WO2017013726A1 - 酸解離定数の計算方法、及び計算装置、並びにプログラム - Google Patents

酸解離定数の計算方法、及び計算装置、並びにプログラム Download PDF

Info

Publication number
WO2017013726A1
WO2017013726A1 PCT/JP2015/070625 JP2015070625W WO2017013726A1 WO 2017013726 A1 WO2017013726 A1 WO 2017013726A1 JP 2015070625 W JP2015070625 W JP 2015070625W WO 2017013726 A1 WO2017013726 A1 WO 2017013726A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom
dissociation constant
hydrogen atom
acid dissociation
calculation
Prior art date
Application number
PCT/JP2015/070625
Other languages
English (en)
French (fr)
Inventor
佐藤 博之
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP15898886.5A priority Critical patent/EP3327603B1/en
Priority to JP2017529196A priority patent/JP6365779B2/ja
Priority to PCT/JP2015/070625 priority patent/WO2017013726A1/ja
Publication of WO2017013726A1 publication Critical patent/WO2017013726A1/ja
Priority to US15/858,438 priority patent/US11195597B2/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/90Programming languages; Computing architectures; Database systems; Data warehousing

Definitions

  • This case relates to a method for calculating an acid dissociation constant, an apparatus for calculating an acid dissociation constant, and a program for calculating an acid dissociation constant.
  • pKa is a constant representing the equilibrium state (acidity) of acid dissociation, and is used for applications such as an index for determining the presence of protons (H + ), which are important in chemical reactions in biomolecules. Therefore, various prediction methods have been studied for pKa. There are two types of methods. One is a technique based on the theory of thermodynamics (for example, see Non-Patent Document 1). The other is a method of approximating with a function having physical property values as variables (see, for example, Non-Patent Documents 2 and 3).
  • thermodynamics is not only greatly influenced by the number and position of water molecules arranged around the target molecule, but also requires high-precision calculations to obtain good results. As a result, it is still impossible to predict at high speed. Therefore, it is difficult to apply to screening of macromolecules and large amounts of data.
  • the present inventor has proposed a technique that enables application to a macromolecule, screening of a large amount of data, application to a newly constructed molecule, etc., regarding the predicted value of pKa (see, for example, Patent Document 1). ).
  • An object of the present invention is to provide a method for calculating a dissociation constant, an apparatus for calculating an acid dissociation constant, and a program for calculating an acid dissociation constant.
  • the disclosed acid dissociation constant calculation method uses a computer to calculate an acid dissociation constant for calculating an acid dissociation constant in dissociation of a hydrogen atom from a molecule to be calculated.
  • An index value determined based on the electron density between two atoms of the molecule to be calculated;
  • a coefficient value determined based on the types of the two elements of the set of two atoms;
  • the molecule to be calculated has at least one amino group, and the dissociation of the hydrogen atom from one amino group in the at least one amino group is calculated, A second electron density not related to the bond between the nitrogen atom and another atom in the nitrogen atom of the one amino group; A bond distance between the nitrogen atom and the hydrogen atom; Molecular orbital energy of the molecule to be calculated;
  • the acid dissociation constant is calculated using a function further using.
  • the disclosed program is a program for executing calculation of an acid dissociation constant in dissociation of a hydrogen atom from a calculation target molecule, An index value determined based on the electron density between two atoms of the molecule to be calculated; A coefficient value determined based on the types of the two elements of the set of two atoms; And the molecule to be calculated has at least one amino group, and the dissociation of the hydrogen atom from one amino group in the at least one amino group is calculated, A second electron density not related to the bond between the nitrogen atom and another atom in the nitrogen atom of the one amino group; A bond distance between the nitrogen atom and the hydrogen atom; Molecular orbital energy of the molecule to be calculated; The acid dissociation constant is calculated using a function further using
  • the disclosed acid dissociation constant calculation apparatus has a storage unit, and calculates the acid dissociation constant in the dissociation of a hydrogen atom from a molecule to be calculated.
  • the storage unit as data, An index value determined based on the electron density between two atoms of the molecule to be calculated; A coefficient value determined based on the types of the two elements of the set of two atoms; Have When the calculation target molecule has at least one amino group and the dissociation of the hydrogen atom from one amino group in the at least one amino group is calculated, A second electron density not related to the bond between the nitrogen atom and another atom in the nitrogen atom of the one amino group; A bond distance between the nitrogen atom and the hydrogen atom; Molecular orbital energy of the molecule to be calculated; It has further.
  • the above-mentioned problems can be solved and the above-mentioned object can be achieved, and regarding the predicted value of pKa, application to macromolecules, screening of a large amount of data, newly constructed It can be applied to molecules and the like, and even when calculating amines, the predicted value does not decrease.
  • the above-mentioned problems can be solved and the object can be achieved, and the predicted value of pKa can be applied to macromolecules, mass data screening, newly constructed molecules, etc. Further, the predicted value does not decrease even when the amine is calculated.
  • the above-mentioned problems can be solved and the above-mentioned object can be achieved, and regarding the predicted value of pKa, application to macromolecules, screening of a large amount of data, newly constructed It can be applied to molecules and the like, and even when calculating amines, the predicted value does not decrease.
  • FIG. 1 is a diagram for explaining the acid dissociation constant pKa.
  • FIG. 2 is a diagram illustrating an example of the storage unit.
  • FIG. 3 is a diagram for explaining atom pairs.
  • FIG. 4 is a flowchart of an example of a method for calculating the acid dissociation constant.
  • FIG. 5A is an amine to be calculated (protonated amine) in an example of a method for calculating an acid dissociation constant.
  • FIG. 5B is an amine to be calculated (an amine after deprotonation) in an example of a method for calculating an acid dissociation constant.
  • FIG. 6 is a configuration example of the disclosed acid dissociation constant calculation apparatus.
  • FIG. 7 is another configuration example of the disclosed acid dissociation constant calculation apparatus.
  • FIG. 8 is another configuration example of the disclosed acid dissociation constant calculation apparatus.
  • FIG. 9 is a graph showing the results of Example 1.
  • FIG. 10 is a graph showing the results of Comparative Example 1.
  • FIG. 1 is a diagram for explaining the acid dissociation constant pKa.
  • pKa is a constant representing an equilibrium state of acid dissociation, and is represented by the following formula (1) and equilibrium formula (1).
  • AH represents an acid
  • a ⁇ represents a conjugate base of AH
  • H + represents a proton.
  • the pKa is an index that determines the presence of protons (H + ) that are important in chemical reactions within biomolecules.
  • the inventor has previously proposed a technique that enables application to a macromolecule, screening of a large amount of data, a newly constructed molecule, etc., regarding the predicted value of pKa (Japanese Patent Laid-Open No. 2014-157020). See the official gazette).
  • This proposed technique uses an index based on the electron density of the interatomic bond for the acid dissociation constant pKa of the molecule, so that proton dissociation from OH in oxygen acid is fast and accurate regardless of the type of molecule.
  • PKa can be predicted.
  • the present inventor has found that the accuracy of pKa prediction is lowered in the case of proton dissociation of amines in the above-described technique.
  • the present inventor has (1) a change in reactivity due to a change in steric hindrance before and after proton dissociation of amine, and (2) a resonance stabilization of electronic structure before and after proton dissociation of amine. It was found that the pKa prediction accuracy was lowered due to the change in reactivity due to the change.
  • the disclosed method for calculating the acid dissociation constant is performed using a computer.
  • the acid dissociation constant calculation method calculates an acid dissociation constant in dissociation of a hydrogen atom from a calculation target molecule.
  • Examples of the calculation target molecule include oxygen acid and amine.
  • high-speed and high-precision calculation is possible not only for oxygen acids and primary amines but also for secondary amines, tertiary amines and aromatic amines.
  • the disclosed program is a program for executing calculation of an acid dissociation constant in dissociation of a hydrogen atom from a calculation target molecule.
  • the acid dissociation constant is calculated using a function.
  • the acid dissociation constant is calculated using a function.
  • the function uses an index value and a coefficient value. It is determined based on the electron density between two atoms of the calculation target molecule.
  • the coefficient value is determined based on the types of the two elements of the set of two atoms.
  • the electron density may be referred to as a second electron density (hereinafter referred to as “electron density (D Nfree )”) that is not related to the bond between the nitrogen atom and another atom in the nitrogen atom of the one amino group. ].
  • the bond distance is a bond distance between the nitrogen atom and the hydrogen atom.
  • the molecular orbital energy is the molecular orbital energy of the calculation target molecule.
  • a hydrogen atom for which an acid dissociation constant is calculated may be referred to as a “target proton”.
  • the hydrogen atom in the one amino group corresponds to a target proton.
  • the acid dissociation constant calculation apparatus includes a storage unit.
  • the storage unit has the following data.
  • the index value, the coefficient value, and the calculation target molecule has at least one amino group, and the dissociation of the hydrogen atom in one amino group in the at least one amino group is further calculated,
  • the storage unit further includes the following data. ⁇ Electron density (D Nfree ) -Bond distance-Molecular orbital energy
  • the storage unit shown in FIG. 2 has the following data.
  • the data in the storage unit is data used when calculating the acid dissociation constant of the amino group of the amine.
  • ⁇ Molecular structure data ⁇ Molecular electron density ( Dall ) ⁇ Electron density (D Nfree ) ⁇ Binding index content data (BD) ⁇ Combined index group content data (GD) ⁇ Molecular orbital energy ⁇ QSPR coefficient data ⁇ pKa data
  • the binding index content data has the following data.
  • ⁇ Indicator numerical data B
  • Atom pair identification number N
  • Joining index group identification number G
  • Flag F
  • the combined index group content data has the following data. -Joining index group identification number (G) ⁇ Coefficient numerical data (C) ⁇ Indicator numerical data (B)
  • QSPR is an abbreviation for quantitative structural property correlation
  • QSPR coefficient data is a coefficient related to the quantity in order to determine the degree of contribution of the quantity expressing the structure in QSPR. Other individual data will be described below.
  • the calculation method of the acid dissociation constant uses the electron density (D Nfree ), the bond distance, and the molecular orbital energy as variables of the function, so that it can be compared with the technique of Japanese Patent Application Laid-Open No. 2014-157020.
  • the calculation accuracy of the acid dissociation constant of oxygen acid can be maintained while maintaining the calculation accuracy of the acid dissociation constant of oxygen acid.
  • the index value is determined based on the electron density between two atoms of the calculation target molecule.
  • the index value (B ab ) is determined from, for example, an electron density matrix (D ij ) between the two atoms (a, b).
  • the mathematical formula is represented by the following mathematical formula (2), for example.
  • index value data (B) In the following, the set of two atoms may be referred to as an “atom pair”.
  • index value data (B) In describing the data structure, the index value may be referred to as “index value data (B)”.
  • the electron density matrix (D ij ) can be obtained by obtaining the electron density of the entire calculation target molecule.
  • the index value may be set for all two arbitrarily selected pairs of atoms (atom pair) of the molecule to be calculated, from the viewpoint of increasing the calculation speed without reducing the calculation accuracy, It is preferable to set for the following atom pairs.
  • a set of a target proton ⁇ H> and an atom ⁇ X> directly bonded to the target proton ⁇ H> That is, a pair of target proton ⁇ H> and atom ⁇ X> (pair type PT1).
  • the atom ⁇ X> (first atom) is an atom directly bonded to the target proton ⁇ H>.
  • X is an oxygen atom (O)
  • amine is an amine
  • X is a nitrogen atom (N).
  • the atom ⁇ Y> (second atom) is an atom directly bonded to the atom ⁇ X> and is an atom other than the target proton ⁇ H>.
  • the electron density of the calculation target molecule can be obtained by, for example, molecular orbital calculation.
  • molecular orbital calculation there is no restriction
  • the molecular orbital calculation by a molecular orbital method is mentioned.
  • the molecular orbital calculation include non-empirical molecular orbital calculation (ab initio molecular orbital calculation) and semi-empirical molecular orbital calculation.
  • the ab initio molecular orbital calculation method include the Hartley-Fock method and the electron correlation method.
  • the semi-empirical molecular orbital calculation methodology include CNDO, INDO, AM1, and PM3.
  • Examples of the ab initio molecular orbital calculation program include Gaussian 03, GAMESS, ABINIT-MP, and Protein DF.
  • the semi-empirical molecular orbital calculation program include MOPAC.
  • the coefficient value is determined based on the types of the two elements of the set of two atoms.
  • the coefficient numerical value is a numerical value used for weighting the index numerical value.
  • the coefficient value is determined based on, for example, preliminary pKa calculation.
  • the coefficient numerical value may be referred to as coefficient numerical data (C)
  • the index numerical value may be referred to as index numerical data (B).
  • the acid dissociation constant calculation apparatus further includes a calculation unit that calculates an acid dissociation constant using the data of the storage unit, and the calculation unit calculates a product of the index value and the coefficient value. It is preferable.
  • the coefficient numerical values are preferably set to the following groups, respectively. -One set of the hydrogen atom and the first atom-a set of the first atom and the second atom, the set having the number of element types of the second atom-the hydrogen atom And a pair with the second atom, the number of which is the same as the number of element types of the second atom
  • the group of two atoms is grouped based on the type of element constituting the atom pair.
  • Each coefficient value is set for each group.
  • the grouping is performed as follows, for example.
  • a set of target protons and atoms directly bonded to the target protons form a single group. That is, the pair type PT1 alone constitutes one group.
  • the pair type PT2 is grouped by the type of the Y element.
  • the pair type PT3 is grouped by the Y element type.
  • a group of atoms in one group when setting coefficient values may be referred to as an “element pair”.
  • storage part has bond index containing data (BD) with respect to each atom pair used for calculation, for example.
  • Each of the bond index content data (BD) has the following data corresponding to the atom pair.
  • Numerical index data set for each atom pair B
  • Atom pair identification number N
  • a bond index group identification number G
  • F Flag for distinguishing atom pairs
  • the storage unit has, for example, combined index group content data (GD) for each group.
  • Each of the said combined index group containing data (GD) has the following data according to a group.
  • -Joining index group identification number (G) (the number will be different for each group)
  • -Coefficient numerical data (C) set for each element pair ⁇ Numerical index data corresponding to atom pairs belonging to a group (B)
  • binding index content data (BD) and the binding index group content data (GD) are as the data structure, faster calculation is possible.
  • the weighting of the index value by the coefficient value is, for example, as follows.
  • the combined index group content data (GD) belonging to the combined index group identification number (G) is expressed as follows.
  • GD [G] ⁇ B The bond index content data (BD) belonging to the atom pair identification number (N) is expressed as follows.
  • BD [N] The index numerical data (B) for BD [N] is expressed as follows: BD [N] ⁇ B
  • the BD [N] flag (F) is expressed as follows.
  • BD [N] ⁇ F The combination index group identification number (G) to which BD [N] belongs is expressed as follows.
  • BD [N] ⁇ G The coefficient numerical data (C) belonging to the combined index group identification number (G) is expressed as follows.
  • GD [G] ⁇ C The index numerical data (B) of
  • the weighting of the index numerical data (B) by the coefficient numerical data (C) is expressed as follows. GD [G] ⁇ C * GD [G] ⁇ B
  • the molecule to be calculated has at least one amino group, and the dissociation of the hydrogen atom in one amino group in the at least one amino group is calculated, the following second electron density [electron density (D Nfree )], bond distance, and molecular orbital energy are used in the function.
  • the second electron density, the bond distance, and the molecular orbital energy are linearly coupled.
  • the calculation unit preferably linearly bonds the second electron density, the bond distance, and the molecular orbital energy.
  • the second electron density is an electron density (D Nfree ) that is not related to the bond between the nitrogen atom and another atom in the nitrogen atom of the one amino group.
  • the electron density (D Nfree ) is obtained as follows, for example.
  • the electron density (D all ) of the whole calculation target molecule is obtained.
  • an element related to a nitrogen atom directly bonded to the target proton is extracted.
  • an element related to the bond between the nitrogen atom and another atom is removed from the extracted element. By doing so, the electron density (D Nfree ) is obtained.
  • D Nfree can be obtained using, for example, the following formula (3).
  • D ij represents an element (electron density matrix) related to a nitrogen atom directly bonded to the target proton in the electron density (D all ).
  • i and j represent a row component and a column component in the electron density matrix, respectively.
  • B represents an index value, and
  • X represents another atom that is bonded to the nitrogen atom (N).
  • the bond distance is a bond distance (R) between the nitrogen atom and the hydrogen atom (target proton).
  • the bond distance can be obtained, for example, by molecular orbital calculation.
  • the molecular orbital in the molecular orbital energy (E mo ) is not particularly limited and can be appropriately selected according to the purpose. However, the highest occupied orbital (Highest) is highly related to the reactivity of the amine. Occupied Molecular Orbital) and the lowest unoccupied molecular orbital are preferred.
  • the molecular orbital energy calculation method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include quantum mechanics (QM) calculation. Examples of the quantum mechanics calculation include molecular orbital calculation by a molecular orbital method. Examples of the molecular orbital calculation include ab initio molecular orbital calculation (ab initio molecular orbital calculation) and semi-empirical molecular orbital calculation. Examples of the methodology and program of each calculation method include the methodologies and programs described above.
  • QM quantum mechanics
  • the heat of formation of the calculation target molecule and the molecule formed by desorption of the target proton from the calculation target molecule (hereinafter sometimes referred to as “proton desorption molecule”). It is preferable to use at least one of the heat of formation, the electron density (D Nfree ) of the proton desorption molecule, and the molecular orbital energy of the proton desorption molecule in terms of higher calculation accuracy. These parameters are preferably weighted with appropriately set coefficients.
  • Examples of the function for calculating the acid dissociation constant include the following functions.
  • the bond distance (R), the molecular orbital energy (E mo ), and the electron density (D Nfree ) weighted by respective coefficients are linearly coupled.
  • a represents a coefficient value
  • FIG. 4 shows a flowchart of an example of a method for calculating the acid dissociation constant.
  • a calculation method according to this flowchart will be described below.
  • a protonated amine is used as a molecule to be calculated.
  • the QSPR coefficient is set.
  • the initial structure of the protonated amine is set.
  • the structure of the protonated amine is optimized.
  • the structure is optimized according to a general structure optimization calculation method.
  • the bond length, bond angle, dihedral angle, etc. are often chemically unnatural. Therefore, structural optimization calculation is performed to eliminate molecular structural distortion.
  • the structure optimization calculation can be performed using, for example, a general molecular orbital calculation program.
  • molecular orbital calculation is performed, the electronic state of the molecule is evaluated, and the following items are calculated.
  • ⁇ Index value for each atom pair B
  • E MO Electron density (D Nfree ) -Molecular orbital energy (E MO ) (eg LUMO) ⁇ Bonding distance (R)
  • the index value (B) is weighted using the coefficient value (C).
  • pKa is calculated using the QSPR method.
  • the pKa of the amine shown in FIG. 5A is calculated. When there are a plurality of the same elements in the amine, each atom is numbered. This amine is a protonated amine.
  • coefficient values are set for the following objects.
  • binding index group content data (GD) and binding index content data (BD) are generated. Specifically, the following ⁇ II-1 >> to ⁇ II-5 >> are performed.
  • the atom pair identification number (N) of the bond index containing data (BD) is set so as to be different for each pair of the target proton ⁇ H1> and another atom.
  • a pair of a nitrogen atom ⁇ N1> directly bonded to the target proton ⁇ H1> and another atom is set to have a different number for each pair.
  • the bond index containing data (BD) can be distinguished for each atom pair by the atom pair identification number (N).
  • the atomic bear identification number (N) of the amine is set as follows.
  • N1-C 1 ⁇ N1-H1: 2 ⁇ N1-H2: 3 ⁇ N1-H3: 4 ⁇ N1-N2: 5 ⁇ H1-C: 6 ⁇ H1-H2: 7 ⁇ H1-H3: 8 ⁇ H1-N2: 9
  • the bond index group identification number (G) of the bond index group content data (GD) and the bond index group identification number (G) of the bond index content data (BD) are atom pairs distinguished by the atom pair identification number (N). Set as a group. At this time, in a plurality of atom pairs distinguished by the atom pair identification number (N), the atom pairs are compared, and if the elements constituting the atom pair are the same element, they are set to the same group. However, the atom pair of the target proton ⁇ H1> and the nitrogen atom ⁇ N1> directly bonded to the target proton ⁇ H1> is set to an independent group different from other nitrogen atom or hydrogen atom pairs.
  • this bond index group identification number (G) the bond index group content data (GD) can be distinguished for each group of atom pairs. Further, this binding index group identification number (G) is set as BD [N] ⁇ G in the data structure of the binding index containing data (BD), and BD and GD [G] can be associated with each other. This increases the calculation speed.
  • the binding index group identification number (G) of the amine is set as follows. ⁇ N1-H1: 1 ⁇ N1-H: 2 ⁇ N1-C: 3 ⁇ N1-N: 4 ⁇ H1-H: 5 ⁇ H1-C: 6 ⁇ H1-N: 7
  • BD [N] ⁇ B B N1-C ⁇ BD [2]
  • ⁇ B B N1-H1 ⁇ BD [3]
  • ⁇ B B N1-H2 ⁇ BD [4]
  • ⁇ B B N1-H3 ⁇ BD [5]
  • ⁇ B B N1-N2 ⁇ BD [6]
  • ⁇ B B H1-C ⁇ BD [7]
  • ⁇ B B H1-H2 ⁇ BD [8]
  • ⁇ B B H1-H3 ⁇ BD [9]
  • BD [N] ⁇ G is as follows.
  • ⁇ II-4 For BD [N] ⁇ B, the sum is calculated for each group of atom pairs, and GD [G] ⁇ B is set.
  • C 0 represents the constant term in the equation of QSPR.
  • FIG. 6 shows a configuration example of the disclosed acid dissociation constant calculation apparatus.
  • the acid dissociation constant calculation apparatus 10 includes, for example, a CPU 11 (calculation unit), a memory 12, a storage unit 13, a display unit 14, an input unit 15, an output unit 16, an I / O interface unit 17, and the like via a system bus 18. Connected and configured.
  • a CPU (Central Processing Unit) 11 performs operations (four arithmetic operations, comparison operations, etc.), hardware and software operation control, and the like.
  • the memory 12 is a memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the RAM stores an OS (Operating System) and application programs read from the ROM and the storage unit 13, and functions as a main memory and work area of the CPU 11.
  • the storage unit 13 is a device that stores various programs and data, and is, for example, a hard disk.
  • the storage unit 13 stores a program executed by the CPU 11, data necessary for program execution, an OS, and the like.
  • the program is stored in the storage unit 13, loaded into the RAM (main memory) of the memory 12, and executed by the CPU 11.
  • the display unit 14 is a display device, for example, a display device such as a CRT monitor or a liquid crystal panel.
  • the input unit 15 is an input device for various data, such as a keyboard and a pointing device (for example, a mouse).
  • the output unit 16 is an output device for various data, and is, for example, a printer.
  • the I / O interface unit 17 is an interface for connecting various external devices. For example, input / output of data such as a CD-ROM, a DVD-ROM, an MO disk, and a USB memory is enabled.
  • FIG. 7 shows another configuration example of the disclosed acid dissociation constant calculation apparatus.
  • the configuration example in FIG. 7 is a cloud-type configuration example, and the CPU 11 is independent of the storage unit 13 and the like.
  • a computer 30 that stores the storage unit 13 and the like and a computer 40 that stores the CPU 11 are connected via the network interface units 19 and 20.
  • the network interface units 19 and 20 are hardware that performs communication using the Internet.
  • FIG. 8 shows another configuration example of the disclosed acid dissociation constant calculation apparatus.
  • the configuration example in FIG. 8 is a cloud-type configuration example, and the storage unit 13 is independent of the CPU 11 and the like.
  • a computer 30 that stores the CPU 11 and the like and a computer 40 that stores the storage unit 13 are connected via the network interface units 19 and 20.
  • Example 1 Comparative Example 1, Comparative Example 2
  • Example 2 predicted pKa values were obtained for 133 types of molecules with known pKa measurement values. Then, the correlation between the actually measured value and the predicted value was confirmed.
  • Example 1 Using the disclosed technique, the predicted pKa value was determined. Then, the correlation between the actually measured value and the predicted value was confirmed. The results are shown in Table 2 and FIG. In addition, the calculation value calculated by RM1 method (semi-empirical molecular orbital method) was used for calculation of a predicted value using FUJITSU Technical Computing Solution SCIGRESS made by Fujitsu Limited. For the calculation of the predicted value, the formula (4) was used.
  • Table 1-1 to Table 1-23 show 133 types of molecules used in the pKa prediction calculation of Example 1, Comparative Example 1, and Comparative Example 2.
  • Example 1 was able to predict with higher accuracy also in amine than Comparative Examples 1 and 2.
  • the disclosed technique can predict with high accuracy equivalent to that of Comparative Example 2 even in the case of oxygen acid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Biotechnology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

コンピュータを用いた、計算対象分子からの水素原子の解離における酸解離定数を計算する酸解離定数の計算方法であって、 前記計算対象分子の2つの原子の間の電子密度に基づいて決定される指標数値と、 前記2つの原子の組の2つの元素の種類に基づいて決定される係数数値と、 を用いた関数であり、かつ 前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基からの前記水素原子の解離を計算する場合、 前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない第2電子密度と、 前記窒素原子と前記水素原子との結合距離と、 前記計算対象分子の分子軌道エネルギーと、 を更に用いた関数を用いて、前記酸解離定数を計算する酸解離定数の計算方法である。

Description

酸解離定数の計算方法、及び計算装置、並びにプログラム
 本件は、酸解離定数を計算する方法、酸解離定数を計算する装置、及び酸解離定数を計算するプログラムに関する。
 pKaは酸解離の平衡状態(酸性度)を表す定数であり、生体分子内の化学反応で重要な、プロトン(H)の存在を決める指標などの用途に用いられる。そのため、pKaについて、様々な予測手法が検討されてきた。その手法は大きく分けて2種類ある。1つは、熱力学の理論に基づく手法(例えば、非特許文献1参照)である。もう一つは、物性値を変数とした関数で近似する手法である(例えば、非特許文献2及び3参照)。
 前者の手法では、理論に則って計算することが可能になった。後者の手法では、基本的に高速な予測が可能となった。
 しかし、熱力学の理論に基づく手法では、対象分子の周囲に配置する水分子の数や位置により大きく影響を受けるだけでなく、良い結果を得るためには、高精度な計算が必要である。その結果として、高速に予測することは未だ不可能である。そのため巨大分子や、大量データのスクリーニングへの適用は困難である。
 また、物性値を変数とした関数で近似する手法では、高精度な予測を可能にするために、様々な物性値が検討されている。例えば、プロトンとして解離する水素原子(H)と、Hと直接結合する酸素原子(O)について、電荷やOH間の距離などを変数に用いる手法などがある。しかし、これらの変数では、対象分子の酸の種類等によって別の関数式が必要であり、しかも全ての関数式で高精度な結果を得ることはできていない。
 そのため、新規に構築した分子などへの適用は困難である。
 そこで、本発明者は、pKaの予測値に関し、巨大分子への適用、大量データのスクリーニング、新規に構築した分子などへの適用を可能とする技術を提案している(例えば、特許文献1参照)。
特開2014-157020号公報
Junming Ho, Michelle L. Coote, "A universal approach for continuum solvent pKa calculations: are we there yet?", Theor Chem Acc, 2010, pp.3-21 Jahanbakhsh Ghasemi, Saadi Saaidpour, Steven D. Brown, "QSPR study for estimation of acidity constants of some aromatic acids derivatives using multiple linear regression (MLR) analysis", Journal of Molecular Structure, THEOCHEM, 2007, pp.27-32 Mario J. Citra, "ESTIMATING THE pKa OF PHENOLS, CARBOXYLIC ACIDS AND ALCOHOLS FROM SEMI-EMPIRICAL QUANTUM CHEMICAL METHODS", Chemosphere, 1999, Vol.38, No.1, pp.191-206
 特許文献1の技術では、OHからのプロトン解離については、分子の種類に関わらず高精度な結果が得られる。しかし、アミンのプロトン解離の場合、pKa予測精度が低下する。
 本件は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本件は、pKaの予測値に関し、巨大分子への適用、大量データのスクリーニング、新規に構築した分子などへの適用を可能し、更にはアミンの計算でも予測値の低下が生じない、酸解離定数の計算方法、酸解離定数の計算装置、及び酸解離定数を計算するプログラムを提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 開示の酸解離定数の計算方法は、コンピュータを用いた、計算対象分子からの水素原子の解離における酸解離定数を計算する酸解離定数の計算方法であって、
 前記計算対象分子の2つの原子の間の電子密度に基づいて決定される指標数値と、
 前記2つの原子の組の2つの元素の種類に基づいて決定される係数数値と、
を用いた関数であり、かつ
 前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基からの前記水素原子の解離を計算する場合、
 前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない第2電子密度と、
 前記窒素原子と前記水素原子との結合距離と、
 前記計算対象分子の分子軌道エネルギーと、
を更に用いた関数を用いて、前記酸解離定数を計算する。
 開示のプログラムは、計算対象分子からの水素原子の解離における酸解離定数の計算を実行させるプログラムであって、
 前記計算対象分子の2つの原子の間の電子密度に基づいて決定される指標数値と、
 前記2つの原子の組の2つの元素の種類に基づいて決定される係数数値と、
を用いた関数であり、かつ
 前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基からの前記水素原子の解離を計算する場合、
 前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない第2電子密度と、
 前記窒素原子と前記水素原子との結合距離と、
 前記計算対象分子の分子軌道エネルギーと、
を更に用いた関数を用いて、前記酸解離定数の計算を実行させる。
 開示の酸解離定数の計算装置は、記憶部を有し、計算対象分子からの水素原子の解離における酸解離定数を計算する酸解離定数の計算装置であって、
 前記記憶部が、データとして、
 前記計算対象分子の2つの原子の間の電子密度に基づいて決定される指標数値と、
 前記2つの原子の組の2つの元素の種類に基づいて決定される係数数値と、
を有し、
 前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基からの前記水素原子の解離を計算する場合、
 前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない第2電子密度と、
 前記窒素原子と前記水素原子との結合距離と、
 前記計算対象分子の分子軌道エネルギーと、
を更に有する。
 開示の酸解離定数の計算方法によると、従来における前記諸問題を解決し、前記目的を達成することができ、pKaの予測値に関し、巨大分子への適用、大量データのスクリーニング、新規に構築した分子などへの適用を可能し、更にはアミンの計算でも予測値の低下が生じない。
 開示のプログラムによると、従来における前記諸問題を解決し、前記目的を達成することができ、pKaの予測値に関し、巨大分子への適用、大量データのスクリーニング、新規に構築した分子などへの適用を可能し、更にはアミンの計算でも予測値の低下が生じない。
 開示の酸解離定数の計算装置によると、従来における前記諸問題を解決し、前記目的を達成することができ、pKaの予測値に関し、巨大分子への適用、大量データのスクリーニング、新規に構築した分子などへの適用を可能し、更にはアミンの計算でも予測値の低下が生じない。
図1は、酸解離定数pKaを説明するための図である。 図2は、記憶部の一例を示す図である。 図3は、原子ペアを説明するための図である。 図4は、酸解離定数の計算方法の一例のフローチャートである。 図5Aは、酸解離定数の計算方法の一例における計算対象のアミン(プロトン化したアミン)である。 図5Bは、酸解離定数の計算方法の一例における計算対象のアミン(脱プロトン後のアミン)である。 図6は、開示の酸解離定数の計算装置の構成例である。 図7は、開示の酸解離定数の計算装置の他の構成例である。 図8は、開示の酸解離定数の計算装置の他の構成例である。 図9は、実施例1の結果を示すグラフである。 図10は、比較例1の結果を示すグラフである。 図11は、比較例2の結果を示すグラフである。
 先ず、関連技術としての、酸解離定数pKaの予測方法について説明する。
 図1は、酸解離定数pKaを説明するための図である。図1に示すように、pKaは、酸解離の平衡状態を表す定数であり、下記数式(1)、及び平衡式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、前記数式(1)、及び前記平衡式(1)中、AHは酸を表し、AはAHの共役塩基を表し、Hはプロトンを表す。
 pKaは、生体分子内の化学反応で重要なプロトン(H)の存在を決める指標となる。
 本発明者は、以前、pKaの予測値に関し、巨大分子への適用、大量データのスクリーニング、新規に構築した分子などへの適用を可能とする技術を提案している(特開2014-157020号公報参照)。この提案の技術では、分子の酸解離定数pKaについて、原子間結合の電子密度に基づく指標を用いることで、酸素酸におけるOHからのプロトン解離については、分子の種類に関わらず、高速かつ高精度にpKaを予測可能としている。
 しかし、本発明者は、更に検討を重ねた結果、前述の技術では、アミンのプロトン解離の場合、pKa予測精度が低下することを見出した。
 本発明者は、その原因について検討を行った結果、(1)アミンのプロトン解離前後における立体障害の変化による反応性の変化、及び(2)アミンのプロトン解離前後における電子構造の共鳴安定化の変化による反応性の変化、が影響して、pKa予測精度が低下していることを見出した。
 以上を踏まえ、本発明者は検討を重ねて、以下の開示の技術に至った。
(酸解離定数の計算方法、酸解離定数の計算装置、及びプログラム)
 開示の酸解離定数の計算方法は、コンピュータを用いて行われる。
 前記酸解離定数の計算方法は、計算対象分子からの水素原子の解離における酸解離定数を計算する。
 前記計算対象分子としては、例えば、酸素酸、アミンなどが挙げられる。
 前記酸解離定数の計算方法では、酸素酸、1級アミンのみならず、2級アミン、3級アミン、芳香族アミンなどでも、高速かつ高精度の計算が可能である。
 開示のプログラムは、計算対象分子からの水素原子の解離における酸解離定数の計算を実行させるプログラムである。
 前記酸解離定数の計算方法においては、関数を用いて、前記酸解離定数を計算する。
 前記プログラムにおいては、関数を用いて、前記酸解離定数の計算を実行させる。
 前記関数は、指標数値と、係数数値とを用いる。
 前記計算対象分子の2つの原子の間の電子密度に基づいて決定される。
 前記係数数値は、前記2つの原子の組の2つの元素の種類に基づいて決定される。
 前記酸解離定数の計算方法が、前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基における前記水素原子の解離を計算する場合、前記関数は、更に、電子密度と、結合距離と、分子軌道エネルギーとを用いる。
 前記電子密度は、前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない第2電子密度〔以下、「電子密度(DNfree)」と称することがある。〕である。
 前記結合距離は、前記窒素原子と前記水素原子との結合距離である。
 前記分子軌道エネルギーは、前記計算対象分子の分子軌道エネルギーである。
 ここで、本明細書において、酸解離定数の計算対象となる水素原子を「ターゲットプロトン」と称することがある。前記1つのアミノ基における前記水素原子は、ターゲットプロトンに該当する。
 前記酸解離定数の計算装置は、記憶部を有する。
 前記記憶部は、以下のデータを有する。
 ・前記指標数値
 ・前記係数数値
 また、前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基における前記水素原子の解離を計算する場合、更に、前記記憶部は、更に以下のデータを有する。
 ・前記電子密度(DNfree
 ・前記結合距離
 ・前記分子軌道エネルギー
 ここで、前記記憶部の一例を図2に示す。
 図2に示す記憶部は、以下のデータを有する。この記憶部のデータは、アミンのアミノ基の酸解離定数を計算する際のデータである。
 ・分子構造データ
 ・分子の電子密度(Dall
 ・電子密度(DNfree
 ・結合指標含有データ(BD)
 ・結合指標グループ含有データ(GD)
 ・分子軌道エネルギー
 ・QSPR係数データ
 ・pKaデータ
 結合指標含有データ(BD)は、以下のデータを有する。
 ・指標数値データ(B)
 ・原子ペア識別番号(N)
 ・結合指標グループ識別番号(G)
 ・フラグ(F)
 結合指標グループ含有データ(GD)は、以下のデータを有する。
 ・結合指標グループ識別番号(G)
 ・係数数値データ(C)
 ・指標数値データ(B)
 なお、QSPRとは、定量的構造物性相関の略号であり、QSPR係数データとは、QSPRにおいて構造を表現する数量の寄与する度合いを決めるために、該数量にかかる係数である。
 その他の個々のデータについては、以下において説明する。
 前記酸解離定数の計算方法が、前記関数の変数として、前記電子密度(DNfree)と、前記結合距離と、前記分子軌道エネルギーとを用いることで、特開2014-157020号公報の技術と比べて、酸素酸の酸解離定数の計算精度は維持したままで、アミンの酸解離定数の計算精度を高くすることができる。
<指標数値>
 前記指標数値は、前記計算対象分子の2つの原子の間の電子密度に基づいて決定される。
 前記指標数値(Bab)は、例えば、前記2つの原子(a,b)の間の電子密度行列(Dij)から決定される。その数式は、例えば、以下の数式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 なお、以下において、前記2つの原子の組を、「原子ペア」と称することがある。
 また、データ構造を説明する際には、指標数値を「指標数値データ(B)」と称することがある。
 前記電子密度行列(Dij)は、前記計算対象分子全体の電子密度を求めることで得られる。
 前記指標数値は、前記計算対象分子の任意に選択した2つの原子の組(原子ペア)全てに対して設定されてもよいが、計算精度を低下させずに、計算速度を早くする点から、以下の原子ペアに対して設定されることが好ましい。
 ・前記水素原子と、前記水素原子と直接結合する第1原子との組
 ・前記第1原子と、前記第1原子と直接結合する第2原子(ただし、前記水素原子を除く。)との組
 ・前記水素原子と、前記第2原子との組
 ここで、図3を用いて、上記原子ペアについて説明する。
 ・ターゲットプロトン<H>と、前記ターゲットプロトン<H>と直接結合する原子<X>との組。即ち、ターゲットプロトン<H>と、原子<X>との組(ペア種別PT1)。
 ・前記ターゲットプロトン<H>と直接結合する原子<X>と、前記原子<X>と直接結合する、前記ターゲットプロトン<H>以外の原子<Y>との組。即ち、原子<X>と、原子<Y>との組(ペア種別PT2)。
 ・前記ターゲットプロトン<H>と、前記原子<X>と直接結合する、前記ターゲットプロトン<H>以外の原子<Y>との組。即ち、ターゲットプロトン<H>と、原子<Y>との組(ペア種別PT3)。
 なお、原子<X>(第1原子)は、ターゲットプロトン<H>と直接結合する原子である。例えば、前記計算対象分子が、酸素酸の場合、Xは、酸素原子(O)となり、アミンの場合、Xは、窒素原子(N)となる。
 また、原子<Y>(第2原子)は、前記原子<X>と直接結合する原子であり、かつ、ターゲットプロトン<H>以外の原子である。
 以上のように、前記指標数値を決定する際には、ターゲットプロトン、前記ターゲットプロトンに直接結合する原子(第1原子)、前記原子に直接結合する原子(第2原子)に着目して、これらの中から2つの原子の組(原子ペア)を選択して、計算に用いることにより、より高速な計算が可能となる。
 前記計算対象分子の電子密度は、例えば、分子軌道計算により求めることができる。前記分子軌道計算としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、分子軌道法による分子軌道計算が挙げられる。前記分子軌道計算としては、例えば、非経験的分子軌道計算(ab initio分子軌道計算)、半経験的分子軌道計算などが挙げられる。
 前記非経験的分子軌道計算の方法論としては、例えば、ハートリー-フォック法、電子相関法などが挙げられる。
 前記半経験的分子軌道計算の方法論としては、例えば、CNDO、INDO、AM1、PM3などが挙げられる。
 前記非経験的分子軌道計算のプログラムとしては、例えば、Gaussian03、GAMESS、ABINIT-MP、Protein DFなどが挙げられる。
 前記半経験的分子軌道計算のプログラムとしては、例えば、MOPACなどが挙げられる。
<係数数値>
 前記係数数値は、前記2つの原子の組の2つの元素の種類に基づいて決定される。
 前記係数数値は、前記指標数値の重み付けに使用される数値である。
 前記係数数値は、例えば、予備的なpKaの計算に基づいて決定される。
 以下では、係数数値を係数数値データ(C)と称し、指標数値を指標数値データ(B)と称することがある。
 前記関数においては、前記指標数値と前記係数数値との積が用いられることが好ましい。即ち、前記指標数値は、前記係数数値を用いて重み付けされることが好ましい。
 前記酸解離定数の計算装置は、前記記憶部の前記データを用いて酸解離定数を計算する計算部を更に有し、前記計算部において、前記指標数値と前記係数数値との積が計算されることが好ましい。
 前記係数数値は、以下の組にそれぞれ設定されることが好ましい。
 ・前記水素原子と、前記第1原子との1つの組
 ・前記第1原子と、前記第2原子との組であって、前記第2原子の元素の種類の数だけある組
 ・前記水素原子と、前記第2原子との組であって、前記第2原子の元素の種類の数だけある組
 例えば、前記2つの原子の組(原子ペア)を、前記原子ペアを構成する元素の種類に基づいてグループ化する。そして、各グループに対してそれぞれの係数数値を設定する。
 前記グループ化は、例えば、以下のように行われる。
 ターゲットプロトンと、前記ターゲットプロトンに直接結合する原子との組は、単独で1つのグループを構成する。即ち、前記ペア種別PT1は、それ単独で、1つのグループを構成する。
 前記ペア種別PT2は、Yの元素の種類の分だけグループ化する。
 前記ペア種別PT3は、Yの元素の種類の分だけグループ化する。
 なお、以下において、係数数値を設定する際の1つのグループにおける原子の組を「元素ペア」と称することがある。
 前記記憶部は、例えば、計算に使用される原子ペアそれぞれに対して、結合指標含有データ(BD)を有する。
 前記結合指標含有データ(BD)のぞれぞれは、原子ペアに応じた以下のデータを有する。
 ・原子ペア毎に設定される指標数値データ(B)
 ・原子ペアを識別するために原子ペア毎に付与される原子ペア識別番号(N)(原子ペア毎に異なる番号となる)
 ・原子ペアを構成する元素の種類に基づいてまとめられたグループを識別するために、グループ毎に付与される結合指標グループ識別番号(G)(グループ毎に異なる番号となる)
 ・原子ペアを区別するためのフラグ(F)
 前記記憶部は、例えば、前記グループ毎に結合指標グループ含有データ(GD)を有する。
 前記結合指標グループ含有データ(GD)のそれぞれは、グループに応じた以下のデータを有する。
 ・結合指標グループ識別番号(G)(グループ毎に異なる番号となる)
 ・元素ペア毎に設定される係数数値データ(C)
 ・グループに属する原子ペアに対応する指標数値データ(B)
 結合指標含有データ(BD)及び結合指標グループ含有データ(GD)をデータ構造として有することにより、より高速な計算が可能となる。
 前記係数数値による前記指標数値の重み付けは、例えば、以下のとおりである。
 ・結合指標グループ識別番号(G)に属する結合指標グループ含有データ(GD)を、以下のように表す。
  GD[G]
 ・結合指標グループ識別番号(G)に属する結合指標グループ含有データ(GD)の指標数値データ(B)を、以下のように表す。
  GD[G]→B
 ・原子ペア識別番号(N)に属する結合指標含有データ(BD)を、以下のように表す。
  BD[N]
 ・BD[N]の指標数値データ(B)を、以下のように表す。
  BD[N]→B
 ・BD[N]のフラグ(F)を、以下のように表す。
  BD[N]→F
 ・BD[N]が属する結合指標グループ識別番号(G)を、以下のように表す。
  BD[N]→G
 ・結合指標グループ識別番号(G)に属する係数数値データ(C)を、以下のように表す。
  GD[G]→C
 ・結合指標グループ含有データ(GD)の指標数値データ(B)は、以下のように決定される。
Figure JPOXMLDOC01-appb-M000003
 そして、係数数値データ(C)による指標数値データ(B)の重み付けは、以下のように表される。
  GD[G]→C*GD[G]→B
 前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基における前記水素原子の解離を計算する場合、更に、以下の第2電子密度〔電子密度(DNfree)〕と、結合距離と、分子軌道エネルギーとが、前記関数に用いられる。
 前記関数においては、前記第2電子密度と、前記結合距離と、前記分子軌道エネルギーとが、線型結合されることが好ましい。
 前記酸解離定数の計算装置においては、前記計算部において、前記第2電子密度と、前記結合距離と、前記分子軌道エネルギーとが、線型結合されることが好ましい。
<第2電子密度〔電子密度(DNfree)〕>
 前記第2電子密度は、前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない電子密度(DNfree)である。
 前記電子密度(DNfree)は、例えば、以下のようにして得られる。
 前記計算対象分子全体の電子密度(Dall)を求める。次に、得られた電子密度(Dall)から、ターゲットプロトンと直接結合する窒素原子が関わる要素を抽出する。次に、抽出された前記要素から、前記窒素原子と他の原子との結合に関連する要素を除去する。そうすることにより、前記電子密度(DNfree)が得られる。
 ここで、DNfreeは、例えば、以下の数式(3)を用いて求めることができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、前記数式(3)中、Dijは、電子密度(Dall)のうち、ターゲットプロトンと直接結合する窒素原子が関わる要素(電子密度行列)を表す。i、及びjは、それぞれ電子密度行列における行成分、及び列成分を表す。Bは、指標数値を表し、Xは、窒素原子(N)と結合する他の原子を表す。
<結合距離>
 前記結合距離は、前記窒素原子と前記水素原子(ターゲットプロトン)との結合距離(R)である。
 前記結合距離は、例えば、分子軌道計算により、求めることができる。
<分子軌道エネルギー>
 前記分子軌道エネルギー(Emo)における分子軌道としては、特に制限はなく、目的に応じて適宜選択することができるが、前記アミンの反応性との関係が大きい点で、最高被占軌道(Highest Occupied Molecular Orbital)、最低空軌道(Lowest Unoccupied Molecular Orbital)が好ましい。
 前記分子軌道エネルギーの計算方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、量子力学(QM)計算などが挙げられる。前記量子力学計算としては、例えば、分子軌道法による分子軌道計算が挙げられる。前記分子軌道計算としては、例えば、非経験的分子軌道計算(ab initio分子軌道計算)、半経験的分子軌道計算などが挙げられる。各計算方法の方法論、プログラムとしては、例えば、前述した方法論、プログラムなどが挙げられる。
<その他>
 前記酸解離定数の計算方法においては、更に、前記計算対象分子の生成熱、前記計算対象分子からターゲットプロトンが脱離してなる分子(以下、「プロトン脱離分子」と称することがある。)の生成熱、前記プロトン脱離分子の電子密度(DNfree)、及び前記プロトン脱離分子の分子軌道エネルギーの少なくともいずれかを用いることが、計算精度がより高くなる点で好ましい。
 これらのパラメータにおいては、適宜設定した係数で重み付けすることが好ましい。
 前記酸解離定数を計算する際の前記関数としては、例えば、以下の関数が挙げられる。
 以下の関数においては、それぞれの係数で重み付けした前記結合距離(R)、前記分子軌道エネルギー(Emo)、及び前記電子密度(DNfree)が、線型結合されている。
Figure JPOXMLDOC01-appb-M000005
 ここで、aは、係数数値を表す。
 図4に、酸解離定数の計算方法の一例のフローチャートを示す。
 このフローチャートに従った計算方法について以下に説明する。このフローチャートでは、計算対象分子としてプロトン化したアミンを用いている。
 まず、QSPR係数をセットする。
 次に、プロトン化したアミンの初期構造をセットする。
 次に、前記プロトン化したアミンの構造の最適化を行う。構造の最適化は、一般的な構造最適化計算方法に従って行う。前記初期構造では、結合長、結合角、二面角などが化学的に不自然な場合が多い。そこで、構造最適化計算を行って、分子の構造歪みを解消する。前記構造最適化計算は、例えば、一般的な分子軌道計算プログラムを用いて行うことができる。
 次に、分子軌道計算(MO)を行い、分子の電子状態を評価し、以下の項目を算出する。
 ・原子ペア毎の指標数値(B)
 ・電子密度(DNfree
 ・分子軌道エネルギー(EMO)(例えば、LUMO)
 ・結合距離(R)
 次に、係数数値(C)を用いて、指標数値(B)の重み付けを行う。
 ・(GD[G]→C*GD[G]→B)
 次に、QSPR法を用いてpKaを計算する。
 以下に、前記酸解離定数の計算方法の一例について、説明する。
 この一例では、図5Aに示すアミンのpKaを計算する。アミン中に同じ元素が複数ある場合、各原子には、番号を付した。このアミンはプロトン化したアミンである。
<O>
 準備段階として、以下の対象について、係数数値を設定する。
 ・元素ペア
 ・ターゲットプロトン<H1>と窒素原子<N1>との結合距離(R)
 ・窒素原子<N1>における、窒素原子<N1>と他の原子との結合に関係しない電子密度(Q)
 ・前記アミンの分子軌道エネルギー
 ・プロトン解離前後の生成熱
<I>
 前記アミンの分子軌道計算を実施する。
<II>
 前記アミンについて、結合指標グループ含有データ(GD)、及び結合指標含有データ(BD)を生成する。具体的には以下の<<II-1>>~<<II-5>>の処理を行う。
<<II-1>>
 結合指標含有データ(BD)の原子ペア識別番号(N)は、ターゲットプロトン<H1>と他の原子とのペア毎に異なる番号となるように設定される。同様に、ターゲットプロトン<H1>に直接結合する窒素原子<N1>と、他の原子とのペアについても、ペア毎に異なる番号になるように設定する。原子ペア識別番号(N)により結合指標含有データ(BD)は、原子ペア毎に区別できる。
 前記アミンの原子ベア識別番号(N)は、以下のように設定される。
 ・N1-C:1
 ・N1-H1:2
 ・N1-H2:3
 ・N1-H3:4
 ・N1-N2:5
 ・H1-C:6
 ・H1-H2:7
 ・H1-H3:8
 ・H1-N2:9
<<II-2>>
 結合指標グループ含有データ(GD)の結合指標グループ識別番号(G)、及び結合指標含有データ(BD)の結合指標グループ識別番号(G)は、原子ペア識別番号(N)で区別された原子ペアをグループとして設定する。その際、原子ペア識別番号(N)で区別された複数の原子ペアにおいて、原子ペア間を対比して、原子ペアを構成する元素が同じ元素であれば、同じグループに設定する。ただし、ターゲットプロトン<H1>と、それに直接結合する窒素原子<N1>との原子ペアについては、他の窒素原子や水素原子のペアとは異なる、独立したグループに設定する。
 この結合指標グループ識別番号(G)により、結合指標グループ含有データ(GD)は原子ペアのグループ毎に区別できる。また、この結合指標グループ識別番号(G)は、結合指標含有データ(BD)のデータ構造体の中でBD[N]→Gと設定され、BDとGD[G]とを関連づけることができる。これにより計算速度が向上する。
 前記アミンの結合指標グループ識別番号(G)は、以下のように設定される。
 ・N1-H1:1
 ・N1-H:2
 ・N1-C:3
 ・N1-N:4
 ・H1-H:5
 ・H1-C:6
 ・H1-N:7
<<II-3>>
 前記アミンの分子軌道計算結果の電子密度に基づいて指標数値データ(B)を得る。そして、得られた各指標数値データ(B)を各BD[N]に設定する(BD[N]→B)。
 ・BD[1]→B=BN1-C
 ・BD[2]→B=BN1-H1
 ・BD[3]→B=BN1-H2
 ・BD[4]→B=BN1-H3
 ・BD[5]→B=BN1-N2
 ・BD[6]→B=BH1-C
 ・BD[7]→B=BH1-H2
 ・BD[8]→B=BH1-H3
 ・BD[9]→B=BH1-N2
 ここで、BD[N]→Gは、以下のようになる。
 ・BD[1]→G=3
 ・BD[2]→G=1
 ・BD[3,4]→G=2
 ・BD[5]→G=4
 ・BD[6]→G=6
 ・BD[7,8]→G=5
 ・BD[9]→G=7
 また、原子ペアのフラグ(F)を、各BD[N]に設定する(BD[N]→F)。フラグにより、ターゲットプロトン<H1>及び窒素原子<N1>の原子ペアと、その他の原子ペアとを区別できる。
 ・BD[1,3,4,5,6,7,8,9]→F=2
 ・BD[2]→F=1
<<II-4>>
 BD[N]→Bについて、原子ペアのグループ毎に和を取り、GD[G]→Bを設定する。
 ・GD[1]→B=BD[2]→B
 ・GD[2]→B=BD[3]→B + BD[4]→B
 ・GD[3]→B=BD[1]→B
 ・GD[4]→B=BD[5]→B
 ・GD[5]→B=BD[7]→B + BD[8]→B
 ・GD[6]→B=BD[6]→B
 ・GD[7]→B=BD[9]→B
<<II-5>>
 設定済の元素ペアに対する係数数値データ(C)を、原子ペアのGD[G]→Cに設定する。
<III>
 指標数値データ(B)について、係数数値データ(C)による重み付けを行う。
 ・GD[G]→B*GD[G]→C
<IV>
 ターゲットプロトン<H1>と窒素原子<N1>との結合距離(R)を、結合距離(R)に対する係数Cで重み付けする。
 ・R*C
<V>
 窒素原子と他の原子との結合に関係しない電子密度(Q1N1)を、前記電子密度に対する係数(C1N1)で重み付けする。
 ・Q1N1*C1N1
<VI>
 最低空軌道の分子軌道エネルギー(ELUMO1)を、分子軌道エネルギーに対する係数(CLUMO1)で重み付けする。
 ・ELUMO1*CLUMO1
<VII>
 必要に応じて、他のデータにも重み付けを行う。
 前記アミンの生成熱(EHoF1)を、生成熱に対する係数(CHoF1)で重み付けする。
 ・EHoF1*CHoF1
 前記アミンの脱プロトン後の分子(図5B、分子2)について、窒素原子<N1>における、窒素原子<N1>と、他の原子との結合に関係しない電子密度(Q2N1)を、電子密度に対する係数(C2N1)で重み付けする。
 ・Q2N1*C2N1
 前記分子2について、最高被占軌道の分子軌道エネルギー(EHOMO2)を、分子軌道エネルギーに対する係数(CHOMO2)で重み付けする。
 ・EHOMO2*CHOMO2
 前記分子2の生成熱(EHoF2)を、生成熱に対する係数(CHoF2)で重み付けする。
 ・EHoF2*CHoF2
<VIII>
 上記のデータを用いて、pKa値を計算する。
 ここで、<I>~<VI>のデータを用いる場合の数式を、下記数式(4)に示す。
Figure JPOXMLDOC01-appb-M000006
 また、更に<VII>のデータを追加した数式を以下に示す。以下の数式(5)では、プロトン解離後の分子の電子密度(Q2N1)、及び分子軌道エネルギー、並びにプロトン解離前後の分子の生成熱を考慮しているため、計算精度が更に高くなる。
Figure JPOXMLDOC01-appb-M000007
 ここで、両式において、Cは、QSPRの式における定数項を表す。
 図6に、開示の酸解離定数の計算装置の構成例を示す。
 酸解離定数の計算装置10は、例えば、CPU11(計算部)、メモリ12、記憶部13、表示部14、入力部15、出力部16、I/Oインターフェース部17等がシステムバス18を介して接続されて構成される。
 CPU(Central Processing Unit)11は、演算(四則演算、比較演算等)、ハードウエア及びソフトウエアの動作制御などを行う。
 メモリ12は、RAM(Random Access Memory)、ROM(Read Only Memory)などのメモリである。前記RAMは、前記ROM及び記憶部13から読み出されたOS(Operating System)及びアプリケーションプログラムなどを記憶し、CPU11の主メモリ及びワークエリアとして機能する。
 記憶部13は、各種プログラム及びデータを記憶する装置であり、例えば、ハードディスクである。記憶部13には、CPU11が実行するプログラム、プログラム実行に必要なデータ、OSなどが格納される。
 前記プログラムは、記憶部13に格納され、メモリ12のRAM(主メモリ)にロードされ、CPU11により実行される。
 表示部14は、表示装置であり、例えば、CRTモニタ、液晶パネル等のディスプレイ装置である。
 入力部15は、各種データの入力装置であり、例えば、キーボード、ポインティングデバイス(例えば、マウス等)などである。
 出力部16は、各種データの出力装置であり、例えば、プリンタである。
 I/Oインターフェース部17は、各種の外部装置を接続するためのインターフェースである。例えば、CD-ROM、DVD-ROM、MOディスク、USBメモリなどのデータの入出力を可能にする。
 図7に、開示の酸解離定数の計算装置の他の構成例を示す。
 図7の構成例は、クラウド型の構成例であり、CPU11が、記憶部13等とは独立している。この構成例では、ネットワークインターフェース部19、20を介して、記憶部13等を格納するコンピュータ30と、CPU11を格納するコンピュータ40とが接続される。
 ネットワークインターフェース部19、20は、インターネットを利用して、通信を行うハードウエアである。
 図8に、開示の酸解離定数の計算装置の他の構成例を示す。
 図8の構成例は、クラウド型の構成例であり、記憶部13が、CPU11等とは独立している。この構成例では、ネットワークインターフェース部19、20を介して、CPU11等を格納するコンピュータ30と、記憶部13を格納するコンピュータ40とが接続される。
 以下、開示の技術について説明するが、開示の技術は下記実施例に何ら限定されるものではない。
(実施例1、比較例1、比較例2)
 以下の実施例、及び比較例では、pKaの実測値が既知の分子133種類について、pKa予測値を求めた。そして、実測値と、予測値との相関を確認した。
<実施例1>
 開示の技術を用いて、pKa予測値を求めた。そして、実測値と、予測値との相関を確認した。結果を表2及び図9に示した。
 なお、予測値の計算には、富士通株式会社製のFUJITSU Technical Computing Solution SCIGRESSを用い、RM1法(半経験的分子軌道方法)で計算した計算値を使用した。
 予測値の計算は、前記数式(4)を用いた。
<比較例1>
 pKa予測精度が高いと言われているChemAxon社製のmarvin Sketchを用いて、pKa予測値を求めた。そして、実測値と、予測値との相関を確認した。結果を表2及び図10に示した。
<比較例2>
 特開2014-157020号公報に開示の技術を用いて、pKa予測値を求めた。そして、実測値と、予測値との相関を確認した。結果を表2及び図11に示した。
 なお、予測値の計算には、富士通株式会社製のFUJITSU Technical Computing Solution SCIGRESSを用い、RM1法(半経験的分子軌道方法)で計算した計算値を使用した。
 実施例1、比較例1、及び比較例2のpKa予測計算に用いた133種類の分子を表1-1~表1-23に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 表2からも確認できるように、実施例1は、比較例1及び2と比べてアミンにおいても高精度の予測が可能であることが確認できた。
 なお、開示の技術は、酸素酸においても比較例2と同等の高精度予測が可能である。
 10  酸解離定数の計算装置
 11  CPU
 12  メモリ
 13  記憶部
 14  表示部
 15  入力部
 16  出力部
 17  I/Oインターフェース部
 18  システムバス
 19  ネットワークインターフェース部
 20  ネットワークインターフェース部
 30  コンピュータ
 40  コンピュータ

 

Claims (18)

  1.  コンピュータを用いた、計算対象分子からの水素原子の解離における酸解離定数を計算する酸解離定数の計算方法であって、
     前記計算対象分子の2つの原子の間の電子密度に基づいて決定される指標数値と、
     前記2つの原子の組の2つの元素の種類に基づいて決定される係数数値と、
    を用いた関数であり、かつ
     前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基からの前記水素原子の解離を計算する場合、
     前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない第2電子密度と、
     前記窒素原子と前記水素原子との結合距離と、
     前記計算対象分子の分子軌道エネルギーと、
    を更に用いた関数を用いて、前記酸解離定数を計算することを特徴とする酸解離定数の計算方法。
  2.  前記指標数値が設定される前記2つの原子の組が、
     前記水素原子と、前記水素原子と直接結合する第1原子との組と、
     前記第1原子と、前記第1原子と直接結合する第2原子(ただし、前記水素原子を除く。)との組と、
     前記水素原子と、前記第2原子との組と、
    である請求項1に記載の酸解離定数の計算方法。
  3.  前記係数数値が、
     前記水素原子と、前記第1原子との1つの組と、
     前記第1原子と、前記第2原子との組であって、前記第2原子の元素の種類の数だけある組と、
     前記水素原子と、前記第2原子との組であって、前記第2原子の元素の種類の数だけある組と、
    にそれぞれ設定される請求項2に記載の酸解離定数の計算方法。
  4.  前記関数において、前記指標数値と前記係数数値との積が用いられる請求項1から3のいずれかに記載の酸解離定数の計算方法。
  5.  前記関数において、前記第2電子密度と、前記結合距離と、前記分子軌道エネルギーとが、線型結合されている請求項1から4のいずれかに記載の酸解離定数の計算方法。
  6.  前記分子軌道エネルギーが、前記計算対象分子の最高被占軌道のエネルギー及び最低空軌道のエネルギーのいずれかである請求項1から5のいずれかに記載の酸解離定数の計算方法。
  7.  計算対象分子からの水素原子の解離における酸解離定数の計算を実行させるプログラムであって、
     前記計算対象分子の2つの原子の間の電子密度に基づいて決定される指標数値と、
     前記2つの原子の組の2つの元素の種類に基づいて決定される係数数値と、
    を用いた関数であり、かつ
     前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基からの前記水素原子の解離を計算する場合、
     前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない第2電子密度と、
     前記窒素原子と前記水素原子との結合距離と、
     前記計算対象分子の分子軌道エネルギーと、
    を更に用いた関数を用いて、前記酸解離定数の計算を実行させることを特徴とするプログラム。
  8.  前記指標数値が設定される前記2つの原子の組が、
     前記水素原子と、前記水素原子と直接結合する第1原子との組と、
     前記第1原子と、前記第1原子と直接結合する第2原子(ただし、前記水素原子を除く。)との組と、
     前記水素原子と、前記第2原子との組と、
    である請求項7に記載のプログラム。
  9.  前記係数数値が、
     前記水素原子と、前記第1原子との1つの組と、
     前記第1原子と、前記第2原子との組であって、前記第2原子の元素の種類の数だけある組と、
     前記水素原子と、前記第2原子との組であって、前記第2原子の元素の種類の数だけある組と、
    にそれぞれ設定される請求項8に記載のプログラム。
  10.  前記関数において、前記指標数値と前記係数数値との積が用いられる請求項7から9のいずれかに記載のプログラム。
  11.  前記関数において、前記第2電子密度と、前記結合距離と、前記分子軌道エネルギーとが、線型結合されている請求項7から10のいずれかに記載のプログラム。
  12.  前記分子軌道エネルギーが、前記計算対象分子の最高被占軌道のエネルギー及び最低空軌道のエネルギーのいずれかである請求項7から11のいずれかに記載のプログラム。
  13.  記憶部を有し、計算対象分子からの水素原子の解離における酸解離定数を計算する酸解離定数の計算装置であって、
     前記記憶部が、データとして、
     前記計算対象分子の2つの原子の間の電子密度に基づいて決定される指標数値と、
     前記2つの原子の組の2つの元素の種類に基づいて決定される係数数値と、
    を有し、
     前記計算対象分子が少なくとも1つのアミノ基を有し、前記少なくとも1つのアミノ基中の1つのアミノ基からの前記水素原子の解離を計算する場合、
     前記1つのアミノ基の窒素原子における、前記窒素原子と他の原子との結合に関係しない第2電子密度と、
     前記窒素原子と前記水素原子との結合距離と、
     前記計算対象分子の分子軌道エネルギーと、
    を更に有することを特徴とする酸解離定数の計算装置。
  14.  前記指標数値が設定される前記2つの原子の組が、
     前記水素原子と、前記水素原子と直接結合する第1原子との組と、
     前記第1原子と、前記第1原子と直接結合する第2原子(ただし、前記水素原子を除く。)との組と、
     前記水素原子と、前記第2原子との組と、
    である請求項13に記載の酸解離定数の計算装置。
  15.  前記係数数値が、
     前記水素原子と、前記第1原子との1つの組と、
     前記第1原子と、前記第2原子との組であって、前記第2原子の元素の種類の数だけある組と、
     前記水素原子と、前記第2原子との組であって、前記第2原子の元素の種類の数だけある組と、
    にそれぞれ設定される請求項14に記載の酸解離定数の計算装置。
  16.  前記記憶部の前記データを用いて酸解離定数を計算する計算部を更に有し、
     前記計算部において、前記指標数値と前記係数数値との積が計算される請求項13から15のいずれかに記載の酸解離定数の計算装置。
  17.  前記計算部において、前記第2電子密度と、前記結合距離と、前記分子軌道エネルギーとが、線型結合される請求項16に記載の酸解離定数の計算装置。
  18.  前記分子軌道エネルギーが、前記計算対象分子の最高被占軌道のエネルギー及び最低空軌道のエネルギーのいずれかである請求項13から17のいずれかに記載の酸解離定数の計算装置。
PCT/JP2015/070625 2015-07-17 2015-07-17 酸解離定数の計算方法、及び計算装置、並びにプログラム WO2017013726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15898886.5A EP3327603B1 (en) 2015-07-17 2015-07-17 Method and device for calculating acid dissociation constant, and program
JP2017529196A JP6365779B2 (ja) 2015-07-17 2015-07-17 酸解離定数の計算方法、及び計算装置、並びにプログラム
PCT/JP2015/070625 WO2017013726A1 (ja) 2015-07-17 2015-07-17 酸解離定数の計算方法、及び計算装置、並びにプログラム
US15/858,438 US11195597B2 (en) 2015-07-17 2017-12-29 Method and device for calculating acid dissociation constant, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070625 WO2017013726A1 (ja) 2015-07-17 2015-07-17 酸解離定数の計算方法、及び計算装置、並びにプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/858,438 Continuation US11195597B2 (en) 2015-07-17 2017-12-29 Method and device for calculating acid dissociation constant, and program

Publications (1)

Publication Number Publication Date
WO2017013726A1 true WO2017013726A1 (ja) 2017-01-26

Family

ID=57834123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070625 WO2017013726A1 (ja) 2015-07-17 2015-07-17 酸解離定数の計算方法、及び計算装置、並びにプログラム

Country Status (4)

Country Link
US (1) US11195597B2 (ja)
EP (1) EP3327603B1 (ja)
JP (1) JP6365779B2 (ja)
WO (1) WO2017013726A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114067921B (zh) * 2021-10-28 2024-02-20 中国原子能科学研究院 一种酸度系数的确定方法及装置
WO2023102688A1 (zh) * 2021-12-06 2023-06-15 深圳晶泰科技有限公司 酸度系数确定方法、装置、设备及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077405A (ja) * 2002-08-22 2004-03-11 Japan Science & Technology Corp 酸解離定数測定方法及び測定装置
US7006921B1 (en) * 1999-07-26 2006-02-28 Li Xing Method for accurately estimating pKa of molecules using atom type definitions and partial least squares
JP2014157020A (ja) * 2013-02-14 2014-08-28 Fujitsu Ltd 酸解離定数予測装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006921B1 (en) * 1999-07-26 2006-02-28 Li Xing Method for accurately estimating pKa of molecules using atom type definitions and partial least squares
JP2004077405A (ja) * 2002-08-22 2004-03-11 Japan Science & Technology Corp 酸解離定数測定方法及び測定装置
JP2014157020A (ja) * 2013-02-14 2014-08-28 Fujitsu Ltd 酸解離定数予測装置及び方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ELENA SORIANO: "Computational determination of pKa values. A comparison of different theoretical approaches and a novel procedure", JOURNAL OF MOLECULAR STRUCTURE: THEOCHEM, vol. 684, no. 1-3, 24 September 2004 (2004-09-24), pages 121 - 128, XP004645914, Retrieved from the Internet <URL:http://www.sciencedirect. com/ science /article/pii/S0166128004005184> [retrieved on 20150813] *
GHASEMI JAHANBAKHSH: "QSPR study for estimation of acidity constants of some aromatic acids derivatives using multiple linear regression (MLR) analysis", JOURNAL OF MOLECULAR STRUCTURE: THEOCHEM, vol. 805, no. 1-3, 28 March 2007 (2007-03-28), pages 27 - 32, XP005868316, Retrieved from the Internet <URL:http://www.sciencedirect. com/ science /article/pii/S0166128006006531> [retrieved on 20150813] *
GLORIA A.A. SARACINO: "Absolute pKa determination for carboxylic acids using density functional theory and the polarizable continuum model", CHEMICAL PHYSICS LETTERS, vol. 373, no. 3-4, 20 May 2003 (2003-05-20), pages 411 - 415, XP055120939, Retrieved from the Internet <URL:http://www.sciencedirect.com/ science /article/pii/S0009261403006079> [retrieved on 20150813] *
I. MAYER: "Bond order and valence indices: A personal account", JOURNAL OF COMPUTATIONAL CHEMISTRY, vol. 28, no. 1, January 2007 (2007-01-01), pages Issue 1, XP055120798, Retrieved from the Internet <URL:http://onlinelibrary. wiley .com/doi/10.1002/jcc.20494/full> [retrieved on 20150813] *
See also references of EP3327603A4 *

Also Published As

Publication number Publication date
JPWO2017013726A1 (ja) 2018-04-26
EP3327603A4 (en) 2018-08-08
EP3327603A1 (en) 2018-05-30
EP3327603B1 (en) 2021-08-11
JP6365779B2 (ja) 2018-08-01
US11195597B2 (en) 2021-12-07
US20180121632A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
Fischer et al. Properties of organic liquids when simulated with long-range Lennard-Jones interactions
Prabhu et al. Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth‐permittivity finite difference Poisson–Boltzmann method
Vandenbrande et al. The monomer electron density force field (MEDFF): A physically inspired model for noncovalent interactions
Savelyev et al. Balancing the interactions of ions, water, and DNA in the Drude polarizable force field
Verma et al. Relativistic density functional calculations of hyperfine coupling with variational versus perturbational treatment of spin–orbit coupling
Klamt et al. Prediction of the free energy of hydration of a challenging set of pesticide-like compounds
Lemkul et al. Balancing the interactions of Mg2+ in aqueous solution and with nucleic acid moieties for a polarizable force field based on the classical Drude oscillator model
Walz et al. Phase-transferable force field for alkali halides
May et al. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins
Son et al. Proper thermal equilibration of simulations with Drude polarizable models: Temperature-grouped dual-Nosé–Hoover thermostat
Caffarel et al. Spin density distribution in open-shell transition metal systems: A comparative post-hartree–fock, density functional theory, and quantum monte carlo study of the CuCl2 molecule
Jia et al. An improved fragment-based quantum mechanical method for calculation of electrostatic solvation energy of proteins
CN106372400B (zh) 构建极化力场的方法及应用、预测药物晶型的方法及系统
Shiozaki et al. Hyperfine coupling constants from internally contracted multireference perturbation theory
Ganesan et al. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs)
Borgoo et al. Molecular binding in post-Kohn–Sham orbital-free DFT
Kubisiak et al. Estimates of electrical conductivity from molecular dynamics simulations: how to invest the computational effort
Li et al. Molecular view of polymer/water interfaces in latex paint
Mondal et al. Exploring the effectiveness of binding free energy calculations
Venkatraman et al. In silico prediction and experimental verification of ionic liquid refractive indices
JP6365779B2 (ja) 酸解離定数の計算方法、及び計算装置、並びにプログラム
Duan et al. Folding of a helix is critically stabilized by polarization of backbone hydrogen bonds: Study in explicit water
Nguyen Lan et al. Scalar relativistic calculations of hyperfine coupling constants using ab initio density matrix renormalization group method in combination with third-order Douglas–Kroll–Hess transformation: Case studies on 4d transition metals
Wang et al. Quality of force fields and sampling methods in simulating pepX peptides: a case study for intrinsically disordered proteins
Datta et al. Accurate prediction of hyperfine coupling tensors for main group elements using a unitary group based rigorously spin-adapted coupled-cluster theory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015898886

Country of ref document: EP