WO2017012449A1 - 一种电池膨胀检测装置及方法 - Google Patents

一种电池膨胀检测装置及方法 Download PDF

Info

Publication number
WO2017012449A1
WO2017012449A1 PCT/CN2016/086764 CN2016086764W WO2017012449A1 WO 2017012449 A1 WO2017012449 A1 WO 2017012449A1 CN 2016086764 W CN2016086764 W CN 2016086764W WO 2017012449 A1 WO2017012449 A1 WO 2017012449A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor layer
battery
unit
detecting unit
expansion
Prior art date
Application number
PCT/CN2016/086764
Other languages
English (en)
French (fr)
Inventor
李鲜丹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017012449A1 publication Critical patent/WO2017012449A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to, but is not limited to, the field of battery detection technology, and in particular, to a battery expansion detecting device and method.
  • the temperature and pressure information in the battery are collected in real time, and compared with a preset threshold to determine whether an alarm is triggered to perform safety in time when the battery safety protection measure fails. Alarm.
  • this method is mainly aimed at a sharp increase in the internal temperature and pressure of the battery, and it is not possible to provide an early warning of the gradual expansion caused by the slow chemical reaction inside the battery, and it is also impossible to know the expansion of the battery in time.
  • the purpose of the present application is to provide a battery expansion detecting device and method capable of determining the degree of expansion of the battery in time and avoiding a poor user experience or a safety hazard caused by using an over-expanded battery.
  • a battery expansion detecting device including:
  • the detecting unit includes a first conductor layer, a second conductor layer and an isolation layer, the first conductor layer is attached to the surface of the battery, and the isolation layer is disposed between the first conductor layer and the second conductor layer, wherein When the battery expands, the contact between the first conductor layer and the second conductor layer is caused, and as the degree of expansion of the battery increases, the area contacted by the first conductor layer and the second conductor layer also increases. ;
  • An acquiring unit connected to the detecting unit, configured to acquire the first conductor layer and the second guiding The area in contact with the body layer;
  • a determining unit connected to the obtaining unit, configured to determine a degree of expansion of the battery according to an area contacted by the first conductor layer and the second conductor layer.
  • the determining unit includes:
  • a calculating unit configured to calculate a ratio of an area contacted by the first conductor layer and the second conductor layer to a preset contact area threshold, the ratio characterizing a degree of expansion of the battery.
  • the obtaining unit includes:
  • the determining subunit is configured to determine an area contacted by the first conductor layer and the second conductor layer according to a resistance across the detecting unit.
  • the collecting subunit includes:
  • the power supply unit has one end connected to the first conductor layer through a constant value resistor R 0 and the other end connected to the second conductor layer, and is configured to supply power to the detecting unit, and the power supply voltage is Vcc;
  • a first collection subunit configured to collect a voltage V across the detection unit
  • the first calculating unit is configured to calculate the resistance Rp across the detecting unit according to the power supply voltage Vcc, the voltage V across the detecting unit, and the fixed value resistor R 0 .
  • the determining subunit includes:
  • a second calculating unit configured to calculate an area Sp contacted by the first conductor layer and the second conductor layer according to S, Rs, and Rp;
  • S is the area of the first conductor layer
  • Rs is the resistance across the detecting unit when the first conductor layer and the second conductor layer are in single contact
  • Rp is at the first conductor layer and the second The resistance across the detection unit when the area contacted by the conductor layer is Sp.
  • the first conductor layer is made of a resistive material
  • the second conductor layer is made of a metal material
  • the isolating layer is made of an insulating liquid material, and is disposed on the first conductor layer and the second through a sealing support structure. Between the conductor layers.
  • the intermediate portion of the first conductor layer corresponding to the battery cell is made of a resistive material
  • the peripheral region is made of an electrode material
  • the second conductor layer is made of a metal material.
  • the isolation layer is made of an insulating liquid material and is disposed between the first conductor layer and the second conductor layer through a sealing support structure.
  • the battery expansion detecting device further includes:
  • a display unit configured to display the ratio to inform the user of the degree of expansion of the battery.
  • the battery expansion detecting device further includes:
  • the alarm unit is configured to alarm when the ratio is greater than a proportional threshold.
  • the application also provides a battery expansion detecting method, comprising:
  • the detecting unit comprises a first conductor layer, a second conductor layer and an isolation layer, the first conductor layer being attached to the surface of the battery,
  • the isolation layer is disposed between the first conductor layer and the second conductor layer, and when the battery expands, causes contact between the first conductor layer and the second conductor layer, and the degree of expansion of the battery increases The area in contact between the first conductor layer and the second conductor layer also increases;
  • the degree of expansion of the battery is determined according to the area in contact with the first conductor layer and the second conductor layer.
  • the step of determining the degree of expansion of the battery according to an area contacted by the first conductor layer and the second conductor layer comprises:
  • a ratio of an area contacted by the first conductor layer and the second conductor layer to a predetermined contact area threshold is calculated, the ratio characterizing the degree of expansion of the battery.
  • the step of acquiring an area contacted by the first conductor layer and the second conductor layer of the detecting unit includes:
  • the step of collecting the resistance at the two ends of the detecting unit includes:
  • Vcc is a supply voltage of the electron-donating unit
  • R 0 is a constant value resistor, one end of the electron-donating unit is connected to the first conductor layer through a constant-value resistor R 0 , and the other end is connected to the second conductor layer. Powering the detection unit.
  • the step of determining an area contacted by the first conductor layer and the second conductor layer of the detecting unit according to the resistance of the detecting unit is:
  • S is the area of the first conductor layer
  • Rs is the resistance across the detecting unit when the first conductor layer and the second conductor layer are in single contact
  • Rp is at the first conductor layer and the second The resistance across the detection unit when the area contacted by the conductor layer is Sp.
  • the application further provides a computer readable storage medium storing computer executable instructions that are implemented when the computer executable instructions are executed.
  • the battery expansion detecting device and method of the present application can determine the degree of expansion of the battery in time by a detecting unit that is in contact with the battery, that is, the slow expansion caused by the long-term use of the battery, thereby avoiding the continued use of the over-expanded battery. Poor user experience or security risks.
  • FIG. 1 is a schematic structural view of a battery expansion detecting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a detecting unit according to an alternative embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a collection subunit according to an alternative embodiment of the present invention.
  • FIG. 4 is a flow chart of a battery expansion detecting method according to an embodiment of the present invention.
  • an embodiment of the present invention provides a battery expansion detecting apparatus, including:
  • the detecting unit 11 includes a first conductor layer 111, a second conductor layer 112, and an isolation layer 113.
  • the first conductor layer is attached to the surface of the battery, and the isolation layer is disposed between the first conductor layer and the second conductor layer, wherein when the battery expands, the first conductor layer and the second conductor are caused Contact of the layer, and as the degree of expansion of the battery increases, the area in contact with the first conductor layer and the second conductor layer also increases;
  • the obtaining unit 12 is connected to the detecting unit 11 and configured to acquire an area contacted by the first conductor layer and the second conductor layer;
  • the determining unit 13 is connected to the obtaining unit 12 and is configured to determine the degree of expansion of the battery according to an area contacted by the first conductor layer and the second conductor layer.
  • the battery expansion detecting device of the embodiment of the present invention can determine the degree of expansion of the battery in time by the detecting unit in contact with the battery, that is, the slow expansion caused by the long-term use of the battery, thereby avoiding the continued use of the excessively expanded battery. Poor user experience or security risks.
  • the first conductor layer attached to the surface of the cell is made of a resistive material such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the first conductor layer is formed, for example, by spraying the resistive material on a plastic substrate, and is attached to the surface of the battery together.
  • the intermediate portion of the first conductor layer corresponding to the battery cell is made of a resistive material, and the peripheral region is made of an electrode material, such as silver powder with better conductivity. The expansion of the battery is effectively detected.
  • the second conductor layer is usually made of a metal material, and may also be formed of a low-resistance material or a material having good electrical conductivity, for example, by spraying on a plastic substrate.
  • the second conductor layer is typically in contact with the support of the battery, such as the housing of the mobile terminal in which the battery is mounted.
  • the spacer layer is generally made of an insulating liquid material, such as an unsaturated polyester, and is disposed between the first conductor layer and the second conductor layer through a sealing support structure.
  • the isolation layer insulates the first conductor layer and the second conductor layer when the battery is not inflated, causing contact between the first conductor layer and the second conductor layer when the battery expands, and As the degree of expansion of the battery increases, the area in contact with the first conductor layer and the second conductor layer also increases.
  • the thickness of the separator is preferably 0.1 mm or less, and the thinner the thickness, the higher the detection sensitivity.
  • FIG. 2 it is a schematic structural diagram of a detecting unit in an alternative embodiment of the present invention.
  • the first conductor layer 111, the isolation layer 113, and the second conductor layer 112 are The second conductive layer is made of a resistive material, and the peripheral region is made of an electrode material.
  • the insulating layer 113 is made of an insulating liquid material and is disposed on the sealing support structure. Between the first conductor layer and the second conductor layer, the second conductor layer 112 is made of a metal material.
  • the determining unit includes:
  • a calculating unit configured to calculate a ratio of an area contacted by the first conductor layer and the second conductor layer to a preset contact area threshold, the ratio characterizing a degree of expansion of the battery.
  • the contact area threshold refers to the area in which the first conductor layer and the second conductor layer are in contact when the battery is expanded to the maximum extent (the battery is re-expanded and may explode).
  • the contact area threshold may be preset, for example, preset to a battery cell area. Therefore, by calculating the ratio of the area contacted by the first conductor layer and the second conductor layer to the preset contact area threshold, the degree of expansion of the battery can be known in real time.
  • the area contacted by the first conductor layer and the second conductor layer may be determined according to the resistance across the detecting unit.
  • the isolation layer of the detecting unit isolates the first conductor layer and the second conductor layer, and is in an open state at this time.
  • the detecting unit may have a resistance.
  • the first conductor layer and the second conductor layer may become in surface contact due to the extrusion of the battery, and accordingly, the resistance of the detecting unit may vary.
  • the acquiring unit includes:
  • the determining subunit is configured to determine an area contacted by the first conductor layer and the second conductor layer according to a resistance across the detecting unit.
  • the collecting subunit includes:
  • the power supply unit has one end connected to the first conductor layer through a constant value resistor R 0 and the other end connected to the second conductor layer, and is configured to supply power to the detecting unit, and the power supply voltage is Vcc;
  • a first collection subunit configured to collect a voltage V across the detection unit
  • the first calculating unit is configured to calculate the resistance Rp across the detecting unit according to the power supply voltage Vcc, the voltage V across the detecting unit, and the fixed value resistor R 0 .
  • FIG. 3 is a schematic structural diagram of a collection subunit according to an alternative embodiment of the present invention.
  • one end of the electron-donating unit 31 is connected to the first conductor layer 111 of the detecting unit 11 through a constant value resistor R 0 , and the other end is connected to the second conductor layer 112 of the detecting unit 11 to form a loop.
  • the detecting unit 11 is powered; at the same time, the collecting subunit 32 is connected to the detecting unit 11 to collect the voltage V across the detecting unit 11, and the first calculating unit 33 is connected to the collecting subunit 32 to calculate The resistance Rp across the detection unit is described.
  • the first calculating unit calculates the resistance across the detecting unit using Ohm's law.
  • the resistance of a conductor is inversely proportional to its cross-sectional area, that is, as the cross-sectional area of the conductor increases, the resistance of the conductor decreases accordingly.
  • the determining subunit includes:
  • a second calculating unit configured to calculate an area Sp contacted by the first conductor layer and the second conductor layer according to S, Rs, and Rp;
  • S is the area of the first conductor layer
  • Rs is the resistance across the detecting unit when the first conductor layer and the second conductor layer are in single contact
  • Rp is at the first conductor layer and the second The resistance across the detection unit when the area contacted by the conductor layer is Sp.
  • the battery expansion detecting device further includes a display unit, the display unit is configured to display an area contacted by the first conductor layer and the second conductor layer and a preset contact area The ratio of thresholds to inform the user of the degree of expansion of the battery.
  • the display unit may display the scale to the user in the form of a progress icon or a pie chart.
  • the battery expansion detecting device further includes an alarm unit configured to alarm when the ratio is greater than a proportional threshold.
  • the ratio threshold is preset by the user according to actual requirements, for example, may be preset to 1/3, that is, the ratio of the area contacted by the first conductor layer and the second conductor layer to the preset contact area threshold. If it is greater than 1/3, the alarm unit will alarm.
  • the alarm mode may be, for example, in the form of light, electricity, sound, etc., to prompt the user or the mobile terminal to cut off the power in time to avoid continued use of the hazard.
  • an embodiment of the present invention further provides a battery expansion detecting method, which corresponds to the battery expansion detecting device shown in FIG.
  • S401 Acquire an area contacted by the first conductor layer and the second conductor layer of the detecting unit, wherein the detecting unit comprises a first conductor layer, a second conductor layer and an isolation layer, wherein the first conductor layer is attached to the battery a surface, the isolation layer is disposed between the first conductor layer and the second conductor layer, and when the battery expands, causes contact between the first conductor layer and the second conductor layer, and as the battery expands Increasing, the area in contact with the first conductor layer and the second conductor layer is also increased;
  • S402 Determine a degree of expansion of the battery according to an area contacted by the first conductor layer and the second conductor layer.
  • the degree of expansion of the battery can be determined in time by the detecting unit in contact with the battery, thereby avoiding a poor user experience or a safety hazard caused by using an over-expanded battery.
  • the determining the degree of expansion of the battery according to an area contacted by the first conductor layer and the second conductor layer comprises:
  • a ratio of an area contacted by the first conductor layer and the second conductor layer to a predetermined contact area threshold is calculated, the ratio characterizing the degree of expansion of the battery.
  • the step of acquiring an area contacted by the first conductor layer and the second conductor layer of the detecting unit includes:
  • the step of collecting the resistance at the two ends of the detecting unit includes:
  • Vcc is a supply voltage of the electron-donating unit
  • R 0 is a constant-value resistor, and one end of the electron-donating unit is connected to the first conductor layer through a constant-value resistor R 0 , and the other end is connected to the second conductor layer. Powering the detection unit.
  • the step of determining an area contacted by the first conductor layer and the second conductor layer of the detecting unit according to the resistance of the detecting unit is:
  • S is the area of the first conductor layer
  • Rs is the resistance across the detecting unit when the first conductor layer and the second conductor layer are in single contact
  • Rp is at the first conductor layer and the second The resistance across the detection unit when the area contacted by the conductor layer is Sp.
  • Embodiments of the present invention further provide a computer readable storage medium storing computer executable instructions that are implemented when the computer executable instructions are executed.
  • a program to instruct related hardware eg, a processor
  • a computer readable storage medium such as a read only memory, a disk, or CD, etc.
  • all or part of the steps of the described embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the embodiment may be implemented in the form of hardware, such as an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executed by a processor and stored in a memory.
  • Embodiments of the invention are not limited to any specific form of combination of hardware and software.
  • the battery expansion detecting device and method of the present application can determine the degree of expansion of the battery in time by a detecting unit that is in contact with the battery, that is, the slow expansion caused by the long-term use of the battery, thereby avoiding the continued use of the over-expanded battery. Poor user experience or security risks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种电池膨胀检测装置及方法,其中,所述电池膨胀检测装置包括:检测单元(11),包括第一导体层(111)、第二导体层(112)和隔离层(113),所述第一导体层(111)贴附于电池表面,所述隔离层(113)设置于所述第一导体层(111)和第二导体层(112)之间;获取单元(12),与所述检测单元(11)连接,设置成获取所述第一导体层(111)和第二导体层(112)所接触的面积;确定单元(13),与所述获取单元(12)连接,设置成根据所述第一导体层(111)和第二导体层(112)所接触的面积,确定所述电池的膨胀程度。

Description

一种电池膨胀检测装置及方法 技术领域
本申请涉及但不限于电池检测技术领域,特别是一种电池膨胀检测装置及方法。
背景技术
当前,移动终端大多采用内置电池。由于电池本身性能差异或使用较久反复充电后,电池会慢慢膨胀,且膨胀程度逐渐增加,造成其续航时间短,并且若继续使用,电池具有在某一时刻急剧膨胀以致于燃烧爆炸的危险。
相关技术中,通过在电池内设置温度传感器和压力传感器,实时采集电池内的温度和压力信息,并与预设阈值进行比较判断是否触发报警,以在电池安全保护措施失效的情况下及时进行安全告警。
但这种方法主要针对电池内部温度和压力急剧增加,并不能对由于电池内部缓慢化学反应造成的逐步膨胀进行预警,也无法及时获知电池的膨胀。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种电池膨胀检测装置及方法,能够及时确定出所述电池的膨胀程度,避免使用过度膨胀的电池所带来的较差的用户体验或安全隐患。
为了实现上述的目的,本申请提供一种电池膨胀检测装置,包括:
检测单元,包括第一导体层、第二导体层和隔离层,所述第一导体层贴附于电池表面,所述隔离层设置于所述第一导体层和第二导体层之间,其中,当电池膨胀时,会引起所述第一导体层和第二导体层的接触,且随着电池膨胀程度的增大,所述第一导体层和第二导体层所接触的面积也增大;
获取单元,与所述检测单元连接,设置成获取所述第一导体层和第二导 体层所接触的面积;
确定单元,与所述获取单元连接,设置成根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度。
可选地,所述确定单元包括:
计算单元,设置成计算所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例,所述比例表征所述电池的膨胀程度。
可选地,所述获取单元包括:
采集子单元,设置成采集所述检测单元两端的电阻;
确定子单元,设置成根据所述检测单元两端的电阻,确定所述第一导体层和第二导体层所接触的面积。
可选地,所述采集子单元包括:
供电子单元,一端通过定值电阻R0与所述第一导体层连接,另一端与所述第二导体层连接,设置成为所述检测单元供电,供电电压为Vcc;
第一采集子单元,设置成采集所述检测单元两端的电压V;
第一计算单元,设置成根据供电电压Vcc、所述检测单元两端的电压V及定值电阻R0,计算所述检测单元两端的电阻Rp。
可选地,所述确定子单元包括:
第二计算单元,设置成根据S、Rs和Rp,计算所述第一导体层和第二导体层所接触的面积Sp;
其中,S为第一导体层的面积;Rs为在所述第一导体层和第二导体层单点接触时,所述检测单元两端的电阻;Rp为在所述第一导体层和第二导体层所接触的面积为Sp时,所述检测单元两端的电阻。
可选地,所述第一导体层选用阻性材料,所述第二导体层选用金属材料,而所述隔离层选用绝缘液状材料,通过密封支撑结构设置于所述第一导体层和第二导体层之间。
可选地,所述第一导体层的与电池电芯对应的中间区域选用阻性材料制成,外围区域选用电极材料制成,所述第二导体层选用金属材料制成,而所 述隔离层选用绝缘液状材料制成且通过密封支撑结构设置于所述第一导体层和第二导体层之间。
可选地,所述电池膨胀检测装置还包括:
显示单元,设置成显示所述比例,以告知用户电池的膨胀程度。
可选地,所述电池膨胀检测装置还包括:
告警单元,设置成当所述比例大于比例阈值时告警。
本申请还提供一种电池膨胀检测方法,包括:
获取检测单元的第一导体层和第二导体层所接触的面积,其中,所述检测单元包括第一导体层、第二导体层和隔离层,所述第一导体层贴附于电池表面,所述隔离层设置于所述第一导体层和第二导体层之间,当电池膨胀时,会引起所述第一导体层和第二导体层的接触,且随着电池膨胀程度的增大,所述第一导体层和第二导体层所接触的面积也增大;
根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度。
可选地,所述根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度的步骤包括:
计算所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例,所述比例表征所述电池的膨胀程度。
可选地,所述获取检测单元的第一导体层和第二导体层所接触的面积的步骤包括:
采集所述检测单元两端的电阻;
根据所述检测单元两端的电阻,确定所述检测单元的第一导体层和第二导体层所接触的面积。
可选地,所述采集所述检测单元两端的电阻的步骤包括:
采集所述检测单元两端的电压V;
根据Vcc、V及R0,计算所述检测单元两端的电阻Rp;
其中,Vcc为供电子单元的供电电压;R0为定值电阻,所述供电子单元 一端通过定值电阻R0与所述第一导体层连接,另一端与所述第二导体层连接,为所述检测单元供电。
可选地,所述根据所述检测单元两端的电阻,确定所述检测单元的第一导体层和第二导体层所接触的面积的步骤包括:
根据S、Rs和Rp,计算所述第一导体层和第二导体层所接触的面积Sp;
其中,S为第一导体层的面积;Rs为在所述第一导体层和第二导体层单点接触时,所述检测单元两端的电阻;Rp为在所述第一导体层和第二导体层所接触的面积为Sp时,所述检测单元两端的电阻。
本申请另外提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述方法。
通过本申请的上述技术方案,本申请的有益效果在于:
本申请的电池膨胀检测装置及方法,通过与电池接触的检测单元,能够及时确定出所述电池的膨胀程度,即由于电池长时间使用引起的缓慢膨胀,避免继续使用过度膨胀的电池所带来的较差的用户体验或安全隐患。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例的电池膨胀检测装置的结构示意图;
图2是本发明的一个可选实施例的检测单元的结构示意图;
图3是本发明的一个可选实施例的采集子单元的结构示意图;
图4是本发明实施例的电池膨胀检测方法的流程图。
本发明的较佳实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对具体实施例进行详细描述。
参见图1所示,本发明实施例提供一种电池膨胀检测装置,包括:
检测单元11,包括第一导体层111、第二导体层112和隔离层113,所 述第一导体层贴附于电池表面,所述隔离层设置于所述第一导体层和第二导体层之间,其中,当电池膨胀时,会引起所述第一导体层和第二导体层的接触,且随着电池膨胀程度的增大,所述第一导体层和第二导体层所接触的面积也增大;
获取单元12,与所述检测单元11连接,设置成获取所述第一导体层和第二导体层所接触的面积;
确定单元13,与所述获取单元12连接,设置成根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度。
本发明实施例的电池膨胀检测装置,通过与电池接触的检测单元,能够及时确定出所述电池的膨胀程度,即由于电池长时间使用引起的缓慢膨胀,避免继续使用过度膨胀的电池所带来的较差的用户体验或安全隐患。
在本发明的一个实施例中,贴附于电池表面的第一导体层选用阻性材料制成,例如铟锡氧化物(ITO)。所述第一导体层例如通过将所述阻性材料喷涂于塑料衬底上的方式形成,再一同贴附于电池表面。
为了检测的准确性,可选地,所述第一导体层的与电池电芯对应的中间区域选用阻性材料制成,而外围区域选用电极材料制成,例如导电性能较好的银粉,以有效地检测出电池的膨胀。
所述第二导体层通常选用金属材料制成,也可选用低阻性材料或导电性能较好的材料,例如选用喷涂于塑料衬底上的方式形成。所述第二导体层一般与电池的支撑体接触,例如与安设电池的移动终端的外壳接触。
所述隔离层一般选用绝缘液状材料制成,例如不饱和聚酯,并通过密封支撑结构设置于所述第一导体层和第二导体层之间。这样,在电池没有膨胀时,所述隔离层会隔绝所述第一导体层和第二导体层,当电池膨胀时,会引起所述第一导体层和第二导体层的接触,且随着电池膨胀程度的增大,所述第一导体层和第二导体层所接触的面积也增大。所述隔离层的厚度优选在0.1毫米以下,且厚度越薄检测灵敏度会越高。
参见图2所示,为本发明的一个可选实施例中的检测单元的结构示意图。在所述检测单元中,所述第一导体层111、隔离层113和第二导体层112依 次叠加在一起,且所述第一导体层111的中间区域选用阻性材料制成,外围区域选用电极材料制成,所述隔离层113选用绝缘液状材料制成,并通过密封支撑结构设置于所述第一导体层和第二导体层之间,所述第二导体层112选用金属材料。
需要说明的是,上述对检测单元的结构的介绍仅是一些可选的实现方式,本领域技术人员可对其进行适当的改进,应也属于本申请的范围。
在本发明的一个可选实施例中,所述确定单元包括:
计算单元,设置成计算所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例,所述比例表征所述电池的膨胀程度。
接触面积阈值指当电池膨胀到最大程度(电池再膨胀,可能会爆炸)时,所述第一导体层和第二导体层所接触的面积。在应用中,可对所述接触面积阈值进行预设,例如预设为电池电芯面积。所以,通过计算所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例,可实时了解电池的膨胀程度。
所述第一导体层和第二导体层所接触的面积可根据检测单元两端的电阻确定。实际应用中,当电池没有膨胀时,检测单元的隔离层会隔绝第一导体层和第二导体层,此时是开路状态。当电池出现膨胀时,所述第一导体层和第二导体层会单点接触,由于所述第一导体层是阻性材料制成,所述检测单元会具有电阻。且随着电池膨胀程度的加剧,由于电池的挤压,所述第一导体层和第二导体层会变为面接触,相应地,所述检测单元的电阻会变化。
基于上述内容,在本发明的一个可选实施例中,所述获取单元包括:
采集子单元,设置成采集所述检测单元两端的电阻;
确定子单元,设置成根据所述检测单元两端的电阻,确定所述第一导体层和第二导体层所接触的面积。
可选地,所述采集子单元包括:
供电子单元,一端通过定值电阻R0与所述第一导体层连接,另一端与所述第二导体层连接,设置成为所述检测单元供电,供电电压为Vcc;
第一采集子单元,设置成采集所述检测单元两端的电压V;
第一计算单元,设置成根据供电电压Vcc、所述检测单元两端的电压V及定值电阻R0,计算所述检测单元两端的电阻Rp。
图3为本发明的一个可选实施例的采集子单元的结构示意图。在图3中,供电子单元31的一端通过定值电阻R0与检测单元11的第一导体层111连接,另一端与检测单元11的第二导体层112连接,以构成回路,给所述检测单元11供电;同时,采集子单元32与所述检测单元11连接,以采集所述检测单元11两端的电压V,所述第一计算单元33与所述采集子单元32连接,以计算所述检测单元两端的电阻Rp。
所述第一计算单元是利用欧姆定律计算所述检测单元两端的电阻。根据欧姆定律可知,Vcc÷(R0+Rp)=V÷Rp,即计算所述检测单元两端的电阻Rp的公式一如下:
Rp=V R0÷(Vcc-V)    公式一
根据电阻定律可知,导体的电阻跟它的横截面积成反比,即随着导体的横截面积的增大,导体的电阻会相应减小。在本实施例中,当所述检测单元的第一导体层和第二导体层的接触面积增加时,所述检测单元的电阻会减小,且成反比,即Rp÷Rs=(S-Sp)÷S。
其中,S为第一导体层的面积;Rs为在所述第一导体层和第二导体层单点接触时,所述检测单元两端的电阻;Rp为在所述第一导体层和第二导体层所接触的面积为Sp时,所述检测单元两端的电阻。注意,实际应用中,S针对的是第一导体层中阻性材料覆盖的区域。
所以,计算所述检测单元两端的电阻Sp的公式二如下:
Sp=(Rs×S-Rp×S)÷Rs    公式二
基于上述内容,所述确定子单元包括:
第二计算单元,设置成根据S、Rs和Rp,计算所述第一导体层和第二导体层所接触的面积Sp;
其中,S为第一导体层的面积;Rs为在所述第一导体层和第二导体层单点接触时,所述检测单元两端的电阻;Rp为在所述第一导体层和第二导体层所接触的面积为Sp时,所述检测单元两端的电阻。
在本发明的一个可选实施例中,所述电池膨胀检测装置还包括显示单元,所述显示单元设置成显示所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例,以告知用户电池的膨胀程度。例如,所述显示单元可采用进度图标或扇形图等形式将比例显示给用户。
可选地,所述电池膨胀检测装置还包括告警单元,设置成当所述比例大于比例阈值时告警。其中,所述比例阈值是用户根据实际需求预设的,例如可预设为1/3,即当所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例大于1/3,所述告警单元会告警。而告警的方式例如可采用光、电、声音等形式,以提示用户或移动终端及时切断电源,避免继续使用危害安全。
参见图4所示,本发明实施例还提供一种电池膨胀检测方法,与图1所示的电池膨胀检测装置相对应,所述电池膨胀检测方法包括:
S401:获取检测单元的第一导体层和第二导体层所接触的面积,其中,所述检测单元包括第一导体层、第二导体层和隔离层,所述第一导体层贴附于电池表面,所述隔离层设置于所述第一导体层和第二导体层之间,当电池膨胀时,会引起所述第一导体层和第二导体层的接触,且随着电池膨胀程度的增大,所述第一导体层和第二导体层所接触的面积也增大;
S402:根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度。
本发明实施例的电池膨胀检测方法,通过与电池接触的检测单元,能够及时确定出所述电池的膨胀程度,避免使用过度膨胀的电池所带来的较差的用户体验或安全隐患。
在本发明的一个可选实施例中,所述根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度的步骤包括:
计算所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例,所述比例表征所述电池的膨胀程度。
可选地,所述获取检测单元的第一导体层和第二导体层所接触的面积的步骤包括:
采集所述检测单元两端的电阻;
根据所述检测单元两端的电阻,确定所述检测单元的第一导体层和第二导体层所接触的面积。
可选地,所述采集所述检测单元两端的电阻的步骤包括:
采集所述检测单元两端的电压V;
根据Vcc、V及R0,计算所述检测单元两端的电阻Rp;
其中,Vcc为供电子单元的供电电压;R0为定值电阻,所述供电子单元一端通过定值电阻R0与所述第一导体层连接,另一端与所述第二导体层连接,为所述检测单元供电。
可选地,所述根据所述检测单元两端的电阻,确定所述检测单元的第一导体层和第二导体层所接触的面积的步骤包括:
根据S、Rs和Rp,计算所述第一导体层和第二导体层所接触的面积Sp;
其中,S为第一导体层的面积;Rs为在所述第一导体层和第二导体层单点接触时,所述检测单元两端的电阻;Rp为在所述第一导体层和第二导体层所接触的面积为Sp时,所述检测单元两端的电阻。
本发明实施例另外提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现所述方法。
本领域普通技术人员可以理解所述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,所述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,所述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明实施例不限制于任何特定形式的硬件和软件的结合。
以上所述仅是本申请的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
工业实用性
本申请的电池膨胀检测装置及方法,通过与电池接触的检测单元,能够及时确定出所述电池的膨胀程度,即由于电池长时间使用引起的缓慢膨胀,避免继续使用过度膨胀的电池所带来的较差的用户体验或安全隐患。

Claims (14)

  1. 一种电池膨胀检测装置,包括:
    检测单元,包括第一导体层、第二导体层和隔离层,所述第一导体层贴附于电池表面,所述隔离层设置于所述第一导体层和第二导体层之间;
    获取单元,与所述检测单元连接,设置成获取所述第一导体层和第二导体层所接触的面积;
    确定单元,与所述获取单元连接,设置成根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度。
  2. 根据权利要求1所述的电池膨胀检测装置,其中,所述确定单元包括:
    计算单元,设置成计算所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例,所述比例表征所述电池的膨胀程度。
  3. 根据权利要求1所述的电池膨胀检测装置,其中,所述获取单元包括:
    采集子单元,设置成采集所述检测单元两端的电阻;
    确定子单元,设置成根据所述检测单元两端的电阻,确定所述第一导体层和第二导体层所接触的面积。
  4. 根据权利要求3所述的电池膨胀检测装置,其中,所述采集子单元包括:
    供电子单元,一端通过定值电阻R0与所述第一导体层连接,另一端与所述第二导体层连接,设置成为所述检测单元供电,供电电压为Vcc;
    第一采集子单元,设置成采集所述检测单元两端的电压V;
    第一计算单元,设置成根据供电电压Vcc、所述检测单元两端的电压V及定值电阻R0,计算所述检测单元两端的电阻Rp。
  5. 根据权利要求3所述的电池膨胀检测装置,其中,所述确定子单元包括:
    第二计算单元,设置成根据S、Rs和Rp,计算所述第一导体层和第二导体层所接触的面积Sp;
    其中,S为第一导体层的面积;Rs为在所述第一导体层和第二导体层单 点接触时,所述检测单元两端的电阻;Rp为在所述第一导体层和第二导体层所接触的面积为Sp时,所述检测单元两端的电阻。
  6. 根据权利要求1所述的电池膨胀检测装置,其中,所述第一导体层选用阻性材料制成,所述第二导体层选用金属材料制成,而所述隔离层选用绝缘液状材料制成且通过密封支撑结构设置于所述第一导体层和第二导体层之间。
  7. 根据权利要求1所述的电池膨胀检测装置,其中,所述第一导体层的与电池电芯对应的中间区域选用阻性材料制成,外围区域选用电极材料制成,所述第二导体层选用金属材料制成,而所述隔离层选用绝缘液状材料制成且通过密封支撑结构设置于所述第一导体层和第二导体层之间。
  8. 根据权利要求2所述的电池膨胀检测装置,所述装置还包括:
    显示单元,设置成显示所述比例,以告知用户电池的膨胀程度。
  9. 根据权利要求8所述的电池膨胀检测装置,所述还包括:
    告警单元,设置成当所述比例大于比例阈值时告警。
  10. 一种电池膨胀检测方法,包括:
    获取检测单元的第一导体层和第二导体层所接触的面积,其中,所述检测单元包括第一导体层、第二导体层和隔离层,所述第一导体层贴附于电池表面,所述隔离层设置于所述第一导体层和第二导体层之间;
    根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度。
  11. 根据权利要求10所述的电池膨胀检测方法,其中,所述根据所述第一导体层和第二导体层所接触的面积,确定所述电池的膨胀程度的步骤包括:
    计算所述第一导体层和第二导体层所接触的面积与预设的接触面积阈值的比例,所述比例表征所述电池的膨胀程度。
  12. 根据权利要求10所述的电池膨胀检测方法,其中,所述获取检测单元的第一导体层和第二导体层所接触的面积的步骤包括:
    采集所述检测单元两端的电阻;
    根据所述检测单元两端的电阻,确定所述检测单元的第一导体层和第二导体层所接触的面积。
  13. 根据权利要求12所述的电池膨胀检测方法,其中,所述采集所述检测单元两端的电阻的步骤包括:
    采集所述检测单元两端的电压V;
    根据Vcc、V及R0,计算所述检测单元两端的电阻Rp;
    其中,Vcc为供电子单元的供电电压;R0为定值电阻,所述供电子单元一端通过定值电阻R0与所述第一导体层连接,另一端与所述第二导体层连接,为所述检测单元供电。
  14. 根据权利要求12所述的电池膨胀检测方法,其中,所述根据所述检测单元两端的电阻,确定所述检测单元的第一导体层和第二导体层所接触的面积的步骤包括:
    根据S、Rs和Rp,计算所述第一导体层和第二导体层所接触的面积Sp;
    其中,S为第一导体层的面积;Rs为在所述第一导体层和第二导体层单点接触时,所述检测单元两端的电阻;Rp为在所述第一导体层和第二导体层所接触的面积为Sp时,所述检测单元两端的电阻。
PCT/CN2016/086764 2015-07-17 2016-06-22 一种电池膨胀检测装置及方法 WO2017012449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510425090.3A CN106353682A (zh) 2015-07-17 2015-07-17 一种电池膨胀检测装置及方法
CN201510425090.3 2015-07-17

Publications (1)

Publication Number Publication Date
WO2017012449A1 true WO2017012449A1 (zh) 2017-01-26

Family

ID=57833687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086764 WO2017012449A1 (zh) 2015-07-17 2016-06-22 一种电池膨胀检测装置及方法

Country Status (2)

Country Link
CN (1) CN106353682A (zh)
WO (1) WO2017012449A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102321418B1 (ko) 2017-03-10 2021-11-03 삼성전자 주식회사 압력 센서를 이용하여 배터리 부풂을 감지하는 방법 및 이를 사용하는 전자 장치
CN108565508B (zh) * 2018-04-11 2020-04-28 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种深海充油锂电池用鼓胀监测系统
CN109298345A (zh) * 2018-09-25 2019-02-01 联想(北京)有限公司 一种电池检测装置及电子设备
CN112556555B (zh) * 2020-12-14 2021-10-29 湘潭大学 一种方形锂离子电池鼓包程度的测量装置及测量方法
CN114122549A (zh) * 2021-11-26 2022-03-01 歌尔科技有限公司 电池鼓包检测方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076265A (ja) * 2007-09-19 2009-04-09 Panasonic Corp 電池パック
CN102356497A (zh) * 2011-08-24 2012-02-15 华为终端有限公司 一种检测电芯形变的电池和移动终端
JP2012242324A (ja) * 2011-05-23 2012-12-10 Tokai Rubber Ind Ltd 被破壊センサ
CN104733796A (zh) * 2013-12-18 2015-06-24 罗伯特·博世有限公司 用于探测电池组电池的紧要状况的接触传感元件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076265A (ja) * 2007-09-19 2009-04-09 Panasonic Corp 電池パック
JP2012242324A (ja) * 2011-05-23 2012-12-10 Tokai Rubber Ind Ltd 被破壊センサ
CN102356497A (zh) * 2011-08-24 2012-02-15 华为终端有限公司 一种检测电芯形变的电池和移动终端
CN104733796A (zh) * 2013-12-18 2015-06-24 罗伯特·博世有限公司 用于探测电池组电池的紧要状况的接触传感元件

Also Published As

Publication number Publication date
CN106353682A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2017012449A1 (zh) 一种电池膨胀检测装置及方法
TWI441373B (zh) 具有一整合囊袋金屬箔端子之電池單元
CN111183561B (zh) 充电控制方法和装置、电子设备、计算机可读存储介质
ES2879829T3 (es) Dispositivo terminal y método de monitoreo de seguridad de la batería y sistema de monitoreo para el mismo
US8717186B2 (en) Detection of swelling in batteries
EP3855555A3 (en) Battery pack
WO2016197713A1 (zh) 一种电池形变检测方法及设备
JP5402947B2 (ja) 生体情報検知センサおよびそれを用いた電子機器、並びに生体情報検知方法
RU2008114636A (ru) Способ и устройство для обнаружения влаги в строительных материалах
CN107450029B (zh) 电池状态校验方法和装置、计算机设备、计算机可读存储介质
WO2016154820A1 (zh) 控制充电的方法、装置和充电线缆
US9312713B2 (en) Heating a sensitive layer of a chemical sensor subject to detection of a recharge process in an electronic device
TWI351634B (en) Electronic input device with piezoelectric sensor
RU2016115558A (ru) Аналитическая тест-полоска со встроенным аккумулятором
CN108566493A (zh) 信息发送方法、装置、存储介质和电子设备
US10656030B2 (en) Temperature sensing device capable of automatically switching mode and method thereof
WO2018000745A1 (zh) 一种终端数据的处理方法、装置及终端
WO2018218686A1 (zh) 一种检测可再充电电池鼓胀的方法和便携电子设备
JP2011216221A (ja) 異常高温感知用感温スイッチ
JP2002232598A5 (zh)
WO1999001733A1 (en) Organic solvent vapor detector
CN112880879A (zh) 体温检测装置和体温检测方法
CN204337722U (zh) 一种低功耗手柄
CN220085014U (zh) 一种用于监测锂电池鼓胀的装置、电子设备
US20240264106A1 (en) Systems, apparatuses, and methods for detecting a vapor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827140

Country of ref document: EP

Kind code of ref document: A1