WO2017012117A1 - Method and apparatus of scheduling welding operations - Google Patents

Method and apparatus of scheduling welding operations Download PDF

Info

Publication number
WO2017012117A1
WO2017012117A1 PCT/CN2015/084933 CN2015084933W WO2017012117A1 WO 2017012117 A1 WO2017012117 A1 WO 2017012117A1 CN 2015084933 W CN2015084933 W CN 2015084933W WO 2017012117 A1 WO2017012117 A1 WO 2017012117A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
robot
seams
dimensional model
operation procedure
Prior art date
Application number
PCT/CN2015/084933
Other languages
French (fr)
Inventor
Jingguo Ge
Lei Mao
Peng KONG
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2015/084933 priority Critical patent/WO2017012117A1/en
Priority to EP15898673.7A priority patent/EP3325226B1/en
Priority to CN201580081539.7A priority patent/CN107835729B/en
Publication of WO2017012117A1 publication Critical patent/WO2017012117A1/en
Priority to US15/838,732 priority patent/US10688660B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1661Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1669Programme controls characterised by programming, planning systems for manipulators characterised by special application, e.g. multi-arm co-operation, assembly, grasping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1671Programme controls characterised by programming, planning systems for manipulators characterised by simulation, either to verify existing program or to create and verify new program, CAD/CAM oriented, graphic oriented programming systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40476Collision, planning for collision free path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40518Motion and task planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45104Lasrobot, welding robot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49386Automatic seam, weld line, finding

Definitions

  • Embodiments of the present disclosure generally relate to a field of welding and more particularly relate to a method and apparatus of scheduling welding operations.
  • a welding robot can perform welding operations automatically in a predetermined way in accordance with the robot program.
  • shipbuilding industry a small-type steel ship usually has 100 thousands of welds to millions of welds, which means a large amount of workloads.
  • the automation level of welding in shipbuilding is still rather low and it will require a great deal of manpower to perform welding operations on the ship.
  • the main barrier of using a robot in this industry lies in that robot programming is not only time consuming but also very complex. Therefore, there is a need in the art to provide a solution of facilitating the use of a robot in such a complex situation.
  • the present disclosure provides a solution for a scheduling welding operations, so as to solve or at least partially mitigate at least a part of problems in the prior art.
  • a method of scheduling welding operations comprises identifying seams on a welding object in a three-dimensional model for the welding object based on geometry of bodies contained the welding object.
  • the method also comprises determining a welding sequence based on the seams, welding parameters and welding process requirements.
  • the method further comprises generating an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operations of the welding object.
  • the method may further comprise editing the seams to form a collection of welding seams based on welding process requirements, wherein the welding sequence is determined based on the collection of welding seams.
  • the method may further comprise checking a feasibility of the generated operation procedure for the welding robot in a virtual environment which contains the three-dimensional model for the welding object and the other three-dimensional model for the welding robot.
  • the method may further comprise adjusting the robot path parameters in response to that the generated operation procedure failing to pass the checking; and wherein another operation procedure is generated for the welding robot based on the adjusted robot path parameter.
  • the method may further comprise transmitting the operation procedure to a controller of the welding robot to control the welding operations of the welding robot.
  • the identifying welding seams on parts of a welding object comprises identifying intersection lines between the bodies contained the welding object as the seams, wherein hidden intersection lines are removed from the identified intersection lines.
  • the three-dimensional model for the welding object and the other three-dimensional model for the welding robot are Computer Aided Design (CAD) models.
  • CAD Computer Aided Design
  • an apparatus for scheduling welding operations comprises a seam identification module, a sequence determination module, and a procedure generation module.
  • the seam identification module is configured to identify seams on a welding object in a three-dimensional model (220) for the welding object based on geometry of bodies contained in the welding object.
  • the sequence determination module is configured to determine a welding sequence based on the seams, welding parameters and welding process requirements.
  • the procedure generation module is configured to generate an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operation in welding the welding object.
  • the welding procedure could be generated in an automatic way and thus the time and cost required by robot programing could be reduced substantially. Therefore, a robot can be used in welding huge and complex structures or structures manufactured in a small batch and the automatic level can be increased remarkably and the production cost can be reduced accordingly.
  • Fig. 1 schematically illustrates a flow diagram of a method of scheduling welding operations according to an embodiment of the present disclosure
  • Fig. 2 schematically illustrates example three-dimensional models for a welding object and a welding robot in a virtual environment according to an embodiment of the present disclosure
  • Fig. 3 schematically illustrates a detailed structure of an example welding object in a three-dimensional mode in a virtual environment according to an embodiment of the present disclosure
  • Fig. 4 schematically illustrates identified seams on the example welding object according to an embodiment of the present disclosure
  • Fig. 5 schematically illustrates identified seams on the example welding object with hidden seams removed according to an embodiment of the present disclosure
  • Fig. 6 schematically illustrates a seam editor according to an embodiment of the present disclosure
  • Fig. 7 schematically illustrates a parameter modifier according to an embodiment of the present disclosure
  • Fig. 8 schematically illustrates the welding sequence on the example part according to an embodiment of the present disclosure
  • Fig. 9 schematically illustrates a sequence modifier according to an embodiment of the present disclosure.
  • Fig. 10 schematically illustrates a block diagram of an apparatus of scheduling welding operations according to an embodiment of the present disclosure.
  • Fig. 1 schematically illustrates a flow diagram of a method of scheduling welding operations according to an embodiment of the present disclosure.
  • the method starts from step 110, in which seams on a welding object in a three-dimensional model for the welding object is identified based on geometry of bodies contained in the welding object.
  • a three-dimensional model will be designed before the manufacturing.
  • This three-dimensional model may be for example a Computer Aided Design (CAD) model or any other kind of three-dimensional model.
  • Another three-dimensional model for the robot to be used can also be built.
  • the other three-dimensional model for the robot may also be for example a Computer Aided Design (CAD) model or any other kind of three-dimensional model.
  • the two three-dimensional models can be loaded into a virtual environment in for example a computer. The two models will be laid out exactly in accordance with their respective real setups.
  • the three-dimensional model for the welding object contains a plurality of geometrical bodies.
  • Each of the geometrical bodies has a shape such as a cuboid, a cylinder, a cone, a sphere, a semi-sphere, or any other shape or the combination thereof.
  • the seams usually exist between two bodies.
  • seams on parts of the welding object can be identified based on geometry of the parts of the welding object in a three-dimensional model for the welding object.
  • the term “geometry” used herein refers to measurement, relationships of geometrical bodies which indicate shapes, structures, location of the geometrical bodies.
  • intersection lines between any two geometrical bodies can be identified and the intersections lines can be taken as the candidate seams.
  • the intersection lines between geometrical bodies can be identified easily through geometry of the bodies.
  • the intersection line identification can be identified by means of Ray Tracing, or any other common intersection line identification algorithms. Since, these algorithms are known in the art, details about the identification of the intersection lines will not be elaborated herein, for simplification purposes
  • intersection lines there are both visible intersection lines and hidden intersection lines.
  • the hidden seams are those intersection lines covered by other surfaces, which are invisible and inaccessible by the welding gun. Those hidden intersection lines are not welding seams and could be eliminated from the identified intersection.
  • the hidden intersection lines may be identified and eliminated from the identified intersection lines.
  • the hidden intersections lines can also be identified based on geometry of the bodies particularly the overlapping relationship between the identified intersection lines. For example, an intersection line can be identified as a hidden intersection lines if it is found that the intersection line is overlapped with another intersection line.
  • a welding seam can be identified as a hidden seam if it is found that the welding line is overlapped with another welding seam. It is to be understood that if the welding seam is overlapped with another welding seam, at least four faces are involved and in such case, the overlapped part should be those hidden line.
  • the hidden line elimination rules may include a tail section of a welding seam can be removed from the welding seam if the welding seam is overlapping with another welding seam at the tail section of the welding seam. Besides, if the welding seam is overlapping with the other welding seam at a head section of the welding seam, the head section of the welding seam can be removed. Furthermore, a middle part of the welding seam can also be removed if another welding seam is completely overlapping with the middle part of the welding seam. In a case that the welding seam is completely overlapping with a part of another welding seam, a welding seam can be removed completely.
  • the following table shows the specific rules or strategies about how to eliminate hidden lines of two straight lines based on their overlapping relationship.
  • a line segment is a limited line with a head and a tail, its direction is from head point to tai l point.
  • the solid line is line1 (original line)
  • the dashed line is line2 (cutter line) ;
  • h1 head of line1;
  • t1 tail of line1;
  • h2 head of line2;
  • t2 tail of line2.
  • the first column indicates the serial number of the rules; the second column indicates location relationship category of two lines, i.e., coplanar or not; the third column indicates a location relationship subcategory of two lines which is indicated by a value of parameter s which is the number of points (head and tail) of a body that locate on other bodies (0 ⁇ 4) ; the fourth column describes different location relationship cases in respective relationship subcategory; the fifth column shows the graphical expressions of different location relationship cases; the six column shows overlapping relationship corresponding to different location relationship cases; the seventh shows actions which shall be taken to line 1; and the eight column shows output if actions are taken.
  • location relationship between line 1 and line 2 may be determined first, then the number of points of line 1 that locate on line 2 is determined, which is ranging from 0 to 4. Further, based on this information, it may further determined the overlapping relationship, such as “separated” , “crossed” , “ConnectedCoLine” , “ConnectedNotColine” , “OverlapHead” , “OverlapTail” , “OverlapMiddle” , “OverlapALL” , “OverlapALL_Equal” .
  • the head section of line 1 may be removed; for the “Overlaptail” Type, the tail section of line 1 may be removed; for the “OverlapMiddle” Type, the middle part of line 1 may be removed; for the “OverlapALL” Type, the line 1, as a whole, may be removed; and for the “OverlapALL_Equal” Type, the line 1, as a whole, may be removed and at the same time it suggests line 2 should be removed too.
  • Fig. 2 to 4 describe the welding seam identification of a welding object with a simple structure.
  • Fig. 2 schematically illustrates example three-dimensional models for a welding object and a welding robot in a virtual environment according to an embodiment of the present disclosure.
  • a three-dimensional model 210 for a welding robot in the virtual environment 200 are contained a three-dimensional model 210 for a welding robot and another three-dimension model 220 for a weld object.
  • the models 210 and 220 are both CAD models.
  • the two models 210 and 220 are arranged in accordance with their respective real setups in the real environment.
  • the robot as illustrated includes an arm 211 and a welding gun 212 which will be used to weld the welding object.
  • Fig. 3 schematically illustrates a detailed structure of the welding object in the three-dimensional mode in the virtual environment according to an embodiment of the present disclosure.
  • the part 220 contains three vertical plates 221, 222 and 223 and one base plate 224 on which are arranged the three vertical plates 221, 222 and 223.
  • two plates 222, 223 are arranged in the same plane with a gap therebetween and main surfaces thereof are parallel to two opposite side edges of the base plate 224; and the remaining one 221 is arranged immediately before the two vertical plates 222, 223 and covers the gap between them.
  • intersection lines between geometrical bodies of the parts can be identified based on the geometry of respective bodies contained in the welding object.
  • a plate can be expressed as a body containing six surfaces wherein each surface contains four lines with each line composed of a head point and a tail point.
  • Intersection lines between any two of the plates can be identified for example by means of Ray Tracing. In such a way, intersection lines among these plates can be identified.
  • the intersection lines identified on the part are illustrated in Fig. 4, wherein schematically illustrates identified welding seams S1 to S16. As illustrated, all intersection lines among the four plates are identified including those hidden intersection lines.
  • hidden lines may further identified from those identified seams based on the geometry of these plates.
  • the hidden intersection lines can be identified by identifying the overlapping part of two intersection lines. It can be understood that a hidden intersection line is usually an intersection line among at least three surfaces and thus if there is another intersection line completely or partly overlapping with an intersection line, the intersection line will be a hidden line. Thus, the overlapping part is the hidden intersection line.
  • the identified hidden lines are illustrated as dash lines in Fig. 4. Since the hidden intersection lines are covered by plates and thus inaccessible for the welding gun of the robot, these hidden intersection lines can be removed from the identified seams. Thus, we can obtain the final identified seams with the hidden lines removed, which are illustrated in Fig. 5.
  • the example structure is illustrated only for illustrative purposes and in a real application such as a shipbuilding application, the structure of the welding object could be rather complex; however, based on similar principles and operations, the seams of a complex structure can be identified as well.
  • the seams may be further edited based on welding process requirements so as to form a collection of welding seams. For example, a seam may be deleted if the seam is not required to be weld. A new seam can be also added if the seam has not been identified because of assembly gap or a gap resulting mismatch in the CAD model. Two seams may also be merged if they are end to end, or a seam can be split if it is too long for welding. In addition, it is possible to reverse a direction of a welding seam, for example changing it from a direction of top-to-bottom to a direction of bottom-to-top.
  • the editing of the welding seams can be performed automatically based on predetermined editing rules.
  • the welding seams can be checked and edited manually by a user which is skilled in the art.
  • Fig. 6 schematically illustrates a seam editor according to an embodiment of the present disclosure.
  • the seam editor 600 comprises a list of the identified welding seams 601.
  • the user could select one or more of them to edit by means of editing buttons 602 to 606, for example, add a new seam, delete an unnecessary seam, split one seam to two seams, merge two seams, or reverse a direction of a seam.
  • the buttons 607 and 608 can be used to cancel or confirm the editing of the seams.
  • the welding seams may be edited so that they are suitable for welding and thus a final collection of welding seams can be formed.
  • a welding sequence may be determined based on the welding seams, welding parameters and welding process requirements.
  • the welding sequence is a sequence for welding the welding object, which indicates the orders of seams to be weld.
  • the welding sequence is important during the welding and it might even affect the life time of the welding structure because different heat effect would cause different internal stress.
  • the welding sequence is related to the seams to be weld, the welding parameters, etc. and at the same time, it shall meet welding process requirements.
  • the welding parameters are parameters used in welding such as welding current, welding voltage, welding speed, wire feeding speed, or the like.
  • the welding parameters can be determined based on the properties of the welding object to be weld, such as material of respective parts to be weld, the thickness of the plate and so on.
  • Setting of welding parameter can be performed automatically based on preset properties of respective parts and parameter setting rules established based on, for example welding process requirements, or experts experience.
  • the set welding parameters can be further modified by a user manually.
  • Fig. 7 illustrates a parameter modifier which provides an interface to the user to modify the welding parameters for each welding seam.
  • the parameter modifier 700 includes a list of welding seams 701.
  • the user may select one seam and edit the process for the seam and edit the parameter values, changing such as welding current, welding voltage, welding speed, wire feeding speed by means of interface objects 702 to 706.
  • the buttons 707 and 708 can be used to cancel or confirm the modification of the process parameters.
  • Fig. 8 illustrates the welding sequence on the example part according to an embodiment of the present disclosure. As illustrated in Fig.
  • the welding will be performed in an order of (S17, S16) , (S0, S1) , S15, S2, and bottom, wherein (S17, S16) and (S0, S1) indicates merged seam of seams S17 and S16 and merged seam of seams S0 and S1, respectively and “bottom” indicates the merged seam of seams S3 to S 14.
  • the welding direction will follow the arrows as indicated in Fig. 8.
  • Fig. 9 illustrates a sequence modifier for modifying the welding sequence.
  • the sequence modifier 900 provides a user interface for the user. As illustrated in Fig. 9, the user may select one welding seam from the generated welding sequence 901 and use the “Move Up” button 902 or “Move Down” 903 button to change the rank of a welding seam.
  • the buttons 904 and 905 can be used to cancel or confirm the modification of the welding sequence. In such a way, it is possible to further guarantee feasibility of the welding sequence.
  • an operation procedure for the welding robot is generated based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operations of the welding object.
  • the operation procedure is to be used by the welding robot and thus the structure of the welding robot is relative thereto.
  • the other three-dimensional model 210 for the welding robot can be used to provide such information.
  • the robot path parameters are parameters set for the welding robot, which include, for example, a moving path for the welding robot and the gesture of the welding gun.
  • an operation procedure for a welding robot can be generated automatically, for example in accordance with predetermined operation procedure generation rules, which are known in the art and thus will not be described herein.
  • the operation procedure can generated as a collision free procedure, which means the relative location of the robot to the welding object during the welding may be further taken into consideration.
  • the operation procedure may be transmitted to a welding robot so as to schedule the welding operations of the welding robot in welding.
  • a feasibility of the operation procedure may be further checked.
  • the checking of the operation procedure for the welding robot can be performed in a virtual environment which comprises the well-arranged three-dimensional model for the welding object and the other three-dimensional model for the welding robot.
  • the robot will perform the welding operations virtually in accordance with the generated operation procedure in the welding sequence, with the welding parameter and the robot path parameter. If any of the welding process requirements are not met or there might be a collision, the operation procedure does not pass the checking; otherwise, it passes the checking and can be transmitted to a welding robot.
  • the robot path parameters used for generating the operation procedure may be adjusted and another operation procedure may be generated based on the adjusted robot path parameters and checked again.
  • the welding procedure could be generated in an automatic way and thus the time and cost required by robot programing could be reduced substantially. Therefore, a robot can be used in welding huge and complex structures or structures manufactured in a small batch and the automatic level can be increased remarkably and the production cost can be reduced accordingly.
  • apparatus 1000 may comprise a seam identification module 1010, a sequence determination module 1020 and a procedure generation module 1030.
  • the seam identification module 1010 may be configured to identify seams on a welding object in a three-dimensional model for the welding object based on geometry of bodies of the welding object.
  • the sequence determination module 1020 is configured to determine a welding sequence based on the seams, welding parameters and welding process requirements. The welding sequence may be further adjusted manually in order to ensure that the weld sequence is feasible in practice.
  • the procedure generation module 1030 is configured to generate an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operation in welding the welding object.
  • the operation procedure may be a collision free operation procedure.
  • the apparatus 1000 may further comprise a seam editing module 1040, configured to edit the welding seams to form a collection of welding seams based on welding process requirements, wherein the welding sequence is determined based on the collection of welding seams.
  • a seam editing module 1040 configured to edit the welding seams to form a collection of welding seams based on welding process requirements, wherein the welding sequence is determined based on the collection of welding seams.
  • the apparatus 1000 may also comprise a procedure checking module 1050, configured to check a feasibility of the generated operation procedure for the welding robot in a virtual environment which contains the three-dimensional model for the welding object and the other three-dimensional model for the welding robot.
  • a procedure checking module 1050 configured to check a feasibility of the generated operation procedure for the welding robot in a virtual environment which contains the three-dimensional model for the welding object and the other three-dimensional model for the welding robot.
  • a parameter adjustment module 1060 may be configured to adjust the robot path parameters in response to that the generated operation procedure failing to pass the checking.
  • the procedure generation module 1030 may be configured to generate another operation procedure for the welding robot based on the adjusted robot path parameters.
  • the apparatus 1000 may also comprise procedure transmission module 1070, configured to transmit the operation procedure to a controller of the welding robot to control the welding operations of the welding robot.
  • the seam identification module 1010 may be further configured to identify intersection lines between the bodies contained the welding object as the seams, wherein hidden intersection lines are removed from the identified intersection line.
  • the three-dimensional model for the welding object and the other three-dimensional model for the welding robot may be Computer Aided Design (CAD) models.
  • CAD Computer Aided Design
  • the apparatus 1000 as provided in embodiments of the present disclosure has been described in brief with reference to Fig. 10. However, it may be also appreciated that the apparatus 1000 and the modules as contained therein will perform similar operations as described hereinbefore with regarding to the method. Accordingly, for details about these operations, reference may be made to the description about the method with reference to Figs. 1 to 9.
  • the welding object is illustrated as a combination of cuboids; however, the present disclosure is not limited thereto, a welding object can contain various combinations of various bodies, such a cylinder, a cone, a sphere, a semi-sphere, or any other shape or the combination thereof and thus the skilled in the art can also identify the seams thereof from the teachings provided herein.
  • the solution as provided herein may take the form of a hardware embodiment, a software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects. That is to say, one or more of the seam identification, the welding sequence determination, the operation procedure generation, the seam editing, the procedure checking, the parameter adjustment, procedure transmission described herein can be implemented by electronic elements or devices, software stored in storage device, or the combination of electronic devices and the software, for example by micro-processors, digital signal processor, simple chip machine, and suitable programs etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

Embodiments of the present disclosure relate to a method and apparatus of scheduling welding operations. In an embodiment of the present disclosure, the method comprises identifying seams on a welding object in a three-dimensional model for the welding object based on geometry of bodies contained in the welding object. The method also comprises determining a welding sequence based on the seams, welding parameters and welding process requirements. The method further comprises generating an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operations of the welding object. With embodiments of the present disclosure, the welding procedure could be generated in an automatic way and thus a robot can be used in welding huge and complex structures or structures manufactured in a small batch so that the automatic level can be increased remarkably and the production cost can be reduced accordingly.

Description

METHOD AND APPARATUS OF SCHEDULING WELDING OPERATIONS FIELD OF THE INVENTION
Embodiments of the present disclosure generally relate to a field of welding and more particularly relate to a method and apparatus of scheduling welding operations.
BACKGROUND OF THE INVENTION
Nowadays, robots are wildly used in many fields such as welding, assembling, conveying, paint spraying, laser machining, etc. A welding robot can perform welding operations automatically in a predetermined way in accordance with the robot program. In shipbuilding industry, a small-type steel ship usually has 100 thousands of welds to millions of welds, which means a large amount of workloads. However, currently, the automation level of welding in shipbuilding is still rather low and it will require a great deal of manpower to perform welding operations on the ship. The main barrier of using a robot in this industry lies in that robot programming is not only time consuming but also very complex. Therefore, there is a need in the art to provide a solution of facilitating the use of a robot in such a complex situation.
SUMMARY OF THE INVENTION
To this end, the present disclosure provides a solution for a scheduling welding operations, so as to solve or at least partially mitigate at least a part of problems in the prior art.
According to a first aspect of the present disclosure, there is provided a method of scheduling welding operations. The method comprises identifying seams on a welding object in a three-dimensional model for the welding object based on geometry of bodies contained the welding object. The method also comprises determining a welding sequence based on the seams, welding parameters and welding process requirements. The method further comprises generating an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operations of the welding object.
In an embodiment of the present disclosure, the method may further comprise editing the seams to form a collection of welding seams based on welding process requirements, wherein the welding sequence is determined based on the collection of welding seams.
In another embodiment of the present disclosure, the method may further comprise checking a feasibility of the generated operation procedure for the welding robot in a virtual environment which contains the three-dimensional model for the welding object and the other three-dimensional model for the welding robot.
In a further embodiment of the present disclosure, the method may further comprise adjusting the robot path parameters in response to that the generated operation procedure failing to pass the checking; and wherein another operation procedure is generated for the welding robot based on the adjusted robot path parameter.
In a still further embodiment of the present disclosure, the method may further comprise transmitting the operation procedure to a controller of the welding robot to control the welding operations of the welding robot.
In another embodiment of the present disclosure, the identifying welding seams on parts of a welding object comprises identifying intersection lines between the bodies contained the welding object as the seams, wherein hidden intersection lines are removed from the identified intersection lines.
In a further embodiment of the present disclosure, wherein the welding sequence is further adjusted manually and/or wherein the generated operation procedure is collision free.
In a still further embodiment of the present disclosure, wherein the three-dimensional model for the welding object and the other three-dimensional model for the welding robot are Computer Aided Design (CAD) models.
In a second aspect of the present disclosure, there is further provided an apparatus for scheduling welding operations. The apparatus comprises a seam identification module, a sequence determination module, and a procedure generation module. The seam identification module is configured to identify seams on a welding object in a three-dimensional model (220) for the welding object based on geometry of bodies contained in the welding object. The sequence determination module is configured to determine a welding sequence based on the seams, welding parameters  and welding process requirements. The procedure generation module is configured to generate an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operation in welding the welding object.
With embodiments of the present disclosure, the welding procedure could be generated in an automatic way and thus the time and cost required by robot programing could be reduced substantially. Therefore, a robot can be used in welding huge and complex structures or structures manufactured in a small batch and the automatic level can be increased remarkably and the production cost can be reduced accordingly.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other features of the present disclosure will become more apparent through detailed explanation on the embodiments as illustrated in the description with reference to the accompanying drawings, throughout which like reference numbers represent same or similar components and wherein:
Fig. 1 schematically illustrates a flow diagram of a method of scheduling welding operations according to an embodiment of the present disclosure;
Fig. 2 schematically illustrates example three-dimensional models for a welding object and a welding robot in a virtual environment according to an embodiment of the present disclosure;
Fig. 3 schematically illustrates a detailed structure of an example welding object in a three-dimensional mode in a virtual environment according to an embodiment of the present disclosure;
Fig. 4 schematically illustrates identified seams on the example welding object according to an embodiment of the present disclosure;
Fig. 5 schematically illustrates identified seams on the example welding object with hidden seams removed according to an embodiment of the present disclosure;
Fig. 6 schematically illustrates a seam editor according to an embodiment of the present disclosure;
Fig. 7 schematically illustrates a parameter modifier according to an  embodiment of the present disclosure;
Fig. 8 schematically illustrates the welding sequence on the example part according to an embodiment of the present disclosure;
Fig. 9 schematically illustrates a sequence modifier according to an embodiment of the present disclosure; and
Fig. 10 schematically illustrates a block diagram of an apparatus of scheduling welding operations according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Hereinafter, solutions as provided in the present disclosure will be described in details through embodiments with reference to the accompanying drawings. It should be appreciated that these embodiments are presented only to enable those skilled in the art to better understand and implement the present disclosure, not intended to limit the scope of the present disclosure in any manner.
Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to ″a/an/the/said [element, device, component, means, step, etc. ] ″ are to be interpreted openly as referring to at least one instance of said element, device, component, means, unit, step, etc., without excluding a plurality of such devices, components, means, units, steps, etc., unless explicitly stated otherwise. Besides, the indefinite article “a/an” as used herein does not exclude a plurality of such steps, units, modules, devices, and objects, and etc.
As mentioned hereinabove, in, for example, shipbuilding industry, the automation level of welding is still rather low and the reason lies in that robot programming is not only time consuming but also very complex. Therefore, in embodiments of the present disclosure, there is provided a solution for scheduling welding operations, which will be described hereinafter with reference to Figs 1 to 8.
Reference is first made to Fig. 1, which schematically illustrates a flow diagram of a method of scheduling welding operations according to an embodiment of the present disclosure.
As illustrated in Fig. 1, the method starts from step 110, in which seams on a welding object in a three-dimensional model for the welding object is identified  based on geometry of bodies contained in the welding object.
Usually, for a welding object such as a ship, a three-dimensional model will be designed before the manufacturing. This three-dimensional model may be for example a Computer Aided Design (CAD) model or any other kind of three-dimensional model. Another three-dimensional model for the robot to be used can also be built. The other three-dimensional model for the robot may also be for example a Computer Aided Design (CAD) model or any other kind of three-dimensional model. The two three-dimensional models can be loaded into a virtual environment in for example a computer. The two models will be laid out exactly in accordance with their respective real setups.
The three-dimensional model for the welding object contains a plurality of geometrical bodies. Each of the geometrical bodies has a shape such as a cuboid, a cylinder, a cone, a sphere, a semi-sphere, or any other shape or the combination thereof. The seams usually exist between two bodies. Thus, seams on parts of the welding object can be identified based on geometry of the parts of the welding object in a three-dimensional model for the welding object. The term “geometry” used herein refers to measurement, relationships of geometrical bodies which indicate shapes, structures, location of the geometrical bodies. Particularly, intersection lines between any two geometrical bodies can be identified and the intersections lines can be taken as the candidate seams. The intersection lines between geometrical bodies can be identified easily through geometry of the bodies. As an example, the intersection line identification can be identified by means of Ray Tracing, or any other common intersection line identification algorithms. Since, these algorithms are known in the art, details about the identification of the intersection lines will not be elaborated herein, for simplification purposes.
In addition, among the intersection lines, there are both visible intersection lines and hidden intersection lines. The hidden seams are those intersection lines covered by other surfaces, which are invisible and inaccessible by the welding gun. Those hidden intersection lines are not welding seams and could be eliminated from the identified intersection. The hidden intersection lines may be identified and eliminated from the identified intersection lines. The hidden intersections lines can also be identified based on geometry of the bodies particularly  the overlapping relationship between the identified intersection lines. For example, an intersection line can be identified as a hidden intersection lines if it is found that the intersection line is overlapped with another intersection line. For example, a welding seam can be identified as a hidden seam if it is found that the welding line is overlapped with another welding seam. It is to be understood that if the welding seam is overlapped with another welding seam, at least four faces are involved and in such case, the overlapped part should be those hidden line.
In an embodiment of the present disclosure, the hidden line elimination rules may include a tail section of a welding seam can be removed from the welding seam if the welding seam is overlapping with another welding seam at the tail section of the welding seam. Besides, if the welding seam is overlapping with the other welding seam at a head section of the welding seam, the head section of the welding seam can be removed. Furthermore, a middle part of the welding seam can also be removed if another welding seam is completely overlapping with the middle part of the welding seam. In a case that the welding seam is completely overlapping with a part of another welding seam, a welding seam can be removed completely.
For illustrative purposes, the following table shows the specific rules or strategies about how to eliminate hidden lines of two straight lines based on their overlapping relationship.
Table 3. Overlapping relationship of 2 straight line segments
Figure PCTCN2015084933-appb-000001
Figure PCTCN2015084933-appb-000002
*Note: A line segment is a limited line with a head and a tail, its direction is from head point to tai l point. The solid line is line1 (original line) , the dashed line is line2 (cutter line) ; h1 = head of line1; t1 = tail of line1; h2 = head of line2; t2 = tail of line2.
In that table, the first column indicates the serial number of the rules; the second column indicates location relationship category of two lines, i.e., coplanar or not; the third column indicates a location relationship subcategory of two lines which is indicated by a value of parameter s which is the number of points (head and tail) of a body that locate on other bodies (0~4) ; the fourth column describes different location  relationship cases in respective relationship subcategory; the fifth column shows the graphical expressions of different location relationship cases; the six column shows overlapping relationship corresponding to different location relationship cases; the seventh shows actions which shall be taken to line 1; and the eight column shows output if actions are taken.
In an embodiment of the present disclosure, location relationship between line 1 and line 2 may be determined first, then the number of points of line 1 that locate on line 2 is determined, which is ranging from 0 to 4. Further, based on this information, it may further determined the overlapping relationship, such as “separated” , “crossed” , “ConnectedCoLine” , “ConnectedNotColine” , “OverlapHead” , “OverlapTail” , “OverlapMiddle” , “OverlapALL” , “OverlapALL_Equal” . Among these overlapping relationships, separated” , “crossed” , “ConnectedCoLine” , “ConnectedNotColine” indicate that line1 and line 2 are separated, crossed, connected and coline, and connected but not coline respectively, which all belongs to a type of Not-overlapping. The remaining “OverlapHead” , “OverlapTail” , “OverlapMiddle” , “OverlapALL” , “OverlapALL_Equal” indicate line 1 is overlapped with line 2 at the head section, at the tail section, at the middle part, at the whole part but not equal and at the whole part and equal. Regarding different overlapping type, different actions may be taken to line 1. For example, for the “OverlapHead” Type, the head section of line 1 may be removed; for the “Overlaptail” Type, the tail section of line 1 may be removed; for the “OverlapMiddle” Type, the middle part of line 1 may be removed; for the “OverlapALL” Type, the line 1, as a whole, may be removed; and for the “OverlapALL_Equal” Type, the line 1, as a whole, may be removed and at the same time it suggests line 2 should be removed too.
Based on the example elimination rules, it is possible to obtain all hidden segments from the original lines. These segments to be eliminated can be removed, for example, at the end of the above overlapping identification.
For illustrative purpose, hereinafter reference will be made to Fig. 2 to 4 to describe the welding seam identification of a welding object with a simple structure.
Fig. 2 schematically illustrates example three-dimensional models for a welding object and a welding robot in a virtual environment according to an  embodiment of the present disclosure. As illustrated in Fig. 2, in the virtual environment 200 are contained a three-dimensional model 210 for a welding robot and another three-dimension model 220 for a weld object. The  models  210 and 220 are both CAD models. The two  models  210 and 220 are arranged in accordance with their respective real setups in the real environment. The robot as illustrated includes an arm 211 and a welding gun 212 which will be used to weld the welding object.
Fig. 3 schematically illustrates a detailed structure of the welding object in the three-dimensional mode in the virtual environment according to an embodiment of the present disclosure. As illustrated in Fig. 3, the part 220 contains three  vertical plates  221, 222 and 223 and one base plate 224 on which are arranged the three  vertical plates  221, 222 and 223. Among the three vertical plates, two  plates  222, 223 are arranged in the same plane with a gap therebetween and main surfaces thereof are parallel to two opposite side edges of the base plate 224; and the remaining one 221 is arranged immediately before the two  vertical plates  222, 223 and covers the gap between them.
For the structure of the part 220 as illustrated in Fig. 3, the intersection lines between geometrical bodies of the parts can be identified based on the geometry of respective bodies contained in the welding object. Particularly, a plate can be expressed as a body containing six surfaces wherein each surface contains four lines with each line composed of a head point and a tail point. Intersection lines between any two of the plates can be identified for example by means of Ray Tracing. In such a way, intersection lines among these plates can be identified. The intersection lines identified on the part are illustrated in Fig. 4, wherein schematically illustrates identified welding seams S1 to S16. As illustrated, all intersection lines among the four plates are identified including those hidden intersection lines.
Further, hidden lines may further identified from those identified seams based on the geometry of these plates. For example, the hidden intersection lines can be identified by identifying the overlapping part of two intersection lines. It can be understood that a hidden intersection line is usually an intersection line among at least three surfaces and thus if there is another intersection line completely or partly overlapping with an intersection line, the intersection line will be a hidden line. Thus, the overlapping part is the hidden intersection line. For example, based on the hidden  line elimination rules as described above, the identified hidden lines are illustrated as dash lines in Fig. 4. Since the hidden intersection lines are covered by plates and thus inaccessible for the welding gun of the robot, these hidden intersection lines can be removed from the identified seams. Thus, we can obtain the final identified seams with the hidden lines removed, which are illustrated in Fig. 5.
It is to be understood that the example structure is illustrated only for illustrative purposes and in a real application such as a shipbuilding application, the structure of the welding object could be rather complex; however, based on similar principles and operations, the seams of a complex structure can be identified as well.
After the welding seams are identified from the point of view of geometry, the seams may be further edited based on welding process requirements so as to form a collection of welding seams. For example, a seam may be deleted if the seam is not required to be weld. A new seam can be also added if the seam has not been identified because of assembly gap or a gap resulting mismatch in the CAD model. Two seams may also be merged if they are end to end, or a seam can be split if it is too long for welding. In addition, it is possible to reverse a direction of a welding seam, for example changing it from a direction of top-to-bottom to a direction of bottom-to-top. The editing of the welding seams can be performed automatically based on predetermined editing rules. Or alternatively and additionally, the welding seams can be checked and edited manually by a user which is skilled in the art. Fig. 6 schematically illustrates a seam editor according to an embodiment of the present disclosure. As illustrated, the seam editor 600 comprises a list of the identified welding seams 601. The user could select one or more of them to edit by means of editing buttons 602 to 606, for example, add a new seam, delete an unnecessary seam, split one seam to two seams, merge two seams, or reverse a direction of a seam. The  buttons  607 and 608 can be used to cancel or confirm the editing of the seams. In such a way, the welding seams may be edited so that they are suitable for welding and thus a final collection of welding seams can be formed.
Then, at step 202, a welding sequence may be determined based on the welding seams, welding parameters and welding process requirements. The welding sequence is a sequence for welding the welding object, which indicates the orders of seams to be weld. The welding sequence is important during the welding and it might  even affect the life time of the welding structure because different heat effect would cause different internal stress. The welding sequence is related to the seams to be weld, the welding parameters, etc. and at the same time, it shall meet welding process requirements.
The welding parameters are parameters used in welding such as welding current, welding voltage, welding speed, wire feeding speed, or the like. The welding parameters can be determined based on the properties of the welding object to be weld, such as material of respective parts to be weld, the thickness of the plate and so on. Setting of welding parameter can be performed automatically based on preset properties of respective parts and parameter setting rules established based on, for example welding process requirements, or experts experience. Preferably, due to the complexity of the welding procedure, the set welding parameters can be further modified by a user manually. Fig. 7 illustrates a parameter modifier which provides an interface to the user to modify the welding parameters for each welding seam. As illustrated in Fig. 7, the parameter modifier 700 includes a list of welding seams 701. The user may select one seam and edit the process for the seam and edit the parameter values, changing such as welding current, welding voltage, welding speed, wire feeding speed by means of interface objects 702 to 706. The  buttons  707 and 708 can be used to cancel or confirm the modification of the process parameters.
In addition, there are a lot of welding process requirements in a welding process. For example, the welding sequence should meet symmetrical welding requirements so as to minimize the effect of stress caused by the welding. Thus, in such a case, the welding sequence may be determined based on the welding seams, welding parameters and welding process requirements. Fig. 8 illustrates the welding sequence on the example part according to an embodiment of the present disclosure. As illustrated in Fig. 8, For the example part, the welding will be performed in an order of (S17, S16) , (S0, S1) , S15, S2, and bottom, wherein (S17, S16) and (S0, S1) indicates merged seam of seams S17 and S16 and merged seam of seams S0 and S1, respectively and “bottom” indicates the merged seam of seams S3 to S 14. In addition, the welding direction will follow the arrows as indicated in Fig. 8.
Furthermore, it is also possible for the user to further modify or adjust the generated welding sequence manually. Fig. 9 illustrates a sequence modifier for  modifying the welding sequence. The sequence modifier 900 provides a user interface for the user. As illustrated in Fig. 9, the user may select one welding seam from the generated welding sequence 901 and use the “Move Up” button 902 or “Move Down” 903 button to change the rank of a welding seam. The  buttons  904 and 905 can be used to cancel or confirm the modification of the welding sequence. In such a way, it is possible to further guarantee feasibility of the welding sequence.
Afterwards at step S203, an operation procedure for the welding robot is generated based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operations of the welding object. It can be understood, the operation procedure is to be used by the welding robot and thus the structure of the welding robot is relative thereto. The other three-dimensional model 210 for the welding robot can be used to provide such information. The robot path parameters are parameters set for the welding robot, which include, for example, a moving path for the welding robot and the gesture of the welding gun. Based on The other three-dimensional model, the robot path parameter, the determined welding sequence, the welding parameters to be used in the welding, an operation procedure for a welding robot can be generated automatically, for example in accordance with predetermined operation procedure generation rules, which are known in the art and thus will not be described herein. The operation procedure can generated as a collision free procedure, which means the relative location of the robot to the welding object during the welding may be further taken into consideration.
After that, the operation procedure may be transmitted to a welding robot so as to schedule the welding operations of the welding robot in welding. However, before the operation procedure is provided to the welding robot, a feasibility of the operation procedure may be further checked. For example, the checking of the operation procedure for the welding robot can be performed in a virtual environment which comprises the well-arranged three-dimensional model for the welding object and the other three-dimensional model for the welding robot. In the virtual environment, the robot will perform the welding operations virtually in accordance with the generated operation procedure in the welding sequence, with the welding parameter and the robot path parameter. If any of the welding process requirements are not met or there might  be a collision, the operation procedure does not pass the checking; otherwise, it passes the checking and can be transmitted to a welding robot. In response to a failure of the checking, the robot path parameters used for generating the operation procedure may be adjusted and another operation procedure may be generated based on the adjusted robot path parameters and checked again.
With embodiments of the present disclosure, the welding procedure could be generated in an automatic way and thus the time and cost required by robot programing could be reduced substantially. Therefore, a robot can be used in welding huge and complex structures or structures manufactured in a small batch and the automatic level can be increased remarkably and the production cost can be reduced accordingly.
In addition to the method described hereinabove, there is also presented an apparatus for scheduling welding operations, which will be described with reference to Fig. 10.
As illustrated in Fig. 10, apparatus 1000 may comprise a seam identification module 1010, a sequence determination module 1020 and a procedure generation module 1030. The seam identification module 1010 may be configured to identify seams on a welding object in a three-dimensional model for the welding object based on geometry of bodies of the welding object. The sequence determination module 1020 is configured to determine a welding sequence based on the seams, welding parameters and welding process requirements. The welding sequence may be further adjusted manually in order to ensure that the weld sequence is feasible in practice. The procedure generation module 1030 is configured to generate an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operation in welding the welding object. Particularly, the operation procedure may be a collision free operation procedure.
In an embodiment of the present disclosure, the apparatus 1000 may further comprise a seam editing module 1040, configured to edit the welding seams to form a collection of welding seams based on welding process requirements, wherein the welding sequence is determined based on the collection of welding seams.
In another embodiment of the present disclosure, the apparatus 1000  may also comprise a procedure checking module 1050, configured to check a feasibility of the generated operation procedure for the welding robot in a virtual environment which contains the three-dimensional model for the welding object and the other three-dimensional model for the welding robot.
In a further embodiment of the present disclosure, a parameter adjustment module 1060 may be configured to adjust the robot path parameters in response to that the generated operation procedure failing to pass the checking. In such case, the procedure generation module 1030 may be configured to generate another operation procedure for the welding robot based on the adjusted robot path parameters.
In a still further embodiment of the present disclosure, the apparatus 1000 may also comprise procedure transmission module 1070, configured to transmit the operation procedure to a controller of the welding robot to control the welding operations of the welding robot.
In a yet further embodiment of the present disclosure, the seam identification module 1010 may be further configured to identify intersection lines between the bodies contained the welding object as the seams, wherein hidden intersection lines are removed from the identified intersection line.
In a still yet further embodiment of the present disclosure, the three-dimensional model for the welding object and the other three-dimensional model for the welding robot may be Computer Aided Design (CAD) models.
In the above, the apparatus 1000 as provided in embodiments of the present disclosure has been described in brief with reference to Fig. 10. However, it may be also appreciated that the apparatus 1000 and the modules as contained therein will perform similar operations as described hereinbefore with regarding to the method. Accordingly, for details about these operations, reference may be made to the description about the method with reference to Figs. 1 to 9.
Besides, specific embodiments of the present disclosure are described with reference to the accompanying drawings; however, they are presented only for illustration purposes and the present disclosure is not limited thereto. As an example, the user interfaces as illustrated in Figs. 6, 7 and 9 are only example interfaces; in practice, they can be modified, for example, made more complex. . The welding object as illustrated in Figs. 2 and 3 are only for illustration; in a real application, the welding  objection may include huge amount of parts. Besides, the welding object is illustrated as a combination of cuboids; however, the present disclosure is not limited thereto, a welding object can contain various combinations of various bodies, such a cylinder, a cone, a sphere, a semi-sphere, or any other shape or the combination thereof and thus the skilled in the art can also identify the seams thereof from the teachings provided herein.
The skilled in the art can also appreciate that the solution as provided herein may take the form of a hardware embodiment, a software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects. That is to say, one or more of the seam identification, the welding sequence determination, the operation procedure generation, the seam editing, the procedure checking, the parameter adjustment, procedure transmission described herein can be implemented by electronic elements or devices, software stored in storage device, or the combination of electronic devices and the software, for example by micro-processors, digital signal processor, simple chip machine, and suitable programs etc.
Hereinabove, embodiments of the present disclosure have been described in details through embodiments with reference to the accompanying drawings. It should be appreciated that, while this specification contains many specific implementation details, these details should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Various modifications, adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant  arts in view of the foregoing description, when read in conjunction with the accompanying drawings. Any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure. Furthermore, other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which these embodiments of the disclosure pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the embodiments of the disclosure are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are used herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (16)

  1. A method (100) of scheduling welding operations, comprising:
    identifying (110) seams (S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16) on a welding object in a three-dimensional model (220) for the welding object based on geometry of bodies contained in the welding object;
    determining (120) a welding sequence based on the seams, welding parameters and welding process requirements;
    generating (130) an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operations of the welding object.
  2. The method (100) of Claim 1, further comprising:
    editing the seams to form a collection of welding seams based on the welding process requirements, wherein the welding sequence is determined based on the collection of welding seams.
  3. The method (100) of claim 1 or 2, further comprising:
    checking a feasibility of the generated operation procedure for the welding robot in a virtual environment which contains the three-dimensional model for the welding object and the other three-dimensional model for the welding robot.
  4. The method (100) of Claim 3, further comprising:
    adjusting the robot path parameters in response to that the generated operation procedure failing to pass the checking; and
    wherein another operation procedure is generated for the welding robot based on the adjusted robot path parameters.
  5. The method (100) of any of Claims 1 to 4, further comprising:
    transmitting (140) the operation procedure to a controller of the welding robot to control the welding operations of the welding robot.
  6. The method of any of Claims 1 to 5, wherein the identifying seams on a welding object comprises:
    identifying intersection lines between the bodies contained the welding object as the seams, wherein hidden intersection lines are removed from the identified intersection lines based on overlapping relationship among the identified intersection lines.
  7. The method of any of Claims 1 to 6, wherein the welding sequence is further adjusted manually and/or wherein the generated operation procedure is collision free.
  8. The method (100) of any of Claims 1 to 7, wherein the three-dimensional model (220) for the welding object and the other three-dimensional model (220) for the welding robot are Computer Aided Design (CAD) models.
  9. An apparatus (1000) for scheduling welding operations, comprising:
    a seam identification module (1010) , configured to identify seams (S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16) on a welding object in a three-dimensional model (220) for the welding object based on geometry of bodies contained in the welding object;
    a sequence determination module (1020) , configured to determine a welding sequence based on the seams, welding parameters and welding process requirements; and
    a procedure generation module (1030) , configured to generate an operation procedure for a welding robot based on another three-dimensional model for the welding robot, the welding sequence, robot path parameters and the welding parameters to schedule the welding operation in welding the welding object.
  10. The apparatus (1000) of Claim 9, further comprising:
    a seam editing module (1040) , configured to edit the seams to form a collection of welding seams based on the welding process requirements, wherein the welding sequence is determined based on the collection of welding seams.
  11. The apparatus (1000) of claim 9 or 10, further comprising:
    a procedure checking module (1050) , configured to check a feasibility of the generated operation procedure for the welding robot in a virtual environment which contains the three-dimensional model for the welding object and the other three-dimensional model for the welding robot.
  12. The apparatus (1000) of Claim 11, further comprising
    a parameter adjustment module (1060) , configured to adjust the robot path parameters in response to that the generated operation procedure failing to pass the checking; and
    wherein the procedure generation module (1030) is configured to generate another operation procedure for the welding robot based on the adjusted robot path parameters.
  13. The apparatus (1000) of any of Claims 9 to 12, further comprising:
    a procedure transmission module (1070) , configured to transmit the operation procedure to a controller of the welding robot to control the welding operations of the welding robot.
  14. The apparatus (1000) of any of Claims 9 to 13, wherein the seam identification module (1010) is configured to
    identify intersection lines between the bodies contained the welding object as the seams, wherein hidden intersection lines are removed from the identified intersection line based on overlapping relationship among the identified intersection lines.
  15. The apparatus (1000) of any of Claims 9 to 13, wherein the welding sequence is further adjusted manually and/or wherein the generated operation procedure is collision free.
  16. The apparatus of any of Claims 9 to 15, wherein the three-dimensional model for the welding object and the other three-dimensional model for the welding robot are Computer Aided Design (CAD) models.
PCT/CN2015/084933 2015-07-23 2015-07-23 Method and apparatus of scheduling welding operations WO2017012117A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/084933 WO2017012117A1 (en) 2015-07-23 2015-07-23 Method and apparatus of scheduling welding operations
EP15898673.7A EP3325226B1 (en) 2015-07-23 2015-07-23 Method and apparatus of scheduling welding operations
CN201580081539.7A CN107835729B (en) 2015-07-23 2015-07-23 Method and apparatus for planning welding operations
US15/838,732 US10688660B2 (en) 2015-07-23 2017-12-12 Method and apparatus of scheduling welding operations for a welding robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084933 WO2017012117A1 (en) 2015-07-23 2015-07-23 Method and apparatus of scheduling welding operations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/838,732 Continuation US10688660B2 (en) 2015-07-23 2017-12-12 Method and apparatus of scheduling welding operations for a welding robot

Publications (1)

Publication Number Publication Date
WO2017012117A1 true WO2017012117A1 (en) 2017-01-26

Family

ID=57833663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084933 WO2017012117A1 (en) 2015-07-23 2015-07-23 Method and apparatus of scheduling welding operations

Country Status (4)

Country Link
US (1) US10688660B2 (en)
EP (1) EP3325226B1 (en)
CN (1) CN107835729B (en)
WO (1) WO2017012117A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476131A (en) * 2017-03-21 2019-11-19 株式会社神户制钢所 Welding bead determines method, program, tutorial program and welding robot system
CN111844016A (en) * 2019-04-25 2020-10-30 精工爱普生株式会社 Robot system control method and robot system
CN112518740A (en) * 2020-11-02 2021-03-19 上海申博信息系统工程有限公司 Welding process planning method for movement path of robot with assembled structure in ship
CN114473308A (en) * 2022-03-17 2022-05-13 江南造船(集团)有限责任公司 Automatic welding system and method for large-thickness plate groove
CN114905115A (en) * 2022-06-30 2022-08-16 中船黄埔文冲船舶有限公司 Robot welding method and device for assembling vertical welding seams

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108544495B (en) * 2018-06-19 2021-05-11 广东工业大学 Welding path planning method, system and equipment for multiple welding robots
CN109940623B (en) * 2018-10-26 2022-01-11 广东工业大学 Robot path planning method applied to welding seam
CN109159127B (en) * 2018-11-20 2021-11-30 广东工业大学 Intelligent path planning method for double-welding robot based on ant colony algorithm
JP7267049B2 (en) * 2019-03-19 2023-05-01 株式会社日立製作所 Design support device, design support program and design support method
CN110135651B (en) * 2019-05-23 2023-02-10 广东工业大学 Double-welding robot and collaborative path planning device and collaborative path planning method thereof
CN112464405B (en) * 2020-11-26 2022-11-15 江南造船(集团)有限责任公司 Three-dimensional model-based weld joint expression method
JP7201764B1 (en) * 2021-09-24 2023-01-10 株式会社ダイヘン Welding program creation system and welding program creation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122973A1 (en) * 2008-11-20 2010-05-20 General Electric Company Welding process
JP2010269336A (en) * 2009-05-20 2010-12-02 Kobe Steel Ltd Welding setting device, welding robot system, and welding setting program
US20120029674A1 (en) 2009-02-13 2012-02-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Welding-line selecting method
US20130282182A1 (en) * 2012-04-23 2013-10-24 Chrysler Group Llc Method and system for scheduling weld events
US20140042135A1 (en) * 2006-12-20 2014-02-13 Lincoln Global, Inc. System and method of receiving or using data from external sources for a welding sequence

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998005A (en) * 1989-05-15 1991-03-05 General Electric Company Machine vision system
US20020128790A1 (en) * 2001-03-09 2002-09-12 Donald Woodmansee System and method of automated part evaluation including inspection, disposition recommendation and refurbishment process determination
US10994358B2 (en) * 2006-12-20 2021-05-04 Lincoln Global, Inc. System and method for creating or modifying a welding sequence based on non-real world weld data
DE102007008598A1 (en) * 2007-02-19 2008-08-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Automatic programming of robots to weld stapled profiles onto micropanels using digital image capture
CN104526117A (en) * 2015-01-08 2015-04-22 中国二十二冶集团有限公司 Movable arc-welding robot and control system thereof
CN104750023A (en) * 2015-02-13 2015-07-01 河北联合大学 Model based welding robot offline training data acquisition method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042135A1 (en) * 2006-12-20 2014-02-13 Lincoln Global, Inc. System and method of receiving or using data from external sources for a welding sequence
US20100122973A1 (en) * 2008-11-20 2010-05-20 General Electric Company Welding process
US20120029674A1 (en) 2009-02-13 2012-02-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Welding-line selecting method
JP2010269336A (en) * 2009-05-20 2010-12-02 Kobe Steel Ltd Welding setting device, welding robot system, and welding setting program
US20130282182A1 (en) * 2012-04-23 2013-10-24 Chrysler Group Llc Method and system for scheduling weld events

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Offline programming for a complex welding system using DELMIA automation Publication Details", LECTURE NOTES IN ELECTRICAL ENGINEERING, 1 January 2011 (2011-01-01)
RUBINOVITZ J ET AL.: "Task Level Off-Line Programming System For Robotic Arc Welding - An Overview", JOURNAL OF MANUFACTURING SYSTEMS, SOCIETY OF MANUFACTURING ENGINEERS, vol. 7, no. 4, 1 January 1988 (1988-01-01), XP000000724
See also references of EP3325226A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476131A (en) * 2017-03-21 2019-11-19 株式会社神户制钢所 Welding bead determines method, program, tutorial program and welding robot system
CN111844016A (en) * 2019-04-25 2020-10-30 精工爱普生株式会社 Robot system control method and robot system
CN112518740A (en) * 2020-11-02 2021-03-19 上海申博信息系统工程有限公司 Welding process planning method for movement path of robot with assembled structure in ship
CN114473308A (en) * 2022-03-17 2022-05-13 江南造船(集团)有限责任公司 Automatic welding system and method for large-thickness plate groove
CN114905115A (en) * 2022-06-30 2022-08-16 中船黄埔文冲船舶有限公司 Robot welding method and device for assembling vertical welding seams
CN114905115B (en) * 2022-06-30 2023-12-26 中船黄埔文冲船舶有限公司 Robot welding method and device for middle-assembling vertical welding seam

Also Published As

Publication number Publication date
EP3325226B1 (en) 2022-10-26
CN107835729A (en) 2018-03-23
US20180111267A1 (en) 2018-04-26
EP3325226A4 (en) 2019-05-22
CN107835729B (en) 2021-03-26
EP3325226A1 (en) 2018-05-30
US10688660B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
US10688660B2 (en) Method and apparatus of scheduling welding operations for a welding robot
US10960483B2 (en) Method and apparatus of identifying welding seams of a welding object
US11417238B2 (en) Method, system and apparatus of determining search parameters for welding seam point calibration
JP4512754B2 (en) Process design support system and process design support method
CN105389410B (en) Three-dimensional model generation method and three-dimensional model generation system
CN105103066A (en) Numerical control program editing device, numerical control program editing method and program
US20150066191A1 (en) Workpiece machining surface display method, workpiece machining surface display device, tool path generation device and workpiece machining surface display program
Hryniewicz et al. Technological process supervising using vision systems cooperating with the LabVIEW vision builder
US20190171189A1 (en) Systems, Methods, and Devices for Toolpath Virtualization and Optimization
US11717965B2 (en) Determination of robot posture
CN111598364B (en) Digital process arrangement system for mechanical parts
Skorkovská et al. A Simple and Robust Approach to Computation of Meshes Intersection.
EP3736752A1 (en) Generating an assembly plan
Lin et al. Efficient cutting area detection in roughing process for meshed surfaces
CN114115117B (en) Tool path generation method and system with normal machining allowance
JP7395954B2 (en) NC data quality judgment device and processing device
JP7285660B2 (en) DIMENSION GENERATION DEVICE, DIMENSION GENERATION METHOD AND PROGRAM
TWI760675B (en) Method for defect inspection of machining path
WO2023105977A1 (en) Offline teaching device and offline teaching method
JP6813826B2 (en) 3D object shape identification system, method and program
JP2021149376A (en) Accuracy evaluation device and accuracy evaluation method
Duan A method of knowledge based measurement points distribution in three-dimensional inspection planning
KR20210116825A (en) Appratus for providing block placement information of ship
Nasr et al. Set up planning for automatic generation of inspection plan
Peng Experiment Study on Effects of Critical Factors on Quality of Prototypes in Fused Deposition Modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015898673

Country of ref document: EP