WO2017010558A1 - Method for producing compound - Google Patents

Method for producing compound Download PDF

Info

Publication number
WO2017010558A1
WO2017010558A1 PCT/JP2016/070920 JP2016070920W WO2017010558A1 WO 2017010558 A1 WO2017010558 A1 WO 2017010558A1 JP 2016070920 W JP2016070920 W JP 2016070920W WO 2017010558 A1 WO2017010558 A1 WO 2017010558A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
copper
compound
compound represented
Prior art date
Application number
PCT/JP2016/070920
Other languages
French (fr)
Japanese (ja)
Inventor
柴崎 正勝
直哉 熊谷
久嗣 高田
Original Assignee
公益財団法人微生物化学研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人微生物化学研究会 filed Critical 公益財団法人微生物化学研究会
Publication of WO2017010558A1 publication Critical patent/WO2017010558A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an optically active compound that is very useful for the synthesis of NITD609, and a method for producing NITD609.
  • Non-Patent Documents 1 and 2 In 2010, Novartis Institute for Tropical Diseases reported a compound represented by the following structural formula (NITD609) having antimalarial activity (see Non-Patent Documents 1 and 2).
  • This compound is a malaria parasite Plasmodium. Which has acquired resistance to other antimalarial agents. Falciparum and Plasmodium. It has been reported that it also exhibits activity against Vivax, and the clinical trial is currently proceeding to a phase II trial.
  • the product is obtained as a racemate, and then the target product is obtained by optical resolution using a chiral column, leaving problems in terms of synthesis efficiency.
  • the method relies on enzymatic methods.
  • an object of the present invention is to provide a method for producing an optically active compound that is very useful for the synthesis of NITD609 and a method for producing NITD609.
  • the method for producing a compound of the present invention is a method for producing a compound represented by the following general formula (1), A compound represented by the following general formula (2) and a compound represented by the following general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A) It includes a reaction step of reacting to obtain a compound represented by the general formula (1).
  • R 1 represents either a hydrogen atom or an amino-protecting group.
  • R 2 represents either a hydrogen atom or an amino-protecting group.
  • R 11 represents an aromatic group which may have a substituent.
  • R 12 represents an aromatic group which may have a substituent.
  • R 13 represents either a hydrogen atom or an amino-protecting group.
  • R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
  • the manufacturing method of the compound of this invention is a manufacturing method of the compound represented by following Structural formula (1), A compound represented by the following general formula (2) and a compound represented by the following general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A) It includes a reaction step of reacting to obtain a compound represented by the general formula (1).
  • R 1 represents either a hydrogen atom or an amino-protecting group.
  • R 2 represents either a hydrogen atom or an amino-protecting group.
  • R 11 represents an aromatic group which may have a substituent.
  • R 12 represents an aromatic group which may have a substituent.
  • R 13 represents either a hydrogen atom or an amino-protecting group.
  • R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
  • a method for producing an optically active compound that can solve the above-mentioned problems and achieve the above-mentioned object and is very useful for the synthesis of NITD 609, and a method for producing NITD 609. it can.
  • the present inventors planned a synthesis strategy of NITD609 applying the catalytic asymmetric alkynylation reaction shown in the above-mentioned Scheme 1 as shown in Scheme 2 below.
  • This synthetic strategy was developed by the present inventors as the title of “Asymmetric Synthesis of NITD609 Utilizing Catalytic Asymmetric Alkynylation Reaction”. (2014) and 134th Annual Meeting (2015) and their abstracts [Japan Pharmaceutical Association 133rd Annual Meeting 28S-am03 (133th Annual Meeting), Japan Pharmaceutical Association 134th Annual Meeting 28D-pm15 (134th Annual Meeting)].
  • the present inventors conducted a study.
  • the present inventors examined in detail the stereochemistry of the epimer obtained in the previous report by the synthesis strategy of the above Scheme 2. As a result, it was found that in the obtained product, the product that can be separated from the diastereomer is mainly composed of the enantiomer of NITD609.
  • the present inventors have completed the present invention by reviewing the production method of Compound C in the synthesis strategy shown in the above-mentioned Scheme 2.
  • the present invention is an invention that can be achieved only by the present inventions that have obtained this knowledge.
  • the method for producing a compound of the present invention (part 1) is a method for producing a compound represented by the following general formula (1), which includes at least a reaction step, and further includes other steps as necessary.
  • the reaction step is a step of obtaining a compound represented by the general formula (1) by reacting a compound represented by the following general formula (2) with a compound represented by the following general formula (3). .
  • This reaction is performed in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A).
  • R 1 represents either a hydrogen atom or an amino-protecting group.
  • R 2 represents either a hydrogen atom or an amino-protecting group.
  • R 11 represents an aromatic group which may have a substituent.
  • R 12 represents an aromatic group which may have a substituent.
  • R 13 represents either a hydrogen atom or an amino-protecting group.
  • the amino protecting group in R 1 , R 2 , and R 13 is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a methoxycarbonyl group, a tert-butoxycarbonyl group, Examples include benzyloxycarbonyl group, allyloxycarbonyl group, formyl group, acetyl group, benzoyl group, methyl group, ethyl group, allyl group, and benzenesulfonyl group.
  • the aromatic group in the aromatic group which may have the substituent of R 11 and R 12 may be either a monocyclic structure or a polycyclic structure. Of these, a phenyl group, a 1-naphthyl group, and a 2-naphthyl group are preferable.
  • the number of carbon atoms of the aromatic group that may have a substituent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 6 to 15.
  • an aromatic hydrocarbon group is preferable.
  • carbon number of the aromatic group which may have the said substituent means the total carbon number also including carbon number of this substituent here, when these have a substituent.
  • the substituent of the aromatic group that may have the substituent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it has a halogen atom, an alkoxy group, or a substituent. Or an alkyl group that may be used.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • the alkoxy group include an alkoxy group having 1 to 6 carbon atoms.
  • Examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms.
  • Examples of the substituent in the alkyl group which may have a substituent include a halogen atom.
  • Examples of the alkyl group which may have a substituent include a trifluoromethyl group.
  • the catalyst contains an asymmetric ligand represented by the following general formula (A).
  • the catalyst is, for example, a metal complex.
  • a metal complex As the metal complex, a copper complex is preferable.
  • the copper complex is obtained, for example, by mixing a copper compound and an asymmetric ligand represented by the general formula (A).
  • asymmetric ligand represented by formula (A)- The asymmetric ligand represented by the following general formula (A) is a ligand described in WO 91/17998 pamphlet and Japanese Patent No. 2975683, and the like, and is an enantioselective catalyst. It is known as a ligand that forms The asymmetric ligand represented by the general formula (A) is also referred to as (R, R) -2,5-substituted-BPE because of its stereochemistry.
  • R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
  • alkyl group having 1 to 6 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, n-pentyl group, and n-hexyl group. Is mentioned.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the substituent in the substituted aryl group include an alkyl group.
  • Examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms.
  • Examples of the substituted aryl group include a p-tolyl group.
  • aralkyl group examples include a benzyl group and a phenethyl group.
  • R is preferably a phenyl group. That is, the asymmetric ligand represented by the general formula (A) is preferably an asymmetric ligand represented by the following structural formula (A-1) [(R, R) -Ph-BPE]. However, in the structural formula (A-1), Ph represents a phenyl group.
  • the copper compound is not particularly limited and may be appropriately selected depending on the intended purpose as long as an asymmetric copper complex can be obtained by reacting with the asymmetric ligand represented by the general formula (A). it can.
  • Examples of the copper compound include a compound containing monovalent or divalent copper, and examples thereof include a copper salt and other copper compounds.
  • Copper salt-- Examples of the copper salt include a copper salt represented by the following general formula (B-1). [Cu n11 X 1 n12 ] n13 general formula (B-1) (In the formula, n12 X 1 s are the same or different and each represents an anion, and n11 to n13 each independently represent a natural number.)
  • anion represented by X 1, not particularly limited and may be appropriately selected depending on the intended purpose, for example, nitrate ion, nitrite ion, halide ion, sulfate ion, sulfite ion, sulfonate ion, sulfamic acid Ion, carbonate ion, hydroxide ion, carboxylate ion, sulfide ion, thiocyanate ion, phosphate ion, pyrophosphate ion, oxide ion, phosphide ion, chlorate ion, perchlorate ion, iodate ion Hexafluorosilicate ion, cyanide ion, borate ion, metaborate ion, borofluoride ion, and the like.
  • Examples of the halide ions include fluoride ions, chloride ions, bromide ions, and iodide ions.
  • Examples of the sulfonate ion include groups represented by R 105 SO 3 — (R 105 represents a hydrocarbon group which may have a substituent). Specific examples of the sulfonate ion include methanesulfonate ion, benzenesulfonate ion, trifluoromethanesulfonate ion, p-toluenesulfonate ion, and the like.
  • Examples of the carboxylate ion include R 106 COO ⁇ (R 106 represents a hydrocarbon group which may have a substituent).
  • carboxylate ion examples include, for example, acetate ion, formate ion, propionate ion, gluconate ion, oleate ion, oxalate ion, benzoate ion, phthalate ion, trifluoroacetate ion, and the like. It is done.
  • N11 and n12 each independently represent a natural number, preferably a natural number of 1 to 10.
  • the copper salt include the following copper salts.
  • -Copper nitrate eg, copper nitrate (I), copper nitrate (II), etc.
  • Copper nitrite for example, copper (I) nitrite, copper (II) nitrite, etc.]
  • Copper halide for example, copper (I) chloride, copper (II) chloride, copper (I) bromide, copper (II) bromide, copper fluoride (I), copper (II) fluoride, copper iodide (I), copper (II) iodide, etc.
  • -Copper sulfate eg, copper (II) sulfate]
  • Copper sulfite eg, copper (II) sulfite]
  • -Copper sulfonate for example, copper (I) methanesulfonate, copper (II) methanesulfonate, copper (I) p-to
  • copper compounds examples include copper compounds represented by the following general formula (B-2). [Cu n14 X 2 n15] n16 general formula (B-2) [Wherein, n15 X 2 s are the same or different and may be a hydrocarbon group which may have a substituent, OR 101 (R 101 represents a hydrocarbon group which may have a substituent)] , NR 102 2 (two R 102 are the same or different and each represents a hydrogen atom or a hydrocarbon group optionally having a substituent), PR 103 2 (two R 103 are the same or different Represents a hydrocarbon group which may have a substituent), SR 104 (R 104 represents a hydrocarbon group which may have a substituent), 1,3-dicarbonyl compound or its Enolate or hydride, and n14 to n16 each independently represents a natural number. ]
  • n14 and n15 each independently represent a natural number, preferably a natural number of 1 to 10.
  • OR 101 represented by X 2 include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, s-butoxy group, tert-butoxy group, phenoxy group and the like. Can be mentioned.
  • Examples of the NR 102 for example, dimethylamino group, diethylamino group, dicyclohexyl amino group, and a diphenylamino group.
  • Specific examples of the PR 103 for example, dimethyl phosphino group, diethylphosphino group, di (tert- butyl) phosphino group, dicyclohexylphosphino group, and diphenylphosphino groups.
  • Specific examples of the SR 104 include SMe, SEt, SBu, SPh, S (CH 3 C 6 H 5 ), and the like.
  • Me represents a methyl group
  • Et represents an ethyl group.
  • Specific examples of the 1,3-dicarbonyl compound or enolate thereof include, for example, 2,5-pentanedione (acac), 1,1,1-trifluoro-2,5-pentanedione, 1,1,1 , 3,3,3-hexafluoropentanedione (hfac), benzoylacetone, methyl acetoacetate, ethyl acetoacetate and the like.
  • Specific examples of the copper compound represented by the general formula (B-2) include the following copper compounds. ⁇ Copper alkoxides (eg, copper dimethoxide, copper diethoxide, copper diisopropoxide, copper tert-butoxide, etc.) ⁇ Copper phenoxide (for example, copper phenoxide) ⁇ Copper phosphides (eg, copper di (tert-butyl phosphide), copper dicyclohexyl phosphide, copper diphenyl phosphide, etc.) ⁇ Copper amide (for example, copper dicyclohexylamide) ⁇ Copper thiolate (eg, copper butane thiolate, copper thiophenolate, etc.) ⁇ Copper 1,3-dicarbonyl compounds or enolate thereof [eg, copper 2,4-pentanedionate, copper benzoylacetonate, copper 1,3-diphenyl-1,3-propanedionate, copper ethy
  • copper compounds include, for example, copper compounds represented by the following general formula (B-3). [HCuP (R 107 ) 3 ] n17 general formula (B-3) (In the formula, three R 107 s are the same or different and each represents an optionally substituted hydrocarbon group, and n17 represents a natural number.)
  • copper compound represented by the general formula (B-3) include, for example, copper (I) hydride (triphenylphosphine) hexamer (Strike reagent).
  • copper compound represented by the general formula (B-3) examples include hydrido (triphenylphosphine) copper (I) hexamer.
  • Copper compounds such as the copper salt and other copper compounds are salts of alkali metals (for example, lithium, sodium, potassium, rubidium, cesium, etc.) and alkaline earth metals (for example, magnesium, calcium, strontium, barium, etc.) And may form a double salt.
  • alkali metals for example, lithium, sodium, potassium, rubidium, cesium, etc.
  • alkaline earth metals for example, magnesium, calcium, strontium, barium, etc.
  • the double salt to be formed include KCuF 3 , K 3 [CuF 6 ], CuCN ⁇ LiCl, Li 2 CuCl 4 , Li 2 CuCl 3 , LiCuBr 2 and the like.
  • These copper salts and the other copper compounds may be anhydrous or hydrated.
  • copper compounds may be used alone or in appropriate combination of two or more.
  • the said copper compound may use a commercial item, or what was suitably manufactured by the method as described in the conventional method or the literature described in this specification, etc. may be used.
  • mesityl copper (I) is preferable from the viewpoint of catalytic activity.
  • the ratio of the compound represented by the general formula (2) and the compound represented by the general formula (3) in the reaction step is not particularly limited and may be appropriately selected depending on the purpose.
  • the compound represented by the general formula (2) is preferably 1.0 equivalent to 3.0 equivalents relative to the compound represented by the general formula (3).
  • the solvent used in the reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include THF (tetrahydrofuran) and DMF (N, N-dimethylformamide). These may be used individually by 1 type and may use 2 or more types together.
  • the amount of the catalyst used in the reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. It is 0.1 mol% to 10 mol based on the compound represented by the general formula (3). %, More preferably 1 mol% to 8 mol%, particularly preferably 3 mol% to 6 mol%.
  • the reaction temperature in the reaction step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably ⁇ 50 ° C. to ⁇ 20 ° C. Since the reaction proceeds under mild conditions, the reaction can be performed without controlling the reaction temperature. Therefore, for example, it can be performed at room temperature. Examples of the room temperature include 20 ° C. to 30 ° C.
  • the reaction time in the reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 24 hours to 100 hours, and preferably 48 hours to 96 hours.
  • Part 2 The method for producing a compound of the present invention (Part 2) is a method for producing a compound (NITD609) represented by the following structural formula (1), which includes at least a reaction step, and further includes other steps as necessary. Including.
  • reaction process is the same as the said reaction process in the manufacturing method of the compound represented by the said General formula (1), A preferable aspect is also the same.
  • the other step is not particularly limited as long as it is a step of obtaining the compound represented by the structural formula (1) using the compound represented by the general formula (1), and is appropriately selected depending on the purpose.
  • a method of synthesizing according to the scheme 2 can be mentioned.
  • the following series of reactions can be mentioned.
  • Such a series of reactions is also described in detail in the following examples. Individual reactions in such a series of reactions can be carried out without trial and error by those skilled in the art who have contacted the following scheme and the examples described below.
  • the 1 H NMR measurement result of the obtained compound is shown below.
  • the 1 H NMR measurement result of the obtained compound is shown below.
  • Example 3 (Example 3 and Reference Example)
  • the reaction was carried out by changing the reaction temperature and reaction time as shown in Table 1 below. The results are shown in Table 1. Note that Entry 6 in Table 1 corresponds to Example 1.
  • a reference example (Entry 01, 02) using (S, S) -Ph-BPE is shown. In the reference example, it was confirmed that a product having a stereochemistry opposite to the product of the reaction of Scheme 7 was obtained.
  • R 1 represents either a hydrogen atom or an amino-protecting group.
  • R 2 represents either a hydrogen atom or an amino-protecting group.
  • R 11 represents an aromatic group which may have a substituent.
  • R 12 represents an aromatic group which may have a substituent.
  • R 13 represents either a hydrogen atom or an amino-protecting group.
  • R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
  • R of the asymmetric ligand represented by the general formula (A) is a phenyl group.
  • the catalyst is a copper complex.
  • ⁇ 4> The method for producing a compound according to ⁇ 3>, wherein the copper complex is obtained by mixing a copper compound and an asymmetric ligand represented by the general formula (A).
  • R 1 represents either a hydrogen atom or an amino-protecting group.
  • R 2 represents either a hydrogen atom or an amino-protecting group.
  • R 11 represents an aromatic group which may have a substituent.
  • R 12 represents an aromatic group which may have a substituent.
  • R 13 represents either a hydrogen atom or an amino-protecting group.
  • R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
  • ⁇ 7> The method for producing a compound according to ⁇ 5>, wherein the catalyst is a copper complex.
  • ⁇ 8> The method for producing a compound according to ⁇ 7>, wherein the copper complex is obtained by mixing a copper compound and an asymmetric ligand represented by the general formula (A).
  • the method for producing a compound of the present invention can be suitably used for producing so-called NITD609.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

This method for producing a compound represented by general formula (1) comprises a reaction step for reacting a compound represented by general formula (2) with a compound represented by general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by general formula (A), to obtain the compound represented by general formula (1). However, in general formula (1) and general formula (2), R1 represents either a hydrogen atom or a protecting group for an amino group and R2 represents either a hydrogen atom or a protecting group for an amino group. In general formula (1) and general formula (3), R11 represents an optionally substituted aromatic group, R12 represents an optionally substituted aromatic group, and R13 represents either a hydrogen atom or a protecting group for an amino group. However, in general formula (A), R represents any one of an alkyl group having 1-6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.

Description

化合物の製造方法Method for producing compound
 本発明は、NITD609の合成に非常に有用な光学活性化合物を製造する方法、並びにNITD609の製造方法に関する。 The present invention relates to a method for producing an optically active compound that is very useful for the synthesis of NITD609, and a method for producing NITD609.
 2010年、Novartis Institute for Tropical Diseasesによって抗マラリア活性を有する下記構造式で表される化合物(NITD609)が報告された(非特許文献1及び2参照)。
Figure JPOXMLDOC01-appb-C000010
In 2010, Novartis Institute for Tropical Diseases reported a compound represented by the following structural formula (NITD609) having antimalarial activity (see Non-Patent Documents 1 and 2).
Figure JPOXMLDOC01-appb-C000010
 この化合物は、他の抗マラリア剤に対し耐性を獲得したマラリア原虫Plasmodium. Falciparum、及びPlasmodium. Vivaxに対しても活性を示すことが報告されており、現在、治験が第二相試験に進んでいる。 This compound is a malaria parasite Plasmodium. Which has acquired resistance to other antimalarial agents. Falciparum and Plasmodium. It has been reported that it also exhibits activity against Vivax, and the clinical trial is currently proceeding to a phase II trial.
 しかしながら、最初に報告されている本化合物の合成法では、生成物をラセミ体として合成後、キラルカラムによる光学分割によって目的物を得ており、合成効率の点で問題が残されており、改良合成法は酵素法に頼っている。 However, in the first method for synthesizing this compound, the product is obtained as a racemate, and then the target product is obtained by optical resolution using a chiral column, leaving problems in terms of synthesis efficiency. The method relies on enzymatic methods.
 したがって、NITD609の合成に有用な純化学的な光学活性化合物の製造方法が求められているのが現状である。 Therefore, at present, there is a demand for a method for producing a pure chemical optically active compound useful for the synthesis of NITD609.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、NITD609の合成に非常に有用な光学活性化合物を製造する方法、並びにNITD609の製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a method for producing an optically active compound that is very useful for the synthesis of NITD609 and a method for producing NITD609.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 本発明の化合物の製造方法は、下記一般式(1)で表される化合物の製造方法であって、
 下記一般式(2)で表される化合物と、下記一般式(3)で表される化合物とを、下記一般式(A)で表される不斉配位子を含有する触媒の存在下で反応させ、前記一般式(1)で表される化合物を得る反応工程を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 ただし、前記一般式(1)、及び前記一般式(2)中、Rは、水素原子、及びアミノ基の保護基のいずれかを表す。Rは、水素原子、及びアミノ基の保護基のいずれかを表す。前記一般式(1)、及び前記一般式(3)中、R11は、置換基を有していてもよい芳香族基を表す。R12は、置換基を有していてもよい芳香族基を表す。R13は、水素原子、及びアミノ基の保護基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000014
 ただし、前記一般式(A)中、Rは、炭素数1~6のアルキル基、アリール基、置換アリール基、アラルキル基、及び環置換アラルキル基のいずれかを表す。
Means for solving the problems are as follows. That is,
The method for producing a compound of the present invention is a method for producing a compound represented by the following general formula (1),
A compound represented by the following general formula (2) and a compound represented by the following general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A) It includes a reaction step of reacting to obtain a compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
However, in the general formula (1) and the general formula (2), R 1 represents either a hydrogen atom or an amino-protecting group. R 2 represents either a hydrogen atom or an amino-protecting group. In the general formula (1) and the general formula (3), R 11 represents an aromatic group which may have a substituent. R 12 represents an aromatic group which may have a substituent. R 13 represents either a hydrogen atom or an amino-protecting group.
Figure JPOXMLDOC01-appb-C000014
In the general formula (A), R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
 また、本発明の化合物の製造方法は、下記構造式(1)で表される化合物の製造方法であって、
 下記一般式(2)で表される化合物と、下記一般式(3)で表される化合物とを、下記一般式(A)で表される不斉配位子を含有する触媒の存在下で反応させ、前記一般式(1)で表される化合物を得る反応工程を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 ただし、前記一般式(1)、及び前記一般式(2)中、Rは、水素原子、及びアミノ基の保護基のいずれかを表す。Rは、水素原子、及びアミノ基の保護基のいずれかを表す。前記一般式(1)、及び前記一般式(3)中、R11は、置換基を有していてもよい芳香族基を表す。R12は、置換基を有していてもよい芳香族基を表す。R13は、水素原子、及びアミノ基の保護基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000019
 ただし、前記一般式(A)中、Rは、炭素数1~6のアルキル基、アリール基、置換アリール基、アラルキル基、及び環置換アラルキル基のいずれかを表す。
Moreover, the manufacturing method of the compound of this invention is a manufacturing method of the compound represented by following Structural formula (1),
A compound represented by the following general formula (2) and a compound represented by the following general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A) It includes a reaction step of reacting to obtain a compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
However, in the general formula (1) and the general formula (2), R 1 represents either a hydrogen atom or an amino-protecting group. R 2 represents either a hydrogen atom or an amino-protecting group. In the general formula (1) and the general formula (3), R 11 represents an aromatic group which may have a substituent. R 12 represents an aromatic group which may have a substituent. R 13 represents either a hydrogen atom or an amino-protecting group.
Figure JPOXMLDOC01-appb-C000019
In the general formula (A), R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、NITD609の合成に非常に有用な光学活性化合物を製造する方法、並びにNITD609の製造方法を提供することができる。 According to the present invention, there are provided a method for producing an optically active compound that can solve the above-mentioned problems and achieve the above-mentioned object and is very useful for the synthesis of NITD 609, and a method for producing NITD 609. it can.
 本明細書、及び特許請求の範囲に記載された化学式及び一般式における立体配置は、特に言及しない場合には、絶対配置を表す。 The steric configurations in the chemical formulas and general formulas described in this specification and in the claims represent absolute configurations unless otherwise specified.
 本発明者らは、NITD609の効率的な合成方法について鋭意検討を行った。
 本発明者らは、以下のScheme 1に示す触媒的不斉アルキニル化反応に着目した。
Figure JPOXMLDOC01-appb-C000020
 ここで、「Ph」は、フェニル基を表す。R、R、及びRは、置換基を表す。
 このScheme 1に示す反応は、非特許文献(Yin, L.; Otsuka, Y.; Takada, H.; Mouri, S.; Yazaki, R.; Kumagai, N.; Shibasaki, M. Org. Lett. 2013, 15, 698)で報告されている。
The present inventors diligently studied on an efficient synthesis method of NITD609.
The present inventors paid attention to the catalytic asymmetric alkynylation reaction shown in Scheme 1 below.
Figure JPOXMLDOC01-appb-C000020
Here, “Ph” represents a phenyl group. R 1 , R 2 , and R 3 represent a substituent.
This reaction shown in Scheme 1 is described in non-patent literature (Yin, L .; Otsuka, Y .; Takada, H .; Mouri, S .; Yazaki, R .; Kumagai, N .; Shibasaki, M. Ort. 2013, 15, 698).
 本発明者らは、前記Scheme 1に示す触媒的不斉アルキニル化反応を応用したNITD609の合成戦略を以下のScheme 2のように計画した。
Figure JPOXMLDOC01-appb-C000021
 この合成戦略は、本発明者らによって、「触媒的不斉アルキニル化反応を利用したNITD609の不斉合成研究」という発表題目として、公益財団法人 日本薬学会が開催した日本薬学会第133年会(2014年)及び第134年会(2015年)、及びそれらの要旨集〔日本薬学会第133年会要旨集28S-am03(133年会),日本薬学会第134年会要旨集28D-pm15(134年会)〕において報告されている。
The present inventors planned a synthesis strategy of NITD609 applying the catalytic asymmetric alkynylation reaction shown in the above-mentioned Scheme 1 as shown in Scheme 2 below.
Figure JPOXMLDOC01-appb-C000021
This synthetic strategy was developed by the present inventors as the title of “Asymmetric Synthesis of NITD609 Utilizing Catalytic Asymmetric Alkynylation Reaction”. (2014) and 134th Annual Meeting (2015) and their abstracts [Japan Pharmaceutical Association 133rd Annual Meeting 28S-am03 (133th Annual Meeting), Japan Pharmaceutical Association 134th Annual Meeting 28D-pm15 (134th Annual Meeting)].
 この合成戦略に基づく実際の合成においては、前記Scheme 2に記載の化合物Cを合成するために、前記Scheme 1を参考にして、下記Scheme 3に示す合成を試みている。
Figure JPOXMLDOC01-appb-C000022
In the actual synthesis based on this synthesis strategy, in order to synthesize the compound C described in the above Scheme 2, the synthesis shown in the following Scheme 3 is attempted with reference to the above Scheme 1.
Figure JPOXMLDOC01-appb-C000022
 ところが、結論としては、得られた結果物は、NITD609のエピマーであった。ここまでは既報により報告されている。 However, as a conclusion, the resulting product was an epimer of NITD609. So far, it has been reported in previous reports.
 更に本発明者らは、検討を行った。
 本発明者らは、前記Scheme 2の合成戦略によって既報において得られたエピマーの立体化学を詳細に検討した。そのところ、得られた結果物において、ジアステレオマーと分離可能な生成物は、NITD609のエナンチオマーが主成分であることを知見した。
Furthermore, the present inventors conducted a study.
The present inventors examined in detail the stereochemistry of the epimer obtained in the previous report by the synthesis strategy of the above Scheme 2. As a result, it was found that in the obtained product, the product that can be separated from the diastereomer is mainly composed of the enantiomer of NITD609.
 そこで、本発明者らは、更に検討を行った。
 前記Scheme 1に示す触媒的不斉アルキニル化反応を応用して、前記Scheme 3に示す化合物C1を得ようとすると、前記Scheme 3に示す不斉触媒を用いるのが、当業者の当然の思考である。
 しかし、本発明者らは、前記知見(NITD609のエナンチオマーが主成分であること)を踏まえ、前記Scheme 2の合成戦略、及び、前記Scheme 3の合成を再度詳細に検討した。
 その結果、前記Scheme 3の反応では、驚くべきことに、C1の光学異性体である、下記構造式(C1-A)で表される化合物が生成していることを知見した。
Figure JPOXMLDOC01-appb-C000023
Therefore, the present inventors further studied.
By applying the catalytic asymmetric alkynylation reaction shown in Scheme 1 to obtain the compound C1 shown in Scheme 3, it is a natural idea of those skilled in the art to use the asymmetric catalyst shown in Scheme 3. is there.
However, the present inventors examined the synthesis strategy of the Scheme 2 and the synthesis of the Scheme 3 again in detail based on the above findings (the enantiomer of NITD609 is the main component).
As a result, it was found that in the reaction of Scheme 3, a compound represented by the following structural formula (C1-A), which is an optical isomer of C1, was generated.
Figure JPOXMLDOC01-appb-C000023
 そこで、本発明らは、この知見を踏まえ、前記Scheme 2で示される合成戦略において、化合物Cの製造方法を見直すことで、本発明の完成に至った。即ち、本発明は、この知見を手に入れた本発明らであったからこそ成し得た発明である。 Therefore, based on this finding, the present inventors have completed the present invention by reviewing the production method of Compound C in the synthesis strategy shown in the above-mentioned Scheme 2. In other words, the present invention is an invention that can be achieved only by the present inventions that have obtained this knowledge.
(一般式(1)で表される化合物の製造方法)
 本発明の化合物の製造方法(その1)は、下記一般式(1)で表される化合物の製造方法であって、反応工程を少なくとも含み、更に必要に応じて、その他の工程を含む。
(Method for producing the compound represented by the general formula (1))
The method for producing a compound of the present invention (part 1) is a method for producing a compound represented by the following general formula (1), which includes at least a reaction step, and further includes other steps as necessary.
<反応工程>
 前記反応工程は、下記一般式(2)で表される化合物と、下記一般式(3)で表される化合物とを反応させ、前記一般式(1)で表される化合物を得る工程である。
 この反応は、下記一般式(A)で表される不斉配位子を含有する触媒の存在下で行われる。
<Reaction process>
The reaction step is a step of obtaining a compound represented by the general formula (1) by reacting a compound represented by the following general formula (2) with a compound represented by the following general formula (3). .
This reaction is performed in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A).
<<一般式(1)で表される化合物、一般式(2)で表される化合物、一般式(3)で表される化合物>>
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 ただし、前記一般式(1)、及び前記一般式(2)中、Rは、水素原子、及びアミノ基の保護基のいずれかを表す。Rは、水素原子、及びアミノ基の保護基のいずれかを表す。前記一般式(1)、及び前記一般式(3)中、R11は、置換基を有していてもよい芳香族基を表す。R12は、置換基を有していてもよい芳香族基を表す。R13は、水素原子、及びアミノ基の保護基のいずれかを表す。
<< Compound Represented by General Formula (1), Compound Represented by General Formula (2), Compound Represented by General Formula (3) >>
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
However, in the general formula (1) and the general formula (2), R 1 represents either a hydrogen atom or an amino-protecting group. R 2 represents either a hydrogen atom or an amino-protecting group. In the general formula (1) and the general formula (3), R 11 represents an aromatic group which may have a substituent. R 12 represents an aromatic group which may have a substituent. R 13 represents either a hydrogen atom or an amino-protecting group.
-アミノ基の保護基-
 前記R、前記R、及び前記R13における前記アミノ基の保護基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メトキシカルボニル基、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、アリルオキシカルボニル基、ホルミル基、アセチル基、ベンゾイル基、メチル基、エチル基、アリル基、ベンゼンスルホニル基などが挙げられる。
-Amino protecting group-
The amino protecting group in R 1 , R 2 , and R 13 is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a methoxycarbonyl group, a tert-butoxycarbonyl group, Examples include benzyloxycarbonyl group, allyloxycarbonyl group, formyl group, acetyl group, benzoyl group, methyl group, ethyl group, allyl group, and benzenesulfonyl group.
-置換基を有していてもよい芳香族基-
 前記R11、及び前記R12の前記置換基を有していてもよい芳香族基における芳香族基は、単環構造及び多環構造のいずれでもよい。なかでも、フェニル基、1-ナフチル基、2-ナフチル基が好ましい。
-Aromatic group which may have a substituent-
The aromatic group in the aromatic group which may have the substituent of R 11 and R 12 may be either a monocyclic structure or a polycyclic structure. Of these, a phenyl group, a 1-naphthyl group, and a 2-naphthyl group are preferable.
 前記置換基を有していてもよい芳香族基の炭素数としては、特に制限はなく、目的に応じて適宜選択することができるが、6~15が好ましい。
 前記芳香族基としては、芳香族炭化水素基が好ましい。
 なお、ここで、前記置換基を有していてもよい芳香族基の炭素数は、これらが置換基を有する場合、該置換基の炭素数も含む合計の炭素数を意味する。
The number of carbon atoms of the aromatic group that may have a substituent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 6 to 15.
As the aromatic group, an aromatic hydrocarbon group is preferable.
In addition, carbon number of the aromatic group which may have the said substituent means the total carbon number also including carbon number of this substituent here, when these have a substituent.
 前記置換基を有していてもよい芳香族基の置換基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ハロゲン原子、アルコキシ基、置換基を有していてもよいアルキル基などが挙げられる。前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子などが挙げられる。前記アルコキシ基としては、例えば、炭素数1~6のアルコキシ基などが挙げられる。前記アルキル基としては、例えば、炭素数1~6のアルキル基などが挙げられる。前記置換基を有していてもよいアルキル基における置換基としては、例えば、ハロゲン原子などが挙げられる。前記置換基を有していてもよいアルキル基としては、例えば、トリフルオロメチル基などが挙げられる。 The substituent of the aromatic group that may have the substituent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it has a halogen atom, an alkoxy group, or a substituent. Or an alkyl group that may be used. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Examples of the alkoxy group include an alkoxy group having 1 to 6 carbon atoms. Examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms. Examples of the substituent in the alkyl group which may have a substituent include a halogen atom. Examples of the alkyl group which may have a substituent include a trifluoromethyl group.
 前記芳香族基における前記置換基の数としては、特に制限はなく、目的に応じて適宜選択することができる。前記置換基の数としては、例えば、1つ~4つなどが挙げられる。
 前記芳香族基における前記置換基の位置としては、特に制限はなく、目的に応じて適宜選択することができ、オルト位、パラ位、及びメタ位のいずれでもよい。
 複数の前記置換基が、前記芳香族基に結合する場合、それらの置換基は、同じ置換基であってもよいし、異なる置換基であってもよい。
There is no restriction | limiting in particular as the number of the said substituents in the said aromatic group, According to the objective, it can select suitably. Examples of the number of substituents include 1 to 4 and the like.
There is no restriction | limiting in particular as a position of the said substituent in the said aromatic group, According to the objective, it can select suitably, Any of ortho position, para position, and meta position may be sufficient.
When a plurality of the substituents are bonded to the aromatic group, the substituents may be the same substituent or different substituents.
<<触媒>>
 前記触媒は、下記一般式(A)で表される不斉配位子を含有する。
<< Catalyst >>
The catalyst contains an asymmetric ligand represented by the following general formula (A).
 前記触媒は、例えば、金属錯体である。前記金属錯体としては、銅錯体が好ましい。前記触媒として、前記銅錯体を用いることにより、安価な銅を触媒源に用い、高いエナンチオ選択性で前記一般式(1)で表される化合物を得ることができる。
 前記銅錯体は、例えば、銅化合物と、前記一般式(A)で表される不斉配位子とを混合して得られる。
The catalyst is, for example, a metal complex. As the metal complex, a copper complex is preferable. By using the copper complex as the catalyst, it is possible to obtain a compound represented by the general formula (1) with high enantioselectivity using inexpensive copper as a catalyst source.
The copper complex is obtained, for example, by mixing a copper compound and an asymmetric ligand represented by the general formula (A).
-一般式(A)で表される不斉配位子-
 下記一般式(A)で表される不斉配位子は、国際公開WO91/17998号パンフレット、及びその日本特許第2975683号公報などに掲載されている配位子であって、エナンチオ選択的触媒を形成する配位子として知られている。前記一般式(A)で表される不斉配位子は、その立体化学から、(R,R)-2,5置換-BPEとも称される。
Figure JPOXMLDOC01-appb-C000027
 ただし、前記一般式(A)中、Rは、炭素数1~6のアルキル基、アリール基、置換アリール基、アラルキル基、及び環置換アラルキル基のいずれかを表す。
-Asymmetric ligand represented by formula (A)-
The asymmetric ligand represented by the following general formula (A) is a ligand described in WO 91/17998 pamphlet and Japanese Patent No. 2975683, and the like, and is an enantioselective catalyst. It is known as a ligand that forms The asymmetric ligand represented by the general formula (A) is also referred to as (R, R) -2,5-substituted-BPE because of its stereochemistry.
Figure JPOXMLDOC01-appb-C000027
In the general formula (A), R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
 前記炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。 Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, n-pentyl group, and n-hexyl group. Is mentioned.
 前記アリール基としては、例えば、フェニル基、ナフチル基などが挙げられる。
 前記置換アリール基における置換基としては、例えば、アルキル基などが挙げられる。前記アルキル基としては、例えば、炭素数1~6のアルキル基などが挙げられる。
 前記置換アリール基としては、例えば、p-トリル基などが挙げられる。
Examples of the aryl group include a phenyl group and a naphthyl group.
Examples of the substituent in the substituted aryl group include an alkyl group. Examples of the alkyl group include an alkyl group having 1 to 6 carbon atoms.
Examples of the substituted aryl group include a p-tolyl group.
 前記アラルキル基としては、例えば、ベンジル基、フェネチル基などが挙げられる。 Examples of the aralkyl group include a benzyl group and a phenethyl group.
 これらのなかでも、立体選択性の点で、Rとしては、フェニル基が好ましい。即ち、前記一般式(A)で表される不斉配位子は、下記構造式(A-1)で表される不斉配位子〔(R,R)-Ph-BPE〕が好ましい。
Figure JPOXMLDOC01-appb-C000028
 ただし、前記構造式(A-1)中、Phは、フェニル基を表す。
Among these, from the viewpoint of stereoselectivity, R is preferably a phenyl group. That is, the asymmetric ligand represented by the general formula (A) is preferably an asymmetric ligand represented by the following structural formula (A-1) [(R, R) -Ph-BPE].
Figure JPOXMLDOC01-appb-C000028
However, in the structural formula (A-1), Ph represents a phenyl group.
-銅化合物-
 前記銅化合物としては、前記一般式(A)で表される不斉配位子と反応させることにより不斉銅錯体を得ることができれば、特に制限はなく、目的に応じて適宜選択することができる。
-Copper compound-
The copper compound is not particularly limited and may be appropriately selected depending on the intended purpose as long as an asymmetric copper complex can be obtained by reacting with the asymmetric ligand represented by the general formula (A). it can.
 前記銅化合物としては、例えば、一価又は二価の銅を含有する化合物が挙げられ、例えば、銅塩、その他の銅化合物などが挙げられる。 Examples of the copper compound include a compound containing monovalent or divalent copper, and examples thereof include a copper salt and other copper compounds.
--銅塩--
 前記銅塩としては、例えば下記一般式(B-1)で表される銅塩などが挙げられる。
  [Cun11 n12n13     一般式(B-1)
 (式中、n12個のXは同一又は異なって、アニオンを示し、n11~n13は夫々独立して、自然数を示す。)
--- Copper salt--
Examples of the copper salt include a copper salt represented by the following general formula (B-1).
[Cu n11 X 1 n12 ] n13 general formula (B-1)
(In the formula, n12 X 1 s are the same or different and each represents an anion, and n11 to n13 each independently represent a natural number.)
 Xで示されるアニオンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸イオン、亜硝酸イオン、ハロゲン化物イオン、硫酸イオン、亜硫酸イオン、スルホン酸イオン、スルファミン酸イオン、炭酸イオン、水酸化物イオン、カルボン酸イオン、硫化物イオン、チオシアン酸イオン、リン酸イオン、ピロリン酸イオン、酸化物イオン、リン化物イオン、塩素酸イオン、過塩素酸イオン、ヨウ素酸イオン、ヘキサフルオロケイ酸イオン、シアン化物イオン、ホウ酸イオン、メタホウ酸イオン、ほうフッ化物イオンなどが挙げられる。 Examples of the anion represented by X 1, not particularly limited and may be appropriately selected depending on the intended purpose, for example, nitrate ion, nitrite ion, halide ion, sulfate ion, sulfite ion, sulfonate ion, sulfamic acid Ion, carbonate ion, hydroxide ion, carboxylate ion, sulfide ion, thiocyanate ion, phosphate ion, pyrophosphate ion, oxide ion, phosphide ion, chlorate ion, perchlorate ion, iodate ion Hexafluorosilicate ion, cyanide ion, borate ion, metaborate ion, borofluoride ion, and the like.
 前記ハロゲン化物イオンとしては、例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどが挙げられる。
 前記スルホン酸イオンとしては、例えば、R105SO (R105は置換基を有していてもよい炭化水素基を示す。)などで示される基が挙げられる。前記スルホン酸イオンの具体例としては、例えば、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、p-トルエンスルホン酸イオンなどが挙げられる。
 前記カルボン酸イオンとしては、例えば、R106COO(R106は置換基を有していてもよい炭化水素基を示す。)などで示される。前記カルボン酸イオンの具体例としては、例えば、酢酸イオン、ぎ酸イオン、プロピオン酸イオン、グルコン酸イオン、オレイン酸イオン、しゅう酸イオン、安息香酸イオン、フタル酸イオン、トリフルオロ酢酸イオンなどが挙げられる。
Examples of the halide ions include fluoride ions, chloride ions, bromide ions, and iodide ions.
Examples of the sulfonate ion include groups represented by R 105 SO 3 (R 105 represents a hydrocarbon group which may have a substituent). Specific examples of the sulfonate ion include methanesulfonate ion, benzenesulfonate ion, trifluoromethanesulfonate ion, p-toluenesulfonate ion, and the like.
Examples of the carboxylate ion include R 106 COO (R 106 represents a hydrocarbon group which may have a substituent). Specific examples of the carboxylate ion include, for example, acetate ion, formate ion, propionate ion, gluconate ion, oleate ion, oxalate ion, benzoate ion, phthalate ion, trifluoroacetate ion, and the like. It is done.
 n11及びn12は夫々独立して自然数を示すが、好ましくは1~10の自然数である。 N11 and n12 each independently represent a natural number, preferably a natural number of 1 to 10.
 前記銅塩の具体例としては、例えば、以下の銅塩などが挙げられる。
 ・硝酸銅〔例えば、硝酸銅(I)、硝酸銅(II)等〕
 ・亜硝酸銅〔例えば、亜硝酸銅(I)、亜硝酸銅(II)等〕
 ・ハロゲン化銅〔例えば、塩化銅(I)、塩化銅(II)、臭化銅(I)、臭化銅(II)、フッ化銅(I)、フッ化銅(II)、ヨウ化銅(I)、ヨウ化銅(II)等〕
 ・硫酸銅〔例えば、硫酸銅(II)等〕
 ・亜硫酸銅〔例えば、亜硫酸銅(II)等〕
 ・スルホン酸銅〔例えば、メタンスルホン酸銅(I)、メタンスルホン酸銅(II)、p-トルエンスルホン酸銅(I)、p-トルエンスルホン酸銅(II)、トリフルオロメタンスルホン酸銅(I)、トリフルオロメタンスルホン酸銅(II)等〕
 ・スルファミン酸銅〔例えば、スルファミン酸銅(II)等〕
 ・炭酸銅〔例えば、炭酸銅(II)等〕
 ・水酸化銅〔例えば、水酸化銅(II)等〕
 ・カルボン酸銅〔例えば、酢酸銅(I)、酢酸銅(II)、ギ酸銅(II)、プロピオン酸銅(II)、グルコン酸銅(II)、オレイン酸銅(II)、シュウ酸銅(II)、安息香酸銅(II)、フタル酸銅(II)、カプリル酸銅(II)、クエン酸銅(II)、サリチル酸銅(II)、酒石酸銅(II)、ステアリン酸銅(II)、ナフテン酸銅、乳酸銅(II)、ラウリン酸銅(II)等〕
 ・硫化銅〔例えば、硫化銅(I)、硫化銅(II)等〕
 ・チオシアン酸銅〔例えば、チオシアン酸銅(I)、チオシアン酸銅(II)等〕
 ・リン酸銅〔例えば、リン酸銅(II)、ピロリン酸銅(II)等〕
 ・酸化銅〔例えば、酸化銅(I)、酸化銅(II)等〕
 ・過ハロゲン化酸銅〔例えば、塩素酸銅(I)、過塩素酸銅(II)等〕
 ・ハロゲン化酸銅〔例えば、ヨウ素酸銅(II)等〕
 ・ケイ酸銅〔例えば、ヘキサフルオロケイ酸銅等〕
 ・シアン化銅〔例えば、シアン化銅(I)、シアン化銅(II)等〕
 ・ホウ酸銅〔例えば、ホウ酸銅、メタホウ酸銅、銅テトラフルオロボレート等〕
Specific examples of the copper salt include the following copper salts.
-Copper nitrate [eg, copper nitrate (I), copper nitrate (II), etc.]
・ Copper nitrite [for example, copper (I) nitrite, copper (II) nitrite, etc.]
· Copper halide [for example, copper (I) chloride, copper (II) chloride, copper (I) bromide, copper (II) bromide, copper fluoride (I), copper (II) fluoride, copper iodide (I), copper (II) iodide, etc.]
-Copper sulfate [eg, copper (II) sulfate]
・ Copper sulfite [eg, copper (II) sulfite]
-Copper sulfonate [for example, copper (I) methanesulfonate, copper (II) methanesulfonate, copper (I) p-toluenesulfonate, copper (II) p-toluenesulfonate, copper trifluoromethanesulfonate (I ), Copper (II) trifluoromethanesulfonate, etc.]
-Copper sulfamate [for example, copper (II) sulfamate]
・ Copper carbonate [for example, copper (II) carbonate, etc.]
・ Copper hydroxide [eg copper hydroxide (II), etc.]
-Copper carboxylate [eg, copper (I) acetate, copper (II) acetate, copper (II) formate, copper (II) propionate, copper (II) gluconate, copper (II) oleate, copper oxalate ( II), copper (II) benzoate, copper (II) phthalate, copper (II) caprylate, copper (II) citrate, copper (II) salicylate, copper (II) tartrate, copper (II) stearate, Naphthenic acid copper, copper lactate (II), lauric acid copper (II), etc.]
・ Copper sulfide [for example, copper sulfide (I), copper sulfide (II), etc.]
-Copper thiocyanate [for example, copper (I) thiocyanate, copper (II) thiocyanate, etc.]
-Copper phosphate [for example, copper (II) phosphate, copper (II) pyrophosphate, etc.]
・ Copper oxide [eg, copper oxide (I), copper oxide (II), etc.]
-Copper perhalogenate [eg, copper (I) chlorate, copper (II) perchlorate, etc.]
・ Copper halides [for example, copper (II) iodate, etc.]
・ Copper silicate (eg copper hexafluorosilicate)
-Copper cyanide [for example, copper (I) cyanide, copper (II) cyanide, etc.]
-Copper borate (for example, copper borate, copper metaborate, copper tetrafluoroborate, etc.)
--その他の銅化合物--
 その他の銅化合物としては、例えば下記一般式(B-2)で表される銅化合物などが挙げられる。
  [Cun14 n15n16      一般式(B-2)
 [式中、n15個のXは同一又は異なって、置換基を有していてもよい炭化水素基、OR101(R101は置換基を有していてもよい炭化水素基を示す。)、NR102 (2個のR102は同一又は異なって、水素原子又は置換基を有していてもよい炭化水素基を示す。)、PR103 (2個のR103は同一又は異なって、置換基を有していてもよい炭化水素基を示す。)、SR104(R104は置換基を有していてもよい炭化水素基を示す。)、1,3-ジカルボニル化合物或いはそのエノラート又はヒドリドを示し、n14~n16は夫々独立して、自然数を示す。]
-Other copper compounds-
Examples of other copper compounds include copper compounds represented by the following general formula (B-2).
[Cu n14 X 2 n15] n16 general formula (B-2)
[Wherein, n15 X 2 s are the same or different and may be a hydrocarbon group which may have a substituent, OR 101 (R 101 represents a hydrocarbon group which may have a substituent)] , NR 102 2 (two R 102 are the same or different and each represents a hydrogen atom or a hydrocarbon group optionally having a substituent), PR 103 2 (two R 103 are the same or different Represents a hydrocarbon group which may have a substituent), SR 104 (R 104 represents a hydrocarbon group which may have a substituent), 1,3-dicarbonyl compound or its Enolate or hydride, and n14 to n16 each independently represents a natural number. ]
 前記一般式(B-2)において、n14及びn15は夫々独立して自然数を示すが、好ましくは1~10の自然数である。 In the above general formula (B-2), n14 and n15 each independently represent a natural number, preferably a natural number of 1 to 10.
 前記Xで示されるOR101の具体例としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、tert-ブトキシ基、フェノキシ基などが挙げられる。
 前記NR102 の具体例としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジシクロヘキシルアミノ基、ジフェニルアミノ基などが挙げられる。
 前記PR103 の具体例としては、例えば、ジメチルホスフィノ基、ジエチルホスフィノ基、ジ(tert-ブチル)ホスフィノ基、ジシクロヘキシルホスフィノ基、ジフェニルホスフィノ基などが挙げられる。
 前記SR104の具体例としては、SMe、SEt、SBu、SPh、S(CH)などが挙げられる。ここで、「Me」はメチル基を表し、「Et」はエチル基を表す。
 前記1,3-ジカルボニル化合物或いはそのエノラートの具体例としては、例えば、2,5-ペンタンジオン(acac)、1,1,1-トリフルオロ-2,5-ペンタンジオン、1,1,1,3,3,3-ヘキサフルオロペンタンジオン(hfac)、ベンゾイルアセトン、アセト酢酸メチル、アセト酢酸エチルなどが挙げられる。
Specific examples of OR 101 represented by X 2 include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, s-butoxy group, tert-butoxy group, phenoxy group and the like. Can be mentioned.
Examples of the NR 102 2, for example, dimethylamino group, diethylamino group, dicyclohexyl amino group, and a diphenylamino group.
Specific examples of the PR 103 2, for example, dimethyl phosphino group, diethylphosphino group, di (tert- butyl) phosphino group, dicyclohexylphosphino group, and diphenylphosphino groups.
Specific examples of the SR 104 include SMe, SEt, SBu, SPh, S (CH 3 C 6 H 5 ), and the like. Here, “Me” represents a methyl group, and “Et” represents an ethyl group.
Specific examples of the 1,3-dicarbonyl compound or enolate thereof include, for example, 2,5-pentanedione (acac), 1,1,1-trifluoro-2,5-pentanedione, 1,1,1 , 3,3,3-hexafluoropentanedione (hfac), benzoylacetone, methyl acetoacetate, ethyl acetoacetate and the like.
 前記一般式(B-2)で表される銅化合物の具体例としては、例えば、以下の銅化合物などが挙げられる。
 ・銅アルコキシド〔例えば、銅ジメトキシド、銅ジエトキシド、銅ジイソプロポキシド、銅tert-ブトキシド等〕
 ・銅フェノキシド〔例えば、銅フェノキシド等〕
 ・銅ホスフィド〔例えば、銅ジ(tert-ブチルホスフィド)、銅ジシクロヘキシルホスフィド、銅ジフェニルホスフィド等〕
 ・銅アミド〔例えば、銅ジシクロヘキシルアミド等〕
 ・銅チオレート〔例えば、銅ブタンチオレート、銅チオフェノレート等〕
 ・銅1,3-ジカルボニル化合物或いはそのエノラート〔例えば、銅2,4-ペンタンジオネート、銅ベンゾイルアセトネート、銅1,3-ジフェニル-1,3-プロパンジオネート、銅エチルアセトアセテート、銅トリフルオロペンタンジオネート、銅ヘキサフルオロペンタンジオネート等〕
 ・水素化銅
 ・炭化水素化銅〔例えば、メシチル銅、エチニル銅等〕
 ・シリル化銅〔例えば、トリメチルシリルエチニル銅等〕
Specific examples of the copper compound represented by the general formula (B-2) include the following copper compounds.
・ Copper alkoxides (eg, copper dimethoxide, copper diethoxide, copper diisopropoxide, copper tert-butoxide, etc.)
・ Copper phenoxide (for example, copper phenoxide)
・ Copper phosphides (eg, copper di (tert-butyl phosphide), copper dicyclohexyl phosphide, copper diphenyl phosphide, etc.)
・ Copper amide (for example, copper dicyclohexylamide)
・ Copper thiolate (eg, copper butane thiolate, copper thiophenolate, etc.)
・ Copper 1,3-dicarbonyl compounds or enolate thereof [eg, copper 2,4-pentanedionate, copper benzoylacetonate, copper 1,3-diphenyl-1,3-propanedionate, copper ethyl acetoacetate, copper (Trifluoropentanedionate, copper hexafluoropentanedionate, etc.)
・ Copper hydride ・ Copper hydride (eg mesityl copper, ethynyl copper, etc.)
・ Silylated copper (for example, trimethylsilylethynyl copper, etc.)
 その他の銅化合物は、また、例えば下記一般式(B-3)で表される銅化合物などが挙げられる。
  [HCuP(R107n17      一般式(B-3)
 (式中、3個のR107は同一又は異なって、置換基を有していてもよい炭化水素基を示し、n17は自然数を示す。)
Other copper compounds include, for example, copper compounds represented by the following general formula (B-3).
[HCuP (R 107 ) 3 ] n17 general formula (B-3)
(In the formula, three R 107 s are the same or different and each represents an optionally substituted hydrocarbon group, and n17 represents a natural number.)
 前記一般式(B-3)で表される銅化合物の具体例としては、例えば、水素化銅(I)(トリフェニルホスフィン)ヘキサマー(Stryker試薬)などが挙げられる。 Specific examples of the copper compound represented by the general formula (B-3) include, for example, copper (I) hydride (triphenylphosphine) hexamer (Strike reagent).
 前記一般式(B-3)で表される銅化合物の具体例としては、例えば、ヒドリド(トリフェニルホスフィン)銅(I)ヘキサマーなどが挙げられる。 Specific examples of the copper compound represented by the general formula (B-3) include hydrido (triphenylphosphine) copper (I) hexamer.
 前記銅塩及び前記その他の銅化合物等の銅化合物は、アルカリ金属(例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等)やアルカリ土類金属(例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等)の塩と複塩を形成していてもよい。形成される複塩の具体例としては、例えば、KCuF、K[CuF]、CuCN・LiCl、LiCuCl、LiCuCl、LiCuBrなどが挙げられる。これら銅塩及び上記その他の銅化合物は、無水物でも水和物でもよい。 Copper compounds such as the copper salt and other copper compounds are salts of alkali metals (for example, lithium, sodium, potassium, rubidium, cesium, etc.) and alkaline earth metals (for example, magnesium, calcium, strontium, barium, etc.) And may form a double salt. Specific examples of the double salt to be formed include KCuF 3 , K 3 [CuF 6 ], CuCN · LiCl, Li 2 CuCl 4 , Li 2 CuCl 3 , LiCuBr 2 and the like. These copper salts and the other copper compounds may be anhydrous or hydrated.
 これらの銅化合物は、夫々単独で用いても2種以上適宜組み合わせて用いてもよい。
 また、前記銅化合物は、市販品を用いても、或いは常法や、本明細書に記載の文献等に記載の方法で適宜製造したものを用いてもよい。
These copper compounds may be used alone or in appropriate combination of two or more.
Moreover, the said copper compound may use a commercial item, or what was suitably manufactured by the method as described in the conventional method or the literature described in this specification, etc. may be used.
 これらの中でも、触媒活性の点から、メシチル銅(I)が好ましい。 Among these, mesityl copper (I) is preferable from the viewpoint of catalytic activity.
<<反応条件>>
 前記反応工程における前記一般式(2)で表される化合物と前記一般式(3)で表される化合物との割合としては、特に制限はなく、目的に応じて適宜選択することができるが、前記一般式(3)で表される化合物に対して、前記一般式(2)で表される化合物が1.0当量~3.0当量であることが好ましい。
<< Reaction conditions >>
The ratio of the compound represented by the general formula (2) and the compound represented by the general formula (3) in the reaction step is not particularly limited and may be appropriately selected depending on the purpose. The compound represented by the general formula (2) is preferably 1.0 equivalent to 3.0 equivalents relative to the compound represented by the general formula (3).
 前記反応工程において使用される溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、THF(テトラヒドロフラン)、DMF(N,N-ジメチルホルムアミド)などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The solvent used in the reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include THF (tetrahydrofuran) and DMF (N, N-dimethylformamide). These may be used individually by 1 type and may use 2 or more types together.
 前記反応工程における前記触媒の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記一般式(3)で表される化合物に対して、0.1mol%~10mol%が好ましく、1mol%~8mol%がより好ましく、3mol%~6mol%が特に好ましい。 The amount of the catalyst used in the reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. It is 0.1 mol% to 10 mol based on the compound represented by the general formula (3). %, More preferably 1 mol% to 8 mol%, particularly preferably 3 mol% to 6 mol%.
 前記反応工程における反応温度としては、特に制限はなく、目的に応じて適宜選択することができるが、-50℃~-20℃が好ましい。穏和な条件で反応が進行するため、反応温度を制御せずに行うことができる。そのため、例えば、常温で行うことができる。前記常温としては、例えば、20℃~30℃などが挙げられる。
 前記反応工程における反応時間としては、特に制限はなく、目的に応じて適宜選択することができるが、24時間~100時間が好ましく、48時間~96時間が好ましい。
The reaction temperature in the reaction step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably −50 ° C. to −20 ° C. Since the reaction proceeds under mild conditions, the reaction can be performed without controlling the reaction temperature. Therefore, for example, it can be performed at room temperature. Examples of the room temperature include 20 ° C. to 30 ° C.
The reaction time in the reaction step is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 24 hours to 100 hours, and preferably 48 hours to 96 hours.
(構造式(1)で表される化合物の製造方法)
 本発明の化合物の製造方法(その2)は、下記構造式(1)で表される化合物(NITD609)の製造方法であって、反応工程を少なくとも含み、更に必要に応じて、その他の工程を含む。
Figure JPOXMLDOC01-appb-I000029
(Method for producing compound represented by structural formula (1))
The method for producing a compound of the present invention (Part 2) is a method for producing a compound (NITD609) represented by the following structural formula (1), which includes at least a reaction step, and further includes other steps as necessary. Including.
Figure JPOXMLDOC01-appb-I000029
<反応工程>
 前記反応工程は、前記一般式(1)で表される化合物の製造方法における前記反応工程と同じであり、好ましい態様も同じである。
<Reaction process>
The said reaction process is the same as the said reaction process in the manufacturing method of the compound represented by the said General formula (1), A preferable aspect is also the same.
<その他の工程>
 前記その他の工程としては、前記一般式(1)で表される化合物を用いて、前記構造式(1)で表される化合物を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記Scheme 2に従って、合成を行う方法が挙げられる。
 具体的には、例えば、以下の一連の反応が挙げられる。係る一連の反応は、以下の実施例においても詳述されている。係る一連の反応における個々の反応は、下記スキーム及び後述する実施例に接した当業者であれば、試行錯誤を要せずに行うことができる。
Figure JPOXMLDOC01-appb-C000030
<Other processes>
The other step is not particularly limited as long as it is a step of obtaining the compound represented by the structural formula (1) using the compound represented by the general formula (1), and is appropriately selected depending on the purpose. For example, a method of synthesizing according to the scheme 2 can be mentioned.
Specifically, for example, the following series of reactions can be mentioned. Such a series of reactions is also described in detail in the following examples. Individual reactions in such a series of reactions can be carried out without trial and error by those skilled in the art who have contacted the following scheme and the examples described below.
Figure JPOXMLDOC01-appb-C000030
 以下に本発明の実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 なお、以下の実施例において、
「Boc」は、「tert-ブトキシカルボニル基」を表す。
「Ac」は、「アセチル基」を表す。
「Et」は、「エチル基」を表す。
「DMF」は、「N,N-ジメチルホルムアミド」を表す。
「PMB」は、「p-メトキシベンジル基」を表す。
「Ph」は、「フェニル基」を表す。
「THF」は、「テトラヒドロフラン」を表す。
「TFA」は、「トリフルオロ酢酸」を表す。
「Cbz」は、「ベンジルオキシカルボニル基」を表す。
「Me」は、「メチル基」を表す。
「Tf」は、「トリフルオロメチルスルホニル基」を表す。
「DCE」は、「ジクロロエタン」を表す。
EXAMPLES The present invention will be specifically described below with reference to examples of the present invention, but the present invention is not limited to these examples.
In the following examples,
“Boc” represents a “tert-butoxycarbonyl group”.
“Ac” represents an “acetyl group”.
“Et” represents “ethyl group”.
“DMF” represents “N, N-dimethylformamide”.
“PMB” represents “p-methoxybenzyl group”.
“Ph” represents a “phenyl group”.
“THF” represents “tetrahydrofuran”.
“TFA” represents “trifluoroacetic acid”.
“Cbz” represents “benzyloxycarbonyl group”.
“Me” represents “methyl group”.
“Tf” represents a “trifluoromethylsulfonyl group”.
“DCE” represents “dichloroethane”.
(合成例1)
 以下のScheme 4に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000031
(Synthesis Example 1)
Synthesis was performed according to Scheme 4 below.
Figure JPOXMLDOC01-appb-C000031
 5-Chloro-2-ethynyl-4-fluoroaniline(34.0mg, 0.2005mmol)に室温でBocO(52.5mg, 0.2406mmol)を加え80℃で18時間撹拌したのち、BocO(26.3mg, 0.1205mmol)を加えさらに8時間撹拌した。さらにBocO(26.3mg, 0.1205mmol)を加え17時間撹拌したのちに室温まで冷却し、反応混合物をシリカゲルカラムクロマトグラフィ〔AcOEt/Hexane=1/39(体積比)〕にて精製しtert-Butyl (5-chloro-2-ethynyl-4-fluorophenyl)carbamate(49.9mg,収率92%)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, CDCl): δ 8.29(d, J=6.8 Hz, 1H), 7.16(d, J=8.8 Hz, 1H), 7.18-7.04(br, 1H), 3.52(s, 3H), 1.51 ppm(s, H).
Boc 2 O (52.5 mg, 0.2406 mmol) was added to 5-Chloro-2-ethyl-4-fluoroaniline (34.0 mg, 0.2005 mmol) at room temperature, and the mixture was stirred at 80 ° C. for 18 hours, and then Boc 2 O ( 26.3 mg, 0.1205 mmol) was added, and the mixture was further stirred for 8 hours. Further, Boc 2 O (26.3 mg, 0.1205 mmol) was added, and the mixture was stirred for 17 hours and then cooled to room temperature. The reaction mixture was purified by silica gel column chromatography [AcOEt / Hexane = 1/39 (volume ratio)] and tert. -Butyl (5-chloro-2-ethyl-4-fluorophenyl) carbamate (49.9 mg, 92% yield) was obtained.
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, CDCl 3 ): δ 8.29 (d, J = 6.8 Hz, 1H), 7.16 (d, J = 8.8 Hz, 1H), 7.18-7. 04 (br, 1H), 3.52 (s, 3H), 1.51 ppm (s, H).
(合成例2)
 以下のScheme 5に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000032
(Synthesis Example 2)
Synthesis was performed according to Scheme 5 below.
Figure JPOXMLDOC01-appb-C000032
 市販の5-Chloroisatin(9.08g, 50.00mmol)をDMF(25ml)に溶解し、室温でKCO(8.98g, 65.00mmol)、KI(83.0mg, 0.500mmol)、及びPMBCl(8.14ml, 60.00mmol)を加え4.5時間撹拌した。50% NaClaq.(300ml)、及び1.2M HClaq.(100ml)を加え反応を停止後、AcOEt(100ml)で3回抽出し、有機層をsat.NaHCOaq.で1回、及び飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。粗生成物をCHCl/Hexaneで再結晶し、5-Chloro-1-(4-methoxybenzyl)indoline-2,3-dione(14.80g,収率98%)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, CDCl) δ 7.54(d, J=2.4 Hz, 1H), 7.42(dd, J=8.4, 2.4 Hz, 1H), 7.22(d, J=8.8 Hz, 2H), 6.85(d, J=8.4 Hz, 2H), 6.72(d, J=8.4 Hz, 1H), 4.84(s, 2H), 3.77 ppm(s, 3H).
Commercially available 5-Chloroisatin (9.08 g, 50.00 mmol) was dissolved in DMF (25 ml), and K 2 CO 3 (8.98 g, 65.00 mmol), KI (83.0 mg, 0.500 mmol), And PMBCl (8.14 ml, 60.00 mmol) were added and stirred for 4.5 hours. 50% NaClaq. (300 ml), and 1.2 M HCl aq. (100 ml) was added to stop the reaction, followed by extraction with AcOEt (100 ml) three times, and the organic layer was washed with sat. NaHCO 3 aq. And once with saturated saline. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. The crude product was recrystallized with CH 2 Cl 2 / Hexane to obtain 5-Chloro-1- (4-methoxybenzoyl) indolin-2,3-dione (14.80 g, yield 98%).
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.54 (d, J = 2.4 Hz, 1H), 7.42 (dd, J = 8.4, 2.4 Hz, 1H), 7.22 (D, J = 8.8 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.72 (d, J = 8.4 Hz, 1H), 4.84 (s , 2H), 3.77 ppm (s, 3H).
(合成例3)
 以下のScheme 6に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000033
(Synthesis Example 3)
Synthesis was performed according to Scheme 6 below.
Figure JPOXMLDOC01-appb-C000033
 5-Chloro-1-(4-methoxybenzyl)indoline-2,3-dione(603.4mg, 2.000mmol)をCHCl(20ml)に溶解し、-78℃にてEtN(1.39ml, 10.00mmol)、及びTiCl(1.0M solution in CHCl, 2.40ml, 2.400mmol)を加え-40℃で15分撹拌したのち、PhP(=S)NH(490mg, 2.100mmol)を加え26時間撹拌した。sat.NH in CHCl(5.0ml)を加え反応を停止後、析出物をCelite padにて分離した。ろ液を濃縮後、粗生成物をTHF/Hexaneで再結晶し、(Z)-N-(5-Chloro-1-(4-methoxybenzyl)-2-oxoindolin-3-ylidene)-P,P-diphenylphosphinothioic amide(695.9mg, 収率67%)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, CDCl) δ 8.12-8.02(m, 5H), 7.48-7.40(m, 6H), 7.26(dd, J=8.4, 2.0 Hz, 1H), 7.17(d, J=8.8 Hz, 2H), 6.82(dt, J=6.4, 2.0 Hz, 2H), 6.60(d, J=8.4 Hz, 1H), 4.78(s, 2H), 3.75 ppm(s, 3H).
5-Chloro-1- (4-methoxybenzyl) indolin-2,3-dione (603.4 mg, 2.000 mmol) was dissolved in CH 2 Cl 2 (20 ml), and Et 3 N (1. 39 ml, 10.00 mmol) and TiCl 4 (1.0 M solution in CH 2 Cl 2 , 2.40 ml, 2.400 mmol) were added, and the mixture was stirred at −40 ° C. for 15 minutes, and then Ph 2 P (═S) NH 2 (490 mg, 2.100 mmol) was added and stirred for 26 hours. sat. NH 3 in CH 2 Cl 2 (5.0 ml) was added to stop the reaction, and the precipitate was separated by Celite pad. After concentrating the filtrate, the crude product was recrystallized with THF / Hexane, and (Z) -N- (5-Chloro-1- (4-methoxybenzoyl) -2-oxoindolin-3-ylidene) -P, P- A diphenylphosphinothioic amide (695.9 mg, 67% yield) was obtained.
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 8.12-8.02 (m, 5H), 7.48-7.40 (m, 6H), 7.26 (dd, J = 8.4, 2 0.0 Hz, 1H), 7.17 (d, J = 8.8 Hz, 2H), 6.82 (dt, J = 6.4, 2.0 Hz, 2H), 6.60 (d, J = 8.4 Hz, 1H), 4.78 (s, 2H), 3.75 ppm (s, 3H).
(実施例1)
 以下のScheme 7に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000034
Example 1
Synthesis was performed according to Scheme 7 below.
Figure JPOXMLDOC01-appb-C000034
 (R,R)-Ph-BPE(152mg, 0.300mmol)、及びmesitylcopper(57.7mg, 0.300mmol)をAr雰囲気下、室温にてDMF(60ml)に溶解し、15分撹拌したのち、tert-Butyl-(5-chloro-2-ethynyl-4-fluorophenyl)carbamate(1.94g, 7.200mmol)を加え10分撹拌した。-30℃に冷却後、(Z)-N-(5-Chloro-1-(4-methoxybenzyl)-2-oxoindolin-3-ylidene)-P,P-diphenylphosphinothioic amide(3.10g, 6.000mmol)を加え24時間撹拌した。1.2M HClaq.(10ml)を加え反応を停止後、AcOEt(50ml)で3回抽出し、有機層をsat.NaHCOaq.で1回、50%食塩水で1回、及び飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。粗生成物をシリカゲルカラムクロマトグラフィ〔THF/Hexane=1/3(体積比)〕で精製し、tert-Butyl (S)-(5-chloro-2-((5-chloro-3-((diphenylphosphorothioyl)amino)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)ethynyl)-4-fluorophenyl)carbamate(4.56g, 収率97%, 96%ee)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, CDCl) δ 8.23(d, J=6.8 Hz, 1H), 8.10(ddd, J=14.0, 8.0, 1.6 Hz, 2H), 7.84(d, J=2.0 Hz, 1H), 7.80(ddd, J=13.6, 7.2, 1.2 Hz, 2H), 7.67(s, 1H), 7.48-7.38(m, 3H), 7.35(td, J=8.0, 2.0 Hz, 1H), 7.28-7.22(m, 3H), 7.01(dd, J=8.4, 2.0 Hz, 1H), 6.90(d, J=8.8 Hz, 2H), 6.86(dt, J=8.8, 2.0 Hz, 2H), 6.56(d, J=8.4 Hz, 1H), 4.91 (d, J=15.6 Hz, 1H), 4.82(d, J=15.6 Hz, 1H), 3.76(s, 3H), 3.61(d, J=4.4 Hz, 1H), 1.56 ppm(s, 9H).
 得られた化合物の旋光度測定結果を以下に示す。
 [α] 23 91.1 (c 0.99, CHCl).
 得られた化合物のキラルHPLC測定結果を以下に示す。
 HPLC analysis (CHIRALPAK IA (φ = 0.46 cm x 25 cm), n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, detection at 254 nm, t = 14.3 min (minor), 22.9 min (major).
(R, R) -Ph-BPE (152 mg, 0.300 mmol) and messylcopper (57.7 mg, 0.300 mmol) were dissolved in DMF (60 ml) at room temperature under an Ar atmosphere and stirred for 15 minutes. tert-Butyl- (5-chloro-2-ethyl-4-fluorophenyl) carbamate (1.94 g, 7.200 mmol) was added and stirred for 10 minutes. After cooling to −30 ° C., (Z) -N- (5-Chloro-1- (4-methoxybenzoyl) -2-oxoindolin-3-ylidene) -P, P-diphenylphosphinothioamide (3.10 g, 6.000 mmol) And stirred for 24 hours. 1.2M HClaq. (10 ml) was added to stop the reaction, followed by extraction three times with AcOEt (50 ml), and the organic layer was washed with sat. NaHCO 3 aq. And once with 50% saline and once with saturated saline. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. The crude product was purified by silica gel column chromatography [THF / Hexane = 1/3 (volume ratio)] and tert-Butyl (S)-(5-chloro-2-((5-chloro-3-thio ((diphenylphosphothiothiol)). amino) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) ethyl) -4-fluorophenyl) carbamate (4.56 g, yield 97%, 96% ee).
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 8.23 (d, J = 6.8 Hz, 1H), 8.10 (ddd, J = 14.0, 8.0, 1.6 Hz, 2H) 7.84 (d, J = 2.0 Hz, 1H), 7.80 (ddd, J = 13.6, 7.2, 1.2 Hz, 2H), 7.67 (s, 1H), 7.48-7.38 (m, 3H), 7.35 (td, J = 8.0, 2.0 Hz, 1H), 7.28-7.22 (m, 3H), 7.01 ( dd, J = 8.4, 2.0 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 6.86 (dt, J = 8.8, 2.0 Hz, 2H) ), 6.56 (d, J = 8.4 Hz, 1H), 4.91 (d, J = 15.6 Hz, 1H), 4.82 (d, J = 15.6 Hz, 1H), .76 (s, 3H), 3.61 (d, J = 4.4 Hz, 1H), 1.56 ppm (s, 9H).
The optical rotation measurement result of the obtained compound is shown below.
[Α] D 23 91.1 (c 0.99, CHCl 3 ).
The results of chiral HPLC measurement of the obtained compound are shown below.
HPLC analysis (CHIRALPAK IA (φ = 0.46 cm × 25 cm), n-hexane / 2-propanol = 90/10, flow rate = 1.0 mL / min, detection at 254 nm, t R = 14.3. min (minor), 22.9 min (major).
(実施例2)
<Scheme 8>
 以下のScheme 8に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000035
(Example 2)
<Scheme 8>
Synthesis was performed according to Scheme 8 below.
Figure JPOXMLDOC01-appb-C000035
 tert-Butyl (S)-(5-chloro-2-((5-chloro-3-((diphenylphosphorothioyl)amino)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)ethynyl)-4-fluorophenyl)carbamate(4.56g, 5.799mmol)をCHCl(46ml)に溶解し、Ar雰囲気下-15℃にてTFA(12ml)を加えたのち、-10℃にて9時間撹拌した。-78℃に冷却後、EtN(25.3ml)、50%食塩水(80ml)、及びCHCl(50ml)を順次加え反応を停止後、CHCl(50ml)で3回抽出し、有機層をsat.NaHCOaq.で1回、1.2M HClaq.で1回、sat.NaHCOaq.で1回、及び飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。粗生成物をシリカゲルカラムクロマトグラフィ〔THF/Hexane=1/3~1/2.5(体積比)〕で精製し、(S)-N-(3-((2-Amino-4-chloro-5-fluorophenyl)ethynyl)-5-chloro-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)-P,P-diphenylphosphinothioic amide(2.61g, 収率66%)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, CDCl) δ 8.06(ddd, J=14.0, 8.4, 1.6 Hz, 2H), 7.78(ddd, J=13.6, 8.4, 1.2 Hz, 2H), 7.65(d, J=2.0 Hz, 1H), 7.51-7.40(m, 3H), 7.34(td, J=7.2, 2.0 Hz, 1H), 7.28-7.21(m, 4H), 6.98(dd, J=8.4, 2.0 Hz, 1H), 6.86(td, J=8.8, 2.8 Hz, 2H), 6.83(d, J=8.8 Hz, 1H), 6.62(d, J=6.4 Hz, 1H), 6.54(d, J=8.4 Hz, 1H), 4.91(d, J=15.6 Hz, 1H), 4.80(d, J=15.2 Hz, 1H), 4.44-4.34(br, 1H), 3.77(s, 3H), 3.68 ppm(d, J=4.4 Hz, 1H).
tert-Butyl (S)-(5-chloro-2-((5-chloro-3-((diphenylphosphothioyl) amino) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) ethyl) -4- Fluorophenyl) carbamate (4.56 g, 5.799 mmol) was dissolved in CH 2 Cl 2 (46 ml), TFA (12 ml) was added at −15 ° C. under Ar atmosphere, and the mixture was stirred at −10 ° C. for 9 hours. . After cooling to −78 ° C., Et 3 N (25.3 ml), 50% brine (80 ml), and CH 2 Cl 2 (50 ml) were added sequentially to stop the reaction, and then 3 times with CH 2 Cl 2 (50 ml). Extract the organic layer with sat. NaHCO 3 aq. Once at 1.2 M HCl aq. Once, sat. NaHCO 3 aq. And once with saturated saline. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. The crude product was purified by silica gel column chromatography [THF / Hexane = 1/3 to 1 / 2.5 (volume ratio)], and (S) -N- (3-((2-Amino-4-chloro-5 -Fluorophenyl) ethynyl) -5-chloro-1- (4-methoxybenzoyl) -2-oxoindolin-3-yl) -P, P-diphenylphosphinothioic amide (2.61 g, 66% yield) was obtained.
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 8.06 (ddd, J = 14.0, 8.4, 1.6 Hz, 2H), 7.78 (ddd, J = 13.6, 8.4 , 1.2 Hz, 2H), 7.65 (d, J = 2.0 Hz, 1H), 7.51-7.40 (m, 3H), 7.34 (td, J = 7.2) 2.0 Hz, 1H), 7.28-7.21 (m, 4H), 6.98 (dd, J = 8.4, 2.0 Hz, 1H), 6.86 (td, J = 8 .8, 2.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 1H), 6.62 (d, J = 6.4 Hz, 1H), 6.54 (d, J = 8.4 Hz, 1H), 4.91 (d, J = 15.6 Hz, 1H), 4.80 (d, J = 15.2 Hz, 1H), 4.44-4.34 (br 1H), 3.77 (s, 3H), 3.68 ppm (d, J = 4.4 Hz, 1H).
<Scheme 9>
 以下のScheme 9に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000036
<Scheme 9>
Synthesis was performed according to Scheme 9 below.
Figure JPOXMLDOC01-appb-C000036
 (S)-N-(3-((2-Amino-4-chloro-5-fluorophenyl)ethynyl)-5-chloro-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)-P,P-diphenylphosphinothioic amide(2.57g, 3.736mmol)、及びCuI(71.2mg, 0.3736mmol)をAr雰囲気下DMF(37.4ml)に溶解し、90℃にて14時間撹拌した。室温に冷却後、50%食塩水(100ml)を加え反応を停止後、AcOEt(50ml)で3回抽出し、有機層を飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。粗生成物をシリカゲルカラムクロマトグラフィ〔THF/Hexane=1/3(体積比)〕で精製し、(R)-N-(5-Chloro-3-(6-chloro-5-fluoro-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)-P,P-diphenylphosphinothioic amide(2.40g, 収率93%)を得た。
 得られた(R)-N-(5-Chloro-3-(6-chloro-5-fluoro-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)-P,P-diphenylphosphinothioic amide(3.07g, 96%ee)にAcOEt/Hexaneにて再結晶を行うと、結晶(racemate)とろ液(2.95g, 収率96%, 99.8%ee)が得られた。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, CDCl) δ 9.88-9.80(br, 1H), 7.88(ddd, J=14.0, 8.4, 1.6 Hz, 2H), 7.78(ddd, 14.0, 8.4, 1.2 Hz, 2H), 7.50(td, J=7.6, 2.0 Hz, 1H), 7.42(td, J=7.6, 3.6 Hz, 2H), 7.35(td, J=7.6, 1.6 Hz, 1H), 7.38-7.32(m, 2H), 7.21(d, J=8.4 Hz, 1H), 7.16(d, J=9.6 Hz, 1H), 6.99(dd, J=8.4, 2.4 Hz, 1H), 6.83(dt, J=8.8, 2.8 Hz, 2H), 6.55(d, J=8.4 Hz, 1H), 6.12(d, J=1.6 Hz, 1H), 6.95(d, J=15.2 Hz, 1H), 4.70(d, J=15.6 Hz, 1H), 4.02(d, J=5.6 Hz, 1H), 3.74 ppm(s, 3H).
(S) -N- (3-((2-Amino-4-chloro-5-fluorophenyl) ethyl) -5-chloro-1- (4-methoxybenzoyl) -2-oxindolin-3-yl) -P, P -Diphenylphosphinoicamide (2.57 g, 3.736 mmol) and CuI (71.2 mg, 0.3736 mmol) were dissolved in DMF (37.4 ml) under an Ar atmosphere and stirred at 90 ° C. for 14 hours. After cooling to room temperature, 50% brine (100 ml) was added to stop the reaction, followed by extraction three times with AcOEt (50 ml), and the organic layer was washed once with saturated brine. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. The crude product was purified by silica gel column chromatography [THF / Hexane = 1/3 (volume ratio)], and (R) -N- (5-Chloro-3- (6-chloro-5-fluoro-1H-indol- 2-yl) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) -P, P-diphenylphosphinothioic amide (2.40 g, yield 93%) was obtained.
Obtained (R) -N- (5-Chloro-3- (6-chloro-5-fluoro-1H-indol-2-yl) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl Recrystallization of -P, P-diphenylphosphinothioamide (3.07 g, 96% ee) with AcOEt / Hexane gave crystals and a filtrate (2.95 g, yield 96%, 99.8% ee). was gotten.
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 9.88-9.80 (br, 1H), 7.88 (ddd, J = 14.0, 8.4, 1.6 Hz, 2H), 7. 78 (ddd, 14.0, 8.4, 1.2 Hz, 2H), 7.50 (td, J = 7.6, 2.0 Hz, 1H), 7.42 (td, J = 7. 6, 3.6 Hz, 2H), 7.35 (td, J = 7.6, 1.6 Hz, 1H), 7.38-7.32 (m, 2H), 7.21 (d, J = 8.4 Hz, 1H), 7.16 (d, J = 9.6 Hz, 1H), 6.99 (dd, J = 8.4, 2.4 Hz, 1H), 6.83 (dt) , J = 8.8, 2.8 Hz, 2H), 6.55 (d, J = 8.4 Hz, 1H), 6.12 (d, J = 1.6 Hz, 1H), 6.95. d, J = 15.2 Hz, 1H), 4.70 (d, J = 15.6 Hz, 1H), 4.02 (d, J = 5.6 Hz, 1H), 3.74 ppm (s) , 3H).
<Scheme 10>
 以下のScheme 10に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000037
<Scheme 10>
Synthesis was performed according to Scheme 10 below.
Figure JPOXMLDOC01-appb-C000037
 (R)-N-(5-Chloro-3-(6-chloro-5-fluoro-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)-P,P-diphenylphosphinothioic amide(2.90g, 4.217mmol)をAr雰囲気下CHCN(210ml)に溶解し、室温でRaney-Ni(ca.21.1g)を加えたのちに60℃にて4時間撹拌した。室温に冷却後、AcOH(25.3ml)を加えさらに3時間撹拌した。THF(200ml)を加えたのちにCelite padにてろ過をし、ろ液を留去した。CHCl(50ml)、及び2M NaOH aq.(250ml)を加えたのちCHCl(200ml)で3回抽出し、有機層を50%食塩水(2000ml)で1回、及び飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。得られた(R)-3-Amino-5-chloro-3-(6-chloro-5-fluoro-1H-indol-2-yl)-1-(4-methoxybenzyl)indolin-2-oneを含む粗生成物を精製せずに次の反応に用いた。 (R) -N- (5-Chloro-3- (6-chloro-5-fluoro-1H-indol-2-yl) -1- (4-methoxybenzyl) -2-oxindolin-3-yl) -P, P-diphenylphosphinoicamide (2.90 g, 4.217 mmol) was dissolved in CH 3 CN (210 ml) under an Ar atmosphere, and after addition of Raney-Ni (ca.21.1 g) at room temperature, 4 hours at 60 ° C. Stir. After cooling to room temperature, AcOH (25.3 ml) was added and the mixture was further stirred for 3 hours. After adding THF (200 ml), the mixture was filtered through Celite pad, and the filtrate was distilled off. CH 2 Cl 2 (50 ml), and 2M NaOH aq. (250 ml) was added, followed by extraction three times with CH 2 Cl 2 (200 ml), and the organic layer was washed once with 50% brine (2000 ml) and once with saturated brine. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. Crude containing the obtained (R) -3-Amino-5-chloro-3- (6-chloro-5-fluoro-1H-indol-2-yl) -1- (4-methoxybenzoyl) indolin-2-one The product was used in the next reaction without purification.
<Scheme 11>
 以下のScheme 11に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000038
<Scheme 11>
Synthesis was performed according to Scheme 11 below.
Figure JPOXMLDOC01-appb-C000038
 (R)-3-Amino-5-chloro-3-(6-chloro-5-fluoro-1H-indol-2-yl)-1-(4-methoxybenzyl)indolin-2-oneを含む粗生成物をCHCl(10.5ml)、及びpyridine(10.5ml)に溶解し、Ar雰囲気下0℃にてBenzyl chloroformate(2.38ml, 16.87mmol)を加えたのち、室温にて30分撹拌した。0℃に冷却後、1.2M HClaq.(40ml)を加え反応を停止後、AcOEt(50ml)で3回抽出し、有機層をsat.NaHCOaq.で1回、及び飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。得られたBenzyl (R)-(5-chloro-3-(6-chloro-5-fluoro-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)carbamateを含む粗生成物を精製せずに次の反応に用いた。 A crude product containing (R) -3-Amino-5-chloro-3- (6-chloro-5-fluoro-1H-indol-2-yl) -1- (4-methoxybenzoyl) indolin-2-one Dissolve in CH 2 Cl 2 (10.5 ml) and pyridine (10.5 ml), add Benzyl chloroform (2.38 ml, 16.87 mmol) at 0 ° C. under Ar atmosphere, then stir at room temperature for 30 minutes did. After cooling to 0 ° C., 1.2 M HClaq. (40 ml) was added to stop the reaction, followed by extraction three times with AcOEt (50 ml), and the organic layer was washed with sat. NaHCO 3 aq. And once with saturated saline. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. Benzyl (R)-(5-chloro-3- (6-chloro-5-fluoro-1H-indol-2-yl) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) carbamate obtained The crude product containing was used in the next reaction without purification.
<Scheme 12>
 以下のScheme 12に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000039
<Scheme 12>
Synthesis was performed according to Scheme 12 below.
Figure JPOXMLDOC01-appb-C000039
 Benzyl(R)-(5-chloro-3-(6-chloro-5-fluoro-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)carbamateを含む粗生成物をPOCl(3.36ml)に溶解し、Ar雰囲気下0℃にてDMF(0.84ml)を加えたのち、室温にて5時間撹拌した。0℃に冷却後、CHCl(50ml)を加えたのち、反応混合物を2M NaOHaq.(100ml)を含む氷浴へ10回に分けて注いだ。これをCHCl(100ml)で3回抽出し、有機層を50%食塩水で1回、及び飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィ〔AcOEt/Hexane=1/4~1/2(体積比)〕で精製し、Benzyl (R)-(5-chloro-3-(6-chloro-5-fluoro-3-formyl-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)carbamate(1.05g, 収率40%, 3steps)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, CDCl) δ 9.70-9.34(br, 2H), 8.04(d, J=9.6 Hz, 1H), 7.48(d, J=2.0 Hz, 1H), 7.30-7.23(m, 3H), 7.21(d, J=6.0 Hz, 1H), 7.16-7.02(br, 4H), 6.86-6.82(br, 1H), 6.78(d, J=8.4 Hz, 2H), 6.70(d, J=8.4 Hz, 1H), 5.02(d, J=11.6 Hz, 1H), 4.98-4.88(br, 1H), 4.82-4.66(br, 2H), 3.72 ppm(s, 3H).
Benzyl (R)-(5-chloro-3- (6-chloro-5-fluoro-1H-indol-2-yl) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) carbamate The product was dissolved in POCl 3 (3.36 ml), DMF (0.84 ml) was added at 0 ° C. under an Ar atmosphere, and the mixture was stirred at room temperature for 5 hr. After cooling to 0 ° C., CH 2 Cl 2 (50 ml) was added, and then the reaction mixture was diluted with 2M NaOH aq. (100 ml) was poured into an ice bath in 10 portions. This was extracted 3 times with CH 2 Cl 2 (100 ml), and the organic layer was washed once with 50% brine and once with saturated brine. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography [AcOEt / Hexane = 1/4 to 1/2 (volume ratio)], and Benzyl (R)-(5-chloro-3- (6-chloro-5- Fluoro-3-formyl-1H-indol-2-yl) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) carbamate (1.05 g, 40% yield, 3 steps) was obtained.
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 9.70-9.34 (br, 2H), 8.04 (d, J = 9.6 Hz, 1H), 7.48 (d, J = 2. 0 Hz, 1H), 7.30-7.23 (m, 3H), 7.21 (d, J = 6.0 Hz, 1H), 7.16-7.02 (br, 4H), 6. 86-6.82 (br, 1H), 6.78 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 8.4 Hz, 1H), 5.02 (d, J = 11.6 Hz, 1H), 4.98-4.88 (br, 1H), 4.82-4.66 (br, 2H), 3.72 ppm (s, 3H).
<Scheme 13>
 以下のScheme 13に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000040
<Scheme 13>
Synthesis was performed according to Scheme 13 below.
Figure JPOXMLDOC01-appb-C000040
 Benzyl (R)-(5-chloro-3-(6-chloro-5-fluoro-3-formyl-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)carbamate(127mg, 0.2000mmol)をEtNO(16.0ml)に溶解し、室温でNHOAc(231mg, 3.000mmol)を加え60℃で48時間撹拌した。室温に冷却後、50%食塩水(10ml)を加え反応を停止後、AcOEt(20ml)で3回抽出し、有機層を飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。得られたBenzyl (R,E)-(5-chloro-3-(6-chloro-5-fluoro-3-(2-nitroprop-1-en-1-yl)-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)carbamateを含む粗生成物を精製せずに次の反応に用いた。 Benzyl (R)-(5-chloro-3- (6-chloro-5-fluoro-3-formyl-1H-indol-2-yl) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl carbamate (127 mg, 0.2000 mmol) was dissolved in EtNO 2 (16.0 ml), NH 4 OAc (231 mg, 3.000 mmol) was added at room temperature, and the mixture was stirred at 60 ° C. for 48 hours. After cooling to room temperature, 50% brine (10 ml) was added to stop the reaction, followed by extraction three times with AcOEt (20 ml), and the organic layer was washed once with saturated brine. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. Benzyl (R, E)-(5-chloro-3- (6-chloro-5-fluoro-3- (2-nitroprop-1-en-1-yl) -1H-indol-2-yl) obtained The crude product containing -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) carbamate was used in the next reaction without purification.
<Scheme 14>
 以下のScheme 14に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000041
<Scheme 14>
Synthesis was performed according to Scheme 14 below.
Figure JPOXMLDOC01-appb-C000041
 Benzyl (R,E)-(5-chloro-3-(6-chloro-5-fluoro-3-(2-nitroprop-1-en-1-yl)-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)carbamateを含む粗生成物をEtOH(1.90ml)、及びAcOH(0.10ml)に溶解し、室温で亜鉛粉末(131mg,2.000mmol)を加えたのちに60℃で1時間半撹拌した。2M HCl(in MeOH)を4.0ml、HOを1.0ml加えたのち、さらに4時間撹拌した。室温に冷却後、sat.NaHCOaq.(20ml)を加えたのちAcOEt(20ml)で3回抽出し、有機層を飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィ〔AcOEt/Hexane=1/3(体積比)〕にて精製し、Benzyl (R)-(5-chloro-3-(6-chloro-5-fluoro-3-(2-oxopropyl)-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)carbamate(67.9mg, 収率51%,2steps)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, CDCl) δ 7.81(s, 1H), 7.41(d, J=2.0 Hz, 1H), 7.34-7.25(m, 6H), 7.17-7.06(br, 2H), 7.10(d, J=9.2 Hz, 1H), 6.77(d, J=8.4 Hz, 2H), 6.65(d, J=8.0 Hz, 1H), 5.07(d, J=12.8 Hz, 1H), 5.04-4.75(br, 2H), 4.72(d, J=15.2 Hz, 1H), 4.53(d, J=17.6 Hz, 1H), 3.87(d, J=17.6 Hz, 1H), 3.73(s, 3H), 2.31 ppm(s, 3H).
Benzyl (R, E)-(5-chloro-3- (6-chloro-5-fluoro-3- (2-nitroprop-1-en-1-yl) -1H-indol-2-yl) -1- A crude product containing (4-methoxybenzoyl) -2-oxindolin-3-yl) carbamate was dissolved in EtOH (1.90 ml) and AcOH (0.10 ml), and zinc powder (131 mg, 2.000 mmol) at room temperature. After stirring, the mixture was stirred at 60 ° C. for 1.5 hours. After adding 4.0 ml of 2M HCl (in MeOH) and 1.0 ml of H 2 O, the mixture was further stirred for 4 hours. After cooling to room temperature, sat. NaHCO 3 aq. (20 ml) was added, followed by extraction three times with AcOEt (20 ml), and the organic layer was washed once with saturated brine. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. The obtained crude product was purified by silica gel column chromatography [AcOEt / Hexane = 1/3 (volume ratio)], and Benzyl (R)-(5-chloro-3- (6-chloro-5-fluoro-3). -(2-oxopropyl) -1H-indol-2-yl) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) carbamate (67.9 mg, 51% yield, 2 steps) was obtained.
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ 7.81 (s, 1H), 7.41 (d, J = 2.0 Hz, 1H), 7.34-7.25 (m, 6H), 7 .17-7.06 (br, 2H), 7.10 (d, J = 9.2 Hz, 1H), 6.77 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 8.0 Hz, 1H), 5.07 (d, J = 12.8 Hz, 1H), 5.04-4.75 (br, 2H), 4.72 (d, J = 15.2. Hz, 1H), 4.53 (d, J = 17.6 Hz, 1H), 3.87 (d, J = 17.6 Hz, 1H), 3.73 (s, 3H), 2.31 ppm (S, 3H).
<Scheme 15>
 以下のScheme 15に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000042
<Scheme 15>
Synthesis was performed according to the following Scheme 15.
Figure JPOXMLDOC01-appb-C000042
 Pd(OAc)(4.1mg, 0.01826mmol)をAr雰囲気下CHCl(0.9ml)に溶解し室温でEtN(5.1μl, 0.03649mmol)、及びTriethylsilane(TESH、87.0μl, 0.5461mmol)を加え10分間撹拌した。この溶液の418μlをBenzyl (R)-(5-chloro-3-(6-chloro-5-fluoro-3-(2-oxopropyl)-1H-indol-2-yl)-1-(4-methoxybenzyl)-2-oxoindolin-3-yl)carbamate(55.9mg, 0.08463mmol)をCHCl(432μl)に溶解した溶液に加えた。3時間撹拌したのち0℃へ冷却後Trifluoroacetic acid(259μl, 0.3385mmol)を加え、室温で1.5時間撹拌した。反応終了後Ar雰囲気下にて減圧留去し、反応を停止した。これをCHCl(850μl)に溶解し-30℃にてBH・2-picoline(27.2mg, 0.2539mmol)を加え2時間撹拌した。1.2M HClaq.(5.0ml)を加え反応を停止後、AcOEt(20ml)で3回抽出し、有機層をsat.NaHCOaq.で1回、及び飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。粗生成物をシリカゲルカラムクロマトグラフィ〔AcOEt/Hexane=1/2.5(体積比)〕で精製し、(3R,3’S)-5,7’-Dichloro-6’-fluoro-1-(4-methoxybenzyl)-3’-methyl-2’,3’,4’,9’-tetrahydrospiro[indoline-3,1’-pyrido[3,4-b]indol]-2-one(37.9mg, 収率88%)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, DMSO-d) δ 10.70(s, 1H), 7.45(d, J=10.0 Hz, 1H), 7.36(dd, J=8.4, 2.4 Hz, 1H), 7.32(d, J=8.4 Hz, 2H), 7.28(d, J=6.4 Hz, 1H), 7.12(d, J=2.0 Hz, 1H), 6.98(d, J=8.4 Hz, 1H), 6.90(dt, J=8.8, 2.0 Hz, 2H), 4.83(d, J=15.6 Hz, 1H), 4.77(d, J=15.6 Hz, 1H), 4.02-3.88(m, 1H), 3.73(s, 3H), 3.19(d, J=6.4 Hz, 1H), 2.81(dd, J=15.2, 4.0 Hz, 1H), 2.41(dd, J=15.2, 10.4 Hz, 1H), 1.18 ppm(d, J=6.4 Hz, 3H).
Pd (OAc) 2 (4.1 mg, 0.01826 mmol) was dissolved in CH 2 Cl 2 (0.9 ml) under an Ar atmosphere, and Et 3 N (5.1 μl, 0.03649 mmol) and Triethylsilane (TESH, (87.0 μl, 0.5461 mmol) was added and the mixture was stirred for 10 minutes. 418 μl of this solution was added to Benzyl (R)-(5-chloro-3- (6-chloro-5-fluoro-3- (2-oxopropyl) -1H-indol-2-yl) -1- (4-methoxybenzoyl) -2-oxindolin-3-yl) carbamate (55.9 mg, 0.08463 mmol) was added to a solution of CH 2 Cl 2 (432 μl). After stirring for 3 hours and cooling to 0 ° C., trifluoroacetic acid (259 μl, 0.3385 mmol) was added, and the mixture was stirred at room temperature for 1.5 hours. After completion of the reaction, the reaction was stopped by distilling off under reduced pressure under Ar atmosphere. This was dissolved in CH 2 Cl 2 (850 μl), BH 3 · 2-picoline (27.2 mg, 0.2539 mmol) was added at −30 ° C., and the mixture was stirred for 2 hours. 1.2M HClaq. (5.0 ml) was added to stop the reaction, followed by extraction three times with AcOEt (20 ml), and the organic layer was washed with sat. NaHCO 3 aq. And once with saturated saline. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. The crude product was purified by silica gel column chromatography [AcOEt / Hexane = 1 / 2.5 (volume ratio)], and (3R, 3 ′S) -5,7′-Dichroro-6′-fluor-1- (4 -Methoxybenzoyl) -3'-methyl-2 ', 3', 4 ', 9'-tetrahydrospiro [indolin-3,1'-pyrido [3,4-b] indol] -2-one (37.9 mg, yield) 88%).
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, DMSO-d 6 ) δ 10.70 (s, 1H), 7.45 (d, J = 10.0 Hz, 1H), 7.36 (dd, J = 8.4, 2.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 6.4 Hz, 1H), 7.12 (d, J = 2. 0 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.90 (dt, J = 8.8, 2.0 Hz, 2H), 4.83 (d, J = 15.6 Hz, 1H), 4.77 (d, J = 15.6 Hz, 1H), 4.02-3.88 (m, 1H), 3.73 (s, 3H), 3.19 ( d, J = 6.4 Hz, 1H), 2.81 (dd, J = 15.2, 4.0 Hz, 1H), 2.41 (dd, J = 15.2, 10.4 Hz, H), 1.18 ppm (d, J = 6.4 Hz, 3H).
<Scheme 16>
 以下のScheme 16に従って、合成を行った。
Figure JPOXMLDOC01-appb-C000043
<Scheme 16>
Synthesis was performed according to Scheme 16 below.
Figure JPOXMLDOC01-appb-C000043
 (3R,3’S)-5,7’-Dichloro-6’-fluoro-1-(4-methoxybenzyl)-3’-methyl-2’,3’,4’,9’-tetrahydrospiro[indoline-3,1’-pyrido[3,4-b]indol]-2-one(37.9mg, 0.07426mmol)をCHCl(1.35ml)に溶解し、-20℃でTrifluoromethanesulfonic acid(0.15ml)を加え13.5時間撹拌した。sat.NaHCOaq.(10ml)を加え反応を停止後AcOEt(20ml)で3回抽出し、有機層を飽和食塩水で1回洗浄した。有機層をNaSOで脱水後、溶媒を留去した。粗生成物をシリカゲルカラムクロマトグラフィ〔MeOH/CHCl=1/39(体積比)〕で精製し、(3R,3’S)-5,7’-Dichloro-6’-fluoro-3’-methyl-2’,3’,4’,9’-tetrahydrospiro[indoline-3,1’-pyrido[3,4-b]indol]-2-one(17.5mg, 収率60%)を得た。
 得られた化合物のH NMR測定結果を以下に示す。
 H NMR (400 MHz, DMSO-d) δ 10.69(s, 1H), 10.54(s, 1H), 7.42(d, J=10.0 Hz, 1H), 7.32(dd, J=8.4, 2.4 Hz, 1H), 7.25(d, J=8.0 Hz, 1H), 7.03(d, J=2.4 Hz, 1H), 6.92(d, J=8.4 Hz, 1H), 3.96-3.83(m, 1H), 3.11(d, J=4.8 Hz, 1H), 2.76(dd, J=15.2, 3.6 Hz, 1H), 2.36(dd, J=15.2, 10.8 Hz, 1H), 1.15 ppm(d, J=6.4 Hz, 3H).
(3R, 3'S) -5,7'-Dichroro-6'-fluoro-1- (4-methoxybenzoyl) -3'-methyl-2 ', 3', 4 ', 9'-tetrahydrospiro [indoline-3 , 1′-pyrido [3,4-b] indol] -2-one (37.9 mg, 0.07426 mmol) was dissolved in CH 2 Cl 2 (1.35 ml) and trifluorethansulfuric acid (0. 15 ml) was added and stirred for 13.5 hours. sat. NaHCO 3 aq. (10 ml) was added to stop the reaction, followed by extraction three times with AcOEt (20 ml), and the organic layer was washed once with saturated brine. The organic layer was dehydrated with Na 2 SO 4 and the solvent was distilled off. The crude product was purified by silica gel column chromatography [MeOH / CH 2 Cl 2 = 1/39 (volume ratio)] and (3R, 3 ′S) -5,7′-Dichroro-6′-fluoro-3′- methyl-2 ′, 3 ′, 4 ′, 9′-tetrahydrospiro [indoline-3,1′-pyrido [3,4-b] indol] -2-one (17.5 mg, 60% yield) was obtained. .
The 1 H NMR measurement result of the obtained compound is shown below.
1 H NMR (400 MHz, DMSO-d 6 ) δ 10.69 (s, 1H), 10.54 (s, 1H), 7.42 (d, J = 10.0 Hz, 1H), 7.32 (Dd, J = 8.4, 2.4 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 2.4 Hz, 1H), 6 .92 (d, J = 8.4 Hz, 1H), 3.96-3.83 (m, 1H), 3.11 (d, J = 4.8 Hz, 1H), 2.76 (dd, J = 15.2, 3.6 Hz, 1H), 2.36 (dd, J = 15.2, 10.8 Hz, 1H), 1.15 ppm (d, J = 6.4 Hz, 3H) .
(実施例3及び参考例)
 実施例1において、反応温度、反応時間を以下の表1に記載のように変更して、反応を行った。結果を表1に示した。なお、表1のEntry 6は、実施例1に対応する。
 なお、参考までに、(S,S)-Ph-BPEを用いた参考例(Entry 01,02)を示した。参考例では、Scheme 7の反応の生成物とは逆の立体化学を有する生成物が得られていることを確認した。
(Example 3 and Reference Example)
In Example 1, the reaction was carried out by changing the reaction temperature and reaction time as shown in Table 1 below. The results are shown in Table 1. Note that Entry 6 in Table 1 corresponds to Example 1.
For reference, a reference example (Entry 01, 02) using (S, S) -Ph-BPE is shown. In the reference example, it was confirmed that a product having a stereochemistry opposite to the product of the reaction of Scheme 7 was obtained.
Figure JPOXMLDOC01-appb-T000044
 N.D.;未決定
Figure JPOXMLDOC01-appb-T000044
N. D. ;Undecided
 本発明の態様は、例えば、以下の通りである。
 <1> 下記一般式(1)で表される化合物の製造方法であって、
 下記一般式(2)で表される化合物と、下記一般式(3)で表される化合物とを、下記一般式(A)で表される不斉配位子を含有する触媒の存在下で反応させ、前記一般式(1)で表される化合物を得る反応工程を含むことを特徴とする化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 ただし、前記一般式(1)、及び前記一般式(2)中、Rは、水素原子、及びアミノ基の保護基のいずれかを表す。Rは、水素原子、及びアミノ基の保護基のいずれかを表す。前記一般式(1)、及び前記一般式(3)中、R11は、置換基を有していてもよい芳香族基を表す。R12は、置換基を有していてもよい芳香族基を表す。R13は、水素原子、及びアミノ基の保護基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000048
 ただし、前記一般式(A)中、Rは、炭素数1~6のアルキル基、アリール基、置換アリール基、アラルキル基、及び環置換アラルキル基のいずれかを表す。
 <2> 前記一般式(A)で表される不斉配位子のRが、フェニル基である前記<1>に記載の化合物の製造方法である。
 <3> 前記触媒が、銅錯体である前記<1>に記載の化合物の製造方法である。
 <4> 前記銅錯体が、銅化合物と、前記一般式(A)で表される不斉配位子とを混合して得られる前記<3>に記載の化合物の製造方法である。
 <5> 下記構造式(1)で表される化合物の製造方法であって、
 下記一般式(2)で表される化合物と、下記一般式(3)で表される化合物とを、下記一般式(A)で表される不斉配位子を含有する触媒の存在下で反応させ、前記一般式(1)で表される化合物を得る反応工程を含むことを特徴とする化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 ただし、前記一般式(1)、及び前記一般式(2)中、Rは、水素原子、及びアミノ基の保護基のいずれかを表す。Rは、水素原子、及びアミノ基の保護基のいずれかを表す。前記一般式(1)、及び前記一般式(3)中、R11は、置換基を有していてもよい芳香族基を表す。R12は、置換基を有していてもよい芳香族基を表す。R13は、水素原子、及びアミノ基の保護基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000053
 ただし、前記一般式(A)中、Rは、炭素数1~6のアルキル基、アリール基、置換アリール基、アラルキル基、及び環置換アラルキル基のいずれかを表す。
 <6> 前記一般式(A)で表される不斉配位子のRが、フェニル基である前記<5>に記載の化合物の製造方法である。
 <7> 前記触媒が、銅錯体である前記<5>に記載の化合物の製造方法である。
 <8> 前記銅錯体が、銅化合物と、前記一般式(A)で表される不斉配位子とを混合して得られる前記<7>に記載の化合物の製造方法である。
Aspects of the present invention are as follows, for example.
<1> A method for producing a compound represented by the following general formula (1),
A compound represented by the following general formula (2) and a compound represented by the following general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A) It is a manufacturing method of the compound characterized by including the reaction process of making it react and obtaining the compound represented by the said General formula (1).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
However, in the general formula (1) and the general formula (2), R 1 represents either a hydrogen atom or an amino-protecting group. R 2 represents either a hydrogen atom or an amino-protecting group. In the general formula (1) and the general formula (3), R 11 represents an aromatic group which may have a substituent. R 12 represents an aromatic group which may have a substituent. R 13 represents either a hydrogen atom or an amino-protecting group.
Figure JPOXMLDOC01-appb-C000048
In the general formula (A), R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
<2> The method for producing a compound according to <1>, wherein R of the asymmetric ligand represented by the general formula (A) is a phenyl group.
<3> The method for producing a compound according to <1>, wherein the catalyst is a copper complex.
<4> The method for producing a compound according to <3>, wherein the copper complex is obtained by mixing a copper compound and an asymmetric ligand represented by the general formula (A).
<5> A method for producing a compound represented by the following structural formula (1),
A compound represented by the following general formula (2) and a compound represented by the following general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A) It is a manufacturing method of the compound characterized by including the reaction process of making it react and obtaining the compound represented by the said General formula (1).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
However, in the general formula (1) and the general formula (2), R 1 represents either a hydrogen atom or an amino-protecting group. R 2 represents either a hydrogen atom or an amino-protecting group. In the general formula (1) and the general formula (3), R 11 represents an aromatic group which may have a substituent. R 12 represents an aromatic group which may have a substituent. R 13 represents either a hydrogen atom or an amino-protecting group.
Figure JPOXMLDOC01-appb-C000053
In the general formula (A), R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
<6> The method for producing a compound according to <5>, wherein R of the asymmetric ligand represented by the general formula (A) is a phenyl group.
<7> The method for producing a compound according to <5>, wherein the catalyst is a copper complex.
<8> The method for producing a compound according to <7>, wherein the copper complex is obtained by mixing a copper compound and an asymmetric ligand represented by the general formula (A).
 本発明の化合物の製造方法は、所謂NITD609の製造に好適に用いることができる。
 
The method for producing a compound of the present invention can be suitably used for producing so-called NITD609.

Claims (8)

  1.  下記一般式(1)で表される化合物の製造方法であって、
     下記一般式(2)で表される化合物と、下記一般式(3)で表される化合物とを、下記一般式(A)で表される不斉配位子を含有する触媒の存在下で反応させ、前記一般式(1)で表される化合物を得る反応工程を含むことを特徴とする化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
     ただし、前記一般式(1)、及び前記一般式(2)中、Rは、水素原子、及びアミノ基の保護基のいずれかを表す。Rは、水素原子、及びアミノ基の保護基のいずれかを表す。前記一般式(1)、及び前記一般式(3)中、R11は、置換基を有していてもよい芳香族基を表す。R12は、置換基を有していてもよい芳香族基を表す。R13は、水素原子、及びアミノ基の保護基のいずれかを表す。
    Figure JPOXMLDOC01-appb-C000004
     ただし、前記一般式(A)中、Rは、炭素数1~6のアルキル基、アリール基、置換アリール基、アラルキル基、及び環置換アラルキル基のいずれかを表す。
    A method for producing a compound represented by the following general formula (1),
    A compound represented by the following general formula (2) and a compound represented by the following general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A) The manufacturing method of the compound characterized by including the reaction process of making it react and obtaining the compound represented by the said General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    However, in the general formula (1) and the general formula (2), R 1 represents either a hydrogen atom or an amino-protecting group. R 2 represents either a hydrogen atom or an amino-protecting group. In the general formula (1) and the general formula (3), R 11 represents an aromatic group which may have a substituent. R 12 represents an aromatic group which may have a substituent. R 13 represents either a hydrogen atom or an amino-protecting group.
    Figure JPOXMLDOC01-appb-C000004
    In the general formula (A), R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
  2.  前記一般式(A)で表される不斉配位子のRが、フェニル基である請求項1に記載の化合物の製造方法。 The method for producing a compound according to claim 1, wherein R of the asymmetric ligand represented by the general formula (A) is a phenyl group.
  3.  前記触媒が、銅錯体である請求項1に記載の化合物の製造方法。 The method for producing a compound according to claim 1, wherein the catalyst is a copper complex.
  4.  前記銅錯体が、銅化合物と、前記一般式(A)で表される不斉配位子とを混合して得られる請求項3に記載の化合物の製造方法。 The method for producing a compound according to claim 3, wherein the copper complex is obtained by mixing a copper compound and the asymmetric ligand represented by the general formula (A).
  5.  下記構造式(1)で表される化合物の製造方法であって、
     下記一般式(2)で表される化合物と、下記一般式(3)で表される化合物とを、下記一般式(A)で表される不斉配位子を含有する触媒の存在下で反応させ、前記一般式(1)で表される化合物を得る反応工程を含むことを特徴とする化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
     ただし、前記一般式(1)、及び前記一般式(2)中、Rは、水素原子、及びアミノ基の保護基のいずれかを表す。Rは、水素原子、及びアミノ基の保護基のいずれかを表す。前記一般式(1)、及び前記一般式(3)中、R11は、置換基を有していてもよい芳香族基を表す。R12は、置換基を有していてもよい芳香族基を表す。R13は、水素原子、及びアミノ基の保護基のいずれかを表す。
    Figure JPOXMLDOC01-appb-C000009
     ただし、前記一般式(A)中、Rは、炭素数1~6のアルキル基、アリール基、置換アリール基、アラルキル基、及び環置換アラルキル基のいずれかを表す。
    A method for producing a compound represented by the following structural formula (1),
    A compound represented by the following general formula (2) and a compound represented by the following general formula (3) in the presence of a catalyst containing an asymmetric ligand represented by the following general formula (A) The manufacturing method of the compound characterized by including the reaction process of making it react and obtaining the compound represented by the said General formula (1).
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    However, in the general formula (1) and the general formula (2), R 1 represents either a hydrogen atom or an amino-protecting group. R 2 represents either a hydrogen atom or an amino-protecting group. In the general formula (1) and the general formula (3), R 11 represents an aromatic group which may have a substituent. R 12 represents an aromatic group which may have a substituent. R 13 represents either a hydrogen atom or an amino-protecting group.
    Figure JPOXMLDOC01-appb-C000009
    In the general formula (A), R represents any of an alkyl group having 1 to 6 carbon atoms, an aryl group, a substituted aryl group, an aralkyl group, and a ring-substituted aralkyl group.
  6.  前記一般式(A)で表される不斉配位子のRが、フェニル基である請求項5に記載の化合物の製造方法。 The method for producing a compound according to claim 5, wherein R of the asymmetric ligand represented by the general formula (A) is a phenyl group.
  7.  前記触媒が、銅錯体である請求項5に記載の化合物の製造方法。 The method for producing a compound according to claim 5, wherein the catalyst is a copper complex.
  8.  前記銅錯体が、銅化合物と、前記一般式(A)で表される不斉配位子とを混合して得られる請求項7に記載の化合物の製造方法。 The method for producing a compound according to claim 7, wherein the copper complex is obtained by mixing a copper compound and an asymmetric ligand represented by the general formula (A).
PCT/JP2016/070920 2015-07-15 2016-07-14 Method for producing compound WO2017010558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141582A JP2017024992A (en) 2015-07-15 2015-07-15 Method for producing compound
JP2015-141582 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017010558A1 true WO2017010558A1 (en) 2017-01-19

Family

ID=57757191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070920 WO2017010558A1 (en) 2015-07-15 2016-07-14 Method for producing compound

Country Status (2)

Country Link
JP (1) JP2017024992A (en)
WO (1) WO2017010558A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437230A (en) * 2019-08-29 2019-11-12 中国科学院上海有机化学研究所 A kind of three-level aminated compounds and biphosphine ligand, wherein mesosome and preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507078A (en) * 1990-05-17 1993-10-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー chiral phosphorane transition metal catalyst
JP2011518852A (en) * 2008-04-29 2011-06-30 ノバルティス アーゲー Spiro-indole derivatives for the treatment of parasitic diseases
JP2015512381A (en) * 2012-03-23 2015-04-27 ノバルティス アーゲー Chemical processes for the preparation of spiroindolones and their intermediates
CN104926813A (en) * 2015-05-15 2015-09-23 四川大学 Method for asymmetric catalytic synthesis of spirocyclic tetrahydrocarbazoline compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507078A (en) * 1990-05-17 1993-10-14 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー chiral phosphorane transition metal catalyst
JP2011518852A (en) * 2008-04-29 2011-06-30 ノバルティス アーゲー Spiro-indole derivatives for the treatment of parasitic diseases
JP2015512381A (en) * 2012-03-23 2015-04-27 ノバルティス アーゲー Chemical processes for the preparation of spiroindolones and their intermediates
CN104926813A (en) * 2015-05-15 2015-09-23 四川大学 Method for asymmetric catalytic synthesis of spirocyclic tetrahydrocarbazoline compound

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BIN ZOU ET AL.: "Mechanistic Study of the Spiroindolones: A New Class of Antimalarials", MOLECULES, vol. 17, 2012, pages 10131 - 10141, XP055345333 *
HAIFENG ZHENG ET AL.: "Regio- and Enantioselective Aza-Diels-Alder Reactions of 3-vinylindoles: A Concise Synthesis of the Antimalarial Spiroindolone NITD609", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 54, no. 37, 23 July 2015 (2015-07-23), pages 10958 - 10962, XP055345339 *
HISASHI TAKADA ET AL.: "Stereoselective Total Synthesis of KAE609 via Direct Catalytic Asymmetric Alkynylation to Ketimine", ORGANIC LETTERS, vol. 17, no. 19, 14 September 2015 (2015-09-14), pages 4762 - 4765 *
JACOB P. MACDONALD ET AL.: "Catalytic Stereoselective Synthesis of Diverse Oxindoles and Spirooxindoles from Isatins", ACS COMBINATORIAL SCIENCE, vol. 14, no. 4, 2012, pages 285 - 293, XP055345335 *
JOSEPH J. BADILLO ET AL.: "Enantioselective Pictet-Spengler reactions of isatins for the synthesis of spiroindolones", TETRAHEDRON LETTERS, vol. 52, no. 43, 2011, pages 5550 - 5553, XP028391249 *
SARA DUCE ET AL.: "An Easy Entry to Optically Active Spiroindolinones: Chiral Bronsted Acid- Catalysed Pictet-Spengler Reactions of Isatins", ADVANCED SYNTHESIS & CATALYSIS, vol. 353, no. 6, 2011, pages 860 - 864 *
SHAOQUAN LIN ET AL.: "Catalytic Asymmetric Mannich-Type Reaction of N-Alkylidene-a- Aminoacetonitrile with Ketimines", ANGEW. CHEM. INT. ED., vol. 54, 3 March 2015 (2015-03-03), pages 5183 - 5186, XP055345332 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437230A (en) * 2019-08-29 2019-11-12 中国科学院上海有机化学研究所 A kind of three-level aminated compounds and biphosphine ligand, wherein mesosome and preparation method
CN110437230B (en) * 2019-08-29 2022-06-21 中国科学院上海有机化学研究所 Tertiary amine compound, diphosphine ligand, intermediate and preparation method thereof

Also Published As

Publication number Publication date
JP2017024992A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
TWI421253B (en) Method of preparing sitagliptin and intermediates used therein
JP2019506379A (en) Synthesis process of ruxolitinib
JP2020143070A (en) Processes for the preparation of diarylthiohydantoin compound
JP7384963B2 (en) Method for producing 3,6-disubstituted imidazo[1,2-b]pyridazine derivative
KR101156587B1 (en) Preparation method of sitagliptin and amine salt intermediate used therein
WO2017010558A1 (en) Method for producing compound
TW200808728A (en) Method of preparing 4-halogenated quinoline intermediates
WO2016041505A1 (en) Tedizolid phosphate, intermediate and preparation method thereof
KR101872051B1 (en) Primary amine diazeniumdiolate heterocyclic derivatives
US10131674B2 (en) Process for preparing Substituted Indole Compounds
JP2004269491A (en) Method for producing perfluoroalykylimide compound
KR20150066777A (en) Indoline derivatives and method of preparing the same
EP3782977A1 (en) Cyclopropanation method and reagent
WO2017005759A1 (en) A process to make azaindole derivatives
JP5673169B2 (en) Quaternary ammonium salt and method for producing cyclopropane compound using the same
JP2018510218A5 (en)
CN114621115B (en) Method for synthesizing oxime compounds under photocatalysis condition
JP2012046441A (en) Pyrrolidine derivative and method for producing the same
JP2021070660A (en) Method for Producing Optically Active 2-Pyrrolidone Compound
JP2017206485A (en) Optically active 1,3-diamine derivative and method for producing the same
JP2015140317A (en) (e)-1-bromo-2-iodoenamide derivative or salt thereof, and method for producing (e)-1-bromo-2-iodoenamide derivative or salt thereof
WO2023143605A1 (en) Process for the synthesis of pyrazolyl derivatives useful as anti-cancer agents
WO2017006929A1 (en) Production method for optically active compound, and triazolium salt used as catalyst in same
WO2023135233A1 (en) Azaindole derivatives and their use as erk kinase inhibitors
JPS6216441A (en) Production of 1,4-dichlorobutane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824538

Country of ref document: EP

Kind code of ref document: A1