WO2017011978A1 - 一种中继设备选择方法、设备及系统 - Google Patents

一种中继设备选择方法、设备及系统 Download PDF

Info

Publication number
WO2017011978A1
WO2017011978A1 PCT/CN2015/084487 CN2015084487W WO2017011978A1 WO 2017011978 A1 WO2017011978 A1 WO 2017011978A1 CN 2015084487 W CN2015084487 W CN 2015084487W WO 2017011978 A1 WO2017011978 A1 WO 2017011978A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit power
channel
information
different
sent
Prior art date
Application number
PCT/CN2015/084487
Other languages
English (en)
French (fr)
Inventor
黎超
张兴炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580065494.4A priority Critical patent/CN107006064B/zh
Priority to PCT/CN2015/084487 priority patent/WO2017011978A1/zh
Publication of WO2017011978A1 publication Critical patent/WO2017011978A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a relay device selection method, device, and system.
  • Relay Node 3rd Generation Partnership Project (3 rd Generation Patnership Project, 3GPP ) Version 10 (Release 10, Rel-10 ) has been standardized in Relay technology was standardized scenario is as follows: a relay node (Relay Node, RN) is a Rel- 10 independent network elements, which are higher in the network than user equipment (User Equpment, UE). RN has two capabilities, one is like the ordinary Evolvd Node (eNB). The communication with the UE is performed on the cellular link; another capability is to have a backhaul transmission link that communicates with the eNB.
  • eNB Evolvd Node
  • the RN node specified in the existing 3GPP Rel-10 does not need to be selected, and it directly communicates with the network eNB directly, which is equivalent to being a small base station, and can also directly communicate with the UE, and it automatically starts to open with the eNB after power-on.
  • the backhaul link and the cellular link that communicates with the UE can implement the relay function.
  • the RN specified in the existing 3GPP Rel-10 is not a network element that is peered with the UE, that is, the scenario in which the relay device and the UE are peer devices are not supported by the prior art. In this case, if an ordinary UE is required to be in the middle, Following the device, there is a problem of how to select a relay node that is peered with the UE. However, there is no corresponding solution in the prior art.
  • An embodiment of the present invention provides a relay device selection method, device, and system, which implements selecting a relay device that is peered with a UE.
  • an embodiment of the present invention provides a method for selecting a relay device, where the method includes:
  • the first user equipment UE acquires N second user equipment UEs and the first UE Inter-link quality information, and N transmit power information of the second UE; wherein, N is an integer greater than or equal to 1; and transmit power information of the second UE is: sent by the second UE Transmit power deviation information between the first channel and the second channel sent by the second UE, or transmit power information of the first channel sent by the second UE;
  • the first channel sent by the second UE is used for device discovery between the first UE and the second UE; the second channel sent by the second UE is used by the first UE and the Data transmission between the second UE; the link quality information between the second UE and the first UE is obtained by the first UE by using the first channel.
  • the transmit power information of the first channel sent by the second UE is used to determine a transmit power value of the first channel, and the transmit power value of the first channel is:
  • the UE-specific transmit power value refers to: the transmit power values of the first channel sent by different second UEs are different, or the first channel sent by the second UE in different groups The transmit power value is different; or,
  • the cell-specific transmit power value is: the transmit power values of the first channel sent by the second UE in different cells are different, or the second UEs in different cell groups send The transmit power values of the first channel are different.
  • the transmit power deviation information is used to determine a transmit power offset value between the first channel sent by the second UE and the second channel sent by the second UE, where the transmit power offset value is:
  • the UE-specific transmit power offset value refers to: the transmit transmit power offset value between the first channel and the second channel sent by different second UEs is different, or is different.
  • the transmit transmit power offset value between the first channel and the second channel sent by the second UE of the group is different; or
  • cell-specific transmit transmit power offset value means that the transmit transmit power offset values between the first channel and the second channel sent by the second UE in different cells are different. Or the transmit transmit power offset value between the first channel and the second channel sent by the second UE in different cell groups is different; or
  • a transmit transmit power offset value associated with a transmission mode of the second channel is a transmit transmit power offset value associated with a transmission mode of the second channel.
  • the acquiring, by the first UE, the information about the transmit and transmit power of the second UE includes:
  • the first UE acquires the transmit transmit power information by using a serving base station of the first UE;
  • the first UE acquires the transmit transmit power information by using the second UE;
  • the first UE acquires the transmit transmit power information by using a synchronization reference source of the first UE and/or the second UE.
  • the acquiring, by the second UE, the transmit and transmit power information by using the second UE includes:
  • the first UE acquires the transmit transmit power information by using a first channel sent by the second UE.
  • the acquiring, by the first UE, the transmit transmit power information by using the first channel sent by the second UE includes at least one of the following manners:
  • the first UE acquires the transmit transmit power information by using information carried by the first channel;
  • the first UE acquires the transmit power information by using a cyclic redundancy check code CRC mask used by the second UE to send the first channel;
  • the first UE acquires the transmit power information by using a demodulation reference signal DMRS used by the second UE to send the first channel;
  • the first UE acquires the transmit power information by using resource location information used by the second UE to send the first channel.
  • the acquiring, by the first UE, the transmit power information by using the synchronization reference source of the first UE and/or the second UE includes:
  • the first UE acquires the transmit power information by using a third channel that is sent by the first UE and/or the synchronization reference source of the second UE;
  • the third channel is: the first UE receives the a channel sent by the synchronization source of the first UE and/or the second UE;
  • the first UE acquires the transmit power information by using a synchronization sequence sent by the first UE and/or the synchronization reference source of the second UE.
  • the obtaining, by the first UE, the transmit power information by using the third channel that is sent by the first UE and/or the synchronization reference source of the second UE specifically includes the following at least one manner:
  • the first UE acquires the transmit power information by using information carried by the third channel;
  • the first UE acquires the transmit power information by using a cyclic redundancy check code CRC mask used by the first UE and/or the synchronization reference source of the second UE to send the third channel;
  • the first UE acquires the transmit power information by using a demodulation reference signal DMRS used when the first UE and/or the synchronization reference source of the second UE sends the third channel;
  • the first UE acquires the transmit power by using resource location information used by the first UE and/or the synchronization reference source of the second UE to send the third channel. information.
  • any one of the seventh implementation manners of the first aspect to the first aspect may be implemented, where the N second UEs are acquired by the first UE. After the link quality information between the first UE and the transmit power information of the N second UEs, the method further includes:
  • the first UE sends the link quality report to the base station by using a relay link of the first UE to the base station.
  • the link quality report specifically includes at least one of the following information:
  • an embodiment of the present invention provides a method for selecting a relay device, where the method includes:
  • the base station acquires link quality information between the N second user equipments UE and the first UE, and transmission power information of the N second UEs, where the N is an integer greater than or equal to 1;
  • the transmit power information of the second UE is: the transmit power deviation information between the first channel sent by the second UE and the second channel sent by the second UE, or the transmit power of the first channel sent by the second UE information;
  • the first channel sent by the second UE is used for device discovery between the first UE and the second UE; the second channel sent by the second UE is used by the first UE and the Data transmission between the second UE; the second UE and the first UE The link quality information is obtained by the first UE by using the first channel.
  • the transmit power information of the first channel sent by the second UE is used to determine a transmit power value of the first channel, and the transmit power value of the first channel is:
  • the UE-specific transmit power value refers to: the transmit power values of the first channel sent by different second UEs are different, or the first channel sent by the second UE in different groups The transmit power value is different; or,
  • the cell-specific transmit power value is: the transmit power values of the first channel sent by the second UE in different cells are different, or the second UEs in different cell groups send The transmit power values of the first channel are different.
  • the transmit power deviation information is used to determine a transmit power offset value between the first channel sent by the second UE and the second channel sent by the second UE, where the transmit power offset value is:
  • the UE-specific transmit power offset value refers to: the transmit power offset value between the first channel and the second channel sent by different second UEs is different, or is in a different group.
  • the value of the transmission power deviation between the first channel and the second channel transmitted by the second UE is different; or
  • cell-specific transmit power offset value is: the transmit power offset value between the first channel and the second channel sent by the second UE in different cells is different, or is The transmit power offset values between the first channel and the second channel sent by the second UE of different cell groups are different; or
  • a transmit power offset value associated with a transmission mode of the second channel is a transmit power offset value associated with a transmission mode of the second channel.
  • the acquiring, by the base station, the information about the transmit power between the first channel and the second channel that is sent by the second UE includes:
  • the transmit power information is obtained from a server configuration to a storage local to the base station.
  • the method further includes:
  • the base station receives a link quality report sent by the first UE by using the first UE to a relay link of the base station.
  • the link quality report specifically includes at least one of the following information:
  • an embodiment of the present invention provides a method for selecting a relay device, where the method includes:
  • the transmit power information is: the transmit power deviation information between the first channel sent by the second UE and the second channel sent by the second UE, or the second Transmit power information of the first channel sent by the UE;
  • the second user equipment UE receives the acknowledgement information, where the acknowledgement information is used to indicate that the second UE is a relay device;
  • the first channel sent by the second UE is used for device discovery between the second UE and the first UE, where the first UE is a UE that receives the transmit power information, and the second UE sends a second channel is used between the first UE and the second UE Data transfer.
  • the method further includes:
  • the second UE receives signal quality threshold information configured by the base station
  • the second UE detects that the signal quality of the signal received by the second UE meets a preset rule according to the signal quality threshold information.
  • Receiving the confirmation information by the second user equipment UE includes:
  • the second UE receives the acknowledgement information sent by the serving base station of the second UE or the first UE.
  • any one of the third implementable manners of the third aspect to the third aspect may be implemented,
  • the transmit power information of the first channel sent by the second UE is used to determine a transmit power value of the first channel, and the transmit power value of the first channel is:
  • the UE-specific transmit power value refers to: the transmit power values of the first channel sent by different second UEs are different, or the first channel sent by the second UE in different groups The transmit power value is different; or,
  • the cell-specific transmit power value is: the transmit power values of the first channel sent by the second UE in different cells are different, or the second UEs in different cell groups send The transmit power values of the first channel are different.
  • any one of the third implementable manners of the third aspect to the third aspect may be implemented,
  • the transmit power deviation information is used to determine a transmit power offset value between the first channel sent by the second UE and the second channel sent by the second UE, where the transmit power offset value is:
  • the UE-specific transmit power offset value refers to: the transmit power offset value between the first channel and the second channel sent by different second UEs is different, or the transmit power deviation between the first channel and the second channel sent by the second UE in different groups Values are different; or,
  • cell-specific transmit power offset value is: the transmit power offset value between the first channel and the second channel sent by the second UE in different cells is different, or is The transmit power offset values between the first channel and the second channel sent by the second UE of different cell groups are different; or
  • a transmit power offset value associated with a transmission mode of the second channel is a transmit power offset value associated with a transmission mode of the second channel.
  • the sending, by the second UE, the transmit power information specifically includes:
  • the second UE sends the transmit power information by using the first channel.
  • the transmitting, by the second UE, the transmit power information by using the first channel includes at least one of the following manners:
  • the second UE sends the transmit power information by using a cyclic redundancy check code CRC mask used by the first channel;
  • the second UE sends the transmit power information by using a demodulation reference signal DMRS used by the first channel;
  • the second UE sends the transmit power information by using resource location information used by the first channel.
  • the embodiment of the present invention provides a user equipment UE, including:
  • An acquiring unit configured to acquire link quality information between the N second user equipments UE and the UE, and transmit power information of the N second UEs, where N is an integer greater than or equal to 1; the transmit power information of the second UE is: transmit power deviation information between the first channel sent by the second UE and the second channel sent by the second UE, or Transmit power information of the first channel sent by the second UE;
  • a determining unit configured to: according to the link quality information between the N second UEs and the UE acquired by the acquiring unit, and the transmit power information of the N second UEs, from the N Determining, by the UE, a relay device of the UE;
  • the first channel sent by the second UE is used for device discovery between the UE and the second UE, and the second channel sent by the second UE is used between the UE and the second UE.
  • Data transmission; the link quality information between the second UE and the UE is obtained by the UE through the first channel.
  • the transmit power information of the first channel sent by the second UE is used to determine a transmit power value of the first channel, and the transmit power value of the first channel is:
  • the UE-specific transmit power value refers to: the transmit power values of the first channel sent by different second UEs are different, or the first channel sent by the second UE in different groups The transmit power value is different; or,
  • the cell-specific transmit power value is: the transmit power values of the first channel sent by the second UE in different cells are different, or the second UEs in different cell groups send The transmit power values of the first channel are different.
  • the transmit power deviation information is used to determine a transmit power offset value between the first channel sent by the second UE and the second channel sent by the second UE, where the transmit power offset value is:
  • the UE-specific transmit power offset value refers to: the transmit power offset value between the first channel and the second channel sent by different second UEs is different, or is in a different group.
  • the value of the transmission power deviation between the first channel and the second channel transmitted by the second UE is different; or
  • a cell-specific transmit power offset value wherein the cell-specific transmit power
  • the rate deviation value means that the transmission power deviation values between the first channel and the second channel sent by the second UE in different cells are different, or the first channel and the second channel sent by the second UE in different cell groups are different.
  • the value of the transmit power offset is different; or,
  • a transmit power offset value associated with a transmission mode of the second channel is a transmit power offset value associated with a transmission mode of the second channel.
  • the obtaining unit is specifically configured to:
  • the obtaining unit is specifically configured to:
  • the acquiring unit is specifically configured to acquire the transmit power information by using at least one of the following methods:
  • the obtaining unit is specifically configured to:
  • the third channel is: a channel that is sent by the UE and/or a synchronization reference source of the second UE that is received by the UE;
  • the transmit power information is obtained by a synchronization sequence transmitted by the UE and/or the synchronization reference source of the second UE.
  • the acquiring unit is specifically configured to acquire the transmit power information by using at least one of the following methods:
  • the UE further includes:
  • a sending unit configured to send, by the acquiring unit, the link quality information between the N second UEs and the UE and the transmit power information of the N second UEs to the base station by using a cellular link Link quality report;
  • the link quality report specifically includes at least one of the following information:
  • an embodiment of the present invention provides a base station, including:
  • An acquiring unit configured to acquire link quality information between the N second user equipments UE and the first UE, and transmit power information of the N second UEs, where the N is an integer greater than or equal to 1
  • the transmit power information of the second UE is: transmit power deviation information between the first channel sent by the second UE and the second channel sent by the second UE, or the first sent by the second UE Transmit power information of the channel;
  • a determining unit configured to obtain, according to the link quality information between the N second user equipments UE and the first UE, and the transmit power information of the N second UEs, according to the acquiring unit, from the N Determining, by the second UE, a relay device of the first UE;
  • the first channel sent by the second UE is used for device discovery between the first UE and the second UE; the second channel sent by the second UE is used by the first UE and the Data transmission between the second UE; the link quality information that is sent by the second UE and the first UE is obtained by the first UE by using the first channel.
  • the transmit power information of the first channel sent by the second UE is used to determine a transmit power value of the first channel, and the transmit power value of the first channel is:
  • the UE-specific transmit power value refers to: the transmit power values of the first channel sent by different second UEs are different, or the first channel sent by the second UE in different groups The transmit power value is different; or,
  • the cell-specific transmit power value is: the transmit power values of the first channel sent by the second UE in different cells are different, or the second UEs in different cell groups send The transmit power values of the first channel are different.
  • the transmit power deviation information is used to determine a transmit power offset value between the first channel sent by the second UE and the second channel sent by the second UE, where the transmit power offset value is:
  • a UE-specific transmit power offset value refers to: transmit work between the first channel and the second channel sent by different second UEs
  • the rate deviation values are different, or the transmission power deviation values between the first channel and the second channel transmitted by the second UE in different groups are different; or
  • cell-specific transmit power offset value is: the transmit power offset value between the first channel and the second channel sent by the second UE in different cells is different, or is The transmit power offset values between the first channel and the second channel sent by the second UE of different cell groups are different; or
  • a transmit power offset value associated with a transmission mode of the second channel is a transmit power offset value associated with a transmission mode of the second channel.
  • the obtaining unit is specifically configured to:
  • the transmit power information is obtained from a server configuration to a storage local to the base station.
  • any one of the third implementable manners of the fifth aspect to the fifth aspect may be implemented,
  • the base station further includes:
  • a receiving unit configured to receive, by the acquiring unit, the first UE through the cell before acquiring, by the acquiring unit, the link quality information between the N second UEs and the first UE, and the N transmit power information of the second UE Link quality report sent by the link;
  • the link quality report specifically includes at least one of the following information:
  • an embodiment of the present invention provides a user equipment UE, including:
  • a sending unit configured to send transmit power information, where the transmit power information is: the transmit power deviation information between the first channel sent by the UE and the second channel sent by the UE, or the first channel sent by the UE Transmit power information;
  • a receiving unit configured to receive the acknowledgement information, where the acknowledgement information is used to indicate that the UE is a relay device;
  • the first channel sent by the UE is used for device discovery between the UE and the first UE, where the first UE is a UE that receives the transmit power information, and the second channel that is sent by the UE is used by the UE. Data transmission between the first UE and the UE is described.
  • the receiving unit is further configured to: before the second user equipment UE sends the transmit power information, receive signal quality threshold information configured by the base station;
  • the UE further includes:
  • a detecting unit configured to detect, according to the signal quality threshold information, that a signal quality of the signal received by the UE meets a preset rule.
  • the receiving unit is specifically configured to:
  • the transmit power information of the first channel sent by the UE is used to determine a transmit power value of the first channel, and the transmit power value of the first channel is:
  • the UE-specific transmit power value refers to: the transmit power value of the first channel sent by different UEs is different, or the transmit power value of the first channel sent by the UE in different groups Is different; or,
  • a cell-specific transmit power value refers to: a transmit power value of a first channel sent by a UE in a different cell is different, or a first channel sent by a UE in a different cell group Transmit power values are different of.
  • the transmit power deviation information is used to determine a transmit power offset value between a first channel sent by the UE and a second channel sent by the UE, where the transmit power offset value is:
  • the UE-specific transmit power offset value refers to: the transmit power offset value between the first channel and the second channel sent by different UEs is different, or is sent by different groups of UEs.
  • the value of the transmission power deviation between the first channel and the second channel is different; or,
  • cell-specific transmit power offset value means that the transmit power offset values between the first channel and the second channel sent by the UEs in different cells are different, or are in different cells.
  • the transmit power offset value between the first channel and the second channel sent by the UE of the group is different; or
  • a transmit power offset value associated with a transmission mode of the second channel is a transmit power offset value associated with a transmission mode of the second channel.
  • the sending unit is specifically configured to:
  • the sending unit sends the transmit power information in at least one of the following manners:
  • the embodiment of the present invention provides a method, a device, and a system for selecting a relay device, where the first user equipment UE obtains link quality information between N second user equipments UE and the first UE, and N Transmit power information of the second UE; link quality information between the N second UEs and the first UE acquired by the acquiring unit, and transmit power information of the N second UEs Determining, by the N of the second UEs, a relay device of the first UE.
  • the selection of the peer-to-peer relay device is implemented by the first UE, and the problem that the peer device is selected as the relay device does not exist in the prior art.
  • FIG. 1 is a schematic diagram of an application scenario provided by the present invention
  • FIG. 2 is a schematic diagram of an application scenario provided by the present invention.
  • FIG. 3 is a flowchart of a method for selecting a relay device according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of information carried by a first channel provided by the present invention.
  • FIG. 5 is a flowchart of a method for selecting a relay device according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for selecting a relay device according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a user equipment UE according to an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a user equipment UE according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of another user equipment UE according to an embodiment of the present disclosure.
  • FIG. 9A is a structural diagram of another user equipment UE according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a relay selection system according to an embodiment of the present invention.
  • RSRP2 Reference Signal Receiving Power
  • TxP1 the transmit power on the first channel
  • PL1 the path loss
  • RSRP2-RSRP1 (TxP2 ⁇ TxP1)-(PL2-PL1).
  • the path loss of the second channel of the plurality of candidate relay devices can be obtained, so that Path loss condition of the second channel of the candidate relay device, selecting a suitable UE from the plurality of candidate relay devices as the remote device Relay device.
  • signal quality information of the first channel of the plurality of candidate relay devices is obtained, and signal quality between the first channel and the second channel is poor, signal quality information of the second channel of the plurality of candidate relay devices may be obtained. Therefore, an appropriate UE can be selected from the plurality of candidate relay devices as the relay device of the remote device according to the signal quality information of the second channel of the plurality of candidate relay devices.
  • FIG. 3 is a diagram of a method for selecting a relay device according to an embodiment of the present invention, which is applied to a first user equipment (User Equipment, UE), where the first UE may be: at a first UE and a base station (eNB) When there is data transmission, the data transmission is not directly performed with the eNB, but the UE that performs data transmission with the base station indirectly through the forwarding of the relay device, such as the remote device.
  • the first UE may be located in a network coverage of the base station, directly establish a Radio Resource Control (RRC) connection with the base station, or receive a broadcast message by the receiving base station, but perform data transmission with the base station.
  • RRC Radio Resource Control
  • the first UE is a remote UE, and is located in the network coverage of the eNB 2, and can perform data transmission through the UE 21 and the eNB 2, and perform data transmission through the UE 11 and the eNB 1 .
  • the first UE may also be located outside the network coverage of the base station, and receive signals sent by the user equipment in the coverage of the base station network.
  • the first UE is a remote UE, located at the eNB1 and Outside the network coverage of eNB2, signals transmitted by UE21 and UE11 within the network coverage of eNB1 and eNB2 can be simultaneously received.
  • the method may include the following steps:
  • Step 101 The first UE acquires link quality information between the N second UEs and the first UE, and transmit power information of the N second UEs.
  • the second UE may be a candidate relay UE that can become a relay device before the relay device determines, and N is an integer greater than or equal to 1.
  • the first UE may determine, as a candidate relay device, the UE whose received signal quality is greater than the preset threshold, and then determine the total of the candidate relay devices.
  • the device is the N second UEs, or some of the determined candidate relay devices are used as the N second UEs, that is, N devices may be taken from the predetermined M candidate relay devices.
  • the two UEs, M may be integers greater than N, or may be integers equal to N.
  • the preset threshold may be pre-defined in advance, or may be configured by the base station by using signaling, which is not limited in the embodiment of the present invention.
  • the first UE is a remote UE, and firstly, five devices UE20, UE21, UE22, UE10, and UE11 are determined as candidate relay UEs of the remote UE, and then five devices are obtained. Selecting the UE22, the UE21, and the UE11 to obtain the link quality information between the UE and the remote UE, and obtain the link quality information between the UE and the remote UE, and obtain the link quality information between the UE11 and the remote UE.
  • the five devices are determined as the second UE, and the link quality information between the UE 20 and the remote UE is obtained, and the link quality information between the UE 21 and the remote UE is obtained, and the chain between the UE 22 and the remote UE is obtained.
  • the link quality information is obtained, and the link quality information between the UE 10 and the remote UE is obtained, and the link quality information between the UE 11 and the remote UE is obtained.
  • the signal quality may be Reference Signal Receiving Power (RSRP), Reference Signal Received Quality (RSR), Received Signal Strength Indication (RSSI), and second UE. Any one or more of Path Loss (PL) between the first UE and the first UE.
  • RSRP Reference Signal Receiving Power
  • RSSI Received Signal Strength Indication
  • PL Path Loss
  • the link quality information between the second UE and the first UE is obtained by the first UE by using the first channel, and may be: the first channel between the second UE and the first UE.
  • Signal quality such as: RSRP, RSRQ, RSSI, path loss value PL between the second UE and the first UE; wherein the path loss value PL can pass the received RSRP from the second UE and the obtained first channel
  • the first UE may receive the discovery message sent by the second UE by using the first channel, and obtain the link quality information according to the discovery message.
  • the transmit power information may be: transmit power deviation information between the first channel sent by the second UE and the second channel sent by the second UE; or may be: the first channel sent by the second UE Transmit power information.
  • the first channel is used for device discovery between the first UE and the second UE, and may be a D2D discovery channel between the first UE and the second UE.
  • the first channel may be used to implement relay device discovery between the first UE and the second UE.
  • the method for relay device discovery is implemented by transmitting information including the first and/or second UE identifiers on the first channel.
  • the second channel is used for data transmission between the first UE and the second UE, and may be a Device to Device (D2D) link between the first UE and the second UE.
  • D2D Device to Device
  • the device-to-device link may be referred to as a D2D link, and may also be referred to as a side link.
  • the present invention is used as a name for a name, using a D2D link as a device-to-device link. Specific terms, but this term does not limit the scope of the method of the invention.
  • the transmission mode between different devices of the D2D link may be any one of a broadcast, a multicast, or a unicast transmission mode, which is not limited by the present invention.
  • the first channel and the second channel may also be other channels, which are not limited in the embodiment of the present invention.
  • the transmit power referred to in the present invention is the transmit power value on a specific transmit resource, for example, the transmit power on each device to device (D2D) link transmission symbol, or each D2D chain.
  • the transmit power on the transmit subframe, or the transmit power on every M physical resource block (PRB), M is a positive integer not less than 1, or on each resource element (Resource Element, RE) Transmit power.
  • the transmit power value of the first channel may be: a UE-specific transmit power value, where the UE-specific transmit power value is: the transmit power values of the first channel sent by different second UEs are different.
  • the transmit power values of the first channel transmitted by the second UEs in different groups are different.
  • the transmit power value of the first channel may also be a cell-specific transmit power value, where the cell-specific transmit power value means that the transmit power values of the first channel sent by the second UE in different cells are different.
  • the transmit power values of the first channel transmitted by the second UEs in different cell groups are different.
  • the transmit power deviation information may be a transmit power offset value between the first channel and the second channel, and may be an indication for determining a transmit power offset value between the first channel and the second channel sent by the second UE. information.
  • the transmit power offset value may be: a UE-specific transmit power offset value, where the UE-specific transmit power offset value refers to: transmit power between the first channel and the second channel sent by different second UEs.
  • the deviation values are different.
  • the UE 20 and the UE 21 are two different second UEs, and the transmit power offset value between the first channel and the second channel sent by the UE 20 is compared with the first channel and the second channel sent by the UE 21 .
  • the transmit power offset values are different, or the transmit power offset values between the first channel and the second channel sent by the second UE in different groups are different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a cell-specific transmit power offset value, where the cell-specific transmit power offset value refers to: the first channel and the second channel transmitted by the second UE in different cells.
  • the power deviation values are different. For example, as shown in FIG. 1, if the UE 20, the UE 21, and the UE 10 are in the cell 1, and the UE 11 and the UE 22 are in the cell 2, the transmit power offset value between the first channel and the second channel transmitted by the UE 20 is the same as the first channel and sent by the UE 11.
  • the transmit power offset values between the second channels are different.
  • the transmit power offset value between the first channel and the second channel sent by the second UE in different cell groups is different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a transmit power offset value associated with a transmission mode of the second channel; wherein the transmission mode may be a network-based configuration D2D Mode 1 of the link transmission resource may also be a transmission mode 2 of the D2D based on the UE self-selected resource. For example, if the transmission power deviation value corresponding to the transmission mode 1 is 3 dB and the transmission power deviation value corresponding to the transmission mode 2 is 5 dB, when the transmission mode of the second channel transmitted by the second UE is the transmission mode 1, the first channel is The value of the transmission power deviation from the second channel is 3 dB.
  • mode 1 and mode 2 may also correspond to different transmit power calculation formulas and/or calculation parameters of transmit power.
  • the first UE and/or the second UE may calculate a transmit power offset value between the first channel and the second channel according to a predefined transmit power calculation formula and/or a calculation parameter of the transmit power.
  • the first UE may acquire the second UE by using at least one of the following three modes: (1), (2), and (3) Transmit power information:
  • the first UE acquires the transmit power information by using a serving base station of the first UE.
  • the first UE is in the network coverage of the serving base station of the first UE.
  • the second UE is the candidate relay device UE21
  • the first UE is the remote UE, and is in the network coverage of the eNB2, that is, the eNB2 is the serving base station of the remote UE.
  • the remote UE may obtain the transmit power information between the first channel and the second channel sent by the candidate relay device UE21 through the eNB2.
  • the first UE acquires the transmit power information by using the second UE.
  • the first UE may be located in the network coverage of the base station, and may also be located outside the coverage of the base station.
  • the first UE may obtain the transmit power information by using the first channel that is sent by the second UE.
  • the first UE may adopt the following (a), (b), and (c) And (d) obtaining the transmit power information from the first channel sent by the second UE by using at least one mode:
  • the first UE acquires the transmit power information by using information carried by the first channel.
  • the information carried by the first channel may include a transmission mode indicating the second channel.
  • the bit information of the formula, such as the bit number 0, 1 indicates that the transmission mode of the second channel is the transmission mode 1 or the transmission mode 2.
  • the first UE may obtain the transmission mode of the second channel according to the bit information, and then obtain the first according to the correspondence between the transmission mode and the transmission power deviation value. Transmit power offset value between the first channel and the second channel sent by the UE; or, according to the correspondence between the transmission mode and the transmit power value, the transmit power value of the first channel sent by the second UE is obtained.
  • the information carried by the first channel may further include a dedicated bit field for indicating a transmit power offset value or a transmit power value, wherein the dedicated bit field includes bit information corresponding to the quantized transmit power offset value or transmit power value.
  • the transmission power deviation between the first channel and the second channel transmitted by the plurality of second UEs has a minimum power deviation value of 0 dB, and the maximum power deviation value is 10 dB
  • the transmission power deviation in the range of 0 dB to 10 dB is performed.
  • the values are quantized to obtain quantized values [0, 3, 6, 9] dB, and the quantized power deviation values can be represented by 2-bit information (as shown in Table 1 below).
  • the bit information included in the dedicated field is 00, it may be determined according to Table 1 that the transmission power deviation value between the first channel and the second channel transmitted by the second UE is 0 dB.
  • the magnitude of the quantization power deviation value in the range of the minimum power deviation to the maximum power deviation may be set, which is not limited in the embodiment of the present invention.
  • the higher the quantization level the more detailed the power offset value is divided, and more bit information is needed to represent the quantized transmit power offset value.
  • the information carried by the first channel may be located in a data packet sent by the first channel to indicate a request or a response of the device discovery.
  • the first channel is The D2D discovery channel, which contains the device discovery message is 232 bits.
  • a dedicated field may be added to the first channel, and bit information indicating the power offset value or the transmission power value is set in the dedicated field (eg, As shown in FIG. 4, the information bits occupying the device discovery signal in the original first channel are used to transmit bit information indicating the transmission power value or the transmission power deviation value.
  • the power value needs to occupy the bit of the original information in the first channel, thereby affecting the code rate of the first channel.
  • the dedicated field has a smaller number of bits occupied by the 232 bits of the message transmitted by the device, the effect on the code rate is negligible for the first channel.
  • the first UE acquires the transmit power information by using a Cyclic Redundancy Check (CRC) mask used by the second UE to send the first channel.
  • CRC Cyclic Redundancy Check
  • the CRC mask may be: a predefined 0, 1 bit sequence added to the CRC field after the encoding is completed, which is the same length as the CRC bit.
  • the CRC mask is not used or the default CRC mask is an all-zero sequence. If there is no CRC mask, the decoded information bits are directly subjected to CRC check during decoding. If the CRC check result is correct, the whole process of receiving, demodulating and decoding of the data packet is considered correct. Otherwise, it's wrong.
  • the CRC is used to add a non-zero CRC mask sequence to the first channel, which can be used to carry a part of the bit information, and obtain the transmit power information according to the bit information carried by the CRC mask.
  • mapping different CRC masks with bit information for indicating a transmit power value or a transmit power offset value is a mapping table for mapping a CRC mask into 2-bit information, if the carried CRC If the mask is 000011110000111100001111, the bit information for indicating the power offset value can be obtained as 00, and the power offset can be obtained according to the corresponding relationship between the bit information and the power offset value (as shown in Table 1). Difference.
  • mapping relationship between the CRC mask and the bit information of other lengths may be set according to the foregoing principles, and is not exemplified herein.
  • the first UE acquires the transmit power information by using a Demodulation Reference Signal (DMRS) used by the second UE to send the first channel.
  • DMRS Demodulation Reference Signal
  • the first UE may obtain transmit power information according to cyclic shift values of different DMRS sequences, and determine a power offset value or a transmit power value according to the transmit power information. For example, if the DMRS sequence number has 8 different cyclic shift values, the information state corresponding to 3 bits can be used to transmit 3-bit information, and the different cyclic shift values correspond to one of the carried 3-bit information.
  • the first UE may further acquire transmit power information according to a root sequence number of different DMRS sequences, and determine a power offset value or a transmit power value according to the transmit power information.
  • a DMRS sequence of length 24 is generated by a ZC sequence of length 23, and there may be at least 22 root sequence numbers of different DMRS sequences, which have a value of [1, 22].
  • the first UE may also associate the relationship between the adjacent DMRS sequences and the power offset value according to different DMRS sequences mapped on the DMRS symbols in the two adjacent slots in the 1 ms subframe, according to the context.
  • the relationship of the neighboring DMRS sequences obtains the power offset value.
  • the first UE may determine the power offset information according to the modulated data symbols on the two adjacent DMRSs, and determine the power offset value or the transmit power value according to the acquired transmit power offset information.
  • a DMRS in two adjacent slots in a 1 ms subframe may be in any one of the two DMRS sequences.
  • the column is modulated with a modulation symbol, and carries information from the modulation symbol. For example, if a QPSK symbol is modulated, 2-bit information can be indicated, and a 16QAM symbol can be modulated to indicate 4-bit information and modulate a 64QAM signal. Then it can indicate 6 bits of information.
  • the first UE acquires the transmit power information by using resource location information used by the second UE to send the first channel.
  • the first UE may obtain the transmit power information by using the resource pool used by the second UE to send the first channel, that is, if there are K resource pools, the corresponding indication of each resource pool does not exceed Log2 (K) bit information.
  • the transmit power offset value corresponding to the bit information may be determined according to the bit information corresponding to the resource pool in which the first channel is located.
  • the four resource pools respectively correspond to 2-bit information. If the first channel is in the resource pool 2, the acquired transmit power information is 01, and then according to the correspondence between the bit information and the power offset value (eg, As shown in Table 1, it is determined that the transmission power deviation value between the first channel and the second channel transmitted by the second UE is: 3 dB.
  • the first UE acquires the transmit power information by using a synchronization reference source of the first UE and/or the second UE.
  • the synchronization reference source of the first UE and/or the second UE may be: a device that sends a synchronization reference signal to the first UE and/or the second UE; the synchronization reference source may be the first The UE and/or the second UE are in the same network coverage, and may also be in different network coverages from the first UE and/or the second UE.
  • the first UE may acquire the transmit power information by using a third channel that is sent by the first UE and/or the synchronization reference source of the second UE;
  • the third channel is: a channel sent by the first UE and/or the synchronization reference source of the second UE received by the UE;
  • the transmit power information may also be acquired by a synchronization sequence transmitted by the first UE and/or the synchronization reference source of the second UE.
  • the acquiring, by the first UE, the transmit power information by using the third channel that is sent by the synchronization reference source of the second UE includes the following at least one manner:
  • the first UE acquires the transmit power information by using information carried by the third channel, where the first UE may obtain the power information by using reserved bits of the third channel, and (a) above The manners are the same and will not be described here.
  • the first UE acquires the transmit power information by using a cyclic redundancy check code CRC mask used by the first UE and/or the synchronization reference source of the second UE to send the third channel.
  • the first UE acquires the transmit power by using a cyclic redundancy check code CRC mask used by the first UE and/or the synchronization reference source of the second UE to send the third channel.
  • the manner of the information is the same as that described in the above (b), and details are not described herein again.
  • the first UE acquires the transmit power information by using a demodulation reference signal DMRS used when the first UE and/or the synchronization reference source of the second UE sends the third channel; a manner in which the first UE acquires the transmit power information by using a demodulation reference signal DMRS used when the first UE and/or the synchronization reference source of the second UE sends the third channel, and (c) above
  • the manners are the same and will not be described here.
  • the step reference source uses the resource location information used by the third channel to acquire the transmit power information, where the first UE sends the synchronization reference source through the first UE and/or the second UE.
  • the manner of obtaining the transmission power information by using the resource location information used in the third channel is the same as that described in the above (c), and details are not described herein again.
  • Step 102 The first UE, according to the link quality information between the N second user equipments UE and the first UE, and the transmit power information of the N second UEs, from the N second UEs Determining the relay device of the first UE.
  • the transmission power information obtained by the first UE in step 101 may be the transmission power deviation information between the first channel and the second channel that is sent by the second UE, and may also be sent by the second UE. Transmit power information for one channel. Therefore, correspondingly, the first UE is configured according to the link quality information between the N second user equipments UE and the first UE, and the transmit power information of the N second UEs.
  • the determining, by the second UE, the relay device of the first UE may include:
  • the first UE is configured according to link quality information between the N second user equipments UE and the first UE, and the first channel sent by the N second UEs and the second channel sent by the second UE a transmission power deviation information, determining a relay device of the first UE from among the N second UEs;
  • the first UE according to the link quality information between the N second user equipments UE and the first UE, and the transmit power information of the first channel sent by the N second UEs, from the N Determining, in the second UE, a relay device of the first UE.
  • the first UE is configured to: according to link quality information between the N second user equipments UE and the first UE, and transmit power between the first channel and the second channel sent by the N second UEs Determining, the determining, by the N the second UE, the relay device of the first UE may include:
  • the first UE is configured according to link quality information between the N second user equipments UE and the first UE, and the first channel sent by the N second UEs and the second channel sent by the second UE Transmitting power deviation information, respectively calculating each of the above And performing, by the second UE, the link quality information of the second channel, and then determining, according to the link quality information of the second channel of all the second UEs, the second UE corresponding to the second channel with the best link quality.
  • the relay device of the UE is configured according to link quality information between the N second user equipments UE and the first UE, and the first channel sent by the N second UEs and the second channel sent by the second UE Transmitting power deviation information, respectively calculating each of the above And performing, by the second UE, the link quality information of the second channel, and then determining, according to the link quality information of the second channel of all the second UEs, the second UE corresponding to the second channel with the best link quality.
  • the relay device of the UE is configured
  • the second UE that has the largest addition result is determined as the relay device of the first UE, and the second UE with the largest addition result is the second UE with the best channel quality of the second channel.
  • the first UE is based on N pieces of link quality information between the second user equipment UE and the first UE, and N pieces of transmit power information of the first channel sent by the second UE.
  • the determining, by the second UE, the relay device of the first UE may include:
  • the base station may further determine a relay device for the first UE, and implement relay device selection.
  • the first UE acquires link quality information between the N second UEs and the first UE, and the transmit power of the N second UEs.
  • the method may further include:
  • a link quality report to the base station by using a cellular link, where the base station is a serving base station of the first UE, that is, the first UE is in the Within the network coverage of the base station, a link connection may be directly established with the first UE;
  • the first UE sends the link quality report to the base station by using the relay link of the first UE to the base station, so that the base station performs relay device selection according to the link quality report;
  • the first UE is not in the network coverage of the base station.
  • a relay link of the first UE to the base station where the first UE selects a second UEA among the N second UEs, and forms a “first UE-second UEA-base station” Following the link.
  • the link quality report specifically includes at least one of the following information:
  • the method may further include:
  • the first UE selects one UE from the N second UEs as the temporary relay UEA, performs data forwarding between the first UE and the base station, and forms a relay link with the first UE and the base station.
  • the embodiment of the present invention provides a method for selecting a relay device, where the first user equipment UE acquires link quality information between the N second user equipments UE and the first UE, and N of the second Transmit power information of the UE; according to the link quality information between the N second user equipment UE and the first UE, and the transmit power information of the N second UEs, from the N second UEs Determining the relay device of the first UE.
  • the selection of the peer-to-peer relay device is implemented by the first UE, and the problem that the peer device is selected as the relay device does not exist in the prior art.
  • FIG. 5 is a diagram of a method for selecting a relay device according to an embodiment of the present invention, which is applied to a base station. As shown in FIG. 5, the method may include:
  • Step 201 The base station acquires between the N second user equipments UE and the first UE. Link quality information, and transmission power information of N the second UEs.
  • the signal quality may be Reference Signal Receiving Power (RSRP), Reference Signal Received Quality (RSR), Received Signal Strength Indication (RSSI), and second UE. Any one or more of Path Loss (PL) between the first UE and the first UE.
  • RSRP Reference Signal Receiving Power
  • RSSI Received Signal Strength Indication
  • PL Path Loss
  • the link quality information between the second UE and the first UE is obtained by the first UE by using the first channel, and may be: the first channel between the second UE and the first UE.
  • Signal quality such as: RSRP, RSRQ, RSSI, path loss value PL between the second UE and the first UE; wherein the path loss value PL can pass the received RSRP from the second UE and the obtained first channel
  • the first UE may receive the discovery message sent by the second UE by using the first channel, and obtain the link quality information according to the discovery message.
  • the transmit power information may be: transmit power deviation information between the first channel sent by the second UE and the second channel sent by the second UE; or may be: the first channel sent by the second UE Transmit power information.
  • the first channel is used for device discovery between the first UE and the second UE, and may be a discovery channel between the first UE and the second UE.
  • the second channel is used for data transmission between the first UE and the second UE, and may be a Device to Device (D2D) link between the first UE and the second UE.
  • D2D Device to Device
  • the first channel and the second channel may also be other channels, which are not limited in the embodiment of the present invention.
  • the transmit power referred to in the present invention is the transmit power value on a specific transmit resource, for example, the transmit power on each device to device (D2D) link transmission symbol, or each D2D chain.
  • the transmit power value of the first channel may be: a UE-specific transmit power value, where the UE-specific transmit power value is: the transmit power values of the first channel sent by different second UEs are different.
  • the transmit power values of the first channel transmitted by the second UEs in different groups are different.
  • the transmit power value of the first channel may also be a cell-specific transmit power value, where the cell-specific transmit power value means that the transmit power values of the first channel sent by the second UE in different cells are different. Or the transmit power values of the first channel sent by the second UE in different cell groups are different.
  • the transmit power deviation information may be a transmit power offset value between the first channel and the second channel, and may be an indication for determining a transmit power offset value between the first channel and the second channel sent by the second UE. information.
  • the transmit power offset value may be: a UE-specific transmit power offset value, where the UE-specific transmit power offset value refers to: transmit power between the first channel and the second channel sent by different second UEs.
  • the deviation values are different.
  • the UE 20 and the UE 21 are two different second UEs, and the transmit power offset value between the first channel and the second channel sent by the UE 20 is compared with the first channel and the second channel sent by the UE 21 .
  • the transmit power offset values are different, or the transmit power offset values between the first channel and the second channel sent by the second UE in different groups are different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a cell-specific transmit power offset value, where the cell-specific transmit power offset value refers to: the first channel and the second channel transmitted by the second UE in different cells.
  • the power deviation values are different. For example, as shown in FIG. 1, if the UE 20, the UE 21, and the UE 10 are in the cell 1, and the UE 11 and the UE 22 are in the cell 2, the transmit power offset value between the first channel and the second channel transmitted by the UE 20 is the same as the first channel and sent by the UE 11. Transmit power deviation between the second channels The values are different. Or the transmit power offset value between the first channel and the second channel sent by the second UE in different cell groups is different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a transmit power offset value associated with a transmission mode of the second channel; wherein the transmission mode may be mode 1 based on a network configuration D2D link transmission resource, and may also be a D2D UE-based Transmission mode 2 of the optional resource. For example, if the transmission power deviation value corresponding to the transmission mode 1 is 3 dB and the transmission power deviation value corresponding to the transmission mode 2 is 5 dB, when the transmission mode of the second channel transmitted by the second UE is the transmission mode 1, the first channel is The value of the transmission power deviation from the second channel is 3 dB.
  • mode 1 and mode 2 may also correspond to different transmit power calculation formulas and/or calculation parameters of transmit power.
  • the first UE and/or the second UE may calculate a transmit power offset value between the first channel and the second channel according to a predefined transmit power calculation formula and/or a calculation parameter of the transmit power.
  • the base station may obtain the transmit power information from a serving base station of the second UE by using inter-base station signaling.
  • the base station may further read the transmit power information from a server, where the server may be an operation, management, and maintenance (OAM) server, which is a server pre-configured to the base station, and Transmit power information between the first channel and the second channel transmitted by the second UE is pre-stored in the server.
  • OAM operation, management, and maintenance
  • the base station may also acquire the transmit power information from a server configuration to a local storage of the base station.
  • Step 202 The base station determines, according to the link quality information between the N second UEs and the first UE, and the transmit power information of the N second UEs, the first one of the N second UEs.
  • the relay device of the UE determines, according to the link quality information between the N second UEs and the first UE, and the transmit power information of the N second UEs, the first one of the N second UEs.
  • the transmit power offset information between the first channel and the second channel that is sent by the second UE may also be the transmit power information of the first channel sent by the second UE. Therefore, correspondingly, the base station, according to the link quality information between the N second user equipment UE and the first UE, and the transmit power information of the N second UEs, from the N the second
  • the determining, by the UE, the relay device of the first UE may include:
  • the base station according to the link quality information between the N second user equipments UE and the first UE, and between the first channel sent by the N second UEs and the second channel sent by the second UE Transmitting power deviation information, determining a relay device of the first UE from among the N second UEs;
  • the base station according to the link quality information between the at least one N second user equipment UE and the first UE, and the transmit power information of the first channel sent by the second second UE, from the N locations Determining, in the second UE, a relay device of the first UE.
  • the base station according to the link quality information between the N second user equipments UE and the first UE, and the transmit power deviation information between the first channel and the second channel sent by the N second UEs Determining, by the N the second UE, the relay device of the first UE may include:
  • the base station Determining, by the base station, the link quality information between the N second user equipment UE and the first UE, and the transmission power deviation information between the first channel and the second channel sent by the N second UEs a link quality information of the second channel sent by each of the second UEs, and then, according to link quality information of the second channel of all the second UEs, the second UE corresponding to the second channel with the best link quality Determining the relay device of the first UE.
  • the deviation values are added and the result will be added
  • the largest second UE is determined as the relay device of the first UE, and the second UE with the largest addition result is: the second UE with the best channel quality of the second channel.
  • the base station according to the link quality information between the N second user equipments UE and the first UE, and the transmit power information of the first channel sent by the N second UEs, from the N
  • the determining, by the second UE, the relay device of the first UE may include:
  • the method before the base station acquires link quality information between the N second UEs and the first UE, and N transmit power information of the second UE, the method further Can include:
  • a link quality report sent by the first UE by using a cellular link where the base station is a serving base station of the first UE, that is, the first UE is within a network coverage of the base station , establishing a link connection directly with the first UE;
  • the base station receives a link quality report that is sent by the first UE to the relay link of the base station by using the first UE, where the first UE is not in the network coverage of the base station, Selecting, by the first UE, one UE from the N second UEs as a temporary relay UE, performing data forwarding between the first UE and the base station, and forming a relay link with the first UE and the base station.
  • the link quality report specifically includes at least one of the following information:
  • the embodiment of the present invention provides a method for selecting a relay device, where the base station acquires link quality information between the N second user equipments UE and the first UE, and the transmit power of the N second UEs. And determining, according to the link quality information between the N second user equipments UE and the first UE, and the transmit power information of the N second UEs, determining the N UEs The relay device of the first UE. In this way, the selection of the peer-to-peer relay device is implemented by the base station, and the problem that the peer device is selected as the relay device does not exist in the prior art.
  • FIG. 6 is a diagram showing another method for selecting a relay device according to an embodiment of the present invention. As shown in FIG. 6, the method may include:
  • Step 301 The second user equipment UE sends the transmission power information.
  • the second UE may be a candidate relay UE that can become a relay device before the relay device determines.
  • the transmit power information may be: transmit power deviation information between the first channel sent by the second UE and the second channel sent by the second UE; or may be: the first channel sent by the second UE Transmit power information.
  • the first channel is used for device discovery between the first UE and the second UE, and may be a discovery channel between the first UE and the second UE.
  • the second channel is used for data transmission between the first UE and the second UE, and may be a Device to Device (D2D) link between the first UE and the second UE.
  • D2D Device to Device
  • the first channel and the second channel may also be other channels, which are not limited in the embodiment of the present invention.
  • the transmit power value of the first channel may be: a UE-specific transmit power value, where the UE-specific transmit power value is: the transmit power values of the first channel sent by different second UEs are different.
  • the transmit power values of the first channel transmitted by the second UEs in different groups are different.
  • the transmit power value of the first channel may also be a cell-specific transmit power value, where the cell-specific transmit power value means that the transmit power values of the first channel sent by the second UE in different cells are different.
  • the transmit power values of the first channel sent by the second UE in different cell groups are different. of.
  • the transmit power deviation information may be a transmit power offset value between the first channel and the second channel, and may be an indication for determining a transmit power offset value between the first channel and the second channel sent by the second UE. information.
  • the transmit power offset value may be: a UE-specific transmit power offset value, where the UE-specific transmit power offset value refers to: transmit power between the first channel and the second channel sent by different second UEs.
  • the deviation values are different.
  • the UE 20 and the UE 21 are two different second UEs, and the transmit power offset value between the first channel and the second channel sent by the UE 20 is compared with the first channel and the second channel sent by the UE 21 .
  • the transmit power offset values are different, or the transmit power offset values between the first channel and the second channel sent by the second UE in different groups are different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a cell-specific transmit power offset value, where the cell-specific transmit power offset value refers to: the first channel and the second channel transmitted by the second UE in different cells.
  • the power deviation values are different. For example, as shown in FIG. 1, if the UE 20, the UE 21, and the UE 10 are in the cell 1, and the UE 11 and the UE 22 are in the cell 2, the transmit power offset value between the first channel and the second channel transmitted by the UE 20 is the same as the first channel and sent by the UE 11.
  • the transmit power offset values between the second channels are different.
  • the transmit power offset value between the first channel and the second channel sent by the second UE in different cell groups is different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a transmit power offset value associated with a transmission mode of the second channel; wherein the transmission mode may be mode 1 based on a network configuration D2D link transmission resource, and may also be a D2D UE-based Transport mode of self-selected resources Equation 2. For example, if the transmission power deviation value corresponding to the transmission mode 1 is 3 dB and the transmission power deviation value corresponding to the transmission mode 2 is 5 dB, when the transmission mode of the second channel transmitted by the second UE is the transmission mode 1, the first channel is The value of the transmission power deviation from the second channel is 3 dB.
  • mode 1 and mode 2 may also correspond to different transmit power calculation formulas and/or calculation parameters of transmit power.
  • the first UE and/or the second UE may calculate a transmit power offset value between the first channel and the second channel according to a predefined transmit power calculation formula and/or a calculation parameter of the transmit power.
  • the second UE may send the transmit power information by using at least one of the following manners:
  • the second UE sends the transmit power information by using the serving base station of the second UE. Specifically, when the first UE is in the coverage of the base station, the second UE may directly use the serving base station of the second UE. Transmitting, by the first UE, the transmit power information;
  • the second UE sends the transmit power information by using the first channel.
  • the sending, by the second UE, the transmit power information by using the first channel specifically includes at least one of the following manners:
  • the second UE sends the transmit power information by using a cyclic redundancy check code CRC mask used by the first channel;
  • the second UE sends the transmit power information by using a demodulation reference signal DMRS used by the first channel;
  • the second UE sends the transmit power information by using resource location information used by the first channel.
  • Step 302 The second user equipment UE receives the acknowledgement information, where the acknowledgement information is used to indicate that the second UE is a relay device.
  • the second UE may receive the acknowledgement information sent by the serving base station or the first UE of the second UE, indicating that the second UE becomes a relay device.
  • the second UE needs to determine that it is a candidate relay device.
  • the method may further include:
  • the second UE receives signal quality threshold information configured by the base station
  • the signal quality threshold information may include a preset signal quality threshold value, where the preset signal quality threshold value may be set as needed, which is not limited by the embodiment of the present invention.
  • the second UE may receive threshold information of signal quality that is sent by the base station by using dedicated or broadcast signaling.
  • the signal quality of the signal that the second UE detects that the second UE receives may include at least one of the following signal qualities:
  • Detecting signal quality from a base station such as at least one of RSRP, RSRQ, RSSI, and PL;
  • a signal quality from the first UE such as at least one of RSRP, RSRQ, RSSI, PL, is detected.
  • the second UE according to the signal quality threshold information, that the signal quality of the signal received by the second UE meets a preset rule may include at least one of the following:
  • a signal quality from the first UE is detected to be greater than and/or equal to a preset signal quality threshold in the signal quality threshold information.
  • the embodiment of the present invention provides a method for selecting a relay device, where the second user equipment UE sends the transmit power information, where the transmit power information is: the first channel and the second UE sent by the second UE. Transmit power deviation information between the transmitted second channels, or transmit power information of the first channel sent by the second UE; receiving Confirmation information, wherein the confirmation information is used to indicate that the second UE becomes a relay device.
  • the second UE sends the transmission power information to the first UE, so that the first UE determines the relay device from the plurality of second UEs according to the information, and the selection of the peer relay device is implemented by the first UE.
  • the problem that the selection of the peer device is selected as the relay device in the prior art is solved.
  • FIG. 7 is a user equipment UE 70, which is used to perform the method according to the first embodiment, where the UE may be: when the UE and the base station (eNB) have data transmission, not directly with the eNB.
  • the UE that needs to perform the data transmission with the base station, such as the remote device, is required to be forwarded by the relay device.
  • the UE may be located in the network coverage of the base station, and may directly The base station establishes a radio resource control (RRC) connection or the receiving base station sends a broadcast message, but when performing data transmission with the base station, it needs to be forwarded by the relay device.
  • RRC radio resource control
  • the UE is located in the network coverage of the eNB2, and can perform data transmission by the UE 21 and the eNB2, and perform data transmission by the UE11 and the eNB1.
  • the UE can also be located outside the network coverage of the base station, and can receive the coverage from the base station network.
  • the signal sent by the user equipment for example, as shown in FIG. 2, the UE is a remote UE, and is located outside the network coverage of eNB1 and eNB2, and can simultaneously UE21 and UE11 signals received in the transmission network coverage of eNB1 and eNB2.
  • the UE may include:
  • the obtaining unit 701 is configured to acquire link quality information between the N second UEs and the UE, and transmit power information of the N second UEs.
  • the second UE may be a candidate relay UE that can become a relay device before the relay device determines; N is an integer greater than or equal to 1. It should be noted that, in a specific application scenario, the UE may determine, as the candidate relay device, the UE whose received signal quality is greater than the preset threshold, and then use all the devices in the determined candidate relay device as the foregoing N a second UE, or a part of the determined candidate relay devices as the N second UEs, that is, the M candidate relays that can be determined in advance
  • the device takes N devices as the second UE, and M may be an integer greater than N or an integer equal to N.
  • the preset threshold may be pre-defined in advance, or may be configured by the base station by using signaling, which is not limited in the embodiment of the present invention.
  • the UE is a remote UE, and firstly determines five devices UE20, UE21, UE22, UE10, and UE11 as candidate relay UEs of the remote UE, and then selects from the five devices.
  • the UE 22, the UE 21, and the UE 11 are configured to obtain the link quality information between the UE and the remote UE, and obtain the link quality information between the UE and the remote UE, and obtain the link quality information between the UE 11 and the remote UE; or And determining the link quality information between the UE 20 and the remote UE, and obtaining the link quality between the UE 22 and the remote UE, and obtaining the link quality information between the UE and the remote UE.
  • the information about the link quality between the UE 10 and the remote UE is obtained, and the link quality information between the UE 11 and the remote UE is obtained.
  • the UE may receive the discovery message sent by the second UE by using the first channel, and obtain the link quality information according to the discovery message.
  • the transmit power information may be: transmit power deviation information between the first channel sent by the second UE and the second channel sent by the second UE; or may be: the first channel sent by the second UE Transmit power information.
  • the first channel is used for device discovery between the UE and the second UE, and may be a discovery channel between the UE and the second UE.
  • the second channel is used for data transmission between the UE and the second UE, and may be a Device to Device (D2D) link between the UE and the second UE.
  • D2D Device to Device
  • the first channel and the second channel may also be other channels, which are not limited in the embodiment of the present invention.
  • the transmit power value of the first channel may be: a UE-specific transmit power value, where the UE-specific transmit power value refers to: The transmit power values of one channel are different, or the transmit power values of the first channel transmitted by the second UE in different groups are different.
  • the transmit power value of the first channel may also be a cell-specific transmit power value, where the cell-specific transmit power value means that the transmit power values of the first channel sent by the second UE in different cells are different. Or the transmit power values of the first channel sent by the second UE in different cell groups are different.
  • the transmit power deviation information may be a transmit power offset value between the first channel and the second channel, and may be an indication for determining a transmit power offset value between the first channel and the second channel sent by the second UE. information.
  • the transmit power offset value may be: a UE-specific transmit power offset value, where the UE-specific transmit power offset value refers to: transmit power between the first channel and the second channel sent by different second UEs.
  • the deviation values are different.
  • the UE 20 and the UE 21 are two different second UEs, and the transmit power offset value between the first channel and the second channel sent by the UE 20 is compared with the first channel and the second channel sent by the UE 21 .
  • the transmit power offset values are different, or the transmit power offset values between the first channel and the second channel sent by the second UE in different groups are different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a cell-specific transmit power offset value, where the cell-specific transmit power offset value refers to: the first channel and the second channel transmitted by the second UE in different cells.
  • the power deviation values are different. For example, as shown in FIG. 1, if the UE 20, the UE 21, and the UE 10 are in the cell 1, and the UE 11 and the UE 22 are in the cell 2, the transmit power offset value between the first channel and the second channel transmitted by the UE 20 is the same as the first channel and sent by the UE 11.
  • the transmit power offset values between the second channels are different.
  • the transmit power offset value between the first channel and the second channel sent by the second UE in different cell groups is different. For example, as shown in FIG.
  • UE20, UE21, and UE10 are both in cell 1, but UE20 and UE21 is in group 1, UE 10 is in group 2, and the transmit power between the first channel and the second channel transmitted by the UE 20 is biased. The difference is different from the transmit power offset value between the first channel and the second channel transmitted by the UE 10.
  • the transmit power offset value may also be a transmit power offset value associated with a transmission mode of the second channel; wherein the transmission mode may be mode 1 based on a network configuration D2D link transmission resource, and may also be a D2D UE-based Transmission mode 2 of the optional resource. For example, if the transmission power deviation value corresponding to the transmission mode 1 is 3 dB and the transmission power deviation value corresponding to the transmission mode 2 is 5 dB, when the transmission mode of the second channel transmitted by the second UE is the transmission mode 1, the first channel is The value of the transmission power deviation from the second channel is 3 dB.
  • mode 1 and mode 2 may also correspond to different transmit power calculation formulas and/or calculation parameters of transmit power.
  • the UE and/or the second UE may calculate a transmit power offset value between the first channel and the second channel according to a predefined transmit power calculation formula and/or a calculation parameter of the transmit power.
  • a determining unit 702 configured to: according to the link quality information between the N second user equipments UE and the UE acquired by the acquiring unit 701, and the transmit power information of the N second UEs, from the N The relay device of the UE is determined among the second UEs.
  • the acquiring unit 701 may acquire the first sending by the second UE by using the following manners: (1), (2), and (3). Transmit power information between a channel and a second channel:
  • the UE in this mode (1), is in the network coverage of the serving base station of the UE.
  • the UE is the remote UE, and is in the network coverage of the eNB2, that is, the eNB2 is the serving base station of the remote UE, and at this time, the remote end
  • the UE may obtain the transmission power information between the first channel and the second channel transmitted by the candidate relay device UE21 through the eNB2.
  • the UE may be located in the network coverage of the base station, and may also be located outside the coverage of the base station.
  • the acquiring unit 701 may send the first one by using the second UE.
  • Obtaining, by the channel, the transmit power information specifically, the acquiring unit 701 may use the first channel sent by the second UE by using at least one of the following methods (a), (b), (c), and (d) Obtaining the transmit power information:
  • the information carried by the first channel may include bit information indicating a transmission mode of the second channel, such as the transmission mode of the second channel being the transmission mode 1 or the transmission mode 2 by using the number of bits 0 and 1.
  • the transmission mode of the second channel may be obtained according to the bit information, and then the second UE is obtained according to the correspondence between the transmission mode and the transmission power deviation value. Transmit power transmission value between the first channel and the second channel; or, according to the correspondence between the transmission mode and the transmit power value, the transmit power value of the first channel sent by the second UE is obtained.
  • the information carried by the first channel may further include a dedicated bit field for indicating a transmit power offset value or a transmit power value, wherein the dedicated bit field includes bit information corresponding to the quantized transmit power offset value.
  • the transmission power deviation between the first channel and the second channel transmitted by the plurality of second UEs has a minimum power deviation value of 0 dB, and the maximum power deviation value is 10 dB
  • the transmission power deviation in the range of 0 dB to 10 dB is performed.
  • the values are quantized to obtain quantized values [0, 3, 6, 9] dB, and the quantized power deviation values can be represented by 2-bit information (as shown in Table 1 below).
  • the bit information included in the dedicated field is 00, it may be determined according to Table 1 that the transmission power deviation value between the first channel and the second channel transmitted by the second UE is 0 dB.
  • the magnitude of the quantization power deviation value in the range of the minimum power deviation to the maximum power deviation may be set, which is not limited in the embodiment of the present invention.
  • the higher the quantization level the more detailed the power offset value is divided, and more bit information is needed to represent the quantized transmit power offset value.
  • the information carried by the first channel may be located in a data packet sent by the first channel to indicate a request or a response of the device discovery.
  • the first channel is The D2D discovery channel, which contains the device discovery message is 232 bits.
  • a dedicated field may be added to the first channel, and the bit information indicating the power offset value is set in the dedicated field.
  • the information bits occupying the device discovery signal in the original first channel are used to transmit bit information indicating the transmit power value or the transmit power offset value.
  • the power value needs to occupy the bit of the original information in the first channel, thereby affecting the code rate of the first channel.
  • the dedicated field has a smaller number of bits occupied by the 232 bits of the message transmitted by the device, the effect on the code rate is negligible for the first channel.
  • the CRC mask may be: a predefined 0, 1 bit sequence added to the CRC field after the encoding is completed, which is the same length as the CRC bit.
  • the CRC mask is not used or the default CRC mask is an all-zero sequence. If there is no CRC mask, the decoded information bits are directly subjected to CRC check during decoding. If the CRC check result is correct, the whole process of receiving, demodulating and decoding of the data packet is considered correct. Otherwise, it's wrong.
  • the CRC is used to add a non-zero CRC mask sequence to the first channel, which can be used to carry a part of the bit information, and obtain the transmit power information according to the bit information carried by the CRC mask.
  • mapping different CRC masks with bit information for indicating a transmit power value or a transmit power offset value is a mapping table for mapping a CRC mask into 2-bit information, if the carried CRC If the mask is 000011110000111100001111, the bit information for indicating the power offset value can be obtained as 00, and the power offset can be obtained according to the corresponding relationship between the bit information and the power offset value (as shown in Table 1). Difference.
  • mapping relationship between the CRC mask and the bit information of other lengths may be set according to the foregoing principles, and is not exemplified herein.
  • (c) acquiring the transmit power information by using a Demodulation Reference Signal (DMRS) used by the second UE to send the first channel.
  • DMRS Demodulation Reference Signal
  • the acquiring unit 701 may obtain transmit power information according to cyclic shift values of different DMRS sequences, and determine a power offset value or a transmit power value according to the transmit power information. For example, if the DMRS sequence number has 8 different cyclic shift values, the information state corresponding to 3 bits can be used to transmit 3-bit information, and the different cyclic shift values correspond to one of the carried 3-bit information.
  • the obtaining unit 701 may further acquire transmit power information according to a root sequence number of different DMRS sequences, and determine a power offset value or a transmit power value according to the transmit power information.
  • a DMRS sequence of length 24 is generated by a ZC sequence of length 23, and there may be at least 22 root sequence numbers of different DMRS sequences, which have a value of [1, 22].
  • the obtaining unit 701 may also associate the relationship between the adjacent DMRS sequences and the power offset value according to different DMRS sequences mapped on the DMRS symbols in the two adjacent slots in a 1 ms subframe, according to the context.
  • the relationship of the neighboring DMRS sequences obtains the power offset value.
  • the obtaining unit 701 may determine the power offset information according to the modulated data symbols on the two adjacent DMRSs, and determine the power offset value or the transmit power value according to the acquired transmit power offset information.
  • a DMRS in two adjacent slots in a 1 ms subframe may modulate a modulation symbol on any one of the two DMRS sequences, and carry information from the modulation symbol, such as:
  • Modulating a QPSK symbol can indicate 2-bit information
  • modulate a 16QAM symbol and can indicate 4-bit information.
  • Modulating a 64QAM signal can indicate 6-bit information.
  • the obtaining unit 701 may obtain the transmit power information correspondingly by using the resource pool used by the second UE to send the first channel, that is, if there are K resource pools, each resource pool may correspond to the indication not exceeding the log2 ( K) bit information, at this time, the transmit power offset value corresponding to the bit information may be determined according to bit information corresponding to the resource pool in which the first channel is located.
  • the four resource pools respectively correspond to 2-bit information. If the first channel is in resource pool 2, the acquired transmit power information is 01, and then according to the correspondence between the bit information and the power offset value (eg, As shown in Table 1, it is determined that the transmission power deviation value between the first channel and the second channel transmitted by the second UE is: 3 dB.
  • the synchronization reference source of the UE and/or the second UE may be: a device that sends a synchronization reference signal to the UE and/or the second UE; the synchronization reference source may be related to the UE and/or the The second UE is in the same network coverage, and may also be in different network coverage with the UE and/or the second UE.
  • the acquiring unit 701 may obtain the transmit power information by using a third channel that is sent by the UE and/or the synchronization reference source of the second UE, where the third channel is: a channel transmitted by the UE and/or the synchronization reference source of the second UE;
  • the transmit power information may also be obtained by a synchronization sequence transmitted by the UE and/or the synchronization reference source of the second UE.
  • the obtaining, by the acquiring unit 701, the transmit power information by using the third channel that is sent by the synchronization reference source of the second UE specifically includes the following at least one manner:
  • the acquiring unit 701 acquires the transmit power information by using information carried by the third channel, where the acquiring unit 701 may obtain the power information by using reserved bits of the third channel, and (a) above. The manners are the same and will not be described here.
  • the acquiring unit 701 acquires the transmit power information by using a cyclic redundancy check code CRC mask used by the UE and/or the synchronization reference source of the second UE to send the third channel;
  • the acquiring unit 701 acquires the transmit power information by using a cyclic redundancy check code CRC mask used by the UE and/or the synchronization reference source of the second UE to send the third channel, and the foregoing (b)
  • the manner is the same and will not be described here.
  • the acquiring unit 701 acquires the transmit power information by using a demodulation reference signal DMRS used by the UE and/or the synchronization reference source of the second UE to send the third channel; wherein the acquiring
  • the manner in which the unit 701 acquires the transmit power information by using the demodulation reference signal DMRS used by the UE and/or the synchronization reference source of the second UE to transmit the third channel is the same as that described in (c) above. , will not repeat them here.
  • the acquiring unit 701 acquires the transmit power information by using the resource location information used by the UE and/or the synchronization reference source of the second UE to send the third channel; wherein the acquiring unit 701
  • the manner of acquiring the transmit power information by using the resource location information used by the UE and/or the synchronization reference source of the second UE to send the third channel is the same as that described in (c) above, and is not Let me repeat.
  • the acquiring unit 701 may obtain the transmit power information between the first channel and the second channel that is sent by the second UE, and may also be the first channel sent by the second UE. Transmitting power information; therefore, correspondingly, the determining unit 702 is specifically configured to:
  • the link quality information between the N second user equipments UE and the UE and the transmit power information of the first channel sent by the N second UEs, from the N second UEs Determining a relay device of the UE.
  • Determining the relay device of the UE in the N second UEs may include:
  • link quality information (such as reference signal received power) between the UE 20, the UE 21, the UE 22, the UE 10, and the UE 11 and the remote device (UE) are respectively acquired: RSRP20, RSRP21, RSRP22, RSRP10, and RSRP11.
  • the second UE that has the largest summation result is determined as the relay device of the UE, and the second UE with the largest addition result is: the second UE with the best channel quality of the second channel.
  • the information about the link quality between the N second user equipments UE and the UE, and the transmit power information of the first channel sent by the N second UEs, from the N may include:
  • RSRP1 TxP1 ⁇ PL1
  • TxP1 is the transmit power on the first channel
  • PL1 is the path loss between the candidate relay device and the remote user equipment that the first channel experiences when transmitting, and acquires the N channels on the first channel sent by the second UE.
  • a path loss and then determining, by the second UE corresponding to the path loss of the first channel of the N second UEs, the second UE The relay device of the UE.
  • the base station may further determine, by the base station, the relay device to implement the relay device selection, where the base station acquires the N second UEs in order to enable the base station to complete the selection of the relay device.
  • the UE may further include:
  • the sending unit 703 is configured to send, by using a cellular link, the link quality report to the base station, where the base station is a serving base station of the UE, that is, the UE is within a network coverage of the base station, and Establishing a link connection with the UE directly;
  • the relay link of the UE to the base station is a relay link between the UE and the second UEA-base station formed by the UE selecting one second UEA among the N second UEs.
  • the link quality report specifically includes at least one of the following information:
  • the determining unit 702 is further configured to: in the sending, by the UE, a relay link to the base station to the base station Before transmitting the link quality report, one UE is selected as the temporary relay UE from the N second UEs, data is forwarded between the UE and the base station, and a relay link is formed with the UE and the base station.
  • the embodiment of the present invention provides a user equipment UE, which acquires link quality information between N second user equipments UE and the UE, and transmission power information of N second UEs;
  • the power information is: transmit power information between the first channel and the second channel sent by the second UE, or transmit power information of the first channel sent by the second UE; according to the N second user equipments Link quality information between the UE and the UE, and transmission power information of the N second UEs, Determining a relay device of the UE from among the N second UEs.
  • the selection of the peer-to-peer relay device is implemented by the UE, and the problem that the peer device is selected as the relay device does not exist in the prior art.
  • FIG. 8 is a structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 8, the base station may include:
  • the obtaining unit 801 is configured to acquire link quality information between the N second user equipments UE and the first UE, and transmit power information of the N second UEs.
  • the link quality information is obtained by the first UE by using the first channel, and may be Reference Signal Receiving Power (RSRP) and Reference Signal Receiving Quality (RSRQ). At least one of Quality of Serice (QoS) and Received Signal Strength (RSS).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • QoS Quality of Serice
  • RSS Received Signal Strength
  • the transmit power information may be: transmit power information between the first channel sent by the second UE and the second channel sent by the second UE; and may be: the first channel sent by the second UE Transmit power information.
  • the first channel is used for device discovery between the first UE and the second UE, and may be a discovery channel between the first UE and the second UE.
  • the second channel is used for data transmission between the first UE and the second UE, and may be a Device to Device (D2D) link between the first UE and the second UE.
  • D2D Device to Device
  • the first channel and the second channel may also be other channels, which are not limited in the embodiment of the present invention.
  • the transmit power value of the first channel may be: a UE-specific transmit power value, where the UE-specific transmit power value is: the transmit power values of the first channel sent by different second UEs are different.
  • the transmit power values of the first channel transmitted by the second UEs in different groups are different.
  • the transmit power value of the first channel may also be a cell-specific transmit power value, where the cell-specific transmit power value means that the transmit power values of the first channel sent by the second UE in different cells are different.
  • the transmit power values of the first channel sent by the second UE in different cell groups are different. of.
  • the transmit power deviation information may be a transmit power offset value between the first channel and the second channel, and may be an indication for determining a transmit power offset value between the first channel and the second channel sent by the second UE. information.
  • the transmit power offset value may be: a UE-specific transmit power offset value, where the UE-specific transmit power offset value refers to: transmit power between the first channel and the second channel sent by different second UEs.
  • the deviation values are different.
  • the UE 20 and the UE 21 are two different second UEs, and the transmit power offset value between the first channel and the second channel sent by the UE 20 is compared with the first channel and the second channel sent by the UE 21 .
  • the transmit power offset values are different, or the transmit power offset values between the first channel and the second channel sent by the second UE in different groups are different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a cell-specific transmit power offset value, where the cell-specific transmit power offset value refers to: the first channel and the second channel transmitted by the second UE in different cells.
  • the power deviation values are different. For example, as shown in FIG. 1, if the UE 20, the UE 21, and the UE 10 are in the cell 1, and the UE 11 and the UE 22 are in the cell 2, the transmit power offset value between the first channel and the second channel transmitted by the UE 20 is the same as the first channel and sent by the UE 11.
  • the transmit power offset values between the second channels are different.
  • the transmit power offset value between the first channel and the second channel sent by the second UE in different cell groups is different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a transmit power offset value associated with a transmission mode of the second channel; wherein the transmission mode may be mode 1 based on a network configuration D2D link transmission resource, and may also be a D2D UE-based Transport mode of self-selected resources Equation 2. For example, if the transmission power deviation value corresponding to the transmission mode 1 is 3 dB and the transmission power deviation value corresponding to the transmission mode 2 is 5 dB, when the transmission mode of the second channel transmitted by the second UE is the transmission mode 1, the first channel is The value of the transmission power deviation from the second channel is 3 dB.
  • mode 1 and mode 2 may also correspond to different transmit power calculation formulas and/or calculation parameters of transmit power.
  • the first UE and/or the second UE may calculate a transmit power offset value between the first channel and the second channel according to a predefined transmit power calculation formula and/or a calculation parameter of the transmit power.
  • a determining unit 802 configured to: according to the link quality information between the N second UEs and the first UE acquired by the acquiring unit 801, and the transmit power information of the N second UEs, from the N Determining, in the second UE, a relay device of the first UE.
  • the acquiring unit 801 is specifically configured to: acquire the transmit power information from a serving base station of the second UE by using inter-base station signaling;
  • the server transmits the transmit power information, where the server is an operation, management, and maintenance (OAM) server, and is a server pre-configured to the base station, and the server Transmitting, in advance, transmission power information between the first channel and the second channel sent by the second UE;
  • OAM operation, management, and maintenance
  • the transmission power information is obtained from a server configuration to a storage local to the base station.
  • the acquiring unit 801 may obtain the transmit power information between the first channel and the second channel that is sent by the second UE, and may also be the first channel sent by the second UE. Transmitting power information; therefore, correspondingly, the determining unit 802 is specifically configured to:
  • the link quality information between the N second user equipments UE and the first UE and the transmit power information of the first channel sent by the N second UEs And determining, by the N the second UE, a relay device of the first UE.
  • the link quality information between the N second user equipments UE and the first UE, and the transmit power information between the first channel and the second channel sent by the N second UEs Determining, by the N the second UE, the relay device of the first UE may include:
  • a relay device of the first UE For example, as shown in FIG.
  • the second UE that has the largest addition result is determined as the relay device of the first UE, and the second UE with the largest addition result is the second UE with the best channel quality of the second channel.
  • the link quality information between the N second user equipments UE and the first UE, and the transmit power information of the first channel sent by the N second UEs, from the N Determining the relay device of the first UE in the second UE may include:
  • RSRP1 TxP1 ⁇ PL1
  • the TxP1 is the transmit power on the first channel
  • the PL1 is the path loss between the candidate relay device and the remote user equipment that the first channel experiences when transmitting, and obtains the first channel sent by the N second UEs.
  • the path loss on the path, and then the second UE corresponding to the path loss of the first channel of the N second UEs is determined as the relay device that determines the first UE.
  • the base station further includes:
  • the receiving unit 803 is configured to receive, before the acquiring unit 801 acquires link quality information between the N second UEs and the first UE, and N transmit power information of the second UE, a link quality report sent by the UE through the cellular link, where the base station is a serving base station of the first UE, that is, the first UE is directly in the network coverage of the base station, and may be directly connected to the first UE. Establish a link connection;
  • the UE selects one UE from the N the second UEs as the temporary relay UE, performs data forwarding between the first UE and the base station, and forms a relay link with the first UE and the base station.
  • the link quality report specifically includes at least one of the following information:
  • the embodiment of the present invention provides a base station, which acquires link quality information between N second user equipments UE and the first UE, and transmission power information of N second UEs;
  • the power information is: transmit power information between the first channel and the second channel sent by the second UE, or transmit power information of the first channel sent by the second UE; according to the N second user equipments Determining the relay device of the first UE from the N second UEs by using link quality information between the UE and the first UE and N transmit power information of the second UE.
  • the selection of the peer-to-peer relay device is implemented by the base station, and the problem that the peer device is selected as the relay device does not exist in the prior art.
  • FIG. 9 is a structural diagram of a user equipment UE90 according to an embodiment of the present invention, which is used to perform the method according to Embodiment 3, wherein the UE 90 can be a candidate for the relay device before being determined by the relay device.
  • Relay the UE As shown in Figure 9, The UE can include:
  • the sending unit 901 is configured to send transmit power information.
  • the transmit power information may be: transmit power deviation information between the first channel sent by the UE and the second channel sent by the UE; and may be: transmit power information of the first channel sent by the UE .
  • the first channel is used for device discovery between the first UE and the UE, and may be a discovery channel between the first UE and the UE.
  • the second channel is used for data transmission between the first UE and the UE, and may be a Device to Device (D2D) link between the first UE and the UE.
  • D2D Device to Device
  • the first channel and the second channel may also be other channels, which are not limited in the embodiment of the present invention.
  • the transmit power value of the first channel may be: a UE-specific transmit power value, where the UE-specific transmit power value is: the transmit power value of the first channel sent by different UEs is different, or The transmit power values of the first channel transmitted by the UEs in different groups are different.
  • the transmit power value of the first channel may also be a cell-specific transmit power value, where the cell-specific transmit power value refers to: the transmit power values of the first channel sent by the UEs in different cells are different, or The transmit power values of the first channel transmitted by the UEs of different cell groups are different.
  • the transmit power deviation information may be a transmit power offset value between the first channel and the second channel, and may also be indication information used to determine a transmit power offset value between the first channel and the second channel sent by the UE.
  • the transmit power offset value may be: a UE-specific transmit power offset value, where the UE-specific transmit power offset value refers to: a transmit power offset value between the first channel and the second channel sent by different UEs. It is different.
  • the UE 20 and the UE 21 are two different UEs, and the transmit power offset value between the first channel and the second channel sent by the UE 20 and the transmit power between the first channel and the second channel sent by the UE 21 are used.
  • the offset values are different, or the transmit power offset values between the first channel and the second channel sent by the UEs in different groups are different. For example, as shown in FIG.
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is the same as the first sent by the UE 10.
  • the transmit power offset values between the channel and the second channel are different.
  • the transmit power offset value may also be a cell-specific transmit power offset value, where the cell-specific transmit power offset value refers to: a transmit power deviation between a first channel and a second channel sent by a UE in a different cell.
  • the values are different. For example, as shown in FIG. 1, if the UE 20, the UE 21, and the UE 10 are in the cell 1, and the UE 11 and the UE 22 are in the cell 2, the transmit power offset value between the first channel and the second channel transmitted by the UE 20 is the same as the first channel and sent by the UE 11.
  • the transmit power offset values between the second channels are different.
  • the transmit power offset values between the first channel and the second channel sent by the UEs in different cell groups are different. For example, as shown in FIG.
  • UE20, UE21, and UE10 are both in cell 1
  • UE20 and UE21 are in In group 1
  • the UE 10 is in the group 2
  • the transmit power offset value between the first channel and the second channel sent by the UE 20 is different from the transmit power offset value between the first channel and the second channel sent by the UE 10.
  • the transmit power offset value may also be a transmit power offset value associated with a transmission mode of the second channel; wherein the transmission mode may be mode 1 based on a network configuration D2D link transmission resource, and may also be a D2D UE-based Transmission mode 2 of the optional resource. For example, if the transmission power deviation value corresponding to the transmission mode 1 is 3 dB, and the transmission power deviation value corresponding to the transmission mode 2 is 5 dB, when the transmission mode of the second channel transmitted by the UE is the transmission mode 1, the first channel and the first channel The transmission power deviation between the two channels is 3 dB.
  • mode 1 and mode 2 may also correspond to different transmit power calculation formulas and/or calculation parameters of transmit power.
  • the first UE and/or the UE may calculate a transmit power offset value between the first channel and the second channel according to a predefined transmit power calculation formula and/or a calculation parameter of the transmit power.
  • the receiving unit 902 is configured to receive, by the UE, acknowledgement information, where the acknowledgement information is used to indicate that the UE is a relay device.
  • the sending unit 901 is specifically configured to send the transmit power information by using at least one of the following manners:
  • the UE may directly send the transmit power information to the first UE by using the serving base station of the UE;
  • the sending, by the sending unit 901, the sending power information by using the first channel specifically includes at least one of the following manners:
  • receiving unit 902 is specifically configured to:
  • the UE 90 before performing the method in this embodiment, the UE 90 also needs to determine that it is a candidate relay device. Specifically, the receiving unit 902 is further configured to:
  • the sending unit 901 sends the transmit power information, receiving signal quality threshold information configured by the base station;
  • the UE 90 may further include:
  • the detecting unit 903 is configured to detect, according to the signal quality threshold information, that a signal quality of the signal received by the UE meets a preset rule.
  • the signal quality threshold information may include a preset signal quality threshold value, where the preset signal quality threshold value may be set as needed, which is not limited by the embodiment of the present invention.
  • the receiving unit 902 may receive threshold information of signal quality that is sent by the base station by using dedicated or broadcast signaling.
  • the detecting unit 903 detects that the signal quality of the signal received by the UE may include at least one of the following signal qualities:
  • Detecting signal quality from a base station such as at least one of RSRP, RSRQ, RSSI, and PL;
  • detecting signal quality from the first UE such as RSRP, RSRQ, At least one of RSSI and PL.
  • the detecting unit 903 is specifically configured to detect, by using at least one of the following manners, that a signal quality of the signal received by the UE meets a preset rule:
  • a signal quality from the first UE is detected to be greater than and/or equal to a preset signal quality threshold in the signal quality threshold information.
  • an embodiment of the present invention provides a UE that transmits transmit power information, where the transmit power information is: a transmit power deviation information between a first channel sent by the UE and a second channel sent by the UE, or Transmit power information of the first channel sent by the UE; receiving acknowledgement information, where the acknowledgement information is used to indicate that the UE becomes a relay device.
  • the UE transmits the transmit power information for determining the relay device to the first UE, so that the first UE determines the relay device from the multiple UEs according to the information, and implements the peer-to-peer relay device by using the first UE.
  • the choice solves the problem that there is no choice of peer devices as relay devices in the prior art.
  • the system may include: a UE 70, a base station 80, and N UEs 90;
  • the function of the UE is the same as that of the UE in the fourth embodiment, and is not described here.
  • the base station 80 has the same functions as the base station in the fifth embodiment, and details are not described herein again.
  • the functions of the UE are the same and will not be described here.
  • the embodiment of the present invention provides a relay device selection and system, where the first user equipment UE acquires link quality information between each UE 90 of the N second user equipment UEs and the UE 70, and each UE 90 Transmit power information, where the transmit power information is: transmit power information between a first channel sent by the UE 90 and a second channel sent by the UE 90, or transmit power information of a first channel sent by the UE 90
  • the UE 70 is configured according to each of the N second user equipment UEs
  • the link quality information between the UE 90 and the UE 70 and the transmit power information of each UE 90 determine the relay device of the UE 70 from the N UEs 90. In this way, the selection of the peer-to-peer relay device is implemented by the UE, and the problem that the peer device is selected as the relay device does not exist in the prior art.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate devices may or may not be physically separated, and the devices displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.
  • the storage medium may include a read only memory, a random access memory, a magnetic disk or an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种中继设备选择方法、设备及系统,涉及通信技术领域,实现了选择与UE对等的中继设备。本发明提供的中继设备选择方法包括:第一用户设备UE获取N个第二用户设备UE与第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,发射功率信息为:第二UE发送的第一信道与第二信道间的发射功率信息,或第二UE发送的第一信道的发射功率信息;第一UE根据N个第二用户设备UE与第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定第一UE的中继设备。

Description

一种中继设备选择方法、设备及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种中继设备选择方法、设备及系统。
背景技术
第3代合作伙伴计划(3rd Generation Patnership Project,3GPP)版本10(Release 10,Rel-10)中曾经标准化Relay技术,当时标准化的场景如下:中继节点(Relay Node,RN)是一个Rel-10中独立的网元,它在网络中的级别比用户设备(User Equpment,UE)高,RN有两种能力,一种能力是像普通的演进型节点B(Evolvd Node,eNB)一样,可以与UE进行蜂窝链路的通信;另一种能力是具有与eNB通信的回程传输链路。
显然,现有3GPP Rel-10中规定的RN节点是不需要选择的,它直接与网络eNB直接通信,它相当于是个小基站,也能直接与UE通信,它上电后自动通过开启与eNB的回程链路以及和UE通信的蜂窝链路,就可以实现中继功能了。但是,现有3GPP Rel-10中规定的RN不是与UE对等的网元,即现有技术不支持中继设备与UE是对等设备的场景,此时,如果需要一个普通的UE做中继设备,则面临一个如何选择出与UE对等的中继节点的问题,然而现有技术并没有对应的解决办法。
发明内容
本发明的实施例提供一种中继设备选择方法、设备及系统,实现了选择与UE对等的中继设备。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种中继设备选择方法,所述方法包括:
第一用户设备UE获取N个第二用户设备UE与所述第一UE 间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述N为大于等于1的整数;所述第二UE的发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
所述第一UE根据N个所述第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备;
其中,所述第二UE发送的第一信道用于所述第一UE与所述第二UE间的设备发现;所述第二UE发送的第二信道用于所述第一UE与所述第二UE间的数据传输;所述第二UE与第一UE间的链路质量信息是所述第一UE通过所述第一信道获取的。
在第一方面的第一种可实现方式中,结合第一方面,
所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
在第一方面的第二种可实现方式中,结合第一方面,
所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
UE特定的发射功率偏差值,其中,所述UE特定的发射发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射发射功率偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射发射功率偏差值是不同的;或者,
小区特定的发射发射功率偏差值,其中,所述小区特定的发射发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射发射功率偏差值是不同的;或者,
与所述第二信道的传输模式相关联的发射发射功率偏差值。
在第一方面的第三种可实现方式中,结合第一方面,
所述第一UE获取所述第二UE的发射发射功率信息具体包括:
所述第一UE通过所述第一UE的服务基站获取所述发射发射功率信息;
或者,所述第一UE通过所述第二UE获取所述发射发射功率信息;
或者,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源获取所述发射发射功率信息。
在第一方面的第四种可实现方式中,结合第一方面的第三种可实现方式,
所述第一UE通过所述第二UE获取所述发射发射功率信息具体包括:
所述第一UE通过所述第二UE发送的第一信道获取所述发射发射功率信息。
在第一方面的第五种可实现方式中,结合第一方面的第四种可实现方式,
所述第一UE通过所述第二UE发送的第一信道获取所述发射发射功率信息具体包括以下至少一种方式:
所述第一UE通过所述第一信道承载的信息来获取所述发射发射功率信息;
所述第一UE通过所述第二UE发送所述第一信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;
所述第一UE通过所述第二UE发送所述第一信道时使用的解调参考信号DMRS来获取所述发射功率信息;
所述第一UE通过所述第二UE发送所述第一信道时使用的资源位置信息来获取所述发射功率信息。
在第一方面的第六种可实现方式中,结合第一方面的第三种可实现方式,
所述第一UE通过所述第一UE和/或所述第二UE的同步参考源获取所述发射功率信息包括:
所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送的第三信道获取所述发射功率信息;所述第三信道为:所述第一UE接收到的所述第一UE和/或所述第二UE的同步参考源发送的信道;
或者,所述第一UE通过第一UE和/或所述第二UE的同步参考源发送的同步序列获取所述发射功率信息。
在第一方面的第七种可实现方式中,结合第一方面的第六种可实现方式,
所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送的第三信道获取所述发射功率信息具体包括以下至少一种方式:
所述第一UE通过所述第三信道承载的信息来获取所述发射功率信息;
所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;
所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的解调参考信号DMRS来获取所述发射功率信息;
所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的资源位置信息来获取所述发射功率 信息。
在第一方面的第八种可实现方式中,结合第一方面至第一方面的第七种可实现方式中的任一种可实现方式,在所述第一UE获取N个第二UE与第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之后,所述方法还包括:
所述第一UE通过蜂窝链路向所述基站发送所述链路质量报告;
或者,所述第一UE通过所述第一UE到所述基站的中继链路向所述基站发送所述链路质量报告。
在第一方面的第九种可实现方式中,结合第一方面的第八种可实现方式,
所述链路质量报告具体包括以下至少一种信息:
N个所述第二UE与第一UE间的链路质量信息;
N个所述第二UE的发射功率信息;
N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
第二方面,本发明实施例提供一种中继设备选择方法,所述方法包括:
基站获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述N为大于等于1的整数;所述第二UE的发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
所述基站根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备;
其中,所述第二UE发送的第一信道用于所述第一UE与所述第二UE间的设备发现;所述第二UE发送的第二信道用于所述第一UE与所述第二UE间的数据传输;所述第二UE与所述第一UE 将的链路质量信息是所述第一UE通过所述第一信道获取的。
在第二方面的第一种可实现方式中,结合第二方面,
所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
在第二方面的第二种可实现方式中,结合第二方面,
所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
与所述第二信道的传输模式相关联的发射功率偏差值。
在第二方面的第三种可实现方式中,结合第二方面,
所述基站获取所述第二UE发送的第一信道与所述第二发送的第二信道间的发射功率信息具体包括:
通过基站间信令的方式从所述第二UE的服务基站获取所述发射功率信息;或者,
从服务器上读取所述发射功率信息;或者,
从服务器配置到所述基站本地的存储中获取所述发射功率信息。
在第二方面的第四种可实现方式中,结合第二方面至第二方面的第三种可实现方式中的任一种可实现方式,
在基站获取N个第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之前,所述方法还包括:
所述基站接收所述第一UE通过蜂窝链路发送的链路质量报告;
或者,所述基站接收所述第一UE通过所述第一UE到所述基站的中继链路发送的链路质量报告。
在第二方面的第五种可实现方式中,结合第二方面的第四种可实现方式,
所述链路质量报告具体包括以下至少一种信息:
N个所述第二UE与第一UE间的链路质量信息;
N个所述第二UE的发射功率信息;
N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
第三方面,本发明实施例提供一种中继设备选择方法,所述方法包括:
第二用户设备UE发送发射功率信息,所述发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
所述第二用户设备UE接收确认信息,其中,所述确认信息用于指示所述第二UE成为中继设备;
其中,所述第二UE发送的第一信道用于所述第二UE与第一UE间的设备发现,所述第一UE为接收所述发射功率信息的UE;所述第二UE发送的第二信道用于所述第一UE与所述第二UE间 的数据传输。
在第三方面的第一种可实现方式中,结合第三方面,
在第二用户设备UE发送发射功率信息之前,所述方法还包括:
所述第二UE接收基站配置的信号质量门限信息;
所述第二UE根据所述信号质量门限信息,检测到所述第二UE接收到的信号的信号质量满足预设规则。
在第三方面的第二种可实现方式中,结合第三方面或第三方面的第一种可实现方式,
所述第二用户设备UE接收确认信息包括:
所述第二UE接收所述第二UE的服务基站或所述第一UE发送的确认信息。
在第三方面的第三种可实现方式中,结合第三方面至第三方面的第二种可实现方式中的任一种可实现方式,
所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
在第三方面的第四种可实现方式中,结合第三方面至第三方面的第三种可实现方式中的任一种可实现方式,
所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
UE特定的发射功率偏差值,其中,所述UE特定的发射功率 偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
与所述第二信道的传输模式相关联的发射功率偏差值。
在第三方面的第五种可实现方式中,结合第三方面,
所述第二UE发送发射功率信息具体包括:
所述第二UE通过所述第二UE的服务基站发送所述发射功率信息;
或者,所述第二UE通过所述第一信道发送所述发射功率信息。
在第三方面的第六种可实现方式中,结合第三方面的第五种可实现方式,
所述第二UE通过所述第一信道发送所述发射功率信息具体包括以下至少一种方式:
所述第二UE通过所述第一信道承载的信息来发送所述发射功率信息;
或者,所述第二UE通过所述第一信道使用的循环冗余校验码CRC掩码来发送所述发射功率信息;
或者,所述第二UE通过所述第一信道使用的解调参考信号DMRS来发送所述发射功率信息;
或者,所述第二UE通过所述第一信道使用的资源位置信息来发送所述发射功率信息。
第四方面,本发明实施例提供一种用户设备UE,包括:
获取单元,用于获取N个第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述 N为大于等于1的整数;所述第二UE的发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
确定单元,用于根据所述获取单元获取到的N个所述第二UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述UE的中继设备;
其中,所述第二UE发送的第一信道用于所述UE与所述第二UE间的设备发现;所述第二UE发送的第二信道用于所述UE与所述第二UE间的数据传输;所述第二UE与UE间的链路质量信息是所述UE通过所述第一信道获取的。
在第四方面的第一种可实现方式中,结合第四方面,
所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
在第四方面的第二种可实现方式中,结合第四方面,
所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
小区特定的发射功率偏差值,其中,所述小区特定的发射功 率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
与所述第二信道的传输模式相关联的发射功率偏差值。
在第四方面的第三种可实现方式中,结合第四方面,
所述获取单元具体用于:
通过所述UE的服务基站获取所述发射功率信息;
或者,通过所述第二UE获取所述发射功率信息;
或者,通过所述UE和/或所述第二UE的同步参考源获取所述发射功率信息。
在第四方面的第四种可实现方式中,结合第四方面的第三种可实现方式,
所述获取单元具体用于:
通过所述第二UE发送的第一信道获取所述发射功率信息。
在第四方面的第五种可实现方式中,结合第四方面的第四种可实现方式,
所述获取单元具体用于通过以下至少一种方式获取所述发射功率信息:
通过所述第一信道承载的信息来获取所述发射功率信息;
通过所述第二UE发送所述第一信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;
通过所述第二UE发送所述第一信道时使用的解调参考信号DMRS来获取所述发射功率信息;
通过所述第二UE发送所述第一信道时使用的资源位置信息来获取所述发射功率信息。
在第四方面的第六种可实现方式中,结合第四方面的第三种可实现方式,
所述获取单元具体用于:
通过所述UE和/或所述第二UE的同步参考源发送的第三信道 获取所述发射功率信息;所述第三信道为:所述UE接收到的所述UE和/或所述第二UE的同步参考源发送的信道;
通过UE和/或所述第二UE的同步参考源发送的同步序列获取所述发射功率信息。
在第四方面的第七种可实现方式中,结合第四方面的第六种可实现方式,
所述获取单元具体用于通过以下至少一种方式获取所述发射功率信息:
通过所述第三信道承载的信息来获取所述发射功率信息;
通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;
通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的解调参考信号DMRS来获取所述发射功率信息;
通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的资源位置信息来获取所述发射功率信息。
在第四方面的第八种可实现方式中,结合第四方面至第四方面的第七种可实现方式中的任一种可实现方式,所述UE还包括:
发送单元,用于在所述获取单元获取N个第二UE与UE间的链路质量信息、以及N个所述第二UE的发射功率信息之后,通过蜂窝链路向所述基站发送所述链路质量报告;
或者,通过所述UE到所述基站的中继链路向所述基站发送所述链路质量报告。
在第四方面的第九种可实现方式中,结合第四方面的第八种可实现方式,
所述链路质量报告具体包括以下至少一种信息:
N个所述第二UE与UE间的链路质量信息;
N个所述第二UE的发射功率信息;
N个所述第二UE与所述UE之间的第二信道的链路质量信息。
第五方面,本发明实施例提供一种基站,包括:
获取单元,用于获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述N为大于等于1的整数;所述第二UE的发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
确定单元,用于根据所述获取单元获取到的N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备;
其中,所述第二UE发送的第一信道用于所述第一UE与所述第二UE间的设备发现;所述第二UE发送的第二信道用于所述第一UE与所述第二UE间的数据传输;所述第二UE与所述第一UE将的链路质量信息是所述第一UE通过所述第一信道获取的。
在第五方面的第一种可实现方式中,结合第五方面,
所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
在第五方面的第二种可实现方式中,结合第五方面,
所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功 率偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
与所述第二信道的传输模式相关联的发射功率偏差值。
在第五方面的第三种可实现方式中,结合第五方面,
所述获取单元具体用于:
通过基站间信令的方式从所述第二UE的服务基站获取所述发射功率信息;或者,
从服务器上读取所述发射功率信息;或者,
从服务器配置到所述基站本地的存储中获取所述发射功率信息。
在第五方面的第四种可实现方式中,结合第五方面至第五方面的第三种可实现方式中的任一种可实现方式,
所述基站还包括:
接收单元,用于在获取单元获取到N个第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之前,接收所述第一UE通过蜂窝链路发送的链路质量报告;
或者,接收所述第一UE通过所述第一UE到所述基站的中继链路发送的链路质量报告。
在第五方面的第五种可实现方式中,结合第五方面的第四种可实现方式,
所述链路质量报告具体包括以下至少一种信息:
N个所述第二UE与第一UE间的链路质量信息;
N个所述第二UE的发射功率信息;
N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
第六方面,本发明实施例提供一种用户设备UE,包括:
发送单元,用于发送发射功率信息,所述发射功率信息为:所述UE发送的第一信道与所述UE发送的第二信道间的发射功率偏差信息,或所述UE发送的第一信道的发射功率信息;
接收单元,用于接收确认信息,其中,所述确认信息用于指示所述UE成为中继设备;
其中,所述UE发送的第一信道用于所述UE与第一UE间的设备发现,所述第一UE为接收所述发射功率信息的UE;所述UE发送的第二信道用于所述第一UE与所述UE间的数据传输。
在第六方面的第一种可实现方式中,结合第六方面,
所述接收单元,还用于在第二用户设备UE发送发射功率信息之前,接收基站配置的信号质量门限信息;
所述UE还包括:
检测单元,用于根据所述信号质量门限信息,检测到所述UE接收到的信号的信号质量满足预设规则。
在第六方面的第二种可实现方式中,结合第六方面或第六方面的第一种可实现方式,
所述接收单元,具体用于:
接收所述UE的服务基站或所述第一UE发送的确认信息。
在第六方面的第三种可实现方式中,结合第六方面至第六方面的第二种可实现方式中的任一种可实现方式,
所述UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同UE发送的第一信道的发射功率值是不同的,或者处于不同组的UE发送的第一信道的发射功率值是不同的;或者,
小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的UE发送的第一信道的发射功率值是不同 的。
在第六方面的第四种可实现方式中,结合第六方面至第六方面的第三种可实现方式中的任一种可实现方式,
所述发射功率偏差信息用于确定所述UE发送的第一信道与所述UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同组的UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
与所述第二信道的传输模式相关联的发射功率偏差值。
在第六方面的第五种可实现方式中,结合第六方面,
所述发送单元,具体用于:
通过所述UE的服务基站发送所述发射功率信息;
或者,通过所述第一信道发送所述发射功率信息。
在第六方面的第六种可实现方式中,结合第六方面的第五种可实现方式,
所述发送单元,具体通过以下至少一种方式发送所述发射功率信息:
通过所述第一信道承载的信息来发送所述发射功率信息;
或者,通过所述第一信道使用的循环冗余校验码CRC掩码来发送所述发射功率信息;
或者,通过所述第一信道使用的解调参考信号DMRS来发送所述发射功率信息;
或者,通过所述第一信道使用的资源位置信息来发送所述发 射功率信息。
由上可知,本发明实施例提供一种中继设备选择方法、设备及系统,第一用户设备UE获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;根据所述获取单元获取到的N个所述第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。如此,通过第一UE实现了对等中继设备的选择,解决了现有技术中不存在选择对等设备作为中继设备的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的应用场景的示意图;
图2为本发明提供的应用场景的示意图;
图3为本发明实施例提供的一种中继设备选择方法的流程图;
图4为本发明提供的第一信道承载的信息的示意图;
图5为本发明实施例提供的一种中继设备选择方法的流程图;
图6为本发明实施例提供的一种中继设备选择方法的流程图;
图7为本发明实施例提供的一种用户设备UE的结构图;
图7A为本发明实施例提供的一种用户设备UE的结构图;
图8为本发明实施例提供的一种基站的结构图;
图8A为本发明实施例提供的一种基站的结构图;
图9为本发明实施例提供的另一种用户设备UE的结构图;
图9A为本发明实施例提供的另一种用户设备UE的结构图;
图10为本发明实施例提供的一种中继选择系统的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
这里先介绍本发明基本原理。在实际通信过程中,远端用户设备收到远端用户设备与候选中继设备间第一信道上的信号质量信息,如参考信号接收功率(Reference Signal Receiving Power,RSRP),可以表示为:RSRP1=TxP1–PL1;其中,TxP1是第一信道上的发射功率,PL1是第一信道在发送时所经历的候选中继设备与远端用户设备间的路损(Path Loser,PL)。远端用户设备收到远端用户设备与候选中继设备间第二信道上的信号质量信息可以表示为:RSRP2=TxP2–PL2;其中,TxP2是第二信道上的发射功率,PL2是第二信道在发送时所经历的候选中继设备与远端用户设备间的路损。远端用户设备收到的第一信道和第二信道两个信道的信号质量差为:RSRP2-RSRP1=(TxP2–TxP1)-(PL2-PL1)。
由于对于同一对远端用户设备与候选中继设备,通常认为它们之间的不同信道的路损值PL是相同的,如第一信道的路损PL1和第二信道的路损PL2是相同的,所以,本发明实施例中,第二信道的路损可以表示为:PL2=PL1,PL1=TxP1-RSRP1,即由第一信道的信号质量信息和第一信道的发射功率可以获得第二信道的路损。第一信道和第二信道两个信道的信号质量差可表示为:RSRP2-RSRP1=TxP2–TxP1=ΔTxP,进而由第一信道与第二信道的信号质量差、以及第一信道的信号质量信息可以获得第二信道的信号质量信息,如:RSRP2=RSRP1+ΔTxP。
鉴于此,若获得多个候选中继设备的第一信道的信号质量信息、以及第一信道的发射功率信息,则可以获得多个候选中继设备的第二信道的路损,从而可以根据多个候选中继设备的第二信道的路损情况,从多个候选中继设备中选择合适的UE作为远端设备的 中继设备。或者,若获得多个候选中继设备的第一信道的信号质量信息、以及第一信道与第二信道间的信号质量差,则可以获得多个候选中继设备的第二信道的信号质量信息,从而可以根据多个候选中继设备的第二信道的信号质量信息,从多个候选中继设备中选择合适的UE作为远端设备的中继设备。下面通过具体实施例对本发明实施例提供的中继设备选择方法进行介绍:
实施例一
图3示出了本发明实施例提供的一种中继设备选择方法,应用于第一用户设备(User Equipment,UE),其中,所述第一UE可以为:在第一UE与基站(eNB)有数据传输时,不直接与eNB进行数据传输,而需要通过中继设备的转发间接的与基站进行数据传输的UE,如远端设备。本发明实施例中,所述第一UE可以位于基站的网络覆盖范围内,直接与基站建立无线资源控制(Radio Resource Control,RRC)连接或者接收基站发送广播消息,但与基站之间进行数据传输时,需要通过中继设备进行转发,例如,如图1所示,第一UE为远端UE,位于eNB2的网络覆盖范围内,可以通过UE21与eNB2进行数据传输,通过UE11与eNB1进行数据传输。所述第一UE还可以位于基站的网络覆盖范围外,接收来自基站网络覆盖范围内的用户设备发送的信号,例如,如图2所示,所述第一UE为远端UE,位于eNB1和eNB2的网络覆盖范围外,可以同时接收处于eNB1和eNB2的网络覆盖范围内的UE21和UE11发送的信号。
如图3所示,所述方法可以包括以下步骤:
步骤101:第一UE获取N个第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息。
其中,第二UE可以为在中继设备确定之前,能够成为中继设备的候选中继UE,N为大于等于1的整数。需要说明的是,在具体的应用场景中,第一UE可以将接收到的信号质量大于预设阈值的UE确定为候选中继设备,然后将确定出的候选中继设备中的全 部设备作为上述N个第二UE,或者将确定出的候选中继设备中的部分设备作为N个第二UE,即可以从预先确定出的M个候选中继设备中取N个设备作为第二UE,M可以为大于N的整数,也可以为等于N的整数。其中,预设阈值可以提前预定义好的,也可以基站通过信令配置的,本发明实施例对比不进行限定。
例如,如图1和图2所示,第一UE为远端UE,首先将UE20、UE21、UE22、UE10和UE11五个设备确定为远端UE的候选中继UE,然后从这五个设备中选择出UE22、UE21和UE11三个设备,获取UE22与远端UE间的链路质量信息,获取UE21与远端UE间的链路质量信息,获取UE11与远端UE间的链路质量信息;或者,将这五个设备均确定为第二UE,获取UE20与远端UE间的链路质量信息,获取UE21与远端UE间的链路质量信息,获取UE22与远端UE间的链路质量信息,获取UE10与远端UE间的链路质量信息,获取UE11与远端UE间的链路质量信息。
在本发明中,信号质量可以是参考信号接收功率RSRP(Reference Signal Receiving Power,RSRP),参考信号接收质量RSRQ(Reference Signal Received Quality),接收信号强度指示RSSI(Received Signal Strength Indication)、第二UE与第一UE之间的路损值(Path Loser,PL)中的任意一种或多种。在本发明的进一步的实施例中,我们使用RSRP作为一种具体的实施例来描述信号质量,但这并不限定为信号质量仅为RSRP。
所述第二UE与第一UE间的链路质量信息是所述第一UE通过所述第一信道获取的,可以为:所述第二UE与所述第一UE间的第一信道上的信号质量,如:RSRP、RSRQ、RSSI、第二UE与第一UE间的路损值PL;其中,路损值PL可以通过接收到的来自第二UE的RSRP和获取到的第一信道的发射功率值来计算得到,例如:PL=TxP-RSRP。可选的,第一UE可以接收第二UE通过第一信道发送的发现消息,根据所述发现消息测量获取所述链路质量信息。
所述发射功率信息可以为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息;还可以为:所述第二UE发送的第一信道的发射功率信息。
其中,所述第一信道用于所述第一UE与所述第二UE间的设备发现,可以为第一UE与第二UE间的D2D发现信道。可选的,第一信道可以用于实现第一UE与第二UE之间的中继设备发现。中继设备发现的方法,是在第一信道上发送包括第一和/或第二UE标识的信息来实现的。所述第二信道用于所述第一UE与所述第二UE间的数据传输,可以为第一UE与第二UE间的设备到设备(Device to Device,D2D)链路。
需要说明的是,设备到设备链路可以被称为D2D链路,也可被称为边链路(Sidelink),本发明作为一种名字的代称,使用D2D链路作为设备到设备链路的专用术语,但是这一术语并不限定本发明的方法所使用的范围。D2D链路不同设备之间的传输方式可以是基于广播、组播或单播传输方式中的任意一种,对本发明对此不作限定。此外,第一信道和第二信道还可以为其他信道,本发明实施例对比不进行限定。
需要说明的是,本发明所指的发射功率为特定发射资源上的发射功率值,例如:每个设备到设备(Device to Device,D2D)链路发射符号上的发射功率、或每个D2D链路发射子帧上的发射功率、或每M个物理资源块(Physical Resource Blocks,PRB)上的发射功率,M为不小于1的正整数、或每个资源元(Resource Element,RE)上的发射功率。
可选的,所述第一信道的发射功率值可以为:UE特定的发射功率值,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的。所述第一信道的发射功率值还可以为小区特定的发射功率值,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或 者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
所述发射功率偏差信息可以为第一信道与第二信道间的发射功率偏差值,还可以为用于确定所述第二UE发送的第一信道与第二信道间的发射功率偏差值的指示信息。
可选的,所述发射功率偏差值可以为:UE特定的发射功率偏差值,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,UE20和UE21为两个不同的第二UE,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE21发送的第一信道和第二信道间的发射功率偏差值是不同,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21处于群组1,UE10和UE11处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值还可以为小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,若UE20、UE21和UE10处于小区1,UE11、UE22处于小区2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE11发送的第一信道和第二信道间的发射功率偏差值是不同。或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21和UE10均处于小区1,但UE20和UE21处于群组1,UE10处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值也可以为与所述第二信道的传输模式相关联的发射功率偏差值;其中,传输模式可以为基于网络配置D2D 链路传输资源的模式1,还可以为D2D基于UE自选资源的传输模式2。例如,若传输模式1对应的发射功率偏差值为3dB,传输模式2对应的发射功率偏差值为5dB,则当第二UE发送的第二信道的传输模式为传输模式1时,其第一信道与第二信道间发射功率偏差值就为3dB。可选的,模式1和模式2也可以对应不同的发射功率计算公式和/或发射功率的计算参数。第一UE和/或第二UE可以根据预定义的发射功率计算公式和/或发射功率的计算参数,来计算发第一信道与第二信道间发射功率偏差值。
本发明实施例中,对于一个第二UE而言,所述第一UE可以通过下述(1)、(2)、(3)三种方式中的至少一种来获取所述第二UE的发射功率信息:
(1)第一UE通过所述第一UE的服务基站获取所述发射功率信息。
需要说明的是,此方式(1)中第一UE处于第一UE的服务基站的网络覆盖范围内。例如,如图1所示,若第二UE为候选中继设备UE21,第一UE为远端UE,且处在eNB2的网络覆盖范围内,即eNB2为远端UE的服务基站,此时,远端UE可以通过eNB2获得候选中继设备UE21发送的第一信道与第二信道间的发射功率信息。
(2)第一UE通过所述第二UE获取所述发射功率信息。
需要说明的是,此方式(2)中第一UE可以位于基站的网络覆盖范围内,还可以位于基站的覆盖范围外。
可选的,所述第一UE可以通过所述第二UE发送的第一信道获取所述发射功率信息,具体的,所述第一UE可以采用以下(a)、(b)、(c)、(d)中至少一种方式从所述第二UE发送的第一信道上获取所述发射功率信息:
(a)第一UE通过所述第一信道承载的信息来获取所述发射功率信息。
其中,第一信道承载的信息可以包含指示第二信道的传输模 式的比特信息,如用比特数0、1来表示第二信道的传输模式为传输模式1或传输模式2。当第一UE获取到用于指示第二信道的传输模式的比特信息后,可以根据该比特信息对应获得第二信道的传输模式,然后再根据传输模式与发射功率偏差值的对应关系来获得第二UE发送的第一信道与第二信道间的发射功率偏差值;或者,根据传输模式与发射功率值的对应关系获取第二UE发送的第一信道的发射功率值。
第一信道承载的信息还可以包含用于指示发射功率偏差值或发射功率值的专用比特字段,其中,所述专用比特字段包含量化后的发射功率偏差值或发射功率值所对应的比特信息。
例如,若多个第二UE发送的第一信道与第二信道间的发射功率偏差值射功率中最小功率偏差值为0dB,最大功率偏差值为10dB,将0dB~10dB范围内的发射功率偏差值进行量化,获得量化值[0,3,6,9]dB,则可以用2比特的信息来表示量化后的各功率偏差值(如下表1所示)。此时,若所述专用字段中包含的比特信息为00,则根据表1可以确定第二UE发送的第一信道与第二信道间的发射功率偏差值为0dB。
表1
量化值 比特信息
0 00
3 01
6 10
9 11
需要说明的是,对最小功率偏差值到最大功率偏差范围内的发射功率偏差值量化的量级可以需要进行设置,本发明实施例对比不进行限定。优选的,量化级别越高,功率偏差值划分的就越细致,就需要使用用更多的比特信息来表示量化后的发射功率偏差值。
可选的,所述第一信道承载的信息可以位于第一信道发送的用来指示设备发现的请求或响应的数据包中。比如:若第一信道是 D2D发现信道,它包含的设备发现消息是232比特,此时,可以在这第一信道中增加一个专用字段,将指示功率偏移值或发射功率值的比特信息设置在该专用字段中(如图4所示),即占用原来第一信道中的设备发现信号的信息位来传输用于指示发射功率值或发射功率偏差值的比特信息。需要说明的是,用本方法指示功率值需要占用第一信道中原来信息的比特位,从而影响第一信道的码率。但是,考虑到专用字段相对于设备发送消息的232比特占用的比特数较少,所以,对第一信道而言,对码率影响是可以忽略的。
(b)第一UE通过所述第二UE发送所述第一信道时使用的循环冗余校验(Cyclic Redundancy Check,CRC)掩码来获取所述发射功率信息。
其中,所述CRC掩码可以为:一个预定义的与CRC位长度相同的、加在编码完成后的CRC字段上的0、1比特序列。没有使用CRC掩码或缺省的CRC掩码是全0序列。若没有CRC掩码,则译码时,译码出来的信息比特直接做CRC校验,CRC校验结果正确,则认为这个数据包的接收、解调与译码的全过程是正确的,否则是错误的。
若在CRC上加上了掩码,则在做CRC校验前,首先需要把CRC掩码去掉,然后再做CRC校验,以保证得到的结果才是预期的译码结果,否则CRC检验基本上是错误的。因此用CRC在第一信道中加上非全0的CRC掩码序列,可以用来携带一部分比特信息,根据该CRC掩码携带的比特信息来获取发射功率信息。
例如,使用4个不同的掩码,则可以携带2比特的控制信息。使用8个不同的CRC掩码,则可以携带3比特的控制信息。将不同的CRC掩码与用于指示发射功率值或发射功率偏差值的比特信息一一映射,如下表2所示,是一个将CRC掩码映射为2比特信息的映射表,若携带的CRC掩码为000011110000111100001111,则可以获得用于指示功率偏差值的比特信息为00,进而可以根据该比特信息与功率偏差值的对应的关系(如表1所示)得到功率偏 差值。
表2
24比特的CRC掩码 对应的2比特信息状态
000011110000111100001111 00
000000000000111111111111 01
111100001111000011110000 10
111111111111000000000000 11
需要说明的是,其他长度的CRC掩码与比特信息的映射关系可以根据上述原理进行设置,在此不再一一举例。
(c)第一UE通过所述第二UE发送所述第一信道时使用的解调参考信号(Demodulation Reference Signal,DMRS)来获取所述发射功率信息。
可选的,本发明实施例中,第一UE可以根据不同的DMRS序列的循环移位值获取发射功率信息,根据该发射功率信息确定功率偏差值或者发射功率值。比如,若DMRS序号有8个不同的循环移位值,对应3比特的信息状态,可以用来传输3比特信息,不同的循环移位值对应携带的3比特信息中的某一个比状态。
第一UE还可以根据不同的DMRS序列的根序列号获取发射功率信息,根据该发射功率信息确定功率偏差值或者发射功率值。如,一个长为24的DMRS序列,由长为23的ZC序列生成,至少可以有22个不同的DMRS序列的根序列号,其取值为[1,22]。
第一UE也可以根据一个1ms子帧中的前后两个相邻时隙中的DMRS符号上映射的不同的DMRS序列,将前后相邻的DMRS序列的关系与功率偏移值对应,根据前后相邻的DMRS序列的关系获取功率偏差值。
第一UE又可以根据相邻的两个DMRS上调制数据符号来确定功率偏移信息,根据获取到的发射功率偏移信息确定功率偏移值或者发射功率值。具体地,一个1ms子帧中的前后两个相邻时隙中的DMRS,可以在这两个DMRS序列当中的任意一个DMRS序 列上调制上一个调制符号,从这个调制符号上来携带信息,如:调制一个QPSK符号,则能指示2比特的信息,调制一个16QAM的符号,则可以指示4比特的信息,调制一个64QAM的信号则能指示6比特的信息。
(d)第一UE通过所述第二UE发送所述第一信道时使用的资源位置信息来获取所述发射功率信息。
可选的,所述第一UE可以通过所述第二UE发送第一信道时使用的资源池来对应获取发射功率信息,即若有K个资源池,则每个资源池可对应指示不超过log2(K)个比特信息,此时,可以根据第一信道所处资源池对应的比特信息,确定与该比特信息对应的发射功率偏移值。
例如,如下表3所示,4个资源池分别对应2比特信息,若第一信道处于资源池2,则获取到的发射功率信息为01,再根据比特信息与功率偏差值的对应关系(如表1所示),确定第二UE发送的第一信道与第二信道间的发射功率偏差值为:3dB。
表3
资源池 2比特信息
1 00
2 01
3 10
4 11
可选的,第一UE还可以通过所述第二UE发送第一信道时使用的时域位置和频域位置来对应获取发射功率信息;例如,若有M=8个可选的频域位置,N=4个可选的时域位置,则存在M*N=32个可选的时频位置,此时,可以利用32个位置中的全部或者部分位置来指示一定比特信息的发射功率信息,最多可以指示5比特发射功率信息。
(3)所述第一UE通过所述第一UE和/或所述第二UE的同步参考源获取所述发射功率信息。
其中,所述第一UE和/或所述第二UE的同步参考源可以为:向所述第一UE和/或所述第二UE发送同步参考信号的设备;同步参考源可以与第一UE和/或所述第二UE处于同一网络覆盖范围内,也可以与第一UE和/或所述第二UE处于不同的网络覆盖范围内。
可选的,所述第一UE可以通过所述第一UE和/或所述第二UE的同步参考源发送的第三信道获取所述发射功率信息;所述第三信道为:所述第一UE接收到的所述第一UE和/或所述第二UE的同步参考源发送的信道;
还可以通过第一UE和/或所述第二UE的同步参考源发送的同步序列获取所述发射功率信息。
其中,所述第一UE通过所述第二UE的同步参考源发送的第三信道获取所述发射功率信息具体包括以下至少一种方式:
所述第一UE通过所述第三信道承载的信息来获取所述发射功率信息,其中,第一UE可以通过所述第三信道的预留比特中获取所述功率信息,与上述(a)所述方式相同,在此不再赘述。
或者,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;其中,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息的方式与上述(b)所述方式相同,在此不再赘述。
或者,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的解调参考信号DMRS来获取所述发射功率信息;其中,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的解调参考信号DMRS来获取所述发射功率信息的方式与上述(c)所述方式相同,在此不再赘述。
或者,所述第一UE通过所述第一UE和/或所述第二UE的同 步参考源发送所述第三信道时使用的资源位置信息来获取所述发射功率信息;其中,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的资源位置信息来获取所述发射功率信息的方式与上述(c)所述方式相同,在此不再赘述。
步骤102:第一UE根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。
由于,步骤101中第一UE获取到所述发射功率信息可以为所述第二UE发送的第一信道与第二信道间的发射功率偏差信息,也可以为或所述第二UE发送的第一信道的发射功率信息。所以,相对应的,第一UE根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备可以包括:
第一UE根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,从N个所述第二UE中确定所述第一UE的中继设备;
或者,第一UE根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。
具体的,第一UE根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率偏差信息,从N个所述第二UE中确定所述第一UE的中继设备可以包括:
第一UE根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,分别计算每个所述第 二UE发送的第二信道的链路质量信息,然后根据所有第二UE的第二信道的链路质量信息,将链路质量最好的第二信道所对应的第二UE确定所述第一UE的中继设备。
例如,如图1所示,分别获取UE20、UE21、UE22、UE10和UE11与远端设备(第一UE)间的链路质量信息(如参考信号接收功率):RSRP20、RSRP21、RSRP22、RSRP10、RSRP11,再根据N个所述第二UE的发射功率偏差值ΔTxP20、ΔTxP21、ΔTxP22、ΔTxP10、ΔTxP11,按照公式RSRP2=RSRP1+ΔTxP,将第二UE的参考信号接收功率与第二UE的发射功率偏差值相加,将相加结果最大的第二UE确定为第一UE的中继设备,其中,相加结果最大的第二UE为:第二信道的信道质量最好的第二UE。
具体的,第一UE根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备可以包括:
第一UE根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、N个所述第二UE发送的第一信道的发射功率信息、以及公式:PL2=PL1=TxP1-RSRP1,获取N个所述第二UE发送的第二信道上的路损,然后将N个第二UE中第一信道的路损最小对应的第二UE确定为确定所述第一UE的中继设备;其中,TxP1是第一信道上的发射功率,PL2是第一信道在发送时所经历的候选中继设备与远端用户设备间的路损。
进一步的,本发明实施例中,还可以由基站为所述第一UE确定中继设备,实现中继设备选择。其中,为了使基站完成中继设备的选择,在所述第一UE获取N个所述第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之后,所述方法还可以包括:
所述第一UE通过蜂窝链路向所述基站发送链路质量报告;其中,所述基站为所述第一UE的服务基站,即所述第一UE在所述 基站的网络覆盖范围内,可以与第一UE直接建立链路连接;
或者,所述第一UE通过所述第一UE到所述基站的中继链路向所述基站发送所述链路质量报告,以使得基站根据所述链路质量报告进行中继设备选择;其中,所述第一UE不在所述基站的网络覆盖范围内。所述第一UE到所述基站的中继链路,为第一UE在N个所述第二UE中选择一个第二UEA,形成的“第一UE-第二UEA-基站”间的中继链路。
其中,所述链路质量报告具体包括以下至少一种信息:
N个所述第二UE与第一UE间的链路质量信息;
N个所述第二UE的发射功率信息;
N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
可以理解的是,当所述第一UE不在所述基站的网络覆盖范围内时,在所述第一UE通过所述第一UE到所述基站的中继链路向所述基站发送所述链路质量报告前,所述方法还可以包括:
所述第一UE从N个所述第二UE中选择一个UE作为临时中继UEA,在第一UE和基站间进行数据转发,与第一UE和基站形成中继链路。
由上可知,本发明实施例提供一种中继设备选择方法,第一用户设备UE获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。如此,通过第一UE实现了对等中继设备的选择,解决了现有技术中不存在选择对等设备作为中继设备的问题。
实施例二
图5示出了本发明实施例提供的一种中继设备选择方法,应用于基站,如图5所示,所述方法可以包括:
步骤201:基站获取N个第二用户设备UE与所述第一UE间 的链路质量信息、以及N个所述第二UE的发射功率信息。
在本发明中,信号质量可以是参考信号接收功率RSRP(Reference Signal Receiving Power,RSRP),参考信号接收质量RSRQ(Reference Signal Received Quality),接收信号强度指示RSSI(Received Signal Strength Indication)、第二UE与第一UE之间的路损值(Path Loser,PL)中的任意一种或多种。在本发明的进一步的实施例中,我们使用RSRP作为一种具体的实施例来描述信号质量,但这并不限定为信号质量仅为RSRP。
所述第二UE与第一UE间的链路质量信息是所述第一UE通过所述第一信道获取的,可以为:所述第二UE与所述第一UE间的第一信道上的信号质量,如:RSRP、RSRQ、RSSI、第二UE与第一UE间的路损值PL;其中,路损值PL可以通过接收到的来自第二UE的RSRP和获取到的第一信道的发射功率值来计算得到,例如:PL=TxP-RSRP。可选的,第一UE可以接收第二UE通过第一信道发送的发现消息,根据所述发现消息测量获取所述链路质量信息。
所述发射功率信息可以为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息;还可以为:所述第二UE发送的第一信道的发射功率信息。
其中,所述第一信道用于所述第一UE与所述第二UE间的设备发现,可以为第一UE与第二UE间的发现信道。所述第二信道用于所述第一UE与所述第二UE间的数据传输,可以为第一UE与第二UE间的设备到设备(Device to Device,D2D)链路。此外,第一信道和第二信道还可以为其他信道,本发明实施例对比不进行限定。
需要说明的是,本发明所指的发射功率为特定发射资源上的发射功率值,例如:每个设备到设备(Device to Device,D2D)链路发射符号上的发射功率、或每个D2D链路发射子帧上的发射功率、或每M个物理资源块(Physical Resource Blocks,PRB)上的 发射功率,M为不小于1的正整数、或每个资源元(Resource Element,RE)上的发射功率。
可选的,所述第一信道的发射功率值可以为:UE特定的发射功率值,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的。所述第一信道的发射功率值还可以为小区特定的发射功率值,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
所述发射功率偏差信息可以为第一信道与第二信道间的发射功率偏差值,还可以为用于确定所述第二UE发送的第一信道与第二信道间的发射功率偏差值的指示信息。
可选的,所述发射功率偏差值可以为:UE特定的发射功率偏差值,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,UE20和UE21为两个不同的第二UE,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE21发送的第一信道和第二信道间的发射功率偏差值是不同,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21处于群组1,UE10和UE11处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值还可以为小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,若UE20、UE21和UE10处于小区1,UE11、UE22处于小区2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE11发送的第一信道和第二信道间的发射功率偏差 值是不同。或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21和UE10均处于小区1,但UE20和UE21处于群组1,UE10处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值也可以为与所述第二信道的传输模式相关联的发射功率偏差值;其中,传输模式可以为基于网络配置D2D链路传输资源的模式1,还可以为D2D基于UE自选资源的传输模式2。例如,若传输模式1对应的发射功率偏差值为3dB,传输模式2对应的发射功率偏差值为5dB,则当第二UE发送的第二信道的传输模式为传输模式1时,其第一信道与第二信道间发射功率偏差值就为3dB。可选的,模式1和模式2也可以对应不同的发射功率计算公式和/或发射功率的计算参数。第一UE和/或第二UE可以根据预定义的发射功率计算公式和/或发射功率的计算参数,来计算发第一信道与第二信道间发射功率偏差值。
可选的,所述基站可以通过基站间信令的方式从所述第二UE的服务基站获取所述发射功率信息。
所述基站还可以从服务器上读取所述发射功率信息,其中,所述服务器可以为操作、管理、维护(Operation,Administration and Maintenance,OAM)服务器,为预先配置给所述基站的服务器,且所述服务器中预先存储有第二UE发送的第一信道和第二信道间的发射功率信息。
所述基站也可以从服务器配置到所述基站本地的存储中获取所述发射功率信息。
步骤202:基站根据N个所述第二UE与第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。
由于,步骤201中基站获取到获取到所述发射功率信息可以 为所述第二UE发送的第一信道与第二信道间的发射功率偏差信息,也可以为或所述第二UE发送的第一信道的发射功率信息。所以,相对应的,基站根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备可以包括:
基站根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,从N个所述第二UE中确定所述第一UE的中继设备;
或者,基站根据所述至少一个N个第二用户设备UE与所述第一UE间的链路质量信息、以及N所述个第二UE发送的第一信道的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。
具体的,基站根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率偏差信息,从N个所述第二UE中确定所述第一UE的中继设备可以包括:
基站根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率偏差信息,分别计算每个所述第二UE发送的第二信道的链路质量信息,然后根据所有第二UE的第二信道的链路质量信息,将链路质量最好的第二信道所对应的第二UE确定所述第一UE的中继设备。
例如,如图1所示,分别获取UE20、UE21、UE22、UE10和UE11与远端设备(第一UE)间的链路质量信息(如参考信号接收功率):RSRP20、RSRP21、RSRP22、RSRP10、RSRP11,再根据N个所述第二UE的发射功率偏差值ΔTxP20、ΔTxP21、ΔTxP22、ΔTxP10、ΔTxP11,按照公式RSRP2=RSRP1+ΔTxP,将第二UE的参考信号接收功率与第二UE的发射功率偏差值相加,将相加结果 最大的第二UE确定为第一UE的中继设备,其中,相加结果最大的第二UE为:第二信道的信道质量最好的第二UE。
具体的,基站根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备可以包括:
基站根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、N个所述第二UE发送的第一信道的发射功率信息、以及根据公式:PL2=PL1=TxP1-RSRP1,获取N个所述第二UE发送的第二信道上的路损,然后将N个第二UE中第一信道的路损最小对应的第二UE确定为确定所述第一UE的中继设备;其中,TxP1是第一信道上的发射功率,PL2是第一信道在发送时所经历的候选中继设备与远端用户设备间的路损。
进一步的,本发明实施例中,在基站获取N个所述第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之前,所述方法还可以包括:
所述基站接收所述第一UE通过蜂窝链路发送的链路质量报告,其中,所述基站为所述第一UE的服务基站,即所述第一UE在所述基站的网络覆盖范围内,可以与第一UE直接建立链路连接;
或者,所述基站接收所述第一UE通过所述第一UE到所述基站的中继链路发送的链路质量报告,其中,所述第一UE不在所述基站的网络覆盖范围内,由第一UE从N个所述第二UE中选择一个UE作为临时中继UE,在第一UE和基站间进行数据转发,与第一UE和基站形成中继链路。
其中,所述链路质量报告具体包括以下至少一种信息:
N个所述第二UE与第一UE间的链路质量信息;
N个所述第二UE的发射功率信息;
N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
由上可知,本发明实施例提供一种中继设备选择方法,基站获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。如此,通过基站实现了对等中继设备的选择,解决了现有技术中不存在选择对等设备作为中继设备的问题。
实施例三
图6示出了本发明实施例提供的另一种中继设备选择方法,如图6所示,所述方法可以包括:
步骤301:第二用户设备UE发送发射功率信息。
其中,第二UE可以为在中继设备确定之前,能够成为中继设备的候选中继UE。
所述发射功率信息可以为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息;还可以为:所述第二UE发送的第一信道的发射功率信息。
其中,所述第一信道用于所述第一UE与所述第二UE间的设备发现,可以为第一UE与第二UE间的发现信道。所述第二信道用于所述第一UE与所述第二UE间的数据传输,可以为第一UE与第二UE间的设备到设备(Device to Device,D2D)链路。此外,第一信道和第二信道还可以为其他信道,本发明实施例对比不进行限定。
可选的,所述第一信道的发射功率值可以为:UE特定的发射功率值,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的。所述第一信道的发射功率值还可以为小区特定的发射功率值,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同 的。
所述发射功率偏差信息可以为第一信道与第二信道间的发射功率偏差值,还可以为用于确定所述第二UE发送的第一信道与第二信道间的发射功率偏差值的指示信息。
可选的,所述发射功率偏差值可以为:UE特定的发射功率偏差值,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,UE20和UE21为两个不同的第二UE,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE21发送的第一信道和第二信道间的发射功率偏差值是不同,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21处于群组1,UE10和UE11处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值还可以为小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,若UE20、UE21和UE10处于小区1,UE11、UE22处于小区2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE11发送的第一信道和第二信道间的发射功率偏差值是不同。或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21和UE10均处于小区1,但UE20和UE21处于群组1,UE10处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值也可以为与所述第二信道的传输模式相关联的发射功率偏差值;其中,传输模式可以为基于网络配置D2D链路传输资源的模式1,还可以为D2D基于UE自选资源的传输模 式2。例如,若传输模式1对应的发射功率偏差值为3dB,传输模式2对应的发射功率偏差值为5dB,则当第二UE发送的第二信道的传输模式为传输模式1时,其第一信道与第二信道间发射功率偏差值就为3dB。可选的,模式1和模式2也可以对应不同的发射功率计算公式和/或发射功率的计算参数。第一UE和/或第二UE可以根据预定义的发射功率计算公式和/或发射功率的计算参数,来计算发第一信道与第二信道间发射功率偏差值。
可选的,本发明实施例中,所述第二UE可以通过下述至少一种方式来发送发射功率信息:
所述第二UE通过所述第二UE的服务基站发送所述发射功率信息;具体的,当第一UE处于基站覆盖范围内时,第二UE可以通过所述第二UE的服务基站直接向第一UE发送所述发射功率信息;
或者,所述第二UE通过所述第一信道发送所述发射功率信息。
其中,所述第二UE通过所述第一信道发送所述发射功率信息具体包括以下至少一种方式:
所述第二UE通过所述第一信道承载的信息来发送所述发射功率信息;
或者,所述第二UE通过所述第一信道使用的循环冗余校验码CRC掩码来发送所述发射功率信息;
或者,所述第二UE通过所述第一信道使用的解调参考信号DMRS来发送所述发射功率信息;
或者,所述第二UE通过所述第一信道使用的资源位置信息来发送所述发射功率信息。
步骤302:所述第二用户设备UE接收确认信息,其中,所述确认信息用于指示所述第二UE成为中继设备。
可选的,所述第二UE可以接收所述第二UE的服务基站或所述第一UE发送的确认信息,指示第二UE成为中继设备。
进一步的,在执行本实施例所述的方法之前,第二UE还需要确定自身为候选中继设备,具体的,在步骤301之前,所述方法还可以包括:
所述第二UE接收基站配置的信号质量门限信息;
根据所述信号质量门限信息,检测到所述第二UE接收到的信号的信号质量满足预设规则。
其中,所述信号质量门限信息可以包括预设信号质量门限值,其中,预设信号质量门限值可以根据需要进行设置,本发明实施例对比不进行限定。可选的,第二UE可以接收基站通过信令以专用或广播的信令发送的信号质量的门限信息。
所述第二UE检测到所述第二UE接收到的信号的信号质量可以包括以下至少一种信号质量:
检测到来自基站的信号质量,如RSRP、RSRQ、RSSI、PL中的至少一种;
或者,检测到来自第一UE的信号质量,如RSRP、RSRQ、RSSI、PL中的至少一种。
可选的,所述第二UE所述根据所述信号质量门限信息,检测到所述第二UE接收到的信号的信号质量满足预设规则可以包括以下至少一种:
检测到来自基站的信号质量大于和/或等于信号质量门限信息中的预设信号质量门限值;
检测到来自基站的信号质量小于和/或等于信号质量门限信息中的预设信号质量门限值;
检测到来自第一UE的信号质量大于和/或等于信号质量门限信息中的预设信号质量门限值。
由上可知,本发明实施例提供一种中继设备选择方法,第二用户设备UE发送发射功率信息,所述发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;接收 确认信息,其中,所述确认信息用于指示所述第二UE成为中继设备。如此,通过第二UE向第一UE发送发射功率信息,以使得第一UE根据该信息从多个第二UE中确定出中继设备,通过第一UE实现了对等中继设备的选择,解决了现有技术中不存在选择对等设备作为中继设备的问题。
实施例四
图7为本发明实施例提供的一种用户设备UE70,用于执行实施例一所述的方法,其中,所述UE可以为:在UE与基站(eNB)有数据传输时,不直接与eNB进行数据传输,而需要通过中继设备的转发间接的与基站进行数据传输的UE,如远端设备等设备;本发明实施例中,所述UE可以位于基站的网络覆盖范围内,可以直接与基站建立无线资源控制(Radio Resource Control,RRC)连接或者接收基站发送广播消息,但与基站之间进行数据传输时,需要通过中继设备进行转发,例如,如图1所示,UE为远端UE,位于eNB2的网络覆盖范围内,可以通过UE21与eNB2进行数据传输,通过UE11与eNB1进行数据传输;此外,所述UE还可以位于基站的网络覆盖范围外,可以接收来自基站网络覆盖范围内的用户设备发送的信号,例如,如图2所示,所述UE为远端UE,位于eNB1和eNB2的网络覆盖范围外,可以同时接收处于eNB1和eNB2的网络覆盖范围内的UE21和UE11发送的信号。如图7所示,所述UE可以包括:
获取单元701,用于获取N个第二UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息。
其中,所述第二UE可以为在中继设备确定之前,能够成为中继设备的候选中继UE;N为大于等于1的整数。需要说明的是,在具体的应用场景中,UE可以将接收到的信号质量大于预设阈值的UE确定为候选中继设备,然后将确定出的候选中继设备中的全部设备作为上述N个第二UE,或者将确定出的候选中继设备中的部分设备作为N个第二UE,即可以从预先确定出的M个候选中继 设备中取N个设备作为第二UE,M可以为大于N的整数,也可以为等于N的整数。其中,预设阈值可以提前预定义好的,也可以基站通过信令配置的,本发明实施例对比不进行限定。
例如,如图1和图2所示,UE为远端UE,首先将UE20、UE21、UE22、UE10和UE11五个设备确定为远端UE的候选中继UE,然后从这五个设备中选择出UE22、UE21和UE11三个设备,获取UE22与远端UE间的链路质量信息,获取UE21与远端UE间的链路质量信息,获取UE11与远端UE间的链路质量信息;或者,将这五个设备均确定为第二UE,获取UE20与远端UE间的链路质量信息,获取UE21与远端UE间的链路质量信息,获取UE22与远端UE间的链路质量信息,获取UE10与远端UE间的链路质量信息,获取UE11与远端UE间的链路质量信息。
所述第二UE与UE间的链路质量信息是所述UE通过所述第一信道获取的,可以为:所述第二UE与所述UE间的第一信道上的信号质量,如:RSRP、RSRQ、RSSI、第二UE与UE间的路损值PL;其中,路损值PL可以通过接收到的来自第二UE的RSRP和获取到的第一信道的发射功率值来计算得到,例如:PL=TxP-RSRP。可选的,UE可以接收第二UE通过第一信道发送的发现消息,根据所述发现消息测量获取所述链路质量信息。
所述发射功率信息可以为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息;还可以为:所述第二UE发送的第一信道的发射功率信息。
其中,所述第一信道用于所述UE与所述第二UE间的设备发现,可以为UE与第二UE间的发现信道。所述第二信道用于所述UE与所述第二UE间的数据传输,可以为UE与第二UE间的设备到设备(Device to Device,D2D)链路。此外,第一信道和第二信道还可以为其他信道,本发明实施例对比不进行限定。
可选的,所述第一信道的发射功率值可以为:UE特定的发射功率值,所述UE特定的发射功率值是指:不同第二UE发送的第 一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的。所述第一信道的发射功率值还可以为小区特定的发射功率值,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
所述发射功率偏差信息可以为第一信道与第二信道间的发射功率偏差值,还可以为用于确定所述第二UE发送的第一信道与第二信道间的发射功率偏差值的指示信息。
可选的,所述发射功率偏差值可以为:UE特定的发射功率偏差值,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,UE20和UE21为两个不同的第二UE,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE21发送的第一信道和第二信道间的发射功率偏差值是不同,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21处于群组1,UE10和UE11处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值还可以为小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,若UE20、UE21和UE10处于小区1,UE11、UE22处于小区2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE11发送的第一信道和第二信道间的发射功率偏差值是不同。或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21和UE10均处于小区1,但UE20和UE21处于群组1,UE10处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏 差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值也可以为与所述第二信道的传输模式相关联的发射功率偏差值;其中,传输模式可以为基于网络配置D2D链路传输资源的模式1,还可以为D2D基于UE自选资源的传输模式2。例如,若传输模式1对应的发射功率偏差值为3dB,传输模式2对应的发射功率偏差值为5dB,则当第二UE发送的第二信道的传输模式为传输模式1时,其第一信道与第二信道间发射功率偏差值就为3dB。可选的,模式1和模式2也可以对应不同的发射功率计算公式和/或发射功率的计算参数。UE和/或第二UE可以根据预定义的发射功率计算公式和/或发射功率的计算参数,来计算发第一信道与第二信道间发射功率偏差值。
确定单元702,用于根据所述获取单元701获取到的N个所述第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述UE的中继设备。
进一步的,本发明实施例中,对于一个第二UE而言,所述获取单元701具体可以通过下述(1)、(2)、(3)三种方式获取所述第二UE发送的第一信道与第二信道间的发射功率信息:
(1)通过所述UE的服务基站获取所述发射功率信息。
需要说明的是,此方式(1)中UE处于UE的服务基站的网络覆盖范围内。例如,如图1所示,若第二UE为候选中继设备UE21,UE为远端UE,且处在eNB2的网络覆盖范围内,即eNB2为远端UE的服务基站,此时,远端UE可以通过eNB2获得候选中继设备UE21发送的第一信道与第二信道间的发射功率信息。
(2)通过所述第二UE获取所述发射功率信息。
需要说明的是,此方式(2)中UE可以位于基站的网络覆盖范围内,还可以位于基站的覆盖范围外。
可选的,所述获取单元701可以通过所述第二UE发送的第一 信道获取所述发射功率信息,具体的,所述获取单元701可以采用以下(a)、(b)、(c)、(d)中至少一种方式从所述第二UE发送的第一信道上获取所述发射功率信息:
(a)通过所述第一信道承载的信息来获取所述发射功率信息。
其中,第一信道承载的信息可以包含指示第二信道的传输模式的比特信息,如用比特数0、1来表示第二信道的传输模式为传输模式1或传输模式2。当UE获取到用于指示第二信道的传输模式的比特信息后,可以根据该比特信息对应获得第二信道的传输模式,然后再根据传输模式与发射功率偏差值的对应关系来获得第二UE发送的第一信道与第二信道间的发射功率偏差值;或者,根据传输模式与发射功率值的对应关系获取第二UE发送的第一信道的发射功率值。
第一信道承载的信息还可以包含用于指示发射功率偏差值或发射功率值的专用比特字段,其中,所述专用比特字段包含量化后的发射功率偏差值所对应的比特信息。
例如,若多个第二UE发送的第一信道与第二信道间的发射功率偏差值射功率中最小功率偏差值为0dB,最大功率偏差值为10dB,将0dB~10dB范围内的发射功率偏差值进行量化,获得量化值[0,3,6,9]dB,则可以用2比特的信息来表示量化后的各功率偏差值(如下表1所示)。此时,若所述专用字段中包含的比特信息为00,则根据表1可以确定第二UE发送的第一信道与第二信道间的发射功率偏差值为0dB。
需要说明的是,对最小功率偏差值到最大功率偏差范围内的发射功率偏差值量化的量级可以需要进行设置,本发明实施例对比不进行限定。优选的,量化级别越高,功率偏差值划分的就越细致,就需要使用用更多的比特信息来表示量化后的发射功率偏差值。
可选的,所述第一信道承载的信息可以位于第一信道发送的用来指示设备发现的请求或响应的数据包中。比如:若第一信道是 D2D发现信道,它包含的设备发现消息是232比特,此时,可以在这第一信道中增加一个专用字段,将指示功率偏移值的比特信息设置在该专用字段中。(如图4所示),即占用原来第一信道中的设备发现信号的信息位来传输用于指示发射功率值或发射功率偏差值的比特信息。需要说明的是,用本方法指示功率值需要占用第一信道中原来信息的比特位,从而影响第一信道的码率。但是,考虑到专用字段相对于设备发送消息的232比特占用的比特数较少,所以,对第一信道而言,对码率影响是可以忽略的。
(b)通过所述第二UE发送所述第一信道时使用的循环冗余校验(Cyclic Redundancy Check,CRC)掩码来获取所述发射功率信息。
其中,所述CRC掩码可以为:一个预定义的与CRC位长度相同的、加在编码完成后的CRC字段上的0、1比特序列。没有使用CRC掩码或缺省的CRC掩码是全0序列。若没有CRC掩码,则译码时,译码出来的信息比特直接做CRC校验,CRC校验结果正确,则认为这个数据包的接收、解调与译码的全过程是正确的,否则是错误的。
若在CRC上加上了掩码,则在做CRC校验前,首先需要把CRC掩码去掉,然后再做CRC校验,以保证得到的结果才是预期的译码结果,否则CRC检验基本上是错误的。因此用CRC在第一信道中加上非全0的CRC掩码序列,可以用来携带一部分比特信息,根据该CRC掩码携带的比特信息来获取发射功率信息。
例如,使用4个不同的掩码,则可以携带2比特的控制信息。使用8个不同的CRC掩码,则可以携带3比特的控制信息。将不同的CRC掩码与用于指示发射功率值或发射功率偏差值的比特信息一一映射,如下表2所示,是一个将CRC掩码映射为2比特信息的映射表,若携带的CRC掩码为000011110000111100001111,则可以获得用于指示功率偏差值的比特信息为00,进而可以根据该比特信息与功率偏差值的对应的关系(如表1所示)得到功率偏 差值。
需要说明的是,其他长度的CRC掩码与比特信息的映射关系可以根据上述原理进行设置,在此不再一一举例。
(c)通过所述第二UE发送所述第一信道时使用的解调参考信号(Demodulation Reference Signal,DMRS)来获取所述发射功率信息。
可选的,本发明实施例中,获取单元701可以根据不同的DMRS序列的循环移位值获取发射功率信息,根据该发射功率信息确定功率偏差值或者发射功率值。比如,若DMRS序号有8个不同的循环移位值,对应3比特的信息状态,可以用来传输3比特信息,不同的循环移位值对应携带的3比特信息中的某一个比状态。
获取单元701还可以根据不同的DMRS序列的根序列号获取发射功率信息,根据该发射功率信息确定功率偏差值或者发射功率值。如,一个长为24的DMRS序列,由长为23的ZC序列生成,至少可以有22个不同的DMRS序列的根序列号,其取值为[1,22]。
获取单元701也可以根据一个1ms子帧中的前后两个相邻时隙中的DMRS符号上映射的不同的DMRS序列,将前后相邻的DMRS序列的关系与功率偏移值对应,根据前后相邻的DMRS序列的关系获取功率偏差值。
获取单元701又可以根据相邻的两个DMRS上调制数据符号来确定功率偏移信息,根据获取到的发射功率偏移信息确定功率偏移值或者发射功率值。具体地,一个1ms子帧中的前后两个相邻时隙中的DMRS,可以在这两个DMRS序列当中的任意一个DMRS序列上调制上一个调制符号,从这个调制符号上来携带信息,如:调制一个QPSK符号,则能指示2比特的信息,调制一个16QAM的符号,则可以指示4比特的信息,调制一个64QAM的信号则能指示6比特的信息。
(d)通过所述第二UE发送所述第一信道时使用的资源位置信息来获取所述发射功率信息。
可选的,获取单元701可以通过所述第二UE发送第一信道时使用的资源池来对应获取发射功率信息,即若有K个资源池,则每个资源池可对应指示不超过log2(K)个比特信息,此时,可以根据第一信道所处资源池对应的比特信息,确定与该比特信息对应的发射功率偏移值。
例如,如表3所示,4个资源池分别对应2比特信息,若第一信道处于资源池2,则获取到的发射功率信息为01,再根据比特信息与功率偏差值的对应关系(如表1所示),确定第二UE发送的第一信道与第二信道间的发射功率偏差值为:3dB。
可选的,获取单元701还可以通过所述第二UE发送第一信道时使用的时域位置和频域位置来对应获取发射功率信息;例如,若有M=8个可选的频域位置,N=4个可选的时域位置,则存在M*N=32个可选的时频位置,此时,可以利用32个位置中的全部或者部分位置来指示一定比特信息的发射功率信息,最多可以指示5比特发射功率信息。
(3)通过所述UE和/或所述第二UE的同步参考源获取所述发射功率信息。
其中,所述UE和/或所述第二UE的同步参考源可以为:向所述UE和/或所述第二UE发送同步参考信号的设备;同步参考源可以与UE和/或所述第二UE处于同一网络覆盖范围内,也可以与UE和/或所述第二UE处于不同的网络覆盖范围内。
可选的,获取单元701可以通过所述UE和/或所述第二UE的同步参考源发送的第三信道获取所述发射功率信息;所述第三信道为:所述UE接收到的所述UE和/或所述第二UE的同步参考源发送的信道;
还可以通过UE和/或所述第二UE的同步参考源发送的同步序列获取所述发射功率信息。
其中,所述获取单元701通过所述第二UE的同步参考源发送的第三信道获取所述发射功率信息具体包括以下至少一种方式:
所述获取单元701通过所述第三信道承载的信息来获取所述发射功率信息,其中,获取单元701可以通过所述第三信道的预留比特中获取所述功率信息,与上述(a)所述方式相同,在此不再赘述。
或者,所述获取单元701所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;其中,所述获取单元701通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息的方式与上述(b)所述方式相同,在此不再赘述。
或者,所述获取单元701通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的解调参考信号DMRS来获取所述发射功率信息;其中,所述获取单元701通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的解调参考信号DMRS来获取所述发射功率信息的方式与上述(c)所述方式相同,在此不再赘述。
或者,所述获取单元701通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的资源位置信息来获取所述发射功率信息;其中,所述获取单元701通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的资源位置信息来获取所述发射功率信息的方式与上述(c)所述方式相同,在此不再赘述。
进一步的,由于获取单元701获取到所述功率信息可以为所述第二UE发送的第一信道与第二信道间的发射功率信息,也可以为或所述第二UE发送的第一信道的发射功率信息;所以,相对应的,确定单元702具体用于:
根据N个所述第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率信息,从N个所述第二UE中确定所述UE的中继设备;
或者,根据N个所述第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发射功率信息,从N个所述第二UE中确定所述UE的中继设备。
具体的,所述根据N个所述第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率信息,从N个所述第二UE中确定所述UE的中继设备可以包括:
根据N个所述第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率信息,分别计算每个所述第二UE发送的第二信道的链路质量信息,然后根据所有第二UE的第二信道的链路质量信息,将链路质量最好的第二信道所对应的第二UE确定所述UE的中继设备。例如,如图1所示,分别获取UE20、UE21、UE22、UE10和UE11与远端设备(UE)间的链路质量信息(如参考信号接收功率):RSRP20、RSRP21、RSRP22、RSRP10、RSRP11,再根据N个所述第二UE的发射功率偏差值ΔTxP20、ΔTxP21、ΔTxP22、ΔTxP10、ΔTxP11,按照公式RSRP2=RSRP1+ΔTxP,将第二UE的参考信号接收功率与第二UE的发射功率偏差值相加,将相加结果最大的第二UE确定为UE的中继设备,其中,相加结果最大的第二UE为:第二信道的信道质量最好的第二UE。
具体的,所述根据N个所述第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发射功率信息,从N个所述第二UE中确定所述UE的中继设备可以包括:
根据N个所述第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发送功率信息,根据公式:RSRP1=TxP1–PL1,其中,TxP1是第一信道上的发射功率,PL1是第一信道在发送时所经历的候选中继设备与远端用户设备间的路损,获取N个所述第二UE发送的第一信道上的路损,然后将N个第二UE中第一信道的路损最小对应的第二UE确定为确定 所述UE的中继设备。
进一步的,本发明实施例中,还可以由基站为所述UE确定中继设备,实现中继设备选择,其中,为了使基站完成中继设备的选择,在所述UE获取N个第二UE中N个所述第二UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息之后,如图7A所示,所述UE还可以包括:
发送单元703,用于通过蜂窝链路向所述基站发送所述链路质量报告,其中,所述基站为所述UE的服务基站,即所述UE在所述基站的网络覆盖范围内,可以与UE直接建立链路连接;
或者,通过所述UE到所述基站的中继链路向所述基站发送所述链路质量报告,以使得基站根据所述链路质量报告进行中继设备选择;其中,所述UE不在所述基站的网络覆盖范围内。所述UE到所述基站的中继链路,为UE在N个所述第二UE中选择一个第二UEA,形成的“UE-第二UEA-基站”间的中继链路。
其中,所述链路质量报告具体包括以下至少一种信息:
N个所述第二UE与UE间的链路质量信息;
N个所述第二UE的发射功率信息;
N个所述第二UE与所述UE之间的第二信道的链路质量信息。
可以理解的是,当所述UE不在所述基站的网络覆盖范围内时,所述确定单元702,还用于在所述发送通过所述UE到所述基站的中继链路向所述基站发送所述链路质量报告前,从N个所述第二UE中选择一个UE作为临时中继UE,在UE和基站间进行数据转发,与UE和基站形成中继链路。
由上可知,本发明实施例提供一种用户设备UE,获取N个第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述功率信息为:所述第二UE发送的第一信道与第二信道间的发射功率信息,或所述第二UE发送的第一信道的发射功率信息;根据N个所述第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息, 从N个所述第二UE中确定所述UE的中继设备。如此,通过UE实现了对等中继设备的选择,解决了现有技术中不存在选择对等设备作为中继设备的问题。
实施例五
图8示出了本发明实施例提供的一种基站的结构图,如图8所示,所述基站可以包括:
获取单元801,用于获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息。
其中,所述链路质量信息是所述第一UE通过所述第一信道获取的,可以为参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、服务质量(Quality of Serice,QoS)、接收信号强度(Received Signal Strength,RSS)中的至少一种信息。
所述发射功率信息可以为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率信息;还可以为:所述第二UE发送的第一信道的发射功率信息。
其中,所述第一信道用于所述第一UE与所述第二UE间的设备发现,可以为第一UE与第二UE间的发现信道。所述第二信道用于所述第一UE与所述第二UE间的数据传输,可以为第一UE与第二UE间的设备到设备(Device to Device,D2D)链路。此外,第一信道和第二信道还可以为其他信道,本发明实施例对比不进行限定。
可选的,所述第一信道的发射功率值可以为:UE特定的发射功率值,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的。所述第一信道的发射功率值还可以为小区特定的发射功率值,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同 的。
所述发射功率偏差信息可以为第一信道与第二信道间的发射功率偏差值,还可以为用于确定所述第二UE发送的第一信道与第二信道间的发射功率偏差值的指示信息。
可选的,所述发射功率偏差值可以为:UE特定的发射功率偏差值,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,UE20和UE21为两个不同的第二UE,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE21发送的第一信道和第二信道间的发射功率偏差值是不同,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21处于群组1,UE10和UE11处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值还可以为小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,若UE20、UE21和UE10处于小区1,UE11、UE22处于小区2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE11发送的第一信道和第二信道间的发射功率偏差值是不同。或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21和UE10均处于小区1,但UE20和UE21处于群组1,UE10处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值也可以为与所述第二信道的传输模式相关联的发射功率偏差值;其中,传输模式可以为基于网络配置D2D链路传输资源的模式1,还可以为D2D基于UE自选资源的传输模 式2。例如,若传输模式1对应的发射功率偏差值为3dB,传输模式2对应的发射功率偏差值为5dB,则当第二UE发送的第二信道的传输模式为传输模式1时,其第一信道与第二信道间发射功率偏差值就为3dB。可选的,模式1和模式2也可以对应不同的发射功率计算公式和/或发射功率的计算参数。第一UE和/或第二UE可以根据预定义的发射功率计算公式和/或发射功率的计算参数,来计算发第一信道与第二信道间发射功率偏差值。
确定单元802,用于根据所述获取单元801获取到的N个所述第二UE与第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。
进一步的,所述获取单元801具体用于:通过基站间信令的方式从所述第二UE的服务基站获取所述发射功率信息;
或者,从服务器上读取所述发射功率信息,其中,所述服务器可以为操作、管理、维护(Operation,Administration and Maintenance,OAM)服务器,为预先配置给所述基站的服务器,且所述服务器中预先存储有第二UE发送的第一信道和第二信道间的发射功率信息;
或者,从服务器配置到所述基站本地的存储中获取所述发射功率信息。
进一步的,由于获取单元801获取到所述功率信息可以为所述第二UE发送的第一信道与第二信道间的发射功率信息,也可以为或所述第二UE发送的第一信道的发射功率信息;所以,相对应的,确定单元802具体用于:
根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备;
或者,根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发射功率信 息,从N个所述第二UE中确定所述第一UE的中继设备。
具体的,所述根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备可以包括:
根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道与第二信道间的发射功率信息,分别计算每个所述第二UE发送的第二信道的链路质量信息,然后根据所有第二UE的第二信道的链路质量信息,将链路质量最好的第二信道所对应的第二UE确定所述第一UE的中继设备。例如,如图1所示,分别获取UE20、UE21、UE22、UE10和UE11与远端设备(第一UE)间的链路质量信息(如参考信号接收功率):RSRP20、RSRP21、RSRP22、RSRP10、RSRP11,再根据N个所述第二UE的发射功率偏差值ΔTxP20、ΔTxP21、ΔTxP22、ΔTxP10、ΔTxP11,按照公式RSRP2=RSRP1+ΔTxP,将第二UE的参考信号接收功率与第二UE的发射功率偏差值相加,将相加结果最大的第二UE确定为第一UE的中继设备,其中,相加结果最大的第二UE为:第二信道的信道质量最好的第二UE。
具体的,所述根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备可以包括:
根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE发送的第一信道的发射功率信息,根据公式:RSRP1=TxP1–PL1,其中,TxP1是第一信道上的发射功率,PL1是第一信道在发送时所经历的候选中继设备与远端用户设备间的路损,获取N个所述第二UE发送的第一信道上的路损,然后将N个第二UE中第一信道的路损最小对应的第二UE确定为确定所述第一UE的中继设备。
进一步的,如图8A所示,所述基站还包括:
接收单元803,用于在获取单元801获取到N个所述第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之前,接收所述第一UE通过蜂窝链路发送的链路质量报告,其中,所述基站为所述第一UE的服务基站,即所述第一UE在所述基站的网络覆盖范围内,可以与第一UE直接建立链路连接;
或者,接收所述第一UE通过所述第一UE到所述基站的中继链路发送的链路质量报告,其中,所述第一UE不在所述基站的网络覆盖范围内,由第一UE从N个所述第二UE中选择一个UE作为临时中继UE,在第一UE和基站间进行数据转发,与第一UE和基站形成中继链路。
其中,所述链路质量报告具体包括以下至少一种信息:
N个所述第二UE与第一UE间的链路质量信息;
N个所述第二UE的发射功率信息;
N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
由上可知,本发明实施例提供一种基站,获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述功率信息为:所述第二UE发送的第一信道与第二信道间的发射功率信息,或所述第二UE发送的第一信道的发射功率信息;根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备。如此,通过基站实现了对等中继设备的选择,解决了现有技术中不存在选择对等设备作为中继设备的问题。
实施例六
图9示出了本发明实施例提供的一种用户设备UE90的结构图,用于执行实施例三所述的方法,其中,UE90可以为在中继设备确定之前,能够成为中继设备的候选中继UE。如图9所示,所 述UE可以包括:
发送单元901,用于发送发射功率信息。
其中,所述发射功率信息可以为:所述UE发送的第一信道与所述UE发送的第二信道间的发射功率偏差信息;还可以为:所述UE发送的第一信道的发射功率信息。
其中,所述第一信道用于所述第一UE与所述UE间的设备发现,可以为第一UE与UE间的发现信道。所述第二信道用于所述第一UE与所述UE间的数据传输,可以为第一UE与UE间的设备到设备(Device to Device,D2D)链路。此外,第一信道和第二信道还可以为其他信道,本发明实施例对比不进行限定。
可选的,所述第一信道的发射功率值可以为:UE特定的发射功率值,所述UE特定的发射功率值是指:不同UE发送的第一信道的发射功率值是不同的,或者处于不同组的UE发送的第一信道的发射功率值是不同的。所述第一信道的发射功率值还可以为小区特定的发射功率值,所述小区特定的发射功率值是指:处于不同小区的UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的UE发送的第一信道的发射功率值是不同的。
所述发射功率偏差信息可以为第一信道与第二信道间的发射功率偏差值,还可以为用于确定所述UE发送的第一信道与第二信道间的发射功率偏差值的指示信息。
可选的,所述发射功率偏差值可以为:UE特定的发射功率偏差值,所述UE特定的发射功率偏差值是指:不同UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,UE20和UE21为两个不同的UE,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE21发送的第一信道和第二信道间的发射功率偏差值是不同,或者处于不同组的UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21处于群组1,UE10和UE11处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一 信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值还可以为小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的UE发送的第一信道与第二信道间的发射功率偏差值是不同的。例如,如图1所示,若UE20、UE21和UE10处于小区1,UE11、UE22处于小区2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE11发送的第一信道和第二信道间的发射功率偏差值是不同。或者处于不同小区组的UE发送的第一信道与第二信道间的发射功率偏差值是不同的,例如,如图1所示,若UE20、UE21和UE10均处于小区1,但UE20和UE21处于群组1,UE10处于群组2,则UE20发送的第一信道和第二信道间的发射功率偏差值与UE10发送的第一信道和第二信道间的发射功率偏差值是不同。
所述发射功率偏差值也可以为与所述第二信道的传输模式相关联的发射功率偏差值;其中,传输模式可以为基于网络配置D2D链路传输资源的模式1,还可以为D2D基于UE自选资源的传输模式2。例如,若传输模式1对应的发射功率偏差值为3dB,传输模式2对应的发射功率偏差值为5dB,则当UE发送的第二信道的传输模式为传输模式1时,其第一信道与第二信道间发射功率偏差值就为3dB。可选的,模式1和模式2也可以对应不同的发射功率计算公式和/或发射功率的计算参数。第一UE和/或UE可以根据预定义的发射功率计算公式和/或发射功率的计算参数,来计算发第一信道与第二信道间发射功率偏差值。
接收单元902,用于UE接收确认信息,其中,所述确认信息用于指示所述UE成为中继设备。
进一步的,本发明实施例中,所述发送单元901,具体用于以通过下述至少一种方式来发送发射功率信息:
通过所述UE的服务基站发送所述发射功率信息;具体的,当第一UE处于基站覆盖范围内时,UE可以通过所述UE的服务基站直接向第一UE发送所述发射功率信息;
或者,通过所述第一信道发送所述发射功率信息。
其中,所述发送单元901通过所述第一信道发送所述发射功率信息具体包括以下至少一种方式:
通过所述第一信道承载的信息来发送所述发射功率信息;
或者,通过所述第一信道使用的循环冗余校验码CRC掩码来发送所述发射功率信息;
或者,通过所述第一信道使用的解调参考信号DMRS来发送所述发射功率信息;
或者,通过所述第一信道使用的资源位置信息来发送所述发射功率信息。
进一步的,接收单元902具体用于:
接收所述UE的服务基站或所述第一UE发送的确认信息,指示UE成为中继设备。
进一步的,在执行本实施例所述的方法之前,UE90还需要确定自身为候选中继设备,具体的,所述接收单元902,还用于:
在发送单元901发送发射功率信息之前,接收基站配置的信号质量门限信息;
如图9A所示,所述UE90还可以包括:
检测单元903,用于根据所述信号质量门限信息,检测到所述UE接收到的信号的信号质量满足预设规则。
其中,所述信号质量门限信息可以包括预设信号质量门限值,其中,预设信号质量门限值可以根据需要进行设置,本发明实施例对比不进行限定。可选的,所述接收单元902可以接收基站通过信令以专用或广播的信令发送的信号质量的门限信息。
所述检测单元903检测到所述UE接收到的信号的信号质量可以包括以下至少一种信号质量:
检测到来自基站的信号质量,如RSRP、RSRQ、RSSI、PL中的至少一种;
或者,检测到来自第一UE的信号质量,如RSRP、RSRQ、 RSSI、PL中的至少一种。
可选的,所述检测单元903,具体用于以下至少一种方式检测所述UE接收到的信号的信号质量满足预设规则:
检测到来自基站的信号质量大于和/或等于信号质量门限信息中的预设信号质量门限值;
检测到来自基站的信号质量小于和/或等于信号质量门限信息中的预设信号质量门限值;
检测到来自第一UE的信号质量大于和/或等于信号质量门限信息中的预设信号质量门限值。
由上可知,本发明实施例提供一种UE,发送发射功率信息,所述发射功率信息为:所述UE发送的第一信道与所述UE发送的第二信道间的发射功率偏差信息,或所述UE发送的第一信道的发射功率信息;接收确认信息,其中,所述确认信息用于指示所述UE成为中继设备。如此,通过UE向第一UE发送用于确定中继设备的发射功率信息,以使得第一UE根据该信息从多个UE中确定出中继设备,通过第一UE实现了对等中继设备的选择,解决了现有技术中不存在选择对等设备作为中继设备的问题。
实施例七
图10为本发明实施例提供的一种中继选择系统的结构图,如图10所示,所述系统可以包括:UE70、基站80、N个UE90;
其中,UE70与实施例四所述的UE的功能相同,在此不再赘述;所述基站80与实施例五所述的基站的功能相同,在此不再赘述;所述UE90与实施例六所述的UE的功能相同,在此不再赘述。
由上可知,本发明实施例提供一种中继设备选择及系统,第一用户设备UE获取N个第二用户设备UE中每个UE90与所述UE70间的链路质量信息、以及每个UE90的发射功率信息;其中,所述发射功率信息为:所述UE90发送的第一信道与所述UE90发送的第二信道间的发射功率信息,或所述UE90发送的第一信道的发射功率信息;所述UE70根据N个所述第二用户设备UE中每个 UE90与所述UE70间的链路质量信息、以及每个UE90的发射功率信息,从N个所述UE90中确定所述UE70的中继设备。如此,通过UE实现了对等中继设备的选择,解决了现有技术中不存在选择对等设备作为中继设备的问题。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离设备说明的单元可以是或者也可以不是物理上分开的,作为单元显示的设备可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件(例如处理器)来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (46)

  1. 一种中继设备选择方法,其特征在于,所述方法包括:
    第一用户设备UE获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述N为大于等于1的整数;所述第二UE的发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
    所述第一UE根据N个所述第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备;
    其中,所述第二UE发送的第一信道用于所述第一UE与所述第二UE间的设备发现;所述第二UE发送的第二信道用于所述第一UE与所述第二UE间的数据传输;所述第二UE与第一UE间的链路质量信息是所述第一UE通过所述第一信道获取的。
  2. 根据权利要求1所述的方法,其特征在于,所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
    UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
    小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
  3. 根据权利要求1所述的方法,其特征在于,所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
    UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率 偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    与所述第二信道的传输模式相关联的发射功率偏差值。
  4. 根据权利要求1所述的方法,其特征在于,所述第一UE获取所述第二UE的发射功率信息具体包括:
    所述第一UE通过所述第一UE的服务基站获取所述发射功率信息;
    或者,所述第一UE通过所述第二UE获取所述发射功率信息;
    或者,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源获取所述发射功率信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第一UE通过所述第二UE获取所述发射功率信息具体包括:
    所述第一UE通过所述第二UE发送的第一信道获取所述发射功率信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一UE通过所述第二UE发送的第一信道获取所述发射功率信息具体包括以下至少一种方式:
    所述第一UE通过所述第一信道承载的信息来获取所述发射功率信息;
    所述第一UE通过所述第二UE发送所述第一信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;
    所述第一UE通过所述第二UE发送所述第一信道时使用的解调参考信号DMRS来获取所述发射功率信息;
    所述第一UE通过所述第二UE发送所述第一信道时使用的资源位置信息来获取所述发射功率信息。
  7. 根据权利要求4所述的方法,其特征在于,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源获取所述发射功率信息包括:
    所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送的第三信道获取所述发射功率信息;所述第三信道为:所述第一UE接收到的所述第一UE和/或所述第二UE的同步参考源发送的信道;
    或者,所述第一UE通过第一UE和/或所述第二UE的同步参考源发送的同步序列获取所述发射功率信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送的第三信道获取所述发射功率信息具体包括以下至少一种方式:
    所述第一UE通过所述第三信道承载的信息来获取所述发射功率信息;
    所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;
    所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的解调参考信号DMRS来获取所述发射功率信息;
    所述第一UE通过所述第一UE和/或所述第二UE的同步参考源发送所述第三信道时使用的资源位置信息来获取所述发射功率信息。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,在所述第一UE获取N个第二UE与第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之后,所述方法还包括:
    所述第一UE通过蜂窝链路向所述基站发送所述链路质量报告;
    或者,所述第一UE通过所述第一UE到所述基站的中继链路 向所述基站发送所述链路质量报告。
  10. 根据权利要求9所述的方法,其特征在于,所述链路质量报告具体包括以下至少一种信息:
    N个所述第二UE与第一UE间的链路质量信息;
    N个所述第二UE的发射功率信息;
    N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
  11. 一种中继设备选择方法,其特征在于,所述方法包括:
    基站获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述N为大于等于1的整数;所述第二UE的发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
    所述基站根据N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备;
    其中,所述第二UE发送的第一信道用于所述第一UE与所述第二UE间的设备发现;所述第二UE发送的第二信道用于所述第一UE与所述第二UE间的数据传输;所述第二UE与所述第一UE将的链路质量信息是所述第一UE通过所述第一信道获取的。
  12. 根据权利要求11所述的方法,其特征在于,所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
    UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
    小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值 是不同的。
  13. 根据权利要求11所述的方法,其特征在于,所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
    UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    与所述第二信道的传输模式相关联的发射功率偏差值。
  14. 根据权利要求11所述的方法,其特征在于,所述基站获取所述第二UE发送的第一信道与所述第二发送的第二信道间的发射功率信息具体包括:
    通过基站间信令的方式从所述第二UE的服务基站获取所述发射功率信息;或者,
    从服务器上读取所述发射功率信息;或者,
    从服务器配置到所述基站本地的存储中获取所述发射功率信息。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,在基站获取N个第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之前,所述方法还包括:
    所述基站接收所述第一UE通过蜂窝链路发送的链路质量报告;
    或者,所述基站接收所述第一UE通过所述第一UE到所述基站的中继链路发送的链路质量报告。
  16. 根据权利要求15所述的方法,其特征在于,
    所述链路质量报告具体包括以下至少一种信息:
    N个所述第二UE与第一UE间的链路质量信息;
    N个所述第二UE的发射功率信息;
    N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
  17. 一种中继设备选择方法,其特征在于,所述方法包括:
    第二用户设备UE发送发射功率信息,所述发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
    所述第二用户设备UE接收确认信息,其中,所述确认信息用于指示所述第二UE成为中继设备;
    其中,所述第二UE发送的第一信道用于所述第二UE与第一UE间的设备发现,所述第一UE为接收所述发射功率信息的UE;所述第二UE发送的第二信道用于所述第一UE与所述第二UE间的数据传输。
  18. 根据权利要求17所述的方法,其特征在于,在第二用户设备UE发送发射功率信息之前,所述方法还包括:
    所述第二UE接收基站配置的信号质量门限信息;
    所述第二UE根据所述信号质量门限信息,检测到所述第二UE接收到的信号的信号质量满足预设规则。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第二用户设备UE接收确认信息包括:
    所述第二UE接收所述第二UE的服务基站或所述第一UE发送的确认信息。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
    UE特定的发射功率值,其中,所述UE特定的发射功率值是指: 不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
    小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
  21. 根据权利要求17-19任一项所述的方法,其特征在于,所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
    UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    与所述第二信道的传输模式相关联的发射功率偏差值。
  22. 根据权利要求17所述的方法,其特征在于,所述第二UE发送发射功率信息具体包括:
    所述第二UE通过所述第二UE的服务基站发送所述发射功率信息;
    或者,所述第二UE通过所述第一信道发送所述发射功率信息。
  23. 根据权利要求22所述的方法,其特征在于,所述第二UE通过所述第一信道发送所述发射功率信息具体包括以下至少一种方式:
    所述第二UE通过所述第一信道承载的信息来发送所述发射功率信息;
    或者,所述第二UE通过所述第一信道使用的循环冗余校验码CRC掩码来发送所述发射功率信息;
    或者,所述第二UE通过所述第一信道使用的解调参考信号DMRS来发送所述发射功率信息;
    或者,所述第二UE通过所述第一信道使用的资源位置信息来发送所述发射功率信息。
  24. 一种用户设备UE,其特征在于,包括:
    获取单元,用于获取N个第二用户设备UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述N为大于等于1的整数;所述第二UE的发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
    确定单元,用于根据所述获取单元获取到的N个所述第二UE与所述UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述UE的中继设备;
    其中,所述第二UE发送的第一信道用于所述UE与所述第二UE间的设备发现;所述第二UE发送的第二信道用于所述UE与所述第二UE间的数据传输;所述第二UE与UE间的链路质量信息是所述UE通过所述第一信道获取的。
  25. 根据权利要求24所述的UE,其特征在于,所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
    UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
    小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
  26. 根据权利要求24所述的UE,其特征在于,所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
    UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    与所述第二信道的传输模式相关联的发射功率偏差值。
  27. 根据权利要求24所述的UE,其特征在于,所述获取单元具体用于:
    通过所述UE的服务基站获取所述发射功率信息;
    或者,通过所述第二UE获取所述发射功率信息;
    或者,通过所述UE和/或所述第二UE的同步参考源获取所述发射功率信息。
  28. 根据权利要求27所述的UE,其特征在于,所述获取单元具体用于:
    通过所述第二UE发送的第一信道获取所述发射功率信息。
  29. 根据权利要求28所述的UE,其特征在于,所述获取单元具体用于通过以下至少一种方式获取所述发射功率信息:
    通过所述第一信道承载的信息来获取所述发射功率信息;
    通过所述第二UE发送所述第一信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;
    通过所述第二UE发送所述第一信道时使用的解调参考信号DMRS来获取所述发射功率信息;
    通过所述第二UE发送所述第一信道时使用的资源位置信息来 获取所述发射功率信息。
  30. 根据权利要求27所述的UE,其特征在于,所述获取单元具体用于:
    通过所述UE和/或所述第二UE的同步参考源发送的第三信道获取所述发射功率信息;所述第三信道为:所述UE接收到的所述UE和/或所述第二UE的同步参考源发送的信道;
    通过UE和/或所述第二UE的同步参考源发送的同步序列获取所述发射功率信息。
  31. 根据权利要求30所述的UE,其特征在于,所述获取单元具体用于通过以下至少一种方式获取所述发射功率信息:
    通过所述第三信道承载的信息来获取所述发射功率信息;
    通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的循环冗余校验码CRC掩码来获取所述发射功率信息;
    通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的解调参考信号DMRS来获取所述发射功率信息;
    通过所述UE和/或所述第二UE的同步参考源发送所述第三信道时使用的资源位置信息来获取所述发射功率信息。
  32. 根据权利要求24-31任一项所述的UE,其特征在于,所述UE还包括:
    发送单元,用于在所述获取单元获取N个第二UE与UE间的链路质量信息、以及N个所述第二UE的发射功率信息之后,通过蜂窝链路向所述基站发送所述链路质量报告;
    或者,通过所述UE到所述基站的中继链路向所述基站发送所述链路质量报告。
  33. 根据权利要求32所述的UE,其特征在于,
    所述链路质量报告具体包括以下至少一种信息:
    N个所述第二UE与UE间的链路质量信息;
    N个所述第二UE的发射功率信息;
    N个所述第二UE与所述UE之间的第二信道的链路质量信息。
  34. 一种基站,其特征在于,包括:
    获取单元,用于获取N个第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息;其中,所述N为大于等于1的整数;所述第二UE的发射功率信息为:所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差信息,或所述第二UE发送的第一信道的发射功率信息;
    确定单元,用于根据所述获取单元获取到的N个所述第二用户设备UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息,从N个所述第二UE中确定所述第一UE的中继设备;
    其中,所述第二UE发送的第一信道用于所述第一UE与所述第二UE间的设备发现;所述第二UE发送的第二信道用于所述第一UE与所述第二UE间的数据传输;所述第二UE与所述第一UE将的链路质量信息是所述第一UE通过所述第一信道获取的。
  35. 根据权利要求34所述的基站,其特征在于,所述第二UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
    UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同第二UE发送的第一信道的发射功率值是不同的,或者处于不同组的第二UE发送的第一信道的发射功率值是不同的;或者,
    小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的第二UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的第二UE发送的第一信道的发射功率值是不同的。
  36. 根据权利要求34所述的基站,其特征在于,所述发射功率偏差信息用于确定所述第二UE发送的第一信道与所述第二UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
    UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同第二UE发送的第一信道与第二信道间的发射功率 偏差值是不同的,或者处于不同组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的第二UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    与所述第二信道的传输模式相关联的发射功率偏差值。
  37. 根据权利要求34所述的基站,其特征在于,所述获取单元具体用于:
    通过基站间信令的方式从所述第二UE的服务基站获取所述发射功率信息;或者,
    从服务器上读取所述发射功率信息;或者,
    从服务器配置到所述基站本地的存储中获取所述发射功率信息。
  38. 根据权利要求34-37任一项所述的基站,其特征在于,所述基站还包括:
    接收单元,用于在获取单元获取到N个第二UE与所述第一UE间的链路质量信息、以及N个所述第二UE的发射功率信息之前,接收所述第一UE通过蜂窝链路发送的链路质量报告;
    或者,接收所述第一UE通过所述第一UE到所述基站的中继链路发送的链路质量报告。
  39. 根据权利要求38所述的基站,其特征在于,
    所述链路质量报告具体包括以下至少一种信息:
    N个所述第二UE与第一UE间的链路质量信息;
    N个所述第二UE的发射功率信息;
    N个所述第二UE与所述第一UE之间的第二信道的链路质量信息。
  40. 一种用户设备UE,其特征在于,包括:
    发送单元,用于发送发射功率信息,所述发射功率信息为:所 述UE发送的第一信道与所述UE发送的第二信道间的发射功率偏差信息,或所述UE发送的第一信道的发射功率信息;
    接收单元,用于接收确认信息,其中,所述确认信息用于指示所述UE成为中继设备;
    其中,所述UE发送的第一信道用于所述UE与第一UE间的设备发现,所述第一UE为接收所述发射功率信息的UE;所述UE发送的第二信道用于所述第一UE与所述UE间的数据传输。
  41. 根据权利要求40所述的UE,其特征在于,
    所述接收单元,还用于在第二用户设备UE发送发射功率信息之前,接收基站配置的信号质量门限信息;
    所述UE还包括:
    检测单元,用于根据所述信号质量门限信息,检测到所述UE接收到的信号的信号质量满足预设规则。
  42. 根据权利要求40或41所述的UE,其特征在于,所述接收单元,具体用于:
    接收所述UE的服务基站或所述第一UE发送的确认信息。
  43. 根据权利要求40-42任一项所述的UE,其特征在于,所述UE发送的第一信道的发射功率信息用于确定所述第一信道的发射功率值,所述第一信道的发射功率值为:
    UE特定的发射功率值,其中,所述UE特定的发射功率值是指:不同UE发送的第一信道的发射功率值是不同的,或者处于不同组的UE发送的第一信道的发射功率值是不同的;或者,
    小区特定的发射功率值,其中,所述小区特定的发射功率值是指:处于不同小区的UE发送的第一信道的发射功率值是不同的,或者处于不同小区组的UE发送的第一信道的发射功率值是不同的。
  44. 根据权利要求40-42任一项所述的UE,其特征在于,所述发射功率偏差信息用于确定所述UE发送的第一信道与所述UE发送的第二信道间的发射功率偏差值,所述发射功率偏差值为:
    UE特定的发射功率偏差值,其中,所述UE特定的发射功率偏差值是指:不同UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同组的UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    小区特定的发射功率偏差值,其中,所述小区特定的发射功率偏差值是指:处于不同小区的UE发送的第一信道与第二信道间的发射功率偏差值是不同的,或者处于不同小区组的UE发送的第一信道与第二信道间的发射功率偏差值是不同的;或者,
    与所述第二信道的传输模式相关联的发射功率偏差值。
  45. 根据权利要求40所述的UE,其特征在于,所述发送单元,具体用于:
    通过所述UE的服务基站发送所述发射功率信息;
    或者,通过所述第一信道发送所述发射功率信息。
  46. 根据权利要求45所述的UE,其特征在于,所述发送单元,具体通过以下至少一种方式发送所述发射功率信息:
    通过所述第一信道承载的信息来发送所述发射功率信息;
    或者,通过所述第一信道使用的循环冗余校验码CRC掩码来发送所述发射功率信息;
    或者,通过所述第一信道使用的解调参考信号DMRS来发送所述发射功率信息;
    或者,通过所述第一信道使用的资源位置信息来发送所述发射功率信息。
PCT/CN2015/084487 2015-07-20 2015-07-20 一种中继设备选择方法、设备及系统 WO2017011978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580065494.4A CN107006064B (zh) 2015-07-20 2015-07-20 一种中继设备选择方法、设备及系统
PCT/CN2015/084487 WO2017011978A1 (zh) 2015-07-20 2015-07-20 一种中继设备选择方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084487 WO2017011978A1 (zh) 2015-07-20 2015-07-20 一种中继设备选择方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2017011978A1 true WO2017011978A1 (zh) 2017-01-26

Family

ID=57833560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084487 WO2017011978A1 (zh) 2015-07-20 2015-07-20 一种中继设备选择方法、设备及系统

Country Status (2)

Country Link
CN (1) CN107006064B (zh)
WO (1) WO2017011978A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418312B (zh) * 2018-04-28 2021-04-20 华为技术有限公司 一种发射功率的指示方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780993A (zh) * 2012-08-20 2012-11-14 哈尔滨工业大学 Td_lte_a系统中终端d2d协作中继通信实现方法
CN103716853A (zh) * 2013-10-22 2014-04-09 南京邮电大学 一种终端直通通信系统中的自适应多中继选择方法
WO2014179294A2 (en) * 2013-05-02 2014-11-06 Qualcomm Incorporated Method and apparatus for device to device relay selection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9485794B2 (en) * 2012-05-23 2016-11-01 Qualcomm Incorporated Methods and apparatus for using device to device communications to support IMS based services

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780993A (zh) * 2012-08-20 2012-11-14 哈尔滨工业大学 Td_lte_a系统中终端d2d协作中继通信实现方法
WO2014179294A2 (en) * 2013-05-02 2014-11-06 Qualcomm Incorporated Method and apparatus for device to device relay selection
CN103716853A (zh) * 2013-10-22 2014-04-09 南京邮电大学 一种终端直通通信系统中的自适应多中继选择方法

Also Published As

Publication number Publication date
CN107006064B (zh) 2019-09-03
CN107006064A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2016184273A1 (zh) 中继选择及发现的方法、装置及系统
JP6523250B2 (ja) 端末装置、および、基地局装置
JP6649247B2 (ja) 端末装置、および、基地局装置
JP6405447B2 (ja) ネットワーク支援参照信号送信を有する装置間(d2d)チャネル管理
US20140185529A1 (en) Method for supporting device-to-device communication in a cellular network, and apparatus for same
KR101665222B1 (ko) 통신 시스템, 기지국 장치, 이동국 장치, 측정 방법 및 집적 회로
CN108028863A (zh) 处理针对d2d通信系统的id冲突的方法及其设备
KR20150099560A (ko) 무선 통신 네트워크에서 중계 지원을 핸들링하기 위한 무선 장치, 네트워크 노드 및 방법
US10932208B2 (en) Power configuration method and device
JP6435399B2 (ja) 参照信号を用いるセルラ通信リンクと装置間(d2d)通信リンクとの間の選択
CN113424592A (zh) 蜂窝网格网络中的协调波束选择
EP3718333A1 (en) Method and apparatus for updating neighboring base station relations
JPWO2017130743A1 (ja) 無線端末、通信装置及び基地局
WO2013169986A2 (en) Signaling scheme for coordinated transmissions
US10097407B2 (en) Method, equipment, device and system for sending device detection signal
CN113424648A (zh) 蜂窝网状网络中对无线电链路故障的处理
JP2017529756A (ja) 干渉キャンセル方法およびデバイス
WO2017011978A1 (zh) 一种中继设备选择方法、设备及系统
JP6243192B2 (ja) ユーザ端末及び端末間通信方法
US11943082B2 (en) Scrambling of physical channels and reference signals in wireless communication networks
JP6169257B2 (ja) ネットワーク・カバレッジ・フリーの近隣端末発見のための方法、装置およびユーザ機器
US10897766B2 (en) Scrambling of physical channels and reference signals in wireless communication networks
JP6822558B2 (ja) 無線端末装置及びその方法
EP3163948A1 (en) Method, equipment, device and system for sending device detection signal
JP6402634B2 (ja) 基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898534

Country of ref document: EP

Kind code of ref document: A1