WO2017013616A1 - Transductor para la medición de glucosa en sangre de forma no invasiva - Google Patents

Transductor para la medición de glucosa en sangre de forma no invasiva Download PDF

Info

Publication number
WO2017013616A1
WO2017013616A1 PCT/IB2016/054351 IB2016054351W WO2017013616A1 WO 2017013616 A1 WO2017013616 A1 WO 2017013616A1 IB 2016054351 W IB2016054351 W IB 2016054351W WO 2017013616 A1 WO2017013616 A1 WO 2017013616A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
amplitude
reflected wave
blood
blood glucose
Prior art date
Application number
PCT/IB2016/054351
Other languages
English (en)
French (fr)
Inventor
Jorge CASTIÑEIRA MOREIRA
Pablo Daniel AGÜERO
Juan Carlos BONADERO
Alejandro José URIZ
Lucas Andrés RABIOGLIO
María Celeste CEBEDIO
Original Assignee
Inis Biotech Llc
Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inis Biotech Llc, Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) filed Critical Inis Biotech Llc
Priority to EP16757724.6A priority Critical patent/EP3326529A1/en
Priority to US15/746,167 priority patent/US20180206756A1/en
Publication of WO2017013616A1 publication Critical patent/WO2017013616A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient; User input means
    • A61B5/742Details of notification to user or communication with user or patient; User input means using visual displays

Definitions

  • the present invention relates to a transducer that allows the measurement of blood glucose in a non-invasive manner and particularly refers to an integrated device for the measurement of blood glucose in a non-invasive manner.
  • Diabetes is a chronic condition that is triggered when the body loses its ability to produce enough insulin or use it effectively to keep blood glucose levels within normal ranges.
  • Insulin is a hormone produced by the pancreas that allows the glucose in food to pass into the body's cells, where it is converted into energy for the muscles and tissues to function.
  • a person with diabetes does not absorb glucose properly, so that it is circulating in the blood (hyperglycemia) and damaging the tissues over time, causing injuries to the eyes, kidneys, nerves, heart disease Stroke
  • Diabetes is a frequent chronic and expensive disease that appears when the pancreas does not produce enough insulin or when the body does not effectively use the insulin it produces. It is one of the four diseases not Priority communicable identified by the World Health Organization (WHO), along with cardiovascular disease (which includes myocardial infarction and stroke), cancer and chronic respiratory disease. It is related to the rapid increase in overweight, obesity and physical inactivity; It has a genetic component and some people are simply more susceptible than others to developing diabetes. Diabetes is at the crisis level and continues to increase. Every seven seconds, someone dies of diabetes, which means that there are four million deaths worldwide each year. In 2012, 347 million people suffered from diabetes and there are another 280 million at high risk of developing it.
  • WHO World Health Organization
  • the use of such a meter also makes the repeated use of invasive measurements that classically involve puncturing, and the need for test strips, which in general are of high cost.
  • the system is based on a sensor of the invention which represents the finger, which has been designed based on a novel layer model of the human finger.
  • the user must rest his finger on the designed sensor, which is excited by a radio frequency sweep generator.
  • the magnitude and phase responses as a function of the frequency of the reflected wave are measured by an amplitude and phase detector.
  • these quantities are acquired by two of the analog to digital converters of a microcontroller, which in turn has the ability to transmit them to other devices such as: a computer or a smartphone.
  • a device for the measurement of blood glucose in a non-invasive manner comprising a blood pressure meter. reflected wave and a sensor, the reflected wave meter comprising a sweep generator based on integrated circuits to synthesize a wave that impacts and is reflected in the sensor; and a bidirectional coupler to receive the reflected wave.
  • the bidirectional coupler generates an output signal that is input to an amplitude and phase detector of the reflected wave which generates corresponding amplitude and phase output signals.
  • said sensor is a resonator.
  • the operation of the system is controlled by a microcontroller, which controls the sweep of the sweep generator and receives said amplitude and phase output signals from the amplitude and phase detector.
  • said microcontroller is in turn connected to an LCD display and / or a wireless transmission module.
  • Figure 1 shows the implementation of the resonator in the device object of the present invention
  • Figure 2 is an image of the bidirectional coupler used to measure the electromagnetic wave reflected by the device of Figure 1;
  • FIG 3 is a block diagram of the complete implementation of the measurement system.
  • the block called “resonator (sensor)” is the device shown in Figure 1, while the bidirectional coupler is presented in Figure 2.
  • Figure 4 illustrates the test bench used to analyze the performance of the resonator of the invention.
  • Figure 5 shows the model of the human finger used to design and simulate the resonator presented in Figure 1.
  • the equipment consists of a reflected wave meter, and a sensor of the invention.
  • This sweep generator for the functional prototype will be based on the ADF4351 integrated circuit of Analog Devices. Then, a bidirectional coupler (also developed exclusively for this application) will be used.
  • the complete meter also involves the preliminary design of a frequency sweep up to 2.8 GHz, a reflectometer for measuring the input reflection parameter of the resonator-finger system, based on the design of a bidirectional coupler.
  • the implementation of an ultrasonic thickness gauge that has been used to more accurately determine the thicknesses of the layers of human tissue that are part of the model of the human finger used is also postulated.
  • the output signal of the bidirectional coupler is input to an amplitude and phase detector of the reflected wave.
  • the operation of the system will be controlled by a microcontroller (in the implementation carried out one of the Microchip firm was used), this will be responsible for controlling the scanning of the ADF4351 and receiving the amplitude and phase signals from the AD8302. In addition, this will be used as an interface for the user, since it will have external controls, a liquid crystal display or LCD display to present the results obtained and in one of its serial ports a Bluetooth link or a wireless transmission module that It will allow you to communicate with a computer or a smartphone.
  • a microcontroller in the implementation carried out one of the Microchip firm was used
  • this will be responsible for controlling the scanning of the ADF4351 and receiving the amplitude and phase signals from the AD8302.
  • this will be used as an interface for the user, since it will have external controls, a liquid crystal display or LCD display to present the results obtained and in one of its serial ports a Bluetooth link or a wireless transmission module that It will allow you to communicate with a computer or a smartphone.
  • the measurement bank used consists of an HP8594 E Spectra Analyzer that also has a frequency sweep generator that reaches 2.9 GHz.
  • This signal is used as an incident wave to the resonator-finger system, which acts as a load connected through an HP 778d bidirectional coupler, from which the reflected wave arises, which is connected to the spectra analyzer input to observe its variation with respect to the frequency, and thus be able to determine the resonance frequency it presents.
  • the individual ingests some type of high glycemic food to raise blood sugar levels.
  • the experienced case individual is a healthy individual, who does not He suffers from diabetes, and for whom the plastic support for fixing the little finger posture was custom built.
  • the frequency response measurements were made and at the same time the glucose values were determined by means of a conventional invasive meter. Taking into account that conventional invasive meters determine blood glucose levels with an error of + - 10%, the measurements resulted in a linear correlation between resonance frequency and glucose values, for the individual subject to the measurement.
  • the design method is based on electromagnetic simulation using computer programs, and in this simulation of the finger-resonator system, the electrical model of the human finger is critical, which is represented by a layer model, which simulates the electrical characteristics of the different tissues, epidermis, dermis, muscle, fat, blood and bone.
  • a layer model which simulates the electrical characteristics of the different tissues, epidermis, dermis, muscle, fat, blood and bone.
  • the dimensions of the layers of the model were determined from ultrasound of the human finger, with the help of a professional.
  • the Debye model was used, widely used to characterize biological tissues or any other sample that exhibits dispersive nature in its intrinsic electrical properties.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Emergency Medicine (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Un sistema de medición no invasiva de niveles de glucosa en sangre. El sistema se basa en un sensor de la invención.. El usuario debe apoyar su dedo sobre dicho sensor, el cual es excitado mediante un generador de barrido de radiofrecuencias. Las respuestas de magnitud y fase en función de la frecuencia de la onda reflejada son medidas por un detector de amplitud y fase. Dichas magnitudes son adquiridas por dos conversores analógicos a digital de un microcontrolador, el cual a su vez posee la capacidad de transmitirlas a otros dispositivos como por ejemplo: una computadora o un teléfono inteligente.

Description

TRANSDUCTOR PARA LA MEDICIÓN DE GLUCOSA EN SANGRE DE FORMA
NO INVASIVA
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un transductor que permite la medición de glucosa en sangre de forma no invasiva y particularmente se refiere a un equipo integrado para la medición de glucosa en sangre de manera no invasiva.
ANTECEDENTES DE LA INVENCIÓN
La diabetes es una afección crónica que se desencadena cuando el organismo pierde su capacidad de producir suficiente insulina o de utilizarla con eficacia para mantener los niveles de glucosa en la sangre dentro de los márgenes normales. La insulina es una hormona producida por el páncreas que permite que la glucosa de los alimentos pase a las células del organismo, en donde se convierte en energía para que funcionen los músculos y los tejidos. Como resultado, una persona con diabetes no absorbe la glucosa adecuadamente, de modo que ésta queda circulando en la sangre (hiperglucemia) y dañando los tejidos con el paso del tiempo, pudiendo provocar lesiones en los ojos, los ríñones, los nervios, enfermedades cardíacas, derrames cerebrales. Estas complicaciones se pueden reducir entre un 40% y un 75% mediante un adecuado control de los niveles de glucosa en sangre.
La diabetes es una enfermedad frecuente crónica y costosa que aparece cuando el páncreas no produce insulina suficiente o cuando el organismo no utiliza eficazmente la insulina que produce. Es una de las cuatro enfermedades no transmisibles prioritarias identificadas por la Organización Mundial de la Salud (OMS), junto con la enfermedad cardiovascular (que incluye el infarto de miocardio y el derrame cerebral), el cáncer y la enfermedad respiratoria crónica. Está relacionada con el rápido aumento del sobrepeso, la obesidad y la inactividad física; tiene un componente genético y algunas personas sencillamente son más susceptibles que otras de desarrollar diabetes. La diabetes se encuentra a nivel de crisis y sigue en aumento. Cada siete segundos, alguien muere por diabetes, lo cual significa que se producen cuatro millones de muertes en el mundo cada año. En 2012, 347 millones de personas padecían diabetes y hay otros 280 millones que corren un alto riesgo de desarrollarla. De no hacerse nada, el número de personas con diabetes aumentará hasta los 552 millones en 20 años, con otros 398 millones de personas de alto riesgo, y en el 2030 podrían convertirse en la séptima causa mundial de muerte. Asimismo, el 80% de las muertes por diabetes se registran en países de ingresos bajos y medios. En Latinoamérica existen alrededor de 15 millones de personas con diabetes mellitus y esta cifra llegará a 20 millones en 10 años, mucho más de lo esperado por el simple incremento poblacional. Este comportamiento epidémico probablemente se debe a varios factores, entre los cuales se destacan la raza, el cambio en los hábitos de vida y el envejecimiento de la población. En Argentina, se estima que hay dos millones y medio de personas con diabetes. La proyección para el año 2020 alcanzaría a 4 millones de argentinos.
Hoy en día existen numerosos aparatos que permiten realizar un control de los niveles de glucosa en sangre, pero requieren, en general, de una punción en alguna parte del cuerpo para extraer una muestra de sangre. La naturaleza invasiva de los métodos convencionales, resulta dolorosa y suele provocar que la mayoría de los pacientes no realice el control adecuado. Si bien existen algunas empresas que han incursionado en la glucometría no invasiva, aun no existe una técnica ampliamente adoptada y su aplicación se encuentra por el momento en estado experimental.
RESUMEN DE LA INVENCIÓN
Es entonces un objeto de la presente invención proveer un dispositivo para la medición no invasiva de glucosa en sangre que puede ser utilizado por la persona que padece diabetes, tanto tipo I como tipo II, para monitorear los niveles de glucosa en sangre, y realizar un control más adecuado de la enfermedad, permitiendo acomodar una dieta más adecuada, y en el caso de la diabetes tipo I, determinar de mucho mejor manera la aplicación de la dosis de insulina necesaria. El empleo de un medidor de este tipo independiza también del uso tan reiterado de las mediciones invasivas que clásicamente implican el punzado, y la necesidad de tiras reactivas que en general, son de alto costo.
Es por lo tanto un objeto de la presente invención proveer un sistema de medición no invasiva de niveles de glucosa en sangre. El sistema se basa en un sensor de la invención el cual representa el dedo, el cual ha sido diseñado en base a un novedoso modelo de capas del dedo humano. El usuario debe apoyar su dedo sobre el sensor diseñado, el cual es excitado mediante un generador de barrido de radiofrecuencias. Las respuestas de magnitud y fase en función de la frecuencia de la onda reflejada son medidas por un detector de amplitud y fase. En la implementación propuesta, dichas magnitudes son adquiridas por dos de los conversores analógicos a digital de un microcontrolador, el cual a su vez posee la capacidad de transmitirlas a otros dispositivos como por ejemplo: una computadora o un teléfono inteligente.
En consecuencia, es un objeto de la presente invención un dispositivo para la medición de glucosa en sangre de forma no invasiva, que comprende un medidor de onda reflejada y un sensor, comprendiendo el medidor de onda reflejada un generador de barrido basado en circuitos integrados para sintetizar una onda que incide y es reflejada en el sensor; y un acoplador bidireccional para recibir la onda reflejada. .
En una realización preferida de la presente invención, el acoplador bidireccional genera una señal de salida que es ingresada a un detector de amplitud y fase de la onda reflejada el cual genera correspondientes señales de salida de amplitud y fase.
En una realización preferida de la presente invención, dicho sensor es un resonador.
En una realización preferida de la presente invención, el funcionamiento del sistema está controlado mediante un microcontrolador, el cual controla el barrido del generador de barrido y recibe dichas señales de salida de amplitud y fase provenientes del detector de amplitud y fase.
En una realización preferida de la presente invención, dicho microcontrolador a su vez está conectado a un display LCD y/o a un módulo de transmisión inalámbrica.
DESCRIPCIÓN DE LOS DIBUIOS
Para mayor claridad y comprensión del objeto de la presente invención, se lo ha ilustrado en varias figuras, en las que se ha representado el mismo en una de las formas preferidas de realización, todo a título de ejemplo, en donde:
La figura 1 muestra la implementación del resonador en el dispositivo objeto de la presente invención; La figura 2 es una imagen del acoplador bidireccional empleado para medir la onda electromagnética reflejada por el dispositivo de la figura 1;
La figura 3 es un diagrama de bloques de la implementación completa del sistema de medición. El bloque denominado "resonador (sensor)" es el dispositivo que se presenta en la figura 1, mientras que el acoplador bidireccional se presenta en la figura 2.
La figura 4 ilustra el banco de pruebas utilizado para analizar el rendimiento del resonador de la invención.
La figura 5 muestra el modelo del dedo humano utilizado para diseñar y simular el resonador que se presenta en la figura 1.
DESCRIPCIÓN DETALLADA DEL EIEMPLO DE REALIZACIÓN
El equipo consiste en un medidor de onda reflejada, y un sensor de la invención.
Para ello se requiere un generador de barrido para sintetizar la onda que incidirá en el sensor. Este generador de barrido para el prototipo funcional estará basado en el circuito integrado ADF4351 de Analog Devices. Luego, se utilizará un acoplador bidireccional (también desarrollado exclusivamente para esta aplicación).
El medidor completo involucra también el diseño preliminar de un barredor de frecuencias hasta 2.8 GHz, un reflectómetro para la medición del parámetro de reflexión de entrada del sistema resonador-dedo, basado en el diseño de un acoplador bidireccional. También se postula la implementación de un medidor de espesores por ultrasonido que ha sido utilizado para determinar con mayor exactitud los espesores de las capas de tejido humano que forman parte del modelo del dedo humano utilizado. La señal de salida del acoplador bidireccional es ingresada a un detector de amplitud y fase de la onda reflejada.
Si bien, el nivel de glucosa en sangre actualmente se estima en base a mediciones de la amplitud de la onda reflejada, existen estudios que indican que también podría haber información de interés en la fase de la onda reflejada, es por ello que previendo continuar con la investigación, se utilizó el circuito integrado AD8302 de Analog Devices que permite detectar estas dos magnitudes en el rango de frecuencias de interés.
El funcionamiento del sistema será controlado mediante un microcontrolador (en la implementación realizada se utilizó uno de la firma Microchip), este se encargará de controlar el barrido del ADF4351 y recibir las señales de amplitud y fase provenientes del AD8302. Además, este se utilizará como interfaz para el usuario, ya que el mismo dispondrá de controles externos, una pantalla de cristal líquido o display LCD para presentan los resultados obtenidos y en uno de sus puertos serie un enlace Bluetooth o a un módulo de transmisión inalámbrica que le permitirá comunicarse con una computadora o un teléfono inteligente.
El banco de medición utilizado consta de un Analizador de Espectros HP8594 E que posee además un generador de barrido de frecuencias que alcanza los 2.9 GHz. Esta señal es utilizada como onda incidente al sistema resonador - dedo, que actúa como una carga conectada a través de un acoplador bidireccional HP 778d, del cual surge la onda reflejada, que es conectada a la entrada del analizador de Espectros para observar su variación con respecto a la frecuencia, y así poder determinar la frecuencia de resonancia que presenta. En el procedimiento de medición del experimento, el individuo ingiere algún tipo de comida de alto índice glucémico para elevar los niveles de azúcar en sangre. El individuo del caso experimentado es un individuo sano, que no padece diabetes, y para quien el soporte plástico de fijación de la postura del dedo meñique fue construido a medida. En intervalos de 5 minutos, se realizaron las mediciones de la respuesta en frecuencia y al mismo tiempo se determinaron los valores de glucosa por medio de un medidor invasivo convencional. Teniendo en cuenta que los medidores convencionales invasivos determinan los niveles de glucosa en sangre con un error de +- 10 %, las mediciones arrojaron como resultado una correlación lineal entre los valores de frecuencia de resonancia y glucosa, para el individuo sujeto a la medición.
El método de diseño está basado en simulación electromagnética mediante programas de computadora, y en esta simulación del sistema resonador-dedo, es crítico el modelo eléctrico del dedo humano, el cual es representado por un modelo de capas, que simulan las características eléctricas de los diferentes tejidos, epidermis, dermis, músculo, grasa, sangre y hueso. Para llevar a cabo este modelo, inicialmente se utilizaron algunos parámetros clásicos obtenidos de la literatura, pero luego se descubrió que el modelo vigente del dedo debía ser mejorado, dado el hecho de las discrepancias encontradas entre la simulación por computadora y las mediciones experimentales. En este proceso de mejora del modelo las dimensiones de las capas del mismo se determinaron a partir de ecografías del dedo humano, con la ayuda de un profesional. Para establecer las propiedades dieléctricas de cada capa, se usó el modelo de Debye, ampliamente utilizado para caracterizar tejidos biológicos o cualquier otra muestra que presente naturaleza dispersiva en sus propiedades eléctricas intrínsecas.
Una vez modelado el tejido vivo, se realiza un minucioso estudio de las estructuras planares utilizadas en microondas para evaluar que estructura resulta la más apropiada. En este caso, se estudiaron tres tecnologías diferentes: estructuras microstrip, estructuras coplanares y estructuras coplanares con plano de masa. Debido al carácter inhomogéneo de la muestra y la variabilidad existente entre individuos, se tuvo en cuenta en el análisis no sólo la sensibilidad a los cambios en la glucemia, sino también la invarianza a parámetros tales como el grosor de la piel, tamaño del dedo, etc. Como resultado del análisis se concluye que la tecnología a implementar es un sensor coplanar con plano de masa. El mismo fue implementado en la práctica, y en la implementación real se adicionó un soporte construido en plástico para garantizar cierto grado de repetitividad en las mediciones efectuadas en cuanto a la forma de posicionar el dedo sobre el transductor.
Las mediciones fueron satisfactorias, pudiendo corroborar las simulaciones efectuadas y comprobar el correlato entre la respuesta del sensor y el nivel de glucemia de la muestra, principio que dio origen a esta invención. También se observa una alta dependencia de factores asociados, que lleva a una dependencia de la medición respecto de las características de cada individuo, lo cual aparece como un problema a resolver.
Haciendo referencia a la figura 5, se presenta cada uno de los materiales que componen el modelo del dedo y sus correspondientes espesores. Estos espesores no son los utilizados en la literatura, sino que fueron obtenidos mediante los estudios clínicos correspondientes.

Claims

REIVINDICACIONES
1. Un dispositivo para la medición de glucosa en sangre de forma no invasiva, que comprende un medidor de onda reflejada y un sensor, comprendiendo el medidor de onda reflejada un generador de barrido basado en circuitos integrados para sintetizar una onda que incide y es reflejada en el sensor; y un acoplador bidireccional para recibir la onda reflejada. .
2. El dispositivo de acuerdo con la reivindicación 1, en donde el acoplador bidireccional genera una señal de salida que es ingresada a un detector de amplitud y fase de la onda reflejada el cual genera correspondientes señales de salida de amplitud y fase.
3. El dispositivo de acuerdo con la reivindicación 1, en donde dicho sensor es un resonador.
4. El dispositivo de acuerdo con la reivindicación 2, en donde el funcionamiento del sistema está controlado mediante un microcontrolador, el cual controla el barrido del generador de barrido y recibe dichas señales de salida de amplitud y fase provenientes del detector de amplitud y fase.
5. El dispositivo de acuerdo con la reivindicación 4, en donde dicho microcontrolador a su vez está conectado a un display LCD y/o a un módulo de transmisión inalámbrica.
PCT/IB2016/054351 2015-07-21 2016-07-21 Transductor para la medición de glucosa en sangre de forma no invasiva WO2017013616A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16757724.6A EP3326529A1 (en) 2015-07-21 2016-07-21 Transducer for measuring glucose in blood in a non-invasive manner
US15/746,167 US20180206756A1 (en) 2015-07-21 2016-07-21 Transducer for noninvasive measurement of glucose in blood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AR20150102315 2015-07-21
ARP150102315A AR104766A1 (es) 2015-07-21 2015-07-21 Traductor para medición de glucosa en sangre de forma no invasiva

Publications (1)

Publication Number Publication Date
WO2017013616A1 true WO2017013616A1 (es) 2017-01-26

Family

ID=56802634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/054351 WO2017013616A1 (es) 2015-07-21 2016-07-21 Transductor para la medición de glucosa en sangre de forma no invasiva

Country Status (4)

Country Link
US (1) US20180206756A1 (es)
EP (1) EP3326529A1 (es)
AR (1) AR104766A1 (es)
WO (1) WO2017013616A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098947A1 (en) * 2017-11-15 2019-05-23 Singapore University Of Technology And Design Apparatus and method for non-invasively monitoring blood glucose
US10921274B2 (en) 2019-01-04 2021-02-16 John W. Hodges Apparatus for in vivo dielectric spectroscopy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR116399A1 (es) 2019-09-13 2021-05-05 Consejo Nacional De Investigaciones Cientificas Y Tecn Conicet Dispositivo medidor de concentración de glucosa en sangre en base a señales de microondas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428093A (en) * 2005-07-06 2007-01-17 Christopher Paul Hancock A non-invasive monitoring system
US20080319285A1 (en) * 2005-07-06 2008-12-25 Ferlin Medical Ltd. Apparatus and Method for Measuring Constituent Concentrations within a Biological Tissue Structure
US20120150000A1 (en) * 2009-05-11 2012-06-14 Al-Shamma A Ahmed Non-Invasive Monitoring Device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466307A (zh) * 2006-06-12 2009-06-24 三菱电机株式会社 测量成分浓度的系统及方法
US8843321B2 (en) * 2010-01-26 2014-09-23 Roche Diagnostics Operations, Inc. Methods and systems for processing glucose data measured from a person having diabetes
US20140275870A1 (en) * 2013-03-15 2014-09-18 Grove Instruments Inc. Continuous noninvasive measurement of analyte concentration using an optical bridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428093A (en) * 2005-07-06 2007-01-17 Christopher Paul Hancock A non-invasive monitoring system
US20080319285A1 (en) * 2005-07-06 2008-12-25 Ferlin Medical Ltd. Apparatus and Method for Measuring Constituent Concentrations within a Biological Tissue Structure
US20120150000A1 (en) * 2009-05-11 2012-06-14 Al-Shamma A Ahmed Non-Invasive Monitoring Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098947A1 (en) * 2017-11-15 2019-05-23 Singapore University Of Technology And Design Apparatus and method for non-invasively monitoring blood glucose
US10921274B2 (en) 2019-01-04 2021-02-16 John W. Hodges Apparatus for in vivo dielectric spectroscopy

Also Published As

Publication number Publication date
AR104766A1 (es) 2017-08-16
EP3326529A1 (en) 2018-05-30
US20180206756A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
Turgul et al. Simulating the effects of skin thickness and fingerprints to highlight problems with non-invasive RF blood glucose sensing from fingertips
ES2893005T3 (es) Un sistema de detección no invasivo
Earthman Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications
Uffmann et al. In vivo elasticity measurements of extremity skeletal muscle with MR elastography
ES2616335T3 (es) Sistema de monitorización cardiaca
Sutradhar et al. In vivo measurement of breast skin elasticity and breast skin thickness
ES2656222T3 (es) Un procedimiento de y un sistema para la determinación de una magnitud cardiovascular de un mamífero
US20160007891A1 (en) Method and Apparatus for Measuring Glucose in Body Fluids Using Sub-Dermal Body Tissue Impedance Measurements
Junker et al. Assessing quality of healing in skin: review of available methods and devices
US10206621B2 (en) Instrumented wearable device for measurement of physiological parameters
CA2625631A1 (en) Hydration status monitoring
Menon et al. A survey on non-invasive blood glucose monitoring using NIR
Kawoos et al. Telemetric intracranial pressure monitoring in blast-induced traumatic brain injury
WO2017013616A1 (es) Transductor para la medición de glucosa en sangre de forma no invasiva
Turgul et al. Sensitivity of non-invasive RF/microwave glucose sensors and fundamental factors and challenges affecting measurement accuracy
Gray et al. Noninvasive monitoring to detect dehydration: are we there yet?
Pavithran et al. Comparison of fingertip vs palm site sampling on pain perception, and variation in capillary blood glucose level among patients with diabetes mellitus
US9078606B1 (en) System and method for measuring blood glucose in the human body without a drawn blood sample
STEINBERG et al. Evaluation of limb compartments with suspected increased interstitial pressure A noninvasive method for determining quantitative hardness
Sarvazyan et al. Acoustical method of whole-body hydration status monitoring
Kim et al. Effect of body posture on segmental multifrequency bioimpedance variables
Zakharov et al. The effect of blood content on the optical and dielectric skin properties
Elkady et al. Microwave power absorption in human body for non-invasive glucose monitoring
Nguyen et al. Towards a Better Life for Diabetic Patients: Developing and Integrating a Non-invasive Self-Management Support Tool Within a Smart Digital Companion
Olenczak et al. Tissue Monitoring with Three-Wavelength Light Emitting Diode–Based Near-Infrared Spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16757724

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15746167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016757724

Country of ref document: EP