded in memory. Centralized shared memory schemes attempt to solve capacity issues, but may suffer from longer latencies. Larger caches may help solve capacity and latency problems, but adding an additional level of design may increase complexity and cause coherency issues.
Figure 1 is a diagram of a data-flow system 100. The data-flow system 100 illustrates operations occurring during vector computations in a wireless baseband system. Each element in the vector may have the same computations performed on it when an instruction is executed. As such, a vector computation system may be referred to as including multiple lanes, where each lane executes instructions for an element of the vector. The data-flow system 100 includes an antenna space, a beam space, and a user space. Data flows through each space during a transmission. For example, vector data first flows through the antenna space, where an antenna is selected. The vector data then flows through the beam space, where a beam for the antenna is selected. The vector data then flows through the user space, where a broadcast code or sequence is selected. Different computations are performed in the antenna space, the beam space, and the user space. As such, the vector data in the data-flow system 100 must be manipulated and/or reorganized at  points  102 and 104 of the data-flow system 100, e.g., between each space. The vector data is manipulated so that it can be prepared for algorithms in each subsequent space. For example, algorithms in each space may operate on data vectors of different sizes. Additionally, data may need to be pre-fetched at  points  102 and 104. Although the present discussion is presented in the context of a wireless baseband system, it should be appreciated that the data-flow system 100 may be part of any system.
Embodiments provide a scalable, variable length multi-lane architecture based on dynamically programmable and distributed computing nodes. Embodiment multi-lane systems may be referred to as “relaxed instruction multiple data” (RIMD) systems. RIMD architectures may be more efficient than SIMD architectures. In some embodiments, RIMD computing nodes are co-located with system memory. In such embodiments, the RIMD computing nodes may directly access remote memory banks without first copying the data to nearby memory banks. Moving or copying data from remote memory banks to nearby memory banks may be a slow operation. Locating the computing nodes closer to memory may reduce the amount of data movement, increasing access speed. In some embodiments, instructions for a task or program are propagated from a global program controller unit (GPCU) , through memory, and to the computing nodes.
Embodiments split the pipeline of a processor into a scalar processing portion and a vector processing portion. The vector processing portion is a RIMD pipeline. SIMD processors typically perform computations on a data vector in lock-step execution, where each element in the vector is processed before the SIMD pipeline continues.
Embodiments remove the need for lock-step execution, allowing a variable length multi-lane to include any number of computing nodes and thus process any length of data vector. Scalar processing portions of the processor configure the vector processing portion of the processor and dispatch programming to the vector processing portion.
Each computing node in the RIMD pipeline executes instructions independent of other computing nodes. In some embodiments, all lanes of an RIMD pipeline may or may not execute instructions simultaneously or in the same clock cycle. In such embodiments, the various lanes of an RIMD pipeline are shifted in the time domain. The shift can be as small as one clock cycle, and up to a maximum number of clock cycles as determined by the ability of the RIMD system to buffer instructions and/or data at the computing nodes.
Because the computing nodes execute independently and can be on different clock cycles, the computing nodes may stall independently of one another, reducing the overall performance impact of a single computing node stalling. Because the computing nodes execute instructions independently, memory can be accessed without moving data from remote memory to nearby memory. Although memory access operations to remote memory may be slower, the memory performance penalty may be less than the performance increase that is realized from eliminating the need to reorganize and cache data, and from eliminating the need to execute instructions in a lock-step manner. Because the computing nodes do not execute instructions in lock-step, each lane of the vector pipeline may adapt to the latency of the system memory.  Accordingly, RIMD processors may have an overall performance increase compared to SIMD processors. Such processors may be referred to as split latency adaptive pipeline (SLAP) processors.
Figure 2 is a block diagram of a processing system 200. The processing system 200 performs multiple-data computations for one or more of the spaces in the data-flow system 100. The processing system 200 includes a GPCU 202, a vector instruction pipeline 204, and memory 206. The GPCU 202 is coupled to the vector instruction pipeline 204 and to the memory 206. The memory 206 may also be coupled to the vector instruction pipeline 204.
The GPCU 202 tracks and manages the execution of instructions in the processing system 200. Data processing may stall at one or more of the lanes in the processing system 200. The GPCU 202 tracks the stalls in each lane, and distributes instructions to each lane for processing based on the progress of each lane. Function units that form a scalar instruction pipeline are included with the GPCU 202, which may be used to perform control operations that create and maintain the vector instruction pipeline 204. Control operations may include changing program flow; input and output data address calculations and/or manipulations; operations that interact with local, centralized, or distributed operating systems; interrupt handling; memory allocations; and the like. Scalar control operations use and manipulate standard data types, such as C data types. In some embodiments, the GPCU 202 is a system running an operating system such as Linux.
The vector instruction pipeline 204 includes multiple lanes that each perform mathematical computations on vector data types. The vector instruction pipeline 204 is a RIMD pipeline with multiple computing nodes, where each computing node processes instructions independent of the other computing nodes. The computing nodes in the vector instruction pipeline 204 may not operate in a lock-step manner, and may each execute instructions in the same or different cycles. A task or thread may be constructed for execution with any quantity of RIMD computing nodes in the vector instruction pipeline 204. In particular, the GPCU 202 may dynamically group a variable quantity of RIMD computing nodes in the vector instruction pipeline 204 to form a pipeline that is similar to a SIMD machine. The formed pipeline may not have the drawbacks that SIMD has, such as requiring data to be re-organized so that it is compatible with SIMD.
The vector instruction pipeline 204 may be scalable, flexible, and efficient for different types of algorithms. The number of RIMD compute nodes allocated in the vector instruction pipeline 204 for a particular algorithm may be variable, and may be selected to  optimize the quantity of lanes for that algorithm. Optimizing the quantity of RIMD computing nodes may increase power savings, as unneeded nodes may be powered down.
The memory 206 may be remote memory, or may be nearby memory such as a cache. The memory 206 is shared memory that includes multiple memory blocks. Each RIMD in the vector instruction pipeline 204 accesses the memory 206 independently. As such, data may not need to be reorganized, manipulated, or aligned for the vector instruction pipeline 204 to properly access the memory 206. The shared memory is distributed, and may not have a central location that each RIMD in the vector instruction pipeline 204 accesses. Although they are illustrated as separate blocks, it should be appreciated that the computing nodes of the vector instruction pipeline 204 are located in the memory 206. Memory banks or nodes in the memory 206 are shared by nearby computing nodes. Locating the computing nodes of the vector instruction pipeline 204 in the memory 206 may increase performance, reduce the cost of data movement, and reduce the quantity of memory access operations.
Figure 3 is a block diagram of a processing system 300. The processing system 300 is similar to the processing system 200, except the vector instruction pipeline 204 includes computing nodes 302, an instruction buffer 304, and a data buffer 306. The GPCU 202 sends instructions for the computing nodes 302 to the instruction buffer 304. The instruction buffer 304 may be, e.g., a queue. The computing nodes 302 each fetch more instructions for execution from the instruction buffer 304 when those computing nodes complete execution of their current instructions. As such, the buffered instructions may be referred to as fetch packets. The data buffer 306 may be a queue, and buffers data that the computing nodes 302 store in the memory 206. Additionally, the data buffer 306 may buffer read data from the memory 206, and may re-order the data read from the memory 206. In some embodiments, the GPCU 202 dispatches read requests for data to the data buffer 306 so that the data arrives at the appropriate computing nodes 302 in the proper order.
The GPCU 202 may schedule the computing nodes 302 in several manners. In some embodiments, the GPCU 202 schedules the computing nodes 302 semi-randomly. In some embodiments, the GPCU 202 attempts to put a best effort into coordinating instructions at computing nodes 302 that are located near banks of the memory 206 that the instructions will access.
The vector instruction pipeline 204 also includes arbiters (not shown) that efficiently distribute instructions to the computing nodes 302. In some embodiments, the computing nodes 302 use direct memory access (DMA) to copy data from portions of the memory 206 near one of the computing nodes 302 to portions of the memory 206 near another computing node.  Directly copying data may allow faster access to the memory by avoiding an intermediate copy operation. In such embodiments, DMA operations may be scheduled to computing nodes 302 that have less open DMA connections, balancing the quantity of DMA masters in the computing nodes 302.
Figure 4 is a block diagram of a processing system 400. The processing system 400 is similar to the processing system 300, except each of the computing nodes 302 have their own instruction buffer 402 and data buffer 404. By including an instruction buffer 402 with each of the computing nodes 302, the computing nodes 302 are further isolated from one another and the GPCU 202. As such, stalls in one of the lanes of the vector instruction pipeline 204 may not cause stalls in the other lanes.
Each instruction buffer 402 includes a beat mechanism to help the GPCU 202 keep track of program execution. The instruction buffer 402 sends a beat to the GPCU 202 each time a computing node 302 finishes executing an instruction in the instruction buffer 402. A beat may be, e.g., a 1-bit even notification. In some embodiments, the GPCU 202 tracks stalls in each of the computing nodes 302 by counting the beats sent from the instruction buffers 402. The GPCU may slow or halt scheduling of instructions to the instruction buffers 402 when the quantity of counted beats exceeds a threshold, e.g., when the computing nodes 302 are too far behind. In some embodiments, the instruction buffers 402 may each buffer a full fetch packet.
As noted above, the computing nodes 302 execute instructions independent of one another, and so may stall independently of one another. Independent stalling may reduce the overall effect of stalls in the processing system 400. Although the computing nodes 302 execute the same program, the computing nodes 302 may be halted or clocked independently, have their memory access reduced, and access unique patterns of data different from other computing nodes 302. Such independent execution and stalling may reduce power consumption in RIMD systems and allow multiple ones of the computing nodes 302 to access data in a same memory bank on a single instruction. In some embodiments, when multiple ones of the computing nodes 302 attempt to simultaneously access a same memory location, the GPCU 202 may access common data in the memory and then broadcast the data to all requesting nodes using the instruction buffers 402. In such embodiments, the data may be a field in instructions in the instruction buffers 402.
In some embodiments, the GPCU 202 may use the beats from each of the instruction buffers 402 to form a barrier amongst a subset of the computing nodes 302. The barrier may be used to synchronize the computing nodes 302 with the GPCU 202. The GPCU 202 forms a barrier in the instruction flow by not sending further instructions until all of the computing  nodes 302 have synchronized to a common (barrier) instruction. The GPCU 202 counts the beats (discussed above) from each of the computing nodes 302 to determine when each node has synchronized to the common instruction. Once each of the computing nodes 302 have reached the barrier, the GPCU 202 resumes sending instructions and allows the computing nodes 302 to flow asynchronously again. Synchronizing the computing nodes 302 decreases the risk of the nodes accessing stale data that was previously produced by the other nodes. As such, in embodiments where a barrier is formed, memory access operations from the computing nodes are synchronized so that they are performed in the proper order.
Figure 5 is a block diagram of a processing system 500. The processing system 500 includes a control unit 502 and a vector instruction pipeline 504. The control unit 502 manages and dispatches instructions to the vector instruction pipeline 504. The vector instruction pipeline 504 is located with memory, such that computing nodes in the vector instruction pipeline 504 are distributed among memory sub-banks.
The control unit 502 includes a GPCU 512, a scheduler core 514, a partially decoded very long instruction word (VLIW) bundle dispatch unit 516, a data address generation and organization (DAGO) unit 518, a VLIW bundle and data address queue 520, and a DMA controller 522.
The GPCU 512 controls instruction decoding and dispatching. The scheduler core 514 schedules the RIMD computing nodes 534 (discussed below) for a particular job or task. The partially decoded VLIW bundle dispatch unit 516 extracts instructions from a VLIW instruction bundle and sends them to the VLIW bundle and data address queue 520. The DAGO 518 generates and assigns memory addresses (or “data pointers” ) to the computing units, and sends them to the VLIW bundle and data address queue 520. The DAGO 518 may also perform any needed memory operation reorganization. A program for execution may be split into global and local controllers. There may be some overlap between some stages to relax the complexity and provide best performance.
The vector instruction pipeline 504 includes instruction routers 532, RIMD computing nodes 534, memory sub-banks 536, and smart router and prefetcher units 538. The instruction routers 532 receive instructions from the VLIW bundle and data address queue 520 and distribute them to the RIMD computing nodes 534. There may be one or more of the instruction routers 532.
Each of the RIMD computing nodes 534 executes the instructions independently of one another. Clock gating for each of the RIMD computing node 534 may be flexible, such that each node has its own input clock connection that is gated for the node when the node is not  used. The RIMD computing nodes 534 are coupled to the partially decoded VLIW bundle dispatch unit 516. Each time the RIMD computing nodes 534 finish executing instructions, they notify the partially decoded VLIW bundle dispatch unit 516. In some embodiments, the notification is a 1-bit beat. The GPCU 512 counts the number of beats and dispatches more instructions to the vector instruction pipeline 504 according to the quantity of received beats. The RIMD computing nodes 534 access the memory sub-banks 536. Each of the RIMD computing nodes 534 are near at least one of the memory sub-banks 536 that can be accessed more quickly by the respective RIMD computing nodes 534. The RIMD computing nodes 534 may access other memory sub-banks 536 that are further away through the smart router and prefetcher units 538.
Distributing the RIMD computing nodes 534 among the memory sub-banks 536 may result in the RIMD computing nodes 534 having variable latencies. However, splitting the pipeline between a scalar pipeline (e.g., GPCU) and a vector pipeline (e.g., independent RIMD computing nodes) may result in a scalable and high performance system, notwithstanding the any additional expense of memory operations.
The smart router and prefetcher units 538 route and arbitrate memory access operations, and perform some memory prefetching, write buffering, and data merging. The smart router and prefetcher units 538 are programmable prefetchers, and work with each of the RIMD computing nodes 534 to reduce the latency associated with accessing far data nodes. The smart router and prefetcher units 538 prefetch data based on a stride or offset from a base memory address. In some embodiments, the smart router and prefetcher units 538 merge write operations from several compute nodes, which may reduce the total quantity of access to memory. In some embodiments, the DMA controller 522 is a helper module that allows the RIMD computing nodes 534 to perform DMA through the smart router and prefetcher units 538. The smart router and prefetcher units 538 may be referred to as smart arbiter and prefetchers (SAPs) .
Figure 6 is a block diagram of a RIMD computing node 600. The RIMD computing node 600 includes a RIMD interface 602, a queue 604, a local program control unit (LPCU) 606, a compute unit 608, and an optional data buffer 610. The RIMD interface 602 interfaces the RIMD computing node 600 with other devices in a processor, e.g., the instruction routers 532.
The queue 604 receives instructions and data from the instruction routers 532 and buffers them. Buffering instructions and input data allows the RIMD computing node 600 to operate independently of other RIMD computing nodes in a RIMD processor. The queue 604 localizes any stalls in the RIMD computing node 600, so that other RIMD computing nodes are  not affected. The queue 604 includes an instruction buffer 612 (or “instruction queue” ) and an input data buffer 614 (or “result queue” ) . The instruction buffer 612 buffers instructions, and the input data buffer 614 buffers data that is needed to execute the instructions.
The LPCU 606 includes instruction decoding and dispatching functionality. The LPCU 606 includes logic to send a beat to the GPCU 512 each time the RIMD computing node 600 completes an instruction in the instruction buffer 612.
The compute unit 608 includes function units that perform the main computations in the RIMD computing node 600. For example, the compute unit 608 includes a multiplexing unit, registers, and load/store units. In some embodiments, the compute unit 608 has a dedicated load/store path for the load/store units, so that the compute unit 608 may access memory independently of other RIMD computing units.
Some embodiments include the data buffer 610. The data buffer 610 may be similar to the input data buffer 614, and may be in the load/store path, to buffer memory access operations. Use of the data buffer 610 may prevent the RIMD computing node 600 from stalling when it attempts to access memory that another RIMD computing node is accessing. Variable memory latencies may cause back-to-back read operations to return data to the compute unit 608 out of order. Buffering read data temporarily allows the memory to be read by the compute unit 608 in order. The data buffer 610 may be, e.g., a content-addressable memory (CAM) cache, a first-in-first-out (FIFO) buffer, or the like. In some embodiments, the data buffer 610 may be small, such as less than about 1 kilobyte (KB) in size. The size of the data buffer 610 may be determined according to the latency to memory banks. In some embodiments, the furthest latency to the memory bank may be used to determine the size of the data buffer 610. In some embodiments, the data buffer 610 may be less than or equal to about double the size of the instruction buffer 612. The data buffer 610 also buffer write operations.
Figure 7 is a timing diagram 700 for RIMD instruction execution. The timing diagram 700 shows timing states of the system clock and nine computing nodes. The timing diagram 700 illustrates how RIMD computing nodes may execute instructions independently. In the timing diagram 700, a program is dispatched by the GPCU at cycle 1.  Computing nodes  1, 2, and 3 receive the program and being executing it at cycle 2.  Computing nodes  4, 5, and 6 receive the program and being executing it at cycle 3.  Computing nodes  7, 8, and 9 receive the program and being executing it at cycle 4. The program reaches different computing nodes at different times based on, e.g , where the computing nodes are physically located in the processor. Further nodes may have higher latencies. Other factors may also affect when the computing nodes receive the program and begin executing it.
The quantity of RIMD computing nodes selected for a task is dynamically configurable, and may be based on, e.g., task requirements. In the timing diagram 700, nine threads are configured to run the program. This quantity may change for different tasks. Additionally, the RIMD computing nodes may be further divided into parallel threads. The number of parallel threads allocated from a RIMD cluster is also configurable, e.g., a maximum limit may be put on the quantity of allocated threads. For example, continuing the example shown in the timing diagram 700, the RIMD cluster could have been divided in several manners: (1) all of the RIMD computing nodes may be running same thread; (2) all of the RIMD computing nodes may be running different threads; (3) some units may be running a first thread, and other units may be running a second thread; and (4) some units may be running a first and second thread, and others may be powered down. Other configurations may also be possible.
Figure 8 is a flow diagram for a RIMD processing method 800. It should be appreciated that the RIMD processing method 800 does not show a sequence of steps. Rather, blocks in the RIMD processing method 800 could be operating in parallel.
First, a program for execution is moved to global program memory by the GPCU (step 802) . The program may be in far memory, or may be fetched from a program cache or memory for programming. In embodiments where the program is in memory, it may be fetched through DMA. Next, data needed for execution of the program is moved from far memory (step 804) . In some embodiments, moving may be accomplished by copying the data with DMA. The scheduler schedules a task at one or more RIMD computing nodes (step 806) . The scheduler selects the quantity of computing nodes for the task, and assigns an identifier (ID) to each node. The GPCU fetches program code for the task, and dispatches it to the scheduled RIMD computing nodes with a data address for the task (step 808) . The program code is then pushed to each RIMD computing node. Because the RIMD computing nodes are in distributed shared memory, programming may not need to be copied to the nodes using expensive operations such caching or DMA.
Each RIMD computing node receives and buffers the program code and data address (step 810) . The RIMD computing nodes decode and execute the program code dispatched to them (step 812) . The RIMD computing nodes access data during execution using the received data address, at an offset from the data address that is computed using the ID assigned to each computing node (step 814) . Accessed data may be brought nearer to the RIMD computing node with a SAP (step 816) . The SAP may prefetch data by communicating with other SAPs in the memory. Each RIMD computing node sends a beat to the GPCU when it is finished executing or dispatching an instruction (step 818) .
The GPCU keeps track of the progress of each RIMD computing node by counting the quantity of beats each sends (step 820) . The GPCU dispatches more program code and data address to the RIMD computing nodes as they complete instructions in their buffers. The GPCU may also use the beats from the RIMD computing nodes to synchronize the nodes, if needed (step 822) . When the task is complete, the GPCU may schedule the RIMD computing nodes for another task by repeating steps 802-822, or may power down the nodes if there are no more tasks (step 824) .
Figure 9 is a block diagram of a processing system 900 for performing methods described herein, which may be installed in a host device. As shown, the processing system 900 includes a processor 902, a memory 904, and interfaces 906-910, which may (or may not) be arranged as shown in Figure 9. The processor 902 may be any component or collection of components adapted to perform computations and/or other processing related tasks, and the memory 904 may be any component or collection of components adapted to store programming and/or instructions for execution by the processor 902. In an embodiment, the memory 904 includes a non-transitory computer readable medium. The  interfaces  906, 908, 910 may be any component or collection of components that allow the processing system 900 to communicate with other devices/components and/or a user. For example, one or more of the  interfaces  906, 908, 910 may be adapted to communicate data, control, or management messages from the processor 902 to applications installed on the host device and/or a remote device. As another example, one or more of the  interfaces  906, 908, 910 may be adapted to allow a user or user device (e.g., personal computer (PC) , etc. ) to interact/communicate with the processing system 900. The processing system 900 may include additional components not depicted in Figure 9, such as long term storage (e.g., non-volatile memory, etc. ) .
In some embodiments, the processing system 900 is included in a network device that is accessing, or part otherwise of, a telecommunications network. In one example, the processing system 900 is in a network-side device in a wireless or wireline telecommunications network, such as a base station, a relay station, a scheduler, a controller, a gateway, a router, an applications server, or any other device in the telecommunications network. In other embodiments, the processing system 900 is in a user-side device accessing a wireless or wireline telecommunications network, such as a mobile station, a user equipment (UE) , a personal computer (PC) , a tablet, a wearable communications device (e g., a smartwatch, etc. ) , or any other device adapted to access a telecommunications network.
In an example embodiment, the processing system 900 includes a code reception module receiving program code for a task, an assignment module assigning a plurality of  computing nodes to perform the task, a dispatch module dispatching first fetch packets for the program code and first respective data pointers for the first fetch packets to each of the plurality of computing nodes, a beat module receiving a beat from each node of the plurality of computing nodes in response to each node completing execution of the first fetch packets dispatched to the node, and a tracking module tracking execution of the program code by the plurality of computing nodes in accordance with the received beats. In some embodiments, the processing system 900 may include other or additional modules for performing any one of or combination of steps described in the embodiments.
Although this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.

Claims (20)

  1. A processor comprising:
    memory blocks located in a memory bank;
    one or more computing nodes forming a vector instruction pipeline for executing a task, each of the computing nodes located in the memory bank, each of the computing nodes executing a portion of the task independently of other ones of the computing nodes; and
    a global program controller unit (GPCU) forming a scalar instruction pipeline for executing the task, the GPCU configured to schedule instructions for the task at one or more of the computing nodes, the GPCU further configured to dispatch an address for the memory blocks used by each of the computing nodes to the computing nodes.
  2. The processor of claim 1, wherein the computing nodes comprise a plurality of subsets of computing nodes, each of the plurality of subsets of computing nodes executing a different portion of the task during a different period.
  3. The processor of claim 2, wherein each of the plurality of subsets of computing nodes accesses the memory blocks specified by the address dispatched to each of the plurality of subsets of computing nodes.
  4. The processor of any of claims 1 to 3, further comprising:
    an instruction queue configured to receive instructions for the task scheduled to the computing nodes.
  5. The processor of any of claims 1 to 4, wherein each computing node of the one or more computing nodes comprises:
    an instruction queue configured to receive instructions for the portion of the task scheduled to the computing node;
    a compute unit for executing the instructions;
    a result queue configured to store results of executing the instructions from the compute unit; and
    a local program controller unit (LPCU) configured to notify the GPCU when the compute unit completes execution of the instructions from the instruction queue.
  6. The processor of claim 5, wherein the GPCU is further configured to schedule additional instructions for the task at a computing node upon receiving notification that the computing node completed execution of the instructions in the instruction queue of the computing node.
  7. The processor of any of claims 1 to 6, wherein the GPCU is further configured to perform all instructions for the task.
  8. The processor of any of claims 1 to 7, wherein the one or more computing nodes each perform different instructions at a same time.
  9. The processor of any of claims 1 to 8, further comprising an arbitrator configured to prefetch data needed by a first computing node of the computing nodes from a second computing node of the computing nodes.
  10. The processor of any of claims 1 to 9, wherein the GPCU is further configured to synchronize the computing nodes upon completion of the task.
  11. The processor of any of claims 1 to 10, wherein a subset of the computing nodes are scheduled for the task, and unscheduled ones of the computing nodes are powered down during execution of the task.
  12. A method comprising:
    receiving program code for a task;
    assigning a plurality of computing nodes to perform the task;
    dispatching first fetch packets for the program code and first respective data pointers for the first fetch packets to each of the plurality of computing nodes;
    receiving a beat from each node of the plurality of computing nodes in response to each node completing execution of the first fetch packets dispatched to the node; and
    tracking execution of the program code by the plurality of computing nodes in accordance with the received beats.
  13. The method of claim 12, further comprising synchronizing the plurality of computing nodes in accordance with the received beats.
  14. The method of any of claims 12 to 13, wherein dispatching the first fetch packets and the first respective data pointers comprises queueing the first fetch packets and the first respective data pointers in a buffer for each of the plurality of computing nodes.
  15. The method of claim 14, further comprising:
    executing the first fetch packets in the buffer; and
    accessing memory indicated by the first respective data pointers for the first fetch packets.
  16. The method of claim 14, further comprising sending, by each node of the plurality of computing nodes, the beat in response to completing one of the first fetch packets in the buffer for the node.
  17. The method of any of claims 12 to 16, wherein tracking the execution of the program code comprises:
    counting a quantity of beats received from each node of the plurality of computing nodes; and
    dispatching second fetch packets for the program code and second respective data pointers for the second fetch packets to each of the plurality of computing nodes in response to the quantity of counted beats exceeding a threshold.
  18. The method of any of claims 12 to 17, further comprising providing data to a first computing node of the plurality of computing nodes from a neighboring computing node of the plurality of computing nodes.
  19. A program control unit comprising:
    a very long instruction word (VLIW) bundle dispatcher configured to decode program code for a first task;
    a data address generation and organization (DAGO) unit configured to assign data pointers for the program code; and
    a scheduler configured to be coupled to a plurality of computing nodes, the scheduler configured to allocate the plurality of computing nodes to execute the program code, the scheduler configured to allocate a first thread to a first subset of the plurality of computing nodes, and to allocate a second thread to a second subset of the plurality of computing nodes.
  20. The program control unit of claim 19, wherein the VLIW bundle dispatcher is further configured to receive a notification from the plurality of computing nodes that the program code for the first task is complete, and wherein the schedule is further configured to allocate the plurality of computing nodes to execute program code for a second task.
PCT/CN2016/091922 2015-07-30 2016-07-27 System and method for variable lane architecture WO2017016486A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018504845A JP2018521427A (en) 2015-07-30 2016-07-27 System and method for variable lane architecture
CN201680044636.3A CN107924309B (en) 2015-07-30 2016-07-27 System and method for variable channel architecture
EP16829851.1A EP3320429B1 (en) 2015-07-30 2016-07-27 System and method for variable lane architecture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562198886P 2015-07-30 2015-07-30
US62/198,886 2015-07-30
US15/220,067 US10691463B2 (en) 2015-07-30 2016-07-26 System and method for variable lane architecture
US15/220,067 2016-07-26

Publications (1)

Publication Number Publication Date
WO2017016486A1 true WO2017016486A1 (en) 2017-02-02

Family

ID=57882420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091922 WO2017016486A1 (en) 2015-07-30 2016-07-27 System and method for variable lane architecture

Country Status (5)

Country Link
US (2) US10691463B2 (en)
EP (1) EP3320429B1 (en)
JP (1) JP2018521427A (en)
CN (1) CN107924309B (en)
WO (1) WO2017016486A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10331445B2 (en) 2017-05-24 2019-06-25 Microsoft Technology Licensing, Llc Multifunction vector processor circuits
CN109861781B (en) * 2017-11-30 2021-02-12 华为技术有限公司 Interface transmission method, device and equipment
GB2575289B (en) * 2018-07-04 2020-09-16 Graphcore Ltd Streaming engine
CN112099768B (en) * 2020-08-04 2024-02-23 北京奇艺世纪科技有限公司 Business process processing method and device and computer readable storage medium
JP7561376B2 (en) 2021-03-17 2024-10-04 富士通株式会社 Processing Unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588152A (en) 1990-11-13 1996-12-24 International Business Machines Corporation Advanced parallel processor including advanced support hardware
CN1349159A (en) * 2001-11-28 2002-05-15 中国人民解放军国防科学技术大学 Vector processing method of microprocessor
US20030018868A1 (en) 2001-07-19 2003-01-23 Chung Shine C. Method and apparatus for using smart memories in computing
US20100095152A1 (en) * 2008-10-09 2010-04-15 International Business Machines Corporation Checkpointing A Hybrid Architecture Computing System
CN102156637A (en) * 2011-05-04 2011-08-17 中国人民解放军国防科学技术大学 Vector crossing multithread processing method and vector crossing multithread microprocessor
CN103207773A (en) * 2006-08-18 2013-07-17 高通股份有限公司 System And Method Of Processing Data Using Scalar/vector Instructions

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2552075B2 (en) 1992-05-22 1996-11-06 インターナショナル・ビジネス・マシーンズ・コーポレイション Computer system
US6026478A (en) 1997-08-01 2000-02-15 Micron Technology, Inc. Split embedded DRAM processor
JPH11306037A (en) 1998-04-16 1999-11-05 Sony Corp Units and method for parallel operation processing
JPH11306149A (en) 1998-04-16 1999-11-05 Sony Corp Parallel arithmetic processor and method therefor
JP3708853B2 (en) 2001-09-03 2005-10-19 松下電器産業株式会社 Multiprocessor system and program control method
JP2003091415A (en) 2001-09-17 2003-03-28 Sanyo Electric Co Ltd Data processing method and device and method for converting data
GB2399900B (en) 2003-03-27 2005-10-05 Micron Technology Inc Data reording processor and method for use in an active memory device
US7472392B2 (en) 2003-04-23 2008-12-30 Micron Technology, Inc. Method for load balancing an n-dimensional array of parallel processing elements
US9015390B2 (en) 2003-04-25 2015-04-21 Micron Technology, Inc. Active memory data compression system and method
US7673102B2 (en) 2006-05-17 2010-03-02 Qualcomm Incorporated Method and system for maximum residency replacement of cache memory
US8180998B1 (en) 2007-09-10 2012-05-15 Nvidia Corporation System of lanes of processing units receiving instructions via shared memory units for data-parallel or task-parallel operations
US7979844B2 (en) * 2008-10-14 2011-07-12 Edss, Inc. TICC-paradigm to build formally verified parallel software for multi-core chips
JP5091912B2 (en) 2009-05-21 2012-12-05 株式会社東芝 Multi-core processor system
CN102695249B (en) 2011-03-23 2014-10-08 北京天地互连信息技术有限公司 Energy saving method for IPv6 wireless sensor network
JP2013054625A (en) 2011-09-06 2013-03-21 Toyota Motor Corp Information processor and information processing method
US9934043B2 (en) 2013-08-08 2018-04-03 Linear Algebra Technologies Limited Apparatus, systems, and methods for providing computational imaging pipeline
US9336142B2 (en) * 2013-11-06 2016-05-10 International Business Machines Corporation Cache configured to log addresses of high-availability data via a non-blocking channel
CN104778080A (en) 2014-01-14 2015-07-15 中兴通讯股份有限公司 Job scheduling processing method and device based on coprocessor
CN104199801A (en) 2014-08-26 2014-12-10 山东超越数控电子有限公司 Method for implementing high-performance computing cluster based on Loongson servers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588152A (en) 1990-11-13 1996-12-24 International Business Machines Corporation Advanced parallel processor including advanced support hardware
US20030018868A1 (en) 2001-07-19 2003-01-23 Chung Shine C. Method and apparatus for using smart memories in computing
CN1349159A (en) * 2001-11-28 2002-05-15 中国人民解放军国防科学技术大学 Vector processing method of microprocessor
CN103207773A (en) * 2006-08-18 2013-07-17 高通股份有限公司 System And Method Of Processing Data Using Scalar/vector Instructions
US20100095152A1 (en) * 2008-10-09 2010-04-15 International Business Machines Corporation Checkpointing A Hybrid Architecture Computing System
CN102156637A (en) * 2011-05-04 2011-08-17 中国人民解放军国防科学技术大学 Vector crossing multithread processing method and vector crossing multithread microprocessor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3320429A4

Also Published As

Publication number Publication date
JP2018521427A (en) 2018-08-02
EP3320429A1 (en) 2018-05-16
CN107924309A (en) 2018-04-17
US10884756B2 (en) 2021-01-05
US20170031689A1 (en) 2017-02-02
EP3320429A4 (en) 2018-07-18
CN107924309B (en) 2021-03-23
US10691463B2 (en) 2020-06-23
US20200278869A1 (en) 2020-09-03
EP3320429B1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
US10884756B2 (en) System and method for variable lane architecture
US11880687B2 (en) System having a hybrid threading processor, a hybrid threading fabric having configurable computing elements, and a hybrid interconnection network
JP6797880B2 (en) Synchronization in multi-tile, multi-chip processing configurations
JP6722251B2 (en) Synchronization in multi-tile processing arrays
US10963315B2 (en) Synchronization and exchange of data between processors
US10445271B2 (en) Multi-core communication acceleration using hardware queue device
KR20190044565A (en) Synchronization with a host processor
KR20190044571A (en) Sending Data Off-Chip
US9405712B2 (en) On-chip traffic prioritization in memory
US20020103990A1 (en) Programmed load precession machine
US11782760B2 (en) Time-multiplexed use of reconfigurable hardware
CN103649932B (en) The scattered distribution of resource and for supporting by the interconnection structure of multiple engine execute instruction sequences
US20190197018A1 (en) Dynamic reconfiguration using data transfer control
US11875425B2 (en) Implementing heterogeneous wavefronts on a graphics processing unit (GPU)
US10152329B2 (en) Pre-scheduled replays of divergent operations
US11221979B1 (en) Synchronization of DMA transfers for large number of queues
Ausavarungnirun Techniques for shared resource management in systems with throughput processors
Lin et al. GPU performance vs. thread-level parallelism: Scalability analysis and a novel way to improve TLP
Xu et al. Application-aware NoC management in GPUs multitasking
Khan et al. Data locality in Hadoop cluster systems
Elhelw et al. Time-based least memory intensive scheduling
JP7551996B2 (en) METHOD AND APPARATUS FOR HANDLING MEMORY ACCESSES FOR TCF-ENABLED PROCESSOR - Patent application
Hussain Hmmc: A memory controller for heterogeneous multi-core system
CN111602126B (en) System with hybrid thread processor, hybrid thread fabric with configurable computing elements, and hybrid interconnect network
Vo et al. KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018504845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016829851

Country of ref document: EP