WO2017010894A1 - Morphological antenna and method for the circuital translation thereof - Google Patents
Morphological antenna and method for the circuital translation thereof Download PDFInfo
- Publication number
- WO2017010894A1 WO2017010894A1 PCT/PE2016/000010 PE2016000010W WO2017010894A1 WO 2017010894 A1 WO2017010894 A1 WO 2017010894A1 PE 2016000010 W PE2016000010 W PE 2016000010W WO 2017010894 A1 WO2017010894 A1 WO 2017010894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- morphological
- antenna
- forms
- translation
- circuit
- Prior art date
Links
- 230000000877 morphologic effect Effects 0.000 title claims abstract description 350
- 238000013519 translation Methods 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000005855 radiation Effects 0.000 claims abstract description 109
- 230000033001 locomotion Effects 0.000 claims abstract description 69
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 28
- 230000005540 biological transmission Effects 0.000 claims abstract description 20
- 238000009826 distribution Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 9
- 230000008602 contraction Effects 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 11
- 238000012512 characterization method Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 238000011002 quantification Methods 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 230000008901 benefit Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000004513 sizing Methods 0.000 claims description 3
- 230000001235 sensitizing effect Effects 0.000 claims description 2
- 230000001143 conditioned effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 description 16
- 230000009471 action Effects 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 13
- 210000001015 abdomen Anatomy 0.000 description 9
- 238000011161 development Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 241000255925 Diptera Species 0.000 description 7
- 230000006399 behavior Effects 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 6
- 230000036541 health Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- 230000003592 biomimetic effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000003252 repetitive effect Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 241000220317 Rosa Species 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 101500000138 Escherichia phage P1 Antirepressor protein 2 Proteins 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 230000016571 aggressive behavior Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 210000003323 beak Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- LPLLVINFLBSFRP-UHFFFAOYSA-N 2-methylamino-1-phenylpropan-1-one Chemical compound CNC(C)C(=O)C1=CC=CC=C1 LPLLVINFLBSFRP-UHFFFAOYSA-N 0.000 description 1
- 241000254032 Acrididae Species 0.000 description 1
- 244000099147 Ananas comosus Species 0.000 description 1
- 235000007119 Ananas comosus Nutrition 0.000 description 1
- 241000554155 Andes Species 0.000 description 1
- 244000303258 Annona diversifolia Species 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 241000183286 Arapaima gigas Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 244000017106 Bixa orellana Species 0.000 description 1
- 241000219357 Cactaceae Species 0.000 description 1
- 208000031968 Cadaver Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000042896 Chaetostoma lineopunctatum Species 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 241000254173 Coleoptera Species 0.000 description 1
- 244000293323 Cosmos caudatus Species 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 241000510032 Ellipsaria lineolata Species 0.000 description 1
- 239000001653 FEMA 3120 Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 241000257303 Hymenoptera Species 0.000 description 1
- 102100027004 Inhibin beta A chain Human genes 0.000 description 1
- 240000000759 Lepidium meyenii Species 0.000 description 1
- 235000000421 Lepidium meyenii Nutrition 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241000211181 Manta Species 0.000 description 1
- 101100037618 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) ant-1 gene Proteins 0.000 description 1
- 241001442654 Percnon planissimum Species 0.000 description 1
- 244000025272 Persea americana Species 0.000 description 1
- 235000008673 Persea americana Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 101100476574 Staphylococcus aureus (strain N315) ant5 gene Proteins 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 206010044625 Trichorrhexis Diseases 0.000 description 1
- 241000256856 Vespidae Species 0.000 description 1
- 241001416177 Vicugna pacos Species 0.000 description 1
- 241000282840 Vicugna vicugna Species 0.000 description 1
- 235000004552 Yucca aloifolia Nutrition 0.000 description 1
- 244000116042 Yucca brevifolia Species 0.000 description 1
- 235000012044 Yucca brevifolia Nutrition 0.000 description 1
- 235000017049 Yucca glauca Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 235000012902 lepidium meyenii Nutrition 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- NFGXHKASABOEEW-LDRANXPESA-N methoprene Chemical compound COC(C)(C)CCCC(C)C\C=C\C(\C)=C\C(=O)OC(C)C NFGXHKASABOEEW-LDRANXPESA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- -1 that of planet earth Chemical compound 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/01—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the shape of the antenna or antenna system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/12—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
Definitions
- Morphological Antenna and its Circuit Translation Procedure for the transmission and / or reception of signals through electromagnetic fields with morphological radiation patterns, capable of producing movement, and reproducing the proper movement of forms.
- the antennas are used in the transmission and reception of signals ranging from low frequencies to very high frequencies, according to technologies and needs, however, existing conventional antennas for military or commercial use, at the level of communications are: networks, satellite , radio, television, telephony, medicine, among others, are far from solving the problems of the antennas and their structures, and the environmental, social and economic problems that arise and cause with their use, if they are not sought natural alternatives for the propagation of the waves, since the antennas that exist, all without exception are based on radiation patterns with the isotropic ideal; since the losses, efficiencies among other parameters, are not only influenced by the type of antenna from the geometric point of view, but also by the environment where they operate (natural and artificial environmental conditions).
- antennas developed under defined criteria, techniques and models that refer to forms such as: rabbit type, tie type, grasshopper, butterfly, shark fin, snake scale, sunflower, fly , bat, among others; Although it is true that they mention certain characteristics of the forms, it is observed that they do not retain morphologies, with symmetries and proportions that approximate reality, in essence they often fulfill a decorative role, of aesthetic or ornamental purposes, however , many current researchers have ventured into the biomimetic branch, seeking to imitate some nature guidelines and that to date have not evidenced with concrete facts the differentiation of their operational and functional results in this branch, with respect to existing antennas .
- MIMO Multiple Input Multiple Antenna Systems
- said system makes use of many antennas, provided with complex elements and processes in the treatment of the signal, where the multiple inputs and outputs applied by said system can only perform a single function at a time ( reception or transmission).
- existing antennas such as those mentioned above, are managed under radiation patterns that pursue and refer to the isotropic ideal, with which the inconveniences and problems arisen in each of them, can only be corrected or improved with the increment of accessories or elements, which from the point of view of sustainability become unsustainable.
- the present invention generally refers to a new antenna and its circuit translation procedure, which has been referred to as a morphological antenna for the transmission and / or reception of signals by electromagnetic fields with morphological radiation patterns, capable of producing movement, and reproduce the proper movement of forms. It is based on the circuit translation of the antenna forms through its circuit translation procedure.
- the forms correspond to living and / or non-living entities, of external and / or internal structures, of small and / or large dimensions, that meet the conditions of morphological goodness, the antenna is delimited by the form through a wrapping body contoured, forming a nested system provided with morphological dipoles, dipole morphological spaces, multiple topological feeding arrangements, multiple topological feeding distributions, and morphological sump; all of them confined in morphological blocks of electric and magnetic walls; built on the basis of conductive, superconducting, dielectric and meta materials, with plural electromagnetic properties, of a rigid or flexible nature.
- the structural characterization as a nested antenna confined in morphological blocks of electrical and magnetic walls makes it possible to solve the problems and effects typical of conventional antennas from an operational and functional point of view, by virtue of configuring rotating electromagnetic fields that interact dynamically by expansion and contraction in the field of forms, translated circuitally into antenna.
- the morphological antenna focuses on transmitting and / or receiving signals in a natural and sustainable way, through morphological radiation patterns, which pursue the forms, to produce movement and reproduce the movement of the forms.
- the present invention is based on the circuitry translation of the forms in antenna by means of its translation procedure circulates!
- the forms correspond to living and / or non-living entities, of external and / or internal structures, of small and / or large dimensions, that meet the conditions of morphological goodness.
- the morphological goodness construct is linked: To the organized, useful and pleasant structure with natural inclination to the treatise of the forms, to produce movement, and to reproduce the proper movement of the forms. It is expressed by the elements of proportionality, symmetry, referential position, and planar or spatial articulation, arranged in the forms.
- the purpose of the morphological treatise of the forms are oriented to the good management of energy resources and the reduction of negative impacts of current technologies linked to activities to produce movement, and reproduce movement.
- the movement is of an energetic nature translated into morphological radiation pattern, useful for propagating and receiving information, electrical energy, and building space or aquatic vehicles moved by morphological radiation patterns.
- the Morphological radiation pattern construct is linked: with every morphological structure, subjected to fields confined in morphological blocks of electric and magnetic walls, which reproduce a radiation pattern similar to its shape.
- Useful for TX and / or RX signal with information useful for generating forces capable of moving, rotating and / or moving a body.
- Morphological radiation patterns they are radiation patterns that adopt the morphological structure's own forms translated circuitally by the antenna procedure, and reproduce the movements of the forms themselves, depending on the acting rotating fields that in turn expand and they contract in said structure.
- the present invention has its application in the field of signal transmission and reception, by its nature it has the ability to produce movement and / or reproduce the movement of forms, where the movement is quantifiable in terms of electromagnetic expenditure, without any restriction of frequencies and protocols of the technologies that require the use of one or more antennas where you want to dispense with the use of antenna tower structures, and of numerous amounts of antennas.
- telecommunications systems mobile telephony, broadcasting, television, base station, mobile station
- Hardvesting applications MIMO applications, applications in signal filters, Medical instrumentation, wireless links of networks such as: Wifi, Wlan, WmanyWpan, Wimax, Bluetooth, among others.
- e! transport area transmission and / or reception of wireless electric energy, and construction of space or water vehicles moved by morphological radiation patterns.
- the invention relates to a MORPHOLOGICAL ANTENNA AND ITS CIRCUITAL TRANSLATION PROCEDURE, which solves the technical problems present in conventional ones, in a natural way with operational aspects (where the radiation pattern is morphological, reproduces the forms and propagates dynamically with movements proper to the forms, by virtue of
- LO configure rotating electromagnetic fields that interact dynamically by expansion and contraction in the field of forms, translated in circuits in antenna) and structural aspects of the design (centered on morphological goodness, the antenna is delimited by the shape through a contoured enveloping body , forming a nested system, confined in morphological blocks of electrical and magnetic walls, translated circuitry
- L5 in antenna corresponds to a sustainable antenna, with reduced negative impacts with the environment, with significantly lower invasive spatial aspects, with an incidence of energy radiation favorable to health, with reduced economic costs structurally and operationally speaking.
- the morphological antenna as is the shape, as is the pattern, therefore the proper movement of the forms, the morphological antenna, is reproduced.
- circuit translation corresponds to the morphological structure of a bird, any of its stages, according to the conditions of. Morphological goodness, translated ⁇ 5 circuitally by the morphological antenna procedure, said antenna will be able to reproduce the movements of the bird electromagnetically using the morphological radiation pattern.
- circuit-translated form in antenna contains the structure of the body, part or all, in any of its manifestations: whether external and / or internal, small and / or large such as: of the wing, tail, legs, head, the eyes, the beak, its bones, its organs, etc.
- a morphological structure such as: the head that is part of a whole (the bird), organized with the other morphological structures that comprise the head, such as: the eyes, the ear, the beak, the tongue, the bones, the plumage, structure the head; together with
- Verbigracia translating the shapes of the foot, in any of its manifestations, into a morphological antenna, the radiation pattern of this antenna acquires the shape of the structure of the foot, and also moves and / or rotates, with movements of its own One foot as if I was walking.
- Verbigracia translating the shapes of the eye in a morphological antenna, the radiation pattern of this antenna acquires the shape of the eye and also moves and / or rotates, as if looking or observing.
- Verbigracia translating the shapes of a leaf in a morphological antenna, the radiation pattern of this antenna acquires the shape of the leaf and also moves and / or rotates, as if it were moving on the branches of a tree.
- Verbigracia translating the fingerprint shapes circuitarily into a morphological antenna, the radiation pattern of this antenna acquires the shape of the fingerprint and also moves and / or rotates, like the fingerprint.
- Verbigracia translating circuits the forms of a plant in any of its manifestations, in the stages of its morphology. Since it is seed, root, stem, branches, leaves Jlores and fruits, in a morphological antenna, the radiation pattern of this antenna acquires the form of each of the stages independently or together to move and / or rotate Like a tree
- the morphological pattern corresponds to the soil structure, the pattern tends to implement actions of the soil, such as: cracking, sliding;
- the morphological pattern corresponds to the structure of a leg, the pattern tends to implement actions of the foot and its joints, such as: walking, flexing;
- the morphological pattern corresponds to the structure of a hand, the pattern tends to implement actions of the hand such as: take, take, articulate;
- the morphological pattern corresponds to the structure of an eye, the pattern tends to implement actions of the eye, such as: look, observe;
- the morphological pattern corresponds to the structure of an ear, the pattern tends to implement actions of the ear, such as: hearing, listening;
- circuit translation corresponds to the morphological structure of a butterfly, it must reproduce the movements of a butterfly such as: flapping, flying, compressing and decompressing its abdomen, etc., that is, it moves its wings and abdomen, therefore the pattern radiation tends to implement own actions such as the flight of the butterfly.
- the morphological pattern corresponds to the structure of an engine, the pattern tends to motorize, rotate;
- the morphological pattern corresponds to the structure of a rabbit, the pattern tends to implement the rabbit's own actions, such as: jumping, among others;
- the morphological radiation pattern of the antenna in the present invention opens up to a spectrum of applications and solutions, which go beyond normal use in the processes of transmitting and receiving signals, for which the a new technological field of morphological antennas, where its requirement is favorable in terms of application to a need, such as those indicated in previous paragraphs.
- the morphological antenna they produce morphological radiation patterns by virtue of the interaction of the electromagnetic fields present and participating in the forms, such fields, rotate up to a maximum speed of sixty times their frequency in a dipole, and expand and contract at value of its frequency to move; the antenna's operating frequency is set based on the number of participating dipole elements; the size of the antenna correlates with the operating power and the characteristic impedance of the antenna; the characteristic impedance of the antenna depends on the topological arrangement of the feeder, the number of independent antennas of simultaneous operation such as TX and / or RX, is a function of the number of nests established in the morphology.
- the development of the invention has been structured, according to figures 11 to 25. 3.-Description of the figures
- Figures 1-25 are applied in the present invention and correspond to the STATE OF THE TECHNIQUE the 5 figures 1-10; to the MORPHOLOGICAL ANTENNA AND ITS CIRCUITAL TRANSLATION PROCEDURE of the present invention, Figures 11-25, and correspond to the operational aspects, Figures 11-19, correspond to the structural aspects, Figures 20-22, correspond to the procedural aspects Figures 22-25.
- Figure 1 Isotropic radiation pattern linked to conventional antennas.
- FIG. 3 Radiation patterns of conventional modern antennas.
- FIG. 4 Accessory systems in conventional antennas, with the purpose of correcting functional technical problems.
- FIG. 4A Spacing filling.
- Figure 4C Spatial diversity of smart antennas.
- Figure 4D Arrangement of antennas in tower structure.
- FIG. 5A Arrangement of invasive arrangements
- Figure 5B Use of splitter to distribute signal from one antenna to several loads.
- Figure 5C Typical use of inverter splitter mode to combine signals from several ⁇ 0 antennas.
- Figure 5D Typical application of a device, which requires several antennas.
- Figure 6 Antenna developed using fractal geometry techniques. Pre-fractal tri-scaled patch butterfly antenna configuration.
- FIG. 7 Antenna developed using Euclidean geometry techniques. Short-circuit antenna configuration 55 called butterfly.
- Figure 8 Decorative butterfly-shaped antenna.
- Figure 10 EDF forms, typical of dowsing.
- FIG. 10A Amiens Labyrinth
- Figure 11 Morphological entity.
- Figure 15 Rotating electromagnetic fields of the morphological dipole, which expand and contract on one axis, two axes and three axes.
- FIG. 22A Butterfly morphological antenna
- Figure 22B Peruvian Hairless Dog morphological antenna
- FIG. 2 the radiation pattern of conventional classical antennas is shown.
- L5 Figure 2A corresponds to the radiation pattern of an elementary dipole antenna.
- FIG 3 the radiation patterns of conventional modern antennas are shown.
- the radiation patterns in Figure 3A correspond to the arrays (Array), typical of smart antennas (SMART), where it is observed that the radiation pattern is modifiable, and adaptable
- Figure 3B is related to the radiation pattern of photonic antenna arrays.
- Figure 3C the radiation pattern in an intelligent antenna is observed, where its optimization is based on clustering in order to be directed to a point of interest (coverage) and coupling
- the 3D figure corresponds to the modifiable radiation pattern obtained in function of mathematically operationalizing the independent patterns of the participating antennas at a given frequency fl, f2.
- Figure 4 shows the development of conventional antenna accessories, with the purpose of correcting operational technical problems.
- Figure 4A is related to Spacing Filling (SFC) what it does is fill in the spaces in order to reduce the antenna size.
- Figure 4B is related to Networks type Corp 4B1, Corporate 4B2, Series 4B3, Wiikinson 4B4.
- 4A1, 4A2, 4A3 the principle of space fill curve geometry is observed
- FIG 4B3 the typical scheme of grouping of antennas with serial feeding is shown, these configurations have the disadvantage of incorporating phase shifts between the antennas 1, 2, n-1, n, separated at a distance d, for which it tries to alleviate this effect through the use of discrete components such as coils and capacitors, among others.
- Figure 4B4 there is a typical Spliter scheme based on the Wilkinson configuration, it is clearly seen that the signal at 3 at the power level is divided into 1 and 2, it is also noted that in order to reduce the effects of reflection , add elements of losses 4.
- FIG 4C the system applied by intelligent antennas is shown, in order to achieve different types of spatial diversity, using M transmitting antennas and N receiving antennas, according to Figure 4D, they employ complex units at the hardware level and software, including large tower structures, with countless antenna arrangements, such as the one detailed in Figure 5.
- Figure 5 shows the development of antennas and the use of conventional accessories, with the purpose of correcting structural technical problems.
- Figure 5A is related to the arrangement of arrangements (base station) denoting how invasive they are with respect to the occupied space initiated in post 1, it is observed that several feeding signals are distributed in 3.1 to feed arrangements in 3.2.3.3.3.4 , 3.5.3.6 of antennas in 2.1 to 2.23, for the purpose of optimizing signal coverage towards a specific area in 4.1, 4.2, 4.3.
- Figure 5B it is related to the typical use of the splitter to distribute signal from an antl antenna to several loads vi, 1 ⁇ 22; logically with signal drop and no isolation.
- Figure SC is related to the typical use of the splitter in inverted mode to combine the signals of the antennas antl, ant2, ant3 and ant4 towards the load, with mutual coupling of the signals and without isolation.
- Figure 5D is related to a typical application of a device that requires several antennas ant 1, ant2, ant3, ant4, ant5 and ant6 for operation, for coverage purposes and MIMO applications, it is also observed how invasive they are from The spatial point of view.
- a butterfly-shaped decorative antenna mode is shown, 20 developed by Euclidean geometry techniques. It is observed that they fail to reproduce faithfully the shapes and their corresponding structure of a butterfly, using non-repetitive geometric patterns.
- Figure 9 shows a modality of a mimetized antenna, where the camouflage and makeup of the base stations (BTS) is observed, using artificial trees 9A, towers are also used with provision of improvements in arrangements 9B, which are inserted in environments to simulate a low environmental impact. These structures are made on materials that operate in extreme weather conditions. These types of approaches in no way reduce the
- JO impacts on the natural and artificial environment, for the benefit of future generations at the level of sustainability, specifically at the social level in health.
- Figure 10 shows the typical EDF Forms, typical of dowsing.
- Figure 5A is related to the labyrinth of Amiens, which begins at 1 and culminates in button 2, these forms 35 are present in many ancient constructions such as the Gothic churches.
- Figure 5B which is related to the ground plane of the EDF forms, has an origin in 1, with the respective proportional diameters in 2, 3, 4 and 5. These forms that are not the only ones acquire importance because they use the Euclidean geometry deeply, and yet they are also close to certain forms that relate to fractal geometry.
- the Forms applied by the morphological antenna and its circuitry translation procedure are related to the forms of living and / or non-living entities, including abstract ones, in all its expression whether external and / or internal, that is to say, all the existing forms can be translated circuitally into an antenna, addressing it as a morphological entity according to figure 11, which respond to the antenna behavior, be it emitter or receiver by virtue of its conformation of morphological radiation pattern linked to aspects of morphological goodness , according to Figure 12.
- FIG. 11C the morphological staging of the external structure of the Huallaguino bean seed is shown, evolved every 10 minutes, according to the intervals from to to t4, in lime soil, where the seed expansion is appreciated, until germinating , for the end after producing its fruit it contracts again in seed.
- figure 11D the morphological entity of the
- Figure 12 The conditions of morphological goodness are shown. For purposes of the invention, it is linked to the organized structure, with a natural inclination to the treatise of forms, to
- JO produce movement, and reproduce the proper movement of forms. It is expressed by evaluating the elements of proportionality, symmetry, referential position, and planar or spatial articulation, arranged in the forms. Verbigracia evaluating the morphological goodness of the structure of an arm of figure 12A, statistical assessments were established on the basis of the elements mentioned above with proportionality of the parts ⁇ ), with symmetry
- Figure 13 shows the purpose of the morphological treatment of the forms, oriented to the good management of energy resources and the reduction of negative impacts caused by current technologies, eg Figure 4, Figure 5, with radiation patterns, Figure 1, Figure 2, figure 3.
- Figure 13A produce movement capable of propelling any object 13A1, where the
- the morphological antenna 14A is shown, as the tangible element, for L5 to transmit and receive information, electrical energy, and build space or aquatic vehicles moved according to 13A, by morphological antennas type 14A, 13A2, 13B2, with patterns of morphological radiation 14B, which expand and contract in the direction of 14C, and rotate according to 14D, in the direction of A to B, B to C, C to D and D to A, with wide coverage when overcoming obstacles, and swept in the length of height 14E, disregarding the use of towers or supports with innumerable amounts of antennas 50.
- the images highlighted with ellipses stage details of the current reality associated with unsustainability and its effects within the state of the art, whose problem concerns solving by the present invention.
- Figure 15 shows the configuration of the rotating electromagnetic field of the morphological dipole! 5 (dipole shaped element) on one axis, two axes and three axes.
- rotating electromagnetic field produced by a dipole element of shape 15A5 proper in the conformation of the radiation pattern of figure 16 of the morphological antenna;
- 15 dipole element of form 15A5 supports forces of vector fields Fl and F2, in 15A1 and 15A2, respectively, on the X axis, and Y axis in the direction 15A3, 15A4, which drive to form a resulting vector FR, which travels by expansion and contraction in direction D, and turns in direction, to the electromagnetic field from 15A6 to 15A7, from 15A7 to 15An, on a single Z axis, referenced to the REF plane.
- the spin Wn taken by the resulting vector FR which carries the energy in the wavefront
- M3 responds at most in the dipole element 15A5 in sixty times the frequency value "f", according to Wm in the dispersion curve shown, said velocity is greater than the lower NDp number of dipole elements.
- Figure 15 the displacement of the rotating electromagnetic field of the morphological dipole in one axis, two axes and three axes is also shown.
- the rotating electromagnetic field rotates on the X axis, and moves on the Y axis or Z axis, by expansion and contraction in a number of times to the value of the frequency "f".
- the rotating electromagnetic field rotates and displaces in the X and Y axes, by expansion and contraction in a number of times to the value of the frequency "f”.
- the rotating electromagnetic field moves in the X, Y, Z axes, by expansion and contraction in a number of times to the value of the frequency "f".
- the morphological radiation pattern construct is shown, related to any morphological structure of Figure 11, which meets conditions expressed according to Figure 12, and purpose of the morphological treaty of the shapes of Figure 13, where the fields confined in Morphological blocks 16A, of electrical walls 16A1, and magnetic 16A2, in XY, XZ, YZ planes, reproduce a radiation pattern 13B3, 14B, 16B2, similar to the shape, that is, morphological radiation patterns: they are radiation patterns that adopt the morphological structure's own forms translated circuitally by the morphological antenna procedure, and reproduce the movements of the forms, depending on the rotating fields that in turn expand and contract in said structure, in terms expressed according to Figure 14, Figure 15.
- the rotational movement action 16B4, and translation 16B5, of the radius pattern Morphological ratio 16B2, in the reproduction of the movement of forms 16B1, establishes an electromagnetic expenditure link 16B7, with the movement such as 17C, 17D, 18C, which in terms of power 16C1.6, results in a percentage value 16C1 .5 of the electromagnetic torque of the morphological antenna and the quantification of its movement 16C1.4, by virtue of a source 16B3, which feeds it and closes loop with sink 16B6, being this dynamic and of natural propagation, not focused or static aggressive, This implies that the signal is propagated with its own characteristics, favorable in compliance with the purposes according to the claims of the present invention.
- FIG. 16C the energy balance configuration of the morphological antenna 16C1, defined in morphological field elements 16C1.1, 16C1.2 and morphological armor 16C1.7, 16C1.8, 16C1.9, linked by the element is shown rotational 16C1.3; with morphological radiation pattern 16C2, which propagates at rotation speed 16C1.4 and frequency translation 16C1.1, power 16C1.6 and expense 16C1.5.
- Figure 17 shows the radiation pattern 17B, corresponding to the morphological structure of a butterfly 17A, native to the Peruvian jungle, where the movements of the butterfly itself are reproduced in a flight: this is flutter 17C established by the process of expansion 17C1 and contraction 17C2 positive 17C3 of wing 17C4, and rhythm of abdomen 17D established by the process of expansion 17D1 and contraction 17D2, positively and negatively in 17D1 +, 17D1-, 17D2 +, 17D2- of abdomen 17D.
- flutter 17C is linked in cycles of expansion and contraction of the abdomen 17D with respect to the reference plane 17E, passing through the zero crossing 17F, that is, it moves its wings 17C in the direction 17C1 and 17C2, in a given period of expansion and contraction of the abdomen 17D, therefore the radiation pattern 17B, implements its propagation with own movement actions that make up the flight of the butterfly 17A.
- the expansion of the wings 17C is shown, in five cycles of expansion and contraction of the abdomen 17D, from tO to t6 through the zero crossing 17F.
- the contraction of the wings is shown in eighty cycles of expansion and contraction of the abdomen, from t7 to tO through the crossing at zero 17F.
- the flutter 17C corresponds to the accumulated cycles of the expansion according to figure 17G and contraction according to figure 17H of the abdomen 17D. It is important to denote that X corresponds to the radiation of the butterfly head 17A.
- Figure 18 shows the radiation pattern 18B, corresponding to the morphological structure of a rose 18A, where the rotation and translation movements (expansion and contraction) 18C, typical of said rose, are reproduced, and by which it implements its propagation.
- Living morphological entities imply favorable forms throughout their stages: ranging from matter to biomolecules, from biomolecules to cells, from cells to living beings such as: moneras, protists, fungi, plants and animals; likewise, non-living morphological entities imply favorable forms of inorganic matter, inanimate objects and beings.
- the arrangement of the morphological antenna is shown dimensionally in planar mode as a flat body according to 20A and spatial mode as a solid body 20B, linked to the conditions of morphological goodness and operational aspects indicated in the previous paragraphs. That is, the population of the treated morphologies correspond to structures of living and / or non-living entities, including abstract ones, be they of an external and / or internal nature, and large and / or small size; where all the forms that are circulated in a morphological antenna, configure rotating, alternating and / or transverse electromagnetic fields with morphological radiation patterns, where the wave moves dynamically, moving and rotating by expanding and contracting the rotating fields, with rotation in the axes, thus reproducing the forms and their movement in the radiation pattern, with the capacity to transmit and / or receive energy, in the form of a signal, and produce movement of objects.
- Figure 20A the planar modality of the morphological antenna, linked to the planar joint is shown in Figure 16A.
- This mode allows to manage the wavefront in two axes of the space planes (XY or XZ or YZ) referred to the morphological sink as 20A.1.
- the circuit translation of the morphological antenna forms is located in plane 20A.2, between the morphological sink plane 20A.1 and radiation plane 20A.3.
- the planes 20A.1 and 20A.2 form the morphological block of electrical wall 16A1; plane 20A.3 make up the morphological block of magnetic wall 16A2.
- Figure 20B the spatial modality of the morphological antenna, linked to the spatial joint is shown in Figure 16A.
- This modality refers to the management of planar morphologies such as 20A in space to adopt a volumetric presence as a solid body.
- This mode allows the wavefront to be managed spatially, referring to the morphological sink 20B.1.
- the circuit translation of the morphological antenna forms is located in volume 20B.2, between the volume of morphological sink 20B.1 and radiation volume 2 ⁇ .3.
- Volumes 20B.1, 20B.2 and 20B.3, configure the propagation on the fronts up, down, left, right, back and forward.
- Volumes 20B.1. and 20B.2 make up the morphological block of electrical wall 16A1; volume 20B.3 make up the morphological block of magnetic wall 16A2, both blocks make up the morphological block of electromagnetic walls.
- FIG. 20C an arrangement of certain forms of elementary behavior is shown with rotating field 5 «lOf, 30f, ⁇ 10f,> 20f,> 30f, 20f, expansion and contraction" f ", 20cl, 20c2, 20c3, 20c4 , 20c5, 20c6, respectively, according to Figure 15A.
- Verbigracia all apply both modalities According to 20A and 20B.
- a contoured envelope body (edge) 21A constructed on the basis of conductive, superconductive and / or dielectric material, and metamaterials; with plural electromagnetic properties of a rigid and / or flexible nature determines the antenna as a nested system 21B, provided with morphological dipoles 21a.1, of
- circuit translation circuit of the shapes of Figure 21 is delimited by the enveloping body
- contoured 21A of plural electromagnetic tracks circumscribing the shape silhouette in a nested system 21B; to radiate as TX, to capture as X and / or reflect energy in the conformation of the morphological radiation pattern.
- the morphological dipoles 21a.1, of plural electromagnetic tracks are subsumed and built into the contoured envelope body 21A, to form the morphological radiation pattern based on the walls of
- the multiple topological feeding arrangements 21a.3, are arranged jointly as feeding points of the type 21C of plural electromagnetic tracks located in the contoured housing 21A and / or morphological dipoles 21a.1, to specify the characteristic impedance Z 0 of the antenna in Figure 21, in ohmic values of arrangement R, R / 2,
- the multiple topological distributions of feeding 21a.4, are derived from! contoured envelope body 21A and / or morphological dipoles 21a.1, as the track
- ⁇ 0 plural electromagnetic that contains independent power points in a nesting referenced with the plane 20A.1 and volume 20B.1 of the morphological sump 21a.5 that feeds the antenna to form the morphological radiation pattern based on the 16A1 and magnetic 16A2 electrical block walls, established in the multiple topological distributions of feeding 21a.4; where the "n" number of nests 21B determines the ability of the antenna to operate as multiple "n” independent antennas to radiate and / or capture at the same time.
- the morphological sump 21a.5 corresponds to the area 20A.1 and volume 20B.1 of plural electromagnetic tracks of open and / or closed arrangement, located in planes 21a5.1 and 21a5.2 in parallel, perpendicular and / or transverse established according to angular articulation
- L5 linked to its function of reflection or absorption is not a simple earth system, associated only with a mass or reference, but incorporates morphological areas and volumes. In terms of connection, it is linked to the earth mesh of the Zo impedance feeder 21a5.7C of Figure 21, with open connection 21a5.7B when the earth mesh is isolated from the circuit elements 21al to 21a4, and / or closed connection 21a5.7A when the ground mesh is
- Figure 22 a simple application of the present invention is shown, where the treated morphologies correspond to living entity structures.
- Figure 22A corresponds to the butterfly morphological antenna, based on the morphological entity of a butterfly of Figure 17A, whose
- 5 21B of 1 to 3 nests that is, with the capacity to operate as three independent antennas to transmit and / or receive simultaneously, and morphological propagation in 1 axis, 2 axes, 3 axes, with expansion-contraction of 2.4GHz at 5GHZ, at rotating field speeds between 144 * 10 12 Rpm / NDp at 300 * 10 12 Rpm / NDp, with wavelengths ranging from 0.06 m to 0.125 m, according to actual dimensions of said butterfly of Figure 17A, the same as are staggered in
- the dispersion S21 in the frequency domain of the electric field E, of Figure 22A3.1, the minimum dispersion response of 0.00436 is given in 3.2785603 GHz.
- the S21 dispersion of the magnetic field H, of figure 22A3.2 with respect to the frequency of the butterfly morphological antenna, the minimum dispersion response is 0.004539 which is given in 3.2785603 GHz
- the antenna is also resonant at 1 GHz with a dispersion of value 0.026025642, at 2.0015649 GHz with a dispersion of value 0.017036643, at 2.4084507 GHz with a dispersion of value 0.017265949, at 2.8403756 GHz with a dispersion of value 0.024769107, at 3.9295775 GHz with a dispersion of value 0.0099831991, at 4.3114241 GHz with a dispersion of value 0.0069612805, at 4.799687 GHz with a dispersion of value 0.008090
- Figure 22B corresponds to the Peruvian Peruvian Hairless Dog morphological antenna, based on the morphological entity of the SHIKA Peruvian Hairless Dog of Figure 11D, essentially linked to the auditory organ and its integration with the dog's shape arrangement, whose sample has been obtained on the Peruvian coast of Callao.
- Figure 22B1 the layout of the Peruvian Peruvian Hairless Dog morphological antenna is shown dimensionally, in planar mode as the flat body according to FIG.20A and spatial mode in Figure 22B2, as the solid body according to FIG.20B, linked to the conditions of morphological goodness and operational aspects indicated in the previous paragraphs.
- FIG. 22C corresponds to the mosquito morphological antenna, based on the morphological entity of the white blanket mosquito, whose sample has been obtained in the Peruvian jungle of Tingo Mar ⁇ a.
- the arrangement of the mosquito morphological antenna is shown dimensionally, in planar mode as the flat body according to FIG. 20A and spatial mode in Figure 22C2 as the solid body according to FIG. 20B, linked to the conditions of morphological goodness and aspects
- the mosquito morphological antenna of Figure 22C1 and 22C2, according to Figure 21, said simple nesting antenna, has: 16 dipole elements NDp 21a.1, about 16 dipole morphological spaces 21a.2, two topological provisions of impedance 21a.3 Zo characteristic of R and R / 2 values according to 21C, a topological distribution of feed 21a.4, a morphological sink 21a.5 of the closed type
- n l, that is, it is an antenna capable of operating as a transmitter and / or receiver at the same time, with morphological propagation in 1 axis, 2 axes, 3 axes, with expansion-contraction of 1GHz to 1THZ, at rotating field speeds between 60 * 10 12 Rpm / NDp to 60000 * 10 12 Rpm / NDp, with wavelengths ranging from 0.0003 m to 0.3 m, according to staggered and actual dimensions of the mosquito, in the operating range
- Figure 23 shows the Block diagram of the morphological antenna circuit translation procedure, linked to the operational and structural aspects indicated in the [0 previous paragraphs correlated with the claims.
- the procedure of circuital translation of the morphological antenna is established in the following embodiments: Morphological Translation 23A, structuring of the Morphological Antenna 23B, transfer of the Circuit Translation of Antenna 23C.
- Morphological Translation 23A the forms are translated into a circuit, included in the stages: Obtaining the Morphological Footprint 23A-1, the Sensitization of the Morphological Footprint 23A-2, the Drawing of the Morphological Tracks 23A-3, and Definition of Morphological Blocks 23A-4 in electromagnetic operating configurations.
- the design modes in planar and / or spatial 23B-1 are defined, in terms of the proportionality staggering, the symmetry, the reference position, the articulation of the shapes in the plane and / or space, to operate on the frequencies of the devices, equipment, instruments that require one or more antennas;
- antenna parts 23B-2 are sized and structured, depending on the frequency or operating range;
- the corresponding characterization of the morphological radiation pattern 23B-3 is defined, and evidences the quantification of the morphological electromagnetic torque 23B-4.
- the circuit translation of the forms properly structured in the previous stage 23B becomes tangible as morphological antenna 23C-1; constructed on the basis of conductive, superconducting and / or dielectric material, and metamaterials, with plural electromagnetic properties, of a rigid and / or flexible nature, of planar mode or spatial mode 23C-2; by means of plural techniques 23C-3 of conductive ink printing, 3D modeling, milling, CNC engraving, fabric with conductive wire, PCB, laminate and draft, among others, worked independently or together.
- the materials and metamaterials on which the morphological antennas are built are those that favorably as a conductive, superconductive and / or dielectric material, in any of its metal, liquid or gas manifestations, incorporate a high electrical conductivity, with good magnetic and dielectric capabilities , for example a relative dielectric constant € r ⁇ 10, with values of tangential losses ⁇ ⁇ 0.030, and metamaterials such as graphene, allow to sustain a highly efficient antenna.
- Morphological Translation (23A), Obtaining the morphological footprint (23A-1), consists in tangibly sampling the faithfully acquired forms of target populations, respecting the morphological benefits, to be sensitized as a morphological footprint (23A-2), where the forms are sensitized as a standard sample and are referenced for staggering by virtue of the operational range characteristic of morphology in terms of frequency, and then plotted as morphological tracks (23A-3), established circuitally with the layout of the contours of the contoured envelope body (21A), of the morphological dipoles (21a.1), of the dipole morphological spaces (21a.2), of the multiple topological feeding arrangements (21a.3), of the multiple topological distributions of feeding (21a.4), and the morphological sink (21a.5), by nesting.
- morphological blocks (23A-4) in electromagnetic operating configurations, of the forms established circuitry in stage (23A-3), and produce electromagnetic fields with morphological radiation patterns.
- These morphological blocks are configured as elements of electrical blocks: contoured housing, morphological dipoles, distributions and multiple topological arrangements of feeding, morphological sink, and magnetic blocks: with incidence on the dipole resonant spaces to produce morphological radiation patterns, by virtue of the interaction of the morphology's own fields, where dipolar resonant spaces useful for producing rotating fields and / or are identified transverse, at rotating field speeds ranging from a few rpm values.
- the structured parts of the antenna at (23A) are sized in terms of the staggering of the proportionality of the morphology, obtained in sensitizing the morphological footprint (23A-2); for in the stage of Characterization of the pattern of morphological radiation (23B-3); reference the pattern of morphological radiation in terms of the process of expansion and contraction of the forms, which implies movement and show the dynamic nature of the propagation to move and rotate according to morphological properties at the proper operating frequencies, that is, the Quantification of the torque Morphological electromagnetic (23B-4) are evidenced by the presence of rotating and / or transverse fields capable of reproducing the movement of the shapes in the radiation pattern, and consequently generating movement.
- the parts confined in morphological blocks of electromagnetic walls defined in step (23A-4) cause the electromagnetic fields to interact to produce movement of translation and rotation, by expansion-contraction of the field how often the frequency is assessed, and by the presence of the rotating field
- the procedure for the circuital translation of the morphological antenna forms in its realization: Transfer of the antenna circuit translation (23C), in the Tangibilization as a morphological antenna (23C-1), the materials and metamaterials of plural electromagnetic properties are defined , of a rigid or flexible nature, participants in the conformation of the morphological antenna.
- the Modeling of the morphological antenna (23C-2), consists of having the behavior of the morphological radiation pattern and its corresponding evidence of application, for this the operating behavior of the forms provide significantly contrast and discussion elements.
- Figure 24 shows a sequence of circuit translation procedure (23) related to the Peruvian Hairless Dog Morphological Antenna (22B), based on the morphological entity of the SHIKA Peruvian Hairless Dog (a) of Figure 11D, essentially linked with the auditory organ (b) of realization (23A) and its integration with the dog's shape arrangement (c), with the operational and structural aspects of realization (23B) as morphological antenna (d, e) of realization (23C) .
- Figure 25 shows some aspects of Goodness of the morphological antenna (a), of morphological entities (b), with characteristics of a sustainable antenna (25A), because they are oriented to the good management of energy resources and reduction of negative impacts caused by current technologies.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
The invention relates to a morphological antenna and to the method for the circuital translation thereof, for the transmission and/or reception of signals by means of rotational electromagnetic fields that expand and contract with morphological radiation patterns, by means of a circuit for the circuital translation of the forms, which are able to produce movement and to reproduce the specific movement of the forms which meet the conditions of morphological quality, characterised in that the circuit for the circuital translation of said antenna comprises a nested rounded surrounding body, morphological dipoles, dipolar morphological spaces, multiple topological supply arrangements, multiple topological supply distributions, and a morphological drain; all confined in morphological blocks with electrical and magnetic walls, constructed on the basis of material and metamaterials with plural electromagnetic properties, of a rigid or flexible nature.
Description
Descripción Description
Antena Morfológica y su Procedimiento de Traducción CircuitaL, para la transmisión y/o recepción de señales mediante campos electromagnéticos con patrones de radiación morfológica, capaces de producir movimiento, y reproducir el movimiento propio de las formas. l.-Antecedentes de ta invención Morphological Antenna and its Circuit Translation Procedure, for the transmission and / or reception of signals through electromagnetic fields with morphological radiation patterns, capable of producing movement, and reproducing the proper movement of forms. l.-Background of the invention
Las antenas se usan en la transmisión y recepción de señales que van desde bajas frecuencias hasta muy altas frecuencias, según las tecnologías y necesidades, sin embargo, las antenas convencionales existentes de uso militar o comercial, a nivel de las comunicaciones sean: redes, satélite, radio, televisión, telefonía, medicina, entre otros, están lejos de solucionar los problemas propios de las antenas y sus estructuras, y de los problemas ambientales, sociales y económicos que se derivan y provocan con su uso, si es que no se buscan alternativas naturales para la propagación de las ondas, ya que las antenas que existen, todas sin excepción alguna están basadas en patrones de radiación con el ideal isotrópico; toda vez que las pérdidas, eficiencias entre otros parámetros, no solo se ven influenciadas por el tipo de antena desde el punto de vista geométrico, sino además por el medio donde operan (condiciones ambientales naturales y artificiales). Según el estado de la técnica, existen una gran variedad de antenas desarrolladas bajo criterios, técnicas y modelos definidos que hacen referencias a las formas como: tipo conejo, tipo corbata, saltamontes, mariposa, aleta de tiburón, escama de serpiente, girasol, mosca, murciélago, entre otros; si bien es cierto que hacen mención a ciertas características de las formas, se observa que no conservan las morfologías, con simetrías y proporciones que se aproximen a la realidad, en esencia cumplen muchas veces un papel decorativo, de fines estéticos u ornamentales, sin embargo, muchos investigadores actuales han incursionado en la rama de la biomimética, buscando que imitar algunas directrices de la naturaleza y que a la fecha no han evidenciado con hechos concretos la diferenciación de sus resultados operativos y funcionales en esta rama, con respecto a las antenas existentes. La fabricación normalmente de las antenas que existen, se construyen con las diferentes técnicas como las geométricas euclidianas o fractales. Mediante la geometría Fractal, a pesar que tiene muchas bondades como la del escalonamiento, estas no logran reproducir fielmente a las formas sino, que usan patrones repetitivos (iterativos, con la finalidad de intentar llegar a la naturaleza, razón por la cual buscan formas que cumplan con el patrón, de tal manera que aquellas formas vivientes o no vivientes, que no respondan a estos requerimientos quedan exentas para estos fines, según ese criterio), a nivel de antenas trabajan con prefractales, y aun así cumplan con dichos criterios, a nivel de antenas, no logran reproducir a las formas. Por otro lado mediante la geometría euclidiana, que es válido para las formas no iterativas del plano y espacio que conocemos, a nivel de antenas tampoco pueden reproducir las formas de la naturaleza. La utilización de las formas y de las energías, vienen desde nuestros antepasados, las que están evidenciadas en la manifestación de sus expresiones artísticas, por ejemplo: los egipcios, los chinos, las civilizaciones románico y gótico, buscaban en las formas: armonía, salud, paz y espiritualidad. En los años 30, investigadores como: Chaumery y Belizal, unos
años más tarde de la Foyé y de Laforest, implementaron estudios de Ondas de formas, con propósitos orientados a la SALUD, años más tarde la fundación francesa Ark'all, hace referencia ai EDF (Emisión debidas a las formas), incorporando propósitos industriales, y sostienen que dichas EDF están vinculadas con radiaciones de procedencia desconocida, y que posiblemente seanThe antennas are used in the transmission and reception of signals ranging from low frequencies to very high frequencies, according to technologies and needs, however, existing conventional antennas for military or commercial use, at the level of communications are: networks, satellite , radio, television, telephony, medicine, among others, are far from solving the problems of the antennas and their structures, and the environmental, social and economic problems that arise and cause with their use, if they are not sought natural alternatives for the propagation of the waves, since the antennas that exist, all without exception are based on radiation patterns with the isotropic ideal; since the losses, efficiencies among other parameters, are not only influenced by the type of antenna from the geometric point of view, but also by the environment where they operate (natural and artificial environmental conditions). According to the state of the art, there is a wide variety of antennas developed under defined criteria, techniques and models that refer to forms such as: rabbit type, tie type, grasshopper, butterfly, shark fin, snake scale, sunflower, fly , bat, among others; Although it is true that they mention certain characteristics of the forms, it is observed that they do not retain morphologies, with symmetries and proportions that approximate reality, in essence they often fulfill a decorative role, of aesthetic or ornamental purposes, however , many current researchers have ventured into the biomimetic branch, seeking to imitate some nature guidelines and that to date have not evidenced with concrete facts the differentiation of their operational and functional results in this branch, with respect to existing antennas . The manufacture of normally existing antennas, are constructed with different techniques such as geometric Euclidean or fractal. Through Fractal geometry, although it has many benefits such as staggering, they fail to reproduce the forms faithfully, but instead use repetitive (iterative patterns) in order to try to reach nature, which is why they look for forms that comply with the pattern, in such a way that those living or non-living forms, which do not respond to these requirements are exempt for these purposes, according to that criterion), at the antenna level they work with prefractals, and still meet those criteria, to antenna level, they fail to reproduce the forms. On the other hand through Euclidean geometry, which is valid for the non-iterative forms of the plane and space that we know, at the level of antennas they cannot reproduce the forms of nature either. The use of forms and energies, come from our ancestors, which are evidenced in the manifestation of their artistic expressions, for example: the Egyptians, the Chinese, Romanesque and Gothic civilizations, sought in the forms: harmony, health , peace and spirituality. In the 30s, researchers such as: Chaumery and Belizal, some years later of the Foyé and of Laforest, they implemented studies of Waves of forms, with purposes oriented to HEALTH, years later the French foundation Ark'all, refers to EDF (Emission due to forms), incorporating industrial purposes, and argue that these EDFs are linked to radiation of unknown origin, and that they may be
5 cósmicas. G. Lakhosvky en su teoría de la "Oscilación celular", sostiene que nuestras células actúan como circuitos oscilantes a las radiaciones cósmicas. En la actualidad los avances en Histología ya vinculan efectos resonantes entre los elementos de la célula. Viktor S. Grebennikov, en 1988 descubrió las propiedades anti gravitacionales e invisibilidad de algunos insectos como el escarabajo, abejas, avispas, entre otros. A la fecha no hay instrumentos que permitan la medición5 cosmic G. Lakhosvky in his theory of "Cellular Oscillation", maintains that our cells act as oscillating circuits to cosmic radiations. At present, advances in Histology already link resonant effects between cell elements. Viktor S. Grebennikov, in 1988 discovered the anti gravitational properties and invisibility of some insects such as beetle, bees, wasps, among others. To date there are no instruments that allow measurement
LO de las EDF, razón por la cual se apelan a aparatos radiestésicos y de sensibilidad personal. En la actualidad existen técnicas de optimización evolutivas, basadas en algoritmos genéticos, enjambre de partículas, a nivel de agrupaciones de antenas se hablan de Estructuras Periódicas de Radiación Coherente (CORPS), a nivel de imitaciones de la naturaleza se habla de la biomimética, que buscan imitar ciertas directrices de mecanismos como por ejemplo el sistema auditivo, el sistemaThe EDF, which is why they appeal to radiesthetic and personal sensitivity devices. At present there are evolutionary optimization techniques, based on genetic algorithms, swarm of particles, at the level of antenna clusters they speak of Periodic Coherent Radiation Structures (CORPS), at the level of imitations of nature we talk about biomimetics, which they seek to imitate certain guidelines of mechanisms such as the auditory system, the system
L5 nervioso, sistema visual, entre otros de ciertos seres, asimismo existen los Sistemas de Antenas de Múltiples Entradas Múltiples Salidas (MIMO), entre otros, que utilizan procesos de tratamiento y manipulación de señales, con la finalidad de eliminar los efectos provocados por la recepción de una señal proveniente de varias direcciones, sin embargo, cabe hacer hincapié que en la SANTA BIBLIA, es donde se nos reitera con precisión en su Santa Palabra, la necesidad de mirar, aprenderL5 nervous, visual system, among others of certain beings, there are also the Multiple Input Multiple Antenna Systems (MIMO), among others, that use signal processing and manipulation processes, in order to eliminate the effects caused by the reception of a signal from several directions, however, it should be emphasized that in the HOLY BIBLE, it is where we need to reiterate precisely in his Holy Word, the need to look, learn
10 e incorporar técnicas de tendencias EVOLUTIVAS basadas en la CREACIÓN. Sin embargo, hay que reconocer la capacidad de observación y análisis de Goethe, que trascienden a los hechos, por advertir que el camino por hacer ciencia no tiene que ser estático sino dinámico, tal cual lo hace la naturaleza. 10 and incorporate EVOLUTION trend techniques based on CREATION. However, we must recognize Goethe's ability to observe and analyze, which transcend the facts, to warn that the path to do science does not have to be static but dynamic, just as nature does.
15 Los típicos problemas presentes durante los procesos de transmisión y recepción de señales en las antenas existentes son las que repercuten en la funcionalidad como por ejemplo: en el acoplamiento entre el alimentador y la antena, en la conexión del alimentador a la antena, en la eliminación de capacidades parásitas de la antena, en el escalonamiento y dimensionamiento de la antena para operar en una frecuencia o gama de frecuencia, en la polarización y direccionalidad15 The typical problems present during the processes of transmission and reception of signals on existing antennas are those that have an impact on functionality such as: in the coupling between the feeder and the antenna, in the connection of the feeder to the antenna, in the elimination of parasitic antenna capabilities, in the stepping and sizing of the antenna to operate in a frequency or frequency range, in polarization and directionality
JO del frente de onda, y en el mejoramiento de la ganancia. En este sentido común es ver antenas con configuraciones y estructuras invasivas con muchas antenas dispuestas en las torres de antenas, emplazadas frecuentemente sobre las terrazas y fachadas de viviendas, que a pesar de haber sido mimetizados (maquilladas o camufladas, como por ejemplo como árbol, tanques de agua, entre otros) los impactos de agresión ambiental desde el punto de vista espacial, visual y laJO of the wavefront, and in the improvement of the gain. In this common sense it is to see antennas with configurations and invasive structures with many antennas arranged in the antenna towers, frequently located on the terraces and facades of houses, which despite having been mimetized (made up or camouflaged, such as as a tree, water tanks, among others) the impacts of environmental aggression from the spatial, visual and
$5 salud no son los adecuados. Asimismo, existen una gran variedad de equipos, artefactos, instrumentos, entre otros que hacen uso de varias antenas a la vez, además de requerir una serie de elementos accesorios en sú afán de intentar mejorar su performance y cobertura. $ 5 health are not adequate. Likewise, there is a great variety of equipment, artifacts, instruments, among others that make use of several antennas at the same time, in addition to requiring a series of accessory elements in order to try to improve their performance and coverage.
Dichos problemas técnicos han ido apareciendo con los requerimientos del avance generacional \0 de las tecnologías, donde menor consumo de energía, mayor velocidad y disponibilidad de ancho
de banda es lo que más se requiere a nivel de comunicaciones. Para tal fin la tecnología convencional ha desarrollado una gran variedad de sistemas, que aplican técnicas de tendencias evolutivas, de tendencias biomiméticas, en aras de dar solución a estos problemas, y precisamente las antenas inteligentes como agrupaciones de antenas, es lo que existe, sin embargo, estas tienen sus limitaciones funcionales y operacionales, que están siendo tratadas por las CORP, entre otros. Para tal fin atacan al problema desde el punto de vista de optimización de la antena y de su agrupación con otras, relacionada con la ganancia direccionada a un punto de interés (cobertura) y el acoplo controlado entre los elementos radiantes, y normalmente buscan caracterizar el patrón de radiación para controlarlo (direccionarlo), en su afán de reducir la difracción para aumentar ganancia en la dirección de máxima radiación, valiéndose de elementos parásitos externos. Dichas tendencias evolutivas y biomiméticas además han extendido su aplicación entre otros al aumento de resolución angular basándose en la estructura organizativa sin conservar la forma de los sistemas como por ejemplo: nervioso, auditivos y de visión artificial (caso de las CORP, basan su estructura en la configuración del ojo, mas no en la fiel reproducción de la forma como estructura en el patrón de radiación y su correspondiente propagación), como a la reducción de la complejidad de las redes de alimentación en agrupaciones de antenas. Indudablemente han considerado el criterio para controlar el patrón de radiación en un arreglo conformado por elementos idénticos de antenas [Según Balanis, 1982]: que tiene como factores a la configuración geométrica del arreglo (lineal, circular, rectangular, triangular, etc.), el espaciamiento entre elementos, la amplitud de excitación de los elementos individuales del arreglo, la fase de excitación de los elementos individuales del arreglo, el patrón de radiación en particular de cada uno de los elementos individuales. Asimismo existen ios sistemas MIMO, que buscan eliminar los efectos de la reflexión mediante el tratamiento de una señal provenientes de varias trayectorias, es decir cuando una misma señal llega a la antena por diferentes vías específicamente por reflexión se generan efectos perjudiciales en la señal. De tal manera para que dicho sistema pueda discriminar dichos efectos hace uso de muchas antenas, provista de elementos y procesos complejos en el tratamiento de la señal, donde las entradas y salidas múltiples que aplica dicho sistema solo pueden realizar una sola función a la vez (recepción o transmisión). En conclusión las antenas existentes, como las señaladas anteriormente, se manejan bajo patrones de radiación que persiguen y referencian al ideal isotrópico, con la cual los inconvenientes y problemas surgidos en cada uno de ellas, solo pueden ser corregidas o mejoradas con la incrementación de accesorios o elementos, que desde el punto de vista de la sostenibilidad se hacen insostenible. These technical problems have been appearing with the requirements of the generational progress \ 0 of the technologies, where lower energy consumption, greater speed and wide availability Band is what is most required at the communications level. To this end, conventional technology has developed a wide variety of systems, which apply techniques of evolutionary tendencies, biomimetic tendencies, in order to solve these problems, and precisely intelligent antennas as groupings of antennas, is what exists, without However, these have their functional and operational limitations, which are being treated by the CORP, among others. To this end, they attack the problem from the point of view of optimization of the antenna and its grouping with others, related to the gain directed to a point of interest (coverage) and the controlled coupling between the radiating elements, and usually seek to characterize the radiation pattern to control it (direct it), in its desire to reduce diffraction to increase gain in the direction of maximum radiation, using external parasitic elements. These evolutionary and biomimetic trends have also extended their application among others to the increase in angular resolution based on the organizational structure without preserving the shape of the systems such as: nervous, auditory and artificial vision (case of CORP, based on their structure in the configuration of the eye, but not in the faithful reproduction of the form as a structure in the radiation pattern and its corresponding propagation), as to the reduction of the complexity of the feeding networks in antenna clusters. Undoubtedly they have considered the criterion to control the radiation pattern in an arrangement consisting of identical elements of antennas [According to Balanis, 1982]: which has as factors the geometric configuration of the array (linear, circular, rectangular, triangular, etc.), the spacing between elements, the amplitude of excitation of the individual elements of the array, the excitation phase of the individual elements of the array, the radiation pattern in particular of each of the individual elements. There are also the MIMO systems, which seek to eliminate the effects of reflection by treating a signal from several paths, that is, when the same signal reaches the antenna through different paths specifically by reflection, harmful effects are generated on the signal. In such a way so that said system can discriminate these effects, it makes use of many antennas, provided with complex elements and processes in the treatment of the signal, where the multiple inputs and outputs applied by said system can only perform a single function at a time ( reception or transmission). In conclusion, existing antennas, such as those mentioned above, are managed under radiation patterns that pursue and refer to the isotropic ideal, with which the inconveniences and problems arisen in each of them, can only be corrected or improved with the increment of accessories or elements, which from the point of view of sustainability become unsustainable.
Con el fin de superar las dificultades y efectos propias de las antenas convencionales, se ha desarrollado la ANTENA MORFOLÓGICA Y SU PROCEDIMIENTO DE TRADUCCIÓN CIRCUITAL, para la transmisión y/o recepción de señales de manera natural mediante la interacción de los campos electromagnéticos presentes en las formas traducidas circuitalmente para producir patrones de radiación morfológica, capaces de producir movimiento, y reproducir el movimiento propio de las formas.
2.-Breve descripción de la invención Objeto de la invención In order to overcome the difficulties and effects of conventional antennas, the MORPHOLOGICAL ANTENNA AND ITS CIRCUITAL TRANSLATION PROCEDURE have been developed, for the transmission and / or reception of signals in a natural way through the interaction of the electromagnetic fields present in the forms translated circuitally to produce patterns of morphological radiation, capable of producing movement, and reproducing the proper movement of forms. 2.-Brief description of the invention Object of the invention
La presente invención generalmente se refiere a una nueva antena y su procedimiento de traducción circuital, a la que se le ha denominado antena morfológica para la transmisión y/o recepción de señales mediante campos electromagnéticos con patrones de radiación morfológica, capaces de producir movimiento, y reproducir el movimiento propio de las formas. Está basada en la traducción circuital de las formas en antena mediante su procedimiento de traducción circuital. Las formas corresponden a entidades vivientes y/o no vivientes, de estructuras externas y/o internas, de dimensiones pequeñas y/o grandes, que cumplan con las condiciones de bondad morfológica, la antena queda delimitada por la forma a través de un cuerpo envolvente contorneado, conformando un sistema anidado provista de dipolos morfológicos, de espacios morfológicos dipolares, de disposiciones topológicas múltiples de alimentación, de distribuciones topológicas múltiples de alimentación, y de sumidero morfológico; todos ellos confinados en bloques morfológicos de paredes eléctricas y magnéticas; construidos sobre la base de material conductor, superconductor, dieléctrico y meta materiales, con propiedades electromagnéticas plurales, de naturaleza rígida o flexible. The present invention generally refers to a new antenna and its circuit translation procedure, which has been referred to as a morphological antenna for the transmission and / or reception of signals by electromagnetic fields with morphological radiation patterns, capable of producing movement, and reproduce the proper movement of forms. It is based on the circuit translation of the antenna forms through its circuit translation procedure. The forms correspond to living and / or non-living entities, of external and / or internal structures, of small and / or large dimensions, that meet the conditions of morphological goodness, the antenna is delimited by the form through a wrapping body contoured, forming a nested system provided with morphological dipoles, dipole morphological spaces, multiple topological feeding arrangements, multiple topological feeding distributions, and morphological sump; all of them confined in morphological blocks of electric and magnetic walls; built on the basis of conductive, superconducting, dielectric and meta materials, with plural electromagnetic properties, of a rigid or flexible nature.
La caracterización estructural como antena anidada confinados en bloques morfológicos de paredes eléctricas y magnéticas, posibilita solucionar los problemas y efectos típicos de las antenas convencionales desde el punto de vista operacional y funcional, en virtud de configurar campos electromagnéticos giratorios que interactúan dinámicamente por expansión y contracción en el ámbito de las formas, traducidas circuitalmente en antena. De manera concreta la antena morfológica, se centra en transmitir y/o recepcionar señales de modo natural y sostenible, a través de patrones de radiación morfológica, que persiguen las formas, para producir movimiento y reproducir el movimiento de las formas. En consecuencia se solucionan los problemas: (I) del uso de configuraciones y estructuras invasivas de las antenas convencionales, con lo que se reducen los impactos de agresión ambiental de tipo espacial y visual; asimismo desde el punto social la salud de la población usuaria de estas tecnologías mejora considerablemente su relación con los efectos radiactivos de la energía producida y consumida toda vez que el patrón de radiación es dinámica y se propaga de modo natural y no focalizada o estática agresiva, (II) del uso de grandes cantidades de antenas o de antenas complejas, establecidas convencionalmente con fines de mejorar cobertura, disponibilidad y ancho de banda, estas grandes cantidades de antenas son reducidas considerablemente toda vez que mediante la antena morfológica se permite realizar el trabajo de operación de varias antenas convencionales a la vez, con una sola antena morfológica anidada de "n" anidaciones, donde se disponen de "n" antenas para realizar la tarea de transmisor y/o receptor a la vez, donde se prescinde de las estructuras de torres de antenas. The structural characterization as a nested antenna confined in morphological blocks of electrical and magnetic walls, makes it possible to solve the problems and effects typical of conventional antennas from an operational and functional point of view, by virtue of configuring rotating electromagnetic fields that interact dynamically by expansion and contraction in the field of forms, translated circuitally into antenna. Specifically, the morphological antenna focuses on transmitting and / or receiving signals in a natural and sustainable way, through morphological radiation patterns, which pursue the forms, to produce movement and reproduce the movement of the forms. Consequently, the problems are solved: (I) the use of invasive configurations and structures of conventional antennas, thereby reducing the impacts of environmental and spatial aggression; also from the social point of view, the health of the population using these technologies considerably improves their relationship with the radioactive effects of the energy produced and consumed since the radiation pattern is dynamic and propagates in a natural way and not focused or aggressive static, (II) of the use of large amounts of complex antennas or antennas, established conventionally for the purpose of improving coverage, availability and bandwidth, these large amounts of antennas are considerably reduced since the morphological antenna allows the work of operation of several conventional antennas at the same time, with a single nested morphological antenna of "n" nests, where "n" antennas are available to perform the task of transmitter and / or receiver at the same time, where the structures of antenna towers.
Solucionar los problemas y sus efectos de las antenas existentes o convencionales, parte por propagar y recepcionar la señal en forma dinámica, mediante la estructuración del patrón de
radiación en un patrón de las formas que persiga el movimiento de las formas, es decir reproduzca al movimiento, para producir movimiento, para tal efecto la presente invención está basada en la traducción circuital de las formas en antena mediante su procedimiento de traducción circuita!. Las formas corresponden a entidades vivientes y/o no vivientes, de estructuras externas y/o internas, de dimensiones pequeñas y/o grandes, que cumplan con las condiciones de bondad morfológica. Solve the problems and their effects of existing or conventional antennas, partly by propagating and receiving the signal dynamically, by structuring the pattern of radiation in a pattern of the forms that the movement of the forms pursues, that is to say reproduce the movement, to produce movement, for this purpose the present invention is based on the circuitry translation of the forms in antenna by means of its translation procedure circulates! The forms correspond to living and / or non-living entities, of external and / or internal structures, of small and / or large dimensions, that meet the conditions of morphological goodness.
Para efectos de la invención, el constructo bondad morfológica, está vinculado: A la estructura organizada, útil y agradable con inclinación natural al tratado de las formas, para producir movimiento, y reproducir el movimiento propio de las formas. Se expresa mediante los elementos de proporcionalidad, simetría, posición referencial, y articulación planar o espacial, dispuestas en las formas. Las condiciones de bondad morfológica, se establece en valoraciones estadísticas sobre la base de los elementos mencionados como: proporcionalidad de las partes X¡, simetría respecto a los ejes principales X-Y-Z, y secundarios κ-y-z, posición referencial a un eje (normalmente Z), articulación A¡; siendo estas valoraciones comprendidas en: 0.5 ≤ media cuadrática ≤ 1.0, 0≤ error estándar≤ 10"6, proporción en expansión (E) y contracción (C). For purposes of the invention, the morphological goodness construct is linked: To the organized, useful and pleasant structure with natural inclination to the treatise of the forms, to produce movement, and to reproduce the proper movement of the forms. It is expressed by the elements of proportionality, symmetry, referential position, and planar or spatial articulation, arranged in the forms. The conditions of morphological goodness are established in statistical assessments based on the elements mentioned as: proportionality of the X parts, symmetry with respect to the main axes XYZ, and secondary κ-yz, referential position to an axis (usually Z) , joint A¡; these valuations being included in: 0.5 ≤ quadratic mean ≤ 1.0, 0≤ standard error ≤ 10 "6 , proportion in expansion (E) and contraction (C).
El propósito del tratado morfológico de las formas, están orientadas al buen manejo de los recursos energéticos y a la reducción de impactos negativos propias de las tecnologías actuales vinculadas con las actividades para producir movimiento, y reproducir el movimiento. En esencia el movimiento es de naturaleza energética traducida en patrón de radiación morfológica, útil para propagar y recepcionar información, energía eléctrica, y construir vehículos espaciales o acuáticos movidos por patrones de radiación morfológica. El constructo Patrón de radiación morfológico, está vinculado: con toda estructura morfológica , sometida a campos confinados en bloques morfológicos de paredes eléctricas y magnéticas, que reproducen un patrón de radiación similar a su forma. Útil para TX y/o RX de señal con información, útil para generar fuerzas capaz de mover, rotar y/o trasladar un cuerpo. Los patrones de radiación morfológico: son patrones de radiación que adoptan las formas propias de la estructura morfológica traducida circuitalmente por el procedimiento en antena, y reproducen los movimientos propios de las formas, en función de los campos giratorios actuantes que a su vez se expanden y contraen en dicha estructura. The purpose of the morphological treatise of the forms, are oriented to the good management of energy resources and the reduction of negative impacts of current technologies linked to activities to produce movement, and reproduce movement. In essence the movement is of an energetic nature translated into morphological radiation pattern, useful for propagating and receiving information, electrical energy, and building space or aquatic vehicles moved by morphological radiation patterns. The Morphological radiation pattern construct is linked: with every morphological structure, subjected to fields confined in morphological blocks of electric and magnetic walls, which reproduce a radiation pattern similar to its shape. Useful for TX and / or RX signal with information, useful for generating forces capable of moving, rotating and / or moving a body. Morphological radiation patterns: they are radiation patterns that adopt the morphological structure's own forms translated circuitally by the antenna procedure, and reproduce the movements of the forms themselves, depending on the acting rotating fields that in turn expand and they contract in said structure.
La presente invención tiene su aplicación en el campo de la transmisión y recepción de señales, por su naturaleza tiene la capacidad de producir movimiento y/o reproducir el movimiento de las formas, donde el movimiento es cuantificable en términos de gasto electromagnético, sin restricción alguna de frecuencias y protocolos de las tecnologías que requieran del uso de uno o más antenas en donde se quiera prescindir además del uso de estructuras de torres de antena, y de numerosas cantidades de antenas. Concretamente en los sistemas de telecomunicaciones (telefonía móvil, radiodifusión, televisión, estación base, estación móvil), aplicaciones Hardvesting,
aplicaciones MIMO, aplicaciones en filtros de señal, Instrumentación médica, enlaces inalámbricas de redes como: Wifi, Wlan, WmanyWpan, Wimax, Bluetooth, entre otros. Concretamente en e! área de transporte: transmisión y/o recepción de energía eléctrica inalámbrica, y construcción de vehículos espaciales o acuáticos movidos por patrones de radiación morfológica. The present invention has its application in the field of signal transmission and reception, by its nature it has the ability to produce movement and / or reproduce the movement of forms, where the movement is quantifiable in terms of electromagnetic expenditure, without any restriction of frequencies and protocols of the technologies that require the use of one or more antennas where you want to dispense with the use of antenna tower structures, and of numerous amounts of antennas. Specifically in telecommunications systems (mobile telephony, broadcasting, television, base station, mobile station), Hardvesting applications, MIMO applications, applications in signal filters, Medical instrumentation, wireless links of networks such as: Wifi, Wlan, WmanyWpan, Wimax, Bluetooth, among others. Specifically in e! transport area: transmission and / or reception of wireless electric energy, and construction of space or water vehicles moved by morphological radiation patterns.
5 5
La invención se refiere a una ANTENA MORFOLÓGICA Y SU PROCEDIMENTO DE TRADUCCIÓN CIRCUITAL, que soluciona los problemas técnicos presentes en las convencionales, en una forma natural con aspectos operacionales (donde el patrón de radiación es morfológico, reproduce las formas y se propaga dinámicamente con movimientos propios de las formas, en virtud de The invention relates to a MORPHOLOGICAL ANTENNA AND ITS CIRCUITAL TRANSLATION PROCEDURE, which solves the technical problems present in conventional ones, in a natural way with operational aspects (where the radiation pattern is morphological, reproduces the forms and propagates dynamically with movements proper to the forms, by virtue of
LO configurar campos electromagnéticos giratorios que interactúan dinámicamente por expansión y contracción en el ámbito de las formas, traducidas circuitalmente en antena) y aspectos estructurales del diseño (centrada en la bondad morfológica, la antena queda delimitada por la forma a través de un cuerpo envolvente contorneado, conformando un sistema anidado, confinados en bloques morfológicos de paredes eléctricas y magnéticas, traducidas circuitalmenteLO configure rotating electromagnetic fields that interact dynamically by expansion and contraction in the field of forms, translated in circuits in antenna) and structural aspects of the design (centered on morphological goodness, the antenna is delimited by the shape through a contoured enveloping body , forming a nested system, confined in morphological blocks of electrical and magnetic walls, translated circuitry
L5 en antena). En efecto corresponde a una antena sostenible, de reducidos impactos negativos con el medio ambiente, de aspectos espaciales invasivos significantemente menor, con incidencia de radiación energética favorable para la salud, de costos económicos reducidos estructural y operacionalmente hablando. En la antena morfológica, tal cual es la forma, tal cual es el patrón, por consiguiente se reproducen el movimiento propio de las formas, la antena morfológica, esL5 in antenna). In fact, it corresponds to a sustainable antenna, with reduced negative impacts with the environment, with significantly lower invasive spatial aspects, with an incidence of energy radiation favorable to health, with reduced economic costs structurally and operationally speaking. In the morphological antenna, as is the shape, as is the pattern, therefore the proper movement of the forms, the morphological antenna, is reproduced.
10 prácticamente el rastro estructural de las formas traducidas circuitalmente en antena. Toda forma de bondad morfológica, es traducible en antena, y como tal reproducen el movimiento de las formas. 10 practically the structural trace of the forms translated circuitally into an antenna. Every form of morphological goodness is translatable into an antenna, and as such they reproduce the movement of forms.
Por ejemplo: Si la traducción circuital corresponde a la estructura morfológica de un ave, encualquiera de sus estadios, según las condiciones de . bondad morfológica, traducida í5 circuitalmente por el procedimiento en antena morfológica, dicha antena será capaz de reproducir los movimientos del ave electromagnéticamente mediante el patrón de radiación morfológico. Precisamente si la forma traducida circuitalmente en antena contiene la estructura del cuerpo, parte o totalidad, en cualquiera de sus manifestaciones: sean externas y/o internas, pequeñas y/o grandes como: del ala, la cola, las patas, la cabeza, los ojos, el pico, sus huesos, sus órganos, etc.For example: If the circuit translation corresponds to the morphological structure of a bird, any of its stages, according to the conditions of. Morphological goodness, translated í5 circuitally by the morphological antenna procedure, said antenna will be able to reproduce the movements of the bird electromagnetically using the morphological radiation pattern. Precisely if the circuit-translated form in antenna contains the structure of the body, part or all, in any of its manifestations: whether external and / or internal, small and / or large such as: of the wing, tail, legs, head, the eyes, the beak, its bones, its organs, etc.
50 Electromagnéticamente, el patrón de radiación emitida y/o recepcionada se reproduce en movimiento de la energía radiante, tal cual es el ave, con movimientos propios del ave contenida en las formas. Una estructura morfológica, como por ejemplo: la cabeza que forma parte de un todo (el ave), organizada con las demás estructuras morfológicas que comprende la cabeza, como: los ojos, la oreja, el pico, la lengua, los huesos, el plumaje, estructuran la cabeza; en conjunto con50 Electromagnetically, the pattern of emitted and / or received radiation is reproduced in motion of the radiant energy, such as the bird, with the bird's own movements contained in the forms. A morphological structure, such as: the head that is part of a whole (the bird), organized with the other morphological structures that comprise the head, such as: the eyes, the ear, the beak, the tongue, the bones, the plumage, structure the head; together with
!5 las estructuras del ala, las patas, la cola y demás órganos configuran al todo que es el ave. Esto evidencia que la señal radiante asociada a planos y volúmenes, se traslada y rota en el espacio morfológicamente, con patrones de radiación morfológica, útil para trasladar información, transmitir y recepcionar energía eléctrica inalámbricamente, y generar movimientos de objetos o
cuerpos, de un modo natural y diferente, con soluciones a los problemas propios de las antenas convencionales. ! 5 the structures of the wing, the legs, the tail and other organs make up everything that is the bird. This evidences that the radiant signal associated to planes and volumes, moves and rotates in space morphologically, with morphological radiation patterns, useful for transferring information, transmitting and receiving electrical energy wirelessly, and generating movements of objects or bodies, in a natural and different way, with solutions to the problems of conventional antennas.
Verbigracia: traduciendo circuitalmente las formas del pie, en cualquiera de sus manifestaciones, en una antena morfológica, el patrón de radiación de esta antena, adquiere la forma de la estructura del pie, y además se traslada y/o rota, con movimientos propios de un pie como si estuviera caminando. Verbigracia: translating the shapes of the foot, in any of its manifestations, into a morphological antenna, the radiation pattern of this antenna acquires the shape of the structure of the foot, and also moves and / or rotates, with movements of its own One foot as if I was walking.
Verbigracia: traduciendo circuitalmente las formas del ojo, en una antena morfológica, el patrón de radiación de esta antena, adquiere la forma del ojo y además se traslada y/o rota, como si estuviera mirando u observando. Verbigracia traduciendo circuitalmente las formas del esqueleto de un pez, en una antena morfológica, el patrón de radiación de esta antena, adquiere la forma del pez y además se traslada y/o rota, como si estuviera trasladándose en el agua. Verbigracia: translating the shapes of the eye in a morphological antenna, the radiation pattern of this antenna acquires the shape of the eye and also moves and / or rotates, as if looking or observing. Verbigracia translating the shapes of a fish's skeleton in a morphological antenna, the radiation pattern of this antenna acquires the shape of the fish and also moves and / or rotates, as if it were moving in the water.
Verbigracia: traduciendo circuitalmente las formas de una hoja, en una antena morfológica, el patrón de radiación de esta antena, adquiere la forma de la hoja y además se traslada y/o rota, como si estuviera moviéndose sobre las ramas de un árbol. Verbigracia: translating the shapes of a leaf in a morphological antenna, the radiation pattern of this antenna acquires the shape of the leaf and also moves and / or rotates, as if it were moving on the branches of a tree.
Verbigracia: traduciendo circuitalmente las formas de las huellas de un dedo, en una antena morfológica, el patrón de radiación de esta antena, adquiere la forma de la huella y además se traslada y/o rota, como la huella. Verbigracia: translating the fingerprint shapes circuitarily into a morphological antenna, the radiation pattern of this antenna acquires the shape of the fingerprint and also moves and / or rotates, like the fingerprint.
Verbigracia: traduciendo circuitalmente las formas de una planta en cualquiera de sus manifestaciones, en las etapas de su morfología. Desde que es semilla, raíz, tallo, ramas, hojas Jlores y frutos, en una antena morfológica, el patrón de radiación de esta antena, adquiere la forma de cada uno de las etapas de modo independiente o en conjunto para trasladar y/o rotar, como un árbol. Verbigracia: translating circuits the forms of a plant in any of its manifestations, in the stages of its morphology. Since it is seed, root, stem, branches, leaves Jlores and fruits, in a morphological antenna, the radiation pattern of this antenna acquires the form of each of the stages independently or together to move and / or rotate Like a tree
En conclusión: "La acción es siempre movimiento": Los patrones de radiación morfológica en la reproducción del movimiento de las formas, establecen el vínculo de gasto electromagnético con movimiento", con lo que se evidencia que la bondad morfológica posibilita de un modo natural y diferente, solucionar los problemas y efectos propios presentes en las antenas convencionales, se superan los obstáculos, se reducen los efectos de impactos negativos del tipo ambiental, social y económico, técnicamente se tiene una antena de bondad morfológica, de conducta dinámica. El patrón de radiación es dinámica y se propaga de modo natural, no es focalizada o estática agresiva, esto implica que la señal se propaga con características propias y favorables que no tienen las antenas convencionales, cumpliendo así con los propósitos según reivindicaciones de la presente invención.
Si el patrón morfológico, corresponde a la estructura de una gota liquida, el patrón tiende a implementar acciones propios de la gota, como: gotear, fluir; . ■·. ..■·: .. In conclusion: "The action is always movement": The patterns of morphological radiation in the reproduction of the movement of the forms, establish the link of electromagnetic expenditure with movement ", with which it is evidenced that the morphological goodness makes possible in a natural way and different, to solve the problems and effects present in conventional antennas, obstacles are overcome, the effects of negative impacts of the environmental, social and economic type are reduced, technically there is an antenna of morphological goodness, of dynamic behavior. Radiation is dynamic and propagates naturally, it is not focused or aggressive static, this implies that the signal propagates with its own and favorable characteristics that conventional antennas do not have, thus fulfilling the purposes according to the claims of the present invention. If the morphological pattern corresponds to the structure of a liquid drop, the pattern tends to implement actions of the drop, such as: drip, flow; . ■ · . . . ■ · : ..
Si el patrón morfológico, corresponde a la estructura del suelo, el patrón tiende a implementar acciones propios del suelo, como: agrietar, deslizar; If the morphological pattern corresponds to the soil structure, the pattern tends to implement actions of the soil, such as: cracking, sliding;
Si el patrón morfológico, corresponde a la estructura de una pierna, el patrón tiende a implementar acciones propios del pie y sus articulaciones, como: caminar, flexionar; If the morphological pattern corresponds to the structure of a leg, the pattern tends to implement actions of the foot and its joints, such as: walking, flexing;
Si el patrón morfológico, corresponde a la estructura de una mano, el patrón tiende implementar acciones propios de la mano como: tomar, coger, articular; If the morphological pattern corresponds to the structure of a hand, the pattern tends to implement actions of the hand such as: take, take, articulate;
Si el patrón morfológico, corresponde a la estructura de un ojo, el patrón tiende a implementar acciones propios del ojo, como: mirar, observar; If the morphological pattern corresponds to the structure of an eye, the pattern tends to implement actions of the eye, such as: look, observe;
Si el patrón morfológico, corresponde a la estructura de un oído, el patrón tiende a implementar acciones propios del oído, como al: oír, escuchar; If the morphological pattern corresponds to the structure of an ear, the pattern tends to implement actions of the ear, such as: hearing, listening;
Si la traducción circuital corresponde a la estructura morfológica de una mariposa, esta debe reproducir los movimientos propios de una mariposa como: aletear, volar, comprimir y descomprimir su abdomen, etc., es decir mueve sus alas y el abdomen, por consiguiente el patrón de radiación tiende a implementar acciones propios como al vuelo de la mariposa. If the circuit translation corresponds to the morphological structure of a butterfly, it must reproduce the movements of a butterfly such as: flapping, flying, compressing and decompressing its abdomen, etc., that is, it moves its wings and abdomen, therefore the pattern radiation tends to implement own actions such as the flight of the butterfly.
Si el patrón morfológico, corresponde a la estructura de un motor, el patrón tiende a motorizar, girar; If the morphological pattern corresponds to the structure of an engine, the pattern tends to motorize, rotate;
Si el patrón morfológico, corresponde a la estructura de un conejo, el patrón tiende a implementar acciones propios del conejo, como: saltar, entre otros; If the morphological pattern corresponds to the structure of a rabbit, the pattern tends to implement the rabbit's own actions, such as: jumping, among others;
Desde luego, que el patrón de radiación morfológica, de la antena en la presente invención, abre a un espectro de aplicaciones y soluciones, que van más allá del normal uso en los procesos de transmitir y recepcionar señales, para el cual se da inicio a un nuevo campo tecnológico de las antenas morfológicas, donde su requerimiento se hace favorable en términos de aplicación a una necesidad, como las señaladas en párrafos anteriores. Of course, the morphological radiation pattern of the antenna in the present invention opens up to a spectrum of applications and solutions, which go beyond normal use in the processes of transmitting and receiving signals, for which the a new technological field of morphological antennas, where its requirement is favorable in terms of application to a need, such as those indicated in previous paragraphs.
Bondad de la antena morfológica: producen patrones de radiación morfológica en virtud de la interacción de los campos electromagnéticos presentes y participantes en las formas, dichos campos, rotan hasta una velocidad máxima de sesenta veces su frecuencia en un dipolo, y se expande y contrae al valor de su frecuencia para trasladarse; la frecuencia de operación de la antena se establece en función del número de elementos dipolares participantes; el tamaño de la antena, se correlaciona con la potencia de operación y la impedancia característica de la antena; la impedancia característica de la antena depende de la disposición topológica del alimentador, el número de antenas independientes de operación simultánea como TX y/o RX, está en función del número de anidaciones establecidas en la morfología.
Para tal efecto el desarrollo del invento se ha estructurado, según las figuras 11 a 25. 3.-Descripción de las figuras Goodness of the morphological antenna: they produce morphological radiation patterns by virtue of the interaction of the electromagnetic fields present and participating in the forms, such fields, rotate up to a maximum speed of sixty times their frequency in a dipole, and expand and contract at value of its frequency to move; the antenna's operating frequency is set based on the number of participating dipole elements; the size of the antenna correlates with the operating power and the characteristic impedance of the antenna; the characteristic impedance of the antenna depends on the topological arrangement of the feeder, the number of independent antennas of simultaneous operation such as TX and / or RX, is a function of the number of nests established in the morphology. For this purpose the development of the invention has been structured, according to figures 11 to 25. 3.-Description of the figures
Las figuras 1-25, se aplican en la presente invención y corresponden al ESTADO DE LA TÉCNICA las 5 figuras 1-10; a la ANTENA MORFOLÓGICA Y SU PROCEDIMIENTO DE TRADUCCIÓN CIRCUITAL de la presente invención las figuras 11-25, y corresponden a los aspectos operacionales, las figuras 11-19, corresponden a los aspectos estructurales, las figuras 20-22, corresponden a los aspectos procedimentales las figuras 22-25. Figures 1-25, are applied in the present invention and correspond to the STATE OF THE TECHNIQUE the 5 figures 1-10; to the MORPHOLOGICAL ANTENNA AND ITS CIRCUITAL TRANSLATION PROCEDURE of the present invention, Figures 11-25, and correspond to the operational aspects, Figures 11-19, correspond to the structural aspects, Figures 20-22, correspond to the procedural aspects Figures 22-25.
LO Arte Previo LO Previous Art
La presentación de información que se detalla, son orientativas para poder abordar el propósito de la presente invención. The presentation of detailed information are indicative to address the purpose of the present invention.
Figura 1: Patrón de radiación isotrópica vinculados con las antenas convencionales. Figure 1: Isotropic radiation pattern linked to conventional antennas.
L5 Figura 2: Patrones de radiación de las antenas clásicas convencionales. L5 Figure 2: Radiation patterns of conventional classical antennas.
Figura 3: Patrones de radiación de las antenas modernas convencionales. Figure 3: Radiation patterns of conventional modern antennas.
Figura 4: Sistemas accesorios en antenas convencionales, con propósitos de corregir problemas técnicos funcionales. Figure 4: Accessory systems in conventional antennas, with the purpose of correcting functional technical problems.
Figura 4A: Spacing filling (rellenadoras dé espacios). Figure 4A: Spacing filling.
»0 Figura4B: Redes tipo CORP, corporate, serie, wilkinson (fines divisores o Split, acoplamiento usan elementos de carga externos: (como balún, substratos, las propias líneas de alimentación). »0 Figure 4B: CORP, corporate, series, wilkinson networks (splitter or split ends, coupling use external load elements: (such as balun, substrates, the power lines themselves).
Figura 4C: Diversidad espacial de las antenas inteligentes. Figure 4C: Spatial diversity of smart antennas.
Figura 4D: Arreglo de antenas en estructura de torre. Figure 4D: Arrangement of antennas in tower structure.
Í5 Figura 5: Desarrollo de antenas y accesorios convencionales, con propósitos de corregir problemas técnicos estructurales. Í5 Figure 5: Development of conventional antennas and accessories, with the purpose of correcting structural technical problems.
Figura 5A: Disposición de arreglos invasivos Figure 5A: Arrangement of invasive arrangements
Figura 5B: Uso de splitter para distribuir señal de una antena a varias cargas. Figure 5B: Use of splitter to distribute signal from one antenna to several loads.
Figura 5C, Uso típico del splitter en modo invertido para combinar señales de varias \0 antenas. Figure 5C, Typical use of inverter splitter mode to combine signals from several \ 0 antennas.
Figura 5D: Aplicación típica de un equipo, que requiere de varias antenas. Figure 5D: Typical application of a device, which requires several antennas.
Figura 6: Antena desarrollada mediante técnicas de geometría fractal. Configuración pre-fractal tri escalado de antena patch butterfly. Figure 6: Antenna developed using fractal geometry techniques. Pre-fractal tri-scaled patch butterfly antenna configuration.
Figura 7: Antena desarrollada mediante técnicas de geometría euclidiana.Configuración de antena 55 de cortocircuito denominado mariposa. Figure 7: Antenna developed using Euclidean geometry techniques. Short-circuit antenna configuration 55 called butterfly.
Figura 8: Antena decorativa con forma de mariposa. Figure 8: Decorative butterfly-shaped antenna.
Figura 9: Antenas mimetizadas Figure 9: Mimetized antennas
Figura 10: Formas EDF, propia de la radiestesia. Figure 10: EDF forms, typical of dowsing.
Figura 10A: Laberinto de Amiens Figure 10A: Amiens Labyrinth
10 Figura 10B: Plano de suelo de las formas EDF
Propia de la presente invención 10 Figure 10B: Floor plan of EDF shapes Own of the present invention
La información que se detalla; corresponden a la antena morfológica y su procedimiento de traducción circuital, para comprender la invención, sin que ello restrinja o limite su campo de acción con respecto a las morfologías, para ello se han contemplado los aspectos operacionales, 5 estructurales y procedimentales de la traducción circuital en antena morfológica. The information detailed; correspond to the morphological antenna and its circuit translation procedure, to understand the invention, without restricting or limiting its field of action with respect to morphologies, for this the operational, structural and procedural aspects of circuit translation have been contemplated in morphological antenna.
• Aspectos operacionales de la antena morfológica: • Operational aspects of the morphological antenna:
Figura 11 :Ente morfológico. Figure 11: Morphological entity.
LO Figura 12:Bondad morfológica. LO Figure 12: Morphological goodness.
Figura 13:Propósito del tratado morfológico de las formas Figure 13: Purpose of the morphological treatment of forms
Figura 14:Antena morfológica tangible Figure 14: Tangible morphological antenna
Figura 15:Campos electromagnéticos giratorios del dipolo morfológico, que se expanden y contraen en un eje, dos ejes y tres ejes. Figure 15: Rotating electromagnetic fields of the morphological dipole, which expand and contract on one axis, two axes and three axes.
L5 Figura 16: Patrones de radiación morfológica L5 Figure 16: Morphological radiation patterns
Figura 16A: Bloques-morfológicos Figure 16A: Morphological blocks
Figura 16B: Gasto electromagnético Figure 16B: Electromagnetic spending
Figura 16C: Balance energético de la antena morfológica Figure 16C: Energy balance of the morphological antenna
Figura 17: Patrón de radiación de una estructura morfológica: mariposa de la región Huánuco 10 Figura 18: Patrón de radiación de una estructura morfológica: rosa de la región Callao Figure 17: Radiation pattern of a morphological structure: butterfly of the Huánuco region 10 Figure 18: Radiation pattern of a morphological structure: rose of the Callao region
Figura 19: Espectro de ente morfológico Figure 19: Spectrum of morphological entity
» Aspectos estructurales de la antena morfológica »Structural aspects of the morphological antenna
15 Dimensional: 15 Dimensional:
Figura 20: Modalidad de antena morfológica Figure 20: Morphological antenna mode
Figura 20A: Modalidad planar Figure 20A: Planar mode
Figura 20B: Modalidad espacial Figure 20B: Spatial mode
Figura 20C: Ciertas formas de elemental conducta Figure 20C: Certain forms of elementary behavior
$0 Circuital: $ 0 Circuit:
Figura 21: Elementos de traducción circuital Figure 21: Elements of circuit translation
Figura 22: Aplicación simple de la presente invención Figure 22: Simple application of the present invention
Figura 22A: Antena morfológica mariposa Figure 22A: Butterfly morphological antenna
Figura 22B: Antena morfológica Perro Sin Pelo Peruano Figure 22B: Peruvian Hairless Dog morphological antenna
$5 Figura 22C: Antena morfológica mosquito $ 5 Figure 22C: Mosquito morphological antenna
• Aspectos procedimentales de la traducción circuital en antena morfológica • Procedural aspects of circuit translation in morphological antenna
Figura 23: Diagrama bloque del procedimiento de traducción circuital Figure 23: Block diagram of the circuit translation procedure
10 Figura 24: Secuencia de procedimiento de traducción circuital 10 Figure 24: Sequence of circuit translation procedure
Figura 25: Bondad de la antena morfológica
4.-Descripción detallada de la Invención Figure 25: Goodness of the morphological antenna 4.-Detailed description of the invention
La información que se detalla dentro del estado del arte, son orientativas para poder abordar el propósito de la presente invención, en tal sentido se ha focalizado en las siguientes figuras: The information that is detailed within the state of the art, are indicative to be able to address the purpose of the present invention, in this sense it has focused on the following figures:
5 En la figura 1, se muestra el patrón de radiación de una agrupación de antenas, con un único elemento de tipo isotrópico. Este patrón corresponde al ideal isotrópico sobre el cual se referencian las antenas convencionales, la radiación se produce en todas las direcciones con igual intensidad, sin perdidas y con una ganancia unitaria (OdB). 5 In Figure 1, the radiation pattern of a cluster of antennas is shown, with a single isotropic type element. This pattern corresponds to the isotropic ideal on which conventional antennas are referenced, radiation occurs in all directions with equal intensity, without losses and with a unit gain (OdB).
LO En la figura 2, Se muestra el patrón de radiación de antenas clásicas convencionales.. La que atendiendo al diagrama de radiación existe una clasificación general de tipos de antenas como: antena isotrópica, antena omnidireccional, antena directiva entre otros. Una antena omnidireccional de figura 2B, con diagramas pinceladas de figura 2C y rotaciones de antenas de figura 2D, donde el patrón de radiación se modifica cuando se cambia la posición por rotación. LaLO In Figure 2, the radiation pattern of conventional classical antennas is shown. The one that according to the radiation diagram there is a general classification of antenna types such as: isotropic antenna, omnidirectional antenna, directive antenna among others. An omnidirectional antenna of figure 2B, with brushed diagrams of figure 2C and rotations of antennas of figure 2D, where the radiation pattern is modified when the position is changed by rotation. The
L5 figura 2A, corresponde al patrón de radiación de una antena dipolo elemental. L5 Figure 2A, corresponds to the radiation pattern of an elementary dipole antenna.
En la figura 3, se muestra los patrones de radiación de las antenas modernas convencionales. Los patrones de radiación de figura 3A, corresponden a los arreglos (Array), propias de las antenas inteligentes (SMART), donde se observa que el diagrama de radiación es modificable, y adaptableIn Figure 3, the radiation patterns of conventional modern antennas are shown. The radiation patterns in Figure 3A correspond to the arrays (Array), typical of smart antennas (SMART), where it is observed that the radiation pattern is modifiable, and adaptable
10 según aplicaciones y necesidades, mediante el uso de muchas antenas, estructuras de torres, y sistemas complejos de proceso y operación, a nivel de hardware y software. La figura 3B, está relacionado con el patrón de radiación de arreglos de antenas fotónicas.En la figura 3C, se observa el patrón de radiación en una antena inteligente, donde su optimización está basada en la agrupación con la finalidad de ser direccionada a un punto de interés (cobertura) y el acoplo10 according to applications and needs, through the use of many antennas, tower structures, and complex process and operation systems, at the hardware and software level. Figure 3B is related to the radiation pattern of photonic antenna arrays. In Figure 3C, the radiation pattern in an intelligent antenna is observed, where its optimization is based on clustering in order to be directed to a point of interest (coverage) and coupling
Í5 controlado entre los elementos radiantes, buscando caracterizad el patrón de radiación para controlarlo (direccionarlo), valiéndose de elementos parásitos externos. La figura 3D, corresponde al patrón de radiación, modificable obtenido en función de operacionalizar matemáticamente los patrones independientes de las antenas participantes en una frecuencia fl, f2 determinada. Í5 controlled between the radiating elements, seeking to characterize the radiation pattern to control it (direct it), using external parasitic elements. The 3D figure corresponds to the modifiable radiation pattern obtained in function of mathematically operationalizing the independent patterns of the participating antennas at a given frequency fl, f2.
!0 En la figura 4, se muestra el desarrollo de accesorios de antenas convencionales, con propósitos de corregir problemas técnicos operacionales. La figura 4A, está relacionado con Spacing Filling (SFC) lo que hace es rellenar los espacios con la finalidad de reducir el tamaño de la antena. La figura 4B, está relacionado con Redes tipo Corp 4B1, Corporate 4B2, Serie 4B3, Wiikinson 4B4. En la figura 4A: 4A1, 4A2, 4A3, se observa el principio de la geometría de curvas de relleno de espacio! 0 Figure 4 shows the development of conventional antenna accessories, with the purpose of correcting operational technical problems. Figure 4A is related to Spacing Filling (SFC) what it does is fill in the spaces in order to reduce the antenna size. Figure 4B is related to Networks type Corp 4B1, Corporate 4B2, Series 4B3, Wiikinson 4B4. In Figure 4A: 4A1, 4A2, 4A3, the principle of space fill curve geometry is observed
Í5 (SFC), cuya intención es cubrir espacios con formas lineales o segmentos de rectas con la finalidad de lograr comprimir y lograr antenas pequeñas. En la figura 4B1, se observa una estructura matricial Corp que es capaz de manipular N antenas con entradas, dispuestas geométricamente a través de capas L, es decir a nivel de transmisión, m señales de entradas transmisoras pueden ser direccionadas a n salidas (en este caso a n antenas), se observa que para transmitir una señalÍ5 (SFC), whose intention is to cover spaces with linear shapes or straight segments in order to compress and achieve small antennas. In Figure 4B1, a matrix matrix structure is observed that is capable of manipulating N antennas with inputs, arranged geometrically through layers L, that is at the transmission level, m signals of transmitting inputs can be routed to outputs (in this case an antennas), it is observed that to transmit a signal
10 en la disposición orientada a un área objetivo u objetivos se requieren de muchas antenas de
l,2...n.; haciendo el ejercicio inverso para el caso de Recepción de señales, se necesitan N antenas receptoras (muchas antenas de 1, 2, ri) para orientarlos-hacia las cargas ubicadas en M, se observa que para recepcionar señales de una determinada disposición se requieren de muchas antenas. En la figura 4B2, se tiene una configuración de alimentación corporate que consta de ramificaciones 1 y 2 de la línea transmisión 3, esencialmente manipula la impedancia Zo de la línea en términos de longitudes de onda (λ/4), en aras dé obtener la caracterización de amplitud y fase como parámetros de interés. En la figura 4B3, se muestra el típico esquema de agrupación de antenas con alimentación serie, estas configuraciones tienen el inconveniente de incorporar desfasajes entre las antenas 1, 2, n-1, n, separadas a una distancia d, para lo cual intenta paliar dicho efecto mediante el uso de componentes discretos como bobinas y capacitores, entre otros. En la figura 4B4, se tiene un típico esquema de Spliter basado en la configuración Wilkinson, se observa claramente que la señal en 3 a nivel de potencia se divide en 1 y 2, asimismo se nota que con el fin de disminuir los efectos de reflexión, añade elementos de pérdidas 4. 10 in the provision oriented to an objective area or objectives many antennas of l, 2 ... n .; performing the reverse exercise in the case of Receiving signals, N receiving antennas (many antennas of 1, 2, ri) are needed to orient them-towards the loads located in M, it is observed that to receive signals of a certain arrangement requires Many antennas In Figure 4B2, there is a corporate power configuration consisting of branches 1 and 2 of the transmission line 3, essentially manipulating the Zo impedance of the line in terms of wavelengths (λ / 4), in order to obtain the characterization of amplitude and phase as parameters of interest. In figure 4B3, the typical scheme of grouping of antennas with serial feeding is shown, these configurations have the disadvantage of incorporating phase shifts between the antennas 1, 2, n-1, n, separated at a distance d, for which it tries to alleviate this effect through the use of discrete components such as coils and capacitors, among others. In Figure 4B4, there is a typical Spliter scheme based on the Wilkinson configuration, it is clearly seen that the signal at 3 at the power level is divided into 1 and 2, it is also noted that in order to reduce the effects of reflection , add elements of losses 4.
En conclusión de la información del estado del arte, los fines que persiguen dichas configuraciones según la figura 4B, son netamente de divisores (Split), de combinación de señal (Split invertido) y de acoplamiento usando elementos de carga externo (cómo balún, substratos, las propias líneas de alimentación, elementos discretos como resistencias, bobinas y capacitores). Aquí se puede observar que los fines son nodales, esto es para una señal que ingresa se divide en "n" veces para "n" ramas divisorias, esto quiere decir que la señal que se reparte en cada rama cae en su valor de potencia y con consecuencias de incidencia mutua entre las cargas conectado en las ramas, esto es acoplo des medido, reflexión, des alinealidad de la señal; si hacemos el ejercicio inverso el efecto es de amplificación, es decir si ingresamos "n" señales por cada rama todas ellas confluirían a una salida que sería amplificada siempre y cuando todas las señales de entrada cumplan con características que hagan posible ello, como eso no es así los usan como combinador de señal, sin embargo, las consecuencias de incidencia son las mismas que el caso anterior, normalmente esto se han intentado corregir con amplificadores activos, si bien es cierto que amplifican la señal, también amplifican las consecuencias, lo cual no solucionan totalmente al problema. Razón por la cual se denominan SPLITTER (divisores de potencia), cumpliendo el papel de repartidor o combinador de señal. En la Figura 4C, Se muestra el sistema que aplican las antenas inteligentes, con la finalidad de lograr los diferentes tipos de diversidad espacial, empleando M antenas transmisoras y N antenas receptoras, según Figura 4D, las mismas emplean complejas unidades a nivel de hardware y software, incluyendo grandes estructuras de torres, con innumerables arreglos de antenas, como la detallada en la Figura 5. En la Figura 5, se muestra el desarrollo de antenas y uso de accesorios convencionales, con propósitos de corregir problemas técnicos estructurales. La Figura 5A, está relacionado con la disposición de arreglos (estación base) denotando cuan invasivos son con respecto al espacio ocupado iniciado en el poste 1, se observa que varias señales de alimentación son distribuidos en 3.1 para alimentar arreglos en 3.2,3.3,3.4,3.5,3.6 de antenas en 2.1 a 2.23, con fines de optimización de cobertura de la señal hacia un área determinado en 4.1, 4.2, 4.3. La Figura 5B,
está relacionado con uso típico del splitter para distribuir señal de una antena antl a varias cargas ívi, ½2; lógicamente con caída de la señal y sin aislamiento. La Figura SC, está relacionado con uso típico del splitter en modo invertido para combinar las señales de las antenas antl, ant2, ant3 y ant4 hacia la carga, con acoplamiento mutuo de las señales y sin aislamiento. La Figura 5D, está 5 relacionado con una aplicación típica de un equipo que requiere de varias antenas ant 1, ant2, ant3, ant4, ant5 y ant6 para su funcionamiento, con fines de cobertura y aplicaciones MIMO, se observa además cuan invasivo son desde el punto de vista espacial. In conclusion of the information of the state of the art, the purposes pursued by said configurations according to Figure 4B, are clearly splitters (Split), signal combination (inverted Split) and coupling using external load elements (such as balun, substrates , the power lines themselves, discrete elements such as resistors, coils and capacitors). Here you can see that the ends are nodal, this is for a signal that enters is divided into "n" times for "n" dividing branches, this means that the signal that is distributed on each branch falls in its power value and with consequences of mutual incidence between the loads connected in the branches, this is measured coupling, reflection, signal misalignment; if we do the reverse exercise, the effect is amplification, that is, if we enter "n" signals for each branch, all of them would converge to an output that would be amplified as long as all the input signals comply with characteristics that make this possible, as that does not this is how they are used as a signal combiner, however, the consequences of incidence are the same as the previous case, normally this has been attempted to correct with active amplifiers, although it is true that they amplify the signal, they also amplify the consequences, which They do not totally solve the problem. Reason why they are called SPLITTER (power dividers), fulfilling the role of distributor or signal combiner. In Figure 4C, the system applied by intelligent antennas is shown, in order to achieve different types of spatial diversity, using M transmitting antennas and N receiving antennas, according to Figure 4D, they employ complex units at the hardware level and software, including large tower structures, with countless antenna arrangements, such as the one detailed in Figure 5. Figure 5 shows the development of antennas and the use of conventional accessories, with the purpose of correcting structural technical problems. Figure 5A, is related to the arrangement of arrangements (base station) denoting how invasive they are with respect to the occupied space initiated in post 1, it is observed that several feeding signals are distributed in 3.1 to feed arrangements in 3.2.3.3.3.4 , 3.5.3.6 of antennas in 2.1 to 2.23, for the purpose of optimizing signal coverage towards a specific area in 4.1, 4.2, 4.3. Figure 5B, it is related to the typical use of the splitter to distribute signal from an antl antenna to several loads vi, ½2; logically with signal drop and no isolation. Figure SC is related to the typical use of the splitter in inverted mode to combine the signals of the antennas antl, ant2, ant3 and ant4 towards the load, with mutual coupling of the signals and without isolation. Figure 5D, is related to a typical application of a device that requires several antennas ant 1, ant2, ant3, ant4, ant5 and ant6 for operation, for coverage purposes and MIMO applications, it is also observed how invasive they are from The spatial point of view.
En la figura 6, se muestra una modalidad de antena desarrollada mediante técnicas de geometría 10 fractal relacionado con la configuración pre-fractal tri escalado 6B, 6C, 6D de antena patch butterfly. Se observa que estas no logran reproducir fielmente a las formas de una mariposa 6E usando patrones repetitivos 6A. In Figure 6, an antenna modality developed by fractal geometry techniques 10 related to the tri-scaled pre-fractal configuration 6B, 6C, 6D of patch butterfly antenna is shown. It is noted that these fail to reproduce faithfully the shapes of a 6E butterfly using repetitive patterns 6A.
En la figura 7, se muestra una modalidad de antena desarrollada mediante técnicas de geometría 15 euclidiana relacionada con la configuración de antena de cortocircuito denominado mariposa.Se observa que estas no logran reproducir fielmente a las formas de una mariposa, usando patrones geométricos no repetitivos. In Figure 7, an antenna modality developed by Euclidean geometry techniques 15 related to the short-circuit antenna configuration known as a butterfly is shown. It is observed that these fail to reproduce faithfully the shapes of a butterfly, using non-repetitive geometric patterns.
En la figura 8, se muestra una modalidad de antena decorativa con forma de mariposa, 20 desarrollada mediante técnicas de geometría euclidiana. Se observa que estas no logran reproducir fielmente las formas y su correspondiente estructura de una mariposa, usando patrones geométricos no repetitivos. Tomamos como referencia a la mariposa, por ser una entidad de forma muy representativa y trastocada por diversos investigadores. In figure 8, a butterfly-shaped decorative antenna mode is shown, 20 developed by Euclidean geometry techniques. It is observed that they fail to reproduce faithfully the shapes and their corresponding structure of a butterfly, using non-repetitive geometric patterns. We take the butterfly as a reference, as it is a very representative entity and disrupted by various researchers.
25 En la figura 9, se muestra una modalidad de antena mimetizada, donde se observa el camuflaje y maquillaje de las estaciones base (BTS), mediante el uso de árboles artificiales 9A, asimismo se usan torres con disposición de mejoras en los arreglos 9B, que se insertan en ambientes para simular un bajo impacto ambiental. Dichas estructuras están hechas sobre materiales que operan en condiciones climáticas extremas. Estos tipo de planteamientos de ningún modo reducen los25 Figure 9 shows a modality of a mimetized antenna, where the camouflage and makeup of the base stations (BTS) is observed, using artificial trees 9A, towers are also used with provision of improvements in arrangements 9B, which are inserted in environments to simulate a low environmental impact. These structures are made on materials that operate in extreme weather conditions. These types of approaches in no way reduce the
JO impactos para con el medio ambiente natural y artificial, en beneficio de las futuras generaciones a nivel de sostenibilidad, específicamente a nivel social en la salud. JO impacts on the natural and artificial environment, for the benefit of future generations at the level of sustainability, specifically at the social level in health.
En la Figura 10, se muestra las típicas Formas EDF, propia de la radiestesia. La Figura 5A, está relacionado con el laberinto de Amiens, que se inicia en 1 y culmina en el botón 2, estas formas 35 están presentes en muchas construcciones antiguas como las iglesias góticas. La Figura 5B, está relacionado con el plano de suelo de las formas EDF, está tiene un origen en 1, con los respectivos diámetros proporcionales en 2, 3, 4 y 5. Estas formas que no son las únicas adquieren importancia por cuanto usan la geometría euclidiana profundamente, y sin embargo, también están cerca de ciertas formas que se relacionan con la geometría fractal. Figure 10 shows the typical EDF Forms, typical of dowsing. Figure 5A, is related to the labyrinth of Amiens, which begins at 1 and culminates in button 2, these forms 35 are present in many ancient constructions such as the Gothic churches. Figure 5B, which is related to the ground plane of the EDF forms, has an origin in 1, with the respective proportional diameters in 2, 3, 4 and 5. These forms that are not the only ones acquire importance because they use the Euclidean geometry deeply, and yet they are also close to certain forms that relate to fractal geometry.
M)
La información que se detalla a continuación, corresponden a los aspectos operacionales de ia antena m clógica, ara comprender la invención, sin que ello restrinja su campo de acción con respecto a las formas de los entes morfológicos. M) The information detailed below corresponds to the operational aspects of the m alogical antenna, in order to understand the invention, without restricting its field of action with respect to the shapes of morphological entities.
5 Las Formas que aplica la antena morfológica y su procedimiento de traducción circuital, propia de la presente invención, están relacionadas con las formas de entes vivientes y/o no vivientes, incluyendo las abstractas, en toda su expresión sea externa y/o interna, es decir todas la formas existentes pueden ser traducidas circuitalmente en antena, abordándolo como ente morfológico según la figura 11, que responden a la conducta de antena sea emisor o receptor en virtud de su 10 conformación de patrón de radiación morfológica vinculada con aspectos de bondad morfológica, según Figura 12. 5 The Forms applied by the morphological antenna and its circuitry translation procedure, typical of the present invention, are related to the forms of living and / or non-living entities, including abstract ones, in all its expression whether external and / or internal, that is to say, all the existing forms can be translated circuitally into an antenna, addressing it as a morphological entity according to figure 11, which respond to the antenna behavior, be it emitter or receiver by virtue of its conformation of morphological radiation pattern linked to aspects of morphological goodness , according to Figure 12.
En la Figura 11, Se muestra como una morfología determinada representa un ente, y debe entenderse que toda entidad sea macro o muy pequeño, en su proceso dinámico de desarrolloIn Figure 11, it is shown how a specific morphology represents an entity, and it should be understood that every entity is macro or very small, in its dynamic development process
15 pasan por etapas de escalonamientos, es decir, que siendo muy pequeño como en 11A2 se hacen grande en 11 Al, hasta alcanzar la madurez, esto se hace evidentemente en aquellas entidades macro, sin embargo, en las pequeñas, para ser observados requieren de un escalonamiento accesorio en 11A3. En 11A4, la frecuencia de operación es mayor con respecto a 11A5, donde la frecuencia se hace menor. En la figura 11B, se muestra el escalonamiento morfológico de la15 go through stages of staggering, that is, being very small as in 11A2 they become large in 11 Al, until reaching maturity, this is evidently done in those macro entities, however, in the small ones, to be observed they require an accessory step in 11A3. In 11A4, the operating frequency is higher with respect to 11A5, where the frequency becomes lower. In figure 11B, the morphological staging of the
20 estructura interna del cuerpo del pez de agua dulce TOA. En la figura 11C, se muestra el escalonamiento morfológico de la estructura externa de la semilla del frijol huallaguino, evolucionado cada 10 minutos, según los intervalos desde to hasta t4, en suelo de lima, donde se aprecia la expansión de la semilla, hasta germinar, para al final después de producir su fruto se contraiga nuevamente en semilla. En la figura 11D, se muestra el ente morfológico de la20 internal structure of the body of the freshwater fish TOA. In figure 11C, the morphological staging of the external structure of the Huallaguino bean seed is shown, evolved every 10 minutes, according to the intervals from to to t4, in lime soil, where the seed expansion is appreciated, until germinating , for the end after producing its fruit it contracts again in seed. In figure 11D, the morphological entity of the
25 estructura craneal externo del perro sin pelo peruano SHIKA, estructura muy fina y organizada, con una bondad morfológica de gran valía desde el cuello a las orejas, como la frente y boca. 25 external cranial structure of the Peruvian dog without hair SHIKA, very fine and organized structure, with a morphological goodness of great value from the neck to the ears, such as the forehead and mouth.
En la Figura 12: Se muestra las condiciones de bondad morfológica. Para efectos de la invención, está vinculado con la estructura organizada, con inclinación natural al tratado de las formas, paraIn Figure 12: The conditions of morphological goodness are shown. For purposes of the invention, it is linked to the organized structure, with a natural inclination to the treatise of forms, to
JO producir movimiento, y reproducir el movimiento propio de las formas. Se expresa mediante la evaluación de los elementos de proporcionalidad, simetría, posición referencial, y articulación planar o espacial, dispuestas en las formas. Verbigracia evaluando la bondad morfológica de la estructura de un brazo de figura 12A, se establecieron las valoraciones estadísticas sobre la base de los elementos mencionados anteriormente con proporcionalidad de las partes λ), con simetríaJO produce movement, and reproduce the proper movement of forms. It is expressed by evaluating the elements of proportionality, symmetry, referential position, and planar or spatial articulation, arranged in the forms. Verbigracia evaluating the morphological goodness of the structure of an arm of figure 12A, statistical assessments were established on the basis of the elements mentioned above with proportionality of the parts λ), with symmetry
35 respecto a los ejes principales X-Y-Z, y secundarios x-y-z, con posición referencial Z, y articulación A| según figura 12B, de media cuadrática en 0.9517, de desviación estándar en 0.1873, error estándar en 0.0003, con 359999 nodos analizados, con lo cual se tiene la bondad a favor para ser considerado como una potencial estructura. Según figura 12C, se indica la tendencia vectorial de la estructura, con movimiento articulado de los brazos hacia arriba. 35 with respect to the main axes X-Y-Z, and secondary axes x-y-z, with reference position Z, and articulation A | according to figure 12B, of a quadratic mean in 0.9517, of standard deviation in 0.1873, standard error in 0.0003, with 359999 nodes analyzed, which has the goodness in favor to be considered as a potential structure. According to figure 12C, the vector trend of the structure is indicated, with articulated movement of the arms upwards.
Í0
En la figura 13: se muestra el propósito del tratado morfológico de las formas, orientadas al buen manejo de los recursos energéticos eii la reducción de impactos negativos provocados por las tecnologías actuales v.g figura 4, figura5, con patrones de radiación v.g figura 1, figura 2, figura 3. Para Según figura 13A, producir movimiento capaz de impulsar objeto alguno 13A1, donde el00 Figure 13 shows the purpose of the morphological treatment of the forms, oriented to the good management of energy resources and the reduction of negative impacts caused by current technologies, eg Figure 4, Figure 5, with radiation patterns, Figure 1, Figure 2, figure 3. For According to figure 13A, produce movement capable of propelling any object 13A1, where the
5 movimiento 13A3, en planos del espacio 13A6, se da por medio del impulso 13A5 provocado por la antena morfológica de ente 13A2, ubicado dentro del objeto 13A1. Según figura 13B, se muestra la perspectiva de la reproducción del movimiento de las formas del ente 13B1, traducida en antena morfológica 13B2, 14A, para llevar o recibir energía. En esencia el movimiento es de naturaleza energética traducida en patrón de radiación morfológica 13B3,14B, que se propaga5 movement 13A3, in planes of space 13A6, is given by impulse 13A5 caused by the morphological antenna of entity 13A2, located within object 13A1. According to figure 13B, the perspective of the reproduction of the movement of the shapes of the entity 13B1, translated into morphological antenna 13B2, 14A, to carry or receive energy is shown. In essence the movement is of an energetic nature translated into morphological radiation pattern 13B3,14B, which spreads
LO según contracción y expansión 13B4, 14C, desde la referencia de nivel cero donde se emplaza la antena morfológica 14A, hasta una altura determinada por la caracterización de antena en 14E,prescindiendo de torre alguna, y rotación 13B5, 14D hasta una velocidad máxima de sesenta veces la frecuencia en un dipolo morfológico, con cobertura de 0 a 360 grados. LO according to contraction and expansion 13B4, 14C, from the zero level reference where the morphological antenna 14A is located, to a height determined by the antenna characterization in 14E, regardless of any tower, and rotation 13B5, 14D to a maximum speed of Sixty times the frequency in a morphological dipole, with coverage from 0 to 360 degrees.
En la figura 14, se muestra a la antena morfológica 14A, como el elemento tangible, para L5 transmitir y recepcionar información, energía eléctrica, y construir vehículos espaciales o acuáticos movidos según 13A, por antenas morfológicas tipo 14A, 13A2, 13B2, con patrones de radiación morfológica 14B, que se expanden y contraen en dirección de 14C, y rotan según 14D, en sentido de A a B, de B a C, de C a D y de D a A, con amplia cobertura al superar obstáculos, y barrido en la longitud de altura 14E, prescindiendo del uso de torres o soportes con innumerables cantidades 50 de antenas. Las imágenes remarcadas con elipses escenifican detalles de la realidad actual asociada con la insostenibilidad y sus efectos dentro del estado del arte, cuya problemática atañe dar solución mediante la presente invención. In figure 14, the morphological antenna 14A is shown, as the tangible element, for L5 to transmit and receive information, electrical energy, and build space or aquatic vehicles moved according to 13A, by morphological antennas type 14A, 13A2, 13B2, with patterns of morphological radiation 14B, which expand and contract in the direction of 14C, and rotate according to 14D, in the direction of A to B, B to C, C to D and D to A, with wide coverage when overcoming obstacles, and swept in the length of height 14E, disregarding the use of towers or supports with innumerable amounts of antennas 50. The images highlighted with ellipses stage details of the current reality associated with unsustainability and its effects within the state of the art, whose problem concerns solving by the present invention.
En la Figura 15, se muestra la configuración del campo electromagnético giratorio del dipolo !5 morfológico 21al (elemento dipolar de forma) en un eje, dos ejes y tres ejes. E! campo electromagnético giratorio producida por un elemento dipolar de forma 15A5, propia en la conformación del patrón de radiación de figura 16 de la antena morfológica; los campos electromagnéticos giratorios, según la disposición de elementos dipolares de forma 15A1, 15A2, hacen que el frente de onda se de en un eje 15A, en dos ejes 15B y en tres ejes 15C. Figure 15 shows the configuration of the rotating electromagnetic field of the morphological dipole! 5 (dipole shaped element) on one axis, two axes and three axes. AND! rotating electromagnetic field produced by a dipole element of shape 15A5, proper in the conformation of the radiation pattern of figure 16 of the morphological antenna; The rotating electromagnetic fields, according to the arrangement of dipole elements of shape 15A1, 15A2, make the wavefront be on an axis 15A, on two axes 15B and on three axes 15C.
¡0 0
En 15A: el campo electromagnético sostiene un frente de onda en el eje Z, un elemento dipolar de forma 15A5, es aquel elemento mínimo y significativo denominado dipolo morfológico, que introduce dos polos 15A1, 15A2, en la conformación de nuestra antena esto es NDp = 1, y la geometría que adopta corresponde a la traducción circuital de las formas que la contienen. El In 15A: the electromagnetic field supports a wave front on the Z axis, a dipole element of 15A5 shape, is that minimal and significant element called morphological dipole, which introduces two poles 15A1, 15A2, in the conformation of our antenna that is NDp = 1, and the geometry it adopts corresponds to the circuit translation of the forms that contain it. He
15 elemento dipolar de forma 15A5, sostiene fuerzas de campos vectoriales Fl y F2, en 15A1 y 15A2, respectivamente, en el eje X, y eje Y en sentido 15A3, 15A4, que impulsan conformar un vector resultante FR, que se desplaza por expansión y contracción en sentido D, y gira en sentido , al campo electromagnético de 15A6 a 15A7, de 15A7 a 15An, en un solo eje Z, referenciada al plano REF. El giro Wn que toma el vector resultante FR, que transporta la energía en el frente de onda,15 dipole element of form 15A5, supports forces of vector fields Fl and F2, in 15A1 and 15A2, respectively, on the X axis, and Y axis in the direction 15A3, 15A4, which drive to form a resulting vector FR, which travels by expansion and contraction in direction D, and turns in direction, to the electromagnetic field from 15A6 to 15A7, from 15A7 to 15An, on a single Z axis, referenced to the REF plane. The spin Wn taken by the resulting vector FR, which carries the energy in the wavefront,
M3 responde como máximo en el elemento dipolar 15A5 en sesenta veces el valor de la frecuencia
"f", según Wm en ia curva de dispersión mostrada, dicha velocidad es mayor a menor número NDp de elementos dipolares. M3 responds at most in the dipole element 15A5 in sixty times the frequency value "f", according to Wm in the dispersion curve shown, said velocity is greater than the lower NDp number of dipole elements.
En 15B: el campo electromagnético giratorio, gira 60 veces la frecuencia "f", en el eje X, según la referencia, y está conformado por un elemento dipolar NDp=l.En 15C: el campo electromagnético giratorio gira 20 veces la frecuencia "f", en dos ejes: en el eje X y eje Y, y está conformado por tres elementos dipolares NDp=3. En 15D: el campo^ electromagnético giratorio, gira 60/7 veces la frecuencia "f" en tres ejes: en el eje X, Y, Z, y está conformado por siete elementos dipolares NDp=7. En la Figura 15, se muestra además, el desplazamiento del campo electromagnético giratorio del dipolo morfológico en un eje, dos ejes y tres ejes. En 15B: el campo electromagnético giratorio , rota en el eje X, y se desplaza en el eje Y o eje Z, por expansión y contracción en un número de veces al valor de la frecuencia "f". En 15C: el campo electromagnético giratorio rota y desplaza en los ejes X e Y, por expansión y contracción en un número de veces al valor de la frecuencia "f". En 15D: el campo electromagnético giratorio, se desplaza en los ejes X, Y, Z, por expansión y contracción en un número de veces al valor de la frecuencia "f" . In 15B: the rotating electromagnetic field, rotates the frequency "f" 60 times, on the X axis, according to the reference, and is made up of a dipole element NDp = 1. In 15C: the rotating electromagnetic field rotates the frequency 20 times " f ", in two axes: on the X axis and Y axis, and is made up of three dipole elements NDp = 3. In 15D: the rotating electromagnetic field ^ rotates the frequency "f" 60/7 times in three axes: on the X, Y, Z axis, and is made up of seven dipole elements NDp = 7. In Figure 15, the displacement of the rotating electromagnetic field of the morphological dipole in one axis, two axes and three axes is also shown. In 15B: the rotating electromagnetic field, rotates on the X axis, and moves on the Y axis or Z axis, by expansion and contraction in a number of times to the value of the frequency "f". In 15C: the rotating electromagnetic field rotates and displaces in the X and Y axes, by expansion and contraction in a number of times to the value of the frequency "f". In 15D: the rotating electromagnetic field, moves in the X, Y, Z axes, by expansion and contraction in a number of times to the value of the frequency "f".
En la Figura 16, se muestra el constructo de patrón de radiación morfológico, relacionado con toda estructura morfológica de figura 11, que cumplen con condiciones expresadas según figura 12, y propósito del tratado morfológico de las formas de figura 13, donde los campos confinados en bloques morfológicos 16A, de paredes eléctricas 16A1, y magnéticas 16A2, en planos X-Y, X-Z, Y-Z, reproducen un patrón de radiación 13B3, 14B, 16B2, similar a la forma, es decir, los patrones de radiación morfológico: son patrones de radiación que adoptan las formas propias de la estructura morfológica traducida circuitalmente por el procedimiento en antena morfológica, y reproducen los movimientos propios de las formas, en función de los campos giratorios actuantes que a su vez se expanden y contraen en dicha estructura, en términos expresados según figura 14, figura 15. Asimismo según la figura "16B, la acción de movimiento de rotación 16B4, y traslación 16B5, del patrón de radiación morfológica 16B2, en la reproducción del movimiento de las formas 16B1, establece un vínculo de gasto electromagnético 16B7, con el movimiento como la de 17C, 17D, 18C, la que en términos de potencia 16C1.6, resulta en un valor porcentual 16C1.5 del torque electromagnético de la antena morfológica y la cuantificación de su movimiento 16C1.4 , en virtud de una fuente 16B3, que lo alimenta y cierra bucle con sumidero 16B6, siendo esta dinámica y de propagación natural, no focalizada o estática agresiva, esto implica que la señal se propaga con características propias, favorables en el cumplimiento con los propósitos según reivindicaciones de la presente invención. En la figura 16C, se muestra la configuración de balance energético de la antena morfológica 16C1, definida en elementos de campo morfológico 16C1.1, 16C1.2 y armadura morfológica 16C1.7, 16C1.8, 16C1.9, vinculadas por el elemento rotacional 16C1.3; con patrón de radiación morfológica 16C2, que se propaga a velocidad de rotación 16C1.4 y traslación de frecuencia 16C1.1, de potencia 16C1.6 y gasto 16C1.5.
En la Figura 17, se muestra el patrón de radiación 17B, correspondiente a la estructura morfológica de una mariposa 17A, oriunda de la selva Peruana, donde se reproducen los movimientos propios de dicha mariposa en un vuelo: esto es aleteo 17C establecida por el proceso de expansión 17C1 y contracción 17C2 positiva 17C3 del ala 17C4, y ritmo del abdomen 17D establecida por el proceso de expansión 17D1 y contracción 17D2, positiva y negativamente en 17D1+,17D1-,17D2+,17D2- del abdomen 17D. En consecuencia el aleteo 17C se vincula en ciclos de expansión y contracción del abdomen 17D con respecto al plano de referencia 17E, pasando por el cruce por cero 17F, es decir mueve sus alas 17C en dirección 17C1 y 17C2, en un periodo determinado de expansión y contracción del abdomen 17D, por consiguiente el patrón de radiación 17B, implementa su propagación con acciones de movimiento propios que conforman en el vuelo de la mariposa 17A. En la Figura 17G, se muestra la expansión de las alas 17C, en cinco ciclos de expansión y contracción del abdomen 17D, desde tO a t6 pasando por el cruce por cero 17F. En la Figura 17H, se muestra la contracción de las alas en ochenta ciclos de expansión y contracción del abdomen, desde t7 a tO pasando por el cruce por cero 17F. En efecto el aleteo 17C, corresponde a los ciclos acumulados de la expansión según figura 17G y contracción según figura 17H del abdomen 17D.lmportante denotar que X, corresponde a la radiación de la cabeza de la mariposa 17A. In Figure 16, the morphological radiation pattern construct is shown, related to any morphological structure of Figure 11, which meets conditions expressed according to Figure 12, and purpose of the morphological treaty of the shapes of Figure 13, where the fields confined in Morphological blocks 16A, of electrical walls 16A1, and magnetic 16A2, in XY, XZ, YZ planes, reproduce a radiation pattern 13B3, 14B, 16B2, similar to the shape, that is, morphological radiation patterns: they are radiation patterns that adopt the morphological structure's own forms translated circuitally by the morphological antenna procedure, and reproduce the movements of the forms, depending on the rotating fields that in turn expand and contract in said structure, in terms expressed according to Figure 14, Figure 15. Also according to Figure " 16B, the rotational movement action 16B4, and translation 16B5, of the radius pattern Morphological ratio 16B2, in the reproduction of the movement of forms 16B1, establishes an electromagnetic expenditure link 16B7, with the movement such as 17C, 17D, 18C, which in terms of power 16C1.6, results in a percentage value 16C1 .5 of the electromagnetic torque of the morphological antenna and the quantification of its movement 16C1.4, by virtue of a source 16B3, which feeds it and closes loop with sink 16B6, being this dynamic and of natural propagation, not focused or static aggressive, This implies that the signal is propagated with its own characteristics, favorable in compliance with the purposes according to the claims of the present invention. In Figure 16C, the energy balance configuration of the morphological antenna 16C1, defined in morphological field elements 16C1.1, 16C1.2 and morphological armor 16C1.7, 16C1.8, 16C1.9, linked by the element is shown rotational 16C1.3; with morphological radiation pattern 16C2, which propagates at rotation speed 16C1.4 and frequency translation 16C1.1, power 16C1.6 and expense 16C1.5. Figure 17 shows the radiation pattern 17B, corresponding to the morphological structure of a butterfly 17A, native to the Peruvian jungle, where the movements of the butterfly itself are reproduced in a flight: this is flutter 17C established by the process of expansion 17C1 and contraction 17C2 positive 17C3 of wing 17C4, and rhythm of abdomen 17D established by the process of expansion 17D1 and contraction 17D2, positively and negatively in 17D1 +, 17D1-, 17D2 +, 17D2- of abdomen 17D. Consequently, flutter 17C is linked in cycles of expansion and contraction of the abdomen 17D with respect to the reference plane 17E, passing through the zero crossing 17F, that is, it moves its wings 17C in the direction 17C1 and 17C2, in a given period of expansion and contraction of the abdomen 17D, therefore the radiation pattern 17B, implements its propagation with own movement actions that make up the flight of the butterfly 17A. In Figure 17G, the expansion of the wings 17C is shown, in five cycles of expansion and contraction of the abdomen 17D, from tO to t6 through the zero crossing 17F. In Figure 17H, the contraction of the wings is shown in eighty cycles of expansion and contraction of the abdomen, from t7 to tO through the crossing at zero 17F. In effect, the flutter 17C corresponds to the accumulated cycles of the expansion according to figure 17G and contraction according to figure 17H of the abdomen 17D. It is important to denote that X corresponds to the radiation of the butterfly head 17A.
En la Figura 18, se muestra el patrón de radiación 18B, correspondiente a la estructura morfológica de una rosa 18A, donde se reproduce los movimientos de rotación y traslación (expansión y contracción) 18C, propios de dicha rosa, y mediante el cual implementa su propagación. Figure 18 shows the radiation pattern 18B, corresponding to the morphological structure of a rose 18A, where the rotation and translation movements (expansion and contraction) 18C, typical of said rose, are reproduced, and by which it implements its propagation.
En la Figura 19, se tiene una pequeña muestra del amplio espectro poblacional de morfologías, sin que ello limite su campo de acción de las formas, que de acuerdo al propósito de la invención están comprendidas los entes morfológicos vivientes y/o no vivientes, incluyendo las abstractas, de estructuras externas y/o internas, de dimensiones pequeñas y/o grandes, con condiciones de bondad morfológica, es decir, las formas que aplica la antena morfológica y su procedimiento de traducción circuital, están relacionadas con las formas de entes como las mostradas, en toda su expresión donde traducidas circuitalmente en antena morfológica, responden a los aspectos detallados según las figuras anteriores 11, 12, 13, 14, 15 16, 17, 18 y las figuras posteriores a esta. Los entes morfológicos vivientes, implican formas favorables en todo sus estadios: que van desde materia a biomoléculas, de biomoléculas a células, de células a seres vivos como: moneras, protistas, hongos, plantas y animales; asimismo los entes morfológicos no vivientes, implican formas favorables de materia inorgánica, objetos y seres inanimados. Es oportuno para mencionar algunos entes de peculiares bondad morfológica referidas con la Figura 19, como: el gusano SURI, el maravilloso perro sin pelo peruano, células madres, huella dactilar, el cuerpo humano, imágenes de la cultura paracas, insectos como la mariposa de la selva peruana, la AWIWA, la MANTA BLANCA transmisor de la UTA, esqueleto del pez de agua dulce TOA, carachama, paiche y zúngaro, fenómeno atmosférico como el rayo, la morfología del cosmos como la del planeta tierra,
vegetales diversos del Perú: limón, sacha tomate, cantón, caigua, aguaymanto, aguaje, zapote, papa m shua, yuca, maca, achiote, taperibal, cogollo de la piña, papaya, maíz morado, palta, cactus; animales diversos del Perú: el caballo de paso peruano, el cuy, la llama, alpaca y vicuña, la SIRINGE órgano interno de canto de las aves como, el PIPITO, la shicapa, estructura del caparazón del mótelo, charapa y taricaya; estructuras geográficas diversas del Perú: cauce del río amazonas, cordillera de los andes, aguas termales SACANCHE, morfologías estructurales de las ruinas del GRAN PAJATEN y MACCHU PICCHU, entre otros. In Figure 19, there is a small sample of the broad population spectrum of morphologies, without limiting its scope of action of forms, which according to the purpose of the invention include living and / or non-living morphological entities, including the abstract ones, of external and / or internal structures, of small and / or large dimensions, with conditions of morphological goodness, that is, the forms applied by the morphological antenna and its circuitry translation procedure, are related to the forms of entities such as the ones shown, in all their expression where translated in a morphological antenna, respond to the detailed aspects according to the previous figures 11, 12, 13, 14, 15 16, 17, 18 and the subsequent figures. Living morphological entities imply favorable forms throughout their stages: ranging from matter to biomolecules, from biomolecules to cells, from cells to living beings such as: moneras, protists, fungi, plants and animals; likewise, non-living morphological entities imply favorable forms of inorganic matter, inanimate objects and beings. It is appropriate to mention some entities of peculiar morphological goodness referred to in Figure 19, such as: the SURI worm, the wonderful Peruvian hairless dog, stem cells, fingerprint, the human body, images of the Paracas culture, insects such as the butterfly of the Peruvian jungle, the AWIWA, the WHITE MANTA transmitter of the UTA, skeleton of the TOA freshwater fish, carachama, paiche and zúngaro, atmospheric phenomenon like lightning, the morphology of the cosmos like that of planet earth, diverse vegetables from Peru: lemon, sacha tomato, canton, caigua, aguaymanto, aguaje, zapote, papa m shua, yucca, maca, achiote, taperibal, pineapple bud, papaya, purple corn, avocado, cactus; diverse animals of Peru: the Peruvian step horse, the guinea pig, the llama, alpaca and vicuña, the SIRINGE internal bird singing organ such as, the PIPITO, the shicapa, shell structure of the mótelo, charapa and taricaya; diverse geographical structures of Peru: Amazon riverbed, Andes mountain range, SACANCHE hot springs, structural morphologies of the GRAN PAJATEN ruins and MACCHU PICCHU, among others.
La información que se detalia a continuación, corresponden a ios aspectos estructurales de la antena morfológica, para comprender la invención, desde el punto de vista dimensional y circuital. The information detailed below corresponds to the structural aspects of the morphological antenna, in order to understand the invention, from the dimensional and circuital point of view.
En la Figura 20, se muestra dimensionalmente la disposición de la antena morfológica en modo planar como cuerpo plano según 20A y modo espacial como cuerpo sólido 20B, vinculadas con las condiciones de bondad morfológica y aspectos operacionales señaladas en los párrafos anteriores. Es decir, la población de las morfologías tratadas corresponden a estructuras de entes vivientes y/o no vivientes, incluyendo las abstractas, sean estas de naturaleza externa y/o interna, y tamaño grande y/o pequeña; donde todas las formas que se traducen circuitaímente en antena morfológica, configuran campos electromagnéticos giratorios, alternados y/o transversales con patrones de radiación morfológica, donde la onda se mueve dinámicamente, trasladándose y rotando por expansión y contracción de los campos giratorios, con rotación en los ejes, reproduciendo así las formas y su movimiento en el patrón de radiación, con capacidad para transmitir y/o recepcionar energía, en forma de señal, y producir movimiento de objetos. En la Figura 20A, Se muestra la modalidad planar, de la antena morfológica, vinculada con la articulación planar figura 16A. Este modo permite manejar el frente de onda en dos ejes de los planos del espacio (XY o XZ o YZ) referida al sumidero morfológico como 20A.1. La traducción circuital de las formas de la antena morfológica, se ubica en el plano 20A.2, entre el plano de sumidero morfológico 20A.1 y plano de radiación 20A.3. Los planos 20A.1 y 20A.2 conforman el bloque morfológico de pared eléctrica 16A1; el plano 20A.3 conforman el bloque morfológico de pared magnética 16A2. In Figure 20, the arrangement of the morphological antenna is shown dimensionally in planar mode as a flat body according to 20A and spatial mode as a solid body 20B, linked to the conditions of morphological goodness and operational aspects indicated in the previous paragraphs. That is, the population of the treated morphologies correspond to structures of living and / or non-living entities, including abstract ones, be they of an external and / or internal nature, and large and / or small size; where all the forms that are circulated in a morphological antenna, configure rotating, alternating and / or transverse electromagnetic fields with morphological radiation patterns, where the wave moves dynamically, moving and rotating by expanding and contracting the rotating fields, with rotation in the axes, thus reproducing the forms and their movement in the radiation pattern, with the capacity to transmit and / or receive energy, in the form of a signal, and produce movement of objects. In Figure 20A, the planar modality of the morphological antenna, linked to the planar joint is shown in Figure 16A. This mode allows to manage the wavefront in two axes of the space planes (XY or XZ or YZ) referred to the morphological sink as 20A.1. The circuit translation of the morphological antenna forms is located in plane 20A.2, between the morphological sink plane 20A.1 and radiation plane 20A.3. The planes 20A.1 and 20A.2 form the morphological block of electrical wall 16A1; plane 20A.3 make up the morphological block of magnetic wall 16A2.
En la Figura 20B, se muestra la modalidad espacial de la antena morfológica, vinculada con la articulación espacial figura 16A. Esta modalidad está referida al manejo de las morfologías planares como 20A en el espacio para adoptar presencia volumétrica como cuerpo sólido. Este modo permite manejar el frente de onda espacialmente, referida al sumidero morfológico 20B.1. La traducción circuital de las formas de la antena morfológica, se ubica en el volumen 20B.2, entre el volumen de sumidero morfológico 20B.1 y volumen de radiación 2ΘΒ.3. Los volúmenes 20B.1, 20B.2 y 20B.3, configura la propagación en los frentes arriba, abajo, izquierda, derecha, atrás y hacia delante. Los volúmenes 20B.1. y 20B.2 conforman el bloque morfológico de pared eléctrica
16A1; el volumen 20B.3 conforman el bloque morfológico de pared magnética 16A2, ambos bloques conforman el bloque morfológico de paredes electromagnéticas. In Figure 20B, the spatial modality of the morphological antenna, linked to the spatial joint is shown in Figure 16A. This modality refers to the management of planar morphologies such as 20A in space to adopt a volumetric presence as a solid body. This mode allows the wavefront to be managed spatially, referring to the morphological sink 20B.1. The circuit translation of the morphological antenna forms is located in volume 20B.2, between the volume of morphological sink 20B.1 and radiation volume 2ΘΒ.3. Volumes 20B.1, 20B.2 and 20B.3, configure the propagation on the fronts up, down, left, right, back and forward. Volumes 20B.1. and 20B.2 make up the morphological block of electrical wall 16A1; volume 20B.3 make up the morphological block of magnetic wall 16A2, both blocks make up the morphological block of electromagnetic walls.
En la figura 20C, se muestra una disposición de ciertas formas de elemental conducta con campo 5 giratorio « lOf, 30f, <10f, >20f, >30f, 20f, de expansión y contracción "f", 20cl, 20c2, 20c3, 20c4, 20c5, 20c6, respectivamente, según figura 15A. Verbigracia todas aplican ambas modalidades Según 20A y 20B. In Fig. 20C, an arrangement of certain forms of elementary behavior is shown with rotating field 5 «lOf, 30f, <10f,> 20f,> 30f, 20f, expansion and contraction" f ", 20cl, 20c2, 20c3, 20c4 , 20c5, 20c6, respectively, according to Figure 15A. Verbigracia all apply both modalities According to 20A and 20B.
En la Figura 21, se muestra los elementos circuitales que comprenden la antena morfológica,In Figure 21, the circuit elements comprising the morphological antenna are shown,
LO desde el punto de vista de la traducción circuital del ente morfológico, y su relación con la disposición abierta y/o cerrada del sumidero morfológico. Un cuerpo envolvente contorneado (borde) 21A construido sobre la base de material conductor, superconductor y/o dieléctrico, y metamateriales; con propiedades electromagnéticas plurales de naturaleza rígida y/o flexible determina a la antena como un sistema anidado 21B, provisto de dipolos morfológicos 21a.1, deLO from the point of view of the circuital translation of the morphological entity, and its relationship with the open and / or closed arrangement of the morphological sink. A contoured envelope body (edge) 21A constructed on the basis of conductive, superconductive and / or dielectric material, and metamaterials; with plural electromagnetic properties of a rigid and / or flexible nature determines the antenna as a nested system 21B, provided with morphological dipoles 21a.1, of
.5 espacios morfológicos dipolares 21a.2, de disposiciones topológicas múltiples de alimentación .5 dipolar morphological spaces 21a.2, with multiple topological feeding arrangements
21a.3, de distribuciones topológicas múltiples de alimentación 21a.4, y sumidero morfológico 21a.5, donde todos ellos están confinados en bloques morfológicos de paredes eléctricas 16A1 y magnéticas 16A2 conformando el circuito de traducción circuital de las formas. El circuito de traducción circuital de las formas de Figura 21, está delimitado por el cuerpo envolvente 21a.3, of multiple topological distributions of feeding 21a.4, and morphological sink 21a.5, where all of them are confined in morphological blocks of electrical walls 16A1 and magnetic 16A2 forming the circuit of circuit translation of the forms. The circuit translation circuit of the shapes of Figure 21, is delimited by the enveloping body
10 contorneado 21A, de pistas electromagnéticas plurales que circunscriben la silueta de la forma en un sistema anidado 21B; para radiar como TX, para captar como X y/o reflejar energía en la conformación del patrón de radiación morfológica. Los dipolos morfológicos 21a.1, de pistas electromagnéticas plurales están subsumidas y edificadas dentro del cuerpo envolvente contorneado 21A, para conformar el patrón de radiación morfológica en base a las paredes de10 contoured 21A, of plural electromagnetic tracks circumscribing the shape silhouette in a nested system 21B; to radiate as TX, to capture as X and / or reflect energy in the conformation of the morphological radiation pattern. The morphological dipoles 21a.1, of plural electromagnetic tracks are subsumed and built into the contoured envelope body 21A, to form the morphological radiation pattern based on the walls of
!5 bloque eléctrico 16A1 y magnético 16A2, establecidas en los dipolos morfológicos 21a.l, al radiar como TX, al captar como RX y/o reflejar energía. Los espacios morfológicos dipolares 21a.2, de pistas electromagnéticas plurales están subsumidas y edificadas entre el cuerpo envolvente contorneado 21A y los dipolos morfológicos 21a.1, para conformar el patrón de radiación morfológica en base a las paredes de bloque eléctrico 16A1 y magnético 16A2, establecidas en los! 5 electrical block 16A1 and magnetic 16A2, established in morphological dipoles 21a.l, when radiating as TX, when capturing as RX and / or reflecting energy. The dipole morphological spaces 21a.2, of plural electromagnetic tracks are subsumed and built between the contoured envelope body 21A and the morphological dipoles 21a.1, to form the morphological radiation pattern based on the electrical block walls 16A1 and magnetic 16A2, established in the
10 espacios morfológicos dipolares 21a.2, al radiar como TX, al captar como RX y/o reflejar energía. 10 dipole morphological spaces 21a.2, when radiating as TX, when capturing as RX and / or reflecting energy.
Las disposiciones topológicas múltiples de alimentación 21a.3, son dispuestas solidariamente como puntos de alimentación del tipo 21C de pistas electromagnéticas plurales ubicadas en el cuerpo envolvente contorneado 21A y/o dipolos morfológicos 21a.1, para especificar la ¡mpedancia característica Z0 de la antena en Figura 21, en valores óhmicos de disposición R, R/2,The multiple topological feeding arrangements 21a.3, are arranged jointly as feeding points of the type 21C of plural electromagnetic tracks located in the contoured housing 21A and / or morphological dipoles 21a.1, to specify the characteristic impedance Z 0 of the antenna in Figure 21, in ohmic values of arrangement R, R / 2,
¡5 R/4, R/8, 2R/4, 3R/8, según su ubicación solidaria; conformando así el patrón de radiación morfológica en base a las paredes de bloque eléctrico 16A1 y magnético 16A2, establecidas en las disposiciones topológicas múltiples de alimentación 21a.1, para radiar como TX, captar como RX y/o reflejar energía. Las distribuciones topológicas múltiples de alimentación 21a.4, se derivan de! cuerpo envolvente contorneado 21A y/o dipolos morfológicos 21a.1, como la pista¡5 R / 4, R / 8, 2R / 4, 3R / 8, according to their solidarity location; thus forming the pattern of morphological radiation based on the walls of electrical block 16A1 and magnetic 16A2, established in the multiple topological feeding arrangements 21a.1, to radiate as TX, capture as RX and / or reflect energy. The multiple topological distributions of feeding 21a.4, are derived from! contoured envelope body 21A and / or morphological dipoles 21a.1, as the track
■0 electromagnética plural que contiene los puntos de alimentación independiente en una anidación
referenciado con el plano 20A.1 y volumen 20B.1 del sumidero morfológico 21a.5 que alimenta la antena para conformar e¡ patrón de radiación morfológica en base a las paredes de bloque eléctrico 16A1 y magnético 16A2, establecidas en las distribuciones topológicas múltiples de alimentación 21a.4; donde la "n" cantidad de anidaciones 21B determina la capacidad de la 5 antena para operar como múltiples "n" antenas independientes para radiar y/o captar a la vez. ■ 0 plural electromagnetic that contains independent power points in a nesting referenced with the plane 20A.1 and volume 20B.1 of the morphological sump 21a.5 that feeds the antenna to form the morphological radiation pattern based on the 16A1 and magnetic 16A2 electrical block walls, established in the multiple topological distributions of feeding 21a.4; where the "n" number of nests 21B determines the ability of the antenna to operate as multiple "n" independent antennas to radiate and / or capture at the same time.
El sumidero morfológico 21a.5, corresponde al área 20A.1 y volumen 20B.1 de pistas electromagnéticas plurales de disposición abierta y/o cerrada, ubicadas en los planos 21a5.1 y 21a5.2 en forma paralela, perpendicular y/o transversal establecidas según articulación angularThe morphological sump 21a.5 corresponds to the area 20A.1 and volume 20B.1 of plural electromagnetic tracks of open and / or closed arrangement, located in planes 21a5.1 and 21a5.2 in parallel, perpendicular and / or transverse established according to angular articulation
LO 21a5.5 de los planos 21a5.3 y 21a5.4, referenciados con el eje 21a5.6, de vital importancia para conformar el patrón de radiación morfológica 20A.3 en los frentes arriba, abajo, izquierda, derecha, atrás y hacia delante a, b, c, d, e y f en figura 20B, en base a las paredes de bloque eléctrico 16A1 y magnético 16A2 establecidas en el sumidero morfológico; dicho sumidero morfológico 21a.5 contiene las formas del ente morfológico ubicada en el plano 21a5.1 y 21a5.2,LO 21a5.5 of planes 21a5.3 and 21a5.4, referenced with axis 21a5.6, of vital importance to form the morphological radiation pattern 20A.3 on the fronts up, down, left, right, back and to in front of a, b, c, d, e and f in figure 20B, based on the walls of electric block 16A1 and magnetic 16A2 established in the morphological sink; said morphological sink 21a.5 contains the forms of the morphological entity located in plane 21a5.1 and 21a5.2,
L5 vinculadas a su función de reflexión o absorción, no es un simple sistema de tierra, asociada solamente a una masa o referencia, sino que incorpora áreas y volúmenes morfológicas. En términos de conexión está vinculada con la malla de tierra del alimentador 21a5.7C de impedancia Zo de la figura 21, con conexión abierta 21a5.7B cuando la malla de tierra está aislada de los elementos circuitales 21al a 21a4, y/o conexión cerrada 21a5.7A cuando la malla de tierra estáL5 linked to its function of reflection or absorption, is not a simple earth system, associated only with a mass or reference, but incorporates morphological areas and volumes. In terms of connection, it is linked to the earth mesh of the Zo impedance feeder 21a5.7C of Figure 21, with open connection 21a5.7B when the earth mesh is isolated from the circuit elements 21al to 21a4, and / or closed connection 21a5.7A when the ground mesh is
!0 unida físicamente con los elementos circuitales 21al a 21a4 anidados. ! 0 physically linked with the 21al to 21a4 nested circuit elements.
En ta Figura 22, se muestra una aplicación simple de la presente invención, donde las morfologías tratadas corresponden a estructuras de entes vivientes. La Figura 22A, corresponde a la Antena morfológica mariposa, basada en el ente morfológico de una mariposa de Figura 17A, cuyaIn Figure 22, a simple application of the present invention is shown, where the treated morphologies correspond to living entity structures. Figure 22A corresponds to the butterfly morphological antenna, based on the morphological entity of a butterfly of Figure 17A, whose
!5 muestra ha sido obtenida en la selva Peruana. En la Figura 22A1, se muestra dimensionalmente la disposición de la antena morfológica mariposa en modo planar como el cuerpo plano según FÍG.20A y modo espacial en la Figura 22A2 como el cuerpo sólido según FIG.20B, vinculadas con las condiciones de bondad morfológica y aspectos operacionales señaladas en los párrafos anteriores. Según Figura 21, dicha antena en cada anidación posee: 14 elementos dipolares NDp! 5 sample has been obtained in the Peruvian jungle. In Figure 22A1, the arrangement of the butterfly morphological antenna in planar mode is shown dimensionally as the flat body according to FIG. 20A and spatial mode in Figure 22A2 as the solid body according to FIG. 20B, linked to the conditions of morphological goodness and operational aspects indicated in the previous paragraphs. According to Figure 21, said antenna in each nesting has: 14 NDp dipole elements
10 21a.1, alrededor de 80 espacios morfológicos dipolares 21a.2, una disposición topológica de alimentación 21a.3 de impedancia característica Zo según 21C, una distribución topológica de alimentación 21a.4 por anidación, un sumidero morfológico por anidación 21a.5 del tipo cerrada 21a5.7A o del tipo abierta 21a5.7B, las mismas son configurables por los pines 1-cl, l'-cl, 2-c2, 2'- c2, 3-c3, 3'-c3 y 1-1', 2-2', 3-3'respectivamente en ambas modalidades, con anidación múltiple n,10 21a.1, about 80 dipole morphological spaces 21a.2, a topological supply arrangement 21a.3 of characteristic impedance Zo according to 21C, a topological distribution of feeding 21a.4 by nesting, a morphological sink by nesting 21a.5 of the closed type 21a5.7A or open type 21a5.7B, they are configurable by pins 1-cl, l'-cl, 2-c2, 2'- c2, 3-c3, 3 ' -c3 and 1-1 ' , 2-2', 3-3 ' respectively in both modalities, with multiple nesting n,
¡5 21B de 1 a 3 anidaciones, es decir, con capacidad para operar como tres antenas independientes para transmitir y/o recepcionar en simultáneo, y propagación morfológica en 1 eje, 2 ejes, 3 ejes, con expansión-contracción de 2.4GHz a 5GHZ, a vélocidades de campo giratorio comprendida entre 144*1012 Rpm/NDp a 300*1012 Rpm/NDp, con longitudes de onda que van de 0.06 m a 0.125 m, según dimensiones reales de dicha mariposa de Figura 17A, las mismas que son escalonadas en5 21B of 1 to 3 nests, that is, with the capacity to operate as three independent antennas to transmit and / or receive simultaneously, and morphological propagation in 1 axis, 2 axes, 3 axes, with expansion-contraction of 2.4GHz at 5GHZ, at rotating field speeds between 144 * 10 12 Rpm / NDp at 300 * 10 12 Rpm / NDp, with wavelengths ranging from 0.06 m to 0.125 m, according to actual dimensions of said butterfly of Figure 17A, the same as are staggered in
\0 el rango de operación de frecuencias según procedimiento de traducción circuital, en los tres ejes,
de patrón de radiación morfológico de Figura 17, que reproduce el movimiento de la mariposa, asimismo . De amplia utilidad para la transmisión y/o recepción de múltiple señales a nivel de telecomunicaciones en móviles celulares y estaciones base, en aparatos, equipos y artefactos que requieran de una a mas antenas, donde se prescinde de grandes torres de antenas y voluminosas cantidades de antenas. Con impacto positivo desde el punto de vista de sostenibilidad, funcionalidad y operacionalidad; a nivel de movimiento de objetos espacial y acuáticos se posibilita el desarrollo de vehículos morfológicos. En la Figura 22A3, se muestran las características de dispersión S12 y su correspondiente frecuencia de resonancia de la antena, referenciados con el plano E y H. La dispersión S21 en el dominio de la frecuencia del campo eléctrico E, de Figura 22A3.1, la respuesta de mínima dispersión de 0.00436 se da en 3.2785603 GHz. La Dispersión S21 del campo magnético H, de figura 22A3.2 con respeto a la frecuencia de la antena morfológica mariposa, la respuesta de mínima dispersión es 0.004539 que se da en 3.2785603 GHz, la antena es resonante además a 1 GHz con una dispersión de valor 0.026025642, a 2.0015649 GHz con una dispersión de valor 0.017036643, a 2.4084507 GHz con una dispersión de valor 0.017265949, a 2.8403756 GHz con una dispersión de valor 0.024769107, a 3.9295775 GHz con una dispersión de valor 0.0099831991, a 4.3114241 GHz con una dispersión de valor 0.0069612805, a 4.799687 GHz con una dispersión de valor 0.0080901747, lo cual lo hace importante desde el punto de vista de operación de las frecuencias, como las citadas, siendo una antena morfológica de conducta multibanda, escalonadas en virtud de la bondad morfológica. \ 0 the frequency operating range according to the circuit translation procedure, in all three axes, of morphological radiation pattern of Figure 17, which reproduces the movement of the butterfly as well. Of wide utility for the transmission and / or reception of multiple signals at the telecommunications level in mobile phones and base stations, in devices, equipment and devices that require one or more antennas, where large antenna towers and bulky amounts of antennas With a positive impact from the point of view of sustainability, functionality and operationality; At the level of movement of spatial and aquatic objects, the development of morphological vehicles is possible. In Figure 22A3, the dispersion characteristics S12 and their corresponding antenna resonance frequency are shown, referenced with the plane E and H. The dispersion S21 in the frequency domain of the electric field E, of Figure 22A3.1, the minimum dispersion response of 0.00436 is given in 3.2785603 GHz. The S21 dispersion of the magnetic field H, of figure 22A3.2 with respect to the frequency of the butterfly morphological antenna, the minimum dispersion response is 0.004539 which is given in 3.2785603 GHz , the antenna is also resonant at 1 GHz with a dispersion of value 0.026025642, at 2.0015649 GHz with a dispersion of value 0.017036643, at 2.4084507 GHz with a dispersion of value 0.017265949, at 2.8403756 GHz with a dispersion of value 0.024769107, at 3.9295775 GHz with a dispersion of value 0.0099831991, at 4.3114241 GHz with a dispersion of value 0.0069612805, at 4.799687 GHz with a dispersion of value 0.0080901747, which makes it important from the point in view of the operation of frequencies, such as those mentioned, being a morphological antenna of multiband behavior, staggered by virtue of morphological goodness.
La Figura 22B, corresponde a la Antena morfológica Perro Sin Pelo Peruano, basada en el ente morfológico del Perro Sin Pelo Peruano SHIKA de Figura 11D, esencialmente vinculado con el órgano auditivo y su integración con la disposición de forma del perro, cuya muestra ha sido obtenida en la costa Peruana del Callao. En la Figura 22B1, se muestra dimensionalmente la disposición de la antena morfológica Perro Sin Pelo Peruano, en modo planar como el cuerpo plano según FIG.20A y modo espacial en la Figura 22B2, como el cuerpo sólido según FIG.20B, vinculadas con las condiciones de bondad morfológica y aspectos operacionales señaladas en los párrafos anteriores. La antena morfológica Perro Sin Pelo Peruano de figura 22B1 y 22B2, según Figura 21, dicha antena es de anidación múltiple, posee: más de 150 elementos dipolares NDp 21a.1, alrededor de 150 espacios morfológicos dipolares 21a.2, una disposición topológica de alimentación 21a.3 de impedancia característica Zo según 21C, una distribución topológica de alimentación 21a.4 por anidación, un sumidero morfológico 21a.5 por anidación, del tipo cerrado 21a5.7A, configurado por el pin 1-cl, l'-cl, y 2-c2, 2'-c2 con anidación n=l y n=2, respectivamente, del tipo abierto 21a5.7B, configurado por el pin 1-1', y 2- 2' con anidación n=l y n=2, respectivamente, es decir, es una antena capacitada para operar como dos transmisores y/o receptores a la vez, con propagación morfológica en 1 eje, 2 ejes, 3 ejes, con expansión- contracción de 1 MHz, 1GHz a 1THZ, a velocidades de campo giratorio comprendida entre 60*106 Rpm/NDp, 60*1012 Rpm/NDp a 60000*1012 Rpm/NDp, con longitudes de onda que van de 0.0003 m, 0.3 m, a 300 m, respectivamente, según dimensiones escalonadas y reales de la oreja del perro sin pelo peruano, en el rango de operación de frecuencias según procedimiento de traducción
circuital, en los tres ejes, de patrón de radiación morfológico, que reproduce el movimiento de la oreja'tlel-'peffcv' fil pelo peruano. De amplia utilidad piará 'la transmisión y/o recepción dé señales a nivel de telecomunicaciones en móviles celulares y estaciones base, en aparatos, equipos y artefactos que requieran de una a mas antenas, donde se prescinde de grandes torres de antenas 5 y voluminosas cantidades de antenas. Con impacto positivo desde el punto de vista de sostenibilidad, funcionalidad y operacionalidad; a nivel de movimiento de objetos espacial y acuáticos se posibilita el desarrollo de vehículos morfológicos; a nivel energético útil para la transmisión y recepción de energía eléctrica. Figure 22B corresponds to the Peruvian Peruvian Hairless Dog morphological antenna, based on the morphological entity of the SHIKA Peruvian Hairless Dog of Figure 11D, essentially linked to the auditory organ and its integration with the dog's shape arrangement, whose sample has been obtained on the Peruvian coast of Callao. In Figure 22B1, the layout of the Peruvian Peruvian Hairless Dog morphological antenna is shown dimensionally, in planar mode as the flat body according to FIG.20A and spatial mode in Figure 22B2, as the solid body according to FIG.20B, linked to the conditions of morphological goodness and operational aspects indicated in the previous paragraphs. The Peruvian Hairless Dog morphological antenna of figure 22B1 and 22B2, according to Figure 21, said antenna is multi-nested, has: more than 150 dipole elements NDp 21a.1, about 150 dipolar morphological spaces 21a.2, a topological arrangement of supply 21a.3 of characteristic impedance Zo according to 21C, a topological distribution of feeding 21a.4 by nesting, a morphological sump 21a.5 by nesting, of the closed type 21a5.7A, configured by pin 1-cl, l ' -cl , and 2-c2, 2 ' -c2 with nesting n = lyn = 2, respectively, of the open type 21a5.7B, configured by pin 1-1 ' , and 2- 2 ' with nesting n = lyn = 2, respectively , that is, it is an antenna capable of operating as two transmitters and / or receivers at the same time, with morphological propagation in 1 axis, 2 axes, 3 axes, with expansion-contraction of 1 MHz, 1GHz to 1THZ, at field speeds Swivel between 60 * 10 6 Rpm / NDp, 60 * 10 12 Rpm / NDp at 60000 * 10 12 Rpm / NDp, with lengths wavelengths ranging from 0.0003 m, 0.3 m, to 300 m, respectively, according to staggered and actual dimensions of the Peruvian dog's hairless ear, in the frequency operating range according to the translation procedure circuit, in all three axes, morphological radiation pattern, which reproduces the movement of the ear ' tlel-'peffcv' fil Peruvian hair. Broad utility chirp 'transmission and / or reception of signals in telecommunications in cell phones and base stations in appliances, equipment and appliances requiring a longer antenna, where it dispenses with large antenna towers 5 voluminous amounts of antennas With a positive impact from the point of view of sustainability, functionality and operationality; at the level of movement of spatial and aquatic objects, the development of morphological vehicles is possible; at an energy level useful for the transmission and reception of electrical energy.
LO La Figura 22C, corresponde a la Antena morfológica mosquito, basada en el ente morfológico del mosquito manta blanca, cuya muestra ha sido obtenida en la selva Peruana de Tingo María. En la Figura 22C1, se muestra dimensionalmente la disposición de la antena morfológica mosquito, en modo planar como el cuerpo plano según FÍG.20A y modo espacial en la Figura 22C2 como el cuerpo sólido según FIG.20B, vinculadas con las condiciones de bondad morfológica y aspectosLO Figure 22C corresponds to the mosquito morphological antenna, based on the morphological entity of the white blanket mosquito, whose sample has been obtained in the Peruvian jungle of Tingo María. In Figure 22C1, the arrangement of the mosquito morphological antenna is shown dimensionally, in planar mode as the flat body according to FIG. 20A and spatial mode in Figure 22C2 as the solid body according to FIG. 20B, linked to the conditions of morphological goodness and aspects
L5 operacionales señaladas en los párrafos anteriores. La antena morfológica mosquito de figura 22C1 y 22C2, según Figura 21, dicha antena de anidación simple, posee: 16 elementos dipolares NDp 21a.1, alrededor de 16 espacios morfológicos dipolares 21a.2, dos disposiciones topológicas de alimentación 21a.3 de impedancia característica Zo de valores R y R/2 según 21C, una distribución topológica de alimentación 21a.4, un sumidero morfológico 21a.5 del tipo cerradoOperational L5 indicated in the previous paragraphs. The mosquito morphological antenna of Figure 22C1 and 22C2, according to Figure 21, said simple nesting antenna, has: 16 dipole elements NDp 21a.1, about 16 dipole morphological spaces 21a.2, two topological provisions of impedance 21a.3 Zo characteristic of R and R / 2 values according to 21C, a topological distribution of feed 21a.4, a morphological sink 21a.5 of the closed type
!0 21a5.7A, configurado por el pin 1-cl, 1'- el, con anidación n=l, es decir, es una antena capacitada para operar como un transmisor y/o receptor a la vez, con propagación morfológica en 1 eje, 2 ejes, 3 ejes, con expansión-contracción de 1GHz a 1THZ, a velocidades de campo giratorio comprendida entre 60*1012 Rpm/NDp a 60000*1012 Rpm/NDp, con longitudes de onda que van de 0.0003 m a 0.3 m, según dimensiones escalonadas y reales del mosquito, en el rango de operación! 0 21a5.7A, configured by pin 1-cl, 1 ' - el, with nesting n = l, that is, it is an antenna capable of operating as a transmitter and / or receiver at the same time, with morphological propagation in 1 axis, 2 axes, 3 axes, with expansion-contraction of 1GHz to 1THZ, at rotating field speeds between 60 * 10 12 Rpm / NDp to 60000 * 10 12 Rpm / NDp, with wavelengths ranging from 0.0003 m to 0.3 m, according to staggered and actual dimensions of the mosquito, in the operating range
!5 de frecuencias según procedimiento de traducción circuital, en los tres ejes, de patrón de radiación morfológico, que reproduce el movimiento del mosquito. De amplia utilidad para la transmisión y/o recepción de señales a nivel de telecomunicaciones en móviles celulares y estaciones base, en aparatos, equipos y artefactos que requieran de una a mas antenas, donde se prescinde de grandes torres de antenas y voluminosas cantidades de antenas. Con impacto5 frequencies according to the circuit translation procedure, in all three axes, of morphological radiation pattern, which reproduces the movement of the mosquito. Of wide utility for the transmission and / or reception of signals at the telecommunications level in mobile phones and base stations, in devices, equipment and devices that require one or more antennas, where large antenna towers and bulky amounts of antennas are dispensed with . With impact
10 positivo desde el punto de vista de sostenibilidad, funcionalidad y operacionalidad; a nivel de movimiento de objetos espacial y acuáticos se posibilita el desarrollo de vehículos morfológicos; a nivel energético útil para la transmisión y recepción de energía eléctrica. 10 positive from the point of view of sustainability, functionality and operationality; at the level of movement of spatial and aquatic objects, the development of morphological vehicles is possible; at an energy level useful for the transmission and reception of electrical energy.
La información que se detalla a continuación, corresponden a los aspectos estructurales de la 15 antena morfológica, para comprender la invención, desde el punto de vista procedimentaies de la traducción circuital en antena morfológica. The information detailed below corresponds to the structural aspects of the morphological antenna, in order to understand the invention, from the procedural point of view of the morphological antenna circuit translation.
En la Figura 23, se muestra el Diagrama de bloque del procedimiento de traducción circuital de la antena morfológica, vinculadas con los aspectos operacionales y estructurales señaladas en los [0 párrafos anteriores correlacionadas con las reivindicaciones. El procedimiento de traducción circuital de la antena morfológica, se establece en las realizaciones siguientes: realización de
Traducción Morfológica 23A, realización de Estructuración de la Antena Morfológica 23B, realización de Transferencia de la Traducción Circuital de Antena 23C. Mediante la Traducción Morfológica 23A, las formas se traducen en circuito, comprendidas en las etapas: de Obtención de la Huella Morfológica 23A-1, del Sensibilizado de la Huella Morfológica 23A-2, del Trazado de las Pistas Morfológicas 23A-3, y Definición de los Bloques Morfológicos 23A-4 en configuraciones operativas electromagnéticas. Mediante la realización de Estructuración de la Antena Morfológica 23B: se define los modos de diseño en planar y/o espacial 23B-1, en términos del escalonamiento de la proporcionalidad, la simetría, la posición referencial, la articulación de las formas en el plano y/o espacio, para operar en las frecuencias propias de los aparatos, equipos, instrumentos que requieran de uno a mas antenas; se dimensiona y estructuran las partes de la antena 23B-2, en función de la frecuencia o rango de operación; Se define la correspondiente caracterización del patrón de radiación morfológico 23B-3, y evidencian la cuantificación del torque electromagnético morfológico 23B-4. Mediante la realización de transferencia de la traducción circuital de antena 23C: la traducción circuital de las formas debidamente estructurada en la etapa anterior 23B, se hace tangible como antena morfológica 23C-1; construidos sobre la base de material conductor, superconductor y/o dieléctrico, y metamateriales, con propiedades electromagnéticas plurales, de naturaleza rígida y/o flexible, de modalidad planar o modalidad espacial 23C-2; mediante técnicas plurales 23C-3 de impresión de tinta conductiva, modelado 3D, fresado, grabado CNC, tejido con hilo conductivo, de PCB, laminado y calado, entre otros, trabajados independientemente o en conjunto. Los materiales y metamateriales sobre las que se construyen las antenas morfológicas, son aquellas que favorablemente como material conductor, superconductor y/o dieléctrico, en cualquiera de sus manifestaciones metal, líquido o gaseoso, incorporan una alta conductividad eléctrica, con buenas capacidades magnéticas y dieléctricas, por ejemplo una constante dieléctrica relativa €r≤ 10, con valores de perdidas tangenciales δ < 0.030, y metamateriales como el grafeno, permiten sostener una antena altamente eficiente. Figure 23 shows the Block diagram of the morphological antenna circuit translation procedure, linked to the operational and structural aspects indicated in the [0 previous paragraphs correlated with the claims. The procedure of circuital translation of the morphological antenna is established in the following embodiments: Morphological Translation 23A, structuring of the Morphological Antenna 23B, transfer of the Circuit Translation of Antenna 23C. By means of the Morphological Translation 23A, the forms are translated into a circuit, included in the stages: Obtaining the Morphological Footprint 23A-1, the Sensitization of the Morphological Footprint 23A-2, the Drawing of the Morphological Tracks 23A-3, and Definition of Morphological Blocks 23A-4 in electromagnetic operating configurations. Through the structuring of the Morphological Antenna 23B: the design modes in planar and / or spatial 23B-1 are defined, in terms of the proportionality staggering, the symmetry, the reference position, the articulation of the shapes in the plane and / or space, to operate on the frequencies of the devices, equipment, instruments that require one or more antennas; antenna parts 23B-2 are sized and structured, depending on the frequency or operating range; The corresponding characterization of the morphological radiation pattern 23B-3 is defined, and evidences the quantification of the morphological electromagnetic torque 23B-4. By means of the transfer of the circuit translation of antenna 23C: the circuit translation of the forms properly structured in the previous stage 23B, becomes tangible as morphological antenna 23C-1; constructed on the basis of conductive, superconducting and / or dielectric material, and metamaterials, with plural electromagnetic properties, of a rigid and / or flexible nature, of planar mode or spatial mode 23C-2; by means of plural techniques 23C-3 of conductive ink printing, 3D modeling, milling, CNC engraving, fabric with conductive wire, PCB, laminate and draft, among others, worked independently or together. The materials and metamaterials on which the morphological antennas are built, are those that favorably as a conductive, superconductive and / or dielectric material, in any of its metal, liquid or gas manifestations, incorporate a high electrical conductivity, with good magnetic and dielectric capabilities , for example a relative dielectric constant € r ≤ 10, with values of tangential losses δ <0.030, and metamaterials such as graphene, allow to sustain a highly efficient antenna.
El procedimiento para la traducción circuital de las formas en antena morfológica, en su realización: Traducción Morfológica (23A), La Obtención de la huella morfológica (23A-1), consiste en tangibilizar muestral y fielmente las formas adquiridas de poblaciones objetivos, respetando las bondades morfológicas, para ser Sensibilizado como huella morfológica (23A-2), donde las formas, se sensibiliza como muestra patrón y es referenciada para el escalonamiento en virtud del rango operacional característico de la morfología en términos de frecuencia, y luego Trazado como pistas morfológicas (23A-3), establecidas circuitalmente con el trazado de las pistas del cuerpo envolvente contorneado (21A), de los dipolos morfológicos (21a.1), de los espacios morfológicos dipolares (21a.2), de las disposiciones topológicas múltiples de alimentación (21a.3), de las distribuciones topológicas múltiples de alimentación (21a.4), y el sumidero morfológico (21a.5), por anidación. Para finalmente establecer bloques morfológicos (23A-4) en configuraciones operativas electromagnéticas, de las formas establecidas circuitalmente en la etapa (23A-3), y producir campos electromagnéticos con patrones de radiación morfológicas. Estos bloques morfológicos se configuran como elementos de bloques eléctricos: cuerpo envolvente contorneado, dipolos morfológicos, distribuciones y disposiciones topológicas múltiples de
alimentación, sumidero morfológico, y bloques magnéticos: con incidencia sobre los espacios resonantes dipolares para producir patrones de radiación morfológicas, en virtud de la interacción de los campos propios de la morfología, donde se identifican espacios resonantes dipolares útil para producir campos giratorios y/o transversales, a velocidades de campo giratorio que van desde unos pocos valores de rpm. Para un dipolo morfológico a ultra bajas frecuencias se producen valores máximos de campo giratorio de 0.06 rpm, para el mismo dipolo morfológico escalonado para muy altas frecuencias se producen valores máximos de campo giratorio del orden 6E+13 rpm, reduciéndose dicho campo según se incrementen la participación de elementos dipolares en la morfología.f/ procedimiento para la traducción circuital de las formas en antena morfológica, en su realización: Estructuración de la antena morfológica (23B), en la Definición del modo de diseño (23B-1), la antena de realización (23A) se modaliza en modo planar como cuerpo plano y/o en modo espacial como cuerpo sólido. El Dimensionamiento y estructuración de las partes de la antena (23B-2), después de haberse definido el modo de diseño (23B1) las partes estructuradas de la antena en (23A) se dimensionan en términos del escalonamiento de la proporcionalidad de la morfología, obtenida en el sensibilizado de la huella morfológica (23A-2); para en la etapa de Caracterización del patrón de radiación morfológico (23B-3); referenciar el patrón de radiación morfológico en términos del proceso de expansión y contracción de las formas, el cual implica movimiento y muestran la naturaleza dinámica de la propagación para trasladarse y rotar según propiedades morfológicas en las frecuencias propias de operación, es decir la Cuantificación del torque electromagnético morfológico (23B-4) se evidencian mediante la presencia de campos giratorios y/o transversales capaces de reproducir el movimiento propias de las formas en el patrón de radiación, y consecuentemente generar movimiento. Las partes confinados en bloques morfológicos de paredes electromagnéticas definida en la etapa (23A- 4) hacen que los campos electromagnéticos interactúen para producir movimiento de traslación y rotación, por expansión-contracción del campo cuantas veces este valorada la frecuencia, y por la presencia del campo giratorio. El procedimiento para la traducción circuital de las formas en antena morfológica, en su realización: Transferencia de la traducción circuital de antena (23C), en la Tangibilizáción como antena morfológica (23C-1), se definen los materiales y metamateriales de propiedades electromagnéticas plurales, de naturaleza rígida o flexible, participantes en la conformación de la antena morfológica. La Modelización de la antena morfológica (23C-2), consiste en disponer de la conducta del patrón de radiación morfológica y su correspondiente evidencia de aplicación, para ello la conducta de operación de las formas aportan significativamente elementos de contraste y discusión. La Fabricación de la antena morfológica (23C-3), está profundamente correlacionada con los materiales y metamateriales definidos en (23C1), y modelados según (23C-2), estos son trabajados independientemente o en conjunto sobre la báse operacional y funcional de la antena establecida en las realizaciones 23A y 23B. The procedure for the circuital translation of the morphological antenna forms, in its realization: Morphological Translation (23A), Obtaining the morphological footprint (23A-1), consists in tangibly sampling the faithfully acquired forms of target populations, respecting the morphological benefits, to be sensitized as a morphological footprint (23A-2), where the forms are sensitized as a standard sample and are referenced for staggering by virtue of the operational range characteristic of morphology in terms of frequency, and then plotted as morphological tracks (23A-3), established circuitally with the layout of the contours of the contoured envelope body (21A), of the morphological dipoles (21a.1), of the dipole morphological spaces (21a.2), of the multiple topological feeding arrangements (21a.3), of the multiple topological distributions of feeding (21a.4), and the morphological sink (21a.5), by nesting. To finally establish morphological blocks (23A-4) in electromagnetic operating configurations, of the forms established circuitry in stage (23A-3), and produce electromagnetic fields with morphological radiation patterns. These morphological blocks are configured as elements of electrical blocks: contoured housing, morphological dipoles, distributions and multiple topological arrangements of feeding, morphological sink, and magnetic blocks: with incidence on the dipole resonant spaces to produce morphological radiation patterns, by virtue of the interaction of the morphology's own fields, where dipolar resonant spaces useful for producing rotating fields and / or are identified transverse, at rotating field speeds ranging from a few rpm values. For a morphological dipole at ultra low frequencies, maximum values of the rotating field of 0.06 rpm are produced, for the same stepped morphological dipole for very high frequencies, maximum values of the rotating field of the order 6E + 13 rpm are produced, said field being reduced as the participation of dipolar elements in morphology.f / procedure for the circuital translation of morphological antenna forms, in its realization: Structuring of the morphological antenna (23B), in the Definition of the design mode (23B-1), the antenna of embodiment (23A) is modeled in planar mode as a flat body and / or in spatial mode as a solid body. The Sizing and structuring of the antenna parts (23B-2), after the design mode (23B1) has been defined, the structured parts of the antenna at (23A) are sized in terms of the staggering of the proportionality of the morphology, obtained in sensitizing the morphological footprint (23A-2); for in the stage of Characterization of the pattern of morphological radiation (23B-3); reference the pattern of morphological radiation in terms of the process of expansion and contraction of the forms, which implies movement and show the dynamic nature of the propagation to move and rotate according to morphological properties at the proper operating frequencies, that is, the Quantification of the torque Morphological electromagnetic (23B-4) are evidenced by the presence of rotating and / or transverse fields capable of reproducing the movement of the shapes in the radiation pattern, and consequently generating movement. The parts confined in morphological blocks of electromagnetic walls defined in step (23A-4) cause the electromagnetic fields to interact to produce movement of translation and rotation, by expansion-contraction of the field how often the frequency is assessed, and by the presence of the rotating field The procedure for the circuital translation of the morphological antenna forms, in its realization: Transfer of the antenna circuit translation (23C), in the Tangibilization as a morphological antenna (23C-1), the materials and metamaterials of plural electromagnetic properties are defined , of a rigid or flexible nature, participants in the conformation of the morphological antenna. The Modeling of the morphological antenna (23C-2), consists of having the behavior of the morphological radiation pattern and its corresponding evidence of application, for this the operating behavior of the forms provide significantly contrast and discussion elements. The Manufacture of the morphological antenna (23C-3), is deeply correlated with the materials and metamaterials defined in (23C1), and modeled according to (23C-2), these are worked independently or together on the operational and functional basis of the antenna established in embodiments 23A and 23B.
En la Figura 24, se muestra una secuencia de procedimiento de traducción circuital (23) relacionado con la Antena morfológica Perro Sin Pelo Peruano (22B), basada en el ente morfológico del Perro Sin Pelo Peruano SHIKA (a) de Figura 11D, esencialmente vinculado con el órgano auditivo (b) de realización (23A) y su integración con la disposición de forma del perro (c), con los aspectos operacionales y estructurales de realización (23B) como antena morfológica (d, e) de realización (23C).
En la Figura 25, se muestran algunos aspectos de Bondad de la antena morfológica (a), de entidades morfológicas (b), con características de antena sosteríible (25A), por estar orientadas al buen manejo de los recursos energéticos y reducción de impactos negativos provocados por las tecnologías actuales. Desde el punto de vista social (25B), La energía que se propaga mediante patrones de radiación morfológicas (c), es dinámica y no dañina, en virtud de que reproducen el movimiento de las formas; lo que posibilita prescindir el uso de grandes torres o soportes (f) con innumerables cantidades de antenas (d, e) reduciendo los impactos negativos a nivel visual (25D), En 25C, Las imágenes remarcadas con X escenifican detalles de la realidad actual asociada con la insostenibilidad y sus efectos en materia de antenas, cuya problemática, es una realidad concreta por solucionar.
Figure 24 shows a sequence of circuit translation procedure (23) related to the Peruvian Hairless Dog Morphological Antenna (22B), based on the morphological entity of the SHIKA Peruvian Hairless Dog (a) of Figure 11D, essentially linked with the auditory organ (b) of realization (23A) and its integration with the dog's shape arrangement (c), with the operational and structural aspects of realization (23B) as morphological antenna (d, e) of realization (23C) . Figure 25 shows some aspects of Goodness of the morphological antenna (a), of morphological entities (b), with characteristics of a sustainable antenna (25A), because they are oriented to the good management of energy resources and reduction of negative impacts caused by current technologies. From the social point of view (25B), the energy that is propagated through morphological radiation patterns (c), is dynamic and not harmful, because they reproduce the movement of forms; which makes it possible to dispense with the use of large towers or supports (f) with innumerable amounts of antennas (d, e) reducing the negative impacts at a visual level (25D), In 25C, the images highlighted with X stage details of the current reality associated with unsustainability and its effects on antennas, whose problem is a concrete reality to solve.
Claims
Reivindicaciones Claims
1. -Una ANTENA MORFOLÓGICA, para la transmisión y/o recepción de señales mediante campos electromagnéticos giratorios que se expanden y contraen (13B4, 14C, 15, 17C1, 17C2, 17D1, 17D2) con patrones de radiación morfológica (13B3, 14B, 16B2,16C2, 17B, 18), mediante un circuito de traducción circuito! (21) de las formas de entes morfológicos (13A2, 13B1, 19, 20C) vivientes y/o no vivientes, de estructuras externas y/o internas, de dimensiones pequeñas y/o grandes, que cumplan con las condiciones de bondad morfológica, caracterizada porque el circuito de traducción circuital de dicha antena comprende de un cuerpo envolvente contorneado (21A) anidado (21B), de dipolos morfológicos (21a.l), de espacios morfológicos dipolares (21a.2), de disposiciones topológicas múltiples de alimentación (21a.3), de distribuciones topológicas múltiples de alimentación (21a.4), y sumidero morfológico (21a.5); todos ellos confinados en bloques morfológicos electromagnéticos (16A) de paredes eléctricas (16A1) y magnéticas (16A2); construidos sobre la base de material conductor, superconductor, dieléctrico y meta materiales, con propiedades electromagnéticas plurales, de naturaleza rígida o flexible. 1.-A MORPHOLOGICAL ANTENNA, for the transmission and / or reception of signals by means of rotating electromagnetic fields that expand and contract (13B4, 14C, 15, 17C1, 17C2, 17D1, 17D2) with morphological radiation patterns (13B3, 14B, 16B2,16C2, 17B, 18), by means of a circuit translation circuit! (21) of the forms of morphological entities (13A2, 13B1, 19, 20C) living and / or non-living, of external and / or internal structures, of small and / or large dimensions, that meet the conditions of morphological goodness, characterized in that the circuit of circuit translation of said antenna comprises a contoured enveloping body (21A) nested (21B), morphological dipoles (21a.l), dipole morphological spaces (21a.2), multiple topological feeding arrangements ( 21a.3), of multiple topological distributions of food (21a.4), and morphological sink (21a.5); all of them confined in electromagnetic morphological blocks (16A) of electrical walls (16A1) and magnetic walls (16A2); built on the basis of conductive, superconducting, dielectric and meta materials, with plural electromagnetic properties, of a rigid or flexible nature.
2. -Una ANTENA MORFOLÓGICA, en concordancia con la reivindicación 1, caracterizada por poseer un circuito de traducción circuital (21) de las formas delimitado por un cuerpo envolvente contorneado (21A), de pistas electromagnéticas plurales que circunscriben la silueta de la forma para conformar un sistema anidado (21B) de "n" anidaciones; para radiar, captar y/ o reflejar morfológicamente energía en la conformación del patrón de radiación morfológica. 2. - A MORPHOLOGICAL ANTENNA, in accordance with claim 1, characterized by having a circuit of circuit translation (21) of the forms delimited by a contoured enveloping body (21A), of plural electromagnetic tracks circumscribing the shape silhouette for form a nested system (21B) of "n" nests; to radiate, capture and / or morphologically reflect energy in the conformation of the morphological radiation pattern.
3. -Una ANTENA MORFOLÓGICA, en concordancia con las reivindicaciones 1 y 2, caracterizada por poseer un circuito de traducción circuital (21, 22A1, 22B1, 22C1) de las formas que incluye dipolos morfológicos (21a.1), de pistas electromagnéticas plurales subsumidas y edificadas dentro del cuerpo envolvente contorneado (21A), para conformar el patrón de radiación morfológica en base a las paredes eléctricas y magnéticas de los bloques morfológicos (16A), establecidas en los dipolos morfológicos, al radiar, al captar y o reflejar morfológicamente energía. 3. A MORPHOLOGICAL ANTENNA, in accordance with claims 1 and 2, characterized by having a circuit translation circuit (21, 22A1, 22B1, 22C1) of the forms that includes morphological dipoles (21a.1), of plural electromagnetic tracks subsumed and built into the contoured envelope body (21A), to form the morphological radiation pattern based on the electrical and magnetic walls of the morphological blocks (16A), established in the morphological dipoles, when radiating, when capturing and morphologically capturing energy .
4. -Una ANTENA MORFOLÓGICA, en concordancia con las reivindicaciones 1 y 3, caracterizada po poseer un circuito de traducción circuital (21, 22A1, 22B1, 22C1) de las formas que incluye espacios morfológicos dipolares (21a.2), de pistas dieléctricas plurales subsumidas y edificadas entre el cuerpo envolvente contorneado (21A) y los dipolos morfológicos (21a.1), para conformar el patrón de radiación morfológica en base a las paredes eléctricas y magnéticas de los bloques morfológicos (16A) establecidas en los espacios morfológicos dipolares, al radiar, al captar y/ o reflejar morfológicamente energía. 4.-A MORPHOLOGICAL ANTENNA, in accordance with claims 1 and 3, characterized by having a circuit translation circuit (21, 22A1, 22B1, 22C1) of the forms that includes dipole morphological spaces (21a.2), of dielectric tracks plurals subsumed and built between the contoured envelope body (21A) and the morphological dipoles (21a.1), to form the morphological radiation pattern based on the electrical and magnetic walls of the morphological blocks (16A) established in the dipole morphological spaces , when radiating, when capturing and / or morphologically reflecting energy.
5. -Una ANTENA MORFOLÓGICA, en concordancia con las reivindicaciones 1 y 4, caracterizada por poseer un circuito de traducción circuital (21, 22A1, 22B1, 22C1) de las formas que incluye disposiciones topológicas múltiples de alimentación (21a.3) incorporados como puntos de alimentación de pistas electromagnéticas plurales ubicadas y dispuestas solidariamente en el cuerpo envolvente contorneado (21A) y/o dipolos morfológicos (21a.l), separadas por los espacios morfológicos dipolares (21a.2), para especificar la impedancia característica Z0 (21C) de la antena,
en valores óhmicos de disposición R, R/2, R/4, R/8, 2R/4, 3R/8, según su ubicación solidaria; y conformar el patrón de radiación morfológica en base a las paredes eléctricas (16A1) y magnéticas (16A2) de los bloques morfológicos (16 A) establecidas en las disposiciones topológicas múltiples de alimentación, al radiar, al captar y/o reflejar morfológicamente energía. 5. A MORPHOLOGICAL ANTENNA, in accordance with claims 1 and 4, characterized by having a circuit translation circuit (21, 22A1, 22B1, 22C1) of the forms that includes multiple topological feeding arrangements (21a.3) incorporated as power points of plural electromagnetic tracks located and arranged jointly in the contoured envelope body (21A) and / or morphological dipoles (21a.l), separated by the dipole morphological spaces (21a.2), to specify the characteristic impedance Z 0 ( 21C) of the antenna, in ohmic values of arrangement R, R / 2, R / 4, R / 8, 2R / 4, 3R / 8, according to their solidarity location; and conform the morphological radiation pattern based on the electrical (16A1) and magnetic (16A2) walls of the morphological blocks (16 A) established in the multiple topological feeding arrangements, when radiating, capturing and / or morphologically reflecting energy.
5 6.-Una ANTENA MORFOLÓGICA, en concordancia con la reivindicación 1 y 5, caracterizada por poseer un circuito de traducción circuital (21, 22A1, 22B1, 22C1) de las formas que incorporan distribuciones topológicas múltiples de alimentación (21a.4), que se derivan del cuerpo envolvente contorneado (21A) y/o dipolos morfológicos (21a.l); subsumidas en las disposiciones topológicas múltiples de alimentación (21a.3), como la pista electromagnética plural que contiene los puntos 6. A MORPHOLOGICAL ANTENNA, in accordance with claim 1 and 5, characterized by having a circuit translation circuit (21, 22A1, 22B1, 22C1) of the forms incorporating multiple topological feed distributions (21a.4), which are derived from the contoured envelope body (21A) and / or morphological dipoles (21a.l); subsumed in the multiple topological power arrangements (21a.3), such as the plural electromagnetic track containing the points
D de alimentación independiente en una anidación, y está referenciado con el plano del sumidero morfológico (21a.5), que alimenta la antena para conformar el patrón de radiación morfológica en base a las paredes eléctricas (16A1) y magnéticas (16A2) de los bloques morfológicos (16 A) establecidas en las distribuciones topológicas múltiples de alimentación; la cantidad de anidaciones "n" determina la capacidad de la antena morfológica para operar como "2n"D independent feeding in a nesting, and is referenced with the plane of the morphological sump (21a.5), which feeds the antenna to form the morphological radiation pattern based on the electrical (16A1) and magnetic (16A2) walls of the morphological blocks (16 A) established in the multiple topological feeding distributions; the number of nests "n" determines the ability of the morphological antenna to operate as "2n"
> múltiples antenas independientes para transmitir y/o recepcionar a la vez. > Multiple independent antennas to transmit and / or receive at the same time.
7. -Una ANTENA MORFOLÓGICA, en concordancia con la reivindicación 1 y 6, caracterizada por poseer un circuito de traducción circuital (21, 22A1, 22B1, 22C1) de las formas que incorpora un sumidero morfológico (21a.5) como el área anidado de pistas electromagnéticas plurales dispuestas en forma abierta y/o cerrada, configurables, para conformar el patrón de radiación7.-A MORPHOLOGICAL ANTENNA, in accordance with claim 1 and 6, characterized by having a circuit translation circuit (21, 22A1, 22B1, 22C1) of the forms incorporating a morphological sink (21a.5) as the nested area of plural electromagnetic tracks arranged in an open and / or closed form, configurable, to form the radiation pattern
3 morfológica en base a las paredes de bloque eléctrico (16A1) y magnético (16A2) establecidas en el sumidero morfológico; un sumidero morfológico (21a.5) del tipo cerrada (21a5.7A) y abierta (21a5.7B) se configuran mediante los pines de conexión 1, n-1. n , Ci, i=l,..,n. 3 morphological based on the walls of electrical block (16A1) and magnetic (16A2) established in the morphological sump; a morphological sump (21a.5) of the closed type (21a5.7A) and open (21a5.7B) are configured using connection pins 1, n-1. n, Ci, i = l, .., n.
8. -Una ANTENA MORFOLÓGICA, de reivindicaciones anteriores, caracterizada por que la bondad morfológica, se valora en los intervalos: 0.5≤ media cuadrática≤ 1.0, 0≤ error estándar≤ 10'6, y está condicionada, por los elementos de proporcionalidad de las partes λ,, de simetría respecto a los ejes principales X-Y-Z, y secundarios x-y-z, de posición referencial normalmente con el eje Z, de articulación planar o espacia! (A¡), todas dispuestas en las formas (13A2, 13B1), para producir movimiento (13A3), y reproducir el movimiento (13B4, 13B5) propio de las formas (13A2, 13B1, 19, 20C) en patrones de radiación morfológica (13B3, 14B). 8.-A MORPHOLOGICAL ANTENNA, of previous claims, characterized in that the morphological goodness is valued in the intervals: 0.5≤ quadratic mean≤ 1.0, 0≤ standard error≤ 10 '6 , and is conditioned, by the elements of proportionality of the parts λ ,, of symmetry with respect to the main axes XYZ, and secondary axes xyz, of normal reference position with the Z axis, of planar articulation or space! (A¡), all arranged in the forms (13A2, 13B1), to produce movement (13A3), and reproduce the movement (13B4, 13B5) proper to the forms (13A2, 13B1, 19, 20C) in morphological radiation patterns (13B3, 14B).
3 9-Una ANTENA MORFOLÓGICA, de reivindicaciones anteriores, caracterizada por que los patrones de radiación morfológica (13B3, 14B, 16B2,16C2, 17B, 18), persiguen, se configuran y manifiestan tal cual son las formas (13A2, 13B1, 19, 20C) con su respectivo movimiento reproducidas por el circuito de traducción circuital (21) cuyas partes confinados en bloques morfológicos de paredes electromagnéticas (16A) hacen que los campos electromagnéticos interactúen para producir movimiento de traslación (13B4, 16B5) y rotación (13B5, 14D, 16B4), por expansión-contracción del campo (13B4, 14C, 15) cuantas veces este valorada la frecuencia, y por la presencia del campo giratorio respectivamente, hasta una velocidad máxima de sesenta veces su frecuencia en un dipolo (15A5) de polos 15A1 y 15A2, en un eje (15B-X); hasta veinte veces al valor de su frecuencia en dos ejes (15C-X,Y1,Y2) con tres dipolos, hasta una velocidad máxima de 60/7 veces su
frecuencia en tres ejes (15D-X,Y1,Y2, Z1,Z2,Z3,Z4) con siete dipolos; expresan la conducta dinámica en la propagación,. manejo y buen trato de Ja energía. 3 9-A MORPHOLOGICAL ANTENNA, of previous claims, characterized in that the morphological radiation patterns (13B3, 14B, 16B2,16C2, 17B, 18), pursue, are configured and manifest as are the shapes (13A2, 13B1, 19 , 20C) with their respective movement reproduced by the circuit translation circuit (21) whose parts confined in morphological blocks of electromagnetic walls (16A) make the electromagnetic fields interact to produce translational movement (13B4, 16B5) and rotation (13B5, 14D, 16B4), by expansion-contraction of the field (13B4, 14C, 15) how many times the frequency is assessed, and by the presence of the rotating field respectively, up to a maximum speed of sixty times its frequency in a dipole (15A5) of poles 15A1 and 15A2, on one axis (15B-X); up to twenty times the value of its frequency on two axes (15C-X, Y1, Y2) with three dipoles, up to a maximum speed of 60/7 times its frequency in three axes (15D-X, Y1, Y2, Z1, Z2, Z3, Z4) with seven dipoles; express dynamic behavior in propagation. handling and good treatment of energy.
10. -PROCEDIMIENTO DE TRADUCCIÓN CIRCUITAL DE LA ANTENA MORFOLÓGICA, para la transmisión y/o recepción de señales por campos electromagnéticos con patrones de radiación morfológica, según las reivindicaciones anteriores, caracterizado porque consiste de las realizaciones siguientes: a) Traducción Morfológica (23A), mediante el cual las formas se traducen en circuito en las etapas siguientes: 10.-CIRCUITAL TRANSLATION PROCEDURE OF THE MORPHOLOGICAL ANTENNA, for the transmission and / or reception of signals by electromagnetic fields with morphological radiation patterns, according to the preceding claims, characterized in that it consists of the following embodiments: a) Morphological Translation (23A) , whereby the forms are translated into a circuit in the following stages:
© Obtención de la huella morfológica (23A-1); © Obtaining the morphological footprint (23A-1);
* Sensibilizado de la huella morfológica (23A-2); * Sensitized morphological footprint (23A-2);
» Trazado de las pistas morfológicas (23A-3) y; »Tracing the morphological tracks (23A-3) and;
© Definición de los bloques morfológicos {23A-4). b) Estructuración de la antena morfológica (23B), mediante el cual la traducción morfológica, de realización anterior (23A), se estructuran como antena en las etapas siguientes: © Definition of morphological blocks {23A-4). b) Structuring of the morphological antenna (23B), whereby the morphological translation, of the previous embodiment (23A), is structured as an antenna in the following stages:
® Definición del modo de diseño planar y/o espacial (23B-1); ® Definition of the planar and / or spatial design mode (23B-1);
• Dimensionamiento y estructuración de tas partes de la antena (23B-2); ® Caracterización del patrón de radiación morfológico (23B-3); • Sizing and structuring of the antenna parts (23B-2); ® Characterization of the morphological radiation pattern (23B-3);
© Cuantificación del torque electromagnético morfológico (23B-4). c) Transferencia de la traducción circuitai de antena (23C), Mediante el cual la traducción circuital de las formas debidamente estructuradas en las etapas anteriores (23A y 23B), se transfieren en las etapas siguientes: © Quantification of the morphological electromagnetic torque (23B-4). c) Transfer of the antenna circuit translation (23C), whereby the circuit translation of the forms properly structured in the previous stages (23A and 23B), are transferred in the following stages:
Tangibilización como antena morfológica (23C-1); Tangibilization as a morphological antenna (23C-1);
® Modelización de la antena morfológica (23C-2); ® Morphological antenna modeling (23C-2);
e Fabricación de la antena morfológ¡ca(23C-3) e Manufacture of the morphological antenna (23C-3)
11. -PROCEDIMIENTO DE TRADUCCIÓN CiRCUiTAL DE LA ANTENA MORFOLÓGICA, para la transmisión y recepción de señales, según la reivindicación 10, caracterizado porque en la realización de Traducción Morfológica (23A) en las etapas de: 11.-CIRCUIT TRANSLATION PROCESS OF MORPHOLOGICAL ANTENNA, for the transmission and reception of signals, according to claim 10, characterized in that in the performance of Morphological Translation (23A) in the stages of:
La OMéñaóñ de la Wellá morfológica (23Ά-1), las formas físicas adquiridas dé poblaciones objetivos de entidades, se tangibiiizan muestral y fielmente respetando las bondades morfológicas; pasando al Sensibilizado de la huella morfológica (23A-2), donde la muestra tangibilizada de las formas de la etapa (23A-1), se sensibilizan como muestra patrón y es referenciada para el escalonamiento operacional característico de la morfología en términos de frecuencia; siendo Trazado como pistas morfológicas (23Á-3), aquí las formas sensibilizadas en la etapa (23A-2), quedan establecidas circuitalmente como el trazado de pistas del cuerpo envolvente contorneado (21A), de los dipolos morfológicos (21a.1), de los espacios morfológicos
dipolares (21a.2), de las disposiciones topológicas múltiples de alimentación (21a.3), de las distribuciones topológicas múltiples de alimentación (21a.4), y el sumidero morfológico (21a.5) por anidación. Siendo estructurados dentro de bloques morfológicos (23A-4) en configuraciones operativas electromagnéticas, las formas circuitales de la etapa (23A-3), y que mediante el trazado de las pistas morfológicas, se configuran y agrupan en bloques eléctricos y bloques magnéticos para producir campos electromagnéticos con patrones dé radióctón morfológicas. The OMéñaóñ de la Wellá morfológica (23Ά-1), the physical forms acquired from objective populations of entities, are tangibly sample and faithfully respecting the morphological benefits; going to the sensitized of the morphological footprint (23A-2), where the tangible sample of the forms of the stage (23A-1), are sensitized as a standard sample and is referenced for the operational staggering characteristic of the morphology in terms of frequency; being traced as morphological tracks (23A-3), here the forms sensitized in stage (23A-2), are established circuitry as the path of the contoured envelope body (21A), of the morphological dipoles (21a.1), of morphological spaces dipolar (21a.2), of the multiple topological feeding arrangements (21a.3), of the multiple topological feeding distributions (21a.4), and the morphological sump (21a.5) by nesting. Being structured within morphological blocks (23A-4) in electromagnetic operating configurations, the circuit forms of the stage (23A-3), and that by drawing the morphological tracks, are configured and grouped into electrical blocks and magnetic blocks to produce Electromagnetic fields with morphological patterns.
12.-PROCEDIMIENTO DE TRADUCCIÓN CIRCUITAL DE LA ANTENA MORFOLÓGICA, para la transmisión y recepción de señales, según la reivindicación 10 y 11, caracterizado porque en la realización de Estructuración de la antena morfológica (23B), en las etapas de: 12.-CIRCUITAL TRANSLATION PROCEDURE OF THE MORPHOLOGICAL ANTENNA, for the transmission and reception of signals, according to claim 10 and 11, characterized in that in the realization of Structuring the morphological antenna (23B), in the steps of:
Definición del modo de diseño (23B-1), la antena de realización (23A) se modaliza en modo planar como cuerpo plano y/o en modo espacial como cuerpo sólido, para el Dimensiona iento y estructuración de las partes de la antena (23B-2), que ocurre después de definir el modo de diseño (23B1) donde las partes estructuradas de la antena en (23A) se dimensionan en términos del escalonamiento de la proporcionalidad de la morfología obtenida mediante el sensibilizado de la huella morfológica (23A-2). Y la consecuente Caracterización del patrón de radiación morfológico (23B-3); caracteriza el patrón de radiación morfológico en términos del proceso de expansión y contracción de las formas, que demuestran la naturaleza dinámica de la propagación para trasladarse y rotar según propiedades morfológicas en las, frecuencias propias de operación. Definition of the design mode (23B-1), the embodiment antenna (23A) is modeled in planar mode as a flat body and / or in spatial mode as a solid body, for the dimensioning and structuring of the antenna parts (23B -2), which occurs after defining the design mode (23B1) where the structured parts of the antenna at (23A) are sized in terms of the staggering of the morphology proportionality obtained by sensitizing the morphological footprint (23A- 2). And the consequent characterization of the morphological radiation pattern (23B-3); It characterizes the pattern of morphological radiation in terms of the process of expansion and contraction of the forms, which demonstrate the dynamic nature of the propagation to move and rotate according to morphological properties in the frequencies proper to operation.
Pasando a La Cuantificación del torque electromagnético morfológico (23B-4) se evidencian la presencia de campos giratorios y/o transversales capaces de reproducir el movimiento propias de las formas en el patrón de radiación, y consecuentemente generan movimiento. Las partes confinados en bloques morfológicos de paredes electromagnéticas definida en la etapa (23A-4) hacen qué los campos electromagnéticos ínteractuen para producir movimiento de traslación y rotación, por expansión-contracción del campo cuantas veces este valorada la frecuencia, y por la presencia del campo giratorio. Moving on to the quantification of the morphological electromagnetic torque (23B-4), the presence of rotating and / or transverse fields capable of reproducing the movement of the shapes in the radiation pattern is evident, and consequently they generate movement. The parts confined in morphological blocks of electromagnetic walls defined in step (23A-4) make the electromagnetic fields interact to produce movement of translation and rotation, by expansion-contraction of the field how often the frequency is assessed, and by the presence of the rotating field
23.-PROCED9MIENTO DE TRADUCCIÓN CIRCUITAL DE LA ANTENA MORFOLÓGICA, para la transmisión y recepción de señales, según la reivindicación 10 y 12 caracterizado porque en la realización de Transferencia de la traducción circuital de antena (23C), en las etapas de: 23.-CIRCUITAL TRANSLATION PROCEDURE OF THE MORPHOLOGICAL ANTENNA, for the transmission and reception of signals, according to claim 10 and 12 characterized in that in the realization of Transfer of the antenna circuit translation (23C), in the steps of:
Tangibilización como antena morfológica (23C-1); se definen los materiales y metamateriales de propiedades electromagnéticas plurales, de naturaleza rígida o flexible, participantes en la antena mo ólógiéá, éstilleciéñdóse La Wodélizáción d la antena morfológica (23G-2), para disponer de la conducta del patrón de radiación morfológica y su correspondiente evidencia de aplicación, por lo que la Fabricación de la antena morfológica (23C-3), se correlaciona con los materiales y metamateriales definidos en (23C1), siendo modelados según (23C-2) independientemente o en conjunto sobre la base operacional y funcional de la antena establecida en las realizaciones 23A y 23B.
Tangibilization as a morphological antenna (23C-1); the materials and metamaterials of plural electromagnetic properties, of a rigid or flexible nature, participating in the mologic antenna, the Wodélizáción d the morphological antenna (23G-2), are defined to have the behavior of the morphological radiation pattern and its corresponding application evidence, so the Manufacture of the morphological antenna (23C-3), correlates with the materials and metamaterials defined in (23C1), being modeled according to (23C-2) independently or together on the operational and functional basis of the antenna established in embodiments 23A and 23B.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PE001313-2015/DIN | 2015-07-13 | ||
PE2015001313A PE20160597A1 (en) | 2015-07-13 | 2015-07-13 | MORPHOLOGICAL ANTENNA AND ITS CIRCUITAL TRANSLATION PROCEDURE |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017010894A1 true WO2017010894A1 (en) | 2017-01-19 |
Family
ID=57757974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/PE2016/000010 WO2017010894A1 (en) | 2015-07-13 | 2016-07-12 | Morphological antenna and method for the circuital translation thereof |
Country Status (2)
Country | Link |
---|---|
PE (1) | PE20160597A1 (en) |
WO (1) | WO2017010894A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6140975A (en) * | 1995-08-09 | 2000-10-31 | Cohen; Nathan | Fractal antenna ground counterpoise, ground planes, and loading elements |
US7830319B2 (en) * | 2004-08-24 | 2010-11-09 | Nathan Cohen | Wideband antenna system for garments |
CN203081012U (en) * | 2013-02-25 | 2013-07-24 | 四川汇源信息技术有限公司 | Bionic tree with built-in antenna structure |
US20130207850A1 (en) * | 2011-02-22 | 2013-08-15 | Amir I. Zaghloul | Nanofabric Antenna |
US20140159959A1 (en) * | 2012-07-11 | 2014-06-12 | Digimarc Corporation | Body-worn phased-array antenna |
US20140168022A1 (en) * | 2011-12-07 | 2014-06-19 | Utah State University | Reconfigurable antennas utilizing liquid metal elements |
-
2015
- 2015-07-13 PE PE2015001313A patent/PE20160597A1/en active IP Right Grant
-
2016
- 2016-07-12 WO PCT/PE2016/000010 patent/WO2017010894A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6140975A (en) * | 1995-08-09 | 2000-10-31 | Cohen; Nathan | Fractal antenna ground counterpoise, ground planes, and loading elements |
US7830319B2 (en) * | 2004-08-24 | 2010-11-09 | Nathan Cohen | Wideband antenna system for garments |
US20130207850A1 (en) * | 2011-02-22 | 2013-08-15 | Amir I. Zaghloul | Nanofabric Antenna |
US20140168022A1 (en) * | 2011-12-07 | 2014-06-19 | Utah State University | Reconfigurable antennas utilizing liquid metal elements |
US20140159959A1 (en) * | 2012-07-11 | 2014-06-12 | Digimarc Corporation | Body-worn phased-array antenna |
CN203081012U (en) * | 2013-02-25 | 2013-07-24 | 四川汇源信息技术有限公司 | Bionic tree with built-in antenna structure |
Non-Patent Citations (1)
Title |
---|
CAMPUS JOÃO PESSOA: "PROJETO DEANTENAS BIOINSPIRADAS EM PLANTAS PARA SISTEMAS DE COMUNICAÇÃO SEM FIO - Tesis de maestría - INSTITUTO FEDERAL DE EDUCAÇÃO", CIÊNCIA E TECNOLOGIA DA PARAÍBA, June 2015 (2015-06-01) * |
Also Published As
Publication number | Publication date |
---|---|
PE20160597A1 (en) | 2016-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Design of linear and circular antenna arrays using cuckoo optimization algorithm | |
ES2550460T3 (en) | Antenna with shared use of sources and procedure of elaboration of an antenna with shared use of sources for the elaboration of multiple beams | |
CN101706839B (en) | Conformal array antenna excitation phase determining method based on time reversal | |
CN104733850B (en) | Artificial tensor impedance skin antenna and its implementation based on holographic modulation | |
CN104347939B (en) | Multi-input multi-output antenna system and radiation absorption method | |
US6107975A (en) | Programmable antenna | |
Clemente et al. | Super directive compact antenna design using spherical wave expansion | |
Sterne et al. | Modeling of a twin terminated folded dipole antenna for the Super Dual Auroral Radar Network (SuperDARN) | |
Overturf et al. | Investigation of beamforming patterns from volumetrically distributed phased arrays | |
WO2017010894A1 (en) | Morphological antenna and method for the circuital translation thereof | |
CN106021766B (en) | High pointing accuracy design method of circularly polarized mesh antenna based on electromechanical integration optimization | |
Zong et al. | Surface configuration design of cable-network reflectors considering the radiation pattern | |
Khaleel et al. | Pattern reconfigurable dielectric resonator antenna using capacitor loading for internet of things applications | |
ES2727749T3 (en) | Surface wave antenna, antenna network and use of an antenna or antenna network | |
Nikkhah et al. | A three-element biomimetic antenna array with an electrically small triangular lattice | |
ES2466354T3 (en) | Method of electromagnetic characterization of a target | |
CN109325306A (en) | A kind of conformal array modeling methods of arbitrary surface based on part plan | |
Ivashina et al. | Capabilities and fundamental limitations of multi-mode antennas in an array environment | |
Hassan | Ultra-Low-Sidelobe-Level Concentric-Ring-Array Pattern Synthesis Using Bessel Neural Networks [Antenna Designer's Notebook] | |
Werner et al. | Stub-loaded long-wire monopoles optimized for high gain performance | |
ES2525008T3 (en) | Asymmetric three-dimensional radiant system | |
Mathew et al. | Fractal geometry based antennas and arrays: a review | |
Ni et al. | A Novel Approach for Designing Fractal Antennas | |
Ferrero et al. | Super-directive parasitic element antenna for spatial filtering applications | |
Saha Misra et al. | Design and optimization of a nonplanar multidipole array using genetic algorithms for mobile communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16824774 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16824774 Country of ref document: EP Kind code of ref document: A1 |