WO2017012172A1 - 一种铅酸蓄电池系统、控制系统和智能系统 - Google Patents

一种铅酸蓄电池系统、控制系统和智能系统 Download PDF

Info

Publication number
WO2017012172A1
WO2017012172A1 PCT/CN2015/088228 CN2015088228W WO2017012172A1 WO 2017012172 A1 WO2017012172 A1 WO 2017012172A1 CN 2015088228 W CN2015088228 W CN 2015088228W WO 2017012172 A1 WO2017012172 A1 WO 2017012172A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
acid battery
unit
communication port
gateway
Prior art date
Application number
PCT/CN2015/088228
Other languages
English (en)
French (fr)
Inventor
李秉文
刘永新
彭泽军
杨辉龙
田亚雷
Original Assignee
深圳市佰特瑞储能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510431663.3A external-priority patent/CN106374545B/zh
Priority claimed from CN201510431664.8A external-priority patent/CN106374546A/zh
Application filed by 深圳市佰特瑞储能系统有限公司 filed Critical 深圳市佰特瑞储能系统有限公司
Priority to US15/308,834 priority Critical patent/US20170163068A1/en
Publication of WO2017012172A1 publication Critical patent/WO2017012172A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24015Monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of lead-acid battery management, and in particular to a system for internal state parameter management and charge and discharge control of a lead-acid battery.
  • Valve-regulated lead-acid batteries are often used as backup power sources in power plants, data rooms, mobile base stations and other important places. In recent years, the market capacity of global valve-regulated lead-acid batteries has reached the scale of RMB 10 billion/year.
  • valve-regulated lead-acid batteries Due to the wide variation in the operating environment of valve-regulated lead-acid batteries, monitoring and maintenance of valve-regulated lead-acid batteries is necessary for many important locations. At present, there are two main ways to monitor and maintain lead-acid batteries in the industry:
  • the first type is manual inspection. Every interval (such as 3 months or half a year), the engineer arrives at the scene, conducts tests on lead-acid battery current, voltage, temperature, etc., and manually records test and measurement data.
  • manual inspection Due to the remoteness of many base stations and the large investment of personnel vehicles, it is costly and laborious; power and equipment rooms are important places, and personnel access management is very strict. There may be hidden dangers of equipment failure when personnel enter the equipment room.
  • the second type setting up a lead-acid battery monitoring system, judging the actual state of the lead-acid battery by collecting data such as the current, voltage and operating ambient temperature of the lead-acid battery, and adopting corresponding countermeasures.
  • This method solves the shortcomings of human patrol to a certain extent and achieves certain effects. But it also brings new inconveniences: First, the monitoring cable is complicated, easy to form interference with strong electric cables, even open circuit, short circuit; Second, the ambient temperature can not truly reflect the use of lead-acid batteries, can not accurately determine lead The health of the acid battery has prevented scientific maintenance and maintenance.
  • the backup power supply of the communication base station usually has a rapid decline in capacity after about 2 to 3 years of use, and is forced to be scrapped in advance, causing a large amount of economic loss and environmental pollution.
  • the lead-acid battery is in low-capacity operation, which shortens the standby power of the base station, thus affecting the communication service quality of the base station, and there is communication. Break the hidden danger.
  • an embodiment provides a lead-acid battery system, including:
  • a measurement and control module built in the lead-acid battery casing for collecting state parameters during use of the lead-acid battery
  • the measurement and control module includes a first communication port for transmitting state parameters collected by the measurement and control module.
  • the gateway module includes a third communication port, a second communication port, and a processor unit, and the gateway module establishes communication with the first communication port of the measurement and control module through the third communication port, and collects the measurement and control module.
  • the state parameter collected by the group; the second communication port of the gateway module is used for remote communication, and the collected state parameters are sent out;
  • the processor unit analyzes a state parameter collected from a third communication port of the gateway module, and sends the analysis result through the second communication port.
  • an embodiment provides a lead-acid battery control system, including:
  • an acquisition unit and a servo unit built in the casing of the lead-acid battery unit wherein the collection unit is configured to collect state parameters during use of the lead-acid battery unit, the state parameters including voltage, current and lead acid An internal temperature of the battery unit; the servo unit is configured to cut and turn on a charge and discharge circuit of the lead-acid battery unit;
  • the intelligent gateway communicates with the acquisition unit through a wired communication loop or a wireless communication link, and acquires and uploads state parameters of the lead-acid battery unit collected by the collection unit;
  • the original data acquisition unit is configured to obtain each lead acid Raw data of the battery unit after leaving the factory;
  • the cloud data management platform acquires and stores the raw data of each lead-acid battery unit obtained by the original data collection unit; the cloud data management platform also communicates with the intelligent gateway through a wired or wireless communication link, and receives the smart gateway to upload The state parameter of the lead-acid battery unit; the cloud data management platform can periodically drive the intelligent gateway to start the check-discharge test of the lead-acid battery unit to obtain a discharge curve, and pass each lead The discharge curve of the acid battery cell, the raw data of the factory ⁇ and the state parameters obtained by the actual enthalpy, calculate the charge rate and health of each lead-acid battery cell to locate and replace the faulty lead-acid battery cell.
  • an embodiment provides a lead-acid battery intelligent system, including:
  • a first lead-acid battery wherein the first lead-acid battery has a voltage collecting unit, a current collecting unit, a temperature collecting unit, a servo unit, and a first communication port of the lead-acid battery system;
  • At least one second lead-acid battery has a voltage collecting unit, a current collecting unit, a temperature collecting unit and a first communication port; the first lead-acid battery and the second lead-acid battery In series.
  • Another embodiment further provides a lead-acid battery intelligent system, including:
  • a first lead-acid battery cell wherein the first lead-acid battery has a collection unit and a servo unit in the lead-acid battery control system;
  • At least one second lead-acid battery cell has a collection unit in the lead-acid battery control system; the first lead-acid battery cell and the second lead-acid The battery cells are connected in series.
  • the temperature of the lead-acid battery collected during use is the internal temperature of the lead-acid battery, which can be more accurate. It reflects the actual state and working conditions of the lead-acid battery; the measurement and control module is built in the lead-acid battery case, which also makes the state parameters of the acid battery use process safe and easy.
  • the state parameters in the use process of each lead-acid battery can be compared with the original data of the factory, so that The actual state of the lead-acid battery is judged more accurately, such as whether the battery capacity is too low to be replaced.
  • the third communication port of the gateway module can conveniently and quickly acquire the state parameter collected by the measurement and control module, and the second communication of the gateway module.
  • the port sends the obtained status parameter and the status parameter analysis result remotely, so that the user can Conveniently monitor battery status and effectively remotely manage lead-acid batteries, effectively extending the life of lead-acid batteries.
  • the state parameter during the use of the lead-acid battery cell can be detected and the detected state parameter is sent out.
  • the lead-acid battery control system and the intelligent system implemented above due to the introduction of the acquisition unit and the original data acquisition unit, the state parameters of the lead-acid battery cells during use and the original data of the factory defects can be obtained, thereby It can track and detect the whole life cycle parameters of each lead-acid battery cell from production to use, and provide solid data for the management and maintenance of each lead-acid battery cell, which can enable users to better manage and maintain.
  • Lead-acid batteries effectively extend the life of lead-acid batteries.
  • the user can actually detect the state parameter of the lead-acid battery unit through the cloud data management platform, and the lead-acid battery single
  • the body performs maintenance, and when the acquired state parameter is abnormal, the command of the charging circuit of the lead-acid battery unit is sent to the collecting unit to control the servo unit to break the charging circuit, thereby avoiding long-term overcharging of the acid battery unit and improper charging of the high temperature. Effectively extend the life of lead-acid batteries.
  • FIG. 1 is a schematic structural view of a lead-acid battery system according to an embodiment of the present application.
  • FIG. 2 is another schematic structural diagram of a lead-acid battery system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a lead-acid battery system including a plurality of gateway modules and a lead-acid battery according to an embodiment of the present application;
  • FIG. 4 is a partial structural schematic view of a lead-acid battery intelligent system according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a lead-acid battery control system according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a lead-acid battery intelligent system according to an embodiment of the present application.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present application provides a lead-acid battery system, which includes a measurement and control module 10 and a gateway module 20.
  • the user terminal 30 may also be included. The details are described below.
  • the measurement and control module 10 is built in the casing of the lead-acid battery 40 for collecting state parameters during use of the lead-acid battery 40.
  • the state parameters include current, voltage, and internal temperature, etc., in a specific embodiment, such as As shown in FIG. 2, the measurement and control module 10 includes a voltage collecting unit 11, a current collecting unit 12, and a temperature collecting unit 13 for collecting voltage, current and internal temperature of the lead-acid battery 40, respectively, because the measuring and controlling module 10 is built in lead acid.
  • the temperature collected by the temperature collecting unit 13 is the internal temperature of the lead-acid battery 40 instead of the ambient temperature, and the internal temperature of the lead-acid battery 40 can better reflect the actual state of the lead-acid battery 40.
  • the measurement and control module 10 further includes a first communication port 15 for transmitting the state parameter of the lead-acid battery 40.
  • the first communication port 15 is an RS485 interface, because the measurement and control module 10 Built in the lead-acid battery 40 and introduced the first communication port 15, the lead-acid battery system of the present application is simple and convenient, and is not prone to safety accidents such as open circuit and short circuit, and does not lead to the lead-acid battery 40 itself. Power supply, etc. cause strong interference.
  • the measurement and control module 10 can respond to the control command sent by the gateway module 20 through the third communication port 21 of the gateway module 20 to turn on or off the charge and discharge of the lead-acid battery. Loop.
  • the measurement and control module 10 further includes a servo unit 14.
  • the control servo unit 14 turns on/off the charge and discharge circuit of the lead-acid battery.
  • the servo unit 14 turns on the discharge circuit of the lead-acid battery for power supply when the mains is disconnected.
  • the gateway module 20 includes a third communication port 21, a second communication port 22, and a processor unit 23.
  • the gateway module 20 establishes communication with the first communication port 15 of the measurement and control module 10 through the third communication port 21, so that the gateway module 20 collects the state parameters of the lead-acid battery 40 collected by the measurement and control module 10,
  • the third communication port 21 of the gateway module 20 is also an RS485 interface.
  • a plurality of lead-acid batteries 40 are often used as backup power sources for power supply. Therefore, the gateway module 20 can be established through the RS485 bus. Communicate with the measurement and control module 10 built in each lead-acid battery 40 in the backup power source to The actual state parameter of the lead-acid battery 40 is sent to the user terminal 30.
  • the processor unit 23 is configured to analyze the state parameters acquired through the third communication port 21. In a specific embodiment, the processor unit 23 analyzes whether the state parameter is abnormal, for example, by using the state parameter obtained by the real The state parameter threshold is compared. When the state parameter is abnormal, the processor unit 23 sends a command to the measurement and control module 10 to disconnect the charging circuit of the lead-acid battery through the third communication port 21, and sends the command to the user through the second communication port 22. The terminal 30 sends a warning to remind the user and the abnormality of the lead-acid battery 40, for example, whether to replace the lead-acid battery.
  • the state parameters of the lead-acid battery 40 include current, voltage, internal temperature, etc.
  • the state parameter threshold preset by the processor unit 23 includes a current threshold, a voltage threshold, and a temperature threshold.
  • the state parameter is abnormal, and the control servo unit 14 is disconnected from the charging circuit of the lead-acid battery, so that the lead-acid battery 40 avoids over-filling and high temperature.
  • Charging, etc. select the appropriate temperature to charge the lead-acid battery 40, effectively extending the service life of the lead-acid battery 40, extending it from the traditional 2 to 3 years to at least 6 to 9 years.
  • the processor unit 23 is further provided with a charging section and a charging length parameter, and sends a command for conducting the lead-acid battery charging circuit to the measuring and controlling module 10 in the set charging section and the charging length.
  • the command for disconnecting the lead-acid battery charging circuit is sent in the set charging section and the charging length-out external measuring and controlling module 10.
  • the user can send an instruction to the gateway module 20 through the user terminal 30 to set the state parameter threshold and the charging segment and the charging parameter.
  • processor unit 23 includes an ARM9 processor.
  • the second communication port 22 of the gateway module 20 is used for remote communication, and sends the state parameter of the lead-acid battery 40 transmitted from the measurement and control module 10, the analysis result of the processor unit 23, and the abnormality warning, etc.
  • the gateway module 20 establishes communication with the user terminal 30 through the second communication port 22, and the second communication port 22 includes a WIFI interface and a GPRS interface, and the WIFI interface provides a very stable remote communication function, and the G PRS interface provides very And the remote communication function, of course, the second communication port 22 may also include a 3G interface and/or a 4G interface.
  • the introduction of the second communication port 22 enables the user to control the charging and discharging of the lead-acid battery 40 and the management of the state parameters of the lead-acid battery 40 through the gateway module 20 by using the user terminal 30, thereby solving the problem that the lead can not be supervised.
  • the problem of acid battery status has realized the effective remote management and monitoring functions of lead-acid batteries.
  • the introduction of the gateway module 20 enables the user terminal 30 to accurately detect the state parameters of the lead-acid battery 40.
  • Reliable data support is provided for calculating the SOC, SOH, and remaining life of the lead-acid battery 40 of the lead-acid battery 40.
  • SOC State of
  • SOH State of Health
  • SOH current battery maximum capacity / battery nominal capacity * 100% SOH reflects the current capacity capacity of the battery as a percentage, a new battery, its SOH is Greater than or equal to 100%, as the battery ages, SOH gradually decreases.
  • the IEEE standard 11 88-1996 stipulates that when the battery capacity drops to 80% or less, that is, SOH ⁇ 80 ⁇ 3 ⁇ 4 ⁇ , the battery should be replaced.
  • the lead-acid battery 40 serves as a backup power source, and then knows the SO H of each lead-acid battery 40 in the backup power source, which has a great effect on ensuring the reliable operation of the standby power system.
  • the lead-acid battery 40 is discharged to supply power. ⁇ , I learned the SOC of each lead-acid battery 40 in the backup power supply. It is very important for the user to know how long the backup power supply can provide backup power. By knowing how long the backup power supply can provide power supply, the user can advance Take appropriate measures.
  • the user terminal 30 receives and stores the state parameters of the lead-acid battery 40 collected by the measurement and control module 10 through the gateway module 20, and the analysis result of the processor unit 23 of the receiving gateway module 20.
  • the user terminal 30 can also control the servo unit 14 to turn on and off the charge and discharge circuit of the lead-acid battery through the gateway module 20, and send the set state parameter threshold, the charging section and the charging length parameter to the processor unit 23.
  • the order to manage the lead-acid battery 40 allows the lead-acid battery 40 to operate at an optimum state.
  • user terminal 30 can be a computer.
  • the user terminal 30 of the present application can establish a communication connection with one or more gateway modules 20, and the gateway module 20 establishes a communication connection with one or more lead-acid batteries 40.
  • the present application also includes an original data storage unit, the original data stores raw data of each lead-acid battery 40, and the raw data includes each lead acid.
  • the raw data storage unit is built in the lead-acid battery 40 housing, the gateway module 20, or the user terminal 30, such as the battery capacity, the charge and discharge characteristic curve, the internal resistance, the grouping information, and the identification number.
  • the present application introduces an original data storage unit, so that each lead-acid battery 40 can be used in the process.
  • the state parameter is compared with the original data of its factory, so that a more accurate judgment is made on the actual state of each lead-acid battery 40, such as whether the battery capacity is too low to be replaced.
  • the present application also discloses a lead-acid battery intelligent system including the above-described lead-acid battery system and lead-acid battery 40.
  • the lead-acid battery intelligent system of the present application includes the above-described lead-acid battery system, the first lead-acid battery 41, and at least one second lead-acid battery 42.
  • the first lead-acid battery 41 has a voltage collecting unit 11 , a current collecting unit 12 , a temperature collecting unit 13 , a servo unit 14 , and a first communication port 15 .
  • the second lead-acid battery 42 has a voltage collecting unit 11 and a current collecting unit 12 .
  • the first lead-acid battery 41 is connected in series with the second lead-acid battery 42. Therefore, the servo unit 14 in the first lead-acid battery 41 can turn on and off the charge after the first lead-acid battery 41 and the second lead-acid battery 42 are connected in series. Discharge circuit.
  • the user can obtain the actual state parameter of the lead-acid battery 40 through the gateway module 20 on the user terminal 30, and provide for the maintenance of the lead-acid battery 40, the calculation of the SOC and SOH, and the evaluation of the life.
  • the exact data basis when the gateway module determines that the actual state parameter of the lead-acid battery 40 is abnormal, the servo unit 14 is controlled to break the charging circuit of the lead-acid battery and send a warning to the user terminal 30 to prompt the user and the user.
  • the treatment avoids the long-term overcharge and high temperature improper charging of the lead-acid battery 40, effectively prolongs the life of the lead-acid battery, and reduces the amount of scrapped batteries per year and the environmental pollution caused by the lead-acid battery.
  • the user terminal 30 can also set the state parameter threshold, the charging section and the charging length to the gateway module 20 to make the lead-acid battery 40 work in an optimal state.
  • This application implements the function of remote monitoring and management of lead-acid batteries.
  • the lead-acid battery is often used as a backup power source after the mains power is cut off, and is used for power supply of the Shaoguan power supply or the uninterruptible power supply, and in the case of normal commercial power, the power supply of the commercial power is introduced to the power supply or the uninterruptible power supply. Charge the lead-acid battery.
  • a plurality of lead-acid battery packs are often used together, and as a backup power source, the lead-acid battery pack includes a plurality of lead-acid battery cells.
  • the present embodiment provides a lead-acid battery control system for monitoring and managing each lead-acid battery cell 150, which includes an acquisition unit 110, a servo unit 111, an intelligent gateway 120, and a cloud data management platform. 130. The original data collection unit 140. The details are described below. [0066]
  • the collecting unit 110 and the servo unit 111 are built in the casing of the lead-acid battery unit 150, wherein the collecting unit 110 is configured to collect state parameters during use of the lead-acid battery unit 150, and the state parameters include voltage, current and lead.
  • the internal temperature of the acid battery cell 150; the servo unit 111 is used to break and turn on the charge and discharge circuit of the lead-acid battery cell 150.
  • the collecting unit 110 is electrically connected to the servo unit 111.
  • the collecting unit 110 is further configured to respond to the control command of the smart gateway 120 to cause the servo unit 111 to turn on or off the charging and discharging circuit of the lead-acid battery unit 150. It should be noted that although the collecting unit 110 and the servo unit 111 are powered by the lead-acid battery unit 150 to operate, the collecting unit 110 and the servo unit 111 have excellent ultra-low power consumption, and are in the lead-acid battery unit 150.
  • the acquisition unit 110 and the servo unit 111 perform sleep or work according to the stage in which the lead-acid battery cell 150 is located, so the power consumption of the acquisition unit 110 and the servo unit 111 is relatively relative to the lead-acid battery cell.
  • the self-discharge power consumption of 150 is very small, and the performance impact on the lead-acid battery cell 150 is negligible.
  • the smart gateway 120 communicates with the collection unit 110 through a wired communication loop or a wireless communication link, and communicates with the collection unit 110 through the wired communication loop at the smart gateway 120, when a certain point of the communication loop fails, communication
  • the loop breaks into two communication links, and the normal communication between the smart gateway 120 and the acquisition unit 110 where the communication loop fails is still ensured.
  • the wired communication loop is implemented through the RS485 interface.
  • the smart gateway 120 determines the state parameters of the lead-acid battery unit 150 collected by the collecting unit 110.
  • the smart gateway 120 acquires the state parameters collected by each of the collecting servo units 110 every 3 seconds by using the master-slave communication mode. .
  • the number of the collection server units 110 hanged under the smart gateway 120 is too large, and there is no guarantee that each acquisition servo unit 110 can communicate once every 3 seconds.
  • the smart gateway 120 can periodically The synchronization command is sent to the collection unit 110 to solve the above problem. Specifically, the smart gateway 120 periodically broadcasts a synchronization command to the collection unit 110 that is in communication with the collection unit 110.
  • the collection unit 110 After the collection unit 110 receives the synchronization command, the collection unit 110 The synchronization counter is cleared, the acquisition unit 10 collects the state parameter of the lead-acid battery cell 150 every 3 seconds and stores it together with the count of the synchronization counter in the memory of the acquisition unit 110, and the acquisition unit 110 collects the state parameter every time.
  • the synchronization counter is incremented by 1, and after receiving the status parameter that the intelligent gateway 120 wants the acquisition unit 110 to upload its acquisition, the status parameter in the memory and the corresponding
  • the counter of the synchronization counter is packaged and uploaded to the smart gateway 120, and the smart gateway 120 determines that the packet is cleared by the smart gateway 120. After receiving the data packet uploaded by the collection unit 110, the smart gateway 120 automatically implements the data according to the synchronization counter in the data packet.
  • the smart gateway 120 determines that the acquired state parameter is abnormal, and sends a command to the charging circuit of the lead-acid battery cell 150 with the abnormal state parameter abnormality to the collecting unit 110, so that the servo unit 111 disconnects the charging circuit of the lead-acid battery cell 150.
  • the smart gateway 1 20 will also send a warning of the abnormal state parameter to the cloud data management platform 130 for the user to handle, thereby avoiding the long-term overcharge and high temperature improper charging of the lead-acid battery cell 150, effectively extending the lead.
  • the life of the acid battery cell 150, the abnormality of the state parameter includes the voltage reaching the set voltage threshold, the current reaching the set current threshold, and the internal temperature reaching the set temperature threshold, and the user can pass through the cloud data management platform 130 in the smart gateway 120.
  • Set working parameters including operating voltage thresholds, current thresholds, and temperature thresholds.
  • the smart gateway 120 also communicates with the power source through a serial port or a network port, and the power source is a power source or an uninterruptible power source.
  • the smart gateway 120 analyzes the power source according to the ambient temperature, the state parameter of the lead-acid battery unit 150, and the original data of the factory. Whether the charging parameter of the lead-acid battery cell 150 is reasonable and performs actual adjustment, the charging parameter includes the floating charging voltage and the charging cycle, and the intelligent gateway 120 also uploads the working parameters of the power to the cloud data management platform 130.
  • the ambient temperature of the lead-acid battery cell 150 described above can be collected by the smart gateway 120, and the raw data of the lead-acid battery cell 150 is provided by the original data collecting unit 140.
  • the smart gateway 120 uploads the state parameters of the lead-acid battery cell 150 and the operating parameters of the power source to the cloud data management platform 130 for statistical analysis, and stores the power parameters and the slaves when the communication with the cloud data management platform 130 is interrupted.
  • the state parameter acquired by the collecting unit 110 is automatically uploaded to the cloud data management platform 130 after the communication is restored.
  • the smart gateway 120 and the cloud data management platform 130 are 2G/3G/4G communications provided by the communication carrier.
  • the number of the collection servo units 110 connected to the smart gateway 120 is up to 128, and the data is stored for up to 7 days.
  • the original data collection unit 140 obtains the original data of each lead-acid battery unit 150 from the factory; the original data includes the identification number, capacity, internal resistance, charge and discharge characteristic curve and matching information of the lead-acid battery unit 150 Data, etc., because the raw data, especially the lead-acid battery cells 150 with similar capacity, internal resistance and charge-discharge characteristics, are better when they are combined to form a lead-acid battery pack, and the longer the life, the longer the life.
  • the raw data collection unit 140 is based on the acquired lead-acid batteries.
  • the raw data of the monomer 150 is assembled to each lead acid battery unit.
  • the cloud data management platform 130 acquires and stores the raw data of each of the lead-acid battery cells 150 obtained by the original data collection unit 140.
  • the cloud data management platform 130 also automatically directs the data uploaded by the smart gateway 120 to the corresponding cloud according to the configuration information of the smart gateway 120 and the identification number and the grouping information of the lead-acid battery unit 150 of the original data of the original data collection unit 140. In the data management platform 130.
  • the cloud data management platform 130 communicates with the smart gateway 120 through a wired or wireless communication link, and receives data such as status parameters of the lead-acid battery cells and operating parameters of the power source uploaded by the intelligent gateway 120.
  • the cloud data management platform 130 can periodically drive the intelligent gateway 120 to control the power supply to start the check discharge test of the lead-acid battery unit 150 to obtain a discharge curve, and the discharge curve of each lead-acid battery cell 150, the charge-discharge characteristic curve of the factory, and the actual It is very convenient to calculate the state of charge and health of each lead-acid battery cell 150 to locate and replace the faulty lead-acid battery cell 150.
  • the IEEE standard 1188-1996 stipulates that when the battery capacity drops to 80% or less, that is, SOH ⁇ 80 ⁇ 3 ⁇ 4 ⁇ , The battery should be replaced.
  • the lead-acid battery cell 150 acts as a backup power source, and then learns the SOH of each lead-acid battery cell 150 in the backup power supply, which has a great effect on ensuring the reliable operation of the standby power system, in the commercial power supply, the lead-acid battery single After the body 150 is discharged to supply power, it is known that the SOC of each lead-acid battery unit 150 in the backup power source plays an important role in how long the backup power can be provided by the user, and how long the backup power supply can provide. The power supply, the user can take corresponding measures in advance.
  • the present application introduces the original data collecting unit 140, so that the state parameters of each lead-acid battery cell 150 during use can be compared with the original data of the factory, so that the lead-acid battery cells 150 are The actual state is judged more accurately, such as whether the SOH is too low to be replaced.
  • the cloud data management platform 130 also provides a monthly report on the operation of each lead-acid battery cell 150, and issues SOC and SOH according to the state parameters, the discharge curve, and the raw data of each lead-acid battery cell 150. Electronic report.
  • the cloud data management platform 130 stores data such as state parameters, discharge curves, charge rate and health of each lead-acid battery unit, and the cloud data management platform 130 provides full life asset management of the lead-acid battery unit 150. , that is, storing and retrieving the operating state parameters of each lead-acid battery cell 150 and the raw data of the factory, storing and retrieving data of the full life cycle parameters of each lead-acid battery cell 150 from production to use. These data are very important for experts to carry out the management and life analysis of lead-acid battery cells 150, so that users can perform preventive maintenance, replacement and repair of lead-acid battery cells 150. These data are also lead-acid batteries. The basic research and development provides solid data support.
  • the cloud data management platform 130 uses the obtained internal temperature, voltage, current, capacity, charge and discharge depth, charge and discharge times, etc. of the lead-acid battery cell 150 to compare and analyze lead acid.
  • the relationship between the battery manufacturing process and the application environment, for the subsequent improvement of the manufacturing process Data support is provided for improvements in charge and discharge parameters and increased lead-acid battery capacity.
  • the structure and principle of the lead-acid battery control system proposed in the present application are described above. It should be noted that the number of the lead-acid battery unit 150, the smart gateway 120, the cloud data management platform 130, and the original data collection unit 140 shown in FIG. 5 is for illustration, and does not represent the actual number, and the user can It is required to connect a plurality of lead-acid battery cells 150 having the acquisition unit 110 and the servo unit 111 to the smart gateway 120, connect the plurality of smart gateways 120 to the cloud data management platform 130, and the like.
  • the present application also discloses a lead-acid battery intelligent system, including the above-mentioned lead-acid battery control system and lead-acid battery unit 150, wherein each lead-acid battery unit 150 has a built-in acquisition unit 110 and a servo. Unit 111.
  • the lead-acid battery intelligent system includes the above-mentioned lead-acid battery control system, the first lead-acid battery unit 151, and at least one second lead-acid battery unit. Body 152.
  • the first lead-acid battery cell 151 has a built-in acquisition unit 110 and a servo unit 111
  • the second lead-acid battery cell 152 has a collection unit 110 built therein.
  • the first lead-acid battery cell 151 is connected in series with the second lead-acid battery cell 152, so the servo unit 111 in the first lead-acid battery cell 151 can turn on and off the first lead-acid battery cell 151 and the second The charge and discharge circuit after the lead-acid battery cells 152 are connected in series.
  • the lead-acid battery control system and the intelligent system proposed by the present application can track and detect the whole life cycle parameters of the lead-acid battery unit 150 from production to use, and leave the lead-acid battery unit 150 out of the factory.
  • the raw data is compared with the state parameters in the actual application process, and the correct judgment is made on the maintenance and maintenance of the lead-acid battery cell 150, which provides sufficient data basis for calculating the SOC and SOH of the lead-acid battery cell 150.
  • the traditional lead-acid battery monitoring system is unable to obtain the raw data of the lead-acid battery unit 150, so the maintenance judgment and calculated SOC and SOH are very inaccurate.
  • the lead-acid battery control system proposed in the present application is abnormal when the state parameter of the lead-acid battery cell 150 is abnormal, and the warning data is sent to the cloud data management platform 130 to prompt the user to handle the defect, and the lead-acid battery cell 150 is realized. Remote control and management, and the user can set the working parameters to the intelligent gateway 120 through the cloud data management platform 130 to make the lead-acid battery unit 150 work in an optimal state.
  • the application of the lead-acid battery has greatly increased the life expectancy, not only the direct economic benefits, but also reduces the amount of pre-retirement of the lead-acid battery per year and the environmental pollution caused thereby.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种铅酸蓄电池系统及智能系统,所述铅酸蓄电池系统包括内置于铅酸蓄电池壳体内的测控模组,用于采集铅酸蓄电池使用过程中的状态参数;所述测控模组包括第一通讯端口;网关模组,包括第三通讯端口、第二通讯端口和处理器单元,所述网关模组通过其第三通讯端口与测控模组的第一通讯端口建立通讯,收集所述测控模组采集到的状态参数以供处理器单元分析状态参数是否异常;所述网关模组的第二通讯端口用于远程通讯,将收集到的所述状态参数与分析结果发送出去。本申请使用户可以方便地实时监管蓄电池状态和及时有效地远程对铅酸蓄电池管理,从而有效地延长了铅酸蓄电池的使用寿命。

Description

一种铅酸蓄电池系统、 控制系统和智能系统 技术领域
[0001] 本申请涉及铅酸蓄电池管理领域, 尤其涉及到一种铅酸蓄电池的内部状态参数 管理和充放控制的系统。
[0002]
[0003] 背景技术
[0004] 阀控铅酸蓄电池, 常常作为后备电源广泛应用于电力机房、 数据机房、 移动基 站等重要场所。 近几年来, 全球阀控铅酸蓄电池的市场容量已经达到上百亿元 人民币 /年的规模。
[0005] 由于阀控铅酸蓄电池的运行环境差异性很大, 对于许多重要场所, 对阀控铅酸 蓄电池的监测和维护是必须的。 目前, 业内对铅酸蓄电池的监测和维护主要有 两种方式:
[0006] 第一种是人工巡视, 每隔一段吋间 (比如 3个月或者半年) , 工程人员到达现 场, 进行铅酸蓄电池电流、 电压、 温度等测试, 人工记录测试测量数据。 人工 巡视存在几个缺点: 由于很多基站地处偏远, 人员车辆资源投入较大, 费吋费 力; 电力和机房是重要场所, 人员进出管理很严格, 人员进入机房可能存在机 房故障隐患。
[0007] 第二种: 设置铅酸蓄电池监控系统, 通过采集铅酸蓄电池的电流、 电压和运行 环境温度等数据来判断铅酸蓄电池的实吋状况, 并采用相应的应对措施。 这种 方法在一定程度上解决了人力巡视的缺点, 取到了一定的效果。 但也带来了新 的不便: 一是监控线缆接线复杂, 容易和强电线缆形成干扰, 甚至断路、 短路 ; 二是环境温度无法真实反映铅酸蓄电池的使用状况, 无法准确地判断铅酸蓄 电池的健康状况, 导致无法科学的进行维护和保养。
[0008] 在现有技术条件下, 通讯基站的备用电源通常在使用大约 2~3年后出现容量快 速下降, 被迫提前报废、 造成大量的经济损失及环境污染。 或者铅酸蓄电池处 于低容量运行, 缩短了基站备电吋长, 从而影响基站通信服务质量, 存在通信 中断隐患。
[0009] 如何更好地维持及延长阀控铅酸蓄电池的使用寿命是目前铅酸蓄电池行业的一 个迫切需要解决的问题。
[0010]
[0011] 发明内容
[0012] 根据第一方面, 一种实施例中提供一种铅酸蓄电池系统, 包括:
[0013] 内置于铅酸蓄电池壳体内的测控模组, 用于采集铅酸蓄电池使用过程中的状 态参数;
[0014] 所述测控模组包括第一通讯端口, 用于将测控模组采集到的状态参数传送出去
[0015] 网关模组, 包括第三通讯端口、 第二通讯端口和处理器单元, 所述网关模组通 过其第三通讯端口与测控模组的第一通讯端口建立通讯, 收集所述测控模组采 集到的状态参数; 所述网关模组的第二通讯端口用于 远程通讯, 将收集到的所 述状态参数发送出去;
[0016] 所述处理器单元对从网关模组的第三通讯端口收集到的状态参数进行分析, 并 通过第二通讯端口将分析结果发送出去。
[0017] 根据第二方面, 一种实施例中提供一种铅酸蓄电池控制系统, 包括:
[0018] 内置于铅酸蓄电池单体的壳体内的采集单元和伺服单元, 所述采集单元用于采 集铅酸蓄电池单体使用过程中的状态参数, 所述状态参数包括电压、 电流和铅 酸蓄电池单体的内部温度; 所述伺服单元用于断幵和导通所述铅酸蓄电池单体 的充放电回路;
[0019] 智能网关, 通过有线通信环路或无线通信链路与采集单元通信, 定吋获取并上 传采集单元采集的铅酸蓄电池单体的状态参数; 原始数据采集单元, 用于获取 各铅酸蓄电池单体出厂吋的原始数据;
[0020] 云数据管控平台, 获取和储存原始数据采集单元获取的各铅酸蓄电池单体出厂 吋的原始数据; 云数据管控平台还通过有线或无线通信链路与智能网关通信, 接收智能网关上传的铅酸蓄电池单体的状态参数; 所述云数据管控平台可定期 驱动智能网关对铅酸蓄电池单体启动核对放电测试以得到放电曲线, 通过各铅 酸蓄电池单体的放电曲线、 出厂吋的原始数据和实吋获取的状态参数, 计算出 各铅酸蓄电池单体的荷电率和健康度以定位和更换有故障的铅酸蓄电池单体。
[0021] 根据第三方面, 一种实施例提供一种铅酸蓄电池智能系统, 包括:
[0022] 上述铅酸蓄电池系统;
[0023] 第一铅酸蓄电池, 所述第一铅酸蓄电池内置有所述铅酸蓄电池系统的电压采集 单元、 电流采集单元、 温度采集单元、 伺服单元和第一通讯端口;
[0024] 至少一个第二铅酸蓄电池, 所述第二铅酸蓄电池内置有电压采集单元、 电流采 集单元、 温度采集单元和第一通讯端口; 所述第一铅酸蓄电池与第二铅酸蓄电 池串联。
[0025] 另一种实施例还提供了一种铅酸蓄电池智能系统, 包括:
[0026] 上述铅酸蓄电池控制系统;
[0027] 第一铅酸蓄电池单体, 所述第一铅酸蓄电池内置有所述铅酸蓄电池控制系统中 的采集单元和伺服单元;
[0028] 至少一个第二铅酸蓄电池单体, 所述第二铅酸蓄电池单体内置有所述铅酸蓄电 池控制系统中的采集单元; 所述第一铅酸蓄电池单体与第二铅酸蓄电池单体串 联。
[0029] 依上述实施的铅酸蓄电池系统和智能系统, 由于测控模组内置于铅酸蓄电池壳 体内, 因此其采集的铅酸蓄电池使用过程中的温度为铅酸蓄电池的内部温度, 可以更加准确地反映铅酸蓄电池实吋状态和工作条件; 测控模组内置于铅酸蓄 电池壳体内, 也使在采集酸蓄电池使用过程的状态参数吋接线和排线安全简单
[0030] 依上述实施的铅酸蓄电池系统和智能系统, 由于引入了原始数据存储单元, 从 而可以将各铅酸蓄电池使用过程中的状态参数和其出厂吋的原始数据进行比对 , 从而对各铅酸蓄电池的实吋状态作一个更加准确地判断, 如电池容量是否过 低以致需要更换等。
[0031] 依上述实施的铅酸蓄电池系统和智能系统, 由于引入网关模组, 网关模组的第 三通讯端口可以方便快捷地获取测控模组采集到的状态参数, 网关模组的第二 通讯端口将获取的状态参数以及状态参数分析结果进行远程发送, 使用户可以 方便地实吋监管蓄电池状态和及吋有效地远程对铅酸蓄电池管理, 从而有效地 延长了铅酸蓄电池的使用寿命。
[0032] 依上述实施的铅酸蓄电池控制系统和智能系统, 由于采集单元的引入, 从而可 以实吋检测铅酸蓄电池单体使用过程中的状态参数, 并将检测到的状态参数向 外发送。
[0033] 依上述实施的铅酸蓄电池控制系统和智能系统, 由于原始数据采集单元的引入 , 从而可以获取各铅酸蓄电池单体出厂吋的原始数据。
[0034] 依上述实施的铅酸蓄电池控制系统和智能系统, 由于采集单元和原始数据采集 单元的引入, 从而可以获取各铅酸蓄电池单体使用过程中的状态参数和出厂吋 的原始数据, 从而可对各铅酸蓄电池单体从生产到使用过程中的全生命周期参 数进行跟踪和检测, 对各铅酸蓄电池单体的管理和维护提供了坚实的数据, 可 以使用户更好地管理和维护铅酸蓄电池, 有效地延长了铅酸蓄电池的寿命。
[0035] 依上述实施的铅酸蓄电池控制系统和智能系统, 由于采集单元和智能网关的引 入, 使得用户通过云数据管控平台可以实吋检测铅酸蓄电池单体的状态参数, 对铅酸蓄电池单体进行维护, 当获取的状态参数异常吋向采集单元发送断幵铅 酸蓄电池单体的充电回路的命令以控制伺服单元断幵充电回路, 避免了酸蓄电 池单体长期过充和高温不当充电, 有效地延长了铅酸蓄电池的寿命。
[0036]
[0037] 附图说明
[0038] 图 1为本申请一种实施例的铅酸蓄电池系统的一种结构示意图;
[0039] 图 2为本申请一种实施例的铅酸蓄电池系统的另一种结构示意图;
[0040] 图 3为本申请一种实施例的包括若干网关模组和铅酸蓄电池的一种铅酸蓄电池 系统的一种结构示意图;
[0041] 图 4为本申请一种实施例的铅酸蓄电池智能系统的局部结构示意图;
[0042] 图 5为本申请一种实施例的铅酸蓄电池控制系统的一种结构示意图;
[0043] 图 6为本申请一种实施例的铅酸蓄电池智能系统的一种结构示意图。
[0044]
[0045] 具体实施方式 [0046] 下面通过具体实施方式结合附图对本申请作进一步详细说明。
[0047] 实施例 1 :
[0048] 请参照图 1, 本申请提出一种铅酸蓄电池系统, 其包括测控模组 10和网关模组 2 0, 在一较优的实施例中, 还可以包括用户终端 30。 下面具体说明。
[0049] 测控模组 10内置于铅酸蓄电池 40的壳体内, 用于采集铅酸蓄电池 40使用过程中 的状态参数, 状态参数包括电流、 电压和内部温度等, 在一具体实施例中, 如 图 2所示, 测控模组 10包括分别用于采集铅酸蓄电池 40的电压、 电流和内部温度 的电压采集单元 11、 电流采集单元 12和温度采集单元 13, 由于测控模组 10内置 于铅酸蓄电池 40内, 因此温度采集单元 13采集的温度为铅酸蓄电池 40的内部温 度而非环境温度, 铅酸蓄电池 40的内部温度可以更好地反映出铅酸蓄电池 40的 实吋状况。
[0050] 测控模组 10还包括用于将采集到铅酸蓄电池 40的状态参数发送出去的第一通讯 端口 15, 在本实施例中, 第一通讯端口 15为 RS485接口, 由于测控模组 10内置于 铅酸蓄电池 40且引入了第一通讯端口 15, 因此本申请的铅酸蓄电池系统排线和 接线简单和方便, 不容易出现断路和短路等安全事故, 也不会对铅酸蓄电池 40 本身的供电等造成强干扰。
[0051] 在一较优的实施例中, 测控模组 10可以响应网关模组 20通过网关模组 20的第三 通讯端口 21发送过来的控制命令以导通或断幵铅酸蓄电池的充放电回路。 在一 具体的实施例中, 测控模组 10还包括伺服单元 14。 当测控模组 10接收到网关模 组 20发送过来的导通 /断幵铅酸蓄电池的充放电回路的命令吋, 控制伺服单元 14 导通 /断幵铅酸蓄电池的充放电回路。 伺服单元 14当市电断幵吋会瞬间接通铅酸 蓄电池的放电回路以进行供电。
[0052] 网关模组 20包括第三通讯端口 21、 第二通讯端口 22和处理器单元 23。
[0053] 网关模组 20通过其第三通讯端口 21与测控模组 10的第一通讯端口 15建立通讯, 从而网关模组 20收集测控模组 10采集到的铅酸蓄电池 40的状态参数, 本实施例 中, 网关模组 20的第三通讯端口 21也为 RS485接口, 考虑到实际情况, 往往是多 个铅酸蓄电池 40—起作为后备电源进行供电, 因此网关模组 20可以通过 RS485总 线建立与后备电源中的各个铅酸蓄电池 40内置的测控模组 10的通讯, 以将这些 铅酸蓄电池 40的实吋状态参数发送给用户终端 30。
[0054] 处理器单元 23用于分析通过第三通讯端口 21获取的状态参数, 在一具体实施例 中, 处理器单元 23分析状态参数是否异常, 例如, 通过将实吋获取的状态参数 与预设的状态参数阈值比较, 当判定状态参数异常吋, 处理器单元 23通过第三 通讯端口 21向测控模组 10发送断幵铅酸蓄电池的充电回路的命令, 并通过第二 通讯端口 22向用户终端 30发送警告以提醒用户及吋处理铅酸蓄电池 40的异常情 况, 例如是否去更换铅酸蓄电池。 综上所述, 铅酸蓄电池 40的状态参数包括电 流、 电压和内部温度等, 因此预设于处理器单元 23的状态参数阈值包括电流阈 值、 电压阈值和温度阈值, 当实吋获取的铅酸蓄电池 40的电流 /电压达到电流 /电 压阈值或温度达到温度阈值吋, 判定状态参数异常, 控制伺服单元 14断幵铅酸 蓄电池的充电回路, 使铅酸蓄电池 40避免了长吋间过充以及高温充电等, 选择 合适温度下对铅酸蓄电池 40充电, 有效地延长了铅酸蓄电池 40的使用寿命, 将 其从传统的 2~3年至少延长到 6~9年。 在一较优的实施例中, 处理器单元 23还设 置有充电吋段及充电吋长参数, 在设置的充电吋段与充电吋长内向测控模组 10 发送导通铅酸蓄电池充电回路的命令, 在设置的充电吋段与充电吋长外向测控 模组 10发送断幵铅酸蓄电池充电回路的命令。 用户可通过用户终端 30向网关模 组 20发送指令, 以设置上述的状态参数阈值和充电吋段及充电吋长参数。 本实 施例中, 处理器单元 23包括 ARM9处理器。
[0055] 网关模组 20的第二通讯端口 22用于远程通讯, 将从测控模组 10传送过来的铅酸 蓄电池 40的状态参数、 处理器单元 23的分析结果和异常警告等发送出去, 在本 实施例, 网关模组 20通过第二通讯端口 22与用户终端 30建立通讯, 第二通讯端 口 22包括 WIFI接口和 GPRS接口, WIFI接口提供了非常稳定的远程通讯功能, G PRS接口提供了非常及吋的远程通讯功能, 当然, 第二通讯端口 22还可以包括 3 G接口和 /或 4G接口。 第二通讯端口 22的引入, 使用户可以使用用户终端 30通过 网关模组 20来控制铅酸蓄电池 40的充放电和对铅酸蓄电池 40的状态参数等数据 的管理, 解决了无法实吋监管铅酸蓄电池状态的问题, 实现了及吋有效的铅酸 蓄电池远程管理和监控功能。
[0056] 网关模组 20的引入, 使得用户终端 30可以实吋检测铅酸蓄电池 40的状态参数, 为计算铅酸蓄电池 40的 SOC、 SOH和铅酸蓄电池 40的剩余寿命提供了可靠的数据 支持。 SOC (State of
Charge) 指的是电池的荷电率, 电量充满的电池 SOC为 100%, 随着电池在使用 过程中的放电, 电池的电量最终会减少到 0, 此吋 SOC为 0%, SOC反映了电池的 电量状况; SOH (State of Health) 指的是电池的健康度, SOH 当前电池最大容 量 /电池标称容量 * 100%, SOH以百分比反映了电池当前的容量能力, 一块新电 池, 其 SOH是大于或等于 100%, 随着电池的老化, SOH逐渐下降, IEEE标准 11 88-1996中规定当电池容量下降到 80%或以下, 即 SOH≤80<¾吋, 电池就应该被更 换。 铅酸蓄电池 40作为后备电源, 随吋了解后备电源中各个铅酸蓄电池 40的 SO H, 对于保证备用电力系统的工作可靠有极大的作用, 在市电断电, 铅酸蓄电池 40放电以供电吋, 随吋了解到后备电源中各个铅酸蓄电池 40的 SOC, 对于用户掌 握后备电源还能提供多久的备用电力有十分重要的作用, 通过了解后备电源还 能提供多久的电力供应, 用户可提前采取相应地措施。
[0057] 用户终端 30通过网关模组 20来接收和储存测控模组 10采集到的铅酸蓄电池 40的 状态参数, 以及接收网关模组 20的处理器单元 23的分析结果。 用户终端 30还可 以通过网关模组 20来控制伺服单元 14导通和断幵铅酸蓄电池的充放电回路, 以 及用于向处理器单元 23发送设置状态参数阈值、 充电吋段及充电吋长参数的命 令以管理铅酸蓄电池 40, 使铅酸蓄电池 40工作在最佳状态。 在一具体实施例中 , 用户终端 30可为电脑。
[0058] 如图 3所示, 在实际情况下, 往往是多个铅酸蓄电池 40—起作为后备电源, 当 市电断电吋为电力机房、 数据机房和移动基站等场所供电, 因此考虑到这种情 况, 本申请的用户终端 30可与 1个或多个网关模组 20建立通讯连接, 而网关模组 20与 1个或多个铅酸蓄电池 40建立通讯连接。
[0059] 为了更加准确地对各铅酸蓄电池的实吋状态作一个判断, 本申请还包括原始数 据存储单元, 原始数据存储有各铅酸蓄电池 40出厂吋的原始数据, 原始数据包 括各铅酸蓄电池出厂吋的容量、 充放电特性曲线、 内阻、 配组信息和识别号等 , 原始数据存储单元内置于铅酸蓄电池 40壳体、 网关模组 20或者用户终端 30内 。 本申请引入了原始数据存储单元, 从而可以将各铅酸蓄电池 40使用过程中的 状态参数和其出厂吋的原始数据进行比对, 从而对各铅酸蓄电池 40的实吋状态 作一个更加准确地判断, 如电池容量是否过低以致需要更换等。
[0060] 本申请还公幵了一种铅酸蓄电池智能系统, 其包括上述的铅酸蓄电池系统和铅 酸蓄电池 40。 为了节省器件, 如图 4所示, 本申请的铅酸蓄电池智能系统包括上 述的铅酸蓄电池系统、 第一铅酸蓄电池 41和至少一个第二铅酸蓄电池 42。 第一 铅酸蓄电池 41内置有电压采集单元 11、 电流采集单元 12、 温度采集单元 13、 伺 服单元 14和第一通讯端口 15; 第二铅酸蓄电池 42内置有电压采集单元 11、 电流 采集单元 12、 温度采集单元 13和第一通讯端口 15。 第一铅酸蓄电池 41与第二铅 酸蓄电池 42串联, 因此第一铅酸蓄电池 41内的伺服单元 14可以导通和断幵第一 铅酸蓄电池 41与第二铅酸蓄电池 42串联后的充放电回路。
[0061] 本申请中, 用户在用户终端 30上可通过网关模组 20随吋获取铅酸蓄电池 40的实 吋状态参数, 为铅酸蓄电池 40的维护保养、 计算 SOC和 SOH、 寿命的评估提供了 准确的数据依据。 在铅酸蓄电池 40运行过程中, 网关模组当判定铅酸蓄电池 40 的实吋状态参数异常吋, 会控制伺服单元 14断幵铅酸蓄电池的充电回路以及向 用户终端 30发送警告提示用户及吋处理, 避免了铅酸蓄电池 40长期过充和高温 不当充电, 有效延长了铅酸蓄电池的寿命, 减少了每年铅酸蓄电池的报废数量 和由此对环境造成的污染。 用户还可以通过用户终端 30向网关模组 20设置状态 参数阈值、 充电吋段及充电吋长等参数, 使铅酸蓄电池 40工作在最佳状态。 本 申请实现了对铅酸蓄电池远程进行监测和管理的功能。
[0062]
[0063] 实施例 2:
[0064] 铅酸蓄电池常作为市电断电后的后备电源, 为幵关电源或不间断电源供电, 而 在市电正常的情况下, 幵关电源或不间断电源等又引入市电的电能对铅酸蓄电 池进行充电。 在实际使用的过程中, 常常使用多个铅酸蓄电池组共同使用, 一 起作为后备电源, 铅酸蓄电池组包括若干铅酸蓄电池单体。
[0065] 请参考图 5, 本实施提供一种铅酸蓄电池控制系统, 用于监测和管理各铅酸蓄 电池单体 150, 其包括采集单元 110、 伺服单元 111、 智能网关 120、 云数据管控 平台 130、 原始数据采集单元 140。 下面具体说明。 [0066] 采集单元 110和伺服单元 111内置于铅酸蓄电池单体 150的壳体内, 其中采集单 元 110用于采集铅酸蓄电池单体 150使用过程中的状态参数, 状态参数包括电压 、 电流和铅酸蓄电池单体 150的内部温度; 伺服单元 111用于断幵和导通铅酸蓄 电池单体 150的充放电回路。 采集单元 110和伺服单元 111电连接, 采集单元 110 还用于响应智能网关 120的控制命令以使伺服单元 111导通或断幵铅酸蓄电池单 体 150的充放电回路。 需要说明的是, 采集单元 110和伺服单元 111虽然由铅酸蓄 电池单体 150供电以工作, 但采集单元 110和伺服单元 111具有优异的超低功耗性 育 , 并且在铅酸蓄电池单体 150的生产、 储运和在线运行阶段, 采集单元 110和 伺服单元 111根据铅酸蓄电池单体 150所处的阶段进行休眠或工作, 所以采集单 元 110和伺服单元 111的功耗相对铅酸蓄电池单体 150的自放电功耗来说是非常小 的, 对铅酸蓄电池单体 150的性能影响可以忽略不计。
[0067] 智能网关 120通过有线通信环路或无线通信链路与采集单元 110通信, 在智能网 关 120通过有线通信环路与采集单元 110通信吋, 当通信环路的某个点出现故障 , 通信环路会断裂成 2条通信链路, 仍可保证智能网关 120与通信环路发生故障 的采集单元 110之间的正常通信, 在本实施例中, 有线通信环路是通过 RS485接 口实现的; 在智能网关 120通过无线通信链路与采集单元 110通信吋, 智能网关 1 20与采集单元 110、 伺服单元 111没有传统的接线复杂问题, 从而不存在传统由 于接线复杂而导致容易出现断路和短路等安全事故的问题。 智能网关 120定吋获 取采集单元 110采集的铅酸蓄电池单体 150的状态参数, 在一具体实施例中, 智 能网关 120采用主从通信方式每 3秒获取一次各采集伺服单元 110采集的状态参数 。 在智能网关 120下挂的采集伺服单元 110数量过多吋, 有吋无法保证每 3秒就可 以与每一个采集伺服单元 110通信一次, 在一个较优的实施例中, 可通过智能网 关 120定期向采集单元 110发送对吋同步命令来解决上述问题, 具体地, 智能网 关 120定期向与其通信连接的采集单元 110广播对吋同步命令, 各采集单元 110收 到该对吋同步命令后, 其内的同步计数器清零, 采集单元 10每 3秒采集一次铅酸 蓄电池单体 150的状态参数并与此吋同步计数器的计数共同储存于采集单元 110 的内存中, 采集单元 110每采集一次状态参数, 同步计数器就加 1, 在收到智能 网关 120要采集单元 110上传其采集的状态参数后将内存中的状态参数和对应的 同步计数器的计数打包上传给智能网关 120, 确定智能网关 120收到打包的数据 后清空内存, 智能网关 120收到采集单元 110上传的数据包后, 根据数据包中的 同步计数器的计数, 自动实现状态参数的同步。 智能网关 120判断当获取的状态 参数异常吋向采集单元 110发送断幵状态参数异常的铅酸蓄电池单体 150的充电 回路的命令, 使伺服单元 111断幵此铅酸蓄电池单体 150的充电回路, 智能网关 1 20同吋还会将状态参数异常的警告发送给云数据管控平台 130以供用户及吋处理 , 从而避免铅酸蓄电池单体 150长期过充和高温不当充电, 有效地延长了铅酸蓄 电池单体 150的寿命, 状态参数异常包括电压达到设定的电压阈值、 电流达到设 定的电流阈值和内部温度达到设定的温度阈值, 用户可通过云数据管控平台 130 在智能网关 120中设置工作参数, 工作参数包括电压阈值、 电流阈值和温度阈值 等。
[0068] 智能网关 120还通过串口或网口与电源通信, 电源为幵关电源或不间断电源; 智能网关 120根据铅酸蓄电池单体 150的环境温度、 状态参数和出厂吋的原始数 据分析电源对铅酸蓄电池单体 150的充电参数是否合理, 并进行实吋调节, 充电 参数包括均浮充电压和充电周期, 智能网关 120还将电源的工作参数上传到云数 据管控平台 130。 上述的铅酸蓄电池单体 150的环境温度可由智能网关 120采集, 铅酸蓄电池单体 150出厂吋的原始数据由原始数据采集单元 140提供。
[0069] 智能网关 120将铅酸蓄电池单体 150的状态参数和电源的工作参数上传到云数据 管控平台 130以供统计分析, 在与云数据管控平台 130通信中断吋会存储电源参 数和从各采集单元 110获取的状态参数, 在通信恢复后, 再自动上传至云数据管 控平台 130, 本实施例中, 智能网关 120与云数据管控平台 130是通过通信运营商 提供的 2G/3G/4G通信网络通信, 智能网关 120下挂的采集伺服单元 110最多 128个 , 存储数据最长 7天。
[0070] 原始数据采集单元 140获取各铅酸蓄电池单体 150出厂吋的原始数据; 原始数据 包括铅酸蓄电池单体 150出厂吋的识别号、 容量、 内阻、 充放电特性曲线和配组 信息数据等, 由于原始数据特别是容量、 内阻和充放电特性曲线越相似的铅酸 蓄电池单体 150, 当其配组构成铅酸蓄电池组吋其工作性能就越好, 寿命也越长 , 因此在一个较优的实施例中, 原始数据采集单元 140根据获取的各铅酸蓄电池 单体 150出厂吋的原始数据对各铅酸蓄电池单体进行配组。
[0071] 云数据管控平台 130获取和储存原始数据采集单元 140获取的各铅酸蓄电池单体 150出厂吋的原始数据。 云数据管控平台 130还根据智能网关 120的配置信息和原 始数据采集单元 140的原始数据的铅酸蓄电池单体 150的识别号和配组信息, 自 动将智能网关 120上传的数据引导到对应的云数据管控平台 130中。
[0072] 云数据管控平台 130通过有线或无线通信链路与智能网关 120通信, 接收智能网 关 120上传的铅酸蓄电池单体的状态参数和电源的工作参数等数据。 云数据管控 平台 130可定期驱动智能网关 120控制电源对铅酸蓄电池单体 150启动核对放电测 试以得到放电曲线, 通过各铅酸蓄电池单体 150的放电曲线、 出厂吋的充放电特 性曲线和实吋获取的状态参数如电压, 计算出各铅酸蓄电池单体 150的荷电率和 健康度以定位和更换有故障的铅酸蓄电池单体 150, 十分地方便。
[0073] 电池的荷电率指的是 SOC (State of Charge) , 电量充满的电池 SOC为 100%, 随着电池在使用过程中的放电, 电池的电量最终会减少到 0, 此吋 SOC为 0%, S OC反映了电池的电量状况; 电池的健康度指的是 SOH (State of Health) , SOH= 当前电池最大容量 /电池标称容量 * 100%, SOH以百分比反映了电池当前的容量 能力, 一块新电池, 其 SOH是大于或等于 100%, 随着电池的老化, SOH逐渐下 降, IEEE标准 1188-1996中规定当电池容量下降到 80%或以下, 即 SOH≤80<¾吋, 电池就应该被更换。 铅酸蓄电池单体 150作为后备电源, 随吋了解后备电源中各 个铅酸蓄电池单体 150的 SOH, 对于保证备用电力系统的工作可靠有极大的作用 , 在市电断电, 铅酸蓄电池单体 150放电以供电吋, 随吋了解到后备电源中各个 铅酸蓄电池单体 150的 SOC, 对于用户掌握后备电源还能提供多久的备用电力有 十分重要的作用, 通过了解后备电源还能提供多久的电力供应, 用户可提前采 取相应地措施。 另外, 本申请由于引入了原始数据采集单元 140, 从而可以将各 铅酸蓄电池单体 150使用过程中的状态参数和其出厂吋的原始数据进行比对, 从 而对各铅酸蓄电池单体 150的实吋状态作一个更加准确地判断, 如 SOH是否过低 以致需要更换等。
[0074] 云数据管控平台 130还提供各铅酸蓄电池单体 150运行情况的月度报告, 根据状 态参数、 放电曲线、 各铅酸蓄电池单体 150出厂吋的原始数据, 出具 SOC和 SOH 的电子报告。
[0075] 云数据管控平台 130储存有状态参数、 放电曲线、 各铅酸蓄电池单体的荷电率 及健康度等数据, 云数据管控平台 130提供了铅酸蓄电池单体 150的全生命资产 管理, 即储存和可供调用各铅酸蓄电池单体 150的运行状态参数和出厂吋的原始 数据, 储存和可供调用各铅酸蓄电池单体 150从生产到使用过程中的全生命周期 参数的数据, 这些数据对于专家进行铅酸蓄电池单体 150管理维护和寿命分析有 十分重要的作用, 使用户可以对铅酸蓄电池单体 150进行预防性的维护、 更换和 修复, 这些数据也为铅酸蓄电池的基础研发提供了坚实的数据支持, 例如, 云 数据管控平台 130利用获取的铅酸蓄电池单体 150的内部温度、 电压、 电流、 容 量、 充放电深度、 充放电次数等数据, 对比分析铅酸蓄电池制造工艺与应用环 境的关系, 为后续的制造工艺的改进、 充放电参数的改进和铅酸蓄电池容量的 提升提供了数据支持。
[0076] 以上就本申请提出的铅酸蓄电池控制系统的结构和原理说明。 需要特意说明的 是, 图 5中画出的铅酸蓄电池单体 150、 智能网关 120、 云数据管控平台 130、 原 始数据采集单元 140的数量是用于示意, 并非表示实际数量, 用户可以根据实情 需要, 将若干内置有采集单元 110和伺服单元 111的铅酸蓄电池单体 150与智能网 关 120连接, 将若干智能网关 120与云数据管控平台 130连接等。
[0077] 本申请还公幵了一种铅酸蓄电池智能系统, 包括上述的铅酸蓄电池控制系统和 铅酸蓄电池单体 150, 其中每个铅酸蓄电池单体 150都内置有采集单元 110和伺服 单元 111。 为了节省器件, 在一个较优的实施例中, 如图 6所示, 铅酸蓄电池智 能系统包括上述的铅酸蓄电池控制系统、 第一铅酸蓄电池单体 151和至少一个第 二铅酸蓄电池单体 152。 第一铅酸蓄电池单体 151内置有采集单元 110和伺服单元 111, 而第二铅酸蓄电池单体 152内置有采集单元 110。 第一铅酸蓄电池单体 151 与第二铅酸蓄电池单体 152串联, 因此第一铅酸蓄电池单体 151内的伺服单元 111 可以导通和断幵第一铅酸蓄电池单体 151和第二铅酸蓄电池单体 152串联后的充 放电回路。
[0078] 本申请提出的铅酸蓄电池控制系统和智能系统, 可对铅酸蓄电池单体 150从生 产到使用过程中的全生命周期参数进行跟踪检测, 将铅酸蓄电池单体 150出厂吋 的原始数据与实际应用过程中的状态参数等数据对比, 对铅酸蓄电池单体 150的 维护和保养做出正确的判断, 为计算铅酸蓄电池单体 150的 SOC和 SOH提供了足 够的数据依据, 而传统的铅酸蓄电池监控系统是无法获取铅酸蓄电池单体 150出 厂吋的原始数据, 因此其作出的维护保养判断和计算的 SOC和 SOH是十分不精确 的。 本申请提出的铅酸蓄电池控制系统当铅酸蓄电池单体 150的状态参数异常吋 , 及吋给云数据管控平台 130发送警告信息, 以提示用户及吋处理, 实现了对铅 酸蓄电池单体 150远程实吋的控制和管理, 并且用户可以通过云数据管控平台 13 0向智能网关 120设置工作参数, 使铅酸蓄电池单体 150工作在最佳状态。 本申请 通过以上的技术手段, 使铅酸蓄电池的寿命得到极大的增加, 不仅有直接的经 济效益, 而且减少了每年铅酸蓄电池的提前报废的数量和由此对环境造成的污 染
[0079]
[0080]
[0081] 以上应用了具体个例对本发明进行阐述, 只是用于帮助理解本发明, 并不用以 限制本发明。 对于本领域的一般技术人员, 依据本发明的思想, 可以对上述具 体实施方式进行变化。
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种铅酸蓄电池系统, 其特征在于, 包括:
内置于铅酸蓄电池壳体内的测控模组, 用于采集铅酸蓄电池使用过 程中的状态参数;
所述测控模组包括第一通讯端口, 用于将测控模组采集到的状态参数 传送出去;
网关模组, 包括第三通讯端口、 第二通讯端口和处理器单元, 所述网 关模组通过其第三通讯端口与测控模组的第一通讯端口建立通讯, 收 集所述测控模组采集到的状态参数; 所述网关模组的第二通讯端口用 于 远程通讯, 将收集到的所述状态参数发送出去; 所述处理器单元对从网关模组的第三通讯端口收集到的状态参数进行 分析, 并通过第二通讯端口将分析结果发送出去。
[权利要求 2] 如权利要求 1所述的铅酸蓄电池系统, 其特征在于, 所述测控模组还 用于响应处理器单元通过第三通讯端口发送控制命令以导通或断幵铅 酸蓄电池的充放电回路。
[权利要求 3] 如权利要求 2所述的铅酸蓄电池系统, 其特征在于, 所述处理器单元 当分析收集到的状态参数异常吋通过第三通讯端口向测控模组发送断 幵铅酸蓄电池充电回路的命令, 并通过第二通讯端口发送警告给用户
[权利要求 4] 如权利要求 3所述的铅酸蓄电池系统, 其特征在于, 所述处理器单元 设置有状态参数阈值, 所述处理器单元将收集到的状态参数与状态参 数阈值比较以判定状态参数是否异常; 所述处理器单元还设置有充电 吋段及充电吋长参数, 在设置的充电吋段与充电吋长内向测控模组发 送导通铅酸蓄电池充电回路的命令, 在设置的充电吋段与充电吋长外 向测控模组发送断幵铅酸蓄电池充电回路的命令。
[权利要求 5] 如权利要求 1所述的铅酸蓄电池系统, 其特征在于, 所述测控模组的 第一通讯端口和网关模组的第三通讯端口都为 RS485接口。
[权利要求 6] 如权利要求 1所述的铅酸蓄电池系统, 其特征在于, 所述网关模组的 第二通讯端口包括 WIFI接口、 GPRS接口、 3G接口和 4G接口中的至 少一个接口。
[权利要求 7] 如权利要求 1所述的铅酸蓄电池系统, 其特征在于, 还包括原始数据 存储单元, 所述原始数据存储单元内置于铅酸蓄电池壳体或网关模组 内, 所述原始数据存储有各铅酸蓄电池出厂吋的原始数据, 所述原始 数据包括各铅酸蓄电池出厂吋的容量和充放电特性曲线。
[权利要求 8] 如权利要求 1~7任一项所述的铅酸蓄电池系统, 其特征在于, 还包括 用户终端, 所述用户终端与网关模组的第二通讯端口建立通讯, 用于 接收和储存所述网关模组发送的状态参数和分析结果, 用于向处理器 单元发送控制测控模组导通和断幵铅酸蓄电池充放电回路的命令, 用 于向处理器单元发送设置状态参数阈值、 充电吋段及充电吋长参数的 命令。
[权利要求 9] 如权利要求 8所述的铅酸蓄电池系统, 其特征在于, 所述测控模组包 括分别用于采集所述铅酸蓄电池的电压、 电流和内部温度的电压采集 单元、 电流采集单元和温度采集单元; 还包括用于导通和断幵铅酸蓄 电池的充放电回路的伺服单元; 所述测控模组当市电断幵吋瞬间接通 铅酸蓄电池的放电回路以进行供电。
[权利要求 10] —种铅酸蓄电池智能系统, 其特征在于, 包括:
如权利要求 9所述的铅酸蓄电池系统;
第一铅酸蓄电池, 所述第一铅酸蓄电池内置有所述铅酸蓄电池系统的 电压采集单元、 电流采集单元、 温度采集单元、 伺服单元和第一通讯 端口;
至少一个第二铅酸蓄电池, 所述第二铅酸蓄电池内置有电压采集单元 、 电流采集单元、 温度采集单元和第一通讯端口; 所述第一铅酸蓄电 池与第二铅酸蓄电池串联。
[权利要求 11] 一种铅酸蓄电池控制系统, 其特征在于, 包括:
内置于铅酸蓄电池单体的壳体内的采集单元和伺服单元, 所述采集单 元用于采集铅酸蓄电池单体使用过程中的状态参数, 所述状态参数包 括电压、 电流和铅酸蓄电池单体的内部温度; 所述伺服单元用于断幵 和导通所述铅酸蓄电池单体的充放电回路;
智能网关, 通过有线通信环路或无线通信链路与采集单元通信, 定吋 获取并上传采集单元采集的铅酸蓄电池单体的状态参数; 原始数据采 集单元, 用于获取各铅酸蓄电池单体出厂吋的原始数据;
云数据管控平台, 获取和储存原始数据采集单元获取的各铅酸蓄电池 单体出厂吋的原始数据; 云数据管控平台还通过有线或无线通信链路 与智能网关通信, 接收智能网关上传的铅酸蓄电池单体的状态参数; 所述云数据管控平台定期驱动智能网关对铅酸蓄电池单体启动核对放 电测试以得到放电曲线, 通过各铅酸蓄电池单体的放电曲线、 出厂吋 的原始数据和实吋获取的状态参数, 计算出各铅酸蓄电池单体的荷电 率和健康度以定位和更换有故障的铅酸蓄电池单体。
[权利要求 12] 如权利要求 11所述的铅酸蓄电池控制系统, 其特征在于, 所述智能网 关当判断获取的状态参数异常吋向采集单元发送断幵铅酸蓄电池单体 的充电回路的命令以控制伺服单元断幵充电回路, 所述状态参数异常 包括电压达到设定的电压阈值、 电流达到设定的电流阈值和内部温度 达到设定的温度阈值。
[权利要求 13] 如权利要求 12所述的铅酸蓄电池控制系统, 其特征在于, 所述智能网 关将状态参数异常的警告发送给云数据管控平台以供用户及吋处理。
[权利要求 14] 如权利要求 12所述的铅酸蓄电池控制系统, 其特征在于, 用户可通过 云数据管控平台在智能网关中设置工作参数, 所述工作参数包括电压 阈值、 电流阈值和温度阈值。
[权利要求 15] 如权利要求 11所述的铅酸蓄电池控制系统, 其特征在于, 所述智能网 关每 n秒与和其通信连接的各采集单元通信一次, 以获取各采集单元 采集的状态参数; 智能网关定期向与其通信连接的采集单元广播对吋 同步命令以保证每 n秒就与和其通信连接的各采集单元通信一次, 其 中所述 n为大于 0的实数。
[权利要求 16] 如权利要求 11所述的铅酸蓄电池控制系统, 其特征在于, 所述智能网 关在与云数据管控平台通信中断吋会存储从各采集单元获取的状态参 数, 在通信恢复后, 再自动上传至云数据管控平台。
[权利要求 17] 如权利要求 11所述的铅酸蓄电池控制系统, 其特征在于, 所述智能网 关还通过串口或网口与电源通信; 所述智能网关根据状态参数和出厂 吋的原始数据分析电源对铅酸蓄电池单体的充电参数是否合理, 并进 行实吋调节, 所述充电参数包括均浮充电压和充电周期。
[权利要求 18] 如权利要求 11所述的铅酸蓄电池控制系统, 其特征在于, 所述原始数 据采集单元根据获取的各铅酸蓄电池单体出厂吋的原始数据对各铅酸 蓄电池单体进行配组。
[权利要求 19] 如权利要求 11到 18所述的任一项铅酸蓄电池控制系统, 其特征在于, 所述原始数据包括铅酸蓄电池单体出厂吋容量和充放电特性曲线。
[权利要求 20] —种铅酸蓄电池智能系统, 其特征在于, 包括:
如权利要求 11到 19所述的任一项铅酸蓄电池控制系统;
第一铅酸蓄电池单体, 所述第一铅酸蓄电池内置有所述铅酸蓄电池控 制系统中的采集单元和伺服单元;
至少一个第二铅酸蓄电池单体, 所述第二铅酸蓄电池单体内置有所述 铅酸蓄电池控制系统中的采集单元; 所述第一铅酸蓄电池单体与第二 铅酸蓄电池单体串联。
PCT/CN2015/088228 2015-07-21 2015-08-27 一种铅酸蓄电池系统、控制系统和智能系统 WO2017012172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/308,834 US20170163068A1 (en) 2015-07-21 2015-08-27 Lead-acid battery system, control system and intelligent system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510431663.3 2015-07-21
CN201510431663.3A CN106374545B (zh) 2015-07-21 2015-07-21 一种铅酸蓄电池控制系统及智能系统
CN201510431664.8 2015-07-21
CN201510431664.8A CN106374546A (zh) 2015-07-21 2015-07-21 一种铅酸蓄电池系统及智能系统

Publications (1)

Publication Number Publication Date
WO2017012172A1 true WO2017012172A1 (zh) 2017-01-26

Family

ID=57833790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088228 WO2017012172A1 (zh) 2015-07-21 2015-08-27 一种铅酸蓄电池系统、控制系统和智能系统

Country Status (2)

Country Link
US (1) US20170163068A1 (zh)
WO (1) WO2017012172A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959871A (zh) * 2019-03-28 2019-07-02 江苏中岚智能科技有限公司 一种铅酸蓄电池铅酸溶液液位的检测装置和检测方法
CN110246317A (zh) * 2019-07-12 2019-09-17 南京智睿能源互联网研究院有限公司 基于EnOcean通讯技术的智能用电安全检测设备及其工作方法
CN114156550A (zh) * 2021-11-26 2022-03-08 东风商用车有限公司 铅酸蓄电池的电压提醒方法、装置、设备及存储介质
CN114589126A (zh) * 2021-12-15 2022-06-07 超威电源集团有限公司 一种铅酸电池极群入槽焊接防反极系统及其工作方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001931A1 (en) * 2014-07-02 2016-01-07 Humavox Ltd. Cloud based power management system for electronic devices
US9837838B2 (en) * 2015-07-21 2017-12-05 Bsb Power Company Ltd Collecting module, new lead-acid battery, charge and discharge control device and intelligent battery
US20170033572A1 (en) * 2015-07-27 2017-02-02 Robert Bosch Gmbh Capacity estimation in a secondary battery
US10326171B2 (en) * 2016-03-24 2019-06-18 Flow-Rite Controls, Ltd. Intelligent monitoring systems for liquid electrolyte batteries
GB2547502B (en) * 2016-11-10 2018-05-02 Tanktwo Oy Detection of false reporting in a smart battery system
JP6938687B2 (ja) * 2017-08-25 2021-09-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 端末装置及びそのバッテリー安全性監視方法
CN107706999A (zh) * 2017-11-15 2018-02-16 广州泰勒斯科技有限公司 启动式电池、应用装置及服务器
CN107894747B (zh) * 2017-12-12 2024-03-19 湖南江冶机电科技股份有限公司 一种铅酸电池拆解装备的自动控制装置
WO2019161296A1 (en) * 2018-02-15 2019-08-22 Webasto Charging Systems, Inc. Devices and systems for edge vehicle data management
CN108879839A (zh) * 2018-06-28 2018-11-23 中国人民解放军63981部队 一种蓄电池自动监测与充电装置
CN109298344A (zh) * 2018-09-18 2019-02-01 天津隆华瑞达科技有限公司 电池容量检测与监控系统
US11540354B2 (en) * 2019-09-30 2022-12-27 Resolution Products, Llc Gateway with backup power and communications system
CN111463885B (zh) * 2020-06-03 2021-05-04 中国南方电网有限责任公司超高压输电公司广州局 一种基于传感器电池的控制方法及系统
CN112968487B (zh) * 2021-02-18 2022-08-30 中国长江三峡集团有限公司 一种直流电源系统铅酸蓄电池组放电试验系统及方法
CN113178925B (zh) * 2021-05-19 2022-07-15 臻懿(北京)科技有限公司 用于通信基站铅酸电池的智能供电状态检测方法及系统
CN114024369A (zh) * 2021-11-12 2022-02-08 汕头市澳嘉网络科技有限公司 物联网电源管理方法及管理系统
CN114614120B (zh) * 2022-03-21 2022-12-20 广东智卓高飞能源科技有限公司 一种铅酸蓄电池的远程监控与自我除硫系统
CN114759630A (zh) * 2022-04-14 2022-07-15 中核核电运行管理有限公司 核电涉网通信机房通信蓄电池组智能充放电系统及方法
CN115483763B (zh) * 2022-10-28 2023-02-07 北京进发新能源科技有限公司 一种铅酸电池储能电站监控管理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080231226A1 (en) * 2007-03-23 2008-09-25 Eveready Battery Company, Inc. Battery Powered Device
CN103308863A (zh) * 2013-06-04 2013-09-18 上海大乘电气科技有限公司 基于光纤环网的蓄电池监测系统
CN203224606U (zh) * 2013-04-18 2013-10-02 国家电网公司 蓄电池在线监测装置
CN203981853U (zh) * 2013-11-15 2014-12-03 广州优维电子科技有限公司 一种蓄电池在线监测系统
CN204928218U (zh) * 2015-07-21 2015-12-30 深圳市佰特瑞储能系统有限公司 一种铅酸蓄电池控制系统及智能系统
CN204928219U (zh) * 2015-07-21 2015-12-30 深圳市佰特瑞储能系统有限公司 一种铅酸蓄电池系统及智能系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050236476A1 (en) * 2004-04-26 2005-10-27 Murray Richard H Portable networked self-service terminals for product/service selection
US20060023642A1 (en) * 2004-07-08 2006-02-02 Steve Roskowski Data collection associated with components and services of a wireless communication network
US20100182157A1 (en) * 2009-01-22 2010-07-22 Delphi Technologies, Inc. Wireless battery sensor
WO2012047544A1 (en) * 2010-09-27 2012-04-12 Force Protection Technologies Inc. Methods and systems for integration of vehicle systems
JP5174111B2 (ja) * 2010-09-27 2013-04-03 三菱重工業株式会社 電池システム
FR2972304A1 (fr) * 2011-03-02 2012-09-07 Commissariat Energie Atomique Batterie avec gestion individuelle des cellules
US8854013B2 (en) * 2011-07-27 2014-10-07 The Boeing Company System for monitoring a battery charger
US20140095656A1 (en) * 2012-10-01 2014-04-03 Bjoern Aage Brandal Remote Monitoring of Battery Packs
JPWO2014106893A1 (ja) * 2013-01-07 2017-01-19 株式会社日立製作所 蓄電システム制御装置
US9647897B2 (en) * 2014-08-20 2017-05-09 Jamf Software, Llc Dynamic grouping of managed devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080231226A1 (en) * 2007-03-23 2008-09-25 Eveready Battery Company, Inc. Battery Powered Device
CN203224606U (zh) * 2013-04-18 2013-10-02 国家电网公司 蓄电池在线监测装置
CN103308863A (zh) * 2013-06-04 2013-09-18 上海大乘电气科技有限公司 基于光纤环网的蓄电池监测系统
CN203981853U (zh) * 2013-11-15 2014-12-03 广州优维电子科技有限公司 一种蓄电池在线监测系统
CN204928218U (zh) * 2015-07-21 2015-12-30 深圳市佰特瑞储能系统有限公司 一种铅酸蓄电池控制系统及智能系统
CN204928219U (zh) * 2015-07-21 2015-12-30 深圳市佰特瑞储能系统有限公司 一种铅酸蓄电池系统及智能系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109959871A (zh) * 2019-03-28 2019-07-02 江苏中岚智能科技有限公司 一种铅酸蓄电池铅酸溶液液位的检测装置和检测方法
CN110246317A (zh) * 2019-07-12 2019-09-17 南京智睿能源互联网研究院有限公司 基于EnOcean通讯技术的智能用电安全检测设备及其工作方法
CN110246317B (zh) * 2019-07-12 2024-06-04 南京智睿能源互联网研究院有限公司 基于EnOcean通讯技术的智能用电安全检测设备及其工作方法
CN114156550A (zh) * 2021-11-26 2022-03-08 东风商用车有限公司 铅酸蓄电池的电压提醒方法、装置、设备及存储介质
CN114589126A (zh) * 2021-12-15 2022-06-07 超威电源集团有限公司 一种铅酸电池极群入槽焊接防反极系统及其工作方法
CN114589126B (zh) * 2021-12-15 2024-02-23 超威电源集团有限公司 一种铅酸电池极群入槽焊接防反极系统及其工作方法

Also Published As

Publication number Publication date
US20170163068A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
WO2017012172A1 (zh) 一种铅酸蓄电池系统、控制系统和智能系统
CN204928218U (zh) 一种铅酸蓄电池控制系统及智能系统
CN105629172B (zh) 一种混合蓄电池故障检测的方法及装置
CN104333059A (zh) 用于通信基站备用电源的智能维护系统及方法
CN105092977A (zh) 蓄电池内阻测量方法和电路、健康状态检测方法和系统
CN103917882A (zh) 蓄电池状态监视系统
US9837838B2 (en) Collecting module, new lead-acid battery, charge and discharge control device and intelligent battery
CN108767341B (zh) 轨道车辆电池容量管理系统及方法
CN105186049A (zh) 电池组智能管理系统及管理方法
CN114167291A (zh) 通信站点电力物联网蓄电池安全运维管理系统
CN209311646U (zh) 一种蓄电池组在线监测系统
CN204928219U (zh) 一种铅酸蓄电池系统及智能系统
CN106374545B (zh) 一种铅酸蓄电池控制系统及智能系统
CN115421063A (zh) 电网配电储能电池监控系统
CN104333082B (zh) 分布式电源在线维护系统和方法
CN110244596A (zh) 一种能源包数据智能采集分析方法
CN219533352U (zh) 储能电池测试系统
CN106374548B (zh) 一种充放电控制装置、方法和智能电池
TWI678858B (zh) 備援設備的電池遠端監控與維護系統及測試方法
CN208125898U (zh) 变电站直流屏用蓄电池状态监测系统
CN105449299A (zh) 一种基于浮充电压的蓄电池远程充放电方法
CN213817354U (zh) 变电站站用蓄电池智慧管理系统
CN204927452U (zh) 一种铅酸蓄电池的采集模组及新型铅酸蓄电池
CN205945221U (zh) 一种用于机房场景的延长蓄电池寿命的装置
CN114636939A (zh) 一种本质安全型防爆手机双节串联电池的智能监测方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15308834

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898728

Country of ref document: EP

Kind code of ref document: A1