WO2017013737A1 - Elevator device - Google Patents

Elevator device Download PDF

Info

Publication number
WO2017013737A1
WO2017013737A1 PCT/JP2015/070698 JP2015070698W WO2017013737A1 WO 2017013737 A1 WO2017013737 A1 WO 2017013737A1 JP 2015070698 W JP2015070698 W JP 2015070698W WO 2017013737 A1 WO2017013737 A1 WO 2017013737A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
car
basket
deflector
sheave
Prior art date
Application number
PCT/JP2015/070698
Other languages
French (fr)
Japanese (ja)
Inventor
研一 中橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017529207A priority Critical patent/JP6494760B2/en
Priority to PCT/JP2015/070698 priority patent/WO2017013737A1/en
Priority to CN201580081810.7A priority patent/CN107848760B/en
Publication of WO2017013737A1 publication Critical patent/WO2017013737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/08Driving gear ; Details thereof, e.g. seals with hoisting rope or cable operated by frictional engagement with a winding drum or sheave

Definitions

  • the present invention relates to an elevator apparatus, and more particularly to an elevator apparatus that reduces a shock by controlling a deceleration at an emergency stop according to a load in a car.
  • a conventional elevator machine hoist includes a sheave, a deflector, a motor for rotating the sheave, and a brake for braking the rotation of the sheave.
  • a rope is wound around the sheave and the deflector.
  • a basket is connected to one end of the rope.
  • a weight is connected to the other end of the rope. The basket and the weight are moved up and down in the hoistway by a motor. Further, when the cage arrives, the rotation of the sheave is braked by the brake, and the cage stops.
  • an emergency stop is provided on the lower side of the basket.
  • the emergency stop engages with a guide rail provided in the hoistway to prevent the car from moving up and down.
  • the emergency stop is only used if the rope breaks and if for some reason the car begins to descend at a speed exceeding the rated speed. Therefore, even in an emergency stop such as an earthquake, the cage is usually stopped by the brake of the hoisting machine.
  • an emergency stop test will be conducted when the conventional elevator system is completed.
  • the emergency stop is operated with the cage stopped, and the motor is driven in the direction in which the cage descends.
  • the basket does not move.
  • the rope loosens, and as a result, the sheave begins to idle.
  • the stopping force of the emergency stop is insufficient, the rope does not loosen and the cage descends. From this, it can be determined that the emergency stop is good if the cage does not descend.
  • the hoist motor needs to generate a very large torque sufficient for the sheave to start spinning.
  • the capacity of the hoisting machine motor is determined by the magnitude of this torque.
  • the magnitude of this torque is larger than the torque required for actual operation. Therefore, if the capacity of the motor of the hoisting machine can be determined based on the torque required for actual operation, the capacity of the motor can be reduced.
  • Patent Document 1 a movable device for moving the position of the deflecting wheel is provided.
  • the movable device raises the position of the deflecting wheel above the position during normal operation during the emergency stop test. Thereby, the winding angle of the rope around the sheave is reduced. As a result, the traction of the rope can be reduced. Thereby, the torque used for the emergency stop test can be reduced. As a result, the capacity of the motor can be reduced.
  • Patent Document 1 the position of the deflector is changed only when a test at the time of completion is performed. After the test is completed, the position of the deflector is returned to the original position. Therefore, in patent document 1, the position of a deflecting vehicle cannot be changed during operation of an elevator.
  • the basket is stopped by the brake of the hoisting machine.
  • the basket is stopped by the hoisting machine brake.
  • the brake torque required for stopping varies depending on the load in the car.
  • the present invention has been made to solve such a problem, and it is an object of the present invention to obtain an elevator apparatus that can control the deceleration according to the load in the car and reduce the impact when the car stops. It is aimed.
  • This invention connects a hoisting machine including a sheave, a motor that rotates the sheave, and a brake that brakes the sheave, a basket and a weight, and is wound around the sheave.
  • a sled wheel provided between a rope, the sheave, and the weight, the sled wheel wound with the rope, and the sled wheel that supports the sled wheel and allows the sled wheel to move in a vertical direction.
  • the position control unit moves the deflecting vehicle downward in accordance with an increase in the load in the cage and moves the deflecting vehicle upward in accordance with a decrease in the load in the cage.
  • the brake torque required to stop the car changes according to the load value in the car.
  • the brake torque is adjusted during the test at the time of completion, the brake torque is always constant. Therefore, in the conventional elevator apparatus, a large deceleration occurs when the car is brought to an emergency stop with a small load in the car. Therefore, in the elevator apparatus according to the present invention, a mechanism is provided that can automatically adjust the vertical position of the deflector according to the load variation in the car. As a result, the traction of the rope is controlled, and the impact when the car stops is mitigated.
  • FIG. 1 is a schematic configuration diagram showing a configuration of an elevator apparatus according to Embodiment 1 of the present invention.
  • a basket 1 and a weight 2 are provided in a hoistway.
  • a hoisting machine 4 is provided at the upper part of the hoistway.
  • the hoist 4 raises and lowers the basket 1 and the weight 2.
  • the hoisting machine 4 has a hoisting machine main body and a sheave 5.
  • the hoisting machine main body includes a motor and a brake.
  • the sheave 5 is rotated by a motor.
  • a plurality of ropes 3 are wound around the sheave 5.
  • a deflecting wheel 6 is disposed between the sheave 5 and the weight 2.
  • the rope 3 is also wound around the deflector 6.
  • a basket 1 is connected to one end of the rope 3.
  • a weight 2 is connected to the other end of the rope 3.
  • the basket 1 and the weight 2 are suspended in a hoistway by a rope 3.
  • the cage 1 and the weight 2 are moved up and down in the hoistway 1 by the rotation of the sheave 5.
  • the hoisting machine 4 is mounted on the hoisting machine base 8.
  • the hoisting machine base 8 is fixed to the upper part of the hoistway.
  • the hoisting machine base 8 is provided with a deflecting wheel mounting beam 7 for mounting the deflecting wheel 6.
  • the deflecting wheel mounting beam 7 supports the deflecting wheel 6.
  • the deflecting wheel mounting beam 7 enables the deflecting wheel 6 to move in the vertical direction.
  • the deflector wheel mounting beam 7 has a rectangular shape.
  • the longitudinal direction of the deflector wheel mounting beam 7 is the vertical direction, that is, the ascending / descending direction.
  • the hoisting machine base 8 is also rectangular.
  • the longitudinal direction of the hoisting machine base 8 is the horizontal direction.
  • the vertical length of the hoisting machine base 8 is shorter than the vertical direction of the deflector wheel mounting beam 7.
  • the baffle mounting beam 7 is provided with a vertical adjustment groove 9 for moving the baffle 6 in the vertical direction.
  • the vertical adjustment groove 9 extends in the vertical direction, that is, in the up-and-down direction.
  • a central shaft 61 of the deflector wheel 6 is inserted into the vertical adjustment groove 9.
  • the central shaft 61 of the baffle wheel 6 is guided by the vertical adjustment groove 9 and can move in the vertical direction. In this way, the deflector wheel mounting beam 7 supports the deflector wheel 6 and moves the deflector wheel 6 in the vertical direction.
  • FIGS. 3A and 3B are partial detailed views of the elevator apparatus according to the present embodiment.
  • 2A and 2B show a case where the load in the car is small
  • FIGS. 3A and 3B show a case where the load in the car is large.
  • 2A is a front view
  • FIG. 2B is a side view corresponding to FIG. 2A
  • FIG. 3A is a front view
  • FIG. 3B is a side view corresponding to FIG. 3A.
  • a pair of baffle mounting beams 7 and a pair of hoisting machine bases 8 are provided.
  • the two hoisting machine bases 8 are provided back to back.
  • a baffle mounting beam 7 is provided between the two hoisting machine bases 8.
  • the baffle mounting beam 7 is also provided back to back.
  • Each hoisting machine base 8 supports each baffle mounting beam 7. Between the two deflector wheel mounting beams 7, a deflector wheel 7 is arranged.
  • the upper end 71 and the lower end 72 of each baffle mounting beam 7 are bent at right angles in the same direction. Therefore, as shown in FIGS.
  • each baffle mounting beam 7 is a U-shape.
  • the upper end 81 and the lower end 82 of each hoisting machine base 8 are bent at right angles in the same direction. Accordingly, the shape of the side surface of each hoisting machine base 8 is a U-shape as shown in FIGS. 2B and 3B.
  • the upper end 71 of each baffle mounting beam 7 is disposed on the upper end 81 of each hoisting machine base 8.
  • the lower surface of the upper end 71 of each baffle mounting beam 7 and the upper surface of the upper end 81 of each hoisting machine base 8 are joined.
  • the vertical length of each baffle mounting beam 7 is longer than the vertical length of each hoisting machine base 8.
  • each deflector wheel mounting beam 7 is positioned below the lower end 82 of each hoisting machine base 8. Therefore, there is a space between the lower end 82 of each hoisting machine base 8 and the lower end 72 of each deflector mounting beam 7.
  • the central shaft 61 of the deflector wheel 6 is guided by the two vertical adjustment grooves 9 arranged opposite to each other and moves in the vertical direction.
  • the vertical adjustment groove 9 is formed in the deflector mounting beam 7 at a portion corresponding to this space.
  • the vertical adjustment groove 9 is a through hole. Both ends of the central shaft 61 of the baffle wheel 6 are inserted into these vertical adjustment grooves 9. Both ends of the central shaft 61 of the deflector wheel 6 protrude outside through the vertical adjustment groove 9.
  • springs 10 are provided between the lower surfaces of both ends of the central shaft 61 of the deflector wheel 6 and the upper surfaces of the lower ends 72 of the deflector wheel mounting beams 7.
  • the spring 10 is provided in the vertical direction, that is, in the up-and-down direction.
  • the spring 10 expands and contracts in the vertical direction.
  • the spring 10 constitutes a position control unit that controls the position of the baffle wheel 6 in the vertical direction according to the value of the load in the cage.
  • 2A and 2B show a state where the spring 10 is extended.
  • 3A and 3B show a state where the spring 10 is contracted.
  • the spring 10 supports the baffle wheel 6.
  • the spring 10 can move the deflecting wheel 6 in the vertical direction by expansion and contraction thereof.
  • the spring constant of the spring 10 is appropriately selected as appropriate so that the spring 10 can support the deflector wheel 6 and the vertical position of the deflector wheel 6 can be adjusted satisfactorily.
  • the deflecting wheel 6 when the load in the basket is small is called “the deflecting wheel 6a”, and the spring 10 in that case is called the “spring 10a”.
  • the deflecting wheel 6 when the load in the basket is large is referred to as a “deflecting wheel 6 b”, and the spring 10 in that case is referred to as a “spring 10 b”.
  • the compression amount of the spring 10a is smaller than the compression amount of the spring 10b.
  • the winding angle ⁇ when the load in the cage is small is referred to as ⁇ a
  • the winding angle ⁇ when the load in the cage is large is referred to as ⁇ b.
  • the winding angle ⁇ is an angle corresponding to a portion where the rope 3 and the sheave 5 are in contact with each other.
  • the deceleration of the car during an emergency stop during driving is based on three factors: (1) inertia of the elevator system, (2) brake torque, and (3) traction between the sheave 5 and the rope 3. Dependent. These three elements are described below.
  • Inertia of the elevator system is the inertial force of the elevator system. Normally, when an emergency stop is performed during the operation of the car, when the inertia of the elevator system is small, that is, when the load in the car is small, the deceleration of the car 1 is large, and conversely, when the inertia is large, that is, within the car When the load is large, the deceleration of the basket 1 is small.
  • the brake torque is the torque when the brake of the hoisting machine 4 is stopped. When the brake torque is large, the deceleration of the car 1 increases. Conversely, when the brake torque is small, the deceleration of the car 1 decreases.
  • the relationship between traction and brake torque will be described.
  • the brake torque is smaller than the traction of the rope 3, the deceleration of the car 1 is determined by the brake torque.
  • the brake torque is greater than or equal to the traction of the rope 3, before the entire brake torque is generated, slip occurs between the rope 3 and the sheave 5 due to the traction limit. Therefore, the brake torque higher than the traction limit is not transmitted to the basket 1.
  • the traction limit is the maximum value of traction. From the above, it can be seen that even when the brake torque is constant, the deceleration of the car 1 can be changed by changing the magnitude of the traction.
  • FIG. 7 is a graph showing the relationship between the car deceleration and the car load.
  • the vertical axis represents the deceleration of the car 1
  • the horizontal axis represents the load factor in the car.
  • the in-car load factor [%] is the car 1 occupancy rate [%].
  • the weight of the weight is set so that the weight of the weight is equal to the sum of the car mass and a half of the car load. That is, the weight of the weight is set so that the weight of the cage and the weight of the weight are balanced when the boarding ratio is 50%.
  • FIG. 7 shows the deceleration of the car when the car is brought to an emergency stop in such an elevator apparatus.
  • D 1 is a graph when the car traveling in the upward direction is in an emergency stop
  • D 2 is a graph when the car traveling in the downward direction is in an emergency stop.
  • the following features can be read from FIG. (A)
  • the condition for the maximum deceleration of the car is when the load in the car is small and the car is moving downward.
  • the deceleration changes depending on the load factor in the car and the traveling direction. Therefore, a large deceleration may occur when the basket stops emergency. Therefore, in the present embodiment, the occurrence of a large deceleration is suppressed by adjusting the deceleration according to the load variation in the car. Specifically, the vertical position of the deflector wheel 6 is adjusted using the spring 10. Thereby, the traction of the rope 3 is changed and the impact at the time of emergency stop is relieved. In order to alleviate the impact, the deceleration in the case (a) is particularly large. Therefore, it is important to reduce the deceleration in the case (a). Therefore, in the present embodiment, attention is particularly paid to the reduction in deceleration in the case of (a).
  • the vertical position of the deflector wheel 6 is adjusted according to the variation in the load in the car 1.
  • a spring 10 and a deflecting wheel mounting beam 7 are provided to adjust the vertical position of the deflecting wheel 6.
  • the baffle mounting beam 7 is provided with a vertical adjustment groove 9.
  • the deflecting wheel 6 is supported by a deflecting wheel mounting beam 7.
  • the central shaft 61 of the deflector wheel 6 is guided by the vertical adjustment groove 9 and moves in the vertical direction. Thereby, the deflector 6 moves in the vertical direction.
  • the spring 10 extends and the deflector 6 moves upward.
  • the load in the cage is large, as shown in FIGS. 3A and 3B, the spring 10 is contracted and the deflecting wheel 6 moves downward.
  • the deceleration in the case of the above (a) can be reduced.
  • the difference (e) the difference when the car 1 is moving downward can be reduced.
  • this embodiment is particularly effective when the basket is moving downward.
  • the operation is reversed. Therefore, when the load in the cage is large, the deceleration can be reduced, and this embodiment is effective.
  • the load in the car is small, the deceleration increases, but there is not much problem because the absolute value of the deceleration is originally small. Therefore, in the present embodiment, even when the car 1 is in an emergency stop, a large deceleration does not always occur, so that the impact at the time of an emergency stop can be reduced.
  • the spring 10 is provided so that the vertical position of the baffle wheel 6 is automatically adjusted according to the load variation in the car 1. An automatic adjustment method using the spring 10 will be described below.
  • a load L is applied to the central shaft 61 of the deflecting wheel 6 in an obliquely downward direction from the rope 3 through the deflecting wheel 6.
  • the direction of the load L coincides with the direction of a straight line connecting the contact point P between the rope 3 and the deflector wheel 6 and the center of the deflector wheel 6.
  • the tension generated in the rope 3 increases when the load in the cage 1 is large, and decreases when the load in the cage 1 is small.
  • the load L can be divided into component forces L 1 and L 2 .
  • the component force L 1 is a component force in the downward direction.
  • the component force L 2 is a component force in a direction parallel to the direction of the rope 3 between the sheave 5 and the deflector wheel 6. Therefore, as the load L increases, the component force L 1 also increases. Therefore, as the load in the basket 1 increases, the component force L 1 increases.
  • the vertical position of the deflector 6 is automatically adjusted by the spring 10 in accordance with the fluctuation of the load in the basket 1.
  • the amount of compression of the spring 10 is uniquely determined by the load in the cage 1 and the spring constant. Therefore, by appropriately selecting the spring constant of the spring 10, the deflecting wheel 6 can be adjusted to a desired position by following the load in the basket 1. Therefore, the winding angle ⁇ of the rope 3 can always be automatically adjusted to an optimum value without measuring the load in the cage 1. Therefore, in the present embodiment, there is no need to provide a sensor for measuring the load in the basket 1.
  • the elevator apparatus includes the sheave 5, the hoisting machine 4 that includes the motor that rotates the sheave 5, and the brake that brakes the sheave 5, and the car 1.
  • the rope 3 connected to the weight 2 and wound around the sheave 5, provided between the sheave 5 and the weight 2, and supported by the sled wheel 6 and the sled wheel 6 around which the rope 3 is wound.
  • a position control unit that controls the vertical position of the sled wheel 6 according to the value of the sled wheel mounting beam 7 and the load in the basket 1 of the car 1 that enables the sled wheel 6 to move in the vertical direction.
  • a spring 10 a spring 10.
  • the spring 10 moves the deflecting wheel 6 downward in accordance with an increase in the load in the cage, and moves the deflecting wheel upward in response to a decrease in the load in the cage. Since the traction of the rope 3 can be adjusted by moving the baffle wheel 6 in the vertical direction, it is possible to reduce the impact by controlling the deceleration at the time of emergency stop according to the load in the car.
  • the deflector wheel mounting beam 7 is provided with a vertical adjustment groove 9 that allows the center shaft 61 of the deflector wheel 6 to move only in the vertical direction.
  • the central axis 61 can only move up and down, and does not move in the lateral direction. Therefore, the movement of the deflector 6 is stabilized.
  • a spring 10 as a position control unit is provided between the deflector wheel 6 and the lower end 72 of the deflector wheel mounting beam 7.
  • the spring 10 expands and contracts following the change in the load in the cage. Therefore, the vertical position of the deflector 6 is automatically moved by the expansion and contraction of the spring 10. Specifically, when the load in the cage is large, the spring 10 is contracted in accordance with the load in the cage, and the position of the deflecting wheel 6 moves downward. On the other hand, when the load in the cage is small, the spring 10 is extended in accordance with the load in the cage, and the position of the deflector 6 is moved upward. For this reason, by appropriately selecting the spring constant of the spring 10, the moving distance of the deflecting wheel 6 can be arbitrarily determined. Therefore, the winding angle ⁇ of the rope 3 can always be automatically set to an optimum value without measuring the load in the cage 1.
  • FIG. FIG. 4 is a schematic block diagram showing a configuration of an elevator apparatus according to Embodiment 2 of the present invention.
  • the main difference between the present embodiment and the first embodiment is that an actuator 11 is provided instead of the spring 10 in the present embodiment.
  • this embodiment will be described in detail.
  • the hoisting machine main body 20 of the hoisting machine 4 is provided with a motor 18, a brake 16, and an encoder 12.
  • the encoder 12 is a detector that detects the rotation direction of the sheave 5 by detecting the rotation direction of the motor 18.
  • the encoder 12 generates a signal corresponding to the direction of rotation of the sheave 5.
  • the direction of rotation of the sheave 5, that is, the direction of movement of the car 1 can be detected by the sign of the signal from the encoder 12.
  • the basket 1 is provided with a scale device 13.
  • the scale device 13 detects the weight in the car 1 as a load in the car.
  • the scale device 13 outputs a signal corresponding to the detected load in the car.
  • the signal from the encoder 12 and the signal from the scale device 13 are transmitted to the elevator control device 14. Based on these signals, the elevator control device 14 controls expansion and contraction of the actuator 11 via an actuator control device 19 described later. Therefore, in the present embodiment, the elevator control device 14 constitutes an expansion / contraction amount calculation unit that calculates the expansion / contraction amount of the actuator 11 according to the moving direction of the car 1 and the load in the car.
  • the elevator control device 14 operates the motor 18 of the hoisting machine 4 via the power conversion device 15. Further, the elevator control device 14 operates the brake 16 via the brake control device 17.
  • an actuator 11 is provided for the deflecting wheel 6.
  • the actuator 11 is provided in the vertical direction.
  • the actuator 11 supports the deflector wheel 6.
  • the actuator 11 can move the deflecting wheel 6 in the vertical direction.
  • a signal from the elevator control device 14 is transmitted to the actuator 11 via the actuator control device 19.
  • the actuator 11 is operated by the signal.
  • the deflecting wheel 6 is moved up and down by the actuator 11.
  • the actuator 11, the scale device 13, the encoder 12, the elevator control device 14, and the actuator control device 19 are arranged in the vertical position of the deflector 6 according to the value of the load in the car.
  • the position control part which controls is comprised.
  • FIGS. 5A, 5B, 6A, and 6B are partial detailed views of the elevator apparatus according to the present embodiment.
  • 5A and 5B show a case where the load in the car is small
  • FIGS. 6A and 6B show a case where the load in the car is large.
  • 5A is a front view
  • FIG. 5B is a side view corresponding to FIG. 5A
  • 6A is a front view
  • FIG. 6B is a side view corresponding to FIG. 6A.
  • the actuator 11 includes an upper end 111, a lower end 112, and an arm 113 that connects the upper end 111 and the lower end 112.
  • the arm 113 of the actuator 11 is provided in the vertical direction, that is, in the up and down direction.
  • the arm 113 of the actuator 11 extends and contracts in the vertical direction. In the present embodiment, as the arm 113 extends and contracts, the deflecting wheel 6 is guided by the vertical adjustment groove 9 and moves up and down.
  • the deflecting wheel 6 when the load in the cage is small is called “the deflecting wheel 6a”, and the actuator 11 in that case is called the “actuator 11a”.
  • the deflection wheel 6 when the load in the cage is large is referred to as “a deflection wheel 6b”, and the actuator 11 in that case is referred to as an “actuator 11b”.
  • the actuator 11 supports the deflector wheel 6 and adjusts the vertical position of the deflector wheel 6.
  • the elevator control device 14 determines whether the actuator 11 is extended or contracted. Moreover, the elevator control apparatus 14 calculates the amount of expansion
  • the elevator control device controls the actuator control device 19 based on the calculation results. With this control, the actuator control device 19 adjusts the expansion and contraction of the arm 113 of the actuator 11. As the arm 113 expands and contracts, the deflector 6 moves as follows.
  • the operation (1) is the same as that in the first embodiment, but the operation (2) is the reverse of the operation in the first embodiment.
  • the deflector 6 is moved as in (1) above.
  • the deflector 6 is moved as in (2) above.
  • the actuator 11 moves the deflecting wheel 6 downward in accordance with the increase in the car load, thereby reducing the car load. Accordingly, the deflector 6 is moved upward.
  • the deflecting wheel 6 is moved upward in accordance with an increase in the car load, and the deflecting wheel 6 is moved downward in accordance with a decrease in the car load.
  • the amount of expansion / contraction of the actuator 11 is determined as follows, for example. Two lookup tables are prepared for the case where the car 1 moves upward and the case where it moves downward. In each look-up table, the correspondence between the in-car load factor [%] and the length [cm] of the actuator 11 is determined in advance. For example, in the upward lookup table, when the load factor in the car is 0% or more and less than 20%, the length of the actuator 11 is ⁇ cm, and the load factor in the car is 20% or more and less than 40%, The length of the actuator 11 is determined in advance as ⁇ cm,. The same applies to the downward lookup table. Thereby, the elevator control device 14 searches the length of the actuator 11 corresponding to the current in-car load from the lookup table.
  • the elevator control device 14 compares the current length of the actuator 11 with the retrieved length of the actuator 11 to determine the amount of expansion / contraction of the actuator 11.
  • the method for determining the amount of expansion / contraction of the actuator 11 is not limited to this case.
  • a function using the load in the car as a parameter may be prepared for each case where the car 1 is moved upward and when the car 1 is moved downward. Or you may make it calculate by another method.
  • the elevator apparatus includes the rope 3 that connects the cage 1 and the weight 2, the sheave 5 and the baffle 6 on which the rope 3 is wound. And a deflector wheel mounting beam 7 for supporting the deflector wheel 6 so that the vertical position of the deflector wheel 6 can be adjusted.
  • the deflecting wheel 6 is moved upward or downward according to the load in the cage and the moving direction of the cage 1.
  • the encoder 12 can detect whether the car 1 is moving upward or whether the car 1 is moving downward. Thereby, not only the load in the car but also the moving direction of the car is taken into consideration, and the vertical position of the deflector 6 is moved. As a result, even when the car 1 is moving in either the upward direction or the downward direction, it is possible to always suppress the occurrence of a large deceleration that gives an impact to the passengers. It is possible to reduce the fluctuation range.
  • the position control unit detects the rotation direction of the motor 18 by detecting the rotation direction of the retractable actuator 11 that supports the deflector, the scale device 13 that measures the load in the basket, and the motor 18.
  • An encoder 12 that detects the movement direction of 1, and an expansion / contraction amount calculation unit that calculates the expansion / contraction amount of the actuator 11 based on the load in the cage measured by the scale device 13 and the movement direction of the cage 1 detected by the encoder 12.
  • an elevator control device 14 and an actuator control device 19 for expanding and contracting the actuator 11 based on the expansion and contraction amount calculated by the expansion and contraction amount calculation unit.
  • the actuator 11 controls the vertical position of the deflector 6 by expanding and contracting according to the variation in the load in the cage and the moving direction of the cage.
  • the actuator 11 can control the position of the deflector 6 according to the fluctuation
  • the above-described first embodiment is effective particularly when the cage 1 is moving in the downward direction, but in this embodiment, it is effective in both the upward and downward directions.
  • the actuator 11 moves the deflecting wheel 6 downward in accordance with an increase in the load in the car, and the deflecting wheel in response to a decrease in the load in the car. 6 is moved upward.
  • the deflecting wheel 6 is moved upward in accordance with an increase in the car load, and the deflecting wheel 6 is moved downward in accordance with a decrease in the car load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Elevator Control (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Abstract

This elevator device is equipped with: a hoisting machine (4) equipped with a sheave (5), a motor, and a brake; a rope (3) which connects a car (1) and a weight (2), and is wound around the sheave (5); a deflector sheave (6) which is provided between the sheave (5) and the weight (2), and around which the rope (3) is wound; a deflector sheave mounting beam (7) which supports the deflector sheave (6) and allows the vertical movement of the deflector sheave (6); and a spring (10) which controls the vertical position of the deflector sheave (6) according to the value of in-car load in the car (1). The spring (10) causes the deflector sheave (6) to move downward in response to an increase in the in-car load, and causes the deflector sheave (6) to move upward in response to a decrease in the in-car load.

Description

エレベータ装置Elevator equipment
 この発明はエレベータ装置に関し、特に、カゴ内負荷に応じて非常停止時の減速度を制御して衝撃を緩和させるエレベータ装置に関する。 The present invention relates to an elevator apparatus, and more particularly to an elevator apparatus that reduces a shock by controlling a deceleration at an emergency stop according to a load in a car.
 従来のエレベータ装置の巻上機は、綱車と、そらせ車と、綱車を回転させるためのモータと、綱車の回転を制動するためのブレーキとを有している。綱車及びそらせ車には、ロープが巻き掛けられている。ロープの一端には、カゴが連結されている。また、ロープの他端には、おもりが連結されている。カゴおよびおもりは、モータにより、昇降路内を昇降される。また、カゴの到着時には、ブレーキにより、綱車の回転が制動され、カゴが停止する。 A conventional elevator machine hoist includes a sheave, a deflector, a motor for rotating the sheave, and a brake for braking the rotation of the sheave. A rope is wound around the sheave and the deflector. A basket is connected to one end of the rope. A weight is connected to the other end of the rope. The basket and the weight are moved up and down in the hoistway by a motor. Further, when the cage arrives, the rotation of the sheave is braked by the brake, and the cage stops.
 また、カゴの下側には、非常止めが設けられている。非常止めは、非常時に、昇降路に設けられたガイドレールに係合して、カゴの昇降を阻止する。非常止めは、ロープが切れた場合、および、何らかの原因でカゴが定格速度を超える速度で降下し始めた場合にのみ、使用される。従って、地震などの非常停止時においても、通常は、巻上機のブレーキにより、カゴが停止される。 Also, an emergency stop is provided on the lower side of the basket. In the event of an emergency, the emergency stop engages with a guide rail provided in the hoistway to prevent the car from moving up and down. The emergency stop is only used if the rope breaks and if for some reason the car begins to descend at a speed exceeding the rated speed. Therefore, even in an emergency stop such as an earthquake, the cage is usually stopped by the brake of the hoisting machine.
 従来のエレベータ装置の竣工の際には、巻上機のブレーキの試験が行われる。当該試験の結果に基づき、必要に応じて、ブレーキトルクの調整を行う。 When the conventional elevator system is completed, a hoisting machine brake test is conducted. Based on the result of the test, the brake torque is adjusted as necessary.
 また、従来のエレベータ装置の竣工の際には、非常止めの試験も行なう。当該試験においては、カゴを停止させた状態で、非常止めを作動させて、カゴが下降する方向にモータを駆動させる。このとき、カゴは非常止めによって昇降が阻止されているので、カゴは移動しない。そのため、ロープが緩み、その結果、綱車が空転し始める。一方、もし、非常止めの阻止力が不十分であれば、ロープが緩まず、カゴが下降する。このことから、カゴが下降しなければ、非常止めが良好であると判断できる。 Also, an emergency stop test will be conducted when the conventional elevator system is completed. In the test, the emergency stop is operated with the cage stopped, and the motor is driven in the direction in which the cage descends. At this time, since the raising / lowering of the basket is prevented by the emergency stop, the basket does not move. As a result, the rope loosens, and as a result, the sheave begins to idle. On the other hand, if the stopping force of the emergency stop is insufficient, the rope does not loosen and the cage descends. From this, it can be determined that the emergency stop is good if the cage does not descend.
 非常止めの試験は上記のように行うので、試験時には、巻上機のモータは、綱車が空転を始めるのに十分な非常に大きなトルクを出す必要がある。巻上機のモータの容量は、このトルクの大きさによって決定される。 Since the emergency stop test is performed as described above, at the time of the test, the hoist motor needs to generate a very large torque sufficient for the sheave to start spinning. The capacity of the hoisting machine motor is determined by the magnitude of this torque.
 しかしながら、このトルクの大きさは、実使用の運転に必要なトルクよりも大きい。従って、実使用の運転に必要なトルクに基づいて、巻上機のモータの容量を決定することができれば、モータの容量を小さくすることができる。 However, the magnitude of this torque is larger than the torque required for actual operation. Therefore, if the capacity of the motor of the hoisting machine can be determined based on the torque required for actual operation, the capacity of the motor can be reduced.
 そこで、特許文献1においては、そらせ車の位置を移動させるための可動装置が設けられている。可動装置は、非常止めの試験時に、そらせ車の位置を、通常運転時の位置よりも上昇させる。これにより、綱車へのロープの巻き付け角が小さくなる。その結果、ロープのトラクションを小さくすることが可能となる。これにより、非常止めの試験に用いるトルクを小さくすることができる。その結果、モータの容量を小さくすることができる。 Therefore, in Patent Document 1, a movable device for moving the position of the deflecting wheel is provided. The movable device raises the position of the deflecting wheel above the position during normal operation during the emergency stop test. Thereby, the winding angle of the rope around the sheave is reduced. As a result, the traction of the rope can be reduced. Thereby, the torque used for the emergency stop test can be reduced. As a result, the capacity of the motor can be reduced.
特開2002-348073号公報JP 2002-348073 A
 特許文献1では、竣工時の試験を行うときにのみ、そらせ車の位置を変更している。試験終了後、そらせ車の位置を元の位置に戻す。従って、特許文献1では、エレベータの運行中に、そらせ車の位置を変化させる事は出来ない。 In Patent Document 1, the position of the deflector is changed only when a test at the time of completion is performed. After the test is completed, the position of the deflector is returned to the original position. Therefore, in patent document 1, the position of a deflecting vehicle cannot be changed during operation of an elevator.
 上述したように、通常運転時においては、カゴは、巻上機のブレーキにより、停止される。また、地震などの非常停止時においても、巻上機のブレーキにより、カゴが停止される。停止するための必要なブレーキトルクは、カゴ内の負荷の大きさによって変化する。 As described above, during normal operation, the basket is stopped by the brake of the hoisting machine. In addition, even in an emergency stop such as an earthquake, the basket is stopped by the hoisting machine brake. The brake torque required for stopping varies depending on the load in the car.
 しかしながら、従来のエレベータ装置においては、竣工時にブレーキトルクの調整を行っている。従って、ブレーキトルクは常に一定である。従来のエレベータ装置においては、カゴ内の負荷変動に応じて、ブレーキトルクを変化させることはできない。上記の特許文献1においても、ブレーキトルクは常に一定である。 However, in conventional elevator equipment, the brake torque is adjusted at the time of completion. Therefore, the brake torque is always constant. In the conventional elevator apparatus, the brake torque cannot be changed according to the load fluctuation in the car. Also in the above-mentioned Patent Document 1, the brake torque is always constant.
 通常のカゴの着床時においては、予め設定された停止速度パターンに基づいてカゴが停止する。従って、適切な停止速度パターンを選択していれば、ブレーキトルクが一定であっても、乗客に衝撃を与えることはない。 通常 When a normal basket is landed, the basket stops based on a preset stop speed pattern. Therefore, if an appropriate stop speed pattern is selected, the passenger is not shocked even if the brake torque is constant.
 しかしながら、非常停止時においては、通常の停止速度パターンよりも速い停止速度パターンで、カゴを停止させる。このとき、ブレーキトルクが一定であると、カゴ内負荷が小さい場合には、不必要に大きな減速度が発生してしまう。そのため、カゴが急激に停止してしまうので、カゴからの衝撃を乗客に与えてしまっていた。 However, during an emergency stop, the car is stopped with a stop speed pattern that is faster than the normal stop speed pattern. At this time, if the brake torque is constant, an unnecessarily large deceleration occurs when the load in the cage is small. As a result, the basket suddenly stopped, and the passengers were shocked by the basket.
 この発明は、かかる問題点を解決するためになされたものであり、カゴ内負荷に応じて減速度を制御して、カゴの停止時の衝撃を緩和させることが可能なエレベータ装置を得ることを目的としている。 The present invention has been made to solve such a problem, and it is an object of the present invention to obtain an elevator apparatus that can control the deceleration according to the load in the car and reduce the impact when the car stops. It is aimed.
 この発明は、綱車と、前記綱車を回転させるモータと、前記綱車を制動するブレーキと、を備えた巻上機と、カゴとおもりとを繋ぎ、前記綱車に巻回された、ロープと、前記綱車と前記おもりとの間に設けられ、前記ロープが巻回された、そらせ車と、前記そらせ車を支持し、前記そらせ車の垂直方向の移動を可能にする、そらせ車取付梁と、前記カゴのカゴ内負荷の値に応じて、前記そらせ車の垂直方向の位置を制御する位置制御部とを備え、前記位置制御部は、前記カゴ内負荷の増加に応じて前記そらせ車を下方に移動させ、前記カゴ内負荷の減少に応じて前記そらせ車を上方に移動させる、エレベータ装置である。 This invention connects a hoisting machine including a sheave, a motor that rotates the sheave, and a brake that brakes the sheave, a basket and a weight, and is wound around the sheave. A sled wheel provided between a rope, the sheave, and the weight, the sled wheel wound with the rope, and the sled wheel that supports the sled wheel and allows the sled wheel to move in a vertical direction. A mounting beam, and a position control unit that controls a vertical position of the deflector according to a value of the load in the cage of the cage, the position control unit according to an increase in the load in the cage It is an elevator apparatus which moves a baffle downward and moves the baffle upward according to the reduction | decrease of the load in the said basket.
 この発明においては、位置制御部が、カゴ内負荷の増加に応じてそらせ車を下方に移動させ、カゴ内負荷の減少に応じてそらせ車を上方に移動させるようにした。それにより、ロープのトラクションを変化させることができるので、カゴ停止時の減速度を制御して、カゴの停止時の衝撃を緩和させることができる。 In the present invention, the position control unit moves the deflecting vehicle downward in accordance with an increase in the load in the cage and moves the deflecting vehicle upward in accordance with a decrease in the load in the cage. Thereby, since the traction of the rope can be changed, the deceleration at the time of stopping the car can be controlled to reduce the impact at the time of stopping the car.
この発明の実施の形態1に係るエレベータ装置の構成を示す構成図である。It is a block diagram which shows the structure of the elevator apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るエレベータ装置の構成を示す部分正面図である。It is a partial front view which shows the structure of the elevator apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るエレベータ装置の構成を示す部分側面図である。It is a partial side view which shows the structure of the elevator apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るエレベータ装置の構成を示す部分正面図である。It is a partial front view which shows the structure of the elevator apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るエレベータ装置の構成を示す部分側面図である。It is a partial side view which shows the structure of the elevator apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係るエレベータ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the elevator apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るエレベータ装置の構成を示す部分正面図である。It is a partial front view which shows the structure of the elevator apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るエレベータ装置の構成を示す部分側面図である。It is a partial side view which shows the structure of the elevator apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るエレベータ装置の構成を示す部分正面図である。It is a partial front view which shows the structure of the elevator apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るエレベータ装置の構成を示す部分側面図である。It is a partial side view which shows the structure of the elevator apparatus which concerns on Embodiment 2 of this invention. 一般的なエレベータ装置におけるカゴ減速度とカゴ内負荷率との関係をグラフで示した説明図である。It is explanatory drawing which showed in a graph the relationship between the cage deceleration in a common elevator apparatus, and the load factor in a cage. この発明の実施の形態1に係るバネによるそらせ車の垂直方向位置の自動調整の原理について説明した説明図である。It is explanatory drawing explaining the principle of the automatic adjustment of the vertical direction position of the deflector wheel by the spring which concerns on Embodiment 1 of this invention.
 カゴを停止させるために必要なブレーキトルクは、カゴ内負荷の値に応じて変化する。しかしながら、従来のエレベータ装置においては、竣工時の試験の際にブレーキトルクの調整を行うため、ブレーキトルクは常に一定であった。そのため、従来のエレベータ装置においては、カゴ内負荷が小さい状態で、カゴが非常停止した場合、大きな減速度が発生していた。そこで、この発明に係るエレベータ装置では、カゴ内負荷変動に応じて、そらせ車の垂直方向位置を自動的に調整できる機構を設けている。これにより、ロープのトラクションを制御し、カゴ停止時の衝撃を緩和させる。 ¡The brake torque required to stop the car changes according to the load value in the car. However, in the conventional elevator apparatus, since the brake torque is adjusted during the test at the time of completion, the brake torque is always constant. Therefore, in the conventional elevator apparatus, a large deceleration occurs when the car is brought to an emergency stop with a small load in the car. Therefore, in the elevator apparatus according to the present invention, a mechanism is provided that can automatically adjust the vertical position of the deflector according to the load variation in the car. As a result, the traction of the rope is controlled, and the impact when the car stops is mitigated.
 以下、この発明を実施するための実施の形態について、図面を参照して説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、この発明の実施の形態1に係るエレベータ装置の構成を示す模式的な構成図である。図1に示すように、カゴ1及びおもり2が昇降路内に設けられている。昇降路の上部には、巻上機4が設けられている。巻上機4は、カゴ1及びおもり2を昇降させる。巻上機4は巻上機本体と綱車5とを有している。巻上機本体は、モータとブレーキとを含む。綱車5は、モータにより回転される。綱車5には、複数本のロープ3が巻き掛けられている。また、綱車5とおもり2との間にはそらせ車6が配置されている。そらせ車6にも、ロープ3が巻き掛けられている。ロープ3の一端にはカゴ1が連結されている。ロープ3の他端にはおもり2が連結されている。カゴ1及びおもり2は、ロープ3により、昇降路内に吊り下げられている。カゴ1及びおもり2は、綱車5の回転により昇降路1内を昇降される。
Embodiment 1 FIG.
1 is a schematic configuration diagram showing a configuration of an elevator apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, a basket 1 and a weight 2 are provided in a hoistway. A hoisting machine 4 is provided at the upper part of the hoistway. The hoist 4 raises and lowers the basket 1 and the weight 2. The hoisting machine 4 has a hoisting machine main body and a sheave 5. The hoisting machine main body includes a motor and a brake. The sheave 5 is rotated by a motor. A plurality of ropes 3 are wound around the sheave 5. Further, a deflecting wheel 6 is disposed between the sheave 5 and the weight 2. The rope 3 is also wound around the deflector 6. A basket 1 is connected to one end of the rope 3. A weight 2 is connected to the other end of the rope 3. The basket 1 and the weight 2 are suspended in a hoistway by a rope 3. The cage 1 and the weight 2 are moved up and down in the hoistway 1 by the rotation of the sheave 5.
 また、巻上機4は、巻上機台8に載置されている。巻上機台8は、昇降路の上部に固定されている。巻上機台8には、そらせ車6を取り付けるためのそらせ車取付梁7が設けられている。そらせ車取付梁7は、そらせ車6を支持している。そらせ車取付梁7は、そらせ車6の垂直方向の移動を可能にしている。そらせ車取付梁7は、矩形形状を有している。そらせ車取付梁7の長手方向は、垂直方向、すなわち、昇降方向である。巻上機台8も矩形形状である。巻上機台8の長手方向は、水平方向である。従って、巻上機台8の垂直方向の長さは、そらせ車取付梁7の垂直方向よりも短い。そらせ車取付梁7には、そらせ車6を垂直方向に移動させるための上下調整用溝9が設けられている。上下調整用溝9は、垂直方向、すなわち、昇降方向に延びている。上下調整用溝9内には、そらせ車6の中心軸61が挿入されている。そらせ車6の中心軸61は、上下調整用溝9に案内されて、垂直方向に移動することができる。このように、そらせ車取付梁7は、そらせ車6を支持するとともに、そらせ車6を垂直方向に移動させる。 Further, the hoisting machine 4 is mounted on the hoisting machine base 8. The hoisting machine base 8 is fixed to the upper part of the hoistway. The hoisting machine base 8 is provided with a deflecting wheel mounting beam 7 for mounting the deflecting wheel 6. The deflecting wheel mounting beam 7 supports the deflecting wheel 6. The deflecting wheel mounting beam 7 enables the deflecting wheel 6 to move in the vertical direction. The deflector wheel mounting beam 7 has a rectangular shape. The longitudinal direction of the deflector wheel mounting beam 7 is the vertical direction, that is, the ascending / descending direction. The hoisting machine base 8 is also rectangular. The longitudinal direction of the hoisting machine base 8 is the horizontal direction. Therefore, the vertical length of the hoisting machine base 8 is shorter than the vertical direction of the deflector wheel mounting beam 7. The baffle mounting beam 7 is provided with a vertical adjustment groove 9 for moving the baffle 6 in the vertical direction. The vertical adjustment groove 9 extends in the vertical direction, that is, in the up-and-down direction. A central shaft 61 of the deflector wheel 6 is inserted into the vertical adjustment groove 9. The central shaft 61 of the baffle wheel 6 is guided by the vertical adjustment groove 9 and can move in the vertical direction. In this way, the deflector wheel mounting beam 7 supports the deflector wheel 6 and moves the deflector wheel 6 in the vertical direction.
 図2A、図2B、および、図3A、図3Bは、本実施の形態に係るエレベータ装置の部分詳細図である。図2A、図2Bが、カゴ内負荷が小さい場合を示し、図3A、図3Bが、カゴ内負荷が大きい場合を示している。また、図2Aが正面図、図2Bが図2Aに対応する側面図である。同様に、図3Aが正面図、図3Bが図3Aに対応する側面図である。 2A, 2B, 3A, and 3B are partial detailed views of the elevator apparatus according to the present embodiment. 2A and 2B show a case where the load in the car is small, and FIGS. 3A and 3B show a case where the load in the car is large. 2A is a front view, and FIG. 2B is a side view corresponding to FIG. 2A. Similarly, FIG. 3A is a front view, and FIG. 3B is a side view corresponding to FIG. 3A.
 図2A、図2B、および、図3A、図3Bに示すように、1対のそらせ車取付梁7と、1対の巻上機台8とが設けられている。図2Bおよび図3に示すように、2つの巻上機台8は、背中合わせに設けられている。2つの巻上機台8の間には、そらせ車取付梁7が設けられている。そらせ車取付梁7も、背中合わせに設けられている。各そらせ車取付梁7を、各巻上機台8が支持している。2つのそらせ車取付梁7の間には、そらせ車7が配置されている。図2B、図3Bに示されるように、各そらせ車取付梁7の上端71と下端72とは、同方向に、直角に折り曲げられている。従って、図2B及び図3Bに示すように、各そらせ車取付梁7の側面の形状は、コの字型になっている。同様に、各巻上機台8の上端81と下端82とは、同方向に、直角に折り曲げられている。従って、各巻上機台8の側面の形状は、図2B及び図3Bに示すように、コの字型になっている。各そらせ車取付梁7の上端71が、各巻上機台8の上端81の上に、配置されている。各そらせ車取付梁7の上端71の下面と、各巻上機台8の上端81の上面とが、接合されている。各そらせ車取付梁7の垂直方向の長さは、各巻上機台8の垂直方向の長さよりも長い。従って、各そらせ車取付梁7の下端72は、各巻上機台8の下端82よりも、下方に位置している。そのため、各巻上機台8の下端82と各そらせ車取付梁7の下端72との間には、空間がある。この空間内を、そらせ車6の中心軸61が、対向して配置された2つの上下調整用溝9に案内されて、垂直方向に移動する。上下調整用溝9は、この空間に対応する部分のそらせ車取付梁7に形成されている。上下調整用溝9は、貫通穴である。そらせ車6の中心軸61の両端は、これらの上下調整用溝9に挿入されている。そらせ車6の中心軸61の両端は、上下調整用溝9を介して、外部に突き出ている。 2A, 2B, 3A, and 3B, a pair of baffle mounting beams 7 and a pair of hoisting machine bases 8 are provided. As shown in FIGS. 2B and 3, the two hoisting machine bases 8 are provided back to back. A baffle mounting beam 7 is provided between the two hoisting machine bases 8. The baffle mounting beam 7 is also provided back to back. Each hoisting machine base 8 supports each baffle mounting beam 7. Between the two deflector wheel mounting beams 7, a deflector wheel 7 is arranged. As shown in FIGS. 2B and 3B, the upper end 71 and the lower end 72 of each baffle mounting beam 7 are bent at right angles in the same direction. Therefore, as shown in FIGS. 2B and 3B, the shape of the side surface of each baffle mounting beam 7 is a U-shape. Similarly, the upper end 81 and the lower end 82 of each hoisting machine base 8 are bent at right angles in the same direction. Accordingly, the shape of the side surface of each hoisting machine base 8 is a U-shape as shown in FIGS. 2B and 3B. The upper end 71 of each baffle mounting beam 7 is disposed on the upper end 81 of each hoisting machine base 8. The lower surface of the upper end 71 of each baffle mounting beam 7 and the upper surface of the upper end 81 of each hoisting machine base 8 are joined. The vertical length of each baffle mounting beam 7 is longer than the vertical length of each hoisting machine base 8. Therefore, the lower end 72 of each deflector wheel mounting beam 7 is positioned below the lower end 82 of each hoisting machine base 8. Therefore, there is a space between the lower end 82 of each hoisting machine base 8 and the lower end 72 of each deflector mounting beam 7. In this space, the central shaft 61 of the deflector wheel 6 is guided by the two vertical adjustment grooves 9 arranged opposite to each other and moves in the vertical direction. The vertical adjustment groove 9 is formed in the deflector mounting beam 7 at a portion corresponding to this space. The vertical adjustment groove 9 is a through hole. Both ends of the central shaft 61 of the baffle wheel 6 are inserted into these vertical adjustment grooves 9. Both ends of the central shaft 61 of the deflector wheel 6 protrude outside through the vertical adjustment groove 9.
 図2B、図3Bに示されるように、そらせ車6の中心軸61の両端の下面と、各そらせ車取付梁7の下端72の上面との間には、バネ10が設けられている。バネ10は、垂直方向、すなわち、昇降方向に設けられている。バネ10は、垂直方向に、伸び縮みする。バネ10は、カゴ内負荷の値に応じて、そらせ車6の垂直方向の位置を制御する位置制御部を構成している。図2A、図2Bは、バネ10が伸びている状態を示す。また、図3A、図3Bは、バネ10が縮んでいる状態を示す。バネ10は、そらせ車6を支持している。バネ10は、その伸縮により、そらせ車6を垂直方向に移動させることができる。なお、バネ10のバネ定数の値が小さすぎると、そらせ車6が支持できず、一方、バネ10のバネ定数の値が大きすぎると、バネ10において所望の変位量が得られない。そこで、バネ10のバネ定数は、バネ10がそらせ車6を支持でき、且つ、そらせ車6の垂直方向位置の調整が良好に行えるように、適宜、適切な値に選定される。
 ここで、バネ定数とは、バネに単位あたりの変位を与えるのに必要な力のことである。すなわち、バネ定数とは、バネに対する荷重とバネの変位との比であり、それらの関係は、下式で表される。
  荷重 = バネの変位 × バネ定数
As shown in FIGS. 2B and 3B, springs 10 are provided between the lower surfaces of both ends of the central shaft 61 of the deflector wheel 6 and the upper surfaces of the lower ends 72 of the deflector wheel mounting beams 7. The spring 10 is provided in the vertical direction, that is, in the up-and-down direction. The spring 10 expands and contracts in the vertical direction. The spring 10 constitutes a position control unit that controls the position of the baffle wheel 6 in the vertical direction according to the value of the load in the cage. 2A and 2B show a state where the spring 10 is extended. 3A and 3B show a state where the spring 10 is contracted. The spring 10 supports the baffle wheel 6. The spring 10 can move the deflecting wheel 6 in the vertical direction by expansion and contraction thereof. If the value of the spring constant of the spring 10 is too small, the deflecting wheel 6 cannot be supported. On the other hand, if the value of the spring constant of the spring 10 is too large, a desired amount of displacement cannot be obtained in the spring 10. Therefore, the spring constant of the spring 10 is appropriately selected as appropriate so that the spring 10 can support the deflector wheel 6 and the vertical position of the deflector wheel 6 can be adjusted satisfactorily.
Here, the spring constant is a force required to give a displacement per unit to the spring. That is, the spring constant is a ratio between the load on the spring and the displacement of the spring, and the relationship between them is expressed by the following equation.
Load = spring displacement x spring constant
 なお、図2A,図2Bに示すように、カゴ内負荷が小さいときのそらせ車6を「そらせ車6a」と呼び、その場合のバネ10を「バネ10a」と呼ぶ。同様に、図3A,図3Bに示すように、カゴ内負荷が大きいときのそらせ車6を「そらせ車6b」と呼び、その場合のバネ10を「バネ10b」と呼ぶ。図から明らかなように、バネ10aの圧縮量は、バネ10bの圧縮量よりも小さい。カゴ内負荷が小さくなると、そらせ車6は、そらせ車6aの位置に移動する。これにより、ロープ3の綱車5への巻付角θが小さくなる。そのため、綱車5とロープ3との間で発生するトラクションが小さくなる。その結果、ブレーキの非常停止時のカゴ1の減速度が小さくなる。なお、以下では、カゴ内負荷が小さい場合の巻付角θをθa、カゴ内負荷が大きい場合の巻付角θをθbと呼ぶ。ここで、巻付角θとは、ロープ3と綱車5とが接触している部分に対応する角度のことである。 As shown in FIGS. 2A and 2B, the deflecting wheel 6 when the load in the basket is small is called “the deflecting wheel 6a”, and the spring 10 in that case is called the “spring 10a”. Similarly, as shown in FIGS. 3A and 3B, the deflecting wheel 6 when the load in the basket is large is referred to as a “deflecting wheel 6 b”, and the spring 10 in that case is referred to as a “spring 10 b”. As is apparent from the figure, the compression amount of the spring 10a is smaller than the compression amount of the spring 10b. When the load in the basket becomes small, the deflector 6 moves to the position of the deflector 6a. Thereby, the winding angle θ around the sheave 5 of the rope 3 is reduced. Therefore, the traction generated between the sheave 5 and the rope 3 is reduced. As a result, the deceleration of the car 1 at the time of emergency stop of the brake becomes small. Hereinafter, the winding angle θ when the load in the cage is small is referred to as θa, and the winding angle θ when the load in the cage is large is referred to as θb. Here, the winding angle θ is an angle corresponding to a portion where the rope 3 and the sheave 5 are in contact with each other.
 本実施の形態に係るエレベータ装置の動作を説明する前に、まず、その原理について説明する。 Before explaining the operation of the elevator apparatus according to this embodiment, the principle will be described first.
 走行中に非常停止する際のカゴの減速度は、(1)エレベータシステムのイナーシャと、(2)ブレーキトルク、及び、(3)綱車5とロープ3との間のトラクションの3つの要素に依存する。これらの3つの要素について、以下に説明する。 The deceleration of the car during an emergency stop during driving is based on three factors: (1) inertia of the elevator system, (2) brake torque, and (3) traction between the sheave 5 and the rope 3. Dependent. These three elements are described below.
 (1)エレベータシステムのイナーシャ
 エレベータシステムのイナーシャとは、エレベータシステムの慣性力のことである。通常、カゴ動作時に非常停止をした場合、エレベータシステムのイナーシャが小さい場合、すなわち、カゴ内負荷が小さい場合は、カゴ1の減速度が大きくなり、逆に、イナーシャが大きい場合、すなわち、カゴ内負荷が大きい場合は、カゴ1の減速度が小さくなる。
(1) Inertia of the elevator system The inertia of the elevator system is the inertial force of the elevator system. Normally, when an emergency stop is performed during the operation of the car, when the inertia of the elevator system is small, that is, when the load in the car is small, the deceleration of the car 1 is large, and conversely, when the inertia is large, that is, within the car When the load is large, the deceleration of the basket 1 is small.
 (2)ブレーキトルク
 ブレーキトルクとは、巻上機4のブレーキの停止時のトルクのことである。ブレーキトルクが大きい場合は、カゴ1の減速度が大きくなり、逆に、ブレーキトルクが小さい場合は、カゴ1の減速度が小さくなる。
(2) Brake torque The brake torque is the torque when the brake of the hoisting machine 4 is stopped. When the brake torque is large, the deceleration of the car 1 increases. Conversely, when the brake torque is small, the deceleration of the car 1 decreases.
 (3)綱車5とロープ3との間のトラクション
 巻上機4の綱車5とロープ3との間のトラクションとは、ロープ3と綱車5との間に発生する摩擦力のことである。以下では、この摩擦力を、ロープ3のトラクションと呼ぶ。ロープ3のトラクションによって、巻上機4の回転力が、ロープ3を介して、カゴ1の上下の移動に変換される。従って、綱車5に巻き付けるロープ3の長さが長ければ長いほど、すなわち、巻付角θが大きいほど、ロープ3のトラクションは大きくなる。逆に、綱車5に巻き付けるロープ3の長さが短いほど、すなわち、巻付角θが小さいほど、トラクションは小さくなる。ここで、「綱車5に巻き付けるロープ3の長さ」とは、綱車5とロープ3とが接触している部分のロープ3の長さ、すなわち、巻付角θに対応するロープ3の長さである。
(3) Traction between the sheave 5 and the rope 3 The traction between the sheave 5 and the rope 3 of the hoist 4 is a frictional force generated between the rope 3 and the sheave 5. is there. Hereinafter, this frictional force is referred to as traction of the rope 3. By the traction of the rope 3, the rotational force of the hoisting machine 4 is converted into the vertical movement of the cage 1 via the rope 3. Accordingly, the longer the length of the rope 3 wound around the sheave 5, that is, the larger the winding angle θ, the greater the traction of the rope 3. Conversely, the shorter the length of the rope 3 wound around the sheave 5, that is, the smaller the winding angle θ, the smaller the traction. Here, “the length of the rope 3 wound around the sheave 5” means the length of the rope 3 in a portion where the sheave 5 and the rope 3 are in contact, that is, the rope 3 corresponding to the winding angle θ. Length.
 次に、トラクションとブレーキトルクとの関係について説明する。
 ブレーキトルクがロープ3のトラクションよりも小さい場合は、ブレーキトルクによってカゴ1の減速度が決まる。
 一方、ブレーキトルクがロープ3のトラクション以上の場合は、全ブレーキトルクが発生する前に、トラクション限界により、ロープ3と綱車5との間で滑りが発生する。そのため、トラクション限界よりも高いブレーキトルクは、カゴ1には伝わらないことになる。なお、トラクション限界とは、トラクションの最大値のことである。
 以上から、ブレーキトルクが一定の場合においても、トラクションの大きさを変化させる事により、カゴ1の減速度を変化させる事が可能となることがわかる。
Next, the relationship between traction and brake torque will be described.
When the brake torque is smaller than the traction of the rope 3, the deceleration of the car 1 is determined by the brake torque.
On the other hand, when the brake torque is greater than or equal to the traction of the rope 3, before the entire brake torque is generated, slip occurs between the rope 3 and the sheave 5 due to the traction limit. Therefore, the brake torque higher than the traction limit is not transmitted to the basket 1. The traction limit is the maximum value of traction.
From the above, it can be seen that even when the brake torque is constant, the deceleration of the car 1 can be changed by changing the magnitude of the traction.
 次に、一般的なエレベータ装置における、カゴ減速度とカゴ内負荷との関係について説明する。図7は、カゴ減速度とカゴ内負荷との関係を示したグラフである。図7において、縦軸はカゴ1の減速度であり、横軸はカゴ内負荷率である。カゴ内負荷率[%]とは、カゴ1の乗車率[%]のことである。 Next, the relationship between the car deceleration and the car load in a general elevator apparatus will be described. FIG. 7 is a graph showing the relationship between the car deceleration and the car load. In FIG. 7, the vertical axis represents the deceleration of the car 1, and the horizontal axis represents the load factor in the car. The in-car load factor [%] is the car 1 occupancy rate [%].
 一般的なエレベータ装置においては、おもりの重りが、カゴ質量とカゴ積載量の1/2との和に等しくなるように、おもりの重さを設定する。すなわち、乗車率50%の時にカゴの重量とおもりの重量とが釣り合うように、おもりの重さを設定する。図7は、そのようなエレベータ装置において、カゴが非常停止した際のカゴの減速度を表している。図7において、D1が、上方向に走行中のカゴが非常停止した場合のグラフで、D2が、下方向に走行中のカゴが非常停止した場合のグラフである。図7から、以下の特徴が読み取れる。
 (a)カゴの減速度が最も大きくなる条件は、カゴ内負荷が小さく、かつ、カゴが下方向に移動している場合。
 (b)カゴの減速度が最も小さくなる条件は、カゴ内負荷が大きく、かつ、カゴが下方向に移動している場合。
 (c)カゴが下方向に移動している場合は、カゴ内負荷の増加に伴って、カゴの減速度が小さくなる。
 (d)カゴが上方向に移動している場合は、カゴ内負荷の増加に伴って、カゴの減速度が大きくなる。すなわち、上記(c)と逆の現象となる。
 (e)カゴ内負荷率の変化による、カゴの減速度の最大値と最小値との差分は、カゴが下方向に移動している時の方が、カゴが上方向に移動している時よりも大きい。なお、当該差分とは、減速度の変動幅である。
In a general elevator apparatus, the weight of the weight is set so that the weight of the weight is equal to the sum of the car mass and a half of the car load. That is, the weight of the weight is set so that the weight of the cage and the weight of the weight are balanced when the boarding ratio is 50%. FIG. 7 shows the deceleration of the car when the car is brought to an emergency stop in such an elevator apparatus. In FIG. 7, D 1 is a graph when the car traveling in the upward direction is in an emergency stop, and D 2 is a graph when the car traveling in the downward direction is in an emergency stop. The following features can be read from FIG.
(A) The condition for the maximum deceleration of the car is when the load in the car is small and the car is moving downward.
(B) The conditions for the smallest deceleration of the car are when the load in the car is large and the car is moving downward.
(C) When the cage is moving in the downward direction, the deceleration of the cage decreases as the load in the cage increases.
(D) When the cage is moving in the upward direction, the deceleration of the cage increases as the load in the cage increases. That is, the phenomenon is the reverse of the above (c).
(E) The difference between the maximum and minimum values of the car deceleration due to changes in the load factor in the car is when the car is moving upward when the car is moving downward. Bigger than. Note that the difference is the fluctuation range of the deceleration.
 このように、一般的なエレベータ装置においては、カゴ内負荷率および走行方向によって、減速度が変化する。そのため、カゴが非常停止すると、大きな減速度が発生する場合がある。そこで、本実施の形態では、カゴ内負荷変動に応じて、減速度を調整することで、大きな減速度の発生を抑える。具体的には、バネ10を用いて、そらせ車6の垂直方向位置を調整する。これにより、ロープ3のトラクションを変化させ、非常停止時の衝撃を緩和する。衝撃を緩和するためには、特に、上記(a)の場合の減速度が大きいので、上記(a)の場合の減速度の低減を図ることが重要である。そのため、本実施の形態では、特に、上記(a)の場合の減速度の低減に着目する。 Thus, in a general elevator apparatus, the deceleration changes depending on the load factor in the car and the traveling direction. Therefore, a large deceleration may occur when the basket stops emergency. Therefore, in the present embodiment, the occurrence of a large deceleration is suppressed by adjusting the deceleration according to the load variation in the car. Specifically, the vertical position of the deflector wheel 6 is adjusted using the spring 10. Thereby, the traction of the rope 3 is changed and the impact at the time of emergency stop is relieved. In order to alleviate the impact, the deceleration in the case (a) is particularly large. Therefore, it is important to reduce the deceleration in the case (a). Therefore, in the present embodiment, attention is particularly paid to the reduction in deceleration in the case of (a).
 本実施の形態に係るエレベータ装置の動作について説明する。
 上述したように、本実施の形態においては、カゴ1内の負荷の変動に応じて、そらせ車6の垂直方向位置を調整する。
 そらせ車6の垂直方向位置の調整のために、本実施の形態においては、バネ10とそらせ車取付梁7とが設けられている。そらせ車取付梁7には、上下調整用溝9が設けられている。そらせ車6は、そらせ車取付梁7により支持されている。そらせ車6の中心軸61は、上下調整用溝9に案内されて、垂直方向に移動する。これにより、そらせ車6は垂直方向に移動する。具体的には、カゴ内負荷が小さいときは、図2A,図2Bに示されるように、バネ10が伸びて、そらせ車6が上方向に移動する。一方、カゴ内負荷が大きいときは、図3A,図3Bに示されるように、バネ10が縮んで、そらせ車6が下方向に移動する。
The operation of the elevator apparatus according to the present embodiment will be described.
As described above, in the present embodiment, the vertical position of the deflector wheel 6 is adjusted according to the variation in the load in the car 1.
In the present embodiment, a spring 10 and a deflecting wheel mounting beam 7 are provided to adjust the vertical position of the deflecting wheel 6. The baffle mounting beam 7 is provided with a vertical adjustment groove 9. The deflecting wheel 6 is supported by a deflecting wheel mounting beam 7. The central shaft 61 of the deflector wheel 6 is guided by the vertical adjustment groove 9 and moves in the vertical direction. Thereby, the deflector 6 moves in the vertical direction. Specifically, when the load in the cage is small, as shown in FIGS. 2A and 2B, the spring 10 extends and the deflector 6 moves upward. On the other hand, when the load in the cage is large, as shown in FIGS. 3A and 3B, the spring 10 is contracted and the deflecting wheel 6 moves downward.
 このように、カゴ1内の負荷が小さい時は、そらせ車6が上方向に移動することで、綱車5に巻き付けるロープ3の長さが短く、巻付角θが小さくなる。すなわち、図2Aに示す、θ=θaの状態である。これにより、綱車5とロープ3との接触面積が小さくなるので、ロープ3のトラクションが低下する。このため、巻上機4のブレーキのブレーキトルクが一定でも、カゴ1の減速度を小さくする事ができる。 Thus, when the load in the basket 1 is small, the length of the rope 3 wound around the sheave 5 is short and the winding angle θ is small because the deflecting wheel 6 moves upward. That is, it is in the state of θ = θa shown in FIG. 2A. Thereby, since the contact area of the sheave 5 and the rope 3 becomes small, the traction of the rope 3 falls. For this reason, even if the brake torque of the brake of the hoisting machine 4 is constant, the deceleration of the basket 1 can be reduced.
 一方、カゴ1内の負荷が大きい時は、そらせ車6が下方向に移動することで、綱車5に巻き付けるロープ3の長さが長く、巻付角θが大きくなる。すなわち、図3Aに示す、θ=θbの状態である。これにより、綱車5とロープ3との接触面積が大きくなるので、ロープ3のトラクションが上昇する。このため、巻上機4のブレーキのブレーキトルクが一定でも、カゴ1の減速度を大きくする事ができる。 On the other hand, when the load in the basket 1 is large, the length of the rope 3 wound around the sheave 5 is long and the winding angle θ becomes large because the deflecting wheel 6 moves downward. That is, it is a state of θ = θb shown in FIG. 3A. Thereby, since the contact area of the sheave 5 and the rope 3 becomes large, the traction of the rope 3 rises. For this reason, even if the brake torque of the brake of the hoisting machine 4 is constant, the deceleration of the basket 1 can be increased.
 こうすることで、上記(a)の場合の減速度を低減することができる。また、上記(e)の差分についても、カゴ1が下方向に移動している場合の差分を小さくすることができる。このように、本実施の形態は、カゴが下方向に移動している場合に、特に有効である。カゴが上方向に移動している場合には、逆の動作になる。そのため、カゴ内負荷が大きい場合には、減速度を低減することができるので、本実施の形態は有効である。一方、カゴ内負荷が小さい場合には、減速度が増加してしまうが、減速度の絶対値が元々小さいため、それほど、問題はない。
 従って、本実施の形態においては、カゴ1が非常停止しても、常に大きな減速度が発生しないので、非常停止時の衝撃を緩和することができる。
By doing so, the deceleration in the case of the above (a) can be reduced. In addition, regarding the difference (e), the difference when the car 1 is moving downward can be reduced. Thus, this embodiment is particularly effective when the basket is moving downward. When the basket is moving upward, the operation is reversed. Therefore, when the load in the cage is large, the deceleration can be reduced, and this embodiment is effective. On the other hand, when the load in the car is small, the deceleration increases, but there is not much problem because the absolute value of the deceleration is originally small.
Therefore, in the present embodiment, even when the car 1 is in an emergency stop, a large deceleration does not always occur, so that the impact at the time of an emergency stop can be reduced.
 上述したように、本実施の形態においては、カゴ1内の負荷の変動に応じて、そらせ車6の垂直方向位置が自動的に調整されるように、バネ10を設けている。バネ10による自動調整方法について以下に説明する。 As described above, in the present embodiment, the spring 10 is provided so that the vertical position of the baffle wheel 6 is automatically adjusted according to the load variation in the car 1. An automatic adjustment method using the spring 10 will be described below.
 図8に示すように、そらせ車6の中心軸61には、そらせ車6を介して、ロープ3から、斜め下方向に負荷Lが掛かる。負荷Lの方向は、ロープ3とそらせ車6との接点Pとそらせ車6の中心とを結ぶ直線の方向と一致する。このとき、ロープ3に生じる張力が大きくなればなるほど、そらせ車6の中心軸61には、大きな負荷Lが生じることになる。ロープ3に生じる張力は、カゴ1内の負荷が大きいときに大きくなり、カゴ1内の負荷が小さいときに小さくなる。
 負荷Lは、図8に示すように、分力L1,L2に分けることができる。分力L1は、下方向の分力である。分力L2は、綱車5とそらせ車6との間のロープ3の向きに平行な方向の分力である。従って、負荷Lが大きくなれば、同時に、分力L1も大きくなる。そのため、カゴ1内の負荷が大きくなればなるほど、分力L1も大きくなる。
As shown in FIG. 8, a load L is applied to the central shaft 61 of the deflecting wheel 6 in an obliquely downward direction from the rope 3 through the deflecting wheel 6. The direction of the load L coincides with the direction of a straight line connecting the contact point P between the rope 3 and the deflector wheel 6 and the center of the deflector wheel 6. At this time, the greater the tension generated in the rope 3, the greater the load L is generated on the central shaft 61 of the deflector wheel 6. The tension generated in the rope 3 increases when the load in the cage 1 is large, and decreases when the load in the cage 1 is small.
As shown in FIG. 8, the load L can be divided into component forces L 1 and L 2 . The component force L 1 is a component force in the downward direction. The component force L 2 is a component force in a direction parallel to the direction of the rope 3 between the sheave 5 and the deflector wheel 6. Therefore, as the load L increases, the component force L 1 also increases. Therefore, as the load in the basket 1 increases, the component force L 1 increases.
 この原理により、カゴ1内の負荷が小さい場合には、分力L1が小さいため、図2A,図2Bに示すように、バネ10は伸びている。従って、そらせ車6の垂直方向位置は高い。
 一方、カゴ1内の負荷が大きい場合には、分力L1が大きいため、図3A,図3Bに示すように、バネ10は縮んでいる。従って、そらせ車6の垂直方向位置は低い。
Due to this principle, when the load in the basket 1 is small, the component force L 1 is small, so that the spring 10 extends as shown in FIGS. 2A and 2B. Therefore, the vertical position of the deflector 6 is high.
On the other hand, when the load in the basket 1 is large, the component force L 1 is large, so that the spring 10 is contracted as shown in FIGS. 3A and 3B. Therefore, the vertical position of the deflector 6 is low.
 このように、本実施の形態においては、バネ10により、カゴ1内の負荷の変動に応じて、そらせ車6の垂直方向位置が自動的に調整される。バネ10の圧縮量は、カゴ1内の負荷とバネ定数とにより、一意に決定される。そのため、バネ10のバネ定数を適宜選定する事により、カゴ1内の負荷に追従させて、そらせ車6を所望の位置に調整することができる。そのため、カゴ1内の負荷を測定しなくても、常に、ロープ3の巻付角θを自動的に最適な値に調整することができる。従って、本実施の形態においては、カゴ1内の負荷を測定するためのセンサーを設ける必要もない。 Thus, in the present embodiment, the vertical position of the deflector 6 is automatically adjusted by the spring 10 in accordance with the fluctuation of the load in the basket 1. The amount of compression of the spring 10 is uniquely determined by the load in the cage 1 and the spring constant. Therefore, by appropriately selecting the spring constant of the spring 10, the deflecting wheel 6 can be adjusted to a desired position by following the load in the basket 1. Therefore, the winding angle θ of the rope 3 can always be automatically adjusted to an optimum value without measuring the load in the cage 1. Therefore, in the present embodiment, there is no need to provide a sensor for measuring the load in the basket 1.
 以上のように、本実施の形態においては、エレベータ装置が、綱車5と、綱車5を回転させるモータと、綱車5を制動するブレーキとを備えた巻上機4と、カゴ1とおもり2とを繋ぎ、綱車5に巻回された、ロープ3と、綱車5とおもり2との間に設けられ、ロープ3が巻回された、そらせ車6と、そらせ車6を支持し、そらせ車6の垂直方向の移動を可能にする、そらせ車取付梁7と、カゴ1のカゴ内負荷の値に応じて、そらせ車6の垂直方向の位置を制御する位置制御部としてのバネ10とを備えている。バネ10は、カゴ内負荷の増加に応じてそらせ車6を下方に移動させ、カゴ内負荷の減少に応じてそらせ車を上方に移動させる。そらせ車6の上下方向の移動により、ロープ3のトラクションを調整することができるので、カゴ内負荷に応じて、非常停止時の減速度を制御して衝撃を緩和させることができる。 As described above, in the present embodiment, the elevator apparatus includes the sheave 5, the hoisting machine 4 that includes the motor that rotates the sheave 5, and the brake that brakes the sheave 5, and the car 1. The rope 3 connected to the weight 2 and wound around the sheave 5, provided between the sheave 5 and the weight 2, and supported by the sled wheel 6 and the sled wheel 6 around which the rope 3 is wound. As a position control unit that controls the vertical position of the sled wheel 6 according to the value of the sled wheel mounting beam 7 and the load in the basket 1 of the car 1 that enables the sled wheel 6 to move in the vertical direction. And a spring 10. The spring 10 moves the deflecting wheel 6 downward in accordance with an increase in the load in the cage, and moves the deflecting wheel upward in response to a decrease in the load in the cage. Since the traction of the rope 3 can be adjusted by moving the baffle wheel 6 in the vertical direction, it is possible to reduce the impact by controlling the deceleration at the time of emergency stop according to the load in the car.
 また、本実施の形態においては、そらせ車取付梁7が、そらせ車6の中心軸61を上下方向にのみ移動可能にする上下調整用溝9を備えている。これにより、中心軸61は、上下移動のみが可能で、横方向に移動することはない。従って、そらせ車6の動きが安定する。 Further, in the present embodiment, the deflector wheel mounting beam 7 is provided with a vertical adjustment groove 9 that allows the center shaft 61 of the deflector wheel 6 to move only in the vertical direction. Thereby, the central axis 61 can only move up and down, and does not move in the lateral direction. Therefore, the movement of the deflector 6 is stabilized.
 また、本実施の形態では、そらせ車6とそらせ車取付梁7の下端72との間に、位置制御部としての、バネ10が設けられている。バネ10は、カゴ内負荷の変動に追従して、伸縮する。そのため、そらせ車6の上下位置は、バネ10の伸縮により、自動的に移動する。具体的には、カゴ内負荷が大きい時は、当該カゴ内負荷に応じてバネ10が縮んで、そらせ車6の位置が下方向に移動する。一方、カゴ内負荷が小さい時は、当該カゴ内負荷に応じてバネ10が伸びて、そらせ車6の位置が上方向に移動する。このため、バネ10のバネ定数を適切に選定することにより、そらせ車6の移動距離を任意に決める事ができる。そのため、カゴ1内の負荷を測定しなくても、常に、ロープ3の巻付角θを自動で最適な値とすることができる。 Further, in the present embodiment, a spring 10 as a position control unit is provided between the deflector wheel 6 and the lower end 72 of the deflector wheel mounting beam 7. The spring 10 expands and contracts following the change in the load in the cage. Therefore, the vertical position of the deflector 6 is automatically moved by the expansion and contraction of the spring 10. Specifically, when the load in the cage is large, the spring 10 is contracted in accordance with the load in the cage, and the position of the deflecting wheel 6 moves downward. On the other hand, when the load in the cage is small, the spring 10 is extended in accordance with the load in the cage, and the position of the deflector 6 is moved upward. For this reason, by appropriately selecting the spring constant of the spring 10, the moving distance of the deflecting wheel 6 can be arbitrarily determined. Therefore, the winding angle θ of the rope 3 can always be automatically set to an optimum value without measuring the load in the cage 1.
 実施の形態2.
 図4は、この発明の実施の形態2に係るエレベータ装置の構成を示す模式的なブロック図である。本実施の形態と上記の実施の形態1との主要な相違点は、本実施の形態においては、バネ10の代わりに、アクチュエータ11が設けられている点である。以下、本実施の形態について詳細に説明する。
Embodiment 2. FIG.
FIG. 4 is a schematic block diagram showing a configuration of an elevator apparatus according to Embodiment 2 of the present invention. The main difference between the present embodiment and the first embodiment is that an actuator 11 is provided instead of the spring 10 in the present embodiment. Hereinafter, this embodiment will be described in detail.
 本実施の形態においては、巻上機4の巻上機本体20には、モータ18と、ブレーキ16と、エンコーダ12とが設けられている。 In the present embodiment, the hoisting machine main body 20 of the hoisting machine 4 is provided with a motor 18, a brake 16, and an encoder 12.
 エンコーダ12は、モータ18の回転方向を検出することで、綱車5の回転方向を検出する検出器である。エンコーダ12は、綱車5の回転方向に応じた信号を発生する。エンコーダ12からの信号の正負により、綱車5の回転方向、すなわち、カゴ1の移動方向を検知することができる。 The encoder 12 is a detector that detects the rotation direction of the sheave 5 by detecting the rotation direction of the motor 18. The encoder 12 generates a signal corresponding to the direction of rotation of the sheave 5. The direction of rotation of the sheave 5, that is, the direction of movement of the car 1 can be detected by the sign of the signal from the encoder 12.
 巻上機4の他の構成については、実施の形態1と同じであるため、ここでは、説明を省略する。 Since the other configuration of the hoist 4 is the same as that of the first embodiment, the description thereof is omitted here.
 また、カゴ1には、秤装置13が設けられている。秤装置13は、カゴ1内の重量を、カゴ内負荷として検出する。秤装置13は、検出したカゴ内負荷に応じた信号を出力する。 Further, the basket 1 is provided with a scale device 13. The scale device 13 detects the weight in the car 1 as a load in the car. The scale device 13 outputs a signal corresponding to the detected load in the car.
 エンコーダ12からの信号、及び、秤装置13からの信号は、エレベータ制御装置14へ伝送される。エレベータ制御装置14は、これらの信号に基づいて、後述するアクチュエータ制御装置19を介して、アクチュエータ11の伸縮を制御する。従って、本実施の形態においては、エレベータ制御装置14が、カゴ1の移動方向およびカゴ内負荷に応じて、アクチュエータ11の伸縮量を演算する伸縮量演算部を構成している。 The signal from the encoder 12 and the signal from the scale device 13 are transmitted to the elevator control device 14. Based on these signals, the elevator control device 14 controls expansion and contraction of the actuator 11 via an actuator control device 19 described later. Therefore, in the present embodiment, the elevator control device 14 constitutes an expansion / contraction amount calculation unit that calculates the expansion / contraction amount of the actuator 11 according to the moving direction of the car 1 and the load in the car.
 また、エレベータ制御装置14は、電力変換装置15を介して、巻上機4のモータ18を動作させる。さらに、エレベータ制御装置14は、ブレーキ制御装置17を介して、ブレーキ16を動作させる。 Further, the elevator control device 14 operates the motor 18 of the hoisting machine 4 via the power conversion device 15. Further, the elevator control device 14 operates the brake 16 via the brake control device 17.
 本実施の形態においては、そらせ車6に対し、アクチュエータ11が設けられている。アクチュエータ11は、垂直方向に設けられている。アクチュエータ11は、そらせ車6を支持している。アクチュエータ11は、そらせ車6を垂直方向に移動させることができる。エレベータ制御装置14からの信号が、アクチュエータ制御装置19を介して、アクチュエータ11に伝送される。当該信号により、アクチュエータ11が動作する。こうして、そらせ車6は、アクチュエータ11により、上下に動かされる。 In the present embodiment, an actuator 11 is provided for the deflecting wheel 6. The actuator 11 is provided in the vertical direction. The actuator 11 supports the deflector wheel 6. The actuator 11 can move the deflecting wheel 6 in the vertical direction. A signal from the elevator control device 14 is transmitted to the actuator 11 via the actuator control device 19. The actuator 11 is operated by the signal. Thus, the deflecting wheel 6 is moved up and down by the actuator 11.
 本実施の形態においては、アクチュエータ11と、秤装置13と、エンコーダ12と、エレベータ制御装置14と、アクチュエータ制御装置19とが、カゴ内負荷の値に応じて、そらせ車6の垂直方向の位置を制御する位置制御部を構成している。 In the present embodiment, the actuator 11, the scale device 13, the encoder 12, the elevator control device 14, and the actuator control device 19 are arranged in the vertical position of the deflector 6 according to the value of the load in the car. The position control part which controls is comprised.
 次に、図5A、図5B、および、図6A、図6Bを用いて、アクチュエータ11の構成について説明する。図5A、図5B、および、図6A、図6Bは、本実施の形態に係るエレベータ装置の部分詳細図である。図5A、図5Bが、カゴ内負荷が小さい場合を示し、図6A、図6Bが、カゴ内負荷が大きい場合を示している。また、図5Aが正面図、図5Bが図5Aに対応する側面図である。図6Aが正面図、図6Bが図6Aに対応する側面図である。 Next, the configuration of the actuator 11 will be described with reference to FIGS. 5A, 5B, 6A, and 6B. 5A, FIG. 5B, and FIG. 6A, FIG. 6B are partial detailed views of the elevator apparatus according to the present embodiment. 5A and 5B show a case where the load in the car is small, and FIGS. 6A and 6B show a case where the load in the car is large. 5A is a front view, and FIG. 5B is a side view corresponding to FIG. 5A. 6A is a front view, and FIG. 6B is a side view corresponding to FIG. 6A.
 アクチュエータ11は、上端部111と、下端部112と、上端部111と下端部112とを繋ぐアーム113とから構成されている。アクチュエータ11のアーム113は、垂直方向、すなわち、昇降方向に設けられている。アクチュエータ11のアーム113は、垂直方向に伸縮する。本実施の形態においては、アーム113の伸縮により、そらせ車6が、上下調整用溝9に案内されて、上下に移動する。 The actuator 11 includes an upper end 111, a lower end 112, and an arm 113 that connects the upper end 111 and the lower end 112. The arm 113 of the actuator 11 is provided in the vertical direction, that is, in the up and down direction. The arm 113 of the actuator 11 extends and contracts in the vertical direction. In the present embodiment, as the arm 113 extends and contracts, the deflecting wheel 6 is guided by the vertical adjustment groove 9 and moves up and down.
 なお、図5A,図5Bに示すように、カゴ内負荷が小さい場合のそらせ車6のを「そらせ車6a」と呼び、その場合のアクチュエータ11を「アクチュエータ11a」と呼ぶ。同様に、図6A,図6Bに示すように、カゴ内負荷が大きい場合のそらせ車6を「そらせ車6b」と呼び、その場合のアクチュエータ11を「アクチュエータ11b」と呼ぶ。 As shown in FIGS. 5A and 5B, the deflecting wheel 6 when the load in the cage is small is called “the deflecting wheel 6a”, and the actuator 11 in that case is called the “actuator 11a”. Similarly, as shown in FIGS. 6A and 6B, the deflection wheel 6 when the load in the cage is large is referred to as “a deflection wheel 6b”, and the actuator 11 in that case is referred to as an “actuator 11b”.
 このように、本実施の形態においては、アクチュエータ11が、そらせ車6を支持するとともに、そらせ車6の垂直方向位置を調整する。エンコーダ12と秤装置13とからの信号に基づいて、エレベータ制御装置14が、アクチュエータ11を伸ばすか又は縮めるかを決定する。また、エレベータ制御装置14は、伸ばす場合には、その伸び量を演算し、縮める場合には、その縮め量を演算する。エレベータ制御装置は、それらの演算結果に基づいて、アクチュエータ制御装置19を制御する。当該制御により、アクチュエータ制御装置19は、アクチュエータ11のアーム113の伸縮を調整する。アーム113が伸縮する事により、そらせ車6は、以下のように移動する。 Thus, in the present embodiment, the actuator 11 supports the deflector wheel 6 and adjusts the vertical position of the deflector wheel 6. Based on the signals from the encoder 12 and the scale device 13, the elevator control device 14 determines whether the actuator 11 is extended or contracted. Moreover, the elevator control apparatus 14 calculates the amount of expansion | extension, when extending, and calculates the amount of contraction, when shortening. The elevator control device controls the actuator control device 19 based on the calculation results. With this control, the actuator control device 19 adjusts the expansion and contraction of the arm 113 of the actuator 11. As the arm 113 expands and contracts, the deflector 6 moves as follows.
 (1)カゴが下方向に移動している場合:
 ・カゴ内負荷が小さい場合は、そらせ車6を上方向に移動させる。
 ・カゴ内負荷が大きい場合は、そらせ車6を下方向に移動させる。 
(1) When the basket is moving downward:
・ If the load in the basket is small, move the deflector 6 upward.
・ If the load in the basket is large, move the deflector 6 downward.
 (2)カゴが上方向に移動している場合:
 ・カゴ内負荷が小さい場合は、そらせ車6を下方向に移動させる。
 ・カゴ内負荷が大きい場合は、そらせ車6を上方向に移動させる。 
(2) When the basket is moving upward:
・ If the load in the basket is small, move the deflector 6 downward.
・ If the load in the basket is large, move the deflector 6 upward.
 上記(1)は実施の形態1と同じ動作であるが、上記(2)は実施の形態1と逆の動作である。図7のグラフからわかるように、カゴが下方向に移動している場合には、カゴ内負荷が小さい場合は減速度を小さくし、カゴ内負荷が大きい場合は減速度を大きくすることが望ましい。したがって、本実施の形態では、上記(1)のように、そらせ車6を移動させる。一方、 カゴが上方向に移動している場合には、カゴ内負荷が小さい場合は減速度を大きくし、カゴ内負荷が大きい場合は減速度を小さくすることが望ましい。したがって、本実施の形態では、上記(2)のように、そらせ車6を移動させる。
 上記動作により、カゴ1が下方向へ移動している際の効果は実施の形態1と同じであるが、上方向へカゴ1が移動している際には、実施の形態1に比べて、さらに、カゴ1の減速度を低減することが可能となる。
The operation (1) is the same as that in the first embodiment, but the operation (2) is the reverse of the operation in the first embodiment. As can be seen from the graph of FIG. 7, when the car is moving downward, it is desirable to reduce the deceleration when the load in the car is small and increase the deceleration when the load in the car is large. . Therefore, in the present embodiment, the deflector 6 is moved as in (1) above. On the other hand, when the cage is moving upward, it is desirable to increase the deceleration when the load in the cage is small, and decrease the deceleration when the load in the cage is large. Therefore, in the present embodiment, the deflector 6 is moved as in (2) above.
With the above operation, the effect when the car 1 is moving downward is the same as that of the first embodiment. However, when the car 1 is moving upward, compared to the first embodiment, Furthermore, the deceleration of the basket 1 can be reduced.
 このように、本実施の形態においては、アクチュエータ11が、カゴ1が下方向に移動している場合は、カゴ内負荷の増加に応じてそらせ車6を下方に移動させ、カゴ内負荷の減少に応じてそらせ車6を上方に移動させる。一方、カゴ1が上方向に移動している場合は、カゴ内負荷の増加に応じてそらせ車6を上方に移動させ、カゴ内負荷の減少に応じてそらせ車6を下方に移動させる。 As described above, in the present embodiment, when the car 11 is moving downward, the actuator 11 moves the deflecting wheel 6 downward in accordance with the increase in the car load, thereby reducing the car load. Accordingly, the deflector 6 is moved upward. On the other hand, when the car 1 is moving in the upward direction, the deflecting wheel 6 is moved upward in accordance with an increase in the car load, and the deflecting wheel 6 is moved downward in accordance with a decrease in the car load.
 アクチュエータ11の伸縮量は、例えば、以下のようにして決定する。
 カゴ1が上方向に移動の場合と下方向に移動の場合とに分けて、2つのルックアップテーブルを用意する。各ルックアップテーブルは、カゴ内負荷率[%]とアクチュエータ11の長さ[cm]との対応関係が予め定められている。例えば、上方向のルックアップテーブルでは、カゴ内負荷率が0%以上20%未満の場合は、アクチュエータ11の長さが○○cm、カゴ内負荷率が20%以上40%未満の場合は、アクチュエータ11の長さが△△cm、・・・というように、予め決定されている。下方向のルックアップテーブルでも同様である。これにより、エレベータ制御装置14は、現在のカゴ内負荷に対応するアクチュエータ11の長さを、当該ルックアップテーブルから検索する。そうして、エレベータ制御装置14は、現在のアクチュエータ11の長さと検索したアクチュエータ11の長さとを比較して、アクチュエータ11の伸縮量を決定する。
 なお、アクチュエータ11の伸縮量の決定方法は、この場合に限らない。たとえば、カゴ1が上方向に移動の場合と下方向に移動の場合ごとに、カゴ内負荷をパラメータとする関数を用意しておき、当該関数により演算するようにしてもよい。あるいは、他の方法により、演算するようにしてもよい。
The amount of expansion / contraction of the actuator 11 is determined as follows, for example.
Two lookup tables are prepared for the case where the car 1 moves upward and the case where it moves downward. In each look-up table, the correspondence between the in-car load factor [%] and the length [cm] of the actuator 11 is determined in advance. For example, in the upward lookup table, when the load factor in the car is 0% or more and less than 20%, the length of the actuator 11 is ◯ cm, and the load factor in the car is 20% or more and less than 40%, The length of the actuator 11 is determined in advance as ΔΔcm,. The same applies to the downward lookup table. Thereby, the elevator control device 14 searches the length of the actuator 11 corresponding to the current in-car load from the lookup table. Then, the elevator control device 14 compares the current length of the actuator 11 with the retrieved length of the actuator 11 to determine the amount of expansion / contraction of the actuator 11.
The method for determining the amount of expansion / contraction of the actuator 11 is not limited to this case. For example, a function using the load in the car as a parameter may be prepared for each case where the car 1 is moved upward and when the car 1 is moved downward. Or you may make it calculate by another method.
 他の構成および動作については、実施の形態1と同じであるため、ここでは、その説明を省略する。 Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted here.
 このように、本実施の形態においては、実施の形態1と同様に、エレベータ装置が、カゴ1とおもり2とを繋ぐロープ3と、ロープ3が巻掛けられた綱車5及びそらせ車6と、そらせ車6の垂直方向位置を調整可能にそらせ車6を支持するそらせ車取付梁7とを備えている。本実施の形態においては、カゴ内負荷とカゴ1の移動方向とに応じて、上記(1),(2)に示したように、そらせ車6を上方向または下方向に移動させる。 Thus, in the present embodiment, as in the first embodiment, the elevator apparatus includes the rope 3 that connects the cage 1 and the weight 2, the sheave 5 and the baffle 6 on which the rope 3 is wound. And a deflector wheel mounting beam 7 for supporting the deflector wheel 6 so that the vertical position of the deflector wheel 6 can be adjusted. In the present embodiment, as shown in the above (1) and (2), the deflecting wheel 6 is moved upward or downward according to the load in the cage and the moving direction of the cage 1.
 これにより、カゴ1が下方向に移動していて、且つ、カゴ内負荷が小さい場合、および、カゴ1が上方向に移動していて、且つ、カゴ内負荷が大きい場合には、そらせ車6を上方向に移動させる。これにより、綱車5に巻き付けるロープ3の長さが短くなり、巻付角θが小さくなる。その結果、ロープ3のトラクションが低下する。このため、巻上機4のブレーキのブレーキトルクが一定の場合においても、カゴ1の減速度を小さくする事ができる。 As a result, when the car 1 is moving downward and the load in the car is small, and when the car 1 is moving in the upward direction and the car load is large, the deflector 6 Move up. Thereby, the length of the rope 3 wound around the sheave 5 is shortened, and the winding angle θ is decreased. As a result, the traction of the rope 3 is reduced. For this reason, even when the brake torque of the brake of the hoisting machine 4 is constant, the deceleration of the car 1 can be reduced.
 一方、カゴ1が上方向に移動していて、且つ、カゴ内負荷が小さい場合、および、カゴ1が下方向に移動していて、且つ、カゴ内負荷が大きい場合には、そらせ車6を下方向に移動させる。これにより、綱車5に巻き付けるロープ3の長さが長くなり、巻付角θが大きくなる。その結果、ロープ3のトラクションが増加する。このため、巻上機4のブレーキのブレーキトルクが一定の場合においても、カゴ1の減速度を大きくする事ができる。 On the other hand, when the cage 1 is moving upward and the load in the cage is small, and when the cage 1 is moving downward and the load in the cage is large, the baffle 6 is moved. Move down. Thereby, the length of the rope 3 wound around the sheave 5 is increased, and the winding angle θ is increased. As a result, the traction of the rope 3 increases. For this reason, even when the brake torque of the brake of the hoisting machine 4 is constant, the deceleration of the car 1 can be increased.
 以上のように、本実施の形態においても、カゴ内負荷に応じて、そらせ車6の垂直方向位置を移動させるようにしたので、上記の実施の形態1と同様に、カゴ内負荷に応じて非常停止時の減速度を制御して衝撃を緩和させることができる。 As described above, also in the present embodiment, since the vertical position of the deflector 6 is moved in accordance with the load in the car, according to the load in the car as in the first embodiment. Impact can be mitigated by controlling deceleration during emergency stop.
 さらに、本実施の形態においては、エンコーダ12により、カゴ1が上方向に移動しているのか、あるいは、カゴ1が下方向に移動しているのかを、検出することができる。それにより、カゴ内負荷だけでなく、カゴの移動方向も考慮して、そらせ車6の垂直方向位置を移動させる。その結果、カゴ1が上方向および下方向のいずれの方向に移動している場合にも、乗客に衝撃を与えるような大きな減速度の発生を常に抑えることができ、さらに、カゴ1の減速度の変動幅を低減することが可能となる。 Furthermore, in the present embodiment, the encoder 12 can detect whether the car 1 is moving upward or whether the car 1 is moving downward. Thereby, not only the load in the car but also the moving direction of the car is taken into consideration, and the vertical position of the deflector 6 is moved. As a result, even when the car 1 is moving in either the upward direction or the downward direction, it is possible to always suppress the occurrence of a large deceleration that gives an impact to the passengers. It is possible to reduce the fluctuation range.
 また、本実施の形態においては、位置制御部を、そらせ車を支持する、伸縮可能なアクチュエータ11と、カゴ内負荷を測定する秤装置13と、モータ18の回転方向を検知することで、カゴ1の移動方向を検知するエンコーダ12と、秤装置13で測定されたカゴ内負荷とエンコーダ12で検知されたカゴ1の移動方向とに基づいて、アクチュエータ11の伸縮量を演算する伸縮量演算部としてのエレベータ制御装置14と、伸縮量演算部で演算された伸縮量に基づいて、アクチュエータ11を伸縮させるアクチュエータ制御装置19とから構成した。アクチュエータ11は、カゴ内負荷の変動およびカゴの移動方向に応じて伸縮することにより、そらせ車6の垂直方向の位置を制御する。これにより、アクチュエータ11が、カゴ内負荷の変動およびカゴの移動方向に応じて、そらせ車6の位置を制御することができる。上記の実施の形態1は、特に下方向にカゴ1が移動している場合に有効であったが、本実施の形態においては、上方向および下方向のいずれの場合にも有効である。 In the present embodiment, the position control unit detects the rotation direction of the motor 18 by detecting the rotation direction of the retractable actuator 11 that supports the deflector, the scale device 13 that measures the load in the basket, and the motor 18. An encoder 12 that detects the movement direction of 1, and an expansion / contraction amount calculation unit that calculates the expansion / contraction amount of the actuator 11 based on the load in the cage measured by the scale device 13 and the movement direction of the cage 1 detected by the encoder 12. As an elevator control device 14 and an actuator control device 19 for expanding and contracting the actuator 11 based on the expansion and contraction amount calculated by the expansion and contraction amount calculation unit. The actuator 11 controls the vertical position of the deflector 6 by expanding and contracting according to the variation in the load in the cage and the moving direction of the cage. Thereby, the actuator 11 can control the position of the deflector 6 according to the fluctuation | variation of the load in a cage | basket | car and the moving direction of a cage | basket | car. The above-described first embodiment is effective particularly when the cage 1 is moving in the downward direction, but in this embodiment, it is effective in both the upward and downward directions.
 本実施の形態では、アクチュエータ11は、カゴ1が下方向に移動している場合は、カゴ内負荷の増加に応じてそらせ車6を下方に移動させ、カゴ内負荷の減少に応じてそらせ車6を上方に移動させる。一方、カゴ1が上方向に移動している場合は、カゴ内負荷の増加に応じてそらせ車6を上方に移動させ、カゴ内負荷の減少に応じてそらせ車6を下方に移動させる。これにより、カゴ1が上方向および下方向のいずれの方向に移動している場合においても、不必要な大きな減速度が発生することを抑えることができる。また、カゴ1が上方向および下方向のいずれの方向に移動している場合においても、減速度の変動幅を小さくすることができる。 In the present embodiment, when the car 1 is moving downward, the actuator 11 moves the deflecting wheel 6 downward in accordance with an increase in the load in the car, and the deflecting wheel in response to a decrease in the load in the car. 6 is moved upward. On the other hand, when the car 1 is moving in the upward direction, the deflecting wheel 6 is moved upward in accordance with an increase in the car load, and the deflecting wheel 6 is moved downward in accordance with a decrease in the car load. Thereby, even when the cage 1 is moving in either the upward direction or the downward direction, it is possible to prevent unnecessary large deceleration from occurring. Further, even when the car 1 is moving in either the upward direction or the downward direction, the fluctuation range of the deceleration can be reduced.

Claims (5)

  1.  綱車と、前記綱車を回転させるモータと、前記綱車を制動するブレーキと、を備えた巻上機と、
     カゴとおもりとを繋ぎ、前記綱車に巻回された、ロープと、
     前記綱車と前記おもりとの間に設けられ、前記ロープが巻回された、そらせ車と、
     前記そらせ車を支持し、前記そらせ車の垂直方向の移動を可能にする、そらせ車取付梁と、
     前記カゴのカゴ内負荷の値に応じて、前記そらせ車の垂直方向の位置を制御する位置制御部と
     を備え、
     前記位置制御部は、前記カゴ内負荷の増加に応じて前記そらせ車を下方に移動させ、前記カゴ内負荷の減少に応じて前記そらせ車を上方に移動させる、
     エレベータ装置。
    A hoisting machine comprising a sheave, a motor that rotates the sheave, and a brake that brakes the sheave;
    A rope connected to the cage and the weight, wound around the sheave,
    A sled wheel provided between the sheave and the weight and wound with the rope;
    A baffle mounting beam that supports the baffle and allows vertical movement of the baffle;
    A position control unit that controls a position of the baffle in a vertical direction according to a value of a load in the basket of the basket;
    The position control unit moves the deflector downward according to the increase in the basket load, and moves the deflector upward according to the decrease in the basket load.
    Elevator device.
  2.  前記そらせ車取付梁は、垂直方向に設けられ、前記そらせ車の軸が挿入されて、前記軸の垂直方向の移動を案内する上下調整溝を有している
     請求項1に記載のエレベータ装置。
    The elevator apparatus according to claim 1, wherein the deflecting wheel mounting beam is provided in a vertical direction, and has a vertical adjustment groove into which a shaft of the deflecting wheel is inserted and guides the vertical movement of the shaft.
  3.  前記位置制御部は、前記そらせ車を支持するバネから構成され、
     前記バネは、前記カゴ内負荷の変動に応じて伸縮することにより、前記そらせ車の垂直方向の位置を制御する
     請求項1または2に記載のエレベータ装置。
    The position control unit is composed of a spring that supports the deflector,
    The elevator apparatus according to claim 1, wherein the spring controls a position in a vertical direction of the deflecting wheel by expanding and contracting according to a change in the load in the car.
  4.  前記位置制御部は、
     前記そらせ車を支持する、伸縮可能なアクチュエータと、
     前記カゴ内負荷を測定する秤装置と、
     前記モータの回転方向を検知することで、前記カゴの移動方向を検知するエンコーダと、
     前記秤装置で測定された前記カゴ内負荷と前記エンコーダで検知された前記カゴの移動方向とに基づいて、前記アクチュエータの伸縮量を演算する伸縮量演算部と、
     前記伸縮量演算部で演算された前記伸縮量に基づいて、前記アクチュエータを伸縮させるアクチュエータ制御装置と
     から構成され、
     前記アクチュエータは、前記カゴ内負荷の変動および前記カゴの移動方向に応じて伸縮することにより、前記そらせ車の垂直方向の位置を制御する
     請求項1または2に記載のエレベータ装置。
    The position controller is
    An extendable actuator that supports the deflector;
    A weighing device for measuring the load in the basket;
    An encoder that detects a moving direction of the basket by detecting a rotation direction of the motor;
    An expansion / contraction amount calculation unit that calculates the expansion / contraction amount of the actuator based on the load in the cage measured by the scale device and the moving direction of the cage detected by the encoder;
    Based on the expansion / contraction amount calculated by the expansion / contraction amount calculation unit, the actuator control device is configured to extend / contract the actuator,
    The elevator apparatus according to claim 1 or 2, wherein the actuator controls a position in a vertical direction of the deflector by extending and contracting in accordance with a change in the load in the car and a moving direction of the car.
  5.  前記アクチュエータは、
     前記カゴが下方向に移動している場合は、前記カゴ内負荷の増加に応じて前記そらせ車を下方に移動させ、前記カゴ内負荷の減少に応じて前記そらせ車を上方に移動させ、
     前記カゴが上方向に移動している場合は、前記カゴ内負荷の増加に応じて前記そらせ車を上方に移動させ、前記カゴ内負荷の減少に応じて前記そらせ車を下方に移動させる、
     請求項4に記載のエレベータ装置。
    The actuator is
    When the basket is moving downward, the baffle is moved downward according to the increase in the basket load, the baffle is moved upward according to the decrease of the basket load,
    When the car is moving in the upward direction, the baffle is moved upward in accordance with an increase in the load in the car, and the baffle is moved downward in accordance with a decrease in the car load.
    The elevator apparatus according to claim 4.
PCT/JP2015/070698 2015-07-21 2015-07-21 Elevator device WO2017013737A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017529207A JP6494760B2 (en) 2015-07-21 2015-07-21 Elevator equipment
PCT/JP2015/070698 WO2017013737A1 (en) 2015-07-21 2015-07-21 Elevator device
CN201580081810.7A CN107848760B (en) 2015-07-21 2015-07-21 Lift appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070698 WO2017013737A1 (en) 2015-07-21 2015-07-21 Elevator device

Publications (1)

Publication Number Publication Date
WO2017013737A1 true WO2017013737A1 (en) 2017-01-26

Family

ID=57834962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070698 WO2017013737A1 (en) 2015-07-21 2015-07-21 Elevator device

Country Status (3)

Country Link
JP (1) JP6494760B2 (en)
CN (1) CN107848760B (en)
WO (1) WO2017013737A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078046A (en) * 1973-11-12 1975-06-25
JP2002348073A (en) * 2001-05-21 2002-12-04 Mitsubishi Electric Corp Elevator device
JP2007204157A (en) * 2006-01-30 2007-08-16 Mitsubishi Electric Corp Elevator device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI119234B (en) * 2002-01-09 2008-09-15 Kone Corp Elevator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078046A (en) * 1973-11-12 1975-06-25
JP2002348073A (en) * 2001-05-21 2002-12-04 Mitsubishi Electric Corp Elevator device
JP2007204157A (en) * 2006-01-30 2007-08-16 Mitsubishi Electric Corp Elevator device

Also Published As

Publication number Publication date
CN107848760B (en) 2019-07-23
JPWO2017013737A1 (en) 2017-11-02
JP6494760B2 (en) 2019-04-03
CN107848760A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
KR100969047B1 (en) Elevator apparatus
JP6012596B2 (en) Elevator equipment
EP2370339B1 (en) Elevator car positioning using a vibration damper
JP5645955B2 (en) Elevator equipment
JP5726374B2 (en) Elevator equipment
JP5329570B2 (en) Dynamic compensation during re-leveling of elevator cars
KR101920546B1 (en) Elevator device
JP2007331871A (en) Double-deck elevator
WO2016038681A1 (en) Elevator device
JPWO2007057973A1 (en) Elevator brake system
JP2007084239A (en) Elevator
JP5959668B2 (en) Elevator equipment
EP1591399B1 (en) Elevator equipment
JP4566587B2 (en) Elevator control device
JP5036147B2 (en) Elevator speed control device, speed control method, and speed control program
WO2012124067A1 (en) Rope-type gap adjusting device, and elevator control device
JP6062009B2 (en) Elevator equipment
JP6494760B2 (en) Elevator equipment
JP4575076B2 (en) Elevator equipment
EP1767483B1 (en) Control system for elevator
US20220135368A1 (en) Brake system and a method for an elevator and an elevator
JP3949447B2 (en) Elevator main rope runout control device
JP2015168487A (en) Elevator device, and control device for the same
CN108689274B (en) Weighing device of elevator
JPH09156850A (en) Braking device for elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898897

Country of ref document: EP

Kind code of ref document: A1