WO2017010426A1 - Chemical vapor deposition device and chemical vapor deposition method - Google Patents

Chemical vapor deposition device and chemical vapor deposition method Download PDF

Info

Publication number
WO2017010426A1
WO2017010426A1 PCT/JP2016/070292 JP2016070292W WO2017010426A1 WO 2017010426 A1 WO2017010426 A1 WO 2017010426A1 JP 2016070292 W JP2016070292 W JP 2016070292W WO 2017010426 A1 WO2017010426 A1 WO 2017010426A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
vapor deposition
chemical vapor
supply pipe
source gas
Prior art date
Application number
PCT/JP2016/070292
Other languages
French (fr)
Japanese (ja)
Inventor
翔 龍岡
健志 山口
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016135275A external-priority patent/JP2017020111A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201680037152.6A priority Critical patent/CN107709607A/en
Priority to EP16824406.9A priority patent/EP3321391A4/en
Priority to US15/740,951 priority patent/US20180195172A1/en
Priority to KR1020177037602A priority patent/KR20180027436A/en
Publication of WO2017010426A1 publication Critical patent/WO2017010426A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present invention relates to a chemical vapor deposition apparatus and a chemical vapor deposition method.
  • This application claims priority based on Japanese Patent Application No. 2015-138721 filed in Japan on July 10, 2015 and Japanese Patent Application No. 2016-135275 filed in Japan on July 07, 2016. , The contents of which are incorporated herein.
  • a cutting tool with a hard layer coated on the surface has been used conventionally.
  • a surface-coated cutting tool in which a WC base cemented carbide or the like is used as a base and a hard layer such as TiC or TiN is coated on the surface by a chemical vapor deposition method is known.
  • an apparatus for coating a hard layer on the surface of a cutting tool base for example, chemical vapor deposition apparatuses described in Patent Documents 1 to 3 are known.
  • a raw material gas is obtained by stacking a tray in which a cutting tool base is placed in a reaction vessel in a vertical direction and rotating a gas supply pipe extending in the vertical direction in the vicinity of the tray.
  • a gas supply pipe extending in the vertical direction in the vicinity of the tray.
  • two (or two) locations are provided on the base plate for the purpose of avoiding operational troubles due to gas inlet clogging and performing stable chemical vapor deposition.
  • a reduced-pressure vertical chemical vapor deposition apparatus provided with a gas inlet has also been proposed.
  • gas species having high reaction activity are used as the source gas, the source gas easily reacts in the supply path.
  • reaction product generated by the reaction of the raw material gas may be deposited in the gas supply pipe or in the gas outlet, resulting in a problem in gas supply.
  • reaction state of the gas varies, and the uniformity of the film quality for each cutting tool in the reaction vessel may be reduced.
  • An object of the present invention is to provide a chemical vapor deposition apparatus and a chemical vapor deposition method capable of forming a uniform film on a plurality of deposition objects.
  • a reaction container in which an object to be deposited is accommodated, a gas supply pipe provided in the reaction container, and a rotation for rotating the gas supply pipe around a rotation axis in the reaction container. And an interior of the gas supply pipe is partitioned into a first gas circulation part and a second gas circulation part extending along the rotation axis.
  • a set of gas jets composed of at least three gas jets arranged adjacent to each other in the direction is installed, and the set of gas jets reacts the first gas flowing through the first gas flow part with the reaction. It includes at least one or more first gas outlets for jetting into the container and at least one second gas outlet for jetting the second gas flowing through the second gas circulation part into the reaction vessel.
  • a chemical vapor deposition apparatus is provided.
  • the relative angle around the rotation axis of the two gas ejection ports installed in the same gas circulation part may be 60 ° or more. It is good also as a structure by which the group of the said gas jet nozzle is provided with two or more by the axial direction of the said gas supply pipe
  • a chemical vapor deposition method in which a film is formed on the surface of an object to be deposited using the above chemical vapor deposition apparatus.
  • the gas supply pipe may be rotated at a rotation speed of 10 rotations / minute or more and 60 rotations / minute or less.
  • a method of using a source gas containing no metal element as the first gas and using a source gas containing a metal element as the second gas may be used.
  • a method of using a source gas containing no metal element as the second gas and using a source gas containing a metal element as the first gas may be used. It is good also as a method of using ammonia containing gas as said 1st gas or 2nd gas using the source gas which does not contain the said metal element.
  • a chemical vapor deposition apparatus and a chemical vapor deposition method capable of forming a uniform film on a plurality of deposition objects are provided.
  • Sectional drawing of the chemical vapor deposition apparatus which concerns on embodiment.
  • FIG. 1 is a cross-sectional view of a chemical vapor deposition apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the gas supply pipe and the rotary drive device.
  • FIG. 3 is a cross-sectional view of the gas supply pipe.
  • the chemical vapor deposition apparatus 10 of this embodiment is a CVD (Chemical Vapor Deposition) apparatus that forms a film on the surface of an object to be deposited by reacting a plurality of source gases in a heated atmosphere.
  • the chemical vapor deposition apparatus 10 of the present embodiment can be suitably used for manufacturing a surface-coated cutting tool that coats a hard layer on the surface of a cutting tool base made of cemented carbide or the like.
  • Examples of the cutting tool base include WC-based cemented carbide, TiCN-based cermet, Si 3 N 4- based ceramics, Al 2 O 3- based ceramics, and cBN-based ultra-high pressure sintered body.
  • Examples of the hard layer include an AlTiN layer and a TiSiN layer.
  • the chemical vapor deposition apparatus 10 includes a base plate 1, a work storage unit 8 installed on the base plate 1, and a bell-type reaction that covers the work storage unit 8 and covers the base plate 1.
  • a container 6 and a box-shaped external heating heater 7 that covers a side surface and an upper surface of the reaction container 6 are provided.
  • the connection portion between the base plate 1 and the reaction vessel 6 is sealed, and the internal space of the reaction vessel 6 can be maintained in a reduced pressure atmosphere.
  • the external heating heater 7 raises the temperature in the reaction vessel 6 to a predetermined film forming temperature (for example, 700 ° C. to 1050 ° C.) and holds it.
  • the work accommodating portion 8 is configured by stacking a plurality of trays 8a on which a cutting tool base body, which is an object to be deposited, is placed in the vertical direction. Adjacent trays 8a are arranged with a sufficient gap for the source gas to circulate. All the trays 8a of the work accommodating portion 8 have a through hole through which the gas supply pipe 5 is inserted.
  • the upper surface of the tray 8a is a mounting surface on which the cutting tool base is mounted. Since each tray 8a is arranged horizontally and the gas supply pipe 5 extends in the vertical direction, the mounting surface (upper surface) of the tray 8a is arranged facing the axial direction of the gas supply pipe 5.
  • the base plate 1 is provided with a gas introduction part 3, a gas discharge part 4, and a gas supply pipe 5.
  • the gas introduction unit 3 is provided through the base plate 1 and supplies two kinds of source gas group A (first gas) and source gas group B (second gas) to the internal space of the reaction vessel 6.
  • the gas introduction part 3 is connected to the gas supply pipe 5 on the inner side (reaction vessel 6 side) of the base plate 1.
  • the gas introduction unit 3 includes a source gas group A introduction pipe 29 connected to the source gas group A source 41 and a source gas group B introduction pipe 30 connected to the source gas group B source 42.
  • the source gas group A introduction pipe 29 and the source gas group B introduction pipe 30 are connected to the gas supply pipe 5.
  • the gas introduction unit 3 is provided with a motor (rotary drive device) 2 that rotates the gas supply pipe 5.
  • the gas discharge unit 4 is provided through the base plate 1 and connects the vacuum pump 45 and the internal space of the reaction vessel 6.
  • the vacuum pump 45 evacuates the reaction vessel 6 through the gas discharge unit 4.
  • the gas supply pipe 5 is a tubular member extending vertically upward from the base plate 1.
  • the gas supply pipe 5 is installed so as to penetrate the center portion of the work accommodating portion 8 in the vertical direction. In the case of this embodiment, the upper end of the gas supply pipe 5 is sealed, and the raw material gas group is injected from the side surface of the gas supply pipe 5 to the outside.
  • FIG. 2 is a cross-sectional view showing the base plate 1, the gas introduction part 3, and the gas discharge part 4.
  • the gas exhaust unit 4 includes a gas exhaust pipe 11 connected to a gas exhaust port 9 that penetrates the base plate 1.
  • the gas exhaust pipe 11 is connected to the vacuum pump 45 shown in FIG.
  • the gas introduction part 3 includes a cylindrical support part 3a extending outward from the lower surface of the base plate 1, a rotary gas introduction part 12 accommodated in the support part 3a, and a rotary gas introduction part 12 via the coupling 2a. And a sliding portion 3b that seals the coupling 2a while sliding the coupling 2a.
  • the inside of the support part 3a communicates with the inside of the reaction vessel 6.
  • the support part 3a is provided with a source gas group A introduction pipe 29 and a source gas group B introduction pipe 30 that penetrate the side wall of the support part 3a.
  • the source gas group A introduction pipe 29 is provided closer to the reaction vessel 6 than the source gas group B introduction pipe 30 in the vertical direction.
  • the source gas group A introduction pipe 29 has a source gas group A inlet 27 that opens to the inner peripheral surface of the support portion 3a.
  • the source gas group B introduction pipe 30 has a source gas group B inlet 28 that opens to the inner peripheral surface of the support portion 3a.
  • the rotary gas introduction component 12 has a cylindrical shape coaxial with the support portion 3a.
  • the rotary gas introduction component 12 is inserted into the support portion 3 a and is driven to rotate around the rotation shaft 22 by the motor 2 connected to the end portion (lower end portion) opposite to the reaction vessel 6.
  • the rotary gas introduction component 12 is provided with a through hole 12a that penetrates the side wall of the rotary gas introduction component 12, and a through hole 12b.
  • the through hole 12a is provided at the same height as the source gas group A introduction port 27 of the support portion 3a.
  • the through hole 12 b is provided at the same height as the source gas group B inlet 28.
  • a sealing portion 12c having a larger diameter than that of other portions is provided between the through hole 12a and the through hole 12b. The sealing portion 12c abuts on the inner peripheral surface of the support portion 3a and isolates the source gas group A flowing from the source gas group A inlet 27 and the source gas group B flowing from the source gas group B inlet 28. .
  • a partition member 35 is provided inside the rotary gas introduction component 12.
  • the partition member 35 partitions the interior of the rotary gas introduction component 12 into a source gas group A introduction path 31 and a source gas group B introduction path 32 that extend along the height direction (axial direction).
  • the source gas group A introduction path 31 is connected to the source gas group A introduction port 27 through the through hole 12a.
  • the source gas group B introduction path 32 is connected to the source gas group B introduction port 28 through the through hole 12b.
  • a gas supply pipe 5 is connected to the upper end of the rotary gas introduction component 12.
  • FIG. 3 is a cross-sectional view of the gas supply pipe 5.
  • FIG. 4 is a partial perspective view of the gas supply pipe 5.
  • 5A to 5C are explanatory diagrams regarding the arrangement of the gas outlets.
  • the gas supply pipe 5 is a cylindrical pipe. Inside the gas supply pipe 5, a plate-shaped partition member 5a extending along the height direction (axial direction) is provided. The partition member 5a vertically divides the gas supply pipe 5 in the diametrical direction so as to include the central axis (rotary shaft 22) of the gas supply pipe 5, and bisects the inside of the gas supply pipe 5.
  • the interior of the gas supply pipe 5 is partitioned into a source gas group A circulation part (first gas circulation part) 14 and a source gas group B circulation part (second gas circulation part) 15 by the partition member 5a.
  • the source gas group A circulation part 14 and the source gas group B circulation part 15 respectively extend over the entire height of the gas supply pipe 5.
  • the lower end of the partition member 5 a is connected to the upper end of the partition member 35.
  • the source gas group A circulation section 14 is connected to the source gas group A introduction path 31, and the source gas group B circulation section 15 is connected to the source gas group B introduction path 32. Therefore, the distribution path of the source gas group A supplied from the source gas group A source 41 and the distribution path of the source gas group B supplied from the source gas group B source 42 are partitioned by the partition member 35 and the partition member 5a.
  • the flow paths are independent from each other.
  • the gas supply pipe 5 includes a plurality of source gas group A outlets (first gas outlets) 16 penetrating the gas supply pipe 5 and a plurality of source gas group B jets. Outlets (second gas ejection ports) 17a and 17b are provided.
  • the source gas group A outlet 16 jets the source gas group A from the source gas group A circulation section 14 into the internal space of the reaction vessel 6.
  • the source gas group B outlets 17 a and 17 b eject the source gas group B from the source gas group B circulation portion 15 into the internal space of the reaction vessel 6.
  • a plurality of source gas group A outlets 16 and source gas group B outlets 17a and 17b are provided along the length direction (height direction) of the gas supply pipe 5 (see FIG. 4).
  • the source gas group A outlet 16 and the source gas group B outlets 17a and 17b are provided at substantially the same height.
  • a set 24 of jets is configured with three gas jets (raw gas group A jet 16 and source gas group B jets 17 a and 17 b) adjacent in the circumferential direction as one set.
  • the gas supply pipe 5 is provided with a plurality of jet outlet sets 24 in the height direction.
  • the height positional relationship between the source gas group A outlet 16 and the source gas group B outlets 17a and 17b constituting the jet outlet set 24 is the same as the source gas group A outlet 16 and the source gas group B outlet 17a. All of 17b are in a positional relationship that intersects one plane 23 having the rotation axis 22 shown in FIG. 4 as a normal line. Such a positional relationship is defined as a positional relationship “adjacent in the circumferential direction” in the present embodiment.
  • FIG. 5A when the raw material gas group A outlet 16 and the raw material gas group B outlets 17a and 17b constituting the jet outlet set 24 are the same height, FIG. As shown in FIG. 4, when a part of the raw material gas group A outlet 16 and a part of the raw material gas group B outlets 17a and 17b constituting the outlet set 24 are the same height, these outlets Corresponds to the positional relationship “adjacent in the circumferential direction”. On the other hand, as shown in FIG.
  • the source gas group A outlet 16 and the source gas group B outlets 17a and 17b shown in FIG. 3 are outlets belonging to the same outlet group 24.
  • the relative angle ⁇ between the two source gas group B outlets 17a and 17b communicating with the source gas group B circulation portion 15 is 120 °.
  • the relative angle ⁇ can be changed within a range of 60 ° or more and less than 180 °. When the relative angle ⁇ is less than 60 °, the film quality of the film formed on the workpiece surface varies greatly.
  • the relative angle ⁇ is preferably in the range of 120 ° to less than 180 °.
  • the relative angle ⁇ is around the axis around the center 13 (rotary shaft 22) of the gas supply pipe 5, and the center 18a of the outer peripheral side opening end of one source gas group B outlet 17a, It is defined as an angle formed with the center 18b of the outer peripheral opening end of the other source gas group B outlet 17b. Since the relative angle ⁇ is an angle around the axis, when the positions in the height direction of the centers 18 a and 18 b are different, the angles are obtained when the centers 18 a and 18 b are projected onto a plane orthogonal to the rotation axis 22.
  • jet outlet set 24 is not particularly limited as long as it is three or more.
  • the source gas group A source 41 and the source gas group B source 42 to the source gas group A and the source gas group B source 42 are rotated while the gas supply pipe 5 is rotated around the rotation axis 22 by the motor 2.
  • the source gas group B is supplied to the gas introduction unit 3.
  • the rotation speed of the gas supply pipe 5 is preferably in the range of 10 rotations / minute to 60 rotations / minute. More preferably, it is the range of 20 rotations / minute or more and 60 rotations / minute or less, More preferably, it is the range of 30 rotations / minute or more and 60 rotations / minute or less.
  • the rotation speed of the gas supply pipe 5 is adjusted according to the gas types of the source gas group A and source gas group B and the height of reaction activity.
  • the rotational speed is set to a speed exceeding 60 revolutions / minute, since the source gas is mixed in the vicinity of the gas supply pipe 5, problems such as blockage of the ejection port are likely to occur.
  • the source gas group A one or more kinds of gases selected from inorganic source gases not containing metal elements and organic source gases and a carrier gas can be used.
  • the source gas group B one or more gases selected from an inorganic source gas and an organic source gas and a carrier gas can be used.
  • the source gas group B is a gas containing at least one metal.
  • NH 3 and carrier gas (H 2 ) are selected as source gas group A
  • AlCl 3 , TiCl 4 , N 2 and carrier gas (H 2 ) are selected as source gas group B and chemical vapor deposition is performed.
  • a surface-coated cutting tool having a hard layer of an AlTiN layer can be produced.
  • NH 3 and carrier gas (H 2 ) are selected as the source gas group A
  • AlCl 3 , ZrCl 4 , N 2 and carrier gas (H 2 ) are selected as the source gas group B and chemical vapor deposition is performed.
  • a surface-coated cutting tool having a hard layer of an AlZrN layer can be produced.
  • NH 3 and carrier gas (H 2 ) are selected as the source gas group A, and TiCl 4 , SiCl 4 , N 2 and carrier gas (H 2 ) are selected as the source gas group B and chemical vapor deposition is performed.
  • a surface-coated cutting tool having a hard layer of TiSiN layer can be produced.
  • NH 3 and carrier gas (H 2 ) are selected as source gas group A, and AlCl 3 , TiCl 4 , ZrCl 4 , N 2 and carrier gas (H 2 ) are selected as source gas group B.
  • chemical vapor deposition a surface-coated cutting tool having a hard layer of an AlTiZrN layer can be produced.
  • the source gas group A supplied from the source gas group A source 41 passes through the source gas group A introduction pipe 29, the source gas group A inlet 27, the source gas group A introduction path 31, and the source gas group A distribution section 14. Then, the gas is ejected from the raw material gas group A outlet 16 into the internal space of the reaction vessel 6.
  • the source gas group B supplied from the source gas group B source 42 includes a source gas group B introduction pipe 30, a source gas group B inlet 28, a source gas group B introduction path 32, and a source gas group B distribution section 15.
  • the two source gas group B jet outlets 17a and 17b are jetted into the internal space of the reaction vessel 6 via.
  • the raw material gas group A and the raw material gas group B ejected from the gas supply pipe 5 are mixed in the reaction vessel 6 outside the gas supply pipe 5, and a hard layer is formed on the surface of the cutting tool base on the tray 8a by chemical vapor deposition. Is deposited.
  • the raw material gas group A and the raw material gas group B are separated without being mixed in the gas supply pipe 5, ejected from the rotating gas supply pipe 5, and then reacted. Mix inside the container 6.
  • the source gas groups A and B By separately supplying the source gas groups A and B in this way, it is possible to suppress the inside of the gas supply pipe 5 from being blocked by the reaction product or from being blocked by the deposited film component. Can do.
  • the raw material gas group A and the raw material gas group B ejected from the gas supply pipe 5 have a relatively high concentration in the vicinity of the gas supply pipe 5 and are diffused to a uniform concentration as the distance from the gas supply pipe 5 increases in the radial direction. Therefore, when the raw material gas group A and the raw material gas group B are mixed in the vicinity of the gas supply pipe 5 and mixed with a film quality of a hard layer (film) formed at a position away from the gas supply pipe 5. Therefore, the film quality of the hard layer formed in the film will be different. If it does so, it becomes impossible to obtain the hard layer of uniform film quality over a desired large area area.
  • a difference in film quality may occur due to a difference in reactivity between the two kinds of source gas species and the gas type of the source gas group B.
  • the gas species A1 and A2 are included in the source gas group A, if the gas species A2 is more reactive with the gas species B1 of the source gas group B than the gas species A1, the vicinity of the gas supply pipe 5 Then, the reaction between the gas species A2 and the gas species B1 is likely to proceed. As a result, the film quality varies depending on the distance from the gas supply pipe 5.
  • the chemical vapor deposition apparatus 10 of the present embodiment three jet outlets (source gas group A outlet 16, source gas group B outlets 17a and 17b) adjacent to each other in the circumferential direction of the gas supply pipe 5 are installed.
  • source gas group A outlet 16 source gas group B outlets 17a and 17b
  • the concentrations of the source gas groups A and B in the vicinity of the gas supply pipe 5 can be easily adjusted.
  • the mixing timing of the raw material gas group A and the raw material gas group B can be freely adjusted by adjusting the space
  • the mixing condition of the source gas group A and the source gas group B can be changed around the axis, and the mixing condition of the gas group considering the reactivity between the gas species can be obtained.
  • the chemical vapor deposition apparatus 10 of the present embodiment a homogeneous reaction occurs in the reaction vessel 6, and a hard layer is formed with a uniform film quality on the plurality of cutting tool bases placed on the tray 8a. be able to.
  • the uniformity of the film quality of the hard layer also depends on the mutual reaction activity of the source gas group A and the source gas group B.
  • the contact distance between the source gas group A and the source gas group B can be controlled by adjusting the rotation speed of the gas supply pipe 5. Therefore, the uniformity of the film quality can be further improved by adjusting the rotational speed according to the type of the raw material gas group.
  • a plurality of sets 24 of jet nozzles adjacent in the circumferential direction are provided in the height direction (axial direction) of the gas supply pipe 5.
  • the group 24 of jet nozzles was comprised by three jet nozzles, as shown in FIG. 6, you may provide four jet nozzles.
  • the gas supply pipe 5 shown in FIG. 6 has two source gas group A outlets 16a and 16b and two source gas group B outlets 17a and 17b. Even in such a configuration, by adjusting the positions of the four jet outlets, the concentrations of the source gas group A and the source gas group B in the vicinity of the gas supply pipe 5 and the mixing timing of the gas species are adjusted. It is possible to form a hard layer having a uniform film quality.
  • the relative angle ⁇ around the axes of the two source gas group A outlets 16a and 16b shown in FIG. 6 can be changed within a range of 60 ° or more and less than 180 °.
  • the relative angle ⁇ is preferably in the range of 120 ° to less than 180 °.
  • the relative angle ⁇ is around an axis centering on the center 13 (rotating shaft 22) of the gas supply pipe 5 and the center 19a of the outer peripheral opening end of one source gas group A outlet 16a and the other source gas group A. It is defined as the angle formed with the center 19b of the outer peripheral side opening end of the jet outlet 16b. Since the relative angle ⁇ is an angle around the axis, when the positions of the centers 19 a and 19 b in the height direction are different, the angles are obtained when the centers 19 a and 19 b are projected onto a plane orthogonal to the rotation axis 22.
  • the gas supply pipe 5 is a cylindrical pipe.
  • a gas supply pipe 5A made of a square pipe having a rectangular cross section may be used.
  • the gas supply pipe 5A shown in FIG. 7 is configured to have four jets (source gas group A jets 16a and 16b, source gas group B jets 17a and 17b), but the three jets shown in FIG. It is good also as a structure which has.
  • tube which consists of not only a rectangular cross-section but a hexagonal shape or an octagonal square tube.
  • the chemical vapor deposition apparatus 10 of the embodiment described with reference to FIGS. 1 to 5C (hereinafter simply referred to as “the present example apparatus”) was used.
  • the bell-shaped reaction vessel 6 had a diameter of 250 mm and a height of 750 mm.
  • a heater that can heat the inside of the reaction vessel 6 to 700 ° C. to 1050 ° C. was used as the external heating heater 7.
  • As the tray 8a a ring-shaped jig having an outer diameter of 220 mm in which a central hole having a diameter of 65 mm was formed at the center was used.
  • the film-formed objects made of the WC-based cemented carbide substrate are placed at intervals of 20 mm to 30 mm along the radial direction of the jig (tray 8a), and are almost equally spaced along the circumferential direction of the jig. It mounted so that it might become.
  • various source gas groups A and source gas groups B are respectively supplied to the gas supply pipe 5 at a predetermined flow rate, and the source gas group A and the source gas group B are rotated while the gas supply pipe 5 is rotated.
  • the hard layers (hard coatings) of Examples 1 to 12 and Comparative Examples 1 to 4 were formed on the surface of the film-formed object made of the WC-based cemented carbide substrate by chemical vapor deposition.
  • Table 1 shows the components and compositions of the source gas group A and source gas group B used for chemical vapor deposition.
  • Table 2 shows various conditions of chemical vapor deposition in Examples 1 to 12 and Comparative Examples 1 to 4.
  • the unit “SLM” shown in Table 2 is a standard flow rate L / min (Standard).
  • the standard flow rate is a volume flow rate per minute converted to 20 ° C. and 1 atm (1 atm).
  • the unit “rpm” shown in Table 2 is the number of rotations per minute, and here means the rotation speed of the gas supply pipe 5.
  • the average content ratio (atomic ratio) Al / Al + Zr (atomic%) in the total amount of Al and Zr in Al was determined.
  • the average content ratio (atomic ratio) Ti / Ti + Si (atomic%) in the total amount of Ti and Si in Ti was determined.
  • the average content ratio (atomic ratio) Al / Al + Ti + Zr (atomic%) in the total amount of Al, Ti, and Zr in Al was determined.
  • the average content ratio (atomic ratio) of Al or Ti was also obtained for the 10 WC-base cemented carbide substrates placed on the outer peripheral side of the ring-shaped jig (tray 8a) in the same manner as described above.
  • the average content ratio (atomic ratio) of Al or Ti of the film formed on the base on the inner side of the jig and “Al or Ti of the film formed on the base on the outer side of the jig”
  • the difference from the “average content ratio (atomic ratio)” was determined as “the difference between the average content ratio (atomic ratio) of Al or Ti on the inner peripheral side and the outer peripheral side”. Tables 3 and 4 show the values obtained above.
  • the source gas group A outlet 16 and the source gas group B outlets 17a and 17b in the outlet set 24 are combined in the circumferential direction of the rotating shaft at least three in total.
  • “average content ratio (atomic ratio of Al or Ti on the inner peripheral side and outer peripheral side)” ) Difference ” was 0.04 or less (atomic ratio). Therefore, it was confirmed that a hard film having a uniform film quality was formed even if the substrate was placed on any part of the jig (tray 8a) disposed in the reaction vessel 6.
  • the source gas group A contains ammonia gas (NH 3 ), and the ammonia gas is highly reactive with the metal chloride gas (AlCl 3 , TiCl 4 , ZrCl 4, etc.) of the source gas group B, but the AlTiN film, An AlZrN film, a TiSiN film, and an AlTiZrN film could be formed in a wide and uniform film quality on the jig.
  • the relative angle of the jet outlet is 60 ° or more, the “difference in the average content ratio (atomic ratio) of Al or Ti on the inner peripheral side and the outer peripheral side” is 0.03 or less (atomic ratio) And even better film quality uniformity was obtained.
  • Comparative Examples 1 to 4 in which the total number of the raw material gas group A outlet 16 and the raw material gas group B outlet 17 installed adjacent to each other in the circumferential direction of the rotating shaft is two, those in Tables 3 and 4 are used. From the results, the “difference in the average content ratio (atomic ratio) of Al or Ti on the inner peripheral side and the outer peripheral side” was larger than that in the example. From these results, it was confirmed that Comparative Examples 1 to 4 were inferior in film quality homogeneity as compared to Examples 1 to 12.
  • the chemical vapor deposition apparatus and the chemical vapor deposition method of the present invention can form a uniform film over a large area even in the case of forming a film using gas species having high reaction activity with each other in a raw material gas group that has been difficult in the past. Since it can be formed, it can sufficiently satisfy industrial use in terms of energy saving and cost reduction.
  • the chemical vapor deposition apparatus and chemical vapor deposition method of the present invention are not only very effective in the production of surface-coated cutting tools coated with a hard layer, but also press dies that require wear resistance, and sliding properties. Needless to say, it can be used for various types of film-forming objects depending on the type of film to be formed by vapor deposition, such as film formation on a machine part that requires the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a chemical vapor deposition device comprising: a reaction vessel containing a material to be deposited; a gas supply tube provided inside the reaction vessel; and a rotation drive device for rotating the gas supply tube about an axis of rotation inside the reaction vessel; wherein the interior of the gas supply tube is divided into a first gas flow part and a second gas flow part extending along the axis of rotation, sets of gas ejection ports comprising at least three gas ejection ports that are arranged adjacent to each other in the circumferential direction are installed in the tube walls of the gas supply tube, and the sets of gas ejection ports include at least one each of a first gas ejection port for ejecting, into the reaction vessel, a first gas flowing in the first gas flow part, and a second gas ejection port for ejecting, into the reaction vessel, a second gas flowing in the second gas flow part.

Description

化学蒸着装置、化学蒸着方法Chemical vapor deposition equipment, chemical vapor deposition method
 本発明は、化学蒸着装置、化学蒸着方法に関する。
 本願は、2015年07月10日に日本国に出願された特願2015-138721号、及び2016年07月07日に日本国に出願された特願2016-135275号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a chemical vapor deposition apparatus and a chemical vapor deposition method.
This application claims priority based on Japanese Patent Application No. 2015-138721 filed in Japan on July 10, 2015 and Japanese Patent Application No. 2016-135275 filed in Japan on July 07, 2016. , The contents of which are incorporated herein.
 表面に硬質層が被覆された切削工具が従来から使用されている。例えば、WC基超硬合金等を基体とし、その表面にTiC、TiN等の硬質層を化学蒸着法により被覆した表面被覆切削工具が知られている。切削工具基体の表面に硬質層を被覆処理する装置として、例えば特許文献1~3記載の化学蒸着装置が知られている。 A cutting tool with a hard layer coated on the surface has been used conventionally. For example, a surface-coated cutting tool in which a WC base cemented carbide or the like is used as a base and a hard layer such as TiC or TiN is coated on the surface by a chemical vapor deposition method is known. As an apparatus for coating a hard layer on the surface of a cutting tool base, for example, chemical vapor deposition apparatuses described in Patent Documents 1 to 3 are known.
特開平5-295548号公報JP-A-5-295548 特表2011-528753号公報Special table 2011-528753 gazette 特開平9-310179号公報JP-A-9-310179
 特許文献1,2に記載の化学蒸着装置では、反応容器内に切削工具基体を載置したトレイを鉛直方向に積層し、トレイ近傍で鉛直方向に延ばしたガス供給管を回転させることで原料ガスを分散させていた。また、特許文献3に記載の化学蒸着装置では、ガス導入口の閉塞による操業上のトラブルを回避し、安定的な化学蒸着を行うことを目的として、ベースプレートに、2か所(又は2か所以上)ガス導入口を設けた減圧式縦型化学蒸着装置も提案されている。
 しかし、原料ガスとして互いに反応活性の高いガス種を用いた場合、原料ガスが供給経路中で反応しやすくなる。そのため、原料ガスの反応によって生じた反応生成物がガス供給管の内部やガス噴出口に沈着し、ガス供給に不具合を生じることがあった。その結果、ガスの反応状態にばらつきを生じ、反応容器内の切削工具毎の膜質の均一性が低下することがあった。
In the chemical vapor deposition apparatus described in Patent Documents 1 and 2, a raw material gas is obtained by stacking a tray in which a cutting tool base is placed in a reaction vessel in a vertical direction and rotating a gas supply pipe extending in the vertical direction in the vicinity of the tray. Was dispersed. In addition, in the chemical vapor deposition apparatus described in Patent Document 3, two (or two) locations are provided on the base plate for the purpose of avoiding operational troubles due to gas inlet clogging and performing stable chemical vapor deposition. As described above, a reduced-pressure vertical chemical vapor deposition apparatus provided with a gas inlet has also been proposed.
However, when gas species having high reaction activity are used as the source gas, the source gas easily reacts in the supply path. For this reason, the reaction product generated by the reaction of the raw material gas may be deposited in the gas supply pipe or in the gas outlet, resulting in a problem in gas supply. As a result, the reaction state of the gas varies, and the uniformity of the film quality for each cutting tool in the reaction vessel may be reduced.
 本発明は、複数の被成膜物に均質な皮膜を形成することができる化学蒸着装置、及び化学蒸着方法を提供することを目的の一つとする。 An object of the present invention is to provide a chemical vapor deposition apparatus and a chemical vapor deposition method capable of forming a uniform film on a plurality of deposition objects.
 本発明の一態様によれば、被成膜物が収容される反応容器と、前記反応容器内に設けられたガス供給管と、前記反応容器内でガス供給管を回転軸周りに回転させる回転駆動装置と、を有し、前記ガス供給管の内部は、前記回転軸に沿って延びる第1ガス流通部と第2ガス流通部とに区画され、前記ガス供給管の管壁には、周方向に隣り合って配置された少なくとも3つ以上のガス噴出口からなるガス噴出口の組が設置され、前記ガス噴出口の組は、前記第1ガス流通部に流通する第1ガスを前記反応容器内に噴出させる第1ガス噴出口と、前記第2ガス流通部に流通する第2ガスを前記反応容器内に噴出させる第2ガス噴出口をそれぞれ少なくとも一つ以上含むことを特徴とする、化学蒸着装置が提供される。 According to one aspect of the present invention, a reaction container in which an object to be deposited is accommodated, a gas supply pipe provided in the reaction container, and a rotation for rotating the gas supply pipe around a rotation axis in the reaction container. And an interior of the gas supply pipe is partitioned into a first gas circulation part and a second gas circulation part extending along the rotation axis. A set of gas jets composed of at least three gas jets arranged adjacent to each other in the direction is installed, and the set of gas jets reacts the first gas flowing through the first gas flow part with the reaction. It includes at least one or more first gas outlets for jetting into the container and at least one second gas outlet for jetting the second gas flowing through the second gas circulation part into the reaction vessel. A chemical vapor deposition apparatus is provided.
 前記ガス噴出口の組において、同一の前記ガス流通部に設置された2つの前記ガス噴出口の前記回転軸周りの相対角度が60°以上である構成としてもよい。
 前記ガス噴出口の組が、前記ガス供給管の軸方向に複数設けられている構成としてもよい。
 前記被成膜物が載置される載置面を有するトレイを備え、前記トレイの載置面は前記ガス供給管の軸方向を向いて配置される構成としてもよい。
 前記ガス供給管の軸方向に沿って、複数の前記トレイが積層配置される構成としてもよい。
 前記トレイは貫通孔を有し、前記貫通孔に前記ガス供給管が挿通される構成としてもよい。
In the set of gas ejection ports, the relative angle around the rotation axis of the two gas ejection ports installed in the same gas circulation part may be 60 ° or more.
It is good also as a structure by which the group of the said gas jet nozzle is provided with two or more by the axial direction of the said gas supply pipe | tube.
It is good also as a structure provided with the tray which has the mounting surface in which the said to-be-deposited material is mounted, and the mounting surface of the said tray faces the axial direction of the said gas supply pipe | tube.
A plurality of trays may be stacked and arranged along the axial direction of the gas supply pipe.
The tray may have a through hole, and the gas supply pipe may be inserted through the through hole.
 本発明の一態様によれば、上記の化学蒸着装置を用いて被成膜物の表面に皮膜を形成する、化学蒸着方法が提供される。 According to one aspect of the present invention, there is provided a chemical vapor deposition method in which a film is formed on the surface of an object to be deposited using the above chemical vapor deposition apparatus.
 前記ガス供給管を10回転/分以上60回転/分以下の回転速度で回転させる方法としてもよい。
 前記第1ガスとして金属元素を含まない原料ガスを用い、前記第2ガスとして金属元素を含む原料ガスを用いる方法としてもよい。
 前記第2ガスとして金属元素を含まない原料ガスを用い、前記第1ガスとして金属元素を含む原料ガスを用いる方法としてもよい。
 前記金属元素を含まない原料ガスを用いた前記第1ガス又は第2ガスとしてアンモニア含有ガスを用いる方法としてもよい。
The gas supply pipe may be rotated at a rotation speed of 10 rotations / minute or more and 60 rotations / minute or less.
A method of using a source gas containing no metal element as the first gas and using a source gas containing a metal element as the second gas may be used.
A method of using a source gas containing no metal element as the second gas and using a source gas containing a metal element as the first gas may be used.
It is good also as a method of using ammonia containing gas as said 1st gas or 2nd gas using the source gas which does not contain the said metal element.
 本発明の態様によれば、複数の被成膜物に均質な皮膜を形成することができる化学蒸着装置、及び化学蒸着方法が提供される。 According to the aspect of the present invention, a chemical vapor deposition apparatus and a chemical vapor deposition method capable of forming a uniform film on a plurality of deposition objects are provided.
実施形態に係る化学蒸着装置の断面図。Sectional drawing of the chemical vapor deposition apparatus which concerns on embodiment. ガス供給管及び回転駆動装置を示す断面図。Sectional drawing which shows a gas supply pipe and a rotation drive device. ガス供給管の横断面図。The cross-sectional view of a gas supply pipe. ガス供給管の部分斜視図。The partial perspective view of a gas supply pipe. ガス噴出口の配置に関する説明図。Explanatory drawing regarding arrangement | positioning of a gas jet nozzle. ガス噴出口の配置に関する説明図。Explanatory drawing regarding arrangement | positioning of a gas jet nozzle. ガス噴出口の配置に関する説明図。Explanatory drawing regarding arrangement | positioning of a gas jet nozzle. ガス供給管の他の例を示す断面図。Sectional drawing which shows the other example of a gas supply pipe | tube. ガス供給管の他の例を示す断面図。Sectional drawing which shows the other example of a gas supply pipe | tube.
 以下、本発明の実施の形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (化学蒸着装置)
 図1は、実施形態に係る化学蒸着装置の断面図である。図2は、ガス供給管及び回転駆動装置を示す断面図である。図3は、ガス供給管の横断面図である。
(Chemical vapor deposition equipment)
FIG. 1 is a cross-sectional view of a chemical vapor deposition apparatus according to an embodiment. FIG. 2 is a cross-sectional view showing the gas supply pipe and the rotary drive device. FIG. 3 is a cross-sectional view of the gas supply pipe.
 本実施形態の化学蒸着装置10は、加熱雰囲気中で複数の原料ガスを反応させることにより被成膜物の表面に皮膜を形成するCVD(Chemical Vapor Deposition)装置である。本実施形態の化学蒸着装置10は、超硬合金等からなる切削工具基体の表面に硬質層を被覆する、表面被覆切削工具の製造に好適に用いることができる。 The chemical vapor deposition apparatus 10 of this embodiment is a CVD (Chemical Vapor Deposition) apparatus that forms a film on the surface of an object to be deposited by reacting a plurality of source gases in a heated atmosphere. The chemical vapor deposition apparatus 10 of the present embodiment can be suitably used for manufacturing a surface-coated cutting tool that coats a hard layer on the surface of a cutting tool base made of cemented carbide or the like.
 切削工具基体としては、WC基超硬合金、TiCN基サーメット、Si基セラミックス、Al基セラミックス、cBN基超高圧焼結体等が例示される。硬質層としては、AlTiN層、TiSiN層等が例示される。 Examples of the cutting tool base include WC-based cemented carbide, TiCN-based cermet, Si 3 N 4- based ceramics, Al 2 O 3- based ceramics, and cBN-based ultra-high pressure sintered body. Examples of the hard layer include an AlTiN layer and a TiSiN layer.
 本実施形態の化学蒸着装置10は、図1に示すように、ベースプレート1と、ベースプレート1上に設置されたワーク収容部8と、ワーク収容部8を覆ってベースプレート1に被せられるベル型の反応容器6と、反応容器6の側面及び上面を覆う箱形の外熱式加熱ヒーター7と、を備える。本実施形態の化学蒸着装置10では、ベースプレート1と反応容器6との接続部分が封止され、反応容器6の内部空間を減圧雰囲気に保持可能である。 As shown in FIG. 1, the chemical vapor deposition apparatus 10 according to the present embodiment includes a base plate 1, a work storage unit 8 installed on the base plate 1, and a bell-type reaction that covers the work storage unit 8 and covers the base plate 1. A container 6 and a box-shaped external heating heater 7 that covers a side surface and an upper surface of the reaction container 6 are provided. In the chemical vapor deposition apparatus 10 of the present embodiment, the connection portion between the base plate 1 and the reaction vessel 6 is sealed, and the internal space of the reaction vessel 6 can be maintained in a reduced pressure atmosphere.
 外熱式加熱ヒーター7は、反応容器6内を所定の成膜温度(例えば700℃~1050℃)まで昇温、保持する。
 ワーク収容部8は、被成膜物である切削工具基体が載置される複数のトレイ8aを鉛直方向に積層して構成される。隣り合うトレイ8a同士は、原料ガスが流通するのに十分な隙間を空けて配置される。ワーク収容部8の全てのトレイ8aは、中央にガス供給管5が挿通される貫通孔を有する。本実施形態において、トレイ8aの上面は、切削工具基体が載置される載置面である。各々のトレイ8aは水平に配置され、ガス供給管5は鉛直方向に延びているから、トレイ8aの載置面(上面)はガス供給管5の軸方向を向いて配置されている。
The external heating heater 7 raises the temperature in the reaction vessel 6 to a predetermined film forming temperature (for example, 700 ° C. to 1050 ° C.) and holds it.
The work accommodating portion 8 is configured by stacking a plurality of trays 8a on which a cutting tool base body, which is an object to be deposited, is placed in the vertical direction. Adjacent trays 8a are arranged with a sufficient gap for the source gas to circulate. All the trays 8a of the work accommodating portion 8 have a through hole through which the gas supply pipe 5 is inserted. In the present embodiment, the upper surface of the tray 8a is a mounting surface on which the cutting tool base is mounted. Since each tray 8a is arranged horizontally and the gas supply pipe 5 extends in the vertical direction, the mounting surface (upper surface) of the tray 8a is arranged facing the axial direction of the gas supply pipe 5.
 ベースプレート1には、ガス導入部3と、ガス排出部4と、ガス供給管5とが設けられる。
 ガス導入部3は、ベースプレート1を貫通して設けられ、反応容器6の内部空間に2種類の原料ガス群A(第1ガス)、原料ガス群B(第2ガス)を供給する。ガス導入部3はベースプレート1の内側(反応容器6側)においてガス供給管5に接続される。ガス導入部3は、原料ガス群A源41に接続された原料ガス群A導入管29と、原料ガス群B源42に接続された原料ガス群B導入管30とを有する。原料ガス群A導入管29と原料ガス群B導入管30は、ガス供給管5に接続されている。ガス導入部3にはガス供給管5を回転させるモーター(回転駆動装置)2が設けられている。
The base plate 1 is provided with a gas introduction part 3, a gas discharge part 4, and a gas supply pipe 5.
The gas introduction unit 3 is provided through the base plate 1 and supplies two kinds of source gas group A (first gas) and source gas group B (second gas) to the internal space of the reaction vessel 6. The gas introduction part 3 is connected to the gas supply pipe 5 on the inner side (reaction vessel 6 side) of the base plate 1. The gas introduction unit 3 includes a source gas group A introduction pipe 29 connected to the source gas group A source 41 and a source gas group B introduction pipe 30 connected to the source gas group B source 42. The source gas group A introduction pipe 29 and the source gas group B introduction pipe 30 are connected to the gas supply pipe 5. The gas introduction unit 3 is provided with a motor (rotary drive device) 2 that rotates the gas supply pipe 5.
 ガス排出部4は、ベースプレート1を貫通して設けられ、真空ポンプ45と反応容器6の内部空間とを接続する。真空ポンプ45は、ガス排出部4を介して反応容器6内を排気する。
 ガス供給管5は、ベースプレート1から鉛直上方に延びる管状部材である。ガス供給管5は、ワーク収容部8の中央部を鉛直方向に貫いて設置される。本実施形態の場合、ガス供給管5の上端は封止され、ガス供給管5の側面から外側へ原料ガス群が噴射される。
The gas discharge unit 4 is provided through the base plate 1 and connects the vacuum pump 45 and the internal space of the reaction vessel 6. The vacuum pump 45 evacuates the reaction vessel 6 through the gas discharge unit 4.
The gas supply pipe 5 is a tubular member extending vertically upward from the base plate 1. The gas supply pipe 5 is installed so as to penetrate the center portion of the work accommodating portion 8 in the vertical direction. In the case of this embodiment, the upper end of the gas supply pipe 5 is sealed, and the raw material gas group is injected from the side surface of the gas supply pipe 5 to the outside.
 図2は、ベースプレート1、ガス導入部3及びガス排出部4を示す断面図である。
 ガス排出部4は、ベースプレート1を貫通するガス排気口9に接続されるガス排気管11を有する。ガス排気管11は図1に示した真空ポンプ45に接続される。
FIG. 2 is a cross-sectional view showing the base plate 1, the gas introduction part 3, and the gas discharge part 4.
The gas exhaust unit 4 includes a gas exhaust pipe 11 connected to a gas exhaust port 9 that penetrates the base plate 1. The gas exhaust pipe 11 is connected to the vacuum pump 45 shown in FIG.
 ガス導入部3は、ベースプレート1の下面から外側に延びる筒状の支持部3aと、支持部3a内に収容された回転式ガス導入部品12と、カップリング2aを介して回転式ガス導入部品12に連結されたモーター2と、カップリング2aを摺動させつつ封止する摺動部3bと、を有する。 The gas introduction part 3 includes a cylindrical support part 3a extending outward from the lower surface of the base plate 1, a rotary gas introduction part 12 accommodated in the support part 3a, and a rotary gas introduction part 12 via the coupling 2a. And a sliding portion 3b that seals the coupling 2a while sliding the coupling 2a.
 支持部3aの内部は反応容器6の内部と連通する。支持部3aには、支持部3aの側壁を貫通する原料ガス群A導入管29と、原料ガス群B導入管30とが設けられる。原料ガス群A導入管29は、鉛直方向において、原料ガス群B導入管30よりも反応容器6に近い側に設けられる。原料ガス群A導入管29は支持部3aの内周面に開口する原料ガス群A導入口27を有する。原料ガス群B導入管30は支持部3aの内周面に開口する原料ガス群B導入口28を有する。 The inside of the support part 3a communicates with the inside of the reaction vessel 6. The support part 3a is provided with a source gas group A introduction pipe 29 and a source gas group B introduction pipe 30 that penetrate the side wall of the support part 3a. The source gas group A introduction pipe 29 is provided closer to the reaction vessel 6 than the source gas group B introduction pipe 30 in the vertical direction. The source gas group A introduction pipe 29 has a source gas group A inlet 27 that opens to the inner peripheral surface of the support portion 3a. The source gas group B introduction pipe 30 has a source gas group B inlet 28 that opens to the inner peripheral surface of the support portion 3a.
 回転式ガス導入部品12は、支持部3aと同軸の円筒状である。回転式ガス導入部品12は支持部3a内に挿入され、反応容器6と反対側の端部(下側端部)に連結されたモーター2により回転軸22の軸周りに回転駆動される。 The rotary gas introduction component 12 has a cylindrical shape coaxial with the support portion 3a. The rotary gas introduction component 12 is inserted into the support portion 3 a and is driven to rotate around the rotation shaft 22 by the motor 2 connected to the end portion (lower end portion) opposite to the reaction vessel 6.
 回転式ガス導入部品12には、回転式ガス導入部品12の側壁を貫通する貫通孔12aと、貫通孔12bとが設けられる。貫通孔12aは、支持部3aの原料ガス群A導入口27と同じ高さ位置に設けられる。貫通孔12bは原料ガス群B導入口28と同じ高さ位置に設けられる。回転式ガス導入部品12の外周面のうち、貫通孔12aと貫通孔12bとの間には、他の部位と比較して大きな直径に形成された封止部12cが設けられる。封止部12cは支持部3aの内周面に当接し、原料ガス群A導入口27から流入する原料ガス群Aと、原料ガス群B導入口28から流入する原料ガス群Bとを隔離する。 The rotary gas introduction component 12 is provided with a through hole 12a that penetrates the side wall of the rotary gas introduction component 12, and a through hole 12b. The through hole 12a is provided at the same height as the source gas group A introduction port 27 of the support portion 3a. The through hole 12 b is provided at the same height as the source gas group B inlet 28. Of the outer peripheral surface of the rotary gas introduction component 12, a sealing portion 12c having a larger diameter than that of other portions is provided between the through hole 12a and the through hole 12b. The sealing portion 12c abuts on the inner peripheral surface of the support portion 3a and isolates the source gas group A flowing from the source gas group A inlet 27 and the source gas group B flowing from the source gas group B inlet 28. .
 回転式ガス導入部品12の内部には、仕切部材35が設けられる。仕切部材35は、回転式ガス導入部品12の内部を高さ方向(軸方向)に沿って延びる原料ガス群A導入路31と、原料ガス群B導入路32とに区画する。原料ガス群A導入路31は貫通孔12aを介して原料ガス群A導入口27に接続される。原料ガス群B導入路32は貫通孔12bを介して原料ガス群B導入口28に接続される。回転式ガス導入部品12の上端に、ガス供給管5が接続される。 A partition member 35 is provided inside the rotary gas introduction component 12. The partition member 35 partitions the interior of the rotary gas introduction component 12 into a source gas group A introduction path 31 and a source gas group B introduction path 32 that extend along the height direction (axial direction). The source gas group A introduction path 31 is connected to the source gas group A introduction port 27 through the through hole 12a. The source gas group B introduction path 32 is connected to the source gas group B introduction port 28 through the through hole 12b. A gas supply pipe 5 is connected to the upper end of the rotary gas introduction component 12.
 以下、ガス供給管5の構成について詳細に説明する。
 図3は、ガス供給管5の横断面図である。図4はガス供給管5の部分斜視図である。図5A~図5Cは、ガス噴出口の配置に関する説明図である。
Hereinafter, the configuration of the gas supply pipe 5 will be described in detail.
FIG. 3 is a cross-sectional view of the gas supply pipe 5. FIG. 4 is a partial perspective view of the gas supply pipe 5. 5A to 5C are explanatory diagrams regarding the arrangement of the gas outlets.
 ガス供給管5は円筒管である。ガス供給管5の内部には、高さ方向(軸方向)に沿って延びる板状の仕切部材5aが設けられる。仕切部材5aはガス供給管5の中心軸(回転軸22)を含むようにガス供給管5を直径方向に縦断し、ガス供給管5の内部をほぼ二等分する。仕切部材5aによりガス供給管5の内部は原料ガス群A流通部(第1ガス流通部)14と、原料ガス群B流通部(第2ガス流通部)15とに区画される。原料ガス群A流通部14及び原料ガス群B流通部15は、それぞれガス供給管5の高さ方向の全体にわたって延びている。 The gas supply pipe 5 is a cylindrical pipe. Inside the gas supply pipe 5, a plate-shaped partition member 5a extending along the height direction (axial direction) is provided. The partition member 5a vertically divides the gas supply pipe 5 in the diametrical direction so as to include the central axis (rotary shaft 22) of the gas supply pipe 5, and bisects the inside of the gas supply pipe 5. The interior of the gas supply pipe 5 is partitioned into a source gas group A circulation part (first gas circulation part) 14 and a source gas group B circulation part (second gas circulation part) 15 by the partition member 5a. The source gas group A circulation part 14 and the source gas group B circulation part 15 respectively extend over the entire height of the gas supply pipe 5.
 図2に示すように、仕切部材5aの下端は仕切部材35の上端に接続される。原料ガス群A流通部14は原料ガス群A導入路31に接続され、原料ガス群B流通部15は原料ガス群B導入路32に接続される。したがって、原料ガス群A源41から供給される原料ガス群Aの流通経路と、原料ガス群B源42から供給される原料ガス群Bの流通経路は、仕切部材35及び仕切部材5aにより区画され、互い独立した流路である。 As shown in FIG. 2, the lower end of the partition member 5 a is connected to the upper end of the partition member 35. The source gas group A circulation section 14 is connected to the source gas group A introduction path 31, and the source gas group B circulation section 15 is connected to the source gas group B introduction path 32. Therefore, the distribution path of the source gas group A supplied from the source gas group A source 41 and the distribution path of the source gas group B supplied from the source gas group B source 42 are partitioned by the partition member 35 and the partition member 5a. The flow paths are independent from each other.
 ガス供給管5には、図3及び図4に示すように、それぞれガス供給管5を貫通する複数の原料ガス群A噴出口(第1ガス噴出口)16と、複数の原料ガス群B噴出口(第2ガス噴出口)17a、17bとが設けられる。原料ガス群A噴出口16は、原料ガス群A流通部14から反応容器6の内部空間へ原料ガス群Aを噴出する。原料ガス群B噴出口17a、17bは、原料ガス群B流通部15から反応容器6の内部空間へ原料ガス群Bを噴出する。原料ガス群A噴出口16及び原料ガス群B噴出口17a、17bは、それぞれ、ガス供給管5の長さ方向(高さ方向)に沿って複数箇所設けられる(図4参照)。 As shown in FIGS. 3 and 4, the gas supply pipe 5 includes a plurality of source gas group A outlets (first gas outlets) 16 penetrating the gas supply pipe 5 and a plurality of source gas group B jets. Outlets (second gas ejection ports) 17a and 17b are provided. The source gas group A outlet 16 jets the source gas group A from the source gas group A circulation section 14 into the internal space of the reaction vessel 6. The source gas group B outlets 17 a and 17 b eject the source gas group B from the source gas group B circulation portion 15 into the internal space of the reaction vessel 6. A plurality of source gas group A outlets 16 and source gas group B outlets 17a and 17b are provided along the length direction (height direction) of the gas supply pipe 5 (see FIG. 4).
 本実施形態のガス供給管5では、図3及び図4に示すように、ほぼ同じ高さ位置に原料ガス群A噴出口16と原料ガス群B噴出口17a、17bが設けられる。これら周方向に隣り合う3つのガス噴出口(原料ガス群A噴出口16、原料ガス群B噴出口17a、17b)を1組として、図4に示すように、噴出口の組24が構成される。ガス供給管5には、噴出口の組24が高さ方向に複数箇所設けられる。 In the gas supply pipe 5 of the present embodiment, as shown in FIGS. 3 and 4, the source gas group A outlet 16 and the source gas group B outlets 17a and 17b are provided at substantially the same height. As shown in FIG. 4, a set 24 of jets is configured with three gas jets (raw gas group A jet 16 and source gas group B jets 17 a and 17 b) adjacent in the circumferential direction as one set. The The gas supply pipe 5 is provided with a plurality of jet outlet sets 24 in the height direction.
 噴出口の組24を構成する原料ガス群A噴出口16と原料ガス群B噴出口17a、17bの高さ位置関係は、上記の原料ガス群A噴出口16と原料ガス群B噴出口17a、17bの全てが、図4に示す回転軸22を法線とする1つの平面23に交わる位置関係とされる。このような位置関係を、本実施形態では「周方向に隣り合う」位置関係と定義する。 The height positional relationship between the source gas group A outlet 16 and the source gas group B outlets 17a and 17b constituting the jet outlet set 24 is the same as the source gas group A outlet 16 and the source gas group B outlet 17a. All of 17b are in a positional relationship that intersects one plane 23 having the rotation axis 22 shown in FIG. 4 as a normal line. Such a positional relationship is defined as a positional relationship “adjacent in the circumferential direction” in the present embodiment.
 具体例を示すと、図5Aに示すように、噴出口の組24を構成する原料ガス群A噴出口16と原料ガス群B噴出口17a、17bとが同じ高さである場合と、図5Bに示すように、噴出口の組24を構成する原料ガス群A噴出口16の一部と原料ガス群B噴出口17a、17bの一部が同じ高さである場合には、これらの噴出口は「周方向に隣り合う」位置関係に該当する。一方、図5Cに示すように、原料ガス群A噴出口16と原料ガス群B噴出口17a、17bのうち、2つのガス噴出口について、それらの全体が異なる高さに設けられている場合(図示では原料ガス群A噴出口16と、原料ガス群B噴出口17a)は、「周方向に隣り合う」位置関係には該当しない。 As a specific example, as shown in FIG. 5A, when the raw material gas group A outlet 16 and the raw material gas group B outlets 17a and 17b constituting the jet outlet set 24 are the same height, FIG. As shown in FIG. 4, when a part of the raw material gas group A outlet 16 and a part of the raw material gas group B outlets 17a and 17b constituting the outlet set 24 are the same height, these outlets Corresponds to the positional relationship “adjacent in the circumferential direction”. On the other hand, as shown in FIG. 5C, when two gas jets are provided at different heights among the source gas group A jet port 16 and the source gas group B jet ports 17a and 17b ( In the drawing, the source gas group A outlet 16 and the source gas group B outlet 17a) do not correspond to the positional relationship “adjacent in the circumferential direction”.
 図3に示す原料ガス群A噴出口16と原料ガス群B噴出口17a、17bは、同一の噴出口の組24に属する噴出口である。噴出口の組24において、原料ガス群B流通部15に連通する2つの原料ガス群B噴出口17a、17bの相対角度αは120°である。相対角度αは60°以上180°未満の範囲内で変更することができる。相対角度αが60°未満である場合、ワーク表面に形成される皮膜の膜質のばらつきが大きくなる。相対角度αは120°以上180°未満の範囲とすることが好ましい。 The source gas group A outlet 16 and the source gas group B outlets 17a and 17b shown in FIG. 3 are outlets belonging to the same outlet group 24. In the jet outlet set 24, the relative angle α between the two source gas group B outlets 17a and 17b communicating with the source gas group B circulation portion 15 is 120 °. The relative angle α can be changed within a range of 60 ° or more and less than 180 °. When the relative angle α is less than 60 °, the film quality of the film formed on the workpiece surface varies greatly. The relative angle α is preferably in the range of 120 ° to less than 180 °.
 相対角度αは、本実施形態の場合、ガス供給管5の中心13(回転軸22)を中心とする軸周りに、一方の原料ガス群B噴出口17aの外周側開口端の中心18aと、他方の原料ガス群B噴出口17bの外周側開口端の中心18bとのなす角度として定義される。相対角度αは軸周りの角度であるから、中心18a、18bの高さ方向の位置が異なる場合には、中心18a、18bを回転軸22と直交する面に投影したときの角度となる。 In the case of the present embodiment, the relative angle α is around the axis around the center 13 (rotary shaft 22) of the gas supply pipe 5, and the center 18a of the outer peripheral side opening end of one source gas group B outlet 17a, It is defined as an angle formed with the center 18b of the outer peripheral opening end of the other source gas group B outlet 17b. Since the relative angle α is an angle around the axis, when the positions in the height direction of the centers 18 a and 18 b are different, the angles are obtained when the centers 18 a and 18 b are projected onto a plane orthogonal to the rotation axis 22.
 なお、本実施形態では原料ガス群B流通部15に連通する噴出口を複数設けた場合について説明したが、原料ガス群A流通部14に連通する噴出口を複数設けてもよい。噴出口の組24を構成する噴出口の数は3つ以上であれば特に限定されない。 In addition, although this embodiment demonstrated the case where multiple jet nozzles connected to the source gas group B circulation part 15 were provided, you may provide multiple jet nozzles connected to the source gas group A circulation part 14. The number of the jet outlets constituting the jet outlet set 24 is not particularly limited as long as it is three or more.
 (化学蒸着方法)
 化学蒸着装置10を用いた化学蒸着方法では、モーター2によってガス供給管5を回転軸22の軸周りに回転させながら、原料ガス群A源41及び原料ガス群B源42から原料ガス群A及び原料ガス群Bをガス導入部3へ供給する。
(Chemical vapor deposition method)
In the chemical vapor deposition method using the chemical vapor deposition apparatus 10, the source gas group A source 41 and the source gas group B source 42 to the source gas group A and the source gas group B source 42 are rotated while the gas supply pipe 5 is rotated around the rotation axis 22 by the motor 2. The source gas group B is supplied to the gas introduction unit 3.
 ガス供給管5の回転速度は、10回転/分以上60回転/分以下の範囲とすることが好ましい。より好ましくは、20回転/分以上60回転/分以下の範囲であり、さらに好ましくは、30回転/分以上60回転/分以下の範囲である。これにより、反応容器6内の所定の大面積において均質な皮膜を得ることができる。これは、回転しているガス供給管5から原料ガス群が噴出された際、ガス供給管5の回転運動による旋回成分によって、原料ガス群Aと原料ガス群Bがそれぞれ攪拌されながら均一に拡散されるからである。ガス供給管5の回転速度は、原料ガス群Aと原料ガス群Bのガス種や反応活性の高さに応じて調整される。回転速度を60回転/分を超える速度とした場合、ガス供給管5の近傍で原料ガスが混合されるため、噴出口の閉塞などの不具合が生じやすくなる。 The rotation speed of the gas supply pipe 5 is preferably in the range of 10 rotations / minute to 60 rotations / minute. More preferably, it is the range of 20 rotations / minute or more and 60 rotations / minute or less, More preferably, it is the range of 30 rotations / minute or more and 60 rotations / minute or less. Thereby, a uniform film can be obtained in a predetermined large area in the reaction vessel 6. This is because when the source gas group is ejected from the rotating gas supply pipe 5, the source gas group A and the source gas group B are uniformly diffused while being stirred by the swirl component due to the rotational movement of the gas supply pipe 5. Because it is done. The rotation speed of the gas supply pipe 5 is adjusted according to the gas types of the source gas group A and source gas group B and the height of reaction activity. When the rotational speed is set to a speed exceeding 60 revolutions / minute, since the source gas is mixed in the vicinity of the gas supply pipe 5, problems such as blockage of the ejection port are likely to occur.
 原料ガス群Aとしては、金属元素を含まない無機原料ガス及び有機原料ガスのうちから選ばれる一種以上のガスとキャリアガスを用いることができる。原料ガス群Bとしては、無機原料ガス及び有機原料ガスのうちから選ばれる一種以上のガスとキャリアガスを用いることができる。原料ガス群Bは少なくとも一種以上の金属を含むガスとされる。 As the source gas group A, one or more kinds of gases selected from inorganic source gases not containing metal elements and organic source gases and a carrier gas can be used. As the source gas group B, one or more gases selected from an inorganic source gas and an organic source gas and a carrier gas can be used. The source gas group B is a gas containing at least one metal.
 例えば、原料ガス群Aとして、NHとキャリアガス(H)を選択し、原料ガス群Bとして、AlClとTiClとNとキャリアガス(H)を選択して化学蒸着することにより、AlTiN層の硬質層を有する表面被覆切削工具を作製することができる。
 また例えば、原料ガス群Aとして、NHとキャリアガス(H)を選択し、原料ガス群Bとして、AlClとZrClとNとキャリアガス(H)を選択して化学蒸着することにより、AlZrN層の硬質層を有する表面被覆切削工具を作製することができる。
 また例えば、原料ガス群Aとして、NHとキャリアガス(H)を選択し、原料ガス群Bとして、TiClとSiClとNとキャリアガス(H)を選択して化学蒸着することにより、TiSiN層の硬質層を有する表面被覆切削工具を作製することができる。
 また例えば、原料ガス群Aとして、NHとキャリアガス(H)を選択し、原料ガス群Bとして、AlClとTiClとZrClとNとキャリアガス(H)を選択して化学蒸着することにより、AlTiZrN層の硬質層を有する表面被覆切削工具を作製することができる。
For example, NH 3 and carrier gas (H 2 ) are selected as source gas group A, and AlCl 3 , TiCl 4 , N 2 and carrier gas (H 2 ) are selected as source gas group B and chemical vapor deposition is performed. Thus, a surface-coated cutting tool having a hard layer of an AlTiN layer can be produced.
Further, for example, NH 3 and carrier gas (H 2 ) are selected as the source gas group A, and AlCl 3 , ZrCl 4 , N 2 and carrier gas (H 2 ) are selected as the source gas group B and chemical vapor deposition is performed. Thus, a surface-coated cutting tool having a hard layer of an AlZrN layer can be produced.
Further, for example, NH 3 and carrier gas (H 2 ) are selected as the source gas group A, and TiCl 4 , SiCl 4 , N 2 and carrier gas (H 2 ) are selected as the source gas group B and chemical vapor deposition is performed. Thus, a surface-coated cutting tool having a hard layer of TiSiN layer can be produced.
Further, for example, NH 3 and carrier gas (H 2 ) are selected as source gas group A, and AlCl 3 , TiCl 4 , ZrCl 4 , N 2 and carrier gas (H 2 ) are selected as source gas group B. By chemical vapor deposition, a surface-coated cutting tool having a hard layer of an AlTiZrN layer can be produced.
 原料ガス群A源41から供給される原料ガス群Aは、原料ガス群A導入管29、原料ガス群A導入口27、原料ガス群A導入路31、及び原料ガス群A流通部14を経由して原料ガス群A噴出口16から反応容器6の内部空間に噴出される。
 また、原料ガス群B源42から供給される原料ガス群Bは、原料ガス群B導入管30、原料ガス群B導入口28、原料ガス群B導入路32、及び原料ガス群B流通部15を経由して、2つの原料ガス群B噴出口17a、17bから反応容器6の内部空間に噴出される。
 ガス供給管5から噴出された原料ガス群A及び原料ガス群Bは、ガス供給管5の外側の反応容器6内で混合され、化学蒸着により、トレイ8a上の切削工具基体の表面に硬質層が成膜される。
The source gas group A supplied from the source gas group A source 41 passes through the source gas group A introduction pipe 29, the source gas group A inlet 27, the source gas group A introduction path 31, and the source gas group A distribution section 14. Then, the gas is ejected from the raw material gas group A outlet 16 into the internal space of the reaction vessel 6.
The source gas group B supplied from the source gas group B source 42 includes a source gas group B introduction pipe 30, a source gas group B inlet 28, a source gas group B introduction path 32, and a source gas group B distribution section 15. The two source gas group B jet outlets 17a and 17b are jetted into the internal space of the reaction vessel 6 via.
The raw material gas group A and the raw material gas group B ejected from the gas supply pipe 5 are mixed in the reaction vessel 6 outside the gas supply pipe 5, and a hard layer is formed on the surface of the cutting tool base on the tray 8a by chemical vapor deposition. Is deposited.
 本実施形態の化学蒸着装置10では、原料ガス群Aと原料ガス群Bとをガス供給管5内で混合させず分離しておき、回転しているガス供給管5から噴出させた後、反応容器6の内部で混合させる。このように原料ガス群A、Bを分離して供給することにより、ガス供給管5の内部が反応生成物によって閉塞されたり、沈着した皮膜成分により噴出口が閉塞されたりすることを抑制することができる。 In the chemical vapor deposition apparatus 10 of the present embodiment, the raw material gas group A and the raw material gas group B are separated without being mixed in the gas supply pipe 5, ejected from the rotating gas supply pipe 5, and then reacted. Mix inside the container 6. By separately supplying the source gas groups A and B in this way, it is possible to suppress the inside of the gas supply pipe 5 from being blocked by the reaction product or from being blocked by the deposited film component. Can do.
 また、この構成によれば、ガス混合の進行と切削工具基体表面へのガスの到達時間を調整することができ、ガス供給管5から離れた位置の切削工具にまで均一な膜質の硬質層を形成することができる。この作用効果について、以下に詳細に説明する。 Further, according to this configuration, it is possible to adjust the progress of gas mixing and the arrival time of the gas to the cutting tool base surface, and to form a uniform hard film layer even on the cutting tool located away from the gas supply pipe 5. Can be formed. This effect will be described in detail below.
 ガス供給管5から噴出される原料ガス群A及び原料ガス群Bは、ガス供給管5の近傍では比較的濃度が高く、ガス供給管5から径方向に離れるに従って均一な濃度に拡散される。そのため、ガス供給管5の近傍で原料ガス群Aと原料ガス群Bとが混合されたときに形成される硬質層(皮膜)の膜質と、ガス供給管5から離れた位置で混合されたときに形成される硬質層の膜質とが異なってしまう。そうすると、所望の大面積領域にわたって均一な膜質の硬質層を得ることができなくなる。 The raw material gas group A and the raw material gas group B ejected from the gas supply pipe 5 have a relatively high concentration in the vicinity of the gas supply pipe 5 and are diffused to a uniform concentration as the distance from the gas supply pipe 5 increases in the radial direction. Therefore, when the raw material gas group A and the raw material gas group B are mixed in the vicinity of the gas supply pipe 5 and mixed with a film quality of a hard layer (film) formed at a position away from the gas supply pipe 5. Therefore, the film quality of the hard layer formed in the film will be different. If it does so, it becomes impossible to obtain the hard layer of uniform film quality over a desired large area area.
 また、原料ガス群Aに2種以上の原料ガス種が存在する場合、これら2種類の原料ガス種における原料ガス群Bのガス種との反応性の違いによって膜質に差が生じる場合がある。例えば、原料ガス群Aにガス種A1、A2が含まれる場合に、ガス種A1よりもガス種A2の方が原料ガス群Bのガス種B1に対する反応性が高いと、ガス供給管5の近傍ではガス種A2とガス種B1との反応が進行しやすくなる。その結果、ガス供給管5からの距離によって膜質にばらつきが生じてしまう。 In addition, when two or more kinds of source gas species exist in the source gas group A, a difference in film quality may occur due to a difference in reactivity between the two kinds of source gas species and the gas type of the source gas group B. For example, when the gas species A1 and A2 are included in the source gas group A, if the gas species A2 is more reactive with the gas species B1 of the source gas group B than the gas species A1, the vicinity of the gas supply pipe 5 Then, the reaction between the gas species A2 and the gas species B1 is likely to proceed. As a result, the film quality varies depending on the distance from the gas supply pipe 5.
 そこで本実施形態の化学蒸着装置10では、ガス供給管5の周方向に隣り合う3つの噴出口(原料ガス群A噴出口16、原料ガス群B噴出口17a、17b)を設置した。これにより、ガス供給管5の側面の3箇所からガスが噴出されるため、ガス供給管5の近傍における原料ガス群A,Bの濃度を容易に調整することができる。また、周方向における噴出口の間隔を調整することで、原料ガス群Aと原料ガス群Bとの混合タイミングを自在に調整することができる。したがって本実施形態によれば、原料ガス群Aと原料ガス群Bとの混合具合を軸周りで変化させて、ガス種同士の反応性を考慮したガス群の混合具合とすることができる。その結果、本実施形態の化学蒸着装置10では、反応容器6内において均質な反応が生じ、トレイ8a上に載置された複数の切削工具基体に対して、均一な膜質で硬質層を形成することができる。 Therefore, in the chemical vapor deposition apparatus 10 of the present embodiment, three jet outlets (source gas group A outlet 16, source gas group B outlets 17a and 17b) adjacent to each other in the circumferential direction of the gas supply pipe 5 are installed. Thereby, since gas is ejected from three places on the side surface of the gas supply pipe 5, the concentrations of the source gas groups A and B in the vicinity of the gas supply pipe 5 can be easily adjusted. Moreover, the mixing timing of the raw material gas group A and the raw material gas group B can be freely adjusted by adjusting the space | interval of the jet nozzle in the circumferential direction. Therefore, according to the present embodiment, the mixing condition of the source gas group A and the source gas group B can be changed around the axis, and the mixing condition of the gas group considering the reactivity between the gas species can be obtained. As a result, in the chemical vapor deposition apparatus 10 of the present embodiment, a homogeneous reaction occurs in the reaction vessel 6, and a hard layer is formed with a uniform film quality on the plurality of cutting tool bases placed on the tray 8a. be able to.
 なお、硬質層の膜質の均一性は、原料ガス群Aと原料ガス群Bとの互いの反応活性にも依存する。本実施形態の場合、ガス供給管5の回転速度を調整することで原料ガス群A、原料ガス群Bの接触距離を制御できる。したがって原料ガス群の種類に応じて回転速度を調整することで、膜質の均質性をより向上させることができる。 Note that the uniformity of the film quality of the hard layer also depends on the mutual reaction activity of the source gas group A and the source gas group B. In the case of this embodiment, the contact distance between the source gas group A and the source gas group B can be controlled by adjusting the rotation speed of the gas supply pipe 5. Therefore, the uniformity of the film quality can be further improved by adjusting the rotational speed according to the type of the raw material gas group.
 また本実施形態の化学蒸着装置10では、図4に示すように、周方向に隣り合う噴出口の組24が、ガス供給管5の高さ方向(軸方向)に複数設けられる。これにより、ワーク収容部8の各段(トレイ8a)において、原料ガス群Aと原料ガス群Bがそれぞれ滞留することなく径方向に均一に拡散して混合されるので、トレイ8a上の広い領域で均質な硬質層を形成することができる。 Moreover, in the chemical vapor deposition apparatus 10 of the present embodiment, as shown in FIG. 4, a plurality of sets 24 of jet nozzles adjacent in the circumferential direction are provided in the height direction (axial direction) of the gas supply pipe 5. Thereby, in each stage (tray 8a) of the work accommodating portion 8, the raw material gas group A and the raw material gas group B are uniformly diffused and mixed in the radial direction without staying, so a wide area on the tray 8a. A homogeneous hard layer can be formed.
 なお、本実施形態では、噴出口の組24が3つの噴出口により構成される場合について説明したが、図6に示すように、4つの噴出口を設けてもよい。図6に示すガス供給管5は、2つの原料ガス群A噴出口16a、16bと、2つの原料ガス群B噴出口17a、17bを有する。このような構成とした場合にも、4つの噴出口の位置を調整することで、ガス供給管5の近傍における原料ガス群A及び原料ガス群Bの濃度や、ガス種の混合タイミングを調整することができ、均質な膜質の硬質層を形成することができる。 In addition, although this embodiment demonstrated the case where the group 24 of jet nozzles was comprised by three jet nozzles, as shown in FIG. 6, you may provide four jet nozzles. The gas supply pipe 5 shown in FIG. 6 has two source gas group A outlets 16a and 16b and two source gas group B outlets 17a and 17b. Even in such a configuration, by adjusting the positions of the four jet outlets, the concentrations of the source gas group A and the source gas group B in the vicinity of the gas supply pipe 5 and the mixing timing of the gas species are adjusted. It is possible to form a hard layer having a uniform film quality.
 図6に示す2つの原料ガス群A噴出口16a、16bの軸周りの相対角度βは、60°以上180°未満の範囲内で変更することができる。相対角度βが60°未満である場合、ワーク表面に形成される皮膜の膜質のばらつきが大きくなる。相対角度βは120°以上180°未満の範囲とすることが好ましい。 The relative angle β around the axes of the two source gas group A outlets 16a and 16b shown in FIG. 6 can be changed within a range of 60 ° or more and less than 180 °. When the relative angle β is less than 60 °, the film quality of the film formed on the workpiece surface varies greatly. The relative angle β is preferably in the range of 120 ° to less than 180 °.
 相対角度βは、ガス供給管5の中心13(回転軸22)を中心とする軸周りに、一方の原料ガス群A噴出口16aの外周側開口端の中心19aと、他方の原料ガス群A噴出口16bの外周側開口端の中心19bとのなす角度として定義される。相対角度βは軸周りの角度であるから、中心19a、19bの高さ方向の位置が異なる場合には、中心19a、19bを回転軸22と直交する面に投影したときの角度となる。 The relative angle β is around an axis centering on the center 13 (rotating shaft 22) of the gas supply pipe 5 and the center 19a of the outer peripheral opening end of one source gas group A outlet 16a and the other source gas group A. It is defined as the angle formed with the center 19b of the outer peripheral side opening end of the jet outlet 16b. Since the relative angle β is an angle around the axis, when the positions of the centers 19 a and 19 b in the height direction are different, the angles are obtained when the centers 19 a and 19 b are projected onto a plane orthogonal to the rotation axis 22.
 また本実施形態では、ガス供給管5が円筒管である場合について説明したが、図7に示すように、断面矩形状の角形管からなるガス供給管5Aを用いてもよい。図7に示すガス供給管5Aは4つの噴出口(原料ガス群A噴出口16a、16b、原料ガス群B噴出口17a、17b)を有する構成であるが、図3に示した3つの噴出口を有する構成としてもよい。また、断面矩形状に限らず、六角形状や八角形状の角形管からなるガス供給管を用いてもよい。 In the present embodiment, the case where the gas supply pipe 5 is a cylindrical pipe has been described. However, as shown in FIG. 7, a gas supply pipe 5A made of a square pipe having a rectangular cross section may be used. The gas supply pipe 5A shown in FIG. 7 is configured to have four jets (source gas group A jets 16a and 16b, source gas group B jets 17a and 17b), but the three jets shown in FIG. It is good also as a structure which has. Moreover, you may use the gas supply pipe | tube which consists of not only a rectangular cross-section but a hexagonal shape or an octagonal square tube.
 本実施例では、図1~図5Cを参照して説明した実施形態の化学蒸着装置10(以下、単に「本実施例装置」という。)を使用した。ベル型の反応容器6の径は250mm、高さは750mmとした。外熱式加熱ヒーター7として反応容器6内を700℃~1050℃に加熱することができるヒーターを用いた。トレイ8aとして、中心部に直径65mmの中心孔が形成された外径220mmのリング状の治具を用いた。 In this example, the chemical vapor deposition apparatus 10 of the embodiment described with reference to FIGS. 1 to 5C (hereinafter simply referred to as “the present example apparatus”) was used. The bell-shaped reaction vessel 6 had a diameter of 250 mm and a height of 750 mm. A heater that can heat the inside of the reaction vessel 6 to 700 ° C. to 1050 ° C. was used as the external heating heater 7. As the tray 8a, a ring-shaped jig having an outer diameter of 220 mm in which a central hole having a diameter of 65 mm was formed at the center was used.
 治具(トレイ8a)上に、被成膜物として、JIS規格CNMG120408の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金基体を載置した。
 なお、WC基超硬合金基体からなる被成膜物は、治具(トレイ8a)の径方向に沿って20mm~30mmの間隔で載置し、治具の周方向に沿ってほぼ等間隔となるように載置した。
A WC-based cemented carbide substrate having a JIS standard CNMG120408 shape (thickness: 4.76 mm × inscribed circle diameter: 12.7 mm, 80 ° rhombus) as a film formation on a jig (tray 8a). Was placed.
It should be noted that the film-formed objects made of the WC-based cemented carbide substrate are placed at intervals of 20 mm to 30 mm along the radial direction of the jig (tray 8a), and are almost equally spaced along the circumferential direction of the jig. It mounted so that it might become.
 本実施例装置を用いて、各種の原料ガス群A及び原料ガス群Bをそれぞれ所定の流量でガス供給管5に供給し、ガス供給管5を回転させながら原料ガス群A及び原料ガス群Bを反応容器6内へ噴出させた。これにより、WC基超硬合金基体からなる被成膜物の表面に、化学蒸着により、実施例1~実施例12、比較例1~4の硬質層(硬質皮膜)を形成した。
 表1に、化学蒸着に使用した原料ガス群A、原料ガス群Bの成分・組成を示す。
 表2に、実施例1~12、比較例1~4における化学蒸着の諸条件を示す。
Using the apparatus of this example, various source gas groups A and source gas groups B are respectively supplied to the gas supply pipe 5 at a predetermined flow rate, and the source gas group A and the source gas group B are rotated while the gas supply pipe 5 is rotated. Was spouted into the reaction vessel 6. As a result, the hard layers (hard coatings) of Examples 1 to 12 and Comparative Examples 1 to 4 were formed on the surface of the film-formed object made of the WC-based cemented carbide substrate by chemical vapor deposition.
Table 1 shows the components and compositions of the source gas group A and source gas group B used for chemical vapor deposition.
Table 2 shows various conditions of chemical vapor deposition in Examples 1 to 12 and Comparative Examples 1 to 4.
 表2に示す単位「SLM」は、スタンダード流量L/min(Standard)である。スタンダード流量とは、20℃、1気圧(1atm)に換算した1分間当たりの体積流量のことである。
また、表2に示す単位「rpm」は、1分間当たりの回転数のことであり、ここでは、ガス供給管5の回転速度を意味する。
The unit “SLM” shown in Table 2 is a standard flow rate L / min (Standard). The standard flow rate is a volume flow rate per minute converted to 20 ° C. and 1 atm (1 atm).
The unit “rpm” shown in Table 2 is the number of rotations per minute, and here means the rotation speed of the gas supply pipe 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~12、比較例1~4の各サンプルについて、成膜された硬質皮膜の膜質均一性を調べた。それぞれの条件について、リング状の治具(トレイ8a)の中心孔に近い内周側に載置した10箇所のWC基超硬合金基体について、表面に成膜された硬質皮膜の組成を、電子線マイクロアナライザ(EPMA,Electron-Probe-Micro-Analyser)により測定し、各種皮膜における特定元素の含有割合を求めた。
 具体的に、AlTiN皮膜においては、AlのAlとTiの合量に占める平均含有割合(原子比)Al/Al+Ti(原子%)を求めた。AlZrN皮膜においては、AlのAlとZrの合量に占める平均含有割合(原子比) Al/Al+Zr(原子%)を求めた。TiSiN皮膜においては、TiのTiとSiの合量に占める平均含有割合(原子比) Ti/Ti+Si (原子%)を求めた。AlTiZrN皮膜においては、AlのAlとTiとZrの合量に占める平均含有割合(原子比) Al/Al+Ti+Zr(原子%)を求めた。
 また、リング状の治具(トレイ8a)の外周側に載置した10箇所のWC基超硬合金基体についても上記と同様にAl、またはTi、の平均含有割合(原子比)を求めた。さらに、「治具内周側の基体上に形成された皮膜のAl、またはTi、の平均含有割合(原子比)」と「治具外周側の基体上に形成された皮膜のAl、またはTi、の平均含有割合(原子比)」との差を、「内周側と外周側のAl、またはTi、の平均含有割合(原子比)の差」として求めた。表3及び表4に上記で求めた各値を示す。
For each sample of Examples 1 to 12 and Comparative Examples 1 to 4, the film quality uniformity of the formed hard film was examined. For each of the conditions, the composition of the hard film formed on the surface of the 10 WC-based cemented carbide substrates placed on the inner peripheral side near the center hole of the ring-shaped jig (tray 8a) Measurement was performed with a line microanalyzer (EPMA, Electron-Probe-Micro-Analyzer), and the content ratios of specific elements in various coatings were determined.
Specifically, in the AlTiN film, the average content ratio (atomic ratio) Al / Al + Ti (atomic%) in the total amount of Al and Ti in Al was determined. For the AlZrN film, the average content ratio (atomic ratio) Al / Al + Zr (atomic%) in the total amount of Al and Zr in Al was determined. In the TiSiN film, the average content ratio (atomic ratio) Ti / Ti + Si (atomic%) in the total amount of Ti and Si in Ti was determined. In the AlTiZrN film, the average content ratio (atomic ratio) Al / Al + Ti + Zr (atomic%) in the total amount of Al, Ti, and Zr in Al was determined.
In addition, the average content ratio (atomic ratio) of Al or Ti was also obtained for the 10 WC-base cemented carbide substrates placed on the outer peripheral side of the ring-shaped jig (tray 8a) in the same manner as described above. Furthermore, “the average content ratio (atomic ratio) of Al or Ti of the film formed on the base on the inner side of the jig” and “Al or Ti of the film formed on the base on the outer side of the jig” The difference from the “average content ratio (atomic ratio)” was determined as “the difference between the average content ratio (atomic ratio) of Al or Ti on the inner peripheral side and the outer peripheral side”. Tables 3 and 4 show the values obtained above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び表4の結果から、噴出口の組24における原料ガス群A噴出口16と原料ガス群B噴出口17a、17bとを、合計して少なくとも3つ以上回転軸の周方向に隣り合って設置した実施例1~12では、原料ガス群として、互いに反応活性の高いガス種を用いる場合であっても、「内周側と外周側のAl、またはTi、の平均含有割合(原子比)の差」が0.04以下(原子比)と極めて小さかった。したがって、反応容器6内に配置された治具(トレイ8a)のいずれの箇所に基体を載置したとしても均一な膜質の硬質皮膜が形成されることが確認された。 From the results of Table 3 and Table 4, the source gas group A outlet 16 and the source gas group B outlets 17a and 17b in the outlet set 24 are combined in the circumferential direction of the rotating shaft at least three in total. In Examples 1 to 12, installed, even when gas species having high reaction activity are used as the raw material gas group, “average content ratio (atomic ratio of Al or Ti on the inner peripheral side and outer peripheral side)” ) Difference ”was 0.04 or less (atomic ratio). Therefore, it was confirmed that a hard film having a uniform film quality was formed even if the substrate was placed on any part of the jig (tray 8a) disposed in the reaction vessel 6.
 原料ガス群Aにアンモニアガス(NH)を含み、アンモニアガスは原料ガス群Bの金属塩化物ガス(AlCl、TiCl、ZrCl等)と反応活性が高いにも関わらず、AlTiN皮膜、AlZrN皮膜、TiSiN皮膜、AlTiZrN皮膜、を、治具上の広範囲で均一な膜質に形成可能であった。
 特に、噴出口の相対角度を60°以上とした場合には、「内周側と外周側のAl、またはTi、の平均含有割合(原子比)の差」が0.03以下(原子比)と、さらに良好な膜質の均一性が得られた。
The source gas group A contains ammonia gas (NH 3 ), and the ammonia gas is highly reactive with the metal chloride gas (AlCl 3 , TiCl 4 , ZrCl 4, etc.) of the source gas group B, but the AlTiN film, An AlZrN film, a TiSiN film, and an AlTiZrN film could be formed in a wide and uniform film quality on the jig.
In particular, when the relative angle of the jet outlet is 60 ° or more, the “difference in the average content ratio (atomic ratio) of Al or Ti on the inner peripheral side and the outer peripheral side” is 0.03 or less (atomic ratio) And even better film quality uniformity was obtained.
 一方、回転軸の周方向に隣り合って設置した原料ガス群A噴出口16と原料ガス群B噴出口17とが合計して2つである比較例1~4では、表3及び表4の結果から、「内周側と外周側のAl、またはTi、の平均含有割合(原子比)の差」が実施例と比較して大きかった。これらから、比較例1~4は、実施例1~12と比較して膜質の均質性が劣るものであったことが確認された。 On the other hand, in Comparative Examples 1 to 4, in which the total number of the raw material gas group A outlet 16 and the raw material gas group B outlet 17 installed adjacent to each other in the circumferential direction of the rotating shaft is two, those in Tables 3 and 4 are used. From the results, the “difference in the average content ratio (atomic ratio) of Al or Ti on the inner peripheral side and the outer peripheral side” was larger than that in the example. From these results, it was confirmed that Comparative Examples 1 to 4 were inferior in film quality homogeneity as compared to Examples 1 to 12.
 前述のように、本発明の化学蒸着装置及び化学蒸着方法は、従来困難を伴った原料ガス群に互いに反応活性の高いガス種を用いて成膜する場合においても、大面積に均質な皮膜を形成することが可能であることから、省エネ化、さらに低コスト化の面において産業上利用に十分に満足に対応できるものである。
 また、本発明の化学蒸着装置および化学蒸着方法は、硬質層を被覆した表面被覆切削工具の製造において、大変有効であるばかりでなく、耐摩耗性を必要とするプレス金型や、摺動特性を必要とする機械部品への成膜等、蒸着形成する膜種によって各種の被成膜物で使用することも勿論可能である。
As described above, the chemical vapor deposition apparatus and the chemical vapor deposition method of the present invention can form a uniform film over a large area even in the case of forming a film using gas species having high reaction activity with each other in a raw material gas group that has been difficult in the past. Since it can be formed, it can sufficiently satisfy industrial use in terms of energy saving and cost reduction.
The chemical vapor deposition apparatus and chemical vapor deposition method of the present invention are not only very effective in the production of surface-coated cutting tools coated with a hard layer, but also press dies that require wear resistance, and sliding properties. Needless to say, it can be used for various types of film-forming objects depending on the type of film to be formed by vapor deposition, such as film formation on a machine part that requires the above.
 5,5A…ガス供給管、6…反応容器、10…化学蒸着装置、22…回転軸、24…噴出口の組、2…モーター(回転駆動装置)、14…原料ガス群A流通部(第1ガス流通部)、15…原料ガス群B流通部(第2ガス流通部)、16,16a,16b…原料ガス群A噴出口(第1ガス噴出口)、17a,17b…原料ガス群B噴出口(第2ガス噴出口) 5, 5A ... gas supply pipe, 6 ... reaction vessel, 10 ... chemical vapor deposition device, 22 ... rotating shaft, 24 ... set of jet outlets, 2 ... motor (rotary drive device), 14 ... raw material gas group A flow section (first) 1 gas flow part), 15 ... Raw material gas group B flow part (second gas flow part), 16, 16a, 16b ... Raw material gas group A outlet (first gas outlet), 17a, 17b ... Raw material gas group B Spout (second gas spout)

Claims (10)

  1.  被成膜物が収容される反応容器と、前記反応容器内に設けられたガス供給管と、前記反応容器内でガス供給管を回転軸周りに回転させる回転駆動装置と、を有し、
     前記ガス供給管の内部は、前記回転軸に沿って延びる第1ガス流通部と第2ガス流通部とに区画され、
     前記ガス供給管の管壁には、周方向に隣り合って配置された少なくとも3つ以上のガス噴出口からなるガス噴出口の組が設置され、
     前記ガス噴出口の組は、
     前記第1ガス流通部に流通する第1ガスを前記反応容器内に噴出させる第1ガス噴出口と、前記第2ガス流通部に流通する第2ガスを前記反応容器内に噴出させる第2ガス噴出口をそれぞれ少なくとも一つ以上含む、化学蒸着装置。
    A reaction container in which the film-forming object is accommodated, a gas supply pipe provided in the reaction container, and a rotation driving device that rotates the gas supply pipe around the rotation axis in the reaction container,
    The inside of the gas supply pipe is partitioned into a first gas circulation part and a second gas circulation part extending along the rotation axis,
    A set of gas jets composed of at least three gas jets arranged adjacent to each other in the circumferential direction is installed on the pipe wall of the gas supply pipe,
    The set of gas outlets is
    A first gas outlet for ejecting the first gas flowing through the first gas circulation section into the reaction container, and a second gas for ejecting the second gas flowing through the second gas circulation section into the reaction container. A chemical vapor deposition apparatus including at least one or more jet nozzles.
  2.  前記ガス噴出口の組において、同一の前記ガス流通部に設置された2つの前記ガス噴出口の前記回転軸周りの相対角度が60°以上である、請求項1に記載の化学蒸着装置。 2. The chemical vapor deposition apparatus according to claim 1, wherein, in the set of gas outlets, a relative angle around the rotation axis of two gas outlets installed in the same gas circulation part is 60 ° or more.
  3.  前記ガス噴出口の組が、前記ガス供給管の軸方向に複数設けられている、請求項1又は2に記載の化学蒸着装置。 The chemical vapor deposition apparatus according to claim 1 or 2, wherein a plurality of sets of the gas outlets are provided in the axial direction of the gas supply pipe.
  4.  前記被成膜物が載置される載置面を有するトレイを備え、前記トレイの載置面は前記ガス供給管の軸方向を向いて配置される、請求項1から3のいずれか1項に記載の化学蒸着装置。 4. The apparatus according to claim 1, further comprising: a tray having a placement surface on which the film-formed object is placed, wherein the placement surface of the tray is disposed facing an axial direction of the gas supply pipe. The chemical vapor deposition apparatus described in 1.
  5.  前記ガス供給管の軸方向に沿って、複数の前記トレイが積層配置される、請求項4に記載の化学蒸着装置。 The chemical vapor deposition apparatus according to claim 4, wherein a plurality of the trays are stacked and disposed along an axial direction of the gas supply pipe.
  6.  前記トレイは貫通孔を有し、前記貫通孔に前記ガス供給管が挿通される、請求項4又は5に記載の化学蒸着装置。 The chemical vapor deposition apparatus according to claim 4 or 5, wherein the tray has a through hole, and the gas supply pipe is inserted into the through hole.
  7.  請求項1から請求項6のいずれか1項に記載の化学蒸着装置を用いて被成膜物の表面に皮膜を形成する、化学蒸着方法。 A chemical vapor deposition method in which a film is formed on the surface of an object to be deposited using the chemical vapor deposition apparatus according to any one of claims 1 to 6.
  8.  前記ガス供給管を10回転/分以上60回転/分以下の回転速度で回転させる、請求項7に記載の化学蒸着方法。 The chemical vapor deposition method according to claim 7, wherein the gas supply pipe is rotated at a rotation speed of 10 rotations / minute or more and 60 rotations / minute or less.
  9.  前記第1ガスとして金属元素を含まない原料ガスを用い、前記第2ガスとして金属元素を含む原料ガスを用いる、請求項7又は8に記載の化学蒸着方法。 The chemical vapor deposition method according to claim 7 or 8, wherein a source gas containing no metal element is used as the first gas, and a source gas containing a metal element is used as the second gas.
  10.  前記第1ガスとしてアンモニア含有ガスを用いる、請求項9に記載の化学蒸着方法。 The chemical vapor deposition method according to claim 9, wherein an ammonia-containing gas is used as the first gas.
PCT/JP2016/070292 2015-07-10 2016-07-08 Chemical vapor deposition device and chemical vapor deposition method WO2017010426A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680037152.6A CN107709607A (en) 2015-07-10 2016-07-08 Chemical evaporation plating device and chemical vapor deposition method
EP16824406.9A EP3321391A4 (en) 2015-07-10 2016-07-08 Chemical vapor deposition device and chemical vapor deposition method
US15/740,951 US20180195172A1 (en) 2015-07-10 2016-07-08 Chemical vapor deposition apparatus and chemical vapor deposition method
KR1020177037602A KR20180027436A (en) 2015-07-10 2016-07-08 Chemical vapor deposition device and chemical vapor deposition method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-138721 2015-07-10
JP2015138721 2015-07-10
JP2016135275A JP2017020111A (en) 2015-07-10 2016-07-07 Chemical vapor deposition apparatus and chemical vapor deposition method
JP2016-135275 2016-07-07

Publications (1)

Publication Number Publication Date
WO2017010426A1 true WO2017010426A1 (en) 2017-01-19

Family

ID=57757364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070292 WO2017010426A1 (en) 2015-07-10 2016-07-08 Chemical vapor deposition device and chemical vapor deposition method

Country Status (1)

Country Link
WO (1) WO2017010426A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250429A (en) * 1995-03-14 1996-09-27 Hitachi Ltd Vapor growth method for semiconductor and its equipment
JP2012533876A (en) * 2009-07-16 2012-12-27 ウォニク アイピーエス カンパニ リミテッド Semiconductor manufacturing equipment
JP2014129562A (en) * 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp Surface-coated member and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250429A (en) * 1995-03-14 1996-09-27 Hitachi Ltd Vapor growth method for semiconductor and its equipment
JP2012533876A (en) * 2009-07-16 2012-12-27 ウォニク アイピーエス カンパニ リミテッド Semiconductor manufacturing equipment
JP2014129562A (en) * 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp Surface-coated member and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3321391A4 *

Similar Documents

Publication Publication Date Title
WO2015105177A1 (en) Chemical vapor deposition device, and chemical vapor deposition method
US10590530B2 (en) Gas control in process chamber
CN101665921B (en) Film deposition apparatus, substrate processing apparatus and film deposition method
US8840727B2 (en) Film deposition apparatus, substrate processor, film deposition method, and computer-readable storage medium
KR20070039958A (en) Device and method for high-throughput chemical vapor deposition
TWI392761B (en) Gas distributor with pre-chambers disposed in planes
CN101736318A (en) Film deposition apparatus
US20070218702A1 (en) Semiconductor-processing apparatus with rotating susceptor
JP2011135003A5 (en)
JP2017020111A (en) Chemical vapor deposition apparatus and chemical vapor deposition method
TW201324663A (en) Precursor distribution features for improved deposition uniformity
US11377731B2 (en) Film-forming device
JP7184145B2 (en) Deposition equipment
JP2022549811A (en) FLUID DISTRIBUTION DEVICE, RELATED APPARATUS AND METHOD FOR THIN FILM DEPOSITOR
JP6511798B2 (en) Chemical vapor deposition system, chemical vapor deposition method
JP6358420B2 (en) Depressurized vertical chemical vapor deposition apparatus and chemical vapor deposition method
WO2017010426A1 (en) Chemical vapor deposition device and chemical vapor deposition method
KR20190087046A (en) Substrate processing apparatus
KR101473403B1 (en) Shower head assembly and apparatus for chemical vapor deposition having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177037602

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824406

Country of ref document: EP