WO2017011943A1 - 信号传输方法、装置和设备 - Google Patents

信号传输方法、装置和设备 Download PDF

Info

Publication number
WO2017011943A1
WO2017011943A1 PCT/CN2015/084366 CN2015084366W WO2017011943A1 WO 2017011943 A1 WO2017011943 A1 WO 2017011943A1 CN 2015084366 W CN2015084366 W CN 2015084366W WO 2017011943 A1 WO2017011943 A1 WO 2017011943A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
block
channel code
analog channel
signal
Prior art date
Application number
PCT/CN2015/084366
Other languages
English (en)
French (fr)
Inventor
刘雨
林晓成
望育梅
田春长
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580047852.9A priority Critical patent/CN106797481A/zh
Priority to PCT/CN2015/084366 priority patent/WO2017011943A1/zh
Publication of WO2017011943A1 publication Critical patent/WO2017011943A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a signal transmission method, apparatus, and device.
  • video traffic is usually transmitted in the form of an analog signal, which is real value data obtained through a series of linear operations.
  • the original analog signal is repeatedly transmitted at the transmitting end, and the signal is obtained by the linear Least Square Estimator (LLSE) decoding algorithm at the receiving end, and then The signal received multiple times is subjected to an averaging operation to obtain a final decoding result, thereby improving the quality of video reconstruction.
  • LLSE linear Least Square Estimator
  • embodiments of the present invention provide a signal transmission method, apparatus, and device to improve bandwidth utilization.
  • an embodiment of the present invention provides a signal transmission method, including:
  • the analog channel code is transmitted to the receiving end.
  • the pair of the points The block matrix is encoded to generate an analog channel code, including:
  • the analog channel code is generated according to a fluctuation range vector value of the block matrix.
  • the determining, according to a power factor corresponding to the block matrix, determining each block in the block matrix Fluctuation range vector values including:
  • the generating the analog channel according to a fluctuation range vector value of each partition in the blocking matrix Code including:
  • Step A According to the fluctuation range vector value Ran i , any element x 0 in the block corresponding to the fluctuation range vector value Ran in the block matrix X is divided into a first value m and a second value. r, and according to the formula Calculating the first value m;
  • Step B determining the second value r according to the element x 0 and the first value m; the second value r ranges from greater than -Ran/2 and less than Ran/2;
  • Step C Combining the block matrix X with the matrix R to obtain a combined analog channel code U 1 , the matrix R being the product of the second value r and the unit matrix I, the number of rows of the unit matrix I and the The number of rows of the combined analog channel code U 1 is equal, and the number of columns of the unit matrix I is equal to the number of columns of the combined analog channel code U 1 ;
  • Step D determining whether the resources required to merge the analog channel code U 1 are equal to the allocatable resources
  • Step E If the resource required for combining the analog channel code U 1 is not equal to the allocatable resource, update the value of the block matrix X in the step A to the merged analog channel code U 1 .
  • the value of x 0 is updated to the second value r, and the step A to the step E are performed until the resource required for the merged analog channel code U 1 is equal to the allocatable resource, and the merged simulation is performed.
  • the channel code U 1 serves as the analog channel code.
  • the The transform domain signal of the frame image is divided into blocks to obtain a block matrix, including:
  • the block matrix is determined according to the number of blocks and the number of pixels in each of the blocks.
  • the fourth possible implementation manner of the fourth aspect in a fifth possible implementation manner of the first aspect, Send to the receiving end, including:
  • mapping matrix Performing symbol mapping on the processing matrix, obtaining the mapping matrix, and transmitting the mapping matrix to the receiving end.
  • the performing power allocation to the analog channel code includes:
  • an embodiment of the present invention provides a signal transmission method, including:
  • noise-added signal includes a first signal and a second signal
  • the Decoding the first signal and the second signal to obtain a preliminary decoding result further comprising:
  • the first signal and the second signal are separately decoded, Get preliminary decoding results, including:
  • the second signal Decoding to obtain a second decoding result G represents the power factor
  • the correcting the preliminary decoding result to obtain a corrected translation Code results including:
  • Step A According to the formula Calculating a fluctuation range vector value Ran j of the jth block in the block matrix; where a represents an estimation parameter, ⁇ n is a standard deviation of channel noise, and g j is a power factor corresponding to the jth block;
  • Step B According to the fluctuation range vector value Ran j and the formula Determining the information matrix M j of the jth block;
  • Step C determining whether the information matrix M j of the jth block is equal to zero;
  • Step D if the information matrix M j of the jth block is equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step E if the information matrix M j of the jth block is not equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step F determining the decoding result Is it equal to If the decoding result Not equal to the stated Then, the value of j is decremented by one, and step A-step G is repeatedly performed until the decoding result is obtained. Equal to the stated The decoding result As a result of correcting the decoding.
  • an embodiment of the present invention provides a signal transmission apparatus, including:
  • a transform module configured to linearly transform a pixel domain signal of each frame of the video to obtain a transform domain signal; the transform domain signal requires less resources than the allocateable resource;
  • a blocking module configured to block a transform domain signal of each frame of the video to obtain a blocking matrix
  • An encoding module configured to encode the block matrix, to generate an analog channel code, where a resource required by the analog channel code is equal to an allocatable resource
  • a sending module configured to send the analog channel code to the receiving end.
  • the encoding module includes:
  • a determining unit configured to determine a fluctuation range vector value of the block matrix according to a power factor corresponding to the block matrix
  • a generating unit configured to generate the analog channel code according to the fluctuation range vector value of the blocking matrix.
  • the determining unit is specifically configured to:
  • the generating unit is specifically configured to:
  • Step A According to the fluctuation range vector value Ran i , any element x 0 in the block corresponding to the fluctuation range vector value Ran in the block matrix X is divided into a first value m and a second value. r, and according to the formula Calculating the first value m;
  • Step B determining the second value r according to the element x 0 and the first value m; the second value r ranges from greater than -Ran/2 and less than Ran/2;
  • Step C Combining the block matrix X with the matrix R to obtain a combined analog channel code U 1 , the matrix R being the product of the second value r and the unit matrix I, the number of rows of the unit matrix I and the The number of rows of the combined analog channel code U 1 is equal, and the number of columns of the unit matrix I is equal to the number of columns of the combined analog channel code U 1 ;
  • Step D determining whether the resources required to merge the analog channel code U 1 are equal to the allocatable resources
  • Step E If the resource required for combining the analog channel code U 1 is not equal to the allocatable resource, update the value of the block matrix X in the step A to the merged analog channel code U 1 .
  • the value of x 0 is updated to the second value r, and the step A to the step E are performed until the resource required for the merged analog channel code U 1 is equal to the allocatable resource, and the merged simulation is performed.
  • the channel code U 1 serves as the analog channel code.
  • the blocking module includes:
  • a processing unit configured to perform equal block processing on each frame of the image to obtain a number of blocks
  • a scanning unit configured to sequentially scan all pixels in each of the blocks to obtain the number of pixels in each of the blocks
  • a determining unit configured to determine the block matrix according to the number of blocks and the number of pixels in each block.
  • the device further includes:
  • An allocation module configured to perform power allocation on the analog channel code to obtain an output matrix
  • a processing module configured to perform whitening processing on the output matrix to obtain a processing matrix
  • mapping module configured to perform symbol mapping on the processing matrix, to obtain the mapping matrix
  • the sending module is further configured to send the mapping matrix to the receiving end.
  • an embodiment of the present invention provides a signal transmission apparatus, including:
  • a receiving module configured to receive an analog channel code sent by the sending end, where the required resources of the analog channel code are equal to the allocatable resources;
  • a processing module configured to perform inverse processing on symbol mapping of the analog channel code to obtain a noise-added signal, where the noise-added signal includes a first signal and a second signal;
  • a decoding module configured to respectively decode the first signal and the second signal to obtain a preliminary decoding result
  • the processing module is further configured to perform block splicing and inverse linear transform processing on the preliminary decoding result to obtain a reconstructed signal that matches the SNR signal.
  • the device further includes:
  • a correction module configured to correct the preliminary decoding result to obtain a corrected decoding result.
  • the decoding module includes:
  • a first decoding unit configured to decode the first signal according to a linear least mean square estimation LLSE algorithm, to obtain a first decoding result
  • a second decoding unit for using a formula
  • the second signal Decoding to obtain a second decoding result G represents the power factor
  • a merging unit configured to combine the first decoding result and the second decoding result to obtain the preliminary decoding result.
  • the correcting module is specifically configured to:
  • Step A According to the formula Calculating a fluctuation range vector value Ran j of the jth block in the block matrix; where a represents an estimation parameter, ⁇ n is a standard deviation of channel noise, and g j is a power factor corresponding to the jth block;
  • Step B According to the fluctuation range vector value Ran j and the formula Determining the information matrix M j of the jth block;
  • Step C determining whether the information matrix M j of the jth block is equal to zero;
  • Step D if the information matrix M j of the jth block is equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step E if the information matrix M j of the jth block is not equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step F determining the decoding result Is it equal to If the decoding result Not equal to the stated Then the value of j is decremented by one, and step A-step G is repeatedly performed until the decoding result Equal to the stated The decoding result As a result of correcting the decoding.
  • an embodiment of the present invention provides a base station, including:
  • a processor configured to linearly transform a pixel domain signal of each frame of the video to obtain a transform domain signal; the transform domain signal requires less resources than the allocateable resource;
  • the processor is further configured to block a transform domain signal of each frame of the video to obtain a block matrix
  • the processor is further configured to encode the block matrix to generate an analog channel code, where the required resources of the analog channel code are equal to the allocatable resources;
  • a transmitter configured to send the analog channel code to the receiving end.
  • the processor is further configured to determine a fluctuation range vector value of the block matrix according to a power factor corresponding to the block matrix;
  • the processor is further configured to generate the analog channel code according to a fluctuation range vector value of the block matrix.
  • the processor is further used according to a formula Calculating a fluctuation range vector value Ran i of each block in the block matrix; wherein a represents an estimation parameter, a is an even number greater than or equal to 6, ⁇ n is a standard deviation of channel noise, and g i is the block The power factor corresponding to each block in the matrix.
  • the processor is further configured to:
  • Step A According to the fluctuation range vector value Ran i , any element x 0 in the block corresponding to the wave range vector value Ran in the block matrix X is divided into a first value m and a second value. r, and according to the formula Calculating the first value m;
  • Step B determining the second value r according to the element x 0 and the first value m; the second value r ranges from greater than -Ran/2 and less than Ran/2;
  • Step C Combining the block matrix X with the matrix R to obtain a combined analog channel code U 1 , the matrix R being the product of the second value r and the unit matrix I, the number of rows of the unit matrix I and the The number of rows of the combined analog channel code U 1 is equal, and the number of columns of the unit matrix I is equal to the number of columns of the combined analog channel code U 1 ;
  • Step D determining whether the resources required to merge the analog channel code U 1 are equal to the allocatable resources
  • Step E If the resource required for combining the analog channel code U 1 is not equal to the allocatable resource, update the value of the block matrix X in the step A to the merged analog channel code U 1 .
  • the value of x 0 is updated to the second value r, and the step A to the step E are performed until the resource required for the merged analog channel code U 1 is equal to the allocatable resource, and the merged simulation is performed.
  • the channel code U 1 serves as the analog channel code.
  • the processor is further used Performing equal block processing on each frame of the image to obtain a number of blocks;
  • the processor is further configured to sequentially scan all pixels in each partition to obtain the number of pixels in each of the partitions;
  • the processor is further configured to determine the block matrix according to the number of blocks and the number of pixels in each block.
  • the fourth aspect the fourth possible implementation manner of the fifth aspect, the fifth possible implementation manner of the fifth aspect, Performing power allocation on the analog channel code to obtain an output matrix
  • the processor is further configured to perform whitening processing on the output matrix to obtain a processing matrix
  • the processor is further configured to perform symbol mapping on the processing matrix to obtain the mapping matrix
  • the transmitter is further configured to send the mapping matrix to a receiving end.
  • an embodiment of the present invention provides a terminal device, including:
  • a receiver configured to receive an analog channel code sent by the sending end, where the required resources of the analog channel code are equal to the allocatable resources;
  • a processor configured to inversely perform symbol mapping on the analog channel code, to obtain a noise-added signal, where the noise-added signal includes a first signal and a second signal;
  • the processor is further configured to separately decode the first signal and the second signal to obtain a preliminary decoding result
  • the processor is further configured to perform block splicing and inverse linear transform processing on the preliminary decoding result to obtain a reconstructed signal that matches the SNR signal.
  • the processor is further configured to perform a correction on the preliminary decoding result to obtain a corrected decoding result.
  • the processor is further configured to perform a LLSE algorithm according to a linear minimum mean square estimation Decoding the first signal to obtain a first decoding result;
  • the processor is also used according to a formula
  • the second signal Decoding to obtain a second decoding result G represents the power factor
  • the processor is further configured to combine the first decoding result and the second decoding result to obtain the preliminary decoding result.
  • the processor is further configured to:
  • Step A According to the formula Calculating a fluctuation range vector value Ran j of the jth block in the block matrix; where a represents an estimation parameter, ⁇ n is a standard deviation of channel noise, and g j is a power factor corresponding to the jth block;
  • Step B According to the fluctuation range vector value Ran j and the formula Determining the information matrix M j of the jth block;
  • Step C determining whether the information matrix M j of the jth block is equal to zero;
  • Step D if the information matrix M j of the jth block is equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step E if the information matrix M j of the jth block is not equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step F determining the decoding result Is it equal to If the decoding result Not equal to the stated Then the value of j is decremented by one, and step A-step G is repeatedly performed until the decoding result Equal to the stated The decoding result As a result of correcting the decoding.
  • the signal transmission method, device and device provided by the embodiments of the present invention obtain a transform domain signal by linearly transforming a pixel domain signal of each frame image of the video, and block the transform domain signal of each frame of the video to obtain a score.
  • the block matrix if the channel bandwidth is larger than the size of the block matrix, encodes the block matrix, generates an analog channel code, and sends the analog channel code to the receiving end, wherein the width of the analog channel code is the same as the channel bandwidth. Since the channel block matrix is encoded in the case where the channel bandwidth is sufficient, an analog channel code corresponding to the channel bandwidth is generated, so that the analog channel code fills the channel bandwidth, thereby improving the bandwidth in the case of reducing signal noise. Utilization.
  • FIG. 1 is a schematic structural diagram of an application scenario of a signal transmission method according to the present invention.
  • Embodiment 1 of a signal transmission method according to the present invention
  • Embodiment 2 of a signal transmission method according to the present invention
  • Figure 5 is a schematic diagram of a data partitioning algorithm
  • Figure 6 is a schematic diagram of symbol mapping of signals
  • FIG. 7 is a schematic flowchart of Embodiment 3 of a signal transmission method according to the present invention.
  • Embodiment 8 is a schematic flowchart of Embodiment 4 of a signal transmission method according to the present invention.
  • FIG. 9 is a schematic diagram showing the comparison between the performance of the present invention and the prior art system in different decoding modes
  • FIG. 10 is a schematic diagram showing the comparison between the performance of the present invention and the prior art system in a unicast mode
  • FIG. 11 is a schematic diagram showing the comparison between the performance of the present invention and the prior art system in a multicast mode
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a signal transmission apparatus according to the present invention.
  • Embodiment 13 is a schematic structural diagram of Embodiment 2 of a signal transmission apparatus according to the present invention.
  • Embodiment 4 of a signal transmission apparatus according to the present invention.
  • Embodiment 5 of a signal transmission apparatus according to the present invention.
  • FIG. 17 is a schematic structural diagram of Embodiment 6 of a signal transmission apparatus according to the present invention.
  • Embodiment 1 of a base station is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • FIG. 19 is a schematic structural diagram of Embodiment 1 of a terminal device according to the present invention.
  • FIG. 1 is a schematic structural diagram of an application scenario of a signal transmission method according to the present invention.
  • the signal transmission method is applied to a wireless communication system, where the system includes a wireless base station 11 and a wireless terminal, where the wireless base station includes a video encoder.
  • the wireless base station can transmit the data signal to the users in the coverage in a unicast, multicast or broadcast manner; and the wireless terminal includes a video decoder, for example, a smart phone 12,
  • the notebook 13 and the tablet 14 and the like are responsible for decoding the received noisy signal to obtain a reconstructed signal that matches it.
  • FIG. 2 is a schematic flowchart diagram of Embodiment 1 of a signal transmission method according to the present invention.
  • Embodiments of the present invention provide a signal transmission method, which may be performed by any device that performs a signal transmission method.
  • the device can be implemented in software and/or hardware.
  • the apparatus may be integrated in a transmitting end, such as an encoder, which includes a wireless base station.
  • the method in this embodiment may include:
  • Step 201 Perform linear transformation on the pixel domain signal of each frame of the video to obtain a transform domain signal, where the required resources of the transform domain signal are smaller than the allocateable resources.
  • the pixel domain signal can be linearly transformed two-dimensionally to obtain a transform domain signal, for example, a two-dimensional discrete cosine transform (Discrete Cosine) Transform; abbreviated as: DCT), two-dimensional discrete wavelet transform (Discrete Wavelet Transform (abbreviation: DWT), etc.; and for video sequence signals, corresponding three-dimensional linear transformation should be performed to obtain transform domain signals, such as three-dimensional DCT transform, three-dimensional DWT transform Wait.
  • Linear transformation of the pixel domain signal of an image or video sequence can change the energy distribution of the signal, remove the inter-frame, intra-frame correlation redundancy, and act as a compression signal.
  • the pixel domain signal of each frame of the video is linearly transformed, and the obtained transform domain information requires less resources than the system can allocate resources, that is, the channel bandwidth is sufficient at this time.
  • Step 202 Block the transform domain signal of each frame of the video to obtain a block matrix.
  • the transform domain signal of each frame of the video may be equally divided into blocks to obtain a block matrix.
  • Step 203 Encode the block matrix to generate an analog channel code, and the resources required for the analog channel code are equal to the allocatable resources.
  • the encoder when the channel bandwidth is sufficient, that is, when the number of OFDM symbols that the user channel can carry is larger than the data to be transmitted, the encoder generally adopts a method of repeatedly transmitting original data, and the decoder uses LLSE decoding. After the algorithm obtains the decoded signal, the averaging operation is performed on the received signal value to obtain the final decoding result. By this operation, the signal noise can be reduced, but due to the nonlinearity of the LLSE decoding algorithm.
  • the user channel quality SNR is small and the channel bandwidth is large, the performance gain obtained by sacrificing the bandwidth is reduced; at the same time, even after the channel bandwidth is doubled at high SNR, the gain effect can be obtained only about 3 dB. . Therefore, in the case of sufficient bandwidth, the bandwidth utilization is not high, and there is a large room for improvement.
  • the coding in the case that it is determined that the channel bandwidth is sufficient, according to The state of the channel bandwidth, encoding the block matrix to generate an analog channel code corresponding to the channel bandwidth, and after obtaining the analog channel code, determining whether the analog channel code fills the bandwidth, if the bandwidth is not full, indicating the channel If there is any remaining bandwidth, the coding continues until the obtained analog channel code fills the channel bandwidth, that is, the required resources of the generated analog channel code are equal to the allocatable resources, and the generated analog channel code is used for transmission.
  • a better performance gain can be obtained.
  • Step 204 Send the analog channel code to the receiving end.
  • the receiving end may be a decoder, such as a terminal device or the like, which includes a smart phone, a notebook, a tablet, and the like.
  • the signal transmission method provided by the embodiment of the present invention obtains a transform domain signal by linearly transforming a pixel domain signal of each frame image of the video, and blocks the transform domain signal of each frame of the video to obtain a block matrix, and The block matrix is encoded to generate an analog channel code, and the analog channel code U is sent to the receiving end, wherein the required resources of the analog channel code are equal to the allocatable resources. Since the resource required by the generated analog channel code is equal to the allocatable resource when the channel bandwidth is sufficient, the analog channel code fills the channel bandwidth, thereby reducing the signal noise. The bandwidth utilization is improved.
  • FIG. 3 is a schematic flowchart of a second embodiment of a signal transmission method according to the present invention.
  • an embodiment of blocking and encoding each frame of video according to the first embodiment of the signal transmission method is described in detail.
  • the method in this embodiment may include:
  • Step 301 Perform linear transformation on the pixel domain signal of each frame of the video to obtain a transform domain signal, and the resource required for transforming the domain signal is smaller than the allocateable resource.
  • Step 301 is similar to step 201, and details are not described herein again.
  • Step 302 Perform equal block processing on each frame of the image to obtain the number of blocks.
  • Step 303 Scan all the pixels in each block in turn to obtain the number of pixels in each block.
  • Step 304 Determine a block matrix according to the number of blocks and the number of pixels in each block.
  • FIG. 4 is a schematic diagram of blocking each frame of image.
  • steps 302-304 for the transform domain signal, firstly, each frame of the image is equally sized, and assumed.
  • the total number of blocks after each frame of image is m.
  • m is generally set to 64.
  • all the elements in each of the m blocks are arranged in a row, in the specific implementation process.
  • the arrangement method may be arranged by zigzag scanning, or may be arranged row by row or column by column. For a specific arrangement, it may be set according to actual conditions, which is not limited in this embodiment.
  • each row of the block matrix corresponds to all pixels of a particular block.
  • Step 305 Determine, according to a power factor corresponding to the block matrix, a vector value of a fluctuation range of the block matrix.
  • the transmitting end performs equal partitioning on each frame of the image, and after obtaining the blocking matrix, it is required to determine whether the size of the blocking matrix is smaller than the amount of data that can be carried by the channel bandwidth, and if the block matrix is determined to be smaller than When the amount of data that can be carried by the channel bandwidth, that is, when the channel bandwidth is left, the block matrix is encoded so that the encoded analog channel code can occupy the channel bandwidth.
  • the amount of data that can be carried by the channel bandwidth is N times that of the block matrix.
  • the power range of the block matrix may be determined by using a power factor corresponding to the block matrix, and then the required analog channel code is generated according to the wave range vector value. Specifically, first, according to formula (1), the fluctuation range vector value Ran i of each block in the block matrix is calculated:
  • a value range of a is an even number greater than or equal to 6
  • ⁇ n is a standard deviation of channel noise
  • g i is a power factor corresponding to each block in the block matrix.
  • Step 306 Generate an analog channel code according to the fluctuation range vector value of the block matrix.
  • FIG. 5 is a schematic diagram of the data partitioning algorithm. As shown in FIG. 5, the data partitioning algorithm must satisfy the following constraints: (1) the element x 0 is the first value m and the second value.
  • Code R 1 in practical applications, the second value r can be multiplied by one unit matrix I to obtain R 1 , and then the analog channel code R 1 is combined with the block matrix X to obtain a merge.
  • Analog channel code U 1 wherein the number of rows of the unit matrix I is equal to the number of rows of the combined analog channel code U 1 , and the number of columns of the unit matrix I is equal to the number of columns of the combined analog channel code U 1 .
  • the resources required for combining the analog channel code U 1 are equal to the allocatable resources, that is, whether the combined analog channel code U 1 is full of the channel bandwidth, and if it is determined that the combined analog channel code U 1 does not occupy the channel bandwidth, then
  • the value of x 0 is updated to the second value r, that is, the second value r is taken as the new element x 0 , and the updated value of the element x 0 is divided according to the fluctuation range vector value Ran, and a new first is obtained.
  • the new second number will be as an analog channel code r R 2 upcoming new value r and a second matrix multiplication unit and I, to obtain R 2, and the value update block matrix X for the combined analog channel code U 1, then the analog channel
  • the code R 2 is combined with the updated block matrix X to obtain an updated combined analog channel code U 1 , and it is determined whether the resource required for the updated combined analog channel code U 1 is equal to the allocatable resource, that is, after the update.
  • the above operation is performed cyclically until the resources required for combining the analog channel code U 1 are equal to the allocatable resources, that is, the obtained merge
  • the analog channel code U 1 fills the channel bandwidth, and the combined analog channel code U 1 obtained at this time is taken as the generated analog channel code U.
  • Step 307 Perform power allocation on the analog channel code to obtain an output matrix.
  • the encoder determines the power allocation weight value of each block according to the variance of each block to perform power allocation on the analog channel code to achieve the best anti-noise capability.
  • Step 308 Perform whitening processing on the output matrix to obtain a processing matrix.
  • the processing matrix Y after whitening is obtained, where H is a Hadamard transformation matrix.
  • Step 309 Perform symbol mapping on the processing matrix, obtain a mapping matrix, and send the mapping matrix to the receiving end.
  • FIG. 6 is a schematic diagram of symbol mapping of signals.
  • the transmitting end maps the data after whitening to the real and imaginary parts of the OFDM symbol. Then, the mapped frequency domain signal is mapped to the time domain by using an inverse fast Fourier transform, and the time domain signal is transmitted to the receiving end through the channel.
  • the signal transmission method provided by the embodiment of the present invention obtains a transform domain signal by linearly transforming a pixel domain signal of each frame image of the video, and blocks the transform domain signal of each frame of the video to obtain a block matrix. If the channel bandwidth is greater than the size of the block matrix, the block matrix is encoded to generate an analog channel code, and the analog channel code U is sent to the receiving end, where the width of the analog channel code is the same as the channel bandwidth. Since the channel block matrix is encoded in the case where the channel bandwidth is sufficient, an analog channel code corresponding to the channel bandwidth is generated, so that the analog channel code fills the channel bandwidth, thereby improving the bandwidth in the case of reducing signal noise. Utilization. In addition, due to the whitening of the output matrix, each packet has a considerable power, thereby improving the anti-loss capability.
  • FIG. 7 is a schematic flowchart diagram of Embodiment 3 of a signal transmission method according to the present invention.
  • Embodiments of the present invention provide a signal transmission method, which may be performed by any apparatus that performs a signal transmission method, and the apparatus may be implemented by software and/or hardware.
  • the apparatus may be integrated at a receiving end, such as a decoder, which includes a wireless terminal or the like.
  • the method in this embodiment may include:
  • Step 701 Receive an analog channel code sent by an encoder, where a resource required by the analog channel code is equal to an allocatable resource.
  • the transmitting end first needs to perform linear transformation on the pixel domain signal of each frame of the video. Since the video is composed of multiple frames of images, for the image signal, the pixel domain signal can be two-dimensionally linear at this time. Transform to obtain transform domain signals, such as: two-dimensional DCT transform, two-dimensional DWT transform, etc.; and for video sequence signals, corresponding three-dimensional linear transform should be performed to obtain changes The domain switching signal, such as three-dimensional DCT transform, three-dimensional DWT transform, and the like. Linear transformation of the pixel domain signal of an image or video sequence can change the energy distribution of the signal, remove the inter-frame, intra-frame correlation redundancy, and act as a compression signal. In addition, the pixel domain signal of each frame of the video is linearly transformed, and the obtained transform domain information requires less resources than the system can allocate resources, that is, the channel bandwidth is sufficient at this time.
  • each frame of the video may be equally divided into blocks to obtain a block matrix.
  • the block matrix needs to be encoded so that the resources required for the generated analog channel code are equal to the allocatable resources.
  • the analog channel code at this time can fill the channel bandwidth and send the generated analog channel code to the receiving end.
  • Step 702 Perform inverse processing of symbol mapping on the analog channel code to obtain a noise-added signal.
  • the noise-added signal includes a first signal and a second signal.
  • the receiving end after receiving the analog channel code sent by the encoder, the receiving end first converts the signal into the frequency domain by using a fast Fourier transform, and performs inverse processing of the symbol mapping on the converted frequency domain signal. Get the noise signal.
  • each M line of the noisy signal can be defined as a new matrix.
  • Step 703 Decode the first signal and the second signal respectively to obtain a preliminary decoding result.
  • the receiving end generally adopts a LLSE decoding manner on the whole of the noise-added signal, so that the signal reconstruction performance is poor.
  • the signal sent by the transmitting end includes two parts, correspondingly, When performing data decoding, the receiving end needs to separately decode the two parts, that is, decode the first signal and the second signal separately, thereby obtaining a preliminary decoding result, so as to improve signal reconstruction performance.
  • Step 704 Perform block splicing and inverse linear transform processing on the preliminary decoding result to obtain a reconstructed signal that matches the harted signal.
  • the transmitting end since the transmitting end needs to divide the size of each frame image equally, and all the pixels in each block are arranged in a row, so that all the row vectors of the entire image or video sequence are combined.
  • the block matrix the number of rows of the block matrix is M, and the number of columns is the number of pixels in each block. Therefore, after obtaining the preliminary decoding result, the receiving end restores each row element of the preliminary decoding result into a block and puts it into a corresponding position of the image or video sequence, thereby finally obtaining a transform domain signal.
  • the receiving end inversely transforms the transform domain signal according to the linear transformation set by the transmitting end to obtain a reconstructed signal matched with the noisy signal.
  • the signal transmission method provided by the embodiment of the present invention receives the analog channel code sent by the transmitting end, and inversely processes the symbol mapping of the analog channel code, and separately obtains the added noise signal.
  • the first signal and the second signal are decoded, and the obtained preliminary decoding result is subjected to block splicing and inverse linear transform processing to obtain a reconstructed signal matched with the tuned signal, due to the width and channel of the analog channel code.
  • the bandwidth is the same, that is, the analog channel code can occupy the channel bandwidth, thereby improving the bandwidth utilization in the case of reducing signal noise.
  • the linear characteristic is maintained, and the effect of stabilizing the gain is maintained.
  • FIG. 8 is a schematic flowchart diagram of Embodiment 4 of a signal transmission method according to the present invention.
  • decoding the first signal and the second signal and correcting the preliminary decoding result are implemented. For example, let's take a detailed explanation.
  • the method in this embodiment may include:
  • Step 801 Receive an analog channel code sent by an encoder, where a resource required by the analog channel code is equal to an allocatable resource.
  • Step 802 Perform inverse processing of symbol mapping on the analog channel code to obtain a noise-added signal, where the noise-added signal includes a first signal and a second signal.
  • Step 803 Decode the first signal according to the LLSE algorithm to obtain a first decoding result.
  • ⁇ X is a diagonal matrix
  • ⁇ i is the variance of the i-th block in the block matrix
  • is the diagonal matrix of the noise variance
  • C is the coefficient matrix
  • C HD
  • H is the transformation matrix when the sender performs whitening
  • D represents the power distribution weight value
  • d i represents the power allocation weight value of the i-th block in the block matrix
  • ⁇ j is the variance of the j-th block in the block matrix
  • P is the total power of all the blocks in the block matrix.
  • the LLSE algorithm is used for decoding, and its function is mainly to obtain the gain of the LLSE decoding algorithm under low channel quality.
  • Step 804 according to the formula Second signal Decoding to obtain a second decoding result G represents the power factor.
  • the second decoding result can be obtained by directly dividing the power factor corresponding to each signal.
  • the purpose of this is to maintain a linear gain effect, that is, when the channel bandwidth is doubled, a stable gain effect can be obtained so that it does not decrease as the channel bandwidth changes.
  • Step 805 Combine the first decoding result and the second decoding result to obtain a preliminary decoding result.
  • the receiving end generally adopts a LLSE decoding manner on the whole of the noise-added signal, so that the signal reconstruction performance is poor.
  • the signal transmitted by the transmitting end includes two parts, that is, an analog channel.
  • the signal corresponding to the block matrix in the code and the signal corresponding to the signal other than the block matrix correspondingly, when the data is decoded by the receiving end, the two parts need to be decoded separately, that is, the first signal And the second signal is separately decoded, thereby obtaining a preliminary decoding result, thereby improving signal reconstruction performance.
  • FIG. 9 is a schematic diagram of comparison between the performance of the present invention and the prior art system in different decoding modes.
  • the estimation parameter a for calculating the fluctuation range vector value is selected as 8, and the signal noise is assumed.
  • the Signal Noise Ratio (SNR) is 0 dB, and the reconstruction quality of the video is measured by the Peak Signal to Noise Ratio (PSNR).
  • SNR Signal Noise Ratio
  • PSNR Peak Signal to Noise Ratio
  • the second decoding scheme when the SNR is 0 dB and the bandwidth is doubled, the gain effect of the LLSE algorithm cannot be obtained, and the reconstruction performance PSNR is about 2 dB smaller than the other two schemes.
  • the reconstruction performance in the third scheme is optimal, which not only ensures the decoding gain of the LLSE algorithm, but also maintains a stable gain effect, that is, the PSNR varies linearly with the change of x, wherein FIG. 9
  • the value of the horizontal axis coordinate is x, and x indicates that the number of symbols that the channel bandwidth can carry is 2x times the amount of original data.
  • Step 806 correcting the preliminary decoding result, and obtaining a corrected decoding result.
  • Preliminary decoding result Correction As a correction code matrix, As a matrix of signals that need to be corrected. Assuming that the amount of data that the channel bandwidth can carry is N times that of the block matrix X, then the receiving end needs to perform N-1 correction operations to obtain the corrected decoding result. It is worth noting that the size and the score of the decoding result are corrected. The size of the block matrix is the same. If it is judged that the information matrix M j is not equal to zero, according to the formula Preliminary decoding result Correction and obtain the decoding result
  • Step 807 Perform block division and inverse linear transformation processing on the corrected decoding result to obtain a reconstructed signal that matches the noise added signal.
  • the signal transmission method provided by the embodiment of the present invention receives the analog channel code sent by the transmitting end, and inversely processes the symbol mapping of the analog channel code, and separately obtains the added noise signal.
  • the first signal and the second signal are decoded, and the obtained preliminary decoding result is subjected to block splicing and inverse linear transform processing to obtain a reconstructed signal matched with the tuned signal, and resources required for the analog channel code are obtained.
  • Equal to the allocatable resources, that is, the analog channel code can occupy the channel bandwidth, thereby improving the bandwidth utilization in the case of reducing signal noise.
  • the linear characteristic is maintained, and the effect of stabilizing the gain is maintained.
  • FIG. 10 is a schematic diagram of comparison between the performance of the present invention and the prior art system in a unicast mode.
  • the wireless base station transmits data to the user in a unicast manner
  • the performance curve thereof is as shown in FIG.
  • the horizontal axis coordinate value is x, which means that the number of symbols that the channel bandwidth can carry is 2x times the original data amount
  • the present invention and the prior art values represent the channel quality SNR.
  • the slope of the curve corresponding to the solution of the present invention is significantly larger than that of the prior art, and the performance of the solution of the present invention is superior to the prior art solution in the unicast case.
  • the slope of the inventive solution is greater, while the slope in the prior art scheme remains unchanged. Therefore, as the user SNR increases, the advantages of the aspect scheme are more pronounced.
  • FIG. 11 is a schematic diagram of comparison between the performance of the present invention and the prior art system in the multicast mode.
  • the wireless base station transmits data to the user in a multicast manner, and the performance curve thereof is as shown in FIG. Show.
  • the worst channel quality SNR of all users is 0 dB
  • this value is used to calculate the fluctuation range and generate an analog channel code.
  • the present invention and prior art values (e.g., 2) in the figure represent a multiple of the number of symbols that the channel bandwidth can carry compared to the number of symbols encoded by the original image.
  • the performance of the solution of the present invention is also superior to the prior art solution in the case of multicast, and the greater the channel bandwidth, the more obvious the advantage.
  • the solution of the present invention can also be applied to an audio digital signal.
  • the linear transformation applied to the audio digital signal is only one-dimensional orthogonal transformation, such as one-dimensional discrete cosine transform and one-dimensional transformation. Wavelet transform.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a signal transmission apparatus according to the present invention.
  • a signal transmission apparatus according to an embodiment of the present invention includes a transformation module 11, a blocking module 12, an encoding module 13, and a transmitting module 14.
  • the transforming module 11 is configured to linearly transform a pixel domain signal of each frame of the video to obtain a transform domain signal; the transform domain signal requires less resources than the allocatable resource; and the blocking module 12 is configured to The transform domain signal of each frame of the video is divided into blocks to obtain a block matrix; the encoding module 13 is configured to encode the block matrix to generate an analog channel code, where the required resources of the analog channel code are equal to the assignable
  • the sending module 14 is configured to send the analog channel code to the receiving end.
  • the signal transmission apparatus obtains a transform domain signal by linearly transforming a pixel domain signal of each frame image of the video, and blocks the transform domain signal of each frame of the video to obtain a block matrix, and The block matrix is encoded to generate an analog channel code, and the analog channel code U is sent to the receiving end, wherein the required resources of the analog channel code are equal to the allocatable resources. Since the resource required by the generated analog channel code is equal to the allocatable resource when the channel bandwidth is sufficient, the analog channel code fills the channel bandwidth, thereby reducing the signal noise. The bandwidth utilization is improved.
  • FIG. 13 is a schematic structural diagram of a second embodiment of a signal transmission apparatus according to the present invention. As shown in FIG. 13, the embodiment of the present invention is based on the embodiment shown in FIG.
  • the determining unit 131 is configured to determine a fluctuation range vector value of the block matrix according to a power factor corresponding to the block matrix;
  • the generating unit 132 is configured to generate the analog channel code according to the fluctuation range vector value of the block matrix.
  • the determining unit 131 is specifically configured to:
  • the generating unit 132 is specifically configured to:
  • Step A According to the fluctuation range vector value Ran i , any element x 0 in the block corresponding to the fluctuation range vector value Ran in the block matrix X is divided into a first value m and a second value. r, and according to the formula Calculating the first value m;
  • Step B determining the second value r according to the element x 0 and the first value m; the second value r ranges from greater than -Ran/2 and less than Ran/2;
  • Step C Combining the block matrix X with the matrix R to obtain a combined analog channel code U 1 , the matrix R being the product of the second value r and the unit matrix I, the number of rows of the unit matrix I and the The number of rows of the combined analog channel code U 1 is equal, and the number of columns of the unit matrix I is equal to the number of columns of the combined analog channel code U 1 ;
  • Step D determining whether the resources required to merge the analog channel code U 1 are equal to the allocatable resources
  • Step E If the resource required for combining the analog channel code U 1 is not equal to the allocatable resource, update the value of the block matrix X in the step A to the merged analog channel code U 1 .
  • the value of x 0 is updated to the second value r, and the step A to the step E are performed until the resource required for the merged analog channel code U 1 is equal to the allocatable resource, and the merged simulation is performed.
  • the channel code U 1 serves as the analog channel code.
  • the signal transmission device of this embodiment may be used to implement the technical solution of the signal transmission method provided by any embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of a third embodiment of a signal transmission apparatus according to the present invention. As shown in FIG. 14, the embodiment of the present embodiment is based on the foregoing embodiments, the blocking module 12 includes:
  • the processing unit 121 is configured to perform equal block processing on each frame of the image to obtain a number of blocks;
  • the scanning unit 122 is configured to sequentially scan all pixels in each partition to obtain the number of pixels in each of the partitions;
  • the determining unit 123 is configured to determine the block matrix according to the number of blocks and the number of pixels in each block.
  • the signal transmission device of this embodiment may be used to implement the technical solution of the signal transmission method provided by any embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of a fourth embodiment of a signal transmission apparatus according to the present invention. As shown in FIG. 15, the embodiment further includes:
  • the allocating module 15 is configured to perform power allocation on the analog channel code to obtain an output matrix.
  • the processing module 16 is configured to perform whitening processing on the output matrix to obtain a processing matrix.
  • the mapping module 17 is configured to perform symbol mapping on the processing matrix to obtain the mapping matrix.
  • the sending module 14 is further configured to send the mapping matrix to the receiving end.
  • the allocating module 15 is specifically configured to:
  • the signal transmission device of this embodiment may be used to implement the technical solution of the signal transmission method provided by any embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of Embodiment 5 of a signal transmission apparatus according to the present invention.
  • the signal transmission apparatus provided by the embodiment of the present invention includes a receiving module 21, a processing module 22, and a decoding module 23.
  • the receiving module 21 is configured to receive an analog channel code sent by the sending end, where the required resources of the analog channel code are equal to the allocateable resources, and the processing module 22 is configured to perform inverse processing on the analog channel code to obtain symbol mapping.
  • a noise-added signal the noise-added signal includes a first signal and a second signal;
  • the decoding module 23 is configured to respectively decode the first signal and the second signal to obtain a preliminary decoding result;
  • the module 22 is further configured to perform block splicing and inverse linear transform processing on the preliminary decoding result to obtain a reconstructed signal that matches the SNR signal.
  • the signal transmission apparatus receives the analog channel code sent by the transmitting end and performs inverse mapping of the symbol mapping on the analog channel code in the case where the channel bandwidth is sufficient, and separately obtains the added noise signal.
  • the first signal and the second signal are decoded, and the obtained preliminary decoding result is subjected to block splicing and inverse linear transform processing to obtain a reconstructed signal matched with the tuned signal, due to the width and channel of the analog channel code.
  • the bandwidth is the same, that is, the analog channel code can occupy the channel bandwidth, thereby improving the bandwidth utilization in the case of reducing signal noise.
  • the linear characteristic is maintained, and the effect of stabilizing the gain is maintained.
  • FIG. 17 is a schematic structural diagram of Embodiment 6 of the signal transmission apparatus according to the present invention. As shown in FIG. 17, the embodiment is further provided on the basis of the embodiment shown in FIG. 16, and the apparatus further includes: a correction module 24.
  • the correction module 24 is configured to correct the preliminary decoding result to obtain a corrected decoding result.
  • the decoding module 23 includes:
  • the first decoding unit 231 is configured to decode the first signal according to a linear least mean square estimation LLSE algorithm to obtain a first decoding result;
  • the second decoding unit 232 is configured to The second signal Decoding to obtain a second decoding result G represents the power factor
  • the merging unit 233 is configured to combine the first decoding result and the second decoding result to obtain the preliminary decoding result.
  • the correcting module 24 is specifically configured to:
  • Step A According to the formula Calculating a fluctuation range vector value Ran j of the jth block in the block matrix; where a represents an estimation parameter, ⁇ n is a standard deviation of channel noise, and g j is a power factor corresponding to the jth block;
  • Step B According to the fluctuation range vector value Ran j and the formula Determining the information matrix M j of the jth block;
  • Step C determining whether the information matrix M j of the jth block is equal to zero;
  • Step D if the information matrix M j of the jth block is equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step E if the information matrix M j of the jth block is not equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step F determining the decoding result Is it equal to If the decoding result Not equal to the stated Then the value of j is decremented by one, and step A-step G is repeatedly performed until the decoding result Equal to the stated The decoding result As a result of correcting the decoding.
  • the signal transmission device of this embodiment may be used to implement the technical solution of the signal transmission method provided by any embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • a base station according to an embodiment of the present invention includes a processor 31 and a transmitter 32.
  • the processor 31 is configured to linearly transform a pixel domain signal of each frame of the video to obtain a transform domain signal; the transform domain signal requires less resources than the allocateable resource;
  • the processor 31 is further configured to block a transform domain signal of each frame of the video to obtain a block matrix
  • the processor 31 is further configured to encode the block matrix to generate an analog channel code, where the required resources of the analog channel code are equal to the allocatable resources;
  • the transmitter 32 is configured to send the analog channel code to the receiving end.
  • the base station provided by this embodiment may be used to implement the technical solution of the signal transmission method provided by any embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the processor 31 is further configured to determine a fluctuation range vector value of the block matrix according to a power factor corresponding to the block matrix;
  • the processor 31 is further configured to generate the analog channel code according to a fluctuation range vector value of the block matrix.
  • the processor 31 is further configured to Calculating a fluctuation range vector value Ran i of each block in the block matrix; wherein a represents an estimation parameter, a is an even number greater than or equal to 6, ⁇ n is a standard deviation of channel noise, and g i is the block The power factor corresponding to each block in the matrix.
  • the processor 31 is specifically configured to:
  • Step A According to the fluctuation range vector value Ran i , any element x 0 in the block corresponding to the fluctuation range vector value Ran in the block matrix X is divided into a first value m and a second value. r, and according to the formula Calculating the first value m;
  • Step B determining the second value r according to the element x 0 and the first value m; the second value r ranges from greater than -Ran/2 and less than Ran/2;
  • Step C Combining the block matrix X with the matrix R to obtain a combined analog channel code U 1 , the matrix R being the product of the second value r and the unit matrix I, the number of rows of the unit matrix I and the The number of rows of the combined analog channel code U 1 is equal, and the number of columns of the unit matrix I is equal to the number of columns of the combined analog channel code U 1 ;
  • Step D determining whether the resources required to merge the analog channel code U 1 are equal to the allocatable resources
  • Step E If the resource required for combining the analog channel code U 1 is not equal to the allocatable resource, update the value of the block matrix X in the step A to the merged analog channel code U 1 .
  • the value of x 0 is updated to the second value r, and the step A to the step E are performed until the resource required for the merged analog channel code U 1 is equal to the allocatable resource, and the merged simulation is performed.
  • the channel code U 1 serves as the analog channel code.
  • the processor 31 is further configured to perform equal block processing on each frame of the image to obtain a number of blocks;
  • the processor 31 is further configured to sequentially scan all pixels in each partition to obtain the number of pixels in each of the partitions;
  • the processor 31 is further configured to determine the block matrix according to the number of blocks and the number of pixels in each block.
  • the processor 31 is further configured to perform power allocation on the analog channel code to obtain an output matrix.
  • the processor 31 is further configured to perform whitening processing on the output matrix to obtain a processing matrix.
  • the processor 31 is further configured to perform symbol mapping on the processing matrix to obtain the mapping matrix
  • the transmitter 32 is further configured to send the mapping matrix to the receiving end.
  • the base station provided by this embodiment may be used to implement the technical solution of the signal transmission method provided by any embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 19 is a schematic structural diagram of Embodiment 1 of a terminal device according to the present invention.
  • a terminal device provided by an embodiment of the present invention includes a receiver 41 and a processor 42.
  • the receiver 41 is configured to receive an analog channel code sent by the sending end, where the analog channel code is used.
  • the required resources are equal to the resources that can be allocated;
  • the processor 42 is configured to perform inverse processing on symbol mapping of the analog channel code to obtain a noise-added signal, where the noise-added signal includes a first signal and a second signal;
  • the processor 42 is further configured to separately decode the first signal and the second signal to obtain a preliminary decoding result
  • the processor 42 is further configured to perform block splicing and inverse linear transform processing on the preliminary decoding result to obtain a reconstructed signal that matches the SNR signal.
  • the terminal device provided by this embodiment may be used to implement the technical solution of the signal transmission method provided by any embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the processor 42 is further configured to correct the preliminary decoding result to obtain a corrected decoding result.
  • the processor 42 is further configured to: decode the first signal according to a linear least mean square estimation LLSE algorithm, to obtain a first decoding result;
  • the processor 42 is also used to formulate The second signal Decoding to obtain a second decoding result G represents the power factor
  • the processor 42 is further configured to combine the first decoding result and the second decoding result to obtain the preliminary decoding result.
  • the processor 42 is specifically configured to:
  • Step A According to the formula Calculating a fluctuation range vector value Ran j of the jth block in the block matrix; where a represents an estimation parameter, ⁇ n is a standard deviation of channel noise, and g j is a power factor corresponding to the jth block;
  • Step B According to the fluctuation range vector value Ran j and the formula Determining the information matrix M j of the jth block;
  • Step C determining whether the information matrix M j of the jth block is equal to zero;
  • Step D if the information matrix M j of the jth block is equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step E if the information matrix M j of the jth block is not equal to zero, according to the formula The preliminary decoding result Correction and obtain the decoding result
  • Step F determining the decoding result Is it equal to If the decoding result Not equal to the stated Then the value of j is decremented by one, and step A-step G is repeatedly performed until the decoding result Equal to the stated The decoding result As a result of correcting the decoding.
  • the terminal device provided by this embodiment may be used to implement the technical solution of the signal transmission method provided by any embodiment of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the storage medium includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明实施例涉及一种信号传输方法、装置和设备,该方法包括:对视频的每帧图像的像素域信号进行线性变换,获得变换域信号,所述变换域信号所需要的资源小于可分配的资源,对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵,对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源,将所述模拟信道码发送到接收端。本发明实施例提供的信号传输方法、装置和设备提高了带宽的利用率。

Description

信号传输方法、装置和设备 技术领域
本发明实施例涉及通信技术,特别涉及一种信号传输方法、装置和设备。
背景技术
随着移动互联网和移动智能终端的广泛普及,移动视频业务正迅猛地增长,因此,如何将视频信号同时广播到多个不同的用户,从而有效地节省带宽,并降低移动视频流量,是一个非常重要的问题。
现有技术中,视频流量通常以模拟信号的形式传输,模拟信号是指经过一系列线性操作得到的实值数据。在信道带宽充足的情形下,为了降低信号噪声,在发送端通过重复传输原始模拟信号,在接收端用线性最小均方估计(Linear Least Square Estimator;简称:LLSE)译码算法得到信号,再对多次接收的信号进行取平均操作,以得到最终的译码结果,从而,提升视频重构质量。
然而,采用上述方式,通过重复传输原始模拟信号以降低信噪比,在信道带宽充足的情况下,带宽利用率较低。
发明内容
有鉴于此,本发明实施例提供了一种信号传输方法、装置和设备,以提高带宽的利用率。
第一方面,本发明实施例提供一种信号传输方法,包括:
对视频的每帧图像的像素域信号进行线性变换,获得变换域信号;所述变换域信号所需要的资源小于可分配的资源;
对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵;
对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
将所述模拟信道码发送到接收端。
结合第一方面,在第一方面的第一种可能的实现方式中,所述对所述分 块矩阵进行编码,生成模拟信道码,包括:
根据所述分块矩阵对应的功率因子,确定所述分块矩阵的波动范围向量值;
根据所述分块矩阵的波动范围向量值,生成所述模拟信道码。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述根据所述分块矩阵对应的功率因子,确定所述分块矩阵中各分块的波动范围向量值,包括:
根据公式
Figure PCTCN2015084366-appb-000001
计算所述分块矩阵中各分块的波动范围向量值Rani;其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gi为所述分块矩阵中各分块对应的功率因子。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述根据所述分块矩阵中各分块的波动范围向量值,生成所述模拟信道码,包括:
步骤A:根据所述波动范围向量值Rani,将所述分块矩阵X中与所述波动范围向量值Ran对应的分块中的任一元素x0划分为第一数值m和第二数值r,并根据公式
Figure PCTCN2015084366-appb-000002
计算所述第一数值m;
步骤B:根据所述元素x0和所述第一数值m,确定所述第二数值r;所述第二数值r的取值范围为大于-Ran/2且小于Ran/2;
步骤C:将所述分块矩阵X与矩阵R合并,获得合并模拟信道码U1,所述矩阵R为第二数值r与单位矩阵I的乘积,所述单位矩阵I的行数与所述合并模拟信道码U1的行数相等,所述单位矩阵I的列数与所述合并模拟信道码U1的列数相等;
步骤D:判断所述合并模拟信道码U1所需要的资源是否等于可分配的资源;
步骤E:若所述合并模拟信道码U1所需要的资源不等于可分配的资源,则将所述步骤A中的分块矩阵X的值更新为所述合并模拟信道码U1,将所述x0的值更新为所述第二数值r,执行所述步骤A~所述步骤E,直到所述合并模拟信道码U1所需要的资源等于可分配的资源,则将所述合并模拟信道码U1作为所述模拟信道码。
结合第一方面、第一方面的第一种至第一方面的第三种任一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵,包括:
对所述每帧图像进行均等分块处理,获得分块数量;
依次对每个分块内的所有像素进行扫描,获得所述每个分块内的像素数;
根据所述分块数量和所述每个分块内的像素数,确定所述分块矩阵。
结合第一方面、第一方面的第一种至第一方面的第四种任一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述将所述模拟信道码发送到接收端,包括:
对所述模拟信道码进行功率分配,获得输出矩阵;
对所述输出矩阵进行白化处理,获得处理矩阵;
对所述处理矩阵进行符号映射,获得所述映射矩阵,并将所述映射矩阵发送到接收端。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述对所述模拟信道码进行功率分配,包括:
根据公式V=DU,对所述模拟信道码U进行功率分配,获得输出矩阵V;其中,D表示功率分配权重值,且
Figure PCTCN2015084366-appb-000003
di表示第i个分块的功率分配权重值,λi为第i个分块的方差,λj为第j个分块的方差,P为所有分块的总功率。
第二方面,本发明实施例提供一种信号传输方法,包括:
接收发送端发送的模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
对所述模拟信道码进行符号映射的逆处理,得到加噪信号,所述加噪信号包括第一信号和第二信号;
分别对所述第一信号和所述第二信号进行译码,得到初步译码结果;
对所述初步译码结果进行分块拼接和逆线性变换处理,获得与所述加噪信号相匹配的重构信号。
结合第二方面,在第二方面的第一种可能的实现方式中,所述分别对所 述第一信号和所述第二信号进行译码,得到初步译码结果之后,还包括:
对所述初步译码结果进行纠正,获得纠正译码结果。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述分别对所述第一信号和所述第二信号进行译码,得到初步译码结果,包括:
根据线性最小均方估计LLSE算法,对所述第一信号进行译码,获得第一译码结果;
根据公式
Figure PCTCN2015084366-appb-000004
对所述第二信号
Figure PCTCN2015084366-appb-000005
进行译码,获得第二译码结果
Figure PCTCN2015084366-appb-000006
G表示功率因子;
将所述第一译码结果和所述第二译码结果进行合并,获得所述初步译码结果。
结合第二方面的第一种或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述对所述初步译码结果进行纠正,获得纠正译码结果,包括:
步骤A:根据公式
Figure PCTCN2015084366-appb-000007
计算分块矩阵中第j个分块的波动范围向量值Ranj;其中,a表示估计参数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子;
步骤B:根据所述波动范围向量值Ranj以及公式
Figure PCTCN2015084366-appb-000008
确定第j个分块的信息矩阵Mj
步骤C:判断第j个分块的信息矩阵Mj是否等于零;
步骤D:若所述第j个分块的信息矩阵Mj等于零,则根据公式
Figure PCTCN2015084366-appb-000009
对所述初步译码结果
Figure PCTCN2015084366-appb-000010
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000011
步骤E:若所述第j个分块的信息矩阵Mj不等于零,则根据公式
Figure PCTCN2015084366-appb-000012
对所述初步译码结果
Figure PCTCN2015084366-appb-000013
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000014
步骤F:判断所述译码结果
Figure PCTCN2015084366-appb-000015
是否等于
Figure PCTCN2015084366-appb-000016
若所述译码结果
Figure PCTCN2015084366-appb-000017
不等于所述
Figure PCTCN2015084366-appb-000018
则将j的值减一,并重复执行所述步骤A-所述步骤G,直至所述译 码结果
Figure PCTCN2015084366-appb-000019
等于所述
Figure PCTCN2015084366-appb-000020
则将所述译码结果
Figure PCTCN2015084366-appb-000021
作为纠正译码结果。
第三方面,本发明实施例提供一种信号传输装置,包括:
变换模块,用于对视频的每帧图像的像素域信号进行线性变换,获得变换域信号;所述变换域信号所需要的资源小于可分配的资源;
分块模块,用于对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵;
编码模块,用于对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
发送模块,用于将所述模拟信道码发送到接收端。
结合第三方面,在第三方面的第一种可能的实现方式中,所述编码模块包括:
确定单元,用于根据所述分块矩阵对应的功率因子,确定所述分块矩阵的波动范围向量值;
生成单元,用于根据所述分块矩阵的波动范围向量值,生成所述模拟信道码。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述确定单元,具体用于:
根据公式
Figure PCTCN2015084366-appb-000022
计算所述分块矩阵中各分块的波动范围向量值Rani;其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gi为所述分块矩阵中各分块对应的功率因子。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述生成单元,具体用于:
步骤A:根据所述波动范围向量值Rani,将所述分块矩阵X中与所述波动范围向量值Ran对应的分块中的任一元素x0划分为第一数值m和第二数值r,并根据公式
Figure PCTCN2015084366-appb-000023
计算所述第一数值m;
步骤B:根据所述元素x0和所述第一数值m,确定所述第二数值r;所述第二数值r的取值范围为大于-Ran/2且小于Ran/2;
步骤C:将所述分块矩阵X与矩阵R合并,获得合并模拟信道码U1,所述矩阵R为第二数值r与单位矩阵I的乘积,所述单位矩阵I的行数与所述合 并模拟信道码U1的行数相等,所述单位矩阵I的列数与所述合并模拟信道码U1的列数相等;
步骤D:判断所述合并模拟信道码U1所需要的资源是否等于可分配的资源;
步骤E:若所述合并模拟信道码U1所需要的资源不等于可分配的资源,则将所述步骤A中的分块矩阵X的值更新为所述合并模拟信道码U1,将所述x0的值更新为所述第二数值r,执行所述步骤A~所述步骤E,直到所述合并模拟信道码U1所需要的资源等于可分配的资源,则将所述合并模拟信道码U1作为所述模拟信道码。
结合第三方面、第三方面的第一种至第三方面的第三种任一种可能的实现方式,在第三方面的第四种可能的实现方式中,所述分块模块包括:
处理单元,用于对所述每帧图像进行均等分块处理,获得分块数量;
扫描单元,用于依次对每个分块内的所有像素进行扫描,获得所述每个分块内的像素数;
确定单元,用于根据所述分块数量和所述每个分块内的像素数,确定所述分块矩阵。
结合第三方面、第三方面的第一种至第三方面的第四种任一种可能的实现方式,在第三方面的第五种可能的实现方式中,所述装置还包括:
分配模块,用于对所述模拟信道码进行功率分配,获得输出矩阵;
处理模块,用于对所述输出矩阵进行白化处理,获得处理矩阵;
映射模块,用于对所述处理矩阵进行符号映射,获得所述映射矩阵;
所述发送模块,还用于将所述映射矩阵发送到接收端。
结合第三方面的第五种可能的实现方式,在第三方面的第六种可能的实现方式中,所述分配模块具体用于:
根据公式V=DU,对所述模拟信道码U进行功率分配,获得输出矩阵V;其中,D表示功率分配权重值,且
Figure PCTCN2015084366-appb-000024
di表示第i个分块的功率分配权重值,λi为第i个分块的方差,λj为第j个分块的方差,P为所有分块的总功率。
第四方面,本发明实施例提供一种信号传输装置,包括:
接收模块,用于接收发送端发送的模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
处理模块,用于对所述模拟信道码进行符号映射的逆处理,得到加噪信号,所述加噪信号包括第一信号和第二信号;
译码模块,用于分别对所述第一信号和所述第二信号进行译码,得到初步译码结果;
所述处理模块,还用于对所述初步译码结果进行分块拼接和逆线性变换处理,获得与所述加噪信号相匹配的重构信号。
结合第四方面,在第四方面的第一种可能的实现方式中,所述装置还包括:
纠正模块,用于对所述初步译码结果进行纠正,获得纠正译码结果。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述译码模块包括:
第一译码单元,用于根据线性最小均方估计LLSE算法,对所述第一信号进行译码,获得第一译码结果;
第二译码单元,用于根据公式
Figure PCTCN2015084366-appb-000025
对所述第二信号
Figure PCTCN2015084366-appb-000026
进行译码,获得第二译码结果
Figure PCTCN2015084366-appb-000027
G表示功率因子;
合并单元,用于将所述第一译码结果和所述第二译码结果进行合并,获得所述初步译码结果。
结合第四方面的第一种或第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述纠正模块具体用于:
步骤A:根据公式
Figure PCTCN2015084366-appb-000028
计算分块矩阵中第j个分块的波动范围向量值Ranj;其中,a表示估计参数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子;
步骤B:根据所述波动范围向量值Ranj以及公式
Figure PCTCN2015084366-appb-000029
确定第j个分块的信息矩阵Mj
步骤C:判断第j个分块的信息矩阵Mj是否等于零;
步骤D:若所述第j个分块的信息矩阵Mj等于零,则根据公式
Figure PCTCN2015084366-appb-000030
对所述初步译码结果
Figure PCTCN2015084366-appb-000031
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000032
步骤E:若所述第j个分块的信息矩阵Mj不等于零,则根据公式
Figure PCTCN2015084366-appb-000033
对所述初步译码结果
Figure PCTCN2015084366-appb-000034
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000035
步骤F:判断所述译码结果
Figure PCTCN2015084366-appb-000036
是否等于
Figure PCTCN2015084366-appb-000037
若所述译码结果
Figure PCTCN2015084366-appb-000038
不等于所述
Figure PCTCN2015084366-appb-000039
则将j的值减一,并重复执行所述步骤A-所述步骤G,直至所述译码结果
Figure PCTCN2015084366-appb-000040
等于所述
Figure PCTCN2015084366-appb-000041
则将所述译码结果
Figure PCTCN2015084366-appb-000042
作为纠正译码结果。
第五方面,本发明实施例提供一种基站,包括:
处理器,用于对视频的每帧图像的像素域信号进行线性变换,获得变换域信号;所述变换域信号所需要的资源小于可分配的资源;
所述处理器,还用于对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵;
所述处理器,还用于对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
发送器,用于将所述模拟信道码发送到接收端。
结合第五方面,在第五方面的第一种可能的实现方式中,所述处理器,还用于根据所述分块矩阵对应的功率因子,确定所述分块矩阵的波动范围向量值;
所述处理器,还用于根据所述分块矩阵的波动范围向量值,生成所述模拟信道码。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述处理器,还用于根据公式
Figure PCTCN2015084366-appb-000043
计算所述分块矩阵中各分块的波动范围向量值Rani;其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gi为所述分块矩阵中各分块对应的功率因子。
结合第五方面的第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述处理器还用于:
步骤A:根据所述波动范围向量值Rani,将所述分块矩阵X中与所述波 动范围向量值Ran对应的分块中的任一元素x0划分为第一数值m和第二数值r,并根据公式
Figure PCTCN2015084366-appb-000044
计算所述第一数值m;
步骤B:根据所述元素x0和所述第一数值m,确定所述第二数值r;所述第二数值r的取值范围为大于-Ran/2且小于Ran/2;
步骤C:将所述分块矩阵X与矩阵R合并,获得合并模拟信道码U1,所述矩阵R为第二数值r与单位矩阵I的乘积,所述单位矩阵I的行数与所述合并模拟信道码U1的行数相等,所述单位矩阵I的列数与所述合并模拟信道码U1的列数相等;
步骤D:判断所述合并模拟信道码U1所需要的资源是否等于可分配的资源;
步骤E:若所述合并模拟信道码U1所需要的资源不等于可分配的资源,则将所述步骤A中的分块矩阵X的值更新为所述合并模拟信道码U1,将所述x0的值更新为所述第二数值r,执行所述步骤A~所述步骤E,直到所述合并模拟信道码U1所需要的资源等于可分配的资源,则将所述合并模拟信道码U1作为所述模拟信道码。
结合第五方面、第五方面的第一种至第五方面的第三种任一种可能的实现方式,在第五方面的第四种可能的实现方式中,所述处理器,还用于对所述每帧图像进行均等分块处理,获得分块数量;
所述处理器,还用于依次对每个分块内的所有像素进行扫描,获得所述每个分块内的像素数;
所述处理器,还用于根据所述分块数量和所述每个分块内的像素数,确定所述分块矩阵。
结合第五方面、第五方面的第一种至第五方面的第四种任一种可能的实现方式,在第五方面的第五种可能的实现方式中,所述处理器,还用于对所述模拟信道码进行功率分配,获得输出矩阵;
所述处理器,还用于对所述输出矩阵进行白化处理,获得处理矩阵;
所述处理器,还用于对所述处理矩阵进行符号映射,获得所述映射矩阵;
所述发送器,还用于将所述映射矩阵发送到接收端。
结合第五方面的第五种可能的实现方式,在第五方面的第六种可能的实现方式中,所述处理器,还用于根据公式V=DU,对所述模拟信道码U进行 功率分配,获得输出矩阵V;其中,D表示功率分配权重值,且
Figure PCTCN2015084366-appb-000045
Figure PCTCN2015084366-appb-000046
di表示第i个分块的功率分配权重值,λi为第i个分块的方差,λj为第j个分块的方差,P为所有分块的总功率。
第六方面,本发明实施例提供一种终端设备,包括:
接收器,用于接收发送端发送的模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
处理器,用于对所述模拟信道码进行符号映射的逆处理,得到加噪信号,所述加噪信号包括第一信号和第二信号;
所述处理器,还用于分别对所述第一信号和所述第二信号进行译码,得到初步译码结果;
所述处理器,还用于对所述初步译码结果进行分块拼接和逆线性变换处理,获得与所述加噪信号相匹配的重构信号。
结合第六方面,在第六方面的第一种可能的实现方式中,所述处理器,还用于对所述初步译码结果进行纠正,获得纠正译码结果。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述处理器,还用于根据线性最小均方估计LLSE算法,对所述第一信号进行译码,获得第一译码结果;
所述处理器,还用于根据公式
Figure PCTCN2015084366-appb-000047
对所述第二信号
Figure PCTCN2015084366-appb-000048
进行译码,获得第二译码结果
Figure PCTCN2015084366-appb-000049
G表示功率因子;
所述处理器,还用于将所述第一译码结果和所述第二译码结果进行合并,获得所述初步译码结果。
结合第六方面的第一种或第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,所述处理器还用于:
步骤A:根据公式
Figure PCTCN2015084366-appb-000050
计算分块矩阵中第j个分块的波动范围向量值Ranj;其中,a表示估计参数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子;
步骤B:根据所述波动范围向量值Ranj以及公式
Figure PCTCN2015084366-appb-000051
确定第j个分块的信息矩阵Mj
步骤C:判断第j个分块的信息矩阵Mj是否等于零;
步骤D:若所述第j个分块的信息矩阵Mj等于零,则根据公式
Figure PCTCN2015084366-appb-000052
对所述初步译码结果
Figure PCTCN2015084366-appb-000053
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000054
步骤E:若所述第j个分块的信息矩阵Mj不等于零,则根据公式
Figure PCTCN2015084366-appb-000055
对所述初步译码结果
Figure PCTCN2015084366-appb-000056
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000057
步骤F:判断所述译码结果
Figure PCTCN2015084366-appb-000058
是否等于
Figure PCTCN2015084366-appb-000059
若所述译码结果
Figure PCTCN2015084366-appb-000060
不等于所述
Figure PCTCN2015084366-appb-000061
则将j的值减一,并重复执行所述步骤A-所述步骤G,直至所述译码结果
Figure PCTCN2015084366-appb-000062
等于所述
Figure PCTCN2015084366-appb-000063
则将所述译码结果
Figure PCTCN2015084366-appb-000064
作为纠正译码结果。
本发明实施例提供的信号传输方法、装置和设备,通过对视频的每帧图像的像素域信号进行线性变换,获得变换域信号,对视频的每帧图像的变换域信号进行分块,获得分块矩阵,若信道带宽大于分块矩阵的大小,则对分块矩阵进行编码,生成模拟信道码,将该模拟信道码发送到接收端,其中,模拟信道码的宽度与信道带宽相同。由于在信道带宽充足的情形下,通过对分块矩阵进行编码,生成与信道带宽相应大小的模拟信道码,使模拟信道码占满信道带宽,由此在降低信号噪声的情况下,提高了带宽的利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明信号传输方法的应用场景的架构示意图;
图2为本发明信号传输方法实施例一的流程示意图;
图3为本发明信号传输方法实施例二的流程示意图;
图4为对每帧图像进行分块的示意图;
图5为数据划分算法示意图;
图6为信号的符号映射的示意图;
图7为本发明信号传输方法实施例三的流程示意图;
图8为本发明信号传输方法实施例四的流程示意图;
图9为在不同译码方式下本发明与现有技术的系统性能的对比示意图;
图10为在单播方式下本发明与现有技术的系统性能的对比示意图;
图11为在多播方式下本发明与现有技术的系统性能的对比示意图;
图12为本发明信号传输装置实施例一的结构示意图;
图13为本发明信号传输装置实施例二的结构示意图;
图14为本发明信号传输装置实施例三的结构示意图;
图15为本发明信号传输装置实施例四的结构示意图;
图16为本发明信号传输装置实施例五的结构示意图;
图17为本发明信号传输装置实施例六的结构示意图;
图18为本发明基站实施例一的结构示意图;
图19为本发明终端设备实施例一的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明信号传输方法的应用场景的架构示意图,如图1所示,该信号传输方法应用于无线通信系统中,该系统包括无线基站11和无线终端,其中,无线基站包含视频编码器,以实现对视频信号的编码功能,同时,无线基站能以单播、多播或广播方式向覆盖范围内的用户发送数据信号;而无线终端包含视频译码器,例如可以是智能手机12、笔记本13和平板电脑14等,其负责对接收到的加噪信号进行译码得到与之匹配的重构信号。
以下结合几个实施例进行详细描述:
图2为本发明信号传输方法实施例一的流程示意图。本发明实施例提供了一种信号传输方法,该方法可以由任意执行信号传输方法的装置来执行, 该装置可以通过软件和/或硬件实现。本实施例中,该装置可以集成在发送端,例如:编码器中,其包括无线基站。
在上述图1所示系统架构的基础上,如图2所示,本实施例的方法可以包括:
步骤201、对视频的每帧图像的像素域信号进行线性变换,获得变换域信号,该变换域信号所需要的资源小于可分配的资源。
在本实施例中,由于视频是由多帧图像组成,对于图像信号来说,此时对像素域信号可以进行二维线性变换,以获得变换域信号,例如:二维离散余弦变换(Discrete Cosine Transform;简称:DCT)、二维离散小波变换(Discrete Wavelet Transform;简称:DWT)等;而对于视频序列信号,则应该进行相应的三维线性变换获得变换域信号,如三维DCT变换、三维DWT变换等。对图像或视频序列的像素域信号进行线性变换可以改变信号的能量分布,去除帧间、帧内的相关冗余,起到压缩信号的作用。另外,对视频的每帧图像的像素域信号进行线性变换,获得的变换域信息所需要的资源小于系统中可分配的资源,也即此时信道带宽充足。
步骤202、对视频的每帧图像的变换域信号进行分块,获得分块矩阵。
在本实施例中,在对视频序列的像素域信号进行线性变换,获得变换域信号之后,可以对视频的每帧图像的变换域信号进行大小均等的分块操作,以得到分块矩阵。
步骤203、对分块矩阵进行编码,生成模拟信道码,模拟信道码所需要的资源等于可分配的资源。
在现有技术中,当信道带宽充足时,即用户信道所能承载的OFDM符号数大于所需要发送的数据时,编码器一般采用重复传输原始数据的方式,而译码器则采用LLSE译码算法得到译码后的信号后,对多次接收的信号值进行取平均操作以得到最终的译码结果的方式,通过这种操作可以降低信号的噪声,但是,由于LLSE译码算法的非线性,当用户信道质量SNR较小且信道带宽较大时,牺牲带宽所获得的性能增益有所下降;同时,即使在高SNR下,信道带宽翻倍后,所能获取的增益效果也只有3dB左右。因此,在带宽充足的情形下,带宽利用率并不高,存在很大的提升空间。
针对这一问题,本发明实施例中在判断出信道带宽充足的情形下,根据 信道带宽的状态,对分块矩阵进行编码,以生成与信道带宽相应大小的模拟信道码,在获得模拟信道码之后,判断模拟信道码是否将带宽占满,若未将带宽占满,说明信道带宽还有剩余,则继续进行编码,直到获得的模拟信道码将信道带宽占满为止,也即生成的模拟信道码所需要的资源等于可分配的资源,则使用生成的模拟信道码进行传输,以代替现有的重复传输方式,从而能获取更好的性能增益。
步骤204、将所述模拟信道码发送到接收端。
在本实施例中,接收端可以为译码器,例如:终端设备等,其包括智能手机、笔记本和平板电脑等。
本发明实施例提供的信号传输方法,通过对视频的每帧图像的像素域信号进行线性变换,获得变换域信号,对视频的每帧图像的变换域信号进行分块,获得分块矩阵,并对分块矩阵进行编码,生成模拟信道码,将该模拟信道码U发送到接收端,其中,该模拟信道码所需要的资源等于可分配的资源。由于在信道带宽充足的情形下,通过对分块矩阵进行编码,以生成的模拟信道码所需要的资源等于可分配的资源,使模拟信道码占满信道带宽,由此在降低信号噪声的情况下,提高了带宽的利用率。
图3为本发明信号传输方法实施例二的流程示意图,本实施例在信号传输方法实施例一的基础上,对视频的每帧图像进行分块以及编码的实施例,做详细说明。
在上述图1所示系统架构的基础上,如图3所示,本实施例的方法可以包括:
步骤301、对视频的每帧图像的像素域信号进行线性变换,获得变换域信号,变换域信号所需要的资源小于可分配的资源。
步骤301与步骤201类似,此处不再赘述。
步骤302、对每帧图像进行均等分块处理,获得分块数量。
步骤303、依次对每个分块内的所有像素进行扫描,获得每个分块内的像素数。
步骤304、根据分块数量和每个分块内的像素数,确定分块矩阵。
具体地,图4为对每帧图像进行分块的示意图,如图4所示,在步骤302-步骤304中,对于变换域信号,首先对每帧图像进行大小均等的分块,假设 每帧图像分块后的总块数为m,在实际应用中,一般将m设置为64;然后将m个分块中每个分块内的所有元素排成一行,在具体的实现过程中,其排列方法可以采用zigzag扫描排列,也可以逐行或者逐列扫描排列,对于具体的排列方式,可以根据实际情况进行设置,本实施例对此不作限制。排列完成后,由整个图像或者视频序列的所有行向量共同构成分块矩阵,其中,分块矩阵的行数为M,列数为每个分块内的像素数,其中,M=m*图像或视频序列的帧数。因此,分块矩阵的每一行就对应到具体分块的所有像素。
步骤305、根据分块矩阵对应的功率因子,确定分块矩阵的波动范围向量值。
在本实施例中,发送端对每帧图像进行均等的分块,获得分块矩阵之后,需要判断该分块矩阵的大小是否小于信道带宽所能承载的数据量,若判断出分块矩阵小于信道带宽所能承载的数据量,也即信道带宽有剩余时,则对分块矩阵进行编码,以使编码后得到的模拟信道码能够占满信道带宽。为了便于说明,假设信道带宽所能承载的数据量是分块矩阵的N倍,本领域技术人员可以理解,发送端则需要产生N-1个新的模拟信道码Rj(j=1,2,…,N-1),以生成能够占满信道带宽的模拟信道码U。在具体的实现过程中,可以通过分块矩阵对应的功率因子,确定分块矩阵的波动范围向量值,再根据该波动范围向量值,生成需要的模拟信道码。具体地,首先根据公式(1)计算分块矩阵中各分块的波动范围向量值Rani
Figure PCTCN2015084366-appb-000065
其中,a表示估计参数,a的取值范围为大于或等于6的偶数,σn为信道噪声的标准差,gi为分块矩阵中各分块对应的功率因子。
步骤306、根据分块矩阵的波动范围向量值,生成模拟信道码。
在本实施例中,计算出各分块的波动范围向量值后,在此基础上,根据数据划分算法将分块矩阵X中与波动范围向量值对应的分块中的任一元素x0划分为第一数值m和第二数值r,图5为数据划分算法示意图,如图5所示,数据划分算法必须要满足以下约束条件:(1)元素x0是第一数值m与第二数值r之和,即元素x0=m+r;(2)第一数值m必须是波动范围向量值Ran的整数倍,且其表达式为
Figure PCTCN2015084366-appb-000066
其中
Figure PCTCN2015084366-appb-000067
表示向上取整操作,例如:若根据公式
Figure PCTCN2015084366-appb-000068
计算出的m=3.5,则向上取整之后,获得的m为 4;(3)第二数值r必须落于区间(-Ran/2,Ran/2)内。由上约束条件可知,根据约束条件(2)可计算出第一数值m,计算出第一数值m之后,根据约束条件(1)计算出第二数值r,并将第二数值r作为模拟信道码R1,在实际应用中,可以将第二数值r与一个与单位矩阵I相乘,即可得到R1,再将该模拟信道码R1与分块矩阵X进行合并,由此得到合并模拟信道码U1,其中,单位矩阵I的行数与合并模拟信道码U1的行数相等,单位矩阵I的列数与合并模拟信道码U1的列数相等,此时,判断得到的合并模拟信道码U1所需要的资源是否等于可分配的资源,也即合并模拟信道码U1是否将信道带宽占满,若判断出该合并模拟信道码U1未将信道带宽占满,则将x0的值更新为第二数值r,也即将第二数值r作为新的元素x0,并根据波动范围向量值Ran对元素x0的更新后的值进行划分,在得到新的第一数值m和第二数值r之后,将新的第二数值r作为模拟信道码R2即将新的第二数值r与一个与单位矩阵I相乘,即可得到R2,并将分块矩阵X的值更新为合并模拟信道码U1,再将模拟信道码R2与更新后的分块矩阵X进行合并,得到更新后的合并模拟信道码U1,继续判断更新后的合并模拟信道码U1所需要的资源是否等于可分配的资源,即更新后的合并模拟信道码U1是否占满信道带宽,若判断出未占满信道带宽,则循环执行上述操作,直至合并模拟信道码U1所需要的资源等于可分配的资源为止,即得到的合并模拟信道码U1占满信道带宽,将此时获得的合并模拟信道码U1作为生成的模拟信道码U。
步骤307、对模拟信道码进行功率分配,获得输出矩阵。
在本实施例中,在分块的基础上,根据公式V=DU,对模拟信道码U进行功率分配,获得输出矩阵V,其中,其中,D表示功率分配的权重值,且
Figure PCTCN2015084366-appb-000069
di表示第i个分块的功率分配权重值,λi为第i个分块的方差,P为所有分块的总功率。
基于分块层次上,编码器根据各分块的方差大小确定对应的每个分块的功率分配权重值,以对模拟信道码进行功率分配,实现最佳的抗噪能力。
步骤308、对输出矩阵进行白化处理,获得处理矩阵。
在本实施例中,根据公式Y=HU,对输出矩阵V进行Hadamard变换处 理,得到白化后的处理矩阵Y,其中,H为Hadamard变换矩阵。通过对输出矩阵V进行白化处理,使每个数据包具有相当的功率,从而提升了抗丢包的能力。
步骤309、对处理矩阵进行符号映射,获得映射矩阵,并将映射矩阵发送到接收端。
在本实施例中,图6为信号的符号映射的示意图,如图6所示,为了提升数据的抗丢包能力,发送端将白化处理之后的数据分别映射到OFDM符号的实部和虚部,然后再采用快速傅立叶反变换将映射后的频域信号映射到时域,并将该时域信号通过信道发送到接收端。
本发明实施例提供的信号传输方法,通过对视频的每帧图像的像素域信号进行线性变换,获得变换域信号,对视频的每帧图像的变换域信号进行分块,获得分块矩阵,若信道带宽大于分块矩阵的大小,则对分块矩阵进行编码,生成模拟信道码,将该模拟信道码U发送到接收端,其中,该模拟信道码的宽度与信道带宽相同。由于在信道带宽充足的情形下,通过对分块矩阵进行编码,生成与信道带宽相应大小的模拟信道码,使模拟信道码占满信道带宽,由此在降低信号噪声的情况下,提高了带宽的利用率。另外,由于对输出矩阵进行白化处理,使每个数据包具有相当的功率,从而提升了抗丢包的能力。
图7为本发明信号传输方法实施例三的流程示意图。本发明实施例提供了一种信号传输方法,该方法可以由任意执行信号传输方法的装置来执行,该装置可以通过软件和/或硬件实现。本实施例中,该装置可以集成在接收端,例如:译码器中,其包括无线终端等。
在上述图1所示系统架构的基础上,如图7所示,本实施例的方法可以包括:
步骤701、接收编码器发送的模拟信道码,该模拟信道码所需要的资源等于可分配的资源。
在本实施例中,发送端首先需要对视频的每帧图像的像素域信号进行线性变换,由于视频是由多帧图像组成,对于图像信号来说,此时对像素域信号可以进行二维线性变换,以获得变换域信号,例如:二维DCT变换、二维DWT变换等;而对于视频序列信号,则应该进行相应的三维线性变换获得变 换域信号,如三维DCT变换、三维DWT变换等。对图像或视频序列的像素域信号进行线性变换可以改变信号的能量分布,去除帧间、帧内的相关冗余,起到压缩信号的作用。另外,对视频的每帧图像的像素域信号进行线性变换,获得的变换域信息所需要的资源小于系统中可分配的资源,也即此时信道带宽充足。
在对视频序列的像素域信号进行线性变换,获得变换域信号之后,对于获得的变换域信号,可以对视频的每帧图像进行大小均等的分块操作,以得到分块矩阵。
另外,在分块的基础上,由于分块矩阵所需要的资源小于可分配的资源,因此,需要对分块矩阵进行编码,以使生成的模拟信道码所需要的资源等于可分配的资源,此时的模拟信道码可以将信道带宽占满,并将生成的模拟信道码发送到接收端。
步骤702、对模拟信道码进行符号映射的逆处理,得到加噪信号;该加噪信号包括第一信号和第二信号。
在本实施例中,接收端在接收到编码器发送的模拟信道码之后,先采用快速傅里叶变换将该信号转换至频域,再对转换后的频域信号进行符号映射的逆处理,得到加噪信号。此时,正常接收得到的加噪信号的行数为M*N行,其中,M=m*图像或视频序列的帧数,m表示对每帧图像进行分块后的块数。为了便于说明,可以将加噪信号的每M行定义为一个新的矩阵
Figure PCTCN2015084366-appb-000070
那么
Figure PCTCN2015084366-appb-000071
其中,
Figure PCTCN2015084366-appb-000072
表示加噪信号,
Figure PCTCN2015084366-appb-000073
表示第一信号,而其他
Figure PCTCN2015084366-appb-000074
表示第二信号,第一信号
Figure PCTCN2015084366-appb-000075
为模拟信道码中发送端发送的原始信号,也即分块矩阵对应的信号,第二信号
Figure PCTCN2015084366-appb-000076
则为模拟信道码中除分块矩阵之外的其他矩阵对应的信号,其中,j为大于或等于1且小于或等于N-1的整数,N表示信道带宽所能承载的数据量与分块矩阵的比值。
步骤703、分别对第一信号和第二信号进行译码,得到初步译码结果。
现有技术中,接收端通常采用对加噪信号整体进行LLSE译码的方式,使得信号的重构性能较差,而在本实施例中,由于发送端发送的信号包括两部分,相应的,接收端在进行数据译码时,需要分别针对这两部分进行译码,也即对第一信号和第二信号分别进行译码,由此得到初步译码结果,以提高信号的重构性能。
步骤704、对初步译码结果进行分块拼接和逆线性变换处理,获得与加噪后的信号相匹配的重构信号。
在本实施例中,由于发送端需要对每帧图像进行大小均等的分块,并将每个分块内的所有像素排成一行,这样,由整个图像或者视频序列的所有行向量共同构成分块矩阵,分块矩阵的行数为M,列数为每个分块内的像素数。因此,接收端在获得初步译码结果后,将初步译码结果的每一行元素还原成一个分块,放到图像或视频序列的对应位置,最终得到变换域信号。
接收端根据发送端设定的线性变换,对变换域信号做相应地反变换得到与加噪信号匹配的重构信号。
本发明实施例提供的信号传输方法,由于在信道带宽充足的情形下,通过接收发送端发送的模拟信道码,且对模拟信道码进行符号映射的逆处理,并分别对得到的加噪信号中的第一信号和第二信号进行译码,对得到的初步译码结果进行分块拼接和逆线性变换处理,以获得与加噪信号相匹配的重构信号,由于模拟信道码的宽度与信道带宽相同,即模拟信道码可以占满信道带宽,由此在降低信号噪声的情况下,提高了带宽的利用率。另外,通过对第一信号和第二信号分别进行译码,从而保持了线性特点,维持了稳定增益的效果。
图8为本发明信号传输方法实施例四的流程示意图,本实施例在信号传输方法实施例三的基础上,对第一信号和第二信号进行译码以及对初步译码结果进行纠正的实施例,做详细说明。
在上述图1所示系统架构的基础上,如图8所示,本实施例的方法可以包括:
步骤801、接收编码器发送的模拟信道码,该模拟信道码所需要的资源等于可分配的资源。
步骤802、对模拟信道码进行符号映射的逆处理,得到加噪信号,加噪信号包括第一信号和第二信号。
步骤803、根据LLSE算法,对第一信号进行译码,获得第一译码结果。
在本实施例中,根据公式
Figure PCTCN2015084366-appb-000077
对第一信号
Figure PCTCN2015084366-appb-000078
使用LLSE算法进行译码,以获得第一译码结果
Figure PCTCN2015084366-appb-000079
其中,ΛX为对角矩阵,且其 第i个对角元素为λi,λi为分块矩阵中第i个分块的方差,Σ为噪声方差对角矩阵,C为系数矩阵,且C=HD,H为发送端进行白化处理时的变换矩阵,D表示功率分配权重值,且
Figure PCTCN2015084366-appb-000080
di表示分块矩阵中第i个分块的功率分配权重值,λj为分块矩阵中第j个分块的方差,P为分块矩阵中所有分块的总功率。第一信号
Figure PCTCN2015084366-appb-000081
为模拟信道码中分块矩阵对应的信号,因此,对第一信号
Figure PCTCN2015084366-appb-000082
使用LLSE算法进行译码,其作用主要是为了获取低信道质量下的LLSE译码算法的增益。
步骤804、根据公式
Figure PCTCN2015084366-appb-000083
对第二信号
Figure PCTCN2015084366-appb-000084
进行译码,获得第二译码结果
Figure PCTCN2015084366-appb-000085
G表示功率因子。
在本实施例中,对于第二信号
Figure PCTCN2015084366-appb-000086
直接除以各信号对应的功率因子,即可得到第二译码结果
Figure PCTCN2015084366-appb-000087
这样做的目的是为了维持线性的增益效果,即在信道带宽翻倍时,能获得稳定的增益效果,使其不会随着信道带宽的变化而降低。
步骤805、将第一译码结果和第二译码结果进行合并,获得初步译码结果。
现有技术中,接收端通常采用对加噪信号整体进行LLSE译码的方式,使得信号的重构性能较差,而在本实施例中,由于发送端发送的信号包括两部分,即模拟信道码中分块矩阵对应的信号和除分块矩阵之外的其他信号对应的信号,相应的,接收端在进行数据译码时,需要分别针对这两部分进行译码,也即对第一信号和第二信号分别进行译码,由此得到初步译码结果,由此可以提高信号的重构性能。
举例来说,图9为在不同译码方式下本发明与现有技术的系统性能的对比示意图,如图9所示,假设将计算波动范围向量值的估计参数a选取为8,假设信噪比(Signal Noise Ratio;简称:SNR)为0dB,并以峰值信噪比(Peak Signal to Noise Ratio;简称:PSNR)来衡量视频的重构质量。对比以下三种方案:(1)对所有的信号都使用LLSE译码;(2)对所有的信号均直接除以 相应的功率因子;(3)对第一信号进行LLSE译码,对第二信号直接除以相应的功率因子进行译码。由图9可知,在第一种译码方案中,在SNR=0dB情况下,其牺牲带宽所获取的性能不能维持线性增加。而第二种译码方案中,在SNR=0dB且在一倍带宽的情况下时,并不能获取LLSE算法的增益效果,重构性能PSNR比其他两种方案小2dB左右。相比之下,在第三种方案中的重构性能最佳,既能保证LLSE算法的译码增益,也能维持稳定的增益效果,即PSNR随x的变化而线性变化,其中,图9中横轴坐标数值为x,x表示信道带宽能承载的符号数是原始数据量的2x倍。
步骤806、对初步译码结果进行纠正,获得纠正译码结果。
在本实施例中,首先根据公式
Figure PCTCN2015084366-appb-000088
计算分块矩阵中第j个分块的波动范围向量值Ranj,其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子。在计算出第j个分块的波动范围向量值Ranj之后,根据波动范围向量值Ranj以及公式
Figure PCTCN2015084366-appb-000089
确定第j个分块的信息矩阵Mj,其中
Figure PCTCN2015084366-appb-000090
表示向上取整操作,例如:若根据公式
Figure PCTCN2015084366-appb-000091
计算出的Mj=0.5,则进行向上取整操作之后,获得的Mj为1。
此时,需要判断第j个分块的信息矩阵Mj是否等于零,若判断出信息矩阵Mj等于零,则根据公式
Figure PCTCN2015084366-appb-000092
对初步译码结果
Figure PCTCN2015084366-appb-000093
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000094
需要进行说明的是,在第一次纠正操作中,可以将
Figure PCTCN2015084366-appb-000095
作为纠正码矩阵,而将
Figure PCTCN2015084366-appb-000096
作为需要纠正的信号矩阵。假设信道带宽所能承载的数据量是分块矩阵X的N倍,那么接收端需要进行N-1次纠正操作,才能得到纠正译码结果,值得注意的是,纠正译码结果的大小与分块矩阵的大小是一样的。若判断出信息矩阵Mj不等于零,则根据公式
Figure PCTCN2015084366-appb-000097
对初步译码结果
Figure PCTCN2015084366-appb-000098
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000099
在获得译码结果
Figure PCTCN2015084366-appb-000100
之后,判断
Figure PCTCN2015084366-appb-000101
是否等于
Figure PCTCN2015084366-appb-000102
即是否为j等于1时的译码结果,若不等于
Figure PCTCN2015084366-appb-000103
则将j的值减一,并重新计算Ranj,根据新的Ranj确定信息矩阵Mj的值,并根据新的信息矩阵Mj对初步译码结果进行纠正,直至使纠正后的译码结果
Figure PCTCN2015084366-appb-000104
等于所述
Figure PCTCN2015084366-appb-000105
则将等于
Figure PCTCN2015084366-appb-000106
的译码结果
Figure PCTCN2015084366-appb-000107
作为纠正译码结果。
步骤807、对纠正译码结果进行分块拼接和逆线性变换处理,获得与加噪信号相匹配的重构信号。
本发明实施例提供的信号传输方法,由于在信道带宽充足的情形下,通过接收发送端发送的模拟信道码,且对模拟信道码进行符号映射的逆处理,并分别对得到的加噪信号中的第一信号和第二信号进行译码,对得到的初步译码结果进行分块拼接和逆线性变换处理,以获得与加噪信号相匹配的重构信号,由于模拟信道码所需要的资源等于可分配的资源,即模拟信道码可以占满信道带宽,由此在降低信号噪声的情况下,提高了带宽的利用率。另外,通过对第一信号和第二信号分别进行译码,从而保持了线性特点,维持了稳定增益的效果。
进一步地,图10为在单播方式下本发明与现有技术的系统性能的对比示意图,如图10所示,假设无线基站以单播的方式给用户发送数据,其性能曲线如图10所示,其中,横轴坐标数值为x,代表信道带宽能承载的符号数是原始数据量的2x倍,本发明及现有技术后的数值(如0dB)则代表信道质量SNR。由图10可知,本发明方案对应的曲线斜率明显大于现有技术的方案,说明本发明方案性能在单播情形下要优于现有技术的方案。并且,随着用户SNR增大,本发明方案的斜率越大,而现有技术方案中的斜率却维持不变。因此,随着用户SNR增大,本方面方案的优势越明显。
进一步地,图11为在多播方式下本发明与现有技术的系统性能的对比示意图,如图11所示,假设无线基站以多播的方式给用户发送数据,其性能曲线如图11所示。此时,假设所有用户中最差的信道质量SNR为0dB,则采用这个数值计算波动范围,并产生模拟信道码。图示中本发明及现有技术后的数值(如2)则代表信道带宽所能承载的符号数相比于原始图像编码得到的符号数的倍数。由图11可知,本发明方案的性能在多播情形下也要优于现有技术的方案,且信道带宽越大则优势越明显。
值得注意的是,本发明方案还可以应用于音频数字信号,此时,与上述方案的区别仅在于应用于音频数字信号时的线性变换只是一维正交变换,如一维离散余弦变换和一维小波变换。
图12为本发明信号传输装置实施例一的结构示意图,如图12所示,本发明实施例提供的信号传输装置包括变换模块11、分块模块12、编码模块13和发送模块14。
其中,变换模块11用于对视频的每帧图像的像素域信号进行线性变换,获得变换域信号;所述变换域信号所需要的资源小于可分配的资源;分块模块12用于对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵;编码模块13用于对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;发送模块14用于将所述模拟信道码发送到接收端。
本发明实施例提供的信号传输装置,通过对视频的每帧图像的像素域信号进行线性变换,获得变换域信号,对视频的每帧图像的变换域信号进行分块,获得分块矩阵,并对分块矩阵进行编码,生成模拟信道码,将该模拟信道码U发送到接收端,其中,该模拟信道码所需要的资源等于可分配的资源。由于在信道带宽充足的情形下,通过对分块矩阵进行编码,以生成的模拟信道码所需要的资源等于可分配的资源,使模拟信道码占满信道带宽,由此在降低信号噪声的情况下,提高了带宽的利用率。
图13为本发明信号传输装置实施例二的结构示意图,如图13所示,本实施例在图12所示实施例的基础上,所述编码模块13包括:
确定单元131用于根据所述分块矩阵对应的功率因子,确定所述分块矩阵的波动范围向量值;
生成单元132用于根据所述分块矩阵的波动范围向量值,生成所述模拟信道码。
可选地,所述确定单元131具体用于:
根据公式
Figure PCTCN2015084366-appb-000108
计算所述分块矩阵中各分块的波动范围向量值Rani;其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gi为所述分块矩阵中各分块对应的功率因子。
可选地,所述生成单元132具体用于:
步骤A:根据所述波动范围向量值Rani,将所述分块矩阵X中与所述波动范围向量值Ran对应的分块中的任一元素x0划分为第一数值m和第二数值r,并根据公式
Figure PCTCN2015084366-appb-000109
计算所述第一数值m;
步骤B:根据所述元素x0和所述第一数值m,确定所述第二数值r;所述第二数值r的取值范围为大于-Ran/2且小于Ran/2;
步骤C:将所述分块矩阵X与矩阵R合并,获得合并模拟信道码U1,所述矩阵R为第二数值r与单位矩阵I的乘积,所述单位矩阵I的行数与所述合并模拟信道码U1的行数相等,所述单位矩阵I的列数与所述合并模拟信道码U1的列数相等;
步骤D:判断所述合并模拟信道码U1所需要的资源是否等于可分配的资源;
步骤E:若所述合并模拟信道码U1所需要的资源不等于可分配的资源,则将所述步骤A中的分块矩阵X的值更新为所述合并模拟信道码U1,将所述x0的值更新为所述第二数值r,执行所述步骤A~所述步骤E,直到所述合并模拟信道码U1所需要的资源等于可分配的资源,则将所述合并模拟信道码U1作为所述模拟信道码。
本实施例的信号传输装置,可以用于执行本发明任意实施例所提供的信号传输方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
图14为本发明信号传输装置实施例三的结构示意图,如图14所示,本实施例在上述各实施例的基础上,所述分块模块12包括:
处理单元121用于对所述每帧图像进行均等分块处理,获得分块数量;
扫描单元122用于依次对每个分块内的所有像素进行扫描,获得所述每个分块内的像素数;
确定单元123用于根据所述分块数量和所述每个分块内的像素数,确定所述分块矩阵。
本实施例的信号传输装置,可以用于执行本发明任意实施例所提供的信号传输方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
图15为本发明信号传输装置实施例四的结构示意图,如图15所示,本实施例在上述各实施例的基础上,所述装置还包括:
分配模块15,用于对所述模拟信道码进行功率分配,获得输出矩阵;
处理模块16,用于对所述输出矩阵进行白化处理,获得处理矩阵;
映射模块17,用于对所述处理矩阵进行符号映射,获得所述映射矩阵;
所述发送模块14,还用于将所述映射矩阵发送到接收端。
可选地,所述分配模块15具体用于:
根据公式V=DU,对所述模拟信道码U进行功率分配,获得输出矩阵V;其中,D表示功率分配权重值,且
Figure PCTCN2015084366-appb-000110
di表示第i个分块的功率分配权重值,λi为第i个分块的方差,λj为第j个分块的方差,P为所有分块的总功率。
本实施例的信号传输装置,可以用于执行本发明任意实施例所提供的信号传输方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
图16为本发明信号传输装置实施例五的结构示意图,如图16所示,本发明实施例提供的信号传输装置包括接收模块21、处理模块22和译码模块23。
其中,接收模块21用于接收发送端发送的模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;处理模块22用于对所述模拟信道码进行符号映射的逆处理,得到加噪信号,所述加噪信号包括第一信号和第二信号;译码模块23用于分别对所述第一信号和所述第二信号进行译码,得到初步译码结果;所述处理模块22还用于对所述初步译码结果进行分块拼接和逆线性变换处理,获得与所述加噪信号相匹配的重构信号。
本发明实施例提供的信号传输装置,由于在信道带宽充足的情形下,通过接收发送端发送的模拟信道码,且对模拟信道码进行符号映射的逆处理,并分别对得到的加噪信号中的第一信号和第二信号进行译码,对得到的初步译码结果进行分块拼接和逆线性变换处理,以获得与加噪信号相匹配的重构信号,由于模拟信道码的宽度与信道带宽相同,即模拟信道码可以占满信道带宽,由此在降低信号噪声的情况下,提高了带宽的利用率。另外,通过对第一信号和第二信号分别进行译码,从而保持了线性特点,维持了稳定增益的效果。
图17为本发明信号传输装置实施例六的结构示意图,如图17所示,本实施例在图16所示实施例的基础上,所述装置还包括:纠正模块24。
纠正模块24用于对所述初步译码结果进行纠正,获得纠正译码结果。
可选地,所述译码模块23包括:
第一译码单元231用于根据线性最小均方估计LLSE算法,对所述第一信号进行译码,获得第一译码结果;
第二译码单元232用于根据公式
Figure PCTCN2015084366-appb-000111
对所述第二信号
Figure PCTCN2015084366-appb-000112
进行译码,获得第二译码结果
Figure PCTCN2015084366-appb-000113
G表示功率因子;
合并单元233用于将所述第一译码结果和所述第二译码结果进行合并,获得所述初步译码结果。
可选地,所述纠正模块24具体用于:
步骤A:根据公式
Figure PCTCN2015084366-appb-000114
计算分块矩阵中第j个分块的波动范围向量值Ranj;其中,a表示估计参数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子;
步骤B:根据所述波动范围向量值Ranj以及公式
Figure PCTCN2015084366-appb-000115
确定第j个分块的信息矩阵Mj
步骤C:判断第j个分块的信息矩阵Mj是否等于零;
步骤D:若所述第j个分块的信息矩阵Mj等于零,则根据公式
Figure PCTCN2015084366-appb-000116
对所述初步译码结果
Figure PCTCN2015084366-appb-000117
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000118
步骤E:若所述第j个分块的信息矩阵Mj不等于零,则根据公式
Figure PCTCN2015084366-appb-000119
对所述初步译码结果
Figure PCTCN2015084366-appb-000120
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000121
步骤F:判断所述译码结果
Figure PCTCN2015084366-appb-000122
是否等于
Figure PCTCN2015084366-appb-000123
若所述译码结果
Figure PCTCN2015084366-appb-000124
不等于所述
Figure PCTCN2015084366-appb-000125
则将j的值减一,并重复执行所述步骤A-所述步骤G,直至所述译码结果
Figure PCTCN2015084366-appb-000126
等于所述
Figure PCTCN2015084366-appb-000127
则将所述译码结果
Figure PCTCN2015084366-appb-000128
作为纠正译码结果。
本实施例的信号传输装置,可以用于执行本发明任意实施例所提供的信号传输方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
图18为本发明基站实施例一的结构示意图,如图18所示,本发明实施例提供的基站包括处理器31和发送器32。
其中,处理器31用于对视频的每帧图像的像素域信号进行线性变换,获得变换域信号;所述变换域信号所需要的资源小于可分配的资源;
所述处理器31还用于对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵;
所述处理器31还用于对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
发送器32用于将所述模拟信道码发送到接收端。
本实施例提供的基站,可以用于执行本发明任意实施例所提供的信号传输方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
可选地,所述处理器31还用于根据所述分块矩阵对应的功率因子,确定所述分块矩阵的波动范围向量值;
所述处理器31还用于根据所述分块矩阵的波动范围向量值,生成所述模拟信道码。
可选地,所述处理器31还用于根据公式
Figure PCTCN2015084366-appb-000129
计算所述分块矩阵中各分块的波动范围向量值Rani;其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gi为所述分块矩阵中各分块对应的功率因子。
可选地,所述处理器31具体用于:
步骤A:根据所述波动范围向量值Rani,将所述分块矩阵X中与所述波动范围向量值Ran对应的分块中的任一元素x0划分为第一数值m和第二数值r,并根据公式
Figure PCTCN2015084366-appb-000130
计算所述第一数值m;
步骤B:根据所述元素x0和所述第一数值m,确定所述第二数值r;所述第二数值r的取值范围为大于-Ran/2且小于Ran/2;
步骤C:将所述分块矩阵X与矩阵R合并,获得合并模拟信道码U1,所述矩阵R为第二数值r与单位矩阵I的乘积,所述单位矩阵I的行数与所述合并模拟信道码U1的行数相等,所述单位矩阵I的列数与所述合并模拟信道码U1的列数相等;
步骤D:判断所述合并模拟信道码U1所需要的资源是否等于可分配的资源;
步骤E:若所述合并模拟信道码U1所需要的资源不等于可分配的资源,则将所述步骤A中的分块矩阵X的值更新为所述合并模拟信道码U1,将所述x0的值更新为所述第二数值r,执行所述步骤A~所述步骤E,直到所述合并模拟信道码U1所需要的资源等于可分配的资源,则将所述合并模拟信道码U1作为所述模拟信道码。
可选地,所述处理器31还用于对所述每帧图像进行均等分块处理,获得分块数量;
所述处理器31还用于依次对每个分块内的所有像素进行扫描,获得所述每个分块内的像素数;
所述处理器31还用于根据所述分块数量和所述每个分块内的像素数,确定所述分块矩阵。
可选地,所述处理器31还用于对所述模拟信道码进行功率分配,获得输出矩阵;
所述处理器31还用于对所述输出矩阵进行白化处理,获得处理矩阵;
所述处理器31还用于对所述处理矩阵进行符号映射,获得所述映射矩阵;
所述发送器32还用于将所述映射矩阵发送到接收端。
可选地,所述处理器31还用于根据公式V=DU,对所述模拟信道码U进行功率分配,获得输出矩阵V;其中,D表示功率分配权重值,且
Figure PCTCN2015084366-appb-000131
di表示第i个分块的功率分配权重值,λi为第i个分块的方差,λj为第j个分块的方差,P为所有分块的总功率。
本实施例提供的基站,可以用于执行本发明任意实施例所提供的信号传输方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
图19为本发明终端设备实施例一的结构示意图,如图19所示,本发明实施例提供的终端设备包括接收器41和处理器42。
其中,接收器41用于接收发送端发送的模拟信道码,所述模拟信道码所 需要的资源等于可分配的资源;
处理器42用于对所述模拟信道码进行符号映射的逆处理,得到加噪信号,所述加噪信号包括第一信号和第二信号;
所述处理器42还用于分别对所述第一信号和所述第二信号进行译码,得到初步译码结果;
所述处理器42还用于对所述初步译码结果进行分块拼接和逆线性变换处理,获得与所述加噪信号相匹配的重构信号。
本实施例提供的终端设备,可以用于执行本发明任意实施例所提供的信号传输方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
可选地,所述处理器42还用于对所述初步译码结果进行纠正,获得纠正译码结果。
可选地,所述处理器42还用于根据线性最小均方估计LLSE算法,对所述第一信号进行译码,获得第一译码结果;
所述处理器42还用于根据公式
Figure PCTCN2015084366-appb-000132
对所述第二信号
Figure PCTCN2015084366-appb-000133
进行译码,获得第二译码结果
Figure PCTCN2015084366-appb-000134
G表示功率因子;
所述处理器42还用于将所述第一译码结果和所述第二译码结果进行合并,获得所述初步译码结果。
可选地,所述处理器42具体用于:
步骤A:根据公式
Figure PCTCN2015084366-appb-000135
计算分块矩阵中第j个分块的波动范围向量值Ranj;其中,a表示估计参数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子;
步骤B:根据所述波动范围向量值Ranj以及公式
Figure PCTCN2015084366-appb-000136
确定第j个分块的信息矩阵Mj
步骤C:判断第j个分块的信息矩阵Mj是否等于零;
步骤D:若所述第j个分块的信息矩阵Mj等于零,则根据公式
Figure PCTCN2015084366-appb-000137
对所述初步译码结果
Figure PCTCN2015084366-appb-000138
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000139
步骤E:若所述第j个分块的信息矩阵Mj不等于零,则根据公式
Figure PCTCN2015084366-appb-000140
对所述初步译码结果
Figure PCTCN2015084366-appb-000141
进行纠正,获得译码结果
Figure PCTCN2015084366-appb-000142
步骤F:判断所述译码结果
Figure PCTCN2015084366-appb-000143
是否等于
Figure PCTCN2015084366-appb-000144
若所述译码结果
Figure PCTCN2015084366-appb-000145
不等于所述
Figure PCTCN2015084366-appb-000146
则将j的值减一,并重复执行所述步骤A-所述步骤G,直至所述译码结果
Figure PCTCN2015084366-appb-000147
等于所述
Figure PCTCN2015084366-appb-000148
则将所述译码结果
Figure PCTCN2015084366-appb-000149
作为纠正译码结果。
本实施例提供的终端设备,可以用于执行本发明任意实施例所提供的信号传输方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个 存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (33)

  1. 一种信号传输方法,其特征在于,包括:
    对视频的每帧图像的像素域信号进行线性变换,获得变换域信号;所述变换域信号所需要的资源小于可分配的资源;
    对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵;
    对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
    将所述模拟信道码发送到接收端。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述分块矩阵进行编码,生成模拟信道码,包括:
    根据所述分块矩阵对应的功率因子,确定所述分块矩阵的波动范围向量值;
    根据所述分块矩阵的波动范围向量值,生成所述模拟信道码。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述分块矩阵对应的功率因子,确定所述分块矩阵中各分块的波动范围向量值,包括:
    根据公式
    Figure PCTCN2015084366-appb-100001
    计算所述分块矩阵中各分块的波动范围向量值Rani;其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gi为所述分块矩阵中各分块对应的功率因子。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述分块矩阵中各分块的波动范围向量值,生成所述模拟信道码,包括:
    步骤A:根据所述波动范围向量值Rani,将所述分块矩阵X中与所述波动范围向量值Ran对应的分块中的任一元素x0划分为第一数值m和第二数值r,并根据公式
    Figure PCTCN2015084366-appb-100002
    计算所述第一数值m;
    步骤B:根据所述元素x0和所述第一数值m,确定所述第二数值r;所述第二数值r的取值范围为大于-Ran/2且小于Ran/2;
    步骤C:将所述分块矩阵X与矩阵R合并,获得合并模拟信道码U1,所述矩阵R为第二数值r与单位矩阵I的乘积,所述单位矩阵I的行数与所述合并模拟信道码U1的行数相等,所述单位矩阵I的列数与所述合并模拟信道码U1的列数相等;
    步骤D:判断所述合并模拟信道码U1所需要的资源是否等于可分配的资源;
    步骤E:若所述合并模拟信道码U1所需要的资源不等于可分配的资源,则将所述步骤A中的分块矩阵X的值更新为所述合并模拟信道码U1,将所述x0的值更新为所述第二数值r,执行所述步骤A~所述步骤E,直到所述合并模拟信道码U1所需要的资源等于可分配的资源,则将所述合并模拟信道码U1作为所述模拟信道码。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵,包括:
    对所述每帧图像进行均等分块处理,获得分块数量;
    依次对每个分块内的所有像素进行扫描,获得所述每个分块内的像素数;
    根据所述分块数量和所述每个分块内的像素数,确定所述分块矩阵。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述将所述模拟信道码发送到接收端,包括:
    对所述模拟信道码进行功率分配,获得输出矩阵;
    对所述输出矩阵进行白化处理,获得处理矩阵;
    对所述处理矩阵进行符号映射,获得所述映射矩阵,并将所述映射矩阵发送到接收端。
  7. 根据权利要求6所述的方法,其特征在于,所述对所述模拟信道码进行功率分配,包括:
    根据公式V=DU,对所述模拟信道码U进行功率分配,获得输出矩阵V;其中,D表示功率分配权重值,且
    Figure PCTCN2015084366-appb-100003
    Figure PCTCN2015084366-appb-100004
    di表示第i个分块的功率分配权重值,λi为第i个分块的方差,λj为第j个分块的方差,P为所有分块的总功率。
  8. 一种信号传输方法,其特征在于,包括:
    接收发送端发送的模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
    对所述模拟信道码进行符号映射的逆处理,得到加噪信号,所述加噪信 号包括第一信号和第二信号;
    分别对所述第一信号和所述第二信号进行译码,得到初步译码结果;
    对所述初步译码结果进行分块拼接和逆线性变换处理,获得与所述加噪信号相匹配的重构信号。
  9. 根据权利要求8所述的方法,其特征在于,所述分别对所述第一信号和所述第二信号进行译码,得到初步译码结果之后,还包括:
    对所述初步译码结果进行纠正,获得纠正译码结果。
  10. 根据权利要求8或9所述的方法,其特征在于,所述分别对所述第一信号和所述第二信号进行译码,得到初步译码结果,包括:
    根据线性最小均方估计LLSE算法,对所述第一信号进行译码,获得第一译码结果;
    根据公式
    Figure PCTCN2015084366-appb-100005
    对所述第二信号
    Figure PCTCN2015084366-appb-100006
    进行译码,获得第二译码结果
    Figure PCTCN2015084366-appb-100007
    G表示功率因子;
    将所述第一译码结果和所述第二译码结果进行合并,获得所述初步译码结果。
  11. 根据权利要求9或10所述的方法,其特征在于,所述对所述初步译码结果进行纠正,获得纠正译码结果,包括:
    步骤A:根据公式
    Figure PCTCN2015084366-appb-100008
    计算分块矩阵中第j个分块的波动范围向量值Ranj;其中,a表示估计参数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子;
    步骤B:根据所述波动范围向量值Ranj以及公式
    Figure PCTCN2015084366-appb-100009
    确定第j个分块的信息矩阵Mj
    步骤C:判断第j个分块的信息矩阵Mj是否等于零;
    步骤D:若所述第j个分块的信息矩阵Mj等于零,则根据公式
    Figure PCTCN2015084366-appb-100010
    对所述初步译码结果
    Figure PCTCN2015084366-appb-100011
    进行纠正,获得译码结果
    Figure PCTCN2015084366-appb-100012
    步骤E:若所述第j个分块的信息矩阵Mj不等于零,则根据公式
    Figure PCTCN2015084366-appb-100013
    对所述初步译码结果
    Figure PCTCN2015084366-appb-100014
    进行纠正,获得译码结果
    Figure PCTCN2015084366-appb-100015
    步骤F:判断所述译码结果
    Figure PCTCN2015084366-appb-100016
    是否等于
    Figure PCTCN2015084366-appb-100017
    若所述译码结果
    Figure PCTCN2015084366-appb-100018
    不等于所述则将j的值减一,并重复执行所述步骤A-所述步骤G,直至所述译码结果
    Figure PCTCN2015084366-appb-100020
    等于所述
    Figure PCTCN2015084366-appb-100021
    则将所述译码结果
    Figure PCTCN2015084366-appb-100022
    作为纠正译码结果。
  12. 一种信号传输装置,其特征在于,包括:
    变换模块,用于对视频的每帧图像的像素域信号进行线性变换,获得变换域信号;所述变换域信号所需要的资源小于可分配的资源;
    分块模块,用于对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵;
    编码模块,用于对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
    发送模块,用于将所述模拟信道码发送到接收端。
  13. 根据权利要求12所述的装置,其特征在于,所述编码模块包括:
    确定单元,用于根据所述分块矩阵对应的功率因子,确定所述分块矩阵的波动范围向量值;
    生成单元,用于根据所述分块矩阵的波动范围向量值,生成所述模拟信道码。
  14. 根据权利要求13所述的装置,其特征在于,所述确定单元,具体用于:
    根据公式
    Figure PCTCN2015084366-appb-100023
    计算所述分块矩阵中各分块的波动范围向量值Rani;其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gi为所述分块矩阵中各分块对应的功率因子。
  15. 根据权利要求14所述的装置,其特征在于,所述生成单元,具体用于:
    步骤A:根据所述波动范围向量值Rani,将所述分块矩阵X中与所述波动范围向量值Ran对应的分块中的任一元素x0划分为第一数值m和第二数值r,并根据公式
    Figure PCTCN2015084366-appb-100024
    计算所述第一数值m;
    步骤B:根据所述元素x0和所述第一数值m,确定所述第二数值r;所述第二数值r的取值范围为大于-Ran/2且小于Ran/2;
    步骤C:将所述分块矩阵X与矩阵R合并,获得合并模拟信道码U1,所述矩阵R为第二数值r与单位矩阵I的乘积,所述单位矩阵I的行数与所述合并模拟信道码U1的行数相等,所述单位矩阵I的列数与所述合并模拟信道码U1的列数相等;
    步骤D:判断所述合并模拟信道码U1所需要的资源是否等于可分配的资源;
    步骤E:若所述合并模拟信道码U1所需要的资源不等于可分配的资源,则将所述步骤A中的分块矩阵X的值更新为所述合并模拟信道码U1,将所述x0的值更新为所述第二数值r,执行所述步骤A~所述步骤E,直到所述合并模拟信道码U1所需要的资源等于可分配的资源,则将所述合并模拟信道码U1作为所述模拟信道码。
  16. 根据权利要求12-15任一项所述的装置,其特征在于,所述分块模块包括:
    处理单元,用于对所述每帧图像进行均等分块处理,获得分块数量;
    扫描单元,用于依次对每个分块内的所有像素进行扫描,获得所述每个分块内的像素数;
    确定单元,用于根据所述分块数量和所述每个分块内的像素数,确定所述分块矩阵。
  17. 根据权利要求12-16任一项所述的装置,其特征在于,所述装置还包括:
    分配模块,用于对所述模拟信道码进行功率分配,获得输出矩阵;
    处理模块,用于对所述输出矩阵进行白化处理,获得处理矩阵;
    映射模块,用于对所述处理矩阵进行符号映射,获得所述映射矩阵;
    所述发送模块,还用于将所述映射矩阵发送到接收端。
  18. 根据权利要求17所述的装置,其特征在于,所述分配模块具体用于:
    根据公式V=DU,对所述模拟信道码U进行功率分配,获得输出矩阵V;其中,D表示功率分配权重值,且
    Figure PCTCN2015084366-appb-100025
    Figure PCTCN2015084366-appb-100026
    di表示第i个分块的功率分配权重值,λi为第i个分块的方差,λj为第j个分块的方 差,P为所有分块的总功率。
  19. 一种信号传输装置,其特征在于,包括:
    接收模块,用于接收发送端发送的模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
    处理模块,用于对所述模拟信道码进行符号映射的逆处理,得到加噪信号,所述加噪信号包括第一信号和第二信号;
    译码模块,用于分别对所述第一信号和所述第二信号进行译码,得到初步译码结果;
    所述处理模块,还用于对所述初步译码结果进行分块拼接和逆线性变换处理,获得与所述加噪信号相匹配的重构信号。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    纠正模块,用于对所述初步译码结果进行纠正,获得纠正译码结果。
  21. 根据权利要求19或20所述的装置,其特征在于,所述译码模块包括:
    第一译码单元,用于根据线性最小均方估计LLSE算法,对所述第一信号进行译码,获得第一译码结果;
    第二译码单元,用于根据公式
    Figure PCTCN2015084366-appb-100027
    对所述第二信号
    Figure PCTCN2015084366-appb-100028
    进行译码,获得第二译码结果
    Figure PCTCN2015084366-appb-100029
    G表示功率因子;
    合并单元,用于将所述第一译码结果和所述第二译码结果进行合并,获得所述初步译码结果。
  22. 根据权利要求20或21所述的装置,其特征在于,所述纠正模块具体用于:
    步骤A:根据公式
    Figure PCTCN2015084366-appb-100030
    计算分块矩阵中第j个分块的波动范围向量值Ranj;其中,a表示估计参数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子;
    步骤B:根据所述波动范围向量值Ranj以及公式
    Figure PCTCN2015084366-appb-100031
    确定第j个分块的信息矩阵Mj
    步骤C:判断第j个分块的信息矩阵Mj是否等于零;
    步骤D:若所述第j个分块的信息矩阵Mj等于零,则根据公式
    Figure PCTCN2015084366-appb-100032
    对所述初步译码结果
    Figure PCTCN2015084366-appb-100033
    进行纠正,获得译码结果
    Figure PCTCN2015084366-appb-100034
    步骤E:若所述第j个分块的信息矩阵Mj不等于零,则根据公式
    Figure PCTCN2015084366-appb-100035
    对所述初步译码结果
    Figure PCTCN2015084366-appb-100036
    进行纠正,获得译码结果
    Figure PCTCN2015084366-appb-100037
    步骤F:判断所述译码结果
    Figure PCTCN2015084366-appb-100038
    是否等于
    Figure PCTCN2015084366-appb-100039
    若所述译码结果
    Figure PCTCN2015084366-appb-100040
    不等于所述
    Figure PCTCN2015084366-appb-100041
    则将j的值减一,并重复执行所述步骤A-所述步骤G,直至所述译码结果
    Figure PCTCN2015084366-appb-100042
    等于所述
    Figure PCTCN2015084366-appb-100043
    则将所述译码结果
    Figure PCTCN2015084366-appb-100044
    作为纠正译码结果。
  23. 一种基站,其特征在于,包括:
    处理器,用于对视频的每帧图像的像素域信号进行线性变换,获得变换域信号;所述变换域信号所需要的资源小于可分配的资源;
    所述处理器,还用于对所述视频的每帧图像的变换域信号进行分块,获得分块矩阵;
    所述处理器,还用于对所述分块矩阵进行编码,生成模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
    发送器,用于将所述模拟信道码发送到接收端。
  24. 根据权利要求23所述的基站,其特征在于,
    所述处理器,还用于根据所述分块矩阵对应的功率因子,确定所述分块矩阵的波动范围向量值;
    所述处理器,还用于根据所述分块矩阵的波动范围向量值,生成所述模拟信道码。
  25. 根据权利要求24所述的基站,其特征在于,所述处理器,还用于根据公式
    Figure PCTCN2015084366-appb-100045
    计算所述分块矩阵中各分块的波动范围向量值Rani;其中,a表示估计参数,a为大于或等于6的偶数,σn为信道噪声的标准差,gi为所述分块矩阵中各分块对应的功率因子。
  26. 根据权利要求25所述的基站,其特征在于,所述处理器具体用于:
    步骤A:根据所述波动范围向量值Rani,将所述分块矩阵X中与所述波动范围向量值Ran对应的分块中的任一元素x0划分为第一数值m和第二数值 r,并根据公式
    Figure PCTCN2015084366-appb-100046
    计算所述第一数值m;
    步骤B:根据所述元素x0和所述第一数值m,确定所述第二数值r;所述第二数值r的取值范围为大于-Ran/2且小于Ran/2;
    步骤C:将所述分块矩阵X与矩阵R合并,获得合并模拟信道码U1,所述矩阵R为第二数值r与单位矩阵I的乘积,所述单位矩阵I的行数与所述合并模拟信道码U1的行数相等,所述单位矩阵I的列数与所述合并模拟信道码U1的列数相等;
    步骤D:判断所述合并模拟信道码U1所需要的资源是否等于可分配的资源;
    步骤E:若所述合并模拟信道码U1所需要的资源不等于可分配的资源,则将所述步骤A中的分块矩阵X的值更新为所述合并模拟信道码U1,将所述x0的值更新为所述第二数值r,执行所述步骤A~所述步骤E,直到所述合并模拟信道码U1所需要的资源等于可分配的资源,则将所述合并模拟信道码U1作为所述模拟信道码。
  27. 根据权利要求23-26任一项所述的基站,其特征在于,所述处理器,还用于对所述每帧图像进行均等分块处理,获得分块数量;
    所述处理器,还用于依次对每个分块内的所有像素进行扫描,获得所述每个分块内的像素数;
    所述处理器,还用于根据所述分块数量和所述每个分块内的像素数,确定所述分块矩阵。
  28. 根据权利要求23-27任一项所述的基站,其特征在于,所述处理器,还用于对所述模拟信道码进行功率分配,获得输出矩阵;
    所述处理器,还用于对所述输出矩阵进行白化处理,获得处理矩阵;
    所述处理器,还用于对所述处理矩阵进行符号映射,获得所述映射矩阵;
    所述发送器,还用于将所述映射矩阵发送到接收端。
  29. 根据权利要求28所述的基站,其特征在于,所述处理器,还用于根据公式V=DU,对所述模拟信道码U进行功率分配,获得输出矩阵V;其中,D表示功率分配权重值,且
    Figure PCTCN2015084366-appb-100047
    Figure PCTCN2015084366-appb-100048
    di表示第i个 分块的功率分配权重值,λi为第i个分块的方差,λj为第j个分块的方差,P为所有分块的总功率。
  30. 一种终端设备,其特征在于,包括:
    接收器,用于接收发送端发送的模拟信道码,所述模拟信道码所需要的资源等于可分配的资源;
    处理器,用于对所述模拟信道码进行符号映射的逆处理,得到加噪信号,所述加噪信号包括第一信号和第二信号;
    所述处理器,还用于分别对所述第一信号和所述第二信号进行译码,得到初步译码结果;
    所述处理器,还用于对所述初步译码结果进行分块拼接和逆线性变换处理,获得与所述加噪信号相匹配的重构信号。
  31. 根据权利要求30所述的终端设备,其特征在于,所述处理器,还用于对所述初步译码结果进行纠正,获得纠正译码结果。
  32. 根据权利要求30或31所述的终端设备,其特征在于,所述处理器,还用于根据线性最小均方估计LLSE算法,对所述第一信号进行译码,获得第一译码结果;
    所述处理器,还用于根据公式
    Figure PCTCN2015084366-appb-100049
    对所述第二信号
    Figure PCTCN2015084366-appb-100050
    进行译码,获得第二译码结果
    Figure PCTCN2015084366-appb-100051
    G表示功率因子;
    所述处理器,还用于将所述第一译码结果和所述第二译码结果进行合并,获得所述初步译码结果。
  33. 根据权利要求31或32所述的终端设备,其特征在于,所述处理器具体用于:
    步骤A:根据公式
    Figure PCTCN2015084366-appb-100052
    计算分块矩阵中第j个分块的波动范围向量值Ranj;其中,a表示估计参数,σn为信道噪声的标准差,gj为第j个分块对应的功率因子;
    步骤B:根据所述波动范围向量值Ranj以及公式
    Figure PCTCN2015084366-appb-100053
    确定第j个分块的信息矩阵Mj
    步骤C:判断第j个分块的信息矩阵Mj是否等于零;
    步骤D:若所述第j个分块的信息矩阵Mj等于零,则根据公式
    Figure PCTCN2015084366-appb-100054
    对所述初步译码结果
    Figure PCTCN2015084366-appb-100055
    进行纠正,获得译码结果
    Figure PCTCN2015084366-appb-100056
    步骤E:若所述第j个分块的信息矩阵Mj不等于零,则根据公式
    Figure PCTCN2015084366-appb-100057
    对所述初步译码结果
    Figure PCTCN2015084366-appb-100058
    进行纠正,获得译码结果
    Figure PCTCN2015084366-appb-100059
    步骤F:判断所述译码结果
    Figure PCTCN2015084366-appb-100060
    是否等于
    Figure PCTCN2015084366-appb-100061
    若所述译码结果
    Figure PCTCN2015084366-appb-100062
    不等于所述
    Figure PCTCN2015084366-appb-100063
    则将j的值减一,并重复执行所述步骤A-所述步骤G,直至所述译码结果
    Figure PCTCN2015084366-appb-100064
    等于所述
    Figure PCTCN2015084366-appb-100065
    则将所述译码结果
    Figure PCTCN2015084366-appb-100066
    作为纠正译码结果。
PCT/CN2015/084366 2015-07-17 2015-07-17 信号传输方法、装置和设备 WO2017011943A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580047852.9A CN106797481A (zh) 2015-07-17 2015-07-17 信号传输方法、装置和设备
PCT/CN2015/084366 WO2017011943A1 (zh) 2015-07-17 2015-07-17 信号传输方法、装置和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084366 WO2017011943A1 (zh) 2015-07-17 2015-07-17 信号传输方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2017011943A1 true WO2017011943A1 (zh) 2017-01-26

Family

ID=57833506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084366 WO2017011943A1 (zh) 2015-07-17 2015-07-17 信号传输方法、装置和设备

Country Status (2)

Country Link
CN (1) CN106797481A (zh)
WO (1) WO2017011943A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901907B (zh) * 2019-03-15 2022-05-20 北京星网锐捷网络技术有限公司 一种传输虚拟桌面的方法和服务器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275510A1 (en) * 2009-11-25 2012-11-01 Massachusetts Institute Of Technology Scaling signal quality with channel quality
CN103024399A (zh) * 2013-01-18 2013-04-03 北京航空航天大学 一种基于小波变换的极低码率视频压缩编码方法
CN104378653A (zh) * 2014-11-27 2015-02-25 北京邮电大学 一种视频块划分方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203427B2 (en) * 2011-02-10 2015-12-01 Alcatel Lucent System and method for mitigating the cliff effect for content delivery over a heterogeneous network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275510A1 (en) * 2009-11-25 2012-11-01 Massachusetts Institute Of Technology Scaling signal quality with channel quality
CN103024399A (zh) * 2013-01-18 2013-04-03 北京航空航天大学 一种基于小波变换的极低码率视频压缩编码方法
CN104378653A (zh) * 2014-11-27 2015-02-25 北京邮电大学 一种视频块划分方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, XIAOCHENG ET AL.: "Analog channel coding for wireless image/video softcast by data division", 2015 22ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT, 30 June 2015 (2015-06-30), pages 353 - 357, XP032785785 *

Also Published As

Publication number Publication date
CN106797481A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Chen et al. Efficient and robust image coding and transmission based on scrambled block compressive sensing
US10616594B2 (en) Picture encoding device and picture encoding method
JP5687767B2 (ja) 圧縮サンプリング測定値を使用する任意解像度ビデオ符号化のための方法および装置
US7830961B2 (en) Motion estimation and inter-mode prediction
JP2017509057A (ja) Hdr画像を符号化及び復号する方法及び装置
Liu et al. CG-Cast: Scalable wireless image SoftCast using compressive gradient
Shen et al. Foveation-based wireless soft image delivery
JP2016225987A (ja) 無線チャネル上でビデオを送信するシステム
CN104378653A (zh) 一种视频块划分方法及装置
Hemami Digital image coding for robust multimedia transmission
CN112085667B (zh) 一种基于伪模拟视频传输的去分块效应方法和装置
WO2017011943A1 (zh) 信号传输方法、装置和设备
KR101455553B1 (ko) 압축 측정을 사용하는 비디오 코딩
Baeza et al. ROI-based procedures for progressive transmission of digital images: A comparison
KR101035746B1 (ko) 동영상 인코더와 동영상 디코더에서의 분산적 움직임 예측 방법
JP2013258465A (ja) 処理システム、前処理装置、後処理装置、前処理プログラム及び後処理プログラム
Zong et al. A metadata-free pure soft broadcast scheme for image and video transmission
Peng et al. Line-cast: Line-based semi-analog broadcasting of satellite images
Thabet et al. Low complexity joint power and bandwidth allocation for 3D video SoftCast
Iqbal et al. A framework for error protection of region of interest coded images and videos
KR102012944B1 (ko) 영상 송수신 장치 및 제어 방법
Liu et al. Channel polarization based block compressive sensing SoftCast system
Thulajanaik et al. Temporal-Spatial Power Spectrum and Sensitivity Measure for Visual Perception Considering Video Dynamics
Zhang et al. Distance-based feature repack algorithm for video coding for machines
CN114422787A (zh) 一种基于残差层分块dct变换的图像伪模拟无线传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898499

Country of ref document: EP

Kind code of ref document: A1