WO2017012403A1 - 传感器及数据采集系统 - Google Patents

传感器及数据采集系统 Download PDF

Info

Publication number
WO2017012403A1
WO2017012403A1 PCT/CN2016/082340 CN2016082340W WO2017012403A1 WO 2017012403 A1 WO2017012403 A1 WO 2017012403A1 CN 2016082340 W CN2016082340 W CN 2016082340W WO 2017012403 A1 WO2017012403 A1 WO 2017012403A1
Authority
WO
WIPO (PCT)
Prior art keywords
oeid
sensor
external
tag
data
Prior art date
Application number
PCT/CN2016/082340
Other languages
English (en)
French (fr)
Inventor
王莹
徐继东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017012403A1 publication Critical patent/WO2017012403A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared

Definitions

  • This document relates to, but is not limited to, the field of communication security technology, and in particular to a sensor-based and data acquisition system.
  • Sensors are used in a wide range of applications, but in some special areas (such as high-voltage transmission line monitoring, oil and gas pipelines, etc.), they can be placed in harsh environments without electromagnetic interference, external power supply, no wires or long distances of fiber. There is a large market demand for sensor components that are still operating under unattended conditions.
  • Conventional sensors usually include active sensors and passive sensors. Active sensors include smoke sensors, video sensors, etc.
  • a power supply is required inside the device for continuous power supply. Externally, the sensor requires power lines and remote monitoring computers. Connect to connect the sensor's information to the monitoring computer in real time via power line communication.
  • this type of sensor has a large volume due to its own power supply, and the power line communication outside the device makes the system passive. The laying of the power line between the monitoring computer and the sensor also increases the complexity of the project, and some hope that there is no electromagnetic. The environment of interference is also not suitable.
  • Passive sensors include fiber optic sensors, fiber Bragg grating sensors, etc., as shown in Figure 2, although the device does not require a power supply, but externally requires a fiber optic sensor to be connected to a signal transmitting and receiving processor for lightwave excitation and signal reception of the sensor. It shows that although this type of sensor is passive, it still needs to lay fiber between the device and the signal transmitting and receiving device, which also increases the engineering difficulty, and the fiber interference on the line also interferes with the solution after the passive sensor signal returns. Tune, there are cases of misjudgment or misjudgment of information.
  • FIG. 3 it is a sensor composed of RFID and a conventional sensor.
  • the communication method is as shown in FIG. 4, and the RFID read/write head is used.
  • the interaction of the RF signal between the antenna and the RFID tagged sensor is required, including data transmission and transmission of commands, due to the band
  • the RF signal emitted by the RFID sensor itself is a kind of signal interference to the external environment, and therefore, it is not suitable for some environments where electromagnetic interference is not desired.
  • the embodiment of the invention provides a sensor and a data acquisition system, which is small in size, free from electromagnetic interference, and can reduce engineering difficulty.
  • a sensor comprising: an optoelectronic identification OEID tag and one or more sensing probes communicatively coupled to the OEID tag;
  • the sensing probe is configured to monitor external environmental parameters
  • the OEID tag is configured to store and transmit external environmental parameters monitored by the sensing probe.
  • the OEID tag includes: a control chip, and a power management module, a data storage module, a light emitting device, and a photon voltage detector PVD module both connected to the control chip;
  • the PVD module is configured to receive an external command signal and external light, send the external command signal to the control chip, and convert external light into electrical energy to provide to the power management module;
  • the power management module is configured to supply working energy to the sensor
  • the data storage module is configured to acquire external environment parameters monitored by the sensing probe and store the data as monitoring data;
  • the control chip is configured to: after receiving the external command signal sent by the PVD module, retrieve the monitoring data from the data storage module, and convert the captured monitoring data into the light
  • the driving current of the transmitting device is such that the light emitting device loads the monitoring data onto the optical signal for external transmission.
  • the OEID tag further includes: an energy storage battery configured to store electrical energy provided by the power management module, the energy storage battery being connected to the power management module.
  • the PVD module Receiving the external command signal includes an optical wireless charging command and/or a light control command sent by the OEID head;
  • the optical transmitting device loading the monitoring data onto the optical signal for external transmission includes: to the OEID The head responds to the monitoring data loaded onto the optical signal.
  • the light emitting device is a light emitting diode LED module.
  • a data acquisition system includes: a photoelectric recognition OEID read/write head and a sensor connected to the OEID head;
  • the sensor is configured to monitor external environmental parameters and perform data transmission between the optical signal and the OEID read/write head.
  • the optical signal communication between the OEID head and the sensor includes uplink communication and downlink communication;
  • the OEID head controls the sensor by a light control command, and the OEID head and the external light source wirelessly charge the sensor;
  • the senor In the uplink communication, the sensor returns data to the OEID head after receiving the light control command.
  • the senor includes: an OEID tag and one or more sensing probes communicatively coupled to the OEID tag;
  • the sensing probe is configured to monitor external environmental parameters
  • the OEID tag is configured to store and transmit external environmental parameters monitored by the sensing probe.
  • the OEID tag includes: a control chip, and a power management module, a data storage module, a light emitting device, and a PVD module both connected to the control chip;
  • the PVD module is configured to receive a light control command sent by the OEID head and external light, send the light control command to the control chip, and convert external light into electrical energy to provide to the power management module;
  • the power management module is configured to supply working energy to the sensor
  • the data storage module is configured to acquire external environmental parameters monitored by the sensing probe Stored as monitoring data;
  • the control chip is configured to: after receiving the light control command sent by the PVD module, retrieve the monitoring data from the data storage module, and convert the captured monitoring data into the light
  • the driving current of the transmitting device is such that the light emitting device loads the monitoring data onto the optical signal and transmits it to the OEID head.
  • the OEID tag further includes: an energy storage battery configured to store electrical energy provided by the power management module.
  • a sensor and data acquisition system integrates an OEID (Optoelectronics Identification) tag with a conventional sensor (sensing probe) to form a sensor device, since the OEID tag itself has optical wireless communication and optical wireless charging. And the function of data storage, the sensor component formed by the traditional sensor plus OEID tag has no electromagnetic interference to the external environment, no power supply is needed inside the device, no power line or fiber connection is needed on the external line, and the sensing signal is accurately received from the outside.
  • the advantages of electromagnetic interference, and the resulting sensor device is small in size, reducing engineering difficulty and cost.
  • FIG. 1 is a schematic structural view of an active sensor in the related art
  • FIG. 2 is a schematic structural diagram of a passive sensor in the related art
  • FIG. 3 is a schematic diagram of a sensor with an RFID tag in the related art
  • FIG. 4 is a schematic diagram of a communication method of a sensor with an RFID tag in the related art
  • FIG. 5 is a schematic diagram of a communication manner of a data collection system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a first structure of a sensor according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a second structure of a sensor according to an embodiment of the present invention.
  • FIG. 8 is an internal block diagram of an OEID tag according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a first internal structure of a sensor according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a second internal structure of a sensor according to an embodiment of the present invention.
  • Figure 11 is a flow chart showing the communication of the sensor in the embodiment of the present invention.
  • the OEID tag is integrated with the traditional sensor (sensing probe) to form the sensor device, and the OEID tag itself has the functions of optical wireless communication, optical wireless charging and data storage, so that the traditional sensor plus the OEID tag is formed.
  • the sensor device has no electromagnetic interference to the external environment, no power supply is needed inside the device, no power line or fiber connection is needed on the external line, the sensing signal is accurately received without external electromagnetic interference, and the formed sensor device is small in size and reduced in size. Engineering difficulty and cost.
  • the embodiment of the invention provides a solution that can prevent the sensor component from causing electromagnetic interference to the external environment, does not require a power supply inside the device, does not require a power line or an optical fiber connection on the external line, reduces engineering complexity, and accurately receives the sensing signal from the outside. Electromagnetic interference.
  • an embodiment of the present invention provides a data acquisition system including an OEID read/write head and a sensor communicatively coupled to the OEID head, the sensor being configured to monitor external environmental parameters and pass optical signals and Data transmission is performed between the OEID heads.
  • the senor may include an OEID tag, and the OEID tag has functions of optical wireless communication, optical wireless charging, and data storage.
  • the optical signal communication between the OEID head and the sensor in this embodiment includes uplink communication and downlink communication, where:
  • the OEID head controls the sensor by a light control command, and the OEID head and the external light source wirelessly charge the sensor;
  • the senor performs real-time data recovery on the OEID head after receiving the light control command; the data includes but is not limited to monitoring data.
  • the OEID tag is integrated with a conventional sensor (sensing probe) to form a sensor device. Since the OEID tag itself has the functions of optical wireless communication, optical wireless charging, and data storage, the conventional sensor is combined with the sensor component formed by the OEID tag. It has no electromagnetic interference to the external environment, no power supply is needed inside the device, no power line or fiber connection is needed on the external line, the sensing signal is received accurately without external electromagnetic interference, and the formed sensor device is small in size, reducing engineering difficulty and cost.
  • the senor of this embodiment may include: an OEID tag and at least one sensing probe communicatively coupled to the OEID tag, the sensing probe being configured to monitor an external environmental parameter, the OEID tag being configured to The external environmental parameters monitored by the sensing probe are stored and transmitted externally.
  • Two sensor structures are provided in an alternative embodiment of the present invention.
  • One sensor structure is shown in FIG. 6.
  • An OEID tag is integrated with a conventional sensing probe to form a single sensor device. At this time, the conventional sensor probe is set. Real-time monitoring of specific sensing parameters (eg, external environmental parameters such as wind speed, temperature, pressure, humidity, flow, etc.) is performed, while the OEID tag is set to store and transmit external environmental parameters monitored in real time.
  • specific sensing parameters eg, external environmental parameters such as wind speed, temperature, pressure, humidity, flow, etc.
  • FIG. 7 Another sensor structure is shown in Fig. 7.
  • a single sensor device formed by integrating an OEID tag with a conventional sensor probe that monitors different parameters (in this embodiment, three examples) is set to monitor different sensors of different parameters.
  • the probes are set to monitor external environmental parameters separately, while the OEID tags are set to store and transmit different external environmental parameters monitored in real time.
  • the OEID tag may periodically acquire and store external environmental parameters monitored by the sensing probe, and transmit when the external environment needs to read the monitoring data; or when the external environment needs to read the monitoring data.
  • the external environment parameters monitored by the sensing probe are acquired and stored; when the external environmental parameters are obtained, the OEID tag may be actively acquired, or the sensing probe may be actively reported to the OEID tag.
  • the OEID tag includes: a control chip, and is connected to the control chip. Connected power management module, data storage module, light emitting device and PVD (Photonic Voltage Detector) module, wherein:
  • the PVD module is configured to receive a light control command sent by the OEID head and external light, send the light control command to the control chip, and convert external light into electrical energy to provide to the power management module;
  • the power management module is configured to supply working energy to the sensor
  • the data storage module is configured to acquire external environment parameters monitored by the sensing probe and store the data as monitoring data;
  • the control chip is configured to: after receiving the light control command sent by the PVD module, retrieve the monitoring data from the data storage module, and convert the captured monitoring data into the light emitting device
  • the driving current causes the light emitting device to load the monitoring data onto the optical signal and send it to the OEID head.
  • the light emitting device may be, but not limited to, an LED (Light Emitting Diode) module.
  • LED Light Emitting Diode
  • the OEID tag further includes: an energy storage battery configured to store electrical energy provided by the power management module.
  • the energy storage battery is connected to the power management module; and may be, but is not limited to, a battery.
  • the first internal structure and working principle of the sensor is as follows:
  • the PVD module receives the external command signal and external light, wherein the external light is converted into electrical energy stored in the power management module for the normal working power supply of the sensor, and the single sensing probe sends the monitored external environmental data to the data storage module in real time.
  • the control chip receives the external command signal of the PVD module, and retrieves the real-time monitoring data from the data storage module, and the captured monitoring data is converted into the driving current of the LED of the light emitting device, so that the LED will monitor the data loading. Send to the outside world on the optical signal.
  • the second internal structure of the sensor is shown in Figure 10:
  • the outside world does not only need to monitor a single parameter, but needs to monitor multiple parameters. In this case, multiple responsibility is required.
  • Traditional sensing probes with sensing parametric monitoring are integrated with the same OEID tag.
  • the working principle is as follows:
  • the PVD module receives the external command signal and external light, wherein the external light is converted into electrical energy stored in the power management module for the normal working power supply of the sensor. Since the sensor monitors and transmits a large amount of data, the conventional sensing probe As a result, the energy storage battery (ie, the battery in FIG. 10) is added to the power management module to reserve the power that is not used up in time after the external light is converted. Therefore, the OEID label in this embodiment may further include setting the pair.
  • the power management module provides electrical energy for storing energy storage batteries.
  • the plurality of sensing probes respectively send the monitored external environmental data to the data storage module in real time and save the data as monitoring data, wherein the external environment data monitored by one sensing probe can be saved as a set of monitoring data;
  • the control chip receives After the PVD module receives and forwards the external command signal, the real-time multi-group monitoring data is retrieved from the data storage module, and the acquired plurality of monitoring data are converted into driving currents of the light-emitting device LEDs by the control chip, so that the LEDs will be multi-group
  • the monitoring data (either together or separately) is loaded onto the optical signal and sent to the outside world.
  • the communication flow of the sensor and the OEID head in this embodiment is as shown in FIG. 11, and includes:
  • the OEID read/write head issues an instruction to the sensor of the specified ID, that is, an inquiry is performed;
  • the PVD module in the sensor receives the instruction
  • the sensor After the PVD module receives the instruction indicating the inquiry, the sensor sends the internal monitoring data to the receiving end of the OEID head through the light emitting device LED, that is, the response is performed;
  • the OEID read/write head receives the uplink signal
  • the OEID read/write head When the data is received, the OEID read/write head sends an end command indicating the end of the reading.
  • the PVD module of the sensor receives the command
  • the sensor controls the light emitting device LED to resume the send command and turn off the LED transmission.
  • the OEID read/write head receives the uplink signal, and closes the read function of the read/write head after receiving the end of the LED reply of the corresponding sensor.
  • the OEID tag by integrating the OEID tag with a conventional sensor (sensing probe) to form the sensor device of the present embodiment, since the OEID tag itself has functions of optical wireless communication, optical wireless charging, and data storage, the conventional sensor is added with an OEID tag.
  • the formed sensor component has no electromagnetic interference to the external environment, no power supply is needed inside the device, no power line or fiber connection is needed on the external line, the sensing signal is accurately received without external electromagnetic interference, and the formed sensor device is small in size. Reduce engineering difficulty and cost.
  • an embodiment of the present invention further provides a sensor that is communicatively coupled to an external OEID head, the sensor including: an OEID tag and at least one sensing probe communicatively coupled to the OEID tag, the sensing probe setting To monitor external environmental parameters, the OEID tag is configured to store and transmit external environmental parameters monitored by the sensing probe.
  • An alternative embodiment of the present invention provides two sensor structures, one of which is shown in Figure 6.
  • An OEID tag is integrated with a conventional sensing probe to form a single sensor device. At this time, the conventional sensing probe is configured. Real-time monitoring of specific sensing parameters (eg, wind speed, temperature, pressure, humidity, flow, etc.) is performed, while the OEID tag is set to store and transmit external environmental parameters that are monitored in real time.
  • specific sensing parameters eg, wind speed, temperature, pressure, humidity, flow, etc.
  • FIG. 7 Another sensor structure is shown in Fig. 7.
  • a single sensor device formed by integrating an OEID tag with a conventional sensor probe that monitors different parameters (in this embodiment, three examples) is set to monitor different sensors of different parameters.
  • the probes are arranged to monitor the outside world separately, while the OEID tags are arranged to store and transmit different external environmental parameters monitored in real time.
  • the OEID tag may periodically acquire and store external environmental parameters monitored by the sensing probe, and transmit when the external environment needs to read the monitoring data; or when the external environment needs to read the monitoring data.
  • the external environment parameters monitored by the sensing probe are acquired and stored; when the external environmental parameters are obtained, the OEID tag may be actively acquired, or the sensing probe may be actively reported to the OEID tag.
  • the OEID tag includes: a control chip, and a power management module, a data storage module, a light emitting device, and a PVD module both connected to the control chip, wherein:
  • the PVD module is configured to receive an external command signal and external light, and the external command signal is Sending to the control chip, and converting external light into electrical energy to the power management module;
  • the power management module is configured to supply working energy to the sensor
  • the data storage module is configured to acquire external environment parameters monitored by the sensing probe and store the data as monitoring data;
  • the control chip After receiving the external command signal sent by the PVD module, the control chip is configured to retrieve the monitoring data from the data storage module, and convert the acquired monitoring data into the light emitting device.
  • the driving current is caused to cause the light emitting device to load the monitoring data onto the optical signal for external transmission.
  • the light emitting device may be, but not limited to, an LED module.
  • the external command signal received by the PVD module includes an optical wireless charging command and/or a light control command sent by the OEID head;
  • Transmitting the monitoring data to the optical signal for external transmission includes: retrieving the monitoring data loaded onto the optical signal to the OEID head.
  • the first internal structure and working principle of the sensor is as follows:
  • the PVD module receives the external command signal and external light, wherein the external light is converted into electrical energy stored in the power management module for the normal working power supply of the sensor, and the single sensing probe sends the monitored external environmental data to the data storage module in real time.
  • the control chip retrieves the real-time monitoring data from the data storage module, and the captured monitoring data is converted into the driving current of the LED of the light-emitting device, so that the LED will monitor the data. Loaded onto the optical signal and sent to the outside world.
  • the second internal structure of the sensor is shown in Figure 10:
  • the outside world does not only need to monitor a single parameter, but needs to monitor multiple parameters.
  • multiple sensors responsible for different sensing parameters are required.
  • Traditional sensing probes are integrated with the same OEID tag.
  • the working principle is as follows:
  • the PVD module receives the external command signal and external light, wherein the external light is converted into electrical energy stored in the power management module for the normal working power supply of the sensor, due to the sensor monitoring and The amount of data transmitted is large, and the number of conventional sensing probes is also increased. Therefore, the energy storage battery (ie, the battery in FIG. 10) is added to the power management module to reserve the electric energy that has not been used up in time after the external light is converted. Therefore,
  • the OEID tag in an embodiment may also include an energy storage battery configured to store electrical energy provided by the power management module.
  • the plurality of sensing probes respectively send the monitored external environmental data to the data storage module in real time and save the data as monitoring data, wherein the external environment data monitored by one sensing probe can be saved as a set of monitoring data;
  • the control chip receives After receiving the external command signal, the PVD module retrieves real-time multiple sets of monitoring data from the data storage module, and the acquired multiple sets of monitoring data are converted into driving currents of the light emitting device LEDs by the control chip, so that the LEDs will have multiple sets of monitoring data. Loaded together (either separately or separately) onto the optical signal for transmission to the outside world.
  • the sensor and the data acquisition system of the embodiment of the present invention form a sensor device by integrating an OEID tag with a conventional sensor (sensing probe), and the OEID tag itself has functions of optical wireless communication, optical wireless charging, and data storage, so that the conventional sensor
  • the sensor component formed by the OEID tag has no electromagnetic interference to the external environment, no power supply is needed inside the device, no power line or fiber connection is needed on the external line, the sensing signal is accurately received without external electromagnetic interference, and the formed sensor is formed. Small size reduces engineering difficulty and cost.
  • a sensor and data acquisition system forms a sensor device by integrating an OEID tag with a conventional sensor (sensing probe), and the OEID tag itself has functions of optical wireless communication, optical wireless charging, and data storage.
  • the sensor element formed by the traditional sensor plus the OEID tag has no electromagnetic interference to the external environment, no power supply is needed inside the device, no power line or fiber connection is needed on the external line, and the sensing signal is accurately received without external electromagnetic interference, and
  • the formed sensor device is small in size, reducing engineering difficulty and cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种传感器及数据采集系统,该传感器包括:光电识别OEID标签以及与光电识别OEID标签通讯连接的一个或多个传感探头,所述传感探头设置成监测外部环境参数,所述光电识别OEID标签设置成将所述传感探头监测到的外部环境参数进行存储并对外传输。

Description

传感器及数据采集系统 技术领域
本文涉及但不限于通信安全技术领域,尤其涉及一种基于传感器及数据采集系统。
背景技术
传感器的应用范围非常广泛,但是,在某些特殊领域(例如高压输变线路监测、油气管路等),对可以不受电磁干扰、无外部供电、无电线或者光纤长距离铺设,在恶劣环境的无人值守之下还能正常运行的传感器件存在很大的市场需求。
传统的传感器通常包括有源传感器和无源传感器,有源传感器包括烟雾传感器、视频传感器等,如图1所示,其器件内部需要一个电源进行器件持续供电,外部需要传感器用电力线与远程监控电脑连接,以便将传感器的信息实时通过电力线通讯的方式输入监控电脑。然而,这种类型的传感器由于自身携带电源,体积较大,同时器件外部需要电力线通讯使得系统无法无源,铺设监控电脑与传感器之间的电力线也增加了工程的复杂度,而且一些希望无电磁干扰的环境也不适合。
无源传感器包括光纤传感器、光纤光栅传感器等,如图2所示,其器件内部虽然不需要供电电源,但是外部需要光纤传感器与一个信号发送接收处理器相连,以便传感器的光波激励与信号的接收显示,这种类型的传感器虽然是无源的,但是仍然需要器件与信号发送接收设备之间铺设光纤,同样增加了工程难度,而且线路上光纤的扰动也会干扰无源传感器信号返回后的解调,出现信息误判或者错判的情况。
相关技术中还有一种带RFID(Radio Frequency Identification,射频识别)标签的传感器,如图3所示,是由RFID和传统传感器组成的一种传感器,通讯方式如图4所示,RFID读写头需要通过天线与带RFID标签的传感器之间进行射频信号的交互,包括进行数据的传输以及发送命令,由于这种带 RFID的传感器本身发出的射频信号对外界环境就是一种信号干扰,因此,对某些不希望有电磁干扰的环境并不适用。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种传感器及数据采集系统,体积小、不受电磁干扰、可减少工程难度。
一种传感器,包括:光电识别OEID标签以及与所述OEID标签通讯连接的一个或多个传感探头;
所述传感探头设置成监测外部环境参数;
所述OEID标签设置成将所述传感探头监测到的外部环境参数进行存储并对外传输。
可选地,所述OEID标签包括:控制芯片,以及均与所述控制芯片连接的电源管理模块、数据存储模块、光发射器件和光子电压检测器PVD模块;
所述PVD模块设置成接收外界命令信号及外界光,将所述外界命令信号发送至所述控制芯片,并将外界光转化为电能提供给所述电源管理模块;
所述电源管理模块设置成对所述传感器进行工作电能供给;
所述数据存储模块设置成获取所述传感探头监测到的外部环境参数并存储为监测数据;
所述控制芯片设置成在接收到所述PVD模块发送的所述外界命令信号后,从所述数据存储模块中调取所述监测数据,并将调取的所述监测数据转化为所述光发射器件的驱动电流,使得所述光发射器件将所述监测数据加载到光信号上对外发送。
可选地,所述OEID标签还包括:设置成对所述电源管理模块提供的电能进行存储的储能电池,所述储能电池与所述电源管理模块连接。
可选地,当所述传感器与外部OEID读写头通讯连接时,所述PVD模块 接收的所述外界命令信号包括所述OEID读写头发送的光无线充电命令和/或光控制命令;所述光发射器件将所述监测数据加载到光信号上对外发送包括:向所述OEID读写头回复加载到光信号上的所述监测数据。
可选地,所述光发射器件为发光二极管LED模块。
一种数据采集系统,包括:光电识别OEID读写头以及与所述OEID读写头通讯连接的传感器;
所述传感器设置成监测外部环境参数,并通过光信号与所述OEID读写头之间进行数据传输。
可选地,所述OEID读写头与所述传感器之间的光信号通讯包括上行通讯和下行通讯;
所述下行通讯中,所述OEID读写头通过光控制命令控制所述传感器,且OEID读写头以及外界光源对传感器进行光无线充电;
所述上行通讯中,所述传感器在接收到所述光控制命令后对所述OEID读写头进行数据回复。
可选地,所述传感器包括:OEID标签以及与所述OEID标签通讯连接的一个或多个传感探头;
所述传感探头设置成监测外部环境参数;
所述OEID标签设置成将所述传感探头监测到的外部环境参数进行存储并对外传输。
可选地,所述OEID标签包括:控制芯片,以及均与所述控制芯片连接的电源管理模块、数据存储模块、光发射器件和PVD模块;
所述PVD模块设置成接收所述OEID读写头发送的光控制命令及外界光,将所述光控制命令发送至所述控制芯片,并将外界光转化为电能提供给所述电源管理模块;
所述电源管理模块设置成对所述传感器进行工作电能供给;
所述数据存储模块设置成获取所述传感探头监测到的外部环境参数并存 储为监测数据;
所述控制芯片设置成在接收到所述PVD模块发送的所述光控制命令后,从所述数据存储模块中调取所述监测数据,并将调取的所述监测数据转化为所述光发射器件的驱动电流,使得所述光发射器件将所述监测数据加载到光信号上发送给所述OEID读写头。
可选地,所述OEID标签还包括:设置成对所述电源管理模块提供的电能进行存储的储能电池。
本发明实施例提出的一种传感器及数据采集系统,通过将OEID(Optoelectronics Identification,光电识别)标签与传统传感器(传感探头)集成形成传感器件,由于OEID标签本身具有光无线通讯、光无线充电和数据存储的功能,使得传统的传感器加上OEID标签形成的传感器件具有对外界环境无电磁干扰,器件内部不需要电源,外部线路上不需要电力线或者光纤连接,传感信号接收准确不受外界电磁干扰的优点,并使得形成的传感器件体积小,减少工程难度和成本。
在阅读并理解了附图和详细描述后,可以明白其它方面。
附图概述
图1为相关技术中的有源传感器结构示意图;
图2为相关技术中的无源传感器结构示意图;
图3为相关技术中的带RFID标签的传感器的示意图;
图4为相关技术中的带RFID标签的传感器的通讯方式示意图;
图5为本发明实施例的数据采集系统的通讯方式示意图;
图6为本发明实施例中传感器的第一种结构示意图;
图7为本发明实施例中传感器的第二种结构示意图;
图8为本发明实施例中OEID标签的内部框图;
图9为本发明实施例中传感器的第一种内部结构示意图;
图10为本发明实施例中传感器的第二种内部结构示意图;
图11为本发明实施例中传感器的通讯流程图。
本发明的实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例中,通过将OEID标签与传统传感器(传感探头)集成形成传感器件,由于OEID标签本身具有光无线通讯、光无线充电和数据存储的功能,使得传统的传感器加上OEID标签形成的传感器件具有对外界环境无电磁干扰,器件内部不需要电源,外部线路上不需要电力线或者光纤连接,传感信号接收准确不受外界电磁干扰的优点,并使得形成的传感器件体积小,减少工程难度和成本。
由于相关技术中的传感器通常体积大、对外界环境造成电磁干扰;外部线路上需要电力线或者光纤连接,增加了工程复杂度,而且传感信号易受外界电磁干扰而不准确。
本发明实施例提供一种解决方案,可以使得传感器件不对外界环境造成电磁干扰,器件内部不需要电源,外部线路上不需要电力线或者光纤连接,减少工程复杂度,传感信号接收准确不受外界电磁干扰。
如图5所示,本发明实施例提出一种数据采集系统,包括OEID读写头以及与所述OEID读写头通讯连接的传感器,所述传感器设置成监测外部环境参数,并通过光信号与所述OEID读写头之间进行数据传输。
其中,所述传感器中可以包括OEID标签,所述OEID标签具有光无线通讯、光无线充电和数据存储等功能。
可选地,本实施例OEID读写头与传感器之间的光信号通讯包括上行通讯和下行通讯,其中:
所述下行通讯中,所述OEID读写头通过光控制命令控制所述传感器,且OEID读写头以及外界光源对传感器进行光无线充电;
所述上行通讯中,所述传感器在接收到所述光控制命令后对所述OEID读写头进行数据实时回复;所述数据包括但不限于监测数据。
本实施例通过将OEID标签与传统传感器(传感探头)集成形成传感器件,由于OEID标签本身具有光无线通讯、光无线充电和数据存储的功能,使得传统的传感器加上OEID标签形成的传感器件具有对外界环境无电磁干扰,器件内部不需要电源,外部线路上不需要电力线或者光纤连接,传感信号接收准确不受外界电磁干扰的优点,并使得形成的传感器件体积小,减少工程难度和成本。
可选地,本实施例的传感器可以包括:OEID标签以及与所述OEID标签通讯连接的至少一传感探头,所述传感探头设置成监测外部环境参数,所述OEID标签设置成将所述传感探头监测到的外部环境参数进行存储并对外传输。
本发明实施例可选方案中提供了两种传感器结构,其中一种传感器结构如图6所示,一个OEID标签与一个传统传感探头进行集成形成单个传感器器件,此时,传统传感探头设置成进行特定传感参量(例如:风速、温度、压力、湿度、流量等外部环境参数)的实时监测,而OEID标签则设置成将实时监测到的外部环境参数进行存储并传输。
另一种传感器结构如图7所示,一个OEID标签与监测不同参量(本实施例以三个进行举例)的传统传感探头进行集成形成的单个传感器器件,设置成监测不同参量的传统传感探头设置成分别对外部环境参数进行监测,而OEID标签则设置成将实时监测到的不同外部环境参数进行存储并传输。
在其它可选方案中,所述OEID标签可以周期性获取并存储所述传感探头监测到的外部环境参数,在外界需要读取监测数据时进行传输;也可以在外界需要读取监测数据时才获取并存储所述传感探头监测到的外部环境参数;获取外部环境参数时,可以是OEID标签主动获取,也可以是传感探头主动上报给OEID标签。
可选地,如图8所示,OEID标签包括:控制芯片,以及均与控制芯片连 接的电源管理模块、数据存储模块、光发射器件和PVD(Photonic Voltage Detector,光子电压检测器)模块,其中:
所述PVD模块设置成接收所述OEID读写头发送的光控制命令及外界光,将所述光控制命令发送至所述控制芯片,并将外界光转化为电能提供给所述电源管理模块;
所述电源管理模块设置成对所述传感器进行工作电能供给;
所述数据存储模块设置成获取所述传感探头监测到的外部环境参数并存储为监测数据;
所述控制芯片设置成在接收到所述PVD模块发送的光控制命令后,从所述数据存储模块中调取所述监测数据,并将调取的所述监测数据转化为所述光发射器件的驱动电流,使得所述光发射器件将所述监测数据加载到光信号上发送给所述OEID读写头。
其中,所述光发射器件可以但不限于为LED(Light Emitting Diode,发光二极管)模块。
可选地,所述OEID标签还包括:设置成对所述电源管理模块提供的电能进行存储的储能电池。所述储能电池与所述电源管理模块连接;可以但不限于为蓄电池。
以下分别阐述上述图6和图7两种传感器结构结合上述OEID标签的内部结构及工作原理如下:
如图9所示,传感器的第一种内部结构及工作原理如下:
PVD模块接收外界命令信号及外界光,其中外界光会被转化成电能储备在电源管理模块,用于传感器的正常工作电能供给,单个传感探头将监测到的外部环境数据实时送入数据存储模块,保存为监测数据,控制芯片收到PVD模块的外界命令信号后,从数据存储模块中调取实时监测数据,调取的监测数据转化为光发射器件LED的驱动电流,使得LED将监测数据加载到光信号上对外界发送。
传感器的第二种内部结构如图10所示:由于有些情况下,外界不仅仅需要监测单一参量,而是需要监测多种参量,在这种情况下,需要多个负责不 同传感参量监测的传统传感探头与同一个OEID标签进行集成。工作原理如下:
PVD模块接收到外界命令信号及外界光,其中外界光会被转化成电能储备在电源管理模块,用于传感器的正常工作电能供给,由于此传感器监测及传送的数据量较多,传统传感探头也增多,因此,在电源管理模块中增加储能电池(即图10中的蓄电池)将外界光转化后没有及时用完的电能进行储备,因此,本实施例中OEID标签还可以包括设置成对电源管理模块提供的电能进行存储的储能电池。
多个传感探头分别将监测到的外部环境数据实时送入数据存储模块,保存为监测数据,其中,可以将一个传感探头监测到的外部环境数据保存为一组监测数据;控制芯片收到PVD模块接收到并转发的外界命令信号后,从数据存储模块中调取实时多组监测数据,调取的多组监测数据通过控制芯片转化为光发射器件LED的驱动电流,使得LED将多组监测数据(一起或分别)加载到光信号上对外界发送。
本实施例传感器与OEID读写头的通讯流程如图11所示,包括:
启动OEID读写头;
OEID读写头对指定ID的传感器下发指令,即进行问询;
传感器中的PVD模块接收指令;
当PVD模块接收到表示问询的指令后,传感器将内部的监测数据通过光发射器件LED发送到OEID读写头的接收端,即进行回复;
OEID读写头接收上行信号;
当数据接收完毕后,OEID读写头发送表示结束读取的结束命令。
传感器的PVD模块接收指令;
当PVD模块接收到结束命令后,所传感器控制所述光发射器件LED回复结束发送命令并关闭LED发射。
OEID读写头接收上行信号,接收到相应传感器的LED回复的结束发送命令后也关闭读写头的读取功能。
由此,通过将OEID标签与传统传感器(传感探头)集成形成本实施例的传感器件,由于OEID标签本身具有光无线通讯、光无线充电和数据存储的功能,使得传统的传感器加上OEID标签形成的传感器件具有对外界环境无电磁干扰,器件内部不需要电源,外部线路上不需要电力线或者光纤连接,传感信号接收准确不受外界电磁干扰的优点,并使得形成的传感器件体积小,减少工程难度和成本。
此外,本发明实施例还提供一种传感器,该传感器与外部OEID读写头通讯连接,该传感器包括:OEID标签以及与所述OEID标签通讯连接的至少一传感探头,所述传感探头设置成监测外部环境参数,所述OEID标签设置成将所述传感探头监测到的外部环境参数进行存储并对外传输。
本发明实施例的可选方案提供了两种传感器结构,其中一种传感器结构如图6所示,一个OEID标签与一个传统传感探头进行集成形成单个传感器器件,此时,传统传感探头设置成进行特定传感参量(例如:风速、温度、压力、湿度、流量等等)的实时监测,而OEID标签则设置成将实时监测到的外部环境参数进行存储并传输。
另一种传感器结构如图7所示,一个OEID标签与监测不同参量(本实施例以三个进行举例)的传统传感探头进行集成形成的单个传感器器件,设置成监测不同参量的传统传感探头设置成分别对外界进行监测,而OEID标签则设置成将实时监测到的不同外部环境参数进行存储并传输。
在其它可选方案中,所述OEID标签可以周期性获取并存储所述传感探头监测到的外部环境参数,在外界需要读取监测数据时进行传输;也可以在外界需要读取监测数据时才获取并存储所述传感探头监测到的外部环境参数;获取外部环境参数时,可以是OEID标签主动获取,也可以是传感探头主动上报给OEID标签。
本实施例中,如图8所示,OEID标签包括:控制芯片,以及均与控制芯片连接的电源管理模块、数据存储模块、光发射器件和PVD模块,其中:
所述PVD模块设置成接收外界命令信号及外界光,将所述外界命令信号 发送至所述控制芯片,并将外界光转化为电能提供给所述电源管理模块;
所述电源管理模块设置成对所述传感器进行工作电能供给;
所述数据存储模块设置成获取所述传感探头监测到的外部环境参数并存储为监测数据;
所述控制芯片设置成接收到所述PVD模块发送的外界命令信号后,从所述数据存储模块中调取所述监测数据,并将调取的所述监测数据转化为所述光发射器件的驱动电流,使得所述光发射器件将所述监测数据加载到光信号上对外发送。
其中,所述光发射器件可以但不限于为LED模块。
可选地,当所述传感器与外部OEID读写头通讯连接时,所述PVD模块接收的所述外界命令信号包括所述OEID读写头发送的光无线充电命令和/或光控制命令;所述光发射器件将所述监测数据加载到光信号上对外发送包括:向所述OEID读写头回复加载到光信号上的所述监测数据。
以下分别阐述上述图6和图7两种传感器结构结合上述OEID标签的内部结构及工作原理如下:
如图9所示,传感器的第一种内部结构及工作原理如下:
PVD模块接收外界命令信号及外界光,其中外界光会被转化成电能储备在电源管理模块,用于传感器的正常工作电能供给,单个传感探头将监测到的外部环境数据实时送入数据存储模块,,保存为监测数据;控制芯片收到PVD模块的外界命令信号后,从数据存储模块中调取实时监测数据,调取的监测数据转化为光发射器件LED的驱动电流,使得LED将监测数据加载到光信号上对外界发送。
传感器的第二种内部结构如图10所示:由于有些情况下,外界不仅仅需要监测单一参量,而是需要监测多种参量,在这种情况下,需要多个负责不同传感参量监测的传统传感探头与同一个OEID标签进行集成。工作原理如下:
PVD模块接收到外界命令信号及外界光,其中外界光会被转化成电能储备在电源管理模块,用于传感器的正常工作电能供给,由于此传感器监测及 传送的数据量较多,传统传感探头也增多,因此,在电源管理模块中增加储能电池(即图10中的蓄电池)将外界光转化后没有及时用完的电能进行储备,因此,本实施例中OEID标签还可以包括设置成对电源管理模块提供的电能进行存储的储能电池。
多个传感探头分别将监测到的外部环境数据实时送入数据存储模块,保存为监测数据,其中,可以将一个传感探头监测到的外部环境数据保存为一组监测数据;控制芯片收到PVD模块接收到的外界命令信号后,从数据存储模块中调取实时多组监测数据,调取的多组监测数据通过控制芯片转化为光发射器件LED的驱动电流,使得LED将多组监测数据(一起或分别)加载到光信号上对外界发送。
本发明实施例的传感器及数据采集系统,通过将OEID标签与传统传感器(传感探头)集成形成传感器件,由于OEID标签本身具有光无线通讯、光无线充电和数据存储的功能,使得传统的传感器加上OEID标签形成的传感器件具有对外界环境无电磁干扰,器件内部不需要电源,外部线路上不需要电力线或者光纤连接,传感信号接收准确不受外界电磁干扰的优点,并使得形成的传感器件体积小,减少工程难度和成本。
工业实用性
本发明实施例提出的一种传感器及数据采集系统,通过将OEID标签与传统传感器(传感探头)集成形成传感器件,由于OEID标签本身具有光无线通讯、光无线充电和数据存储的功能,使得传统的传感器加上OEID标签形成的传感器件具有对外界环境无电磁干扰,器件内部不需要电源,外部线路上不需要电力线或者光纤连接,传感信号接收准确不受外界电磁干扰的优点,并使得形成的传感器件体积小,减少工程难度和成本。

Claims (10)

  1. 一种传感器,包括:光电识别OEID标签以及与所述OEID标签通讯连接的一个或多个传感探头;
    所述传感探头设置成监测外部环境参数;
    所述OEID标签设置成将所述传感探头监测到的外部环境参数进行存储并对外传输。
  2. 根据权利要求1所述的传感器,其中,所述OEID标签包括:控制芯片,以及均与所述控制芯片连接的电源管理模块、数据存储模块、光发射器件和光子电压检测器PVD模块;
    所述PVD模块设置成接收外界命令信号及外界光,将所述外界命令信号发送至所述控制芯片,并将外界光转化为电能提供给所述电源管理模块;
    所述电源管理模块设置成对所述传感器进行工作电能供给;
    所述数据存储模块设置成获取所述传感探头监测到的外部环境参数并存储为监测数据;
    所述控制芯片设置成在接收到所述PVD模块发送的所述外界命令信号后,从所述数据存储模块中调取所述监测数据,并将调取的所述监测数据转化为所述光发射器件的驱动电流,使得所述光发射器件将所述监测数据加载到光信号上对外发送。
  3. 根据权利要求2所述的传感器,其中,所述OEID标签还包括:设置成对所述电源管理模块提供的电能进行存储的储能电池,所述储能电池与所述电源管理模块连接。
  4. 根据权利要求2或3所述的传感器,其中,当所述传感器与外部OEID读写头通讯连接时,所述PVD模块接收的所述外界命令信号包括所述OEID读写头发送的光无线充电命令和/或光控制命令;所述光发射器件将所述监测数据加载到光信号上对外发送包括:向所述OEID读写头回复加载到光信号上的所述监测数据。
  5. 根据权利要求2或3所述的传感器,其中,所述光发射器件为发光二极管LED模块。
  6. 一种数据采集系统,包括:光电识别OEID读写头以及与所述OEID读写头通讯连接的传感器;
    所述传感器设置成监测外部环境参数,并通过光信号与所述OEID读写头之间进行数据传输。
  7. 根据权利要求6所述的数据采集系统,其中,所述OEID读写头与所述传感器之间的光信号通讯包括上行通讯和下行通讯;
    所述下行通讯中,所述OEID读写头通过光控制命令控制所述传感器,且OEID读写头以及外界光源对传感器进行光无线充电;
    所述上行通讯中,所述传感器在接收到所述光控制命令后对所述OEID读写头进行数据回复。
  8. 根据权利要求7所述的数据采集系统,其中,所述传感器包括:OEID标签以及与所述OEID标签通讯连接的一个或多个传感探头;
    所述传感探头设置成监测外部环境参数;
    所述OEID标签设置成将所述传感探头监测到的外部环境参数进行存储并对外传输。
  9. 根据权利要求8所述的数据采集系统,其中,所述OEID标签包括:控制芯片,以及均与所述控制芯片连接的电源管理模块、数据存储模块、光发射器件和PVD模块;
    所述PVD模块设置成接收所述OEID读写头发送的光控制命令及外界光,将所述光控制命令发送至所述控制芯片,并将外界光转化为电能提供给所述电源管理模块;
    所述电源管理模块设置成对所述传感器进行工作电能供给;
    所述数据存储模块设置成获取所述传感探头监测到的外部环境参数并存储为监测数据;
    所述控制芯片设置成在接收到所述PVD模块发送的所述光控制命令后,从所述数据存储模块中调取所述监测数据,并将调取的所述监测数据转化为所述光发射器件的驱动电流,使得所述光发射器件将所述监测数据加载到光信号上发送给所述OEID读写头。
  10. 根据权利要求9所述的数据采集系统,其中,所述OEID标签还包括:设置成对所述电源管理模块提供的电能进行存储的储能电池。
PCT/CN2016/082340 2015-07-20 2016-05-17 传感器及数据采集系统 WO2017012403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510428261.8 2015-07-20
CN201510428261.8A CN106373375A (zh) 2015-07-20 2015-07-20 传感器及数据采集系统

Publications (1)

Publication Number Publication Date
WO2017012403A1 true WO2017012403A1 (zh) 2017-01-26

Family

ID=57833621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082340 WO2017012403A1 (zh) 2015-07-20 2016-05-17 传感器及数据采集系统

Country Status (2)

Country Link
CN (1) CN106373375A (zh)
WO (1) WO2017012403A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488886A (zh) * 2017-09-11 2019-03-19 清华大学 油气管道内检测器数据集线系统及时序控制方法
CN112697192A (zh) * 2019-10-23 2021-04-23 中国电力科学研究院有限公司 一种耐候型复合物理量采集器
CN114828472A (zh) * 2022-03-25 2022-07-29 中国航空工业集团公司金城南京机电液压工程研究中心 一种小型化液压泵无线通讯介入装置
CN116560484A (zh) * 2023-03-31 2023-08-08 中电科国海信通科技(海南)有限公司 海洋渔业传感器低功耗管理芯片及功耗管理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108806484A (zh) * 2018-06-11 2018-11-13 中国人民解放军战略支援部队信息工程大学 一种光标签和光标签系统
CN112679253A (zh) * 2020-12-29 2021-04-20 中农新科(苏州)有机循环研究院有限公司 一种基于无源rfid的堆肥监测系统
CN118229787B (zh) * 2024-05-23 2024-07-26 高勘(广州)技术有限公司 油气管路路由走向的预测方法、系统、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205951A (ja) * 2006-02-03 2007-08-16 Hioki Ee Corp 光パワーメータ
CN101192362A (zh) * 2006-12-01 2008-06-04 康佳集团股份有限公司 Led显示屏现场单点调校装置及其调校方法
CN101194275A (zh) * 2005-04-28 2008-06-04 菲尼萨公司 光学识别芯片
CN101923659A (zh) * 2010-08-05 2010-12-22 苏州柔印光电科技有限公司 有机太阳能电子标签及其系统
CN102165466A (zh) * 2008-09-10 2011-08-24 松下电工株式会社 无线识别卡
CN102412856A (zh) * 2010-09-21 2012-04-11 上海科斗电子科技有限公司 无线传感器系统
US20130258529A1 (en) * 2012-03-27 2013-10-03 Galen Duff Carroll Methods and apparatus to detect and control plasma fires
CN104361388A (zh) * 2014-11-18 2015-02-18 中国科学院半导体研究所 一种超高频无线传感标签

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900195B1 (ko) * 2007-03-09 2009-06-02 재단법인서울대학교산학협력재단 광 식별 태그, 리더 및 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194275A (zh) * 2005-04-28 2008-06-04 菲尼萨公司 光学识别芯片
JP2007205951A (ja) * 2006-02-03 2007-08-16 Hioki Ee Corp 光パワーメータ
CN101192362A (zh) * 2006-12-01 2008-06-04 康佳集团股份有限公司 Led显示屏现场单点调校装置及其调校方法
CN102165466A (zh) * 2008-09-10 2011-08-24 松下电工株式会社 无线识别卡
CN101923659A (zh) * 2010-08-05 2010-12-22 苏州柔印光电科技有限公司 有机太阳能电子标签及其系统
CN102412856A (zh) * 2010-09-21 2012-04-11 上海科斗电子科技有限公司 无线传感器系统
US20130258529A1 (en) * 2012-03-27 2013-10-03 Galen Duff Carroll Methods and apparatus to detect and control plasma fires
CN104361388A (zh) * 2014-11-18 2015-02-18 中国科学院半导体研究所 一种超高频无线传感标签

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488886A (zh) * 2017-09-11 2019-03-19 清华大学 油气管道内检测器数据集线系统及时序控制方法
CN109488886B (zh) * 2017-09-11 2024-01-23 清华大学 油气管道内检测器数据集线系统及时序控制方法
CN112697192A (zh) * 2019-10-23 2021-04-23 中国电力科学研究院有限公司 一种耐候型复合物理量采集器
CN114828472A (zh) * 2022-03-25 2022-07-29 中国航空工业集团公司金城南京机电液压工程研究中心 一种小型化液压泵无线通讯介入装置
CN114828472B (zh) * 2022-03-25 2023-12-08 中国航空工业集团公司金城南京机电液压工程研究中心 一种小型化液压泵无线通讯介入装置
CN116560484A (zh) * 2023-03-31 2023-08-08 中电科国海信通科技(海南)有限公司 海洋渔业传感器低功耗管理芯片及功耗管理方法
CN116560484B (zh) * 2023-03-31 2024-03-29 中电科国海信通科技(海南)有限公司 海洋渔业传感器低功耗管理芯片及功耗管理方法

Also Published As

Publication number Publication date
CN106373375A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2017012403A1 (zh) 传感器及数据采集系统
WO2017041560A1 (zh) 一种远程监控的方法、读写器、监控终端及传感器
US11543239B2 (en) Fiber-optic sensors in a rosette or rosette-like pattern for structure monitoring
CN105960582B (zh) 智能螺栓及其系统
CN102324184B (zh) 车辆检测系统
WO2019081662A9 (en) Hardware module for a robotic system, and mechanical coupling
US20230025839A1 (en) Autonomous sensor device and expansion module
CN106815961A (zh) 一种基于Lora无线技术的森林防火热点组网监测装置及监测方法
CN111917466B (zh) 一种光纤故障点监控识别系统及方法
US9619677B2 (en) Communication method for the purpose of configuration and/or interrogation, and system using same
US9589223B2 (en) Modular radio-identification system with passive RFID module and active RFID module
CN202433039U (zh) 一种基于rfid的环境参数测量装置
KR102323610B1 (ko) 재구성 가능한 모듈라 방식 기반의 스마트태그
CN204881837U (zh) 一种全光纤分布式振动传感与视频监控装置
CN203761429U (zh) 一种基于物联网技术的智能电网监控系统
US11671731B2 (en) Apparatus for facilitating a photovoltaic device to provide a wireless communication channel
CN217521146U (zh) 一种基于农业物联网智能环境监测系统
CN210625735U (zh) 一种可无线充电的物联网温/湿度变送器
CN203824528U (zh) 基于无线传感器网技术的大跨径仓库顶棚形变监测系统
KR101191484B1 (ko) 알에프 아이디 기술기반을 이용한 산림자원관리 시스템
CN218848772U (zh) 无源物联网感知标签及物联网感知系统
CN217543949U (zh) 一种锂离子电池箱的红外光纤感温火灾探测器
CN101893491B (zh) 一种智能型分布式光纤温度传感系统及其工作方法
CN204028629U (zh) 基于opc的智能管控装置
US20120122394A1 (en) Sensor nodes with free-space signaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827094

Country of ref document: EP

Kind code of ref document: A1