WO2017016103A1 - 指纹检测电路及指纹辨识系统 - Google Patents

指纹检测电路及指纹辨识系统 Download PDF

Info

Publication number
WO2017016103A1
WO2017016103A1 PCT/CN2015/094639 CN2015094639W WO2017016103A1 WO 2017016103 A1 WO2017016103 A1 WO 2017016103A1 CN 2015094639 W CN2015094639 W CN 2015094639W WO 2017016103 A1 WO2017016103 A1 WO 2017016103A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fingerprint
fingerprint detection
finger
detection circuit
Prior art date
Application number
PCT/CN2015/094639
Other languages
English (en)
French (fr)
Inventor
詹昶
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP15899455.8A priority Critical patent/EP3239894B1/en
Priority to KR1020177023870A priority patent/KR20170107077A/ko
Publication of WO2017016103A1 publication Critical patent/WO2017016103A1/zh
Priority to US15/658,415 priority patent/US10496869B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches

Definitions

  • the invention belongs to the technical field of fingerprint detection, and relates to a fingerprint detection circuit and a fingerprint identification system, in particular to a fingerprint detection circuit and a fingerprint identification system for enhancing an output signal.
  • the capacitive fingerprint identification system is a popular fingerprint identification method, which is a Finger Ridge or Finger Valley that uses a sensed capacitance change to determine a user's fingerprint.
  • the capacitive fingerprint identification system uses a metal electrode to receive a user's finger contact, wherein the fingerprint detection circuit converts the capacitance between the metal electrode and the user's finger into a voltage signal, and outputs the fingerprint judgment module to the back end. For fingerprint recognition.
  • the metal electrode is usually covered with a cover plate having a small dielectric constant, so that the capacitance between the metal electrode and the user's finger is relatively small (the capacitance value is only about several tens of nanofarads (fF)), and the fingerprint
  • the capacitance value is only about several tens of nanofarads (fF)
  • the fingerprint The voltage amplitude of the output signal of the detection circuit output to the fingerprint determination module is reduced, thereby increasing the difficulty of fingerprint recognition.
  • the present invention is implemented in such a manner that a fingerprint detecting circuit is applied to a fingerprint identification system, and the fingerprint identification system transmits a first signal to a finger, and the fingerprint detecting circuit includes:
  • a conductive layer for receiving contact with a finger
  • the amplifier contains:
  • the output end has a first capacitance between the first input end and the first input end
  • the first phase of the first signal is opposite to the second phase of the second signal.
  • a fingerprint identification system for transmitting a first signal to a finger
  • the fingerprint identification system comprising: a plurality of fingerprint detection circuits, each fingerprint detection circuit comprising:
  • a conductive layer for receiving contact with a finger
  • the amplifier contains:
  • the output end has a first capacitance between the first input end and the first input end
  • first phase of the first signal is opposite to the second phase of the second signal
  • the fingerprint determination module is coupled to the plurality of fingerprint detection circuits for determining that each fingerprint detection circuit corresponds to a Finger Ridge or a Finger Valley.
  • the embodiment of the invention uses the two signals with opposite phases to drive the fingerprint detection circuit to increase the output signal strength of the fingerprint detection circuit, thereby reducing the difficulty of fingerprint detection, reducing power consumption and production cost, and conforming to the conventional voltage of the portable electronic device. .
  • FIG. 1 is a schematic diagram of a pattern detecting circuit according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a fingerprint identification system according to Embodiment 2 of the present invention.
  • FIG. 1 is a schematic diagram of a fingerprint detecting circuit 10 according to an embodiment of the present invention.
  • the fingerprint detecting circuit 10 is used in a fingerprint identification system that can generate a first signal V1 and transmit the first signal V1 to the finger FG through the metal electrode.
  • the fingerprint detecting circuit 10 includes a conductive layer 100, an amplifier Amp, and a switching unit SW.
  • the conductive layer 100 is a top conductive layer, which may be a metal electrode or a metal layer of an integrated circuit layout for receiving the contact of the finger FG and forming a capacitance C2 with the finger FG.
  • the amplifier Amp is an operational amplifier that includes a negative input (labeled with a "-" sign), a positive input (labeled with a "+” sign), and an output.
  • the negative input terminal is coupled to the conductive layer 100, the positive input terminal receives the second signal V2, and the output terminal outputs the output signal Vo.
  • the switch unit SW is coupled between the negative input terminal and the output terminal of the amplifier Amp.
  • Amplifier C1 is formed between the output end of the amplifier Amp and the negative input terminal (or the conductive layer 100), and the capacitor C1 can be a polysilicon-insulator-polysilicon (PIP) capacitor formed by the output end of the amplifier Amp and the conductive layer 100.
  • PIP polysilicon-insulator-polysilicon
  • the capacitance of the MiM is electrically connected to the capacitance between the output of the amplifier Amp and the conductive layer 100, and the capacitance C1 can be regarded as the feedback capacitance of the amplifier Amp.
  • the conductive layer 100 and the signal ground GND are formed with a capacitor C3.
  • the conductive layer 100 is usually covered by an insulating medium (not shown in FIG. 1), which may be a cap plate or a passivation layer.
  • an insulating medium (not shown in FIG. 1), which may be a cap plate or a passivation layer.
  • the capacitance value of the capacitor C2 is smaller, so that the voltage amplitude of the output signal Vo is small.
  • the fingerprint detecting circuit 10 inputs the second signal V2 (which is opposite in phase to the first signal V1) to the positive input terminal of the amplifier Amp, so that the voltage amplitude of the output signal Vo is enhanced. .
  • the working principle of the fingerprint detecting circuit 10 is as follows:
  • the output signal Vo It can be further expressed as:
  • Vo -(C2/C1+k(C1+C2+C3)/C1)*V1 (Formula 2).
  • the signal strength of the output signal Vo can be enhanced by the second signal V2 opposite to the phase of the first signal V1.
  • the capacitor C1 is 100 picofarad (fF)
  • the capacitor C3 is 10fF
  • the capacitor C2 is 20fF
  • the degree is 2V
  • the output signal Vo having a voltage amplitude of 3V can be obtained, and the voltage amplitudes of the first signal V1 and the second signal V2 are both in accordance with the conventional voltage of the portable electronic device.
  • the capacitance value of the capacitor C2 is smaller (for example, the capacitance value of the capacitor C2 is reduced to 10 fF), as long as the first The voltage amplitude of the signal V1 is 3V and the voltage amplitude of the second signal V2 is 2.25V, so that the voltage amplitude of the output signal Vo reaches 3V, and the voltage amplitudes of the first signal V1 and the second signal V2 are also in line with the portable electronic device. Regular voltage.
  • the positive input terminal of the amplifier is grounded (ie, the second signal V2 is 0V), and the voltage amplitude is required when the capacitor C1 is 100fF, the capacitor C3 is 10fF, and the capacitor C2 is 20fF.
  • the output signal Vo with a voltage amplitude of 3V can be achieved.
  • the insulating medium covering the conductive layer 100 is thickened or an insulating medium having a smaller dielectric constant is selected, and the capacitance of the capacitor C2 is as small as 10 fF, the voltage amplitude of the first signal V1 needs to be further increased to 30 V.
  • the output signal Vo with a voltage amplitude of 3V is
  • the fingerprint detecting circuit 10 of the embodiment of the present invention uses the first signal V1 and the second signal V2 with opposite phases to increase the signal strength of the output signal Vo, thereby reducing the difficulty of fingerprint detection, wherein the second signal V2 is input.
  • the voltage amplitudes of the first signal V1 and the second signal V2 are both in accordance with the conventional voltage of the portable electronic device, and the power consumption and the production cost are also reduced.
  • the first embodiment is only for explaining the concept of the present invention, and those skilled in the art can make different modifications according to the present invention, and are not limited thereto.
  • the first signal V1 is coupled to the negative input terminal of the amplifier Amp, and the second signal V2 is input to the positive input terminal of the amplifier Amp, without being limited thereto, for example, the first signal
  • V1 can be coupled to the positive input of the amplifier and the second signal V2 is input to the negative input of the amplifier.
  • the fingerprint detecting circuit 10 can be applied to the fingerprint identification system, as shown in FIG. 2, which is a schematic diagram of the fingerprint identification system 20 according to the second embodiment of the present invention.
  • the fingerprint identification system 20 includes the fingerprint determination module 200 and the fingerprint detection circuits 10_1 to 10_M.
  • the circuit structure of the fingerprint detection circuits 10_1 to 10_M is the same as that of the fingerprint detection circuit 10, and details are not described herein.
  • the fingerprint detection circuits 10_1 to 10_M are coupled to the fingerprint determination module 200, and output the generated output signals Vo_1 to Vo_M to the fingerprint determination module 200.
  • the fingerprint determination module 200 can determine the fingerprint detection circuits 10_1 to 10_M according to the output signals Vo_1 to Vo_M. The location corresponds to the Finger Ridge or Finger Valley.
  • the embodiment of the present invention uses the two signals with opposite phases to drive the fingerprint detection circuit to increase the output signal strength of the fingerprint detection circuit, thereby reducing the difficulty of fingerprint detection, reducing power consumption and production cost, and being portable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明适用于指纹检测技术领域,提供了一种指纹检测电路,应用于指纹辨识系统,指纹辨识系统将第一信号传送至手指,指纹检测电路包含有:导电层,用来接收手指的接触;以及放大器,包含有:第一输入端,耦接于导电层;第二输入端,用来接收第二信号;以及输出端,与第一输入端之间具有第一电容;其中,第一信号的第一相位与第二信号的第二相位相反。本发明利用相位相反的二信号来驱动指纹检测电路,以增加指纹检测电路的输出信号强度,而降低指纹检测的困难度,同时降低功率消耗和生产成本,且符合便携式电子装置的常规电压。

Description

指纹检测电路及指纹辨识系统 技术领域
本发明属于指纹检测技术领域,涉及一种指纹检测电路及指纹辨识系统,尤其涉及一种增强输出信号的指纹检测电路及指纹辨识系统。
背景技术
随着科技日新月异,移动电话、数字相机、平板电脑、笔记本电脑等越来越多的便携式电子装置已经成为了人们生活中必备的工具。由于便携式电子装置一般为个人使用,具有一定的隐私性,因此其内部储存的数据,例如电话簿、相片、个人信息等等为私人所有。若电子装置一旦丢失,则这些数据可能会被他人所利用,而造成不必要之损失。虽然目前已有利用密码保护的方式来避免电子装置为他人所使用,但密码容易泄露或遭到破解,具有较低的安全性。并且用户需记住密码才能使用电子装置,若忘记密码,则会带给使用者许多不便。因此,目前发展出利用个人指纹辨识的方式来达到身份认证的目的,以提升数据安全性。
电容式指纹辨识系统是相当受欢迎的一种指纹辨识方法,其是利用感测电容变化判断使用者指纹的纹峰(Finger Ridge)或纹谷(Finger Valley)。详细来说,电容式指纹辨识系统利用金属电极来接收使用者的手指接触,其中的指纹检测电路可将金属电极与使用者手指之间的电容转换成电压信号,并输出至后端的指纹判断模块,以进行指纹识别。然而,金属电极通常会以介电常数小的盖板加以覆盖,使得金属电极与使用者手指之间的电容相当微小(其电容值大约仅数十毫微微法拉(Femtofarad,fF)左右),指纹检测电路输出至指纹判断模块的输出信号的电压幅度随之减小,由此增加了指纹辨识的困难。
现有技术中,利用增加驱动信号的电压幅度以解决输出信号微小的问题, 如美国专利申请US20130271422 A1,其以12伏特(Volt,V)甚至16伏特的驱动信号来驱动指纹检测电路,如此高电压幅度的规格不但不符合便携式电子装置的常规电压(3伏特或5伏特),而且也增加电路复杂度和整体系统的功率消耗。
发明内容
本发明的目的在于提供一种增强输出信号的指纹检测电路及指纹辨识系统,旨在增加指纹检测电路的输出信号强度,且符合便携式电子装置的常规电压。
本发明是这样实现的,一种指纹检测电路,应用于指纹辨识系统,所述指纹辨识系统将第一信号传送至手指,所述指纹检测电路包含有:
导电层,用来接收手指的接触;以及
放大器,包含有:
第一输入端,耦接于所述导电层;
第二输入端,用来接收第二信号;以及
输出端,与所述第一输入端之间具有第一电容;
其中,所述第一信号的第一相位与所述第二信号的第二相位相反。
本发明的目的还在于提供一种指纹辨识系统,将第一信号传送至手指,所述指纹辨识系统包含有:多个指纹检测电路,每一指纹检测电路包含有:
导电层,用来接收手指的接触;以及
放大器,包含有:
第一输入端,耦接于所述导电层;
第二输入端,用来接收第二信号;以及
输出端,与所述第一输入端之间具有第一电容;
其中,所述第一信号的第一相位与所述第二信号的第二相位相反;
指纹判断模块,耦接于所述多个指纹检测电路,用来判断每一指纹检测电路对应至手指的纹峰(Finger Ridge)或纹谷(Finger Valley)。
本发明实施例利用相位相反的二信号来驱动指纹检测电路,以增加指纹检测电路的输出信号强度,而降低指纹检测的困难度,同时降低功率消耗和生产成本,且符合便携式电子装置的常规电压。
附图说明
图1是本发明实施例一提供的纹检测电路的示意图;
图2是本发明实施例二提供的指纹辨识系统的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,为本发明实施例一指纹检测电路10的示意图。指纹检测电路10用于指纹辨识系统,该指纹辨识系统可产生第一信号V1并透过金属电极将第一信号V1传送至手指FG。
指纹检测电路10包含有导电层100、放大器Amp和开关单元SW。导电层100为顶层导电层,其可为金属电极或是集成电路布局的金属层(Metal),用来接收手指FG的接触,与手指FG之间形成电容C2。放大器Amp为运算放大器,其包含有负输入端(标示有「-」号)、正输入端(标示有「+」号)和输出端。负输入端耦接于导电层100,正输入端接收第二信号V2,输出端输出输出信号Vo。开关单元SW耦接于放大器Amp的负输入端和输出端之间。另外,第二信号V2的相位(即第二相位)与第一信号V1的相位(即第一相位)相反,即第二信号V2可表示为V2=-k*V1,其中k代表任何正值常数。放大器Amp的输出端与负输入端(或导电层100)之间具有电容C1,电容C1可为放大器Amp的输出端与导电层100所形成的多晶硅绝缘体多晶硅(Polysilicon–insulator–Polysilicon,PIP)电容或是金属绝缘金属(Metal–insulator–Metal, MiM)电容,或是电性连接于放大器Amp的输出端与导电层100之间的电容,电容C1可视为放大器Amp的反馈电容。另外,导电层100与信号地端GND形成有电容C3。
实际应用中,导电层100通常以绝缘介质(图1未示出)覆盖,绝缘介质可为盖板或是钝化层。当绝缘介质的厚度越厚或是绝缘介质的介电常数越小时,电容C2的电容值越小,而使得输出信号Vo的电压幅度很小。为了解决输出信号Vo的电压幅度很小的问题,指纹检测电路10将第二信号V2(其与第一信号V1相位相反)输入至放大器Amp的正输入端,使得输出信号Vo的电压幅度得以增强。
指纹检测电路10的工作原理如下:
因第一信号V1透过电容C2耦合至放大器Amp的负输入端,放大器Amp可产生对应于第一信号V1的第一输出信号Vo1,第一输出信号Vo1可表示为Vo1=-(C2/C1)*V1;同时,因放大器Amp的正输入端接收第二信号V2,放大器Amp可产生对应于第二信号V2的第二输出信号Vo2,第二输出信号Vo2可表示为Vo2=((C1+C2+C3)/C1)*V2。如此一来,放大器Amp的输出信号Vo为第一输出信号Vo1与第二输出信号Vo2的总和,换句话说,输出信号Vo可表示为:
Vo=Vo1+Vo2=-(C2/C1)*V1+((C1+C2+C3)/C1)*V2  (式1)。
需注意的是,因第二信号V2与第一信号V1的相位相反(即第二信号V2可表示为V2=-k*V1,k代表任何正值常数),由式1可知,输出信号Vo可进一步表示为:
Vo=-(C2/C1+k(C1+C2+C3)/C1)*V1  (式2)。
由式2可知,输出信号Vo的信号强度可藉由与第一信号V1的相位相反的第二信号V2得以增强。
举例来说,当电容C1为100微微法拉(Femtofarad,fF)、电容C3为10fF以及电容C2为20fF的情况下,仅需第一信号V1和第二信号V2的电压幅 度为2V,即可得到电压幅度为3V的输出信号Vo,且第一信号V1和第二信号V2的电压幅度均符合便携式电子装置的常规电压。更进一步地,即使覆盖导电层100的绝缘介质增厚或选用具有更小介电系数的绝缘介质而导致电容C2的电容值更小时(如电容C2的电容值减小为10fF),只要第一信号V1的电压幅度为3V且第二信号V2的电压幅度为2.25V,即可使输出信号Vo的电压幅度达到3V,而第一信号V1和第二信号V2的电压幅度也符合便携式电子装置的常规电压。
相较之下,在现有技术中,放大器的正输入端为接地(即第二信号V2为0V),在电容C1为100fF、电容C3为10fF和电容C2为20fF的情况下,需要电压幅度为15V的第一信号V1,才能达到电压幅度为3V的输出信号Vo。当覆盖导电层100的绝缘介质增厚或选用更小介电系数的绝缘介质,而使得电容C2的电容值小至10fF时,需要将第一信号V1的电压幅度进一步提升为30V,才达得到电压幅度为3V的输出信号Vo。在此情形下,假设电源仅能提供3V的电压,为了得到电压幅度为3V的输出信号Vo,就需要额外的升压转换电路才能产生足够电压幅度的第一信号V1,反而增加功率消耗和生产成本。
由上述可知,本发明实施例的指纹检测电路10利用相位相反的第一信号V1和第二信号V2,以增加输出信号Vo的信号强度,进而降低指纹检测的困难度,其中第二信号V2输入至放大器Amp的正输入端。如此一来,第一信号V1和第二信号V2的电压幅度均符合便携式电子装置的常规电压,而功率消耗和生产成本也随之降低。
需注意的是,实施例一仅用以说明本发明的概念,本领域具通常知识者当可据以做不同之修饰,而不限于此。举例来说,于指纹检测电路10中,第一信号V1耦合至放大器Amp的负输入端,而第二信号V2输入至放大器Amp的正输入端,而不限于此,举例来说,第一信号V1可耦合至放大器的正输入端,且第二信号V2输入至放大器的负输入端,亦属于本发明之范畴。需注意的是,当第一信号V1耦合至放大器的正输入端且第二信号V2输入至放大器的负输入 端时,开关单元SW和电容C1的连接方式需相应变化,此为本领域具通常知识者所熟知,在此不再赘述。
另外,指纹检测电路10可应用于指纹辨识系统,如图2所述,为本发明实施例二的指纹辨识系统20的示意图。指纹辨识系统20包含有指纹判断模块200和指纹检测电路10_1~10_M,指纹检测电路10_1~10_M的电路结构与指纹检测电路10相同,在此不再赘述。指纹检测电路10_1~10_M耦接于指纹判断模块200,将其产生的输出信号Vo_1~Vo_M输出至指纹判断模块200,指纹判断模块200即可根据输出讯号Vo_1~Vo_M判断指纹检测电路10_1~10_M的所在位置对应至手指的纹峰(Finger Ridge)或纹谷(Finger Valley)。
综上所述,本发明实施例利用相位相反的二信号来驱动指纹检测电路,以增加指纹检测电路的输出信号强度,而降低指纹检测的困难度,同时降低功率消耗和生产成本,且符合便携式电子装置的常规电压。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种指纹检测电路,其特征在于,应用于指纹辨识系统,所述指纹辨识系统将第一信号传送至手指,所述指纹检测电路包含有:
    导电层,用来接收手指的接触;以及
    放大器,包含有:
    第一输入端,耦接于所述导电层;
    第二输入端,用来接收第二信号;以及
    输出端,与所述第一输入端之间具有第一电容;
    其中,所述第一信号的第一相位与所述第二信号的第二相位相反。
  2. 如权利要求1所述的指纹检测电路,其特征在于,所述导电层与所述手指之间形成有第二电容,所述导电层与地端形成第三电容。
  3. 如权利要求2所述的指纹检测电路,其特征在于,所述第一信号透过所述第二电容耦合至所述第一输入端。
  4. 如权利要求1所述的指纹检测电路,其特征在于,还包含开关单元,用来建立所述放大器的直流偏压,所述开关单元的一端耦接于所述第一输入端,所述开关单元的另一端耦接于所述放大器的输出端。
  5. 一种指纹辨识系统,其特征在于,将第一信号传送至手指,所述指纹辨识系统包含有:多个指纹检测电路,每一指纹检测电路包含有:
    导电层,用来接收手指的接触;以及
    放大器,包含有:
    第一输入端,耦接于所述导电层;
    第二输入端,用来接收第二信号;以及
    输出端,与所述第一输入端之间具有第一电容;
    其中,所述第一信号的第一相位与所述第二信号的第二相位相反;
    指纹判断模块,耦接于所述多个指纹检测电路,用来判断每一指纹检测电路对应至手指的纹峰(Finger Ridge)或纹谷(Finger Valley)。
  6. 如权利要求5所述的指纹辨识系统,其特征在于,所述导电层与所述手指之间形成有第二电容,所述导电层与地端形成第三电容。
  7. 如权利要求6所述的指纹辨识系统,其特征在于,所述第一信号透过所述第二电容耦合至所述放大器的第一输入端。
  8. 如权利要求5所述的指纹辨识系统,其特征在于,包含开关单元,用于建立所述放大器的直流偏压,所述开关单元的一端耦接于所述放大器的第一输入端,所述开关单元的另一端耦接于所述放大器的输出端。
PCT/CN2015/094639 2015-07-24 2015-11-16 指纹检测电路及指纹辨识系统 WO2017016103A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15899455.8A EP3239894B1 (en) 2015-07-24 2015-11-16 Fingerprint detection circuit and fingerprint recognition system
KR1020177023870A KR20170107077A (ko) 2015-07-24 2015-11-16 지문 감지 회로 및 지문 인식 시스템
US15/658,415 US10496869B2 (en) 2015-07-24 2017-07-25 Fingerprint detection circuit and fingerprint recognition system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510444445.3A CN105138957B (zh) 2015-07-24 2015-07-24 指纹检测电路及指纹辨识系统
CN201510444445.3 2015-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/658,415 Continuation US10496869B2 (en) 2015-07-24 2017-07-25 Fingerprint detection circuit and fingerprint recognition system

Publications (1)

Publication Number Publication Date
WO2017016103A1 true WO2017016103A1 (zh) 2017-02-02

Family

ID=54724301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094639 WO2017016103A1 (zh) 2015-07-24 2015-11-16 指纹检测电路及指纹辨识系统

Country Status (5)

Country Link
US (1) US10496869B2 (zh)
EP (1) EP3239894B1 (zh)
KR (1) KR20170107077A (zh)
CN (2) CN106971149A (zh)
WO (1) WO2017016103A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107066960A (zh) * 2017-03-31 2017-08-18 上海思立微电子科技有限公司 一种用于指纹传感器的信号处理电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106971149A (zh) 2015-07-24 2017-07-21 深圳市汇顶科技股份有限公司 指纹检测电路及指纹辨识系统
CN105117684B (zh) 2015-07-27 2017-04-19 深圳市汇顶科技股份有限公司 指纹检测电路及指纹辨识系统
KR102496475B1 (ko) * 2015-09-16 2023-02-06 삼성전자주식회사 지문 센서
CN105373776A (zh) * 2015-10-28 2016-03-02 深圳市汇顶科技股份有限公司 像素模块及指纹识别系统
EP3327615B1 (en) * 2016-09-27 2023-09-06 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564189A (zh) * 2004-04-22 2005-01-12 叶军 半导体指纹采集器件
US7755369B2 (en) * 2008-02-20 2010-07-13 Himax Technologies Limited Capacitive fingerprint sensor and the panel thereof
CN104331202A (zh) * 2014-11-07 2015-02-04 深圳市汇顶科技股份有限公司 指纹检测电路、传感器和触摸屏
CN105138957A (zh) * 2015-07-24 2015-12-09 深圳市汇顶科技股份有限公司 指纹检测电路及指纹辨识系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213908A (ja) * 1998-11-16 2000-08-04 Sony Corp 静電容量検出装置およびその検査方法並びに指紋照合装置
JP4387795B2 (ja) * 2001-12-07 2009-12-24 アイデックス・エーエスエー 湿潤及び乾燥指上の測定用センサ
DE602004017911D1 (de) * 2004-06-18 2009-01-02 Fingerprint Cards Ab Fingerabdruck-sensor-element
KR100915149B1 (ko) * 2007-07-19 2009-09-03 (주)에스엠엘전자 다채널 용량 감지 회로
US8115497B2 (en) * 2007-11-13 2012-02-14 Authentec, Inc. Pixel sensing circuit with common mode cancellation
US8791792B2 (en) * 2010-01-15 2014-07-29 Idex Asa Electronic imager using an impedance sensor grid array mounted on or about a switch and method of making
GB2487998B (en) * 2011-05-19 2013-03-20 Renesas Mobile Corp Amplifier
US9740343B2 (en) * 2012-04-13 2017-08-22 Apple Inc. Capacitive sensing array modulation
CN103427771B (zh) * 2013-06-25 2016-04-20 上海理工大学 Btl型差动式音频功率放大电路
CN103684408A (zh) * 2013-12-18 2014-03-26 苏州纳芯微电子有限公司 电容式传感器接口电路
CN203689535U (zh) * 2014-01-14 2014-07-02 敦泰科技有限公司 电场式指纹识别装置
CN103902971A (zh) * 2014-03-12 2014-07-02 深圳市汇顶科技股份有限公司 指纹检测电路和指纹检测装置
CN104217193B (zh) * 2014-03-20 2017-12-19 深圳市汇顶科技股份有限公司 电容指纹感应电路和感应器
US10229304B2 (en) * 2015-06-05 2019-03-12 Synaptics Incorporated Finger detection with auto-baseline tracking
KR102002081B1 (ko) * 2015-06-19 2019-07-22 크루셜텍 (주) 지문 검출 장치 및 이의 구동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564189A (zh) * 2004-04-22 2005-01-12 叶军 半导体指纹采集器件
US7755369B2 (en) * 2008-02-20 2010-07-13 Himax Technologies Limited Capacitive fingerprint sensor and the panel thereof
CN104331202A (zh) * 2014-11-07 2015-02-04 深圳市汇顶科技股份有限公司 指纹检测电路、传感器和触摸屏
CN105138957A (zh) * 2015-07-24 2015-12-09 深圳市汇顶科技股份有限公司 指纹检测电路及指纹辨识系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239894A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107066960A (zh) * 2017-03-31 2017-08-18 上海思立微电子科技有限公司 一种用于指纹传感器的信号处理电路
CN107066960B (zh) * 2017-03-31 2024-03-26 上海思立微电子科技有限公司 一种用于指纹传感器的信号处理电路

Also Published As

Publication number Publication date
EP3239894B1 (en) 2021-07-14
EP3239894A4 (en) 2018-01-03
KR20170107077A (ko) 2017-09-22
CN105138957A (zh) 2015-12-09
US10496869B2 (en) 2019-12-03
US20170323147A1 (en) 2017-11-09
EP3239894A1 (en) 2017-11-01
CN106971149A (zh) 2017-07-21
CN105138957B (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2017016103A1 (zh) 指纹检测电路及指纹辨识系统
JP6750059B2 (ja) 改良された感知素子を備えた容量指紋センサ
US9965667B2 (en) Fingerprint recogntion sensor and terminal device
JP6605678B2 (ja) 指紋感知システムおよび方法
CN107077610B (zh) 电容判读电路及指纹辨识系统
US20180089489A1 (en) Capacitive sensing circuit
WO2017016102A1 (zh) 指纹检测电路及指纹辨识系统
US10565420B2 (en) Capacitive sensing circuit
US10311279B2 (en) Fingerprint sensor device and operation method thereof
WO2018201432A1 (zh) 电压转换装置和指纹检测系统
US10699096B2 (en) Fingerprint identification system
WO2017071129A1 (zh) 指纹识别系统
WO2016169051A1 (zh) 用于指纹识别的像素感测电路、系统和电子设备
WO2017071130A1 (zh) 像素模块及指纹识别系统
CN113963380A (zh) 指纹检测电路、指纹识别模组和电子装置
CN108985136A (zh) 降噪讯电容式影像传感器及其操作方法
WO2017107282A1 (zh) 像素电路结构及指纹辨识系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899455

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015899455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177023870

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE