WO2017010384A1 - Wiring structure, solar cell module, and solar cell - Google Patents

Wiring structure, solar cell module, and solar cell Download PDF

Info

Publication number
WO2017010384A1
WO2017010384A1 PCT/JP2016/070069 JP2016070069W WO2017010384A1 WO 2017010384 A1 WO2017010384 A1 WO 2017010384A1 JP 2016070069 W JP2016070069 W JP 2016070069W WO 2017010384 A1 WO2017010384 A1 WO 2017010384A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
resin layer
conductive
cell module
region
Prior art date
Application number
PCT/JP2016/070069
Other languages
French (fr)
Japanese (ja)
Inventor
達也 北原
有史 上田
哲也 京極
正孝 上田
久成 尾之内
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2017010384A1 publication Critical patent/WO2017010384A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a wiring structure and a solar cell module. Specifically, the present invention relates to a wiring structure and a solar cell module that are preferably used for a solar cell module.
  • This application includes Japanese Patent Application No. 2015-139211 filed on July 10, 2015, Japanese Patent Application No. 2015-218976 filed on November 6, 2015, and March 18, 2016. Claims priority based on the filed Japanese Patent Application No. 2016-054789, the entire contents of which are incorporated herein by reference.
  • Solar cell modules that convert light energy into electric power are widely used as clean power generators.
  • the solar cell module includes a solar cell and a wiring connected to the cell, and the power generated in the cell through the wiring is configured to be supplied to the outside.
  • Patent documents 1 to 8 are cited as documents disclosing this type of prior art.
  • Patent Documents 1 to 6 relate to a solar cell module in which an n-type electrode is partially disposed on the front surface side of the solar battery cell and a p-type electrode is disposed on the back surface side.
  • the present invention relates to a solar cell module that employs a back contact method in which both electrodes are arranged on the back side.
  • Patent Documents 1 and 2 require that the wiring of solar cells must be individually joined using solder etc. And takes time.
  • heating is performed at the time of bonding, such as solder bonding, the characteristics of the cell may be reduced by heating, or the cell may be warped or cracked.
  • Solder joints also have a problem of flux contamination.
  • Patent Documents 3 to 6 propose a technique in which a solar battery cell is sandwiched from above and below by a previously formed wiring pattern, and the upper and lower wiring patterns are conducted between the cells.
  • a solar cell module described in Patent Document 5 prepares a pair of sealing sheets having metal wiring on the surface, sandwiches a plurality of solar cells between the pair of sealing sheets, and the metal wiring and the solar cell. By pressing and heating the battery cells in contact with each other, a plurality of solar battery cells are electrically connected without requiring solder bonding.
  • the conduction between the upper and lower metal wirings includes factors such as securing the contact area and accuracy of alignment, and the conduction state (contact state) of the metal wirings may be impaired by the flow of the sealing resin or the like. is there.
  • Patent Documents 3, 4 and 6 a low melting point alloy or a conductive film is used to connect the upper and lower wiring patterns, but the same as Patent Document 5 in that the wiring patterns separated vertically are brought into contact when the module is constructed. This method is used, and the reliability of the upper and lower wiring connections is not perfect.
  • the present invention was created in view of the above circumstances, and an object thereof is to provide a wiring structure having high connection reliability and excellent wiring workability. Another related object is to provide a solar cell module having high connection reliability and excellent power generation efficiency and durability.
  • a wiring structure (solar cell module wiring structure) that extends from the upper surface of one of the two solar cells arranged in the solar cell module to the lower surface of the other solar cell.
  • the wiring structure includes a first region corresponding to the one solar battery cell and a second region corresponding to the other solar battery cell.
  • the wiring structure includes a conductive portion continuous from the first region to the second region, a first resin layer disposed above the conductive portion in the first region, and the second region in the second region. A second resin layer disposed below the conductive portion. The conductive portion is partially disposed in the first region.
  • the conductive portion is connected to the upper and lower sides of the two solar cells in a continuous structure such as an integral type, so that the wiring is compared with the method in which the two upper and lower separated wirings are overlapped and connected. Excellent connection reliability. There is no need to align the upper and lower wires. Further, since the conductive portion is supported by the first resin layer and the second resin layer, the wiring structure is easy to handle and has excellent wiring workability regardless of the shape of the conductive portion.
  • the first resin layer and the second resin layer are positioned between the conductive portion and the sealing resin, respectively, when the solar cell module is constructed, thereby preventing the flow of the sealing resin toward the conductive portion, for example, sealing
  • the phenomenon in which the resin flow adversely affects the contact state between the solar battery cell and the conductive portion is prevented.
  • the contact state between the solar battery cell and the conductive portion is kept good, and a decrease in current collection efficiency is prevented.
  • the conductive portion extends from the first region to the second region. It is comprised from this. Further, it is preferable that the plurality of conductive lines are arranged at intervals. By comprising in this way, high current collection efficiency is realizable, suppressing the increase in shadow loss.
  • the conductive wire is a copper wire plated.
  • the plating is more preferably silver plating.
  • the silver plating has a purity of 99.7% by weight or more. With this configuration, power generation efficiency is improved.
  • the conductive wire exhibits a diffuse reflectance of 60% or more. With this configuration, power generation efficiency is improved.
  • the first resin layer and the second resin layer are both adhesive layers.
  • the conductive part is satisfactorily fixed to the first resin layer and the second resin layer using the adhesive force of the pressure-sensitive adhesive layer.
  • a 1st resin layer and a 2nd resin layer can adhere
  • the first resin layer and the second resin layer are both crosslinked adhesive layers.
  • the crosslinked pressure-sensitive adhesive layer exhibits preferable physical properties (typically storage elastic modulus) as the first and second resin layers.
  • the storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of each of the first resin layer and the second resin layer is 5000 Pa or more, and The tan ⁇ at 80 ° C. to 150 ° C. is less than 0.4.
  • the electroconductive part can be made to contact
  • a wiring structure with a release liner includes: any of the wiring structures disclosed herein; a first release liner disposed on an upper surface of the first resin layer in the first region; A second release liner disposed on the lower surface of the conductive portion; a third release liner disposed on the upper surface of the conductive portion in the second region; and a lower surface of the second resin layer in the second region.
  • a fourth release liner By using the wiring structure with a release liner having the above configuration, the solar cell module can be manufactured efficiently and accurately.
  • the second release liner and the third release liner are peeled from the wiring structure, and the surface of one solar battery cell is overlaid on the exposed portion of the first region of the wiring structure.
  • the back surface of the other solar cell is overlaid on the exposed portion of the second region.
  • the first release liner and the fourth release liner are peeled off, and the solar battery module connected to the wiring structure is sandwiched between two sealing resins from above and below to form a solar battery module. it can.
  • wiring excellent in connection reliability is realized.
  • a wiring structure (a wiring structure for a solar battery module) spans from the upper surface of one of the two solar cells arranged in the solar battery module to the lower surface of the other solar cell. ) Is provided.
  • the wiring structure includes a first region corresponding to the one solar battery cell and a second region corresponding to the other solar battery cell.
  • the wiring structure includes a conductive portion that continues from the first region to the second region, and a resin layer that is disposed above the conductive portion in the first region.
  • the conductive portion is partially disposed in the first region.
  • a wiring structure with a release liner includes: any of the wiring structures disclosed herein; a first release liner disposed on an upper surface of the first resin layer in the first region; A second release liner disposed on the lower surface of the conductive portion.
  • a solar cell module can be efficiently manufactured by using the wiring structure with a release liner having the above-described configuration.
  • a structure having a first region and a second region includes a conductive portion that continues from the first region to the second region, and a resin layer that is disposed on one surface of the conductive portion in the first region.
  • the conductive portion is partially disposed in the first region.
  • the structure according to a preferred aspect includes, as the resin layer, a first resin layer disposed on a first surface (for example, an upper side or an upper surface) of the conductive portion in the first region,
  • the second region includes a second resin layer disposed on a second surface (for example, a lower side or a lower surface) of the conductive portion in the second region.
  • a solar cell module including any one of the structures or wiring structures disclosed herein is provided.
  • a solar cell module can be constructed efficiently and accurately.
  • the wiring in the module is excellent in connection reliability, excellent current collection efficiency can be realized reliably and stably.
  • a solar cell module includes a plurality of solar cells arranged at intervals and an upper surface of one solar cell of two adjacent solar cells out of the plurality of solar cells from the other solar cell.
  • a conductive part that is spanned across the lower surface and electrically connects the two adjacent solar cells; a first resin layer disposed above one of the two adjacent solar cells; A second resin layer disposed below the other solar cell of the two adjacent solar cells.
  • the conductive portion is disposed between the one solar cell and the first resin layer, and between the other solar cell and the second resin layer, and the one solar cell. It is partially arranged on the upper surface of the battery cell.
  • the conductive portion is connected to the top and bottom of the two solar cells in a continuous structure, so that the connection reliability of the wiring is improved as compared to the method of connecting the two wirings separated from each other vertically.
  • the first resin layer and the second resin layer are located between the conductive portion and the sealing resin, respectively, when the solar cell module is constructed, and prevent the sealing resin from flowing toward the conductive portion.
  • an event in which the flow of the sealing resin adversely affects the contact state between the solar battery cell and the conductive portion is prevented.
  • the contact state between the solar battery cell and the conductive portion is kept good, and a decrease in current collection efficiency is prevented.
  • the solar cell module disclosed here is excellent in power generation efficiency and durability.
  • the conductive portion is composed of a plurality of conductive lines extending from the upper surface of one of the two adjacent solar cells to the lower surface of the other solar cell. ing. Further, it is preferable that the plurality of conductive lines are arranged at intervals. By comprising in this way, high current collection efficiency is realizable, suppressing the increase in shadow loss.
  • the first resin layer is not disposed above the other solar battery cell, and the second resin layer is disposed below the one solar battery cell. Not placed. In such a configuration, the effect of the technique disclosed herein is realized.
  • the solar cell module includes a sealing resin that covers the plurality of solar cells from the outside of the first resin layer and the second resin layer.
  • the solar cell module more preferably includes a surface covering member and a back surface covering member that sandwich the plurality of solar cells from the outside of the sealing resin.
  • the solar cell module includes, from above, sealing resin / first resin layer / conductive portion (front side conductive portion) / solar battery cell / conductive portion (back side conductive portion) / second resin layer / sealing resin. May have a cross-sectional structure laminated in this order.
  • the solar cell module may be one in which the surface covering member is disposed on the sealing resin positioned above and the back surface covering member is disposed below the sealing resin positioned below.
  • the front surface side conductive portion and the back surface side conductive portion are separate members.
  • an electrode is provided on each surface of the plurality of solar cells.
  • the electrode includes a plurality of first linear portions extending linearly along the plurality of conductive lines, and a plurality of second linear portions extending linearly so as to intersect the first linear portions. And having.
  • a first linear portion arranged along the conductive wire is provided on the surface electrode of the solar battery cell, and by overlapping this with the conductive wire, the contact area between the conductive wire and the electrode is increased, and the current collection efficiency is increased. improves.
  • the surface electrode of the solar battery cell is in continuous contact (line contact) with the conductive wire at the first linear portion, contact failure occurs even when the contact portion has a float or the like. It is difficult and excellent in conduction reliability.
  • the technique disclosed here may be such that the surface electrode of the solar battery cell and the conductive wire are brought into conduction by contact without using an adhesive means (direct adhesive means). In such a configuration, the advantage of increasing the contact area and improving the conduction reliability is great.
  • the wiring formed by the contact between the surface electrode of the solar battery cell and the conductive wire is also referred to as an adhesive means such as solder joint or conductive adhesive (direct adhesive means. Also referred to as conductive adhesive means).
  • an adhesive means such as solder joint or conductive adhesive (direct adhesive means. Also referred to as conductive adhesive means).
  • the same)) may be referred to as “physical contact” in order to distinguish it from the joint used.
  • Physical contact refers to a contact state or a contact method in which conduction is achieved by contact only by contact without using an adhesive means.
  • the 1st resin layer and 2nd resin layer which are disclosed here may have adhesiveness, they play the role which assists and hold
  • solderless wiring that does not use low melting point metal such as solder is a typical example of physical contact type wiring.
  • a solar cell module constructed by physical contact type wiring may be referred to as a physical contact type solar cell module. Since the physical contact type solar cell module can be conducted without heating, cell characteristics can be prevented from being deteriorated due to heating. Moreover, according to the solar cell module that performs solderless wiring (solderless solar cell module), not only the above-mentioned flux contamination can be avoided, but also problems such as leaching and cratering caused by solder bonding can be solved.
  • the width of the first linear portion is smaller than the width of the conductive line.
  • the width of the first linear portion is determined. Even if it is smaller than the width of the conductive wire, the current collection efficiency can be sufficiently secured by the conductive wire. This is a point that is essentially different from the conventional bus bar electrode configured to be wider than the wiring material in order to ensure the bonding strength. Making the first linear portion narrower than the conductive line is also beneficial in terms of reducing shadow loss and saving electrode material.
  • a ratio (W1 / W2) of the width W1 of the first linear portion and the width W2 of the second linear portion is in a range of 0.1 to 10. Is within.
  • various electrode forming means such as screen printing can be simultaneously applied to the first and second linear portions, and production Improves. Further, since the width of each linear portion of the electrode falls within a predetermined range, accurate electrode formation can be realized.
  • the electrode provided on the surface of the solar cell is in contact with the conductive wire at the first linear portion. More preferably, no adhesive means is used for the contact. According to the technology disclosed herein, as described above, wiring in the solar cell module is possible without using an adhesive means such as soldering or conductive adhesive, so that the current collection efficiency and the conduction reliability are improved. In addition, productivity can be improved.
  • a method for manufacturing a solar cell module is provided. This manufacturing method is carried out using any of the structures or wiring structures disclosed herein. According to the said manufacturing method, the solar cell module excellent in wiring workability
  • the lower surface of the first region (specifically, the conductive portion of the first region) of the structure is brought into contact with the front surface of the one solar cell, and the other A step of bringing the upper surface of the second region (specifically, the conductive portion of the second region) of the structure into contact with the back surface of one solar battery cell.
  • the structure is prepared as a structure with a release liner (wiring structure) including two or four release liners.
  • a release liner wiring structure
  • the first release liner disposed on the upper surface of the first resin layer in the first region, and the lower surface of the conductive portion in the first region.
  • a second release liner disposed on the first release liner.
  • the first release liner is disposed on the upper surface of the first resin layer in the first region, and is disposed on the lower surface of the conductive portion in the first region.
  • a second release liner, a third release liner disposed on the upper surface of the conductive portion in the second region, and a fourth release liner disposed on the lower surface of the second resin layer in the second region can be preferably prepared in the form of comprising.
  • a solar cell module provided with the several photovoltaic cell arranged at intervals.
  • the solar cell module is configured such that two adjacent solar cells are extended from the upper surface of one of the two adjacent solar cells out of the plurality of solar cells to the lower surface of the other solar cell.
  • a plurality of conductive wires are provided for electrical connection.
  • an electrode is provided on each surface of the plurality of solar cells.
  • the electrode includes a plurality of first linear portions extending linearly along the plurality of conductive lines and a plurality of second lines extending linearly so as to intersect the first linear portions. And a shaped portion.
  • the width of the first linear portion is smaller than the width of the conductive line.
  • the contact area of a conductive wire and an electrode becomes large and current collection efficiency improves.
  • the surface electrode of the solar battery cell is in line contact with the conductive wire at the first linear portion, even when there is a floating or the like in the contact portion, poor contact is unlikely to occur and the conduction reliability is excellent.
  • the width of the first linear portion smaller than the width of the conductive line, it is possible to realize a reduction in shadow loss and a reduction in electrode material without impairing the current collection efficiency.
  • the solar cell module having the above configuration is preferably applied to an embodiment in which wiring by physical contact is performed. In particular, it is meaningful to incorporate the wiring structure disclosed herein.
  • a photovoltaic cell is provided.
  • An electrode is provided on the surface of the solar battery cell.
  • the electrode includes a plurality of first linear portions extending linearly and a plurality of second linear portions extending linearly so as to intersect the first linear portions.
  • variety of a said 1st linear part is smaller than the width
  • the first linear portion of the surface electrode and the conductive wire are arranged so as to coincide with each other, thereby improving the current collection efficiency and reducing the shadow loss. And electrode material savings.
  • the solar cell having the above configuration is particularly preferable as a solar cell for the solar cell module disclosed herein. By using the solar cell in the physical contact solar cell module or other solar cell module disclosed herein, the current collection efficiency and the conduction reliability are improved.
  • FIG. 2 is a cross-sectional view taken along line II-II of the wiring structure of FIG.
  • FIG. 3 is a view corresponding to FIG. 2, and is a cross-sectional view schematically showing a wiring structure with a release liner according to an embodiment.
  • FIG. 10 is a top view schematically showing the arrangement state of conductive lines on the upper surface of a solar battery cell related to Sample 5-1 in Experiment 5 (effect verification test).
  • FIG. 10 is a top view schematically showing a test solar cell module according to Sample 5-1 in Experiment 5 (effect verification test).
  • FIG. 10 is a top view schematically showing the arrangement state of conductive lines on the upper surface of a solar battery cell related to sample 5-2 in Experiment 5 (effect verification test).
  • FIG. 1 is a top view schematically showing a wiring structure according to an embodiment
  • FIG. 2 is a cross-sectional view taken along the line II-II of the wiring structure of FIG.
  • the wiring structure 1 includes a conductive portion 30, a first resin layer 50 disposed above the conductive portion 30, and a second resin layer 60 disposed below the conductive portion 30. And comprising.
  • the wiring structure 1 has a first region 10 and a second region 12.
  • the first region 10 and the second region 12 are regions corresponding to one and the other of two adjacent solar cells in the solar cell module, respectively. Specifically, when the solar cell module is constructed, the first region 10 is a region overlapping with one solar cell, and the second region 12 is a region overlapping with the other solar cell.
  • each of the first region 10 and the second region 12 is a region having a quadrangular shape when the wiring structure 1 is viewed from above, and is between the first region 10 and the second region 12. Is provided with a predetermined interval.
  • the solar battery cell of this embodiment has a substantially square shape (approximately 15.5 cm ⁇ 15.5 cm), and the first region 10 and the second region 12 have the same shape and the same size.
  • the conductive part 30 has a continuous shape from the first region 10 to the second region 12.
  • the conductive portion 30 is arranged so as to extend to almost both ends of the wiring structure 1 in the arrangement direction of the first region 10 and the second region 12 (which may also be the arrangement direction of solar cells). Further, the conductive portion 30 is partially disposed in the first region 10. The conductive portion 30 is also partially disposed in the second region 12. Specifically, the conductive portion 30 is composed of a plurality of conductive lines 40 extending from the first region 10 to the second region 12. The plurality of conductive lines 40 are arranged at intervals from each other along the arrangement direction of the first region 10 and the second region 12.
  • the conductive lines 40 are arranged in a straight line so as to be parallel to each other, and extend to almost both ends of the wiring structure 1 in the arrangement direction of the first region 10 and the second region 12.
  • each conductive wire 40 extends in a straight line from the outer end portion of the first resin layer 50 in the first region 10 to the outer end portion of the second resin layer 60.
  • a copper wire having a width of 0.8 mm and a thickness of 0.25 mm is used as the conductive wire 40.
  • the first resin layer 50 is disposed in the first region 10.
  • the first resin layer 50 has substantially the same shape and size as the first region 10. Therefore, the first resin layer 50 of this embodiment has a substantially square shape having a size of about 15.5 cm ⁇ 15.5 cm.
  • the first resin layer 50 is disposed above the conductive portion 30 (specifically, the conductive wire 40).
  • the upper surface of the first resin layer 50 constitutes a part of the outer surface (upper surface) of the wiring structure 1 (the upper surface of the first region 10).
  • the lower surface of the first region 10 of the wiring structure 1 is constituted by the first resin layer 50 and the conductive portion 30.
  • the first resin layer 50 is a transparent adhesive layer having a thickness of about 0.05 mm, and the conductive wire 40 is bonded to the surface of the first resin layer 50.
  • the upper and lower sides of the wiring structure in the present specification correspond to the front and back of the solar battery cell described later, and thus correspond to the front and back (up and down) of the solar battery module.
  • the top and bottom may not necessarily be strictly up and down, so the top and bottom of the wiring structure is not limited to exact top and bottom, and is understood to indicate a relative positional relationship.
  • the second resin layer 60 is disposed in the second region 12.
  • the second resin layer 60 has substantially the same shape and size as the second region 12. Therefore, the second resin layer 60 of this embodiment has a substantially square shape having a size of approximately 15.5 cm ⁇ 15.5 cm.
  • the second resin layer 60 is disposed below the conductive portion 30 (specifically, the conductive wire 40).
  • the lower surface of the second resin layer 60 constitutes a part of the outer surface (lower surface) of the wiring structure 1 (the lower surface of the second region 12).
  • the second resin layer 60 is a transparent adhesive layer having a thickness of about 0.05 mm, and the conductive wire 40 is bonded to the surface of the second resin layer 60.
  • the upper surface of the second region 12 of the wiring structure 1 is constituted by the second resin layer 60 and the conductive portion 30.
  • positioned at the back surface of a photovoltaic cell does not need to be transparent.
  • FIG. 3 is a view corresponding to FIG. 2, and is a cross-sectional view schematically showing a wiring structure with a release liner according to an embodiment.
  • the wiring structure 1 can be provided for manufacturing a solar cell module in a form protected by a release liner.
  • the wiring structure 2 with a release liner includes the wiring structure 1 and four release liners covering the upper and lower surfaces of the first region 10 and the upper and lower surfaces of the second region 12, respectively.
  • a first release liner 70, a second release liner 72, a third release liner 74, and a fourth release liner 76 are provided.
  • the first release liner 70 is disposed on the upper surface of the first resin layer 50 in the first region 10 of the wiring structure 1.
  • the second release liner 72 is disposed on the lower surface of the conductive portion 30 in the first region 10.
  • the third release liner 74 is disposed on the upper surface of the conductive portion 30 in the second region 12.
  • the fourth release liner 76 is disposed on the lower surface of the second resin layer 60 in the second region 12.
  • the wiring in the solar cell module is efficiently arranged by arranging the release liner so that it can be separated into the first region 10 and the second region 12 on each of the upper and lower surfaces of the wiring structure 1. Can be done well. This point will be described later.
  • the release liners 70, 72, 74, and 76 a polyester resin film whose one side has been subjected to a release treatment is used.
  • the wiring structure 1 and the wiring structure 2 with a release liner as described above can be manufactured, for example, by the following method.
  • the conductive part 30 for example, a plurality of conductive lines 40
  • the 1st resin layer 50 and the 2nd resin layer 60 by which one side was protected by the release liner are prepared, respectively.
  • the exposed surface (for example, the surface opposite to the surface protected by the first release liner 70) of the first resin layer 50 is fixed (for example, bonded) to a part of the conductive portion 30 (the portion that becomes the first region 10).
  • the exposed surface of the second resin layer 60 (for example, the surface opposite to the surface protected by the fourth release liner 76) is fixed to the other part of the conductive portion 30 (the portion that becomes the second region 12) ( For example, bonding).
  • the second resin layer 60 is fixed to the surface of the conductive part 30 opposite to the side on which the first resin layer 50 is fixed.
  • the second release liner 72 is bonded to the exposed surface of the first resin layer 50 in the portion that becomes the first region 10 and the conductive portion 30, and the exposed surface of the second resin layer 60 in the portion that becomes the second region.
  • a third release liner 74 is bonded to the conductive portion 30. In this way, the wiring structure 1 and the wiring structure 2 with the release liner are manufactured.
  • the timing of molding (processing into a predetermined shape) of the first resin layer 50 and the second resin layer 60 is not particularly limited, and the first resin layer 50 and the second resin layer 60 processed into a predetermined shape are prepared in advance.
  • the first resin layer 50 and the second resin layer 60 may be fixed to the conductive portion 30, and then the first resin layer 50 and the second resin layer 60 may be formed in a predetermined shape. It is also possible to cut to size.
  • the long first resin layer 50 and the long second resin layer 60 are arranged in parallel (and horizontally, for example) at a predetermined interval, and the first resin layer 50 and the second resin layer 50 are arranged in parallel.
  • the conductive portion 30 typically the conductive wire 40
  • the wiring structure 1 can be produced.
  • the upper surface of the first resin layer 50 and the lower surface of the second resin layer 60 may typically be in a form protected by a release liner, respectively.
  • the first resin layer 50 and the second resin layer 60 have a step (insertion space) when viewed from the side from the viewpoint of ease of insertion of the conductive portion 30. It is preferable to arrange in such a manner. For example, a roll of a long first resin layer 50 whose one surface is covered with a release liner and a roll of a long second resin layer 60 whose one surface is covered with a release liner are arranged side by side.
  • the wiring structure 1 is continuously produced by arranging, drawing out the first resin layer 50 and the second resin layer 60 in parallel, sequentially inserting the conductive portions 30 therebetween, and cutting them at predetermined intervals. can do.
  • the conductive portion 30 is inserted into a predetermined position with respect to the first resin layer 50 and the second resin layer 60 and then appropriately By pressing at a proper timing, the conductive portion 30 can be satisfactorily fixed to the first resin layer 50 and the second resin layer 60.
  • FIG. 4 is an explanatory diagram of a solar cell module wiring method according to the first embodiment
  • FIG. 5 is a cross-sectional view schematically showing main parts of the solar cell module according to the first embodiment.
  • the solar cell 110 a is disposed below the first region 10 of the wiring structure 1, and the solar cell 110 b is disposed above the second region 12.
  • a release liner for example, a second release liner
  • the release liner is peeled off from the lower surface of the first region 10 and the solar cell is formed on the conductive portion 30 of the first region 10.
  • the front surface of the cell 110a is brought into contact.
  • the release liner is peeled off from the upper surface of the second region 12 to form the conductive portion 30 in the second region 12.
  • the back surface of the solar battery cell 110b is brought into contact.
  • the upper surface of the solar battery cell 110 a and the lower surface of the solar battery cell 110 b are electrically connected by the conductive portion 30 of the wiring structure 1.
  • region 12 of another wiring structure 1 is made to contact
  • the vertical wiring of the plurality of solar cells 110a, 110b, 110c and 110d as shown in FIG. 5 is completed.
  • the conduction by the contact does not require joining by an adhesive means such as solder.
  • the upper and lower wirings of the two solar cells are realized only by arranging the wiring structure therebetween, the wiring workability is excellent.
  • the contact state of the conductive portion to the solar battery cell having the above configuration has a high degree of freedom compared to a fixing method such as solder bonding, and thus has excellent impact resistance.
  • the conductive portion 30 partially disposed in the first region 10 and the second region 12. It adheres to the solar cells 110a and 110b through (specifically, the conductive wire 40). Therefore, a separate bonding means such as a conductive adhesive is not necessary, and the wiring workability is excellent also in this respect.
  • the solar cell group (wiring solar cell group) 120 to which the wiring structure 1 is attached as described above is sandwiched between two sheet-like sealing resins 150, and the surface covering member 160 and By disposing the back surface covering member 170, the solar cell module 100 in which a plurality of solar cells 110a, 110b, 110c, and 110d are built in a state where they are conducted is constructed.
  • the two sheet-like sealing resins 150 are sandwiched between the front surface covering member 160 and the back surface covering member 170, and after being attached with a frame (not shown), they are integrated by heat curing and shown in FIG. The sealing resin 150 is obtained.
  • the sealing resin 150 is provided between the front surface covering member 160 constituting the front (front) surface of the solar cell module 100 and the rear surface covering member 170 constituting the back surface.
  • the solar cell group (wiring solar cell group) 120 to which the wiring structure 1 is attached is housed in a state covered with the solar cell.
  • crystalline Si cells (approximately 15.5 cm ⁇ 15.5 cm) are used as the solar cells 110a, 110b, 110c, and 110d, and an ethylene-vinyl acetate copolymer (EVA) is used as the sealing resin 150.
  • EVA ethylene-vinyl acetate copolymer
  • a glass plate having a thickness of 3.2 mm is used as the surface covering member 160, and a commercially available back sheet is used as the back surface covering member 170.
  • the solar cell module 100 includes a plurality of solar cells including the solar cells 110a, 110b, 110c, and 110d, a sealing resin 150 that covers (surrounds) the solar cells, and a sealing resin.
  • the front surface covering member 160 and the back surface covering member 170 are disposed so as to sandwich the surface 150.
  • a plurality of solar cells including the solar cells 110a, 110b, 110c, and 110d are arranged in a straight line at a predetermined interval to constitute a solar cell group.
  • n-type electrode front electrode is partially formed on the upper surface (front surface) of solar cells 110a, 110b, 110c, and 110d, and a p-type electrode (rear surface) is formed on the lower surface (back surface). Electrode).
  • the upper and lower sides of the solar battery cell in this specification correspond to the front and back of the solar battery cell, and thus correspond to the front and back (upper and lower) of the solar battery module.
  • the surface of the solar cell module is a light incident surface.
  • the top and bottom may not necessarily be strictly up and down, so the top and bottom of the solar cells are not limited to exact top and bottom, and are understood to indicate relative positional relationships.
  • the solar cell group two adjacent solar cells (for example, the solar cell 110a and the solar cell 110b) are electrically connected by one conductive portion 30.
  • the conductive portion 30 is extended from the upper surface of the solar battery cell 110a to the lower surface of the solar battery cell 110b. More specifically, one conductive portion 30 is disposed on the upper surface of the solar battery cell 110a above the solar battery group, and passes through the space between the solar battery cell 110a and the solar battery cell 110b. It moves below the solar cell group and is disposed on the lower surface of the solar cell 110b.
  • the conductive portion 30 extends from the end of the solar cell 110a (the end opposite to the solar cell 110b side) to the end of the solar cell 110b (the end opposite to the solar cell 110a side), It contacts (specifically, contacts) the upper surface of the solar battery cell 110a and the lower surface of the solar battery cell 110b.
  • the electroconductive part 30 is one member and continues from the upper surface of the solar cell 110a to the lower surface of the solar cell 110b, the connection reliability is high and the durability is also excellent.
  • one conductive portion 30 is composed of a plurality of conductive wires 40 extending from the upper surface of the solar battery cell 110a to the lower surface of the solar battery cell 110b as described above.
  • the plurality of conductive lines 40 extend along the arrangement direction of the solar cells 110a and 110b, and are arranged at intervals. These conductive wires 40 are arranged in a straight line so as to be parallel to each other.
  • substantially both ends of the solar cells 110a and 110b ends of the solar cells 110a (solar cells) 110b (the end opposite to the 110b side)) to the end of the solar battery cell 110b (the end opposite to the solar battery 110a side).
  • the first resin layer 50 is disposed above the solar cell group. Specifically, one first resin layer 50 is disposed only above one solar battery cell 110a and is not disposed above another solar battery cell (for example, solar battery cell 110b). Different first resin layers 50 are disposed above other solar cells (for example, solar cells 110b). Moreover, the 1st resin layer 50 is arrange
  • the first resin layer 50 has substantially the same shape and size as the solar battery cell 110a, and does not protrude from the upper surface of the solar battery cell 110a.
  • the first resin layer 50 of this embodiment has a substantially square shape (specifically, a substantially square shape having a size of approximately 15.5 cm ⁇ 15.5 cm).
  • the first resin layer 50 is a transparent resin layer, and at least the surface on the solar cell side has adhesiveness.
  • the first resin layer 50 in this embodiment is a transparent pressure-sensitive adhesive layer.
  • the first resin layer 50 is in contact with the upper surface of the solar battery cell 110 a from above the conductive part 30 in the non-existing region of the conductive part 30.
  • the first resin layer 50 is bonded to the upper surface of the solar battery cell 110 a through the conductive portion 30 from the space between the plurality of conductive wires 40 as the conductive portion 30. That is, the lower surface (surface on the solar cell side) of the first resin layer 50 is bonded to the conductive portion 30 (specifically, the plurality of conductive wires 40) and is not bonded to the conductive portion 30. It adheres to the upper surface of the solar battery cell 110a.
  • the conductive portion 30 is reliably and stably brought into contact (specifically, contacted) with the upper surface of the solar battery cell 110a.
  • the second resin layer 60 is disposed below the solar cell group in the solar cell module 100. Specifically, one second resin layer 60 is disposed only below one solar battery cell 110b, and is disposed below other solar battery cells (for example, solar battery cells 110a and 110c). Absent. Different second resin layers 60 are arranged below other solar cells (for example, solar cells 110a and 110c). Moreover, the 2nd resin layer 60 is arrange
  • the second resin layer 60 has substantially the same shape and size as the solar battery cell 110b, and does not protrude from the lower surface of the solar battery cell 110b.
  • the second resin layer 60 of this embodiment has a substantially square shape (specifically, a substantially square shape having a size of approximately 15.5 cm ⁇ 15.5 cm).
  • the second resin layer 60 has at least a solar cell side surface having adhesiveness.
  • the second resin layer 60 is a transparent adhesive layer in this embodiment.
  • the second resin layer 60 is in contact with the lower surface of the solar battery cell 110 b from below the conductive part 30 in the non-existing region of the conductive part 30.
  • the second resin layer 60 is bonded to the lower surface of the solar battery cell 110 b through the conductive portion 30 from the space between the plurality of conductive wires 40 as the conductive portion 30. That is, the upper surface (surface on the solar cell side) of the second resin layer 60 is bonded to the conductive portion 30 (specifically, the plurality of conductive wires 40) and is not bonded to the conductive portion 30. It is bonded to the lower surface of the solar battery cell 110b.
  • the conductive portion 30 is reliably and stably brought into contact with the lower surface of the solar battery cell 110b.
  • the solar cell module 100 is the surface coating member 160 / sealing resin 150 / first resin layer 50 / conductive part (surface side conductive part) 30 / solar battery cell from upper direction.
  • 110a / conductive portion (back side conductive portion) 30 / second resin layer 60 / sealing resin 150 / back surface covering member 170 has a cross-sectional structure laminated in this order.
  • the solar cell module 100 is the surface coating member 160 / sealing resin 150 / first resin layer 50 / conductive part (surface side conductive part) 30 / solar battery cell from upper direction.
  • 110b / conductive portion (back side conductive portion) 30 / second resin layer 60 / sealing resin 150 / back surface covering member 170 has a cross-sectional structure laminated in this order.
  • the conductive part (front surface side conductive part) 30 disposed on the front surface side of the solar battery cell 110a and the conductive part (back surface side conductive part) 30 disposed on the back surface side of the solar battery cell 110a are separate members. is there.
  • the conductive part (front surface side conductive part) 30 disposed on the front surface side of the solar battery cell 110b and the conductive part (back surface side conductive part) 30 disposed on the back surface side of the solar battery cell 110b are also separated separate members. It is. However, the front surface side conductive portion 30 in the solar battery cell 110a and the back surface side conductive portion 30 in the solar battery cell 110b are one continuous member. Further, between the solar cells 110a and 110b, the solar cell module 100 has a surface covering member 160 / sealing resin 150 / conductive portion 30 / sealing resin 150 / back surface covering member 170 stacked in this order from above. Having a cross-sectional structure.
  • the solar cells 110a and 110b and the configuration relating to the electrical connection thereof have been described. Since the above configuration is repeated, a duplicate description is omitted.
  • the conductive part (more specifically, the conductive wire) disposed on the upper surface or the lower surface of the solar cells located at both ends of the solar cell group is not an electrical connection between the solar cells, but an extraction electrode (not shown) Connected to (terminal bar).
  • the solar cell module 100 having the above-described configuration can be preferably manufactured using the wiring structure 1, but is not limited thereto. They can also be produced by placing them at appropriate locations in the module.
  • the wiring connection reliability is high and excellent durability is realized as described above, but EVA is used as the sealing resin, and acrylic is used as the first and second resin layers.
  • a resin layer is employed, further advantages can be obtained.
  • the sealing resin has a composition that releases an acid or an alkali, the acid or alkali can corrode the solar battery cell, and the power generation efficiency of the solar battery module can be lowered over time.
  • EVA is used as the sealing resin
  • acetic acid is gradually released from the EVA to corrode the electrode on the surface of the solar battery cell, and the power generation efficiency may decrease with time.
  • the first or second resin layer is disposed between the EVA as the sealing resin and the solar battery cell, the acetic acid derived from EVA is converted into the solar battery by the interposition of this resin layer. Contact with the cell is prevented. As a result, the power generation efficiency of the solar cell module is favorably maintained over a long period.
  • the solar cell module having such a configuration can be more durable.
  • the solar cell module configured as described above does not require soldering for wiring, problems due to soldering (typically cell warpage or cracking, characteristic deterioration, flux contamination) are avoided. Is possible.
  • the solderless solar cell module not only can avoid the above-mentioned flux contamination, but can also solve problems such as leaching and cratering caused by solder joints.
  • the fact that the solder joint is not required brings an advantage to the structure of the solar battery cell.
  • an aluminum-containing electrode typically an electrode made of aluminum, typically an aluminum electrode
  • BSF Back Surface Field
  • an electrode (silver-containing electrode) containing silver, which is excellent in solder jointability, as a main component is usually disposed at a joint location with a metal wiring. That is, as the back electrode of the solar battery cell, an aluminum-containing electrode and a silver-containing electrode are usually used in combination.
  • the electrical connection on the back surface of the solar battery cell is realized simply by contacting the back surface electrode (aluminum-containing electrode) on the back surface with the conductive portion. Solder bonding is not necessary. Therefore, by adopting the technique disclosed herein, a solar battery module including a solar battery cell whose back electrode substantially does not contain silver can be realized. This configuration has significant advantages in cost reduction and productivity improvement.
  • FIG. 6 is an enlarged top view showing a part of the surface of the solar battery cell according to the second embodiment.
  • FIG. 7 is an enlarged exploded perspective view for explaining the positional relationship between the surface electrode and the conductive wire of the solar battery cell according to the second embodiment.
  • FIG. 8 is a diagram for explaining the arrangement relationship between the surface electrode and the conductive wire of the solar battery cell according to the second embodiment, and schematically showing the contact state between the conductive wire and the surface electrode. It is sectional drawing.
  • the solar cell module 200 has basically the same configuration as the first embodiment except that the pattern of the surface electrode 212 of the solar cell 210 is different. Therefore, about this embodiment, it demonstrates centering on the surface electrode 212 of the photovoltaic cell 210, and abbreviate
  • the solar cell 210 constituting the solar cell module 200 is provided with an electrode (surface electrode) 212 on the surface thereof.
  • the electrode 212 includes a plurality of first linear portions 214 extending linearly and a plurality of second linear portions 216 extending linearly so as to intersect the first linear portions 214.
  • the first linear portion 214 and the second linear portion 216 are both portions that extend linearly.
  • Each of the plurality of first linear portions 214 is spaced from the adjacent first linear portion 214. More specifically, each of the plurality of first linear portions 214 includes They are arranged in parallel at intervals.
  • each of the plurality of second linear portions 216 is spaced from the adjacent second linear portion 216, and more specifically, the plurality of second linear portions 216. Are arranged in parallel at intervals.
  • the first linear portion 214 and the second linear portion 216 are substantially orthogonal.
  • the electrode 212 has a lattice pattern in which the first linear portion 214 forms a horizontal line and the second linear portion 216 forms a vertical line when viewed from above in FIG.
  • a conductive wire 240 is disposed on each of the plurality of first linear portions 214.
  • the conductive wire 240 is a conductive member extending in a line extending from the upper surface of the solar battery cell 210 to the lower surface of a solar battery cell (not shown) located adjacent to the solar battery cell 210. Between the upper and lower wiring (electrical connection) is made. This point is as described above.
  • the conductive line 240 overlaps the first linear portion 214 so that the longitudinal direction thereof coincides with the longitudinal direction of the first linear portion 214, whereby the electrode 212 and the conductive line 240 are linearly formed. Abuts continuously. It can be said that the first linear portion 214 is a conductive wire contact portion. Further, the width of the first linear portion 214 is smaller than the width of the conductive line 240. Therefore, the conductive wire 240 covers the first linear portion 214 on the surface of the solar battery cell 210.
  • the width of the first linear portion 214 is approximately 40 to 80 ⁇ m, and the width of the conductive wire 240 is approximately 0.8 mm, but is not limited thereto.
  • the ratio (Wc / W1) of the width Wc of the conductive wire 240 to the width W1 of the first linear portion 214 is preferably larger than 1, more preferably 2 or more, from the viewpoint of reducing shadow loss and electrode material. More preferably 5 or more (for example, 8 or more, typically 10 or more).
  • the ratio (Wc / W1) is preferably 160 or less, more preferably 50 or less, and even more preferably 30 or less (for example, 15 Hereinafter, typically 12 or less).
  • the specific value of the width W1 of the first linear portion 214 is preferably 1 mm or less, more preferably 800 ⁇ m or less, and even more preferably 500 ⁇ m or less (for example, 300 ⁇ m or less).
  • the width W1 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more (typically 30 ⁇ m or more, for example, 40 ⁇ m or more).
  • the ratio (W1 max / W1 min ) of the minimum value W1 min and the maximum value W1 max of the width W1 of the first linear portion 214 is preferably 200 or less, more preferably. Is set to 100 or less, more preferably 50 or less. In a preferred embodiment, the ratio (W1 max / W1 min ) is 20 or less, more preferably 10 or less, still more preferably 2 or less (for example, 1.5 or less, typically 1.2 or less).
  • the first linear portion 214 formed in a straight line having a substantially constant width is easy to be formed by various methods (for example, a screen printing method), and disconnection at the minimum width portion is less likely to occur. Can be reliable.
  • the lower limit of the ratio (W1 max / W1 min ) is 1 in principle.
  • the width of the second linear portion 216 it is preferable that the relationship between the minimum value and the maximum value of the width in the first linear portion 214 is satisfied from the same viewpoint.
  • the film thickness (height) T1 of the first linear portion 214 is an aspect ratio (T1 / W1) represented by the ratio between the film thickness T1 of the first linear portion 214 and the width W1 from the viewpoint of direct resistance reduction. ) Is preferably 1/200 or more, more preferably 1/100 or more. In a preferred embodiment, the aspect ratio (T1 / W1) is 1/50 or more, more preferably 1/10 or more (typically 1/5 or more, for example, 1/3 or more). Further, from the viewpoint of electrode formability, the aspect ratio (T1 / W1) may be less than 2 (for example, less than 1, typically 1/2 or less).
  • the film thickness T1 of the first linear portion 214 can be adjusted by selecting an electrode forming method, overcoating (typically, the number of printings), and the like.
  • the distance between the first linear portions 214 and the distance between the conductive lines 240 are both about 2 cm, but are not limited thereto.
  • the interval between the first linear portions 214 is basically the same as the interval between the conductive lines 240, and the number thereof is the same as the number of the conductive lines 240.
  • the plurality of first linear portions 214 and the plurality of conductive lines 240 may be set so that the corresponding ones overlap each other. Thereby, conduction reliability and current collection efficiency are improved.
  • the interval between the first linear portions 214 is preferably 0.1 cm or more, more preferably 0.8 cm or more, and further preferably 1.5 cm or more.
  • the interval is suitably less than 6 cm, preferably less than 4.0 cm, more preferably less than 3.0 cm, and even more preferably 2.8 cm or less.
  • interval is a pitch and points out the distance between the centerlines in the width direction of the 1st linear part 214. FIG. The same applies to the interval between second linear portions described later.
  • the width of the second linear portion 216 is about 40 to 80 ⁇ m as in the case of the first linear portion 214, but is not limited to this.
  • the ratio (W1 / W2) between the width W1 of the first linear portion 214 and the width W2 of the second linear portion 216 is preferably about 0.1 or more, more preferably 0, from the viewpoint of electrode formability. .15 or more, more preferably 0.2 or more (for example, 0.25 or more, typically 0.5 or more), and from the same viewpoint, preferably about 10 or less, more preferably 6 or less, still more preferably Is 5 or less (for example, 4 or less, typically 2 or less).
  • the ratio (W1 / W2) is from the viewpoint of forming a highly accurate electrode with high productivity.
  • a range of 0.8 to 1.2 is particularly preferable.
  • the specific value of the width W2 of the second linear portion 216 is preferably 1 mm or less, more preferably 800 ⁇ m or less, and even more preferably 500 ⁇ m or less (for example, 300 ⁇ m or less) from the viewpoint of reducing shadow loss. From the viewpoint of preventing disconnection and reducing series resistance, the width W2 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more (typically 30 ⁇ m or more, for example, 40 ⁇ m or more).
  • the interval (pitch) between the second linear portions 216 is in the range of about 1.3 to 2.2 mm, but the interval is not limited to the current collection efficiency ( What is necessary is just to set suitably in consideration of a shadow loss and the short circuit current (Jsc), and it is not limited to said value.
  • the interval between the second linear portions 216 is approximately 0.1 mm or more (for example, 0.5 mm or more, typically 1 mm or more) from the viewpoint of reducing shadow loss. From the viewpoint of short circuit current (Jsc) reduction and reliability, it is about 10 mm or less (for example, 5 mm or less, typically 3 mm or less).
  • the film thickness (height) T2 of the second linear portion 216 is also the film thickness T2 of the second linear portion 216 from the viewpoint of direct resistance reduction.
  • the aspect ratio (T2 / W2) represented by the ratio of the width W2 is preferably 1/200 or more, more preferably 1/100 or more.
  • the aspect ratio (T2 / W2) is 1/50 or more, more preferably 1/10 or more (typically 1/5 or more, for example, 1/3 or more).
  • the aspect ratio (T2 / W2) may be less than 2 (for example, less than 1, typically 1 ⁇ 2 or less).
  • the film thickness T2 of the second linear portion 216 can be adjusted by selecting an electrode formation method, overcoating (typically, the number of printings), and the like.
  • the film thickness T1 of the first linear portion 214 and the film thickness T2 of the second linear portion 216 are such that their ratio (T1 / T2) is from the viewpoint of electrode formation and contact with the conductive wire 240. It is appropriate to set it to 2 or less (for example, 1.5 or less, typically 1.2 or less). In a preferred embodiment, the above (T1 / T2) is approximately 1. In other words, it is preferable that the upper surface of the first linear portion 214 and the upper surface of the second linear portion 216 are formed substantially flush with each other. Such an electrode 212 tends to obtain a contact area with the conductive wire 240 and tends to have excellent conduction reliability.
  • the above (T1 / T2) from the viewpoint of conduction reliability with the conductive wire 240 is preferably larger than 1 (for example, 1.1 or more, further 1.2 or more).
  • the electrode 212 as described above can be formed using a conventionally known method, and the formation method is not particularly limited. For example, using a screen printing method, a stencil printing method, a dispenser method (inkjet method), a plating method, etc., the electrode forming material is formed on the surface of the solar cell substrate (more specifically, on the surface of the solar cell substrate). It is possible to form the electrode 212 having the pattern as in the above embodiment by applying to the surface of the antireflection film. Of these, screen printing is preferable. As a screen printing plate, a mesh plate is preferably used. When screen printing is employed, any of multiple printing such as single printing, dual printing, and double printing may be employed.
  • the electrode 212 can be formed with high accuracy by a single operation by single printing. This is advantageous in that the labor of alignment required for printing a plurality of times can be omitted and the material loss can be reduced.
  • dual printing or double printing is preferable.
  • double printing is suitable for increasing the film thickness of the first linear portion 214 and the second linear portion 216 for the purpose of improving the current collection efficiency.
  • the second linear portion 216 In the case of adopting dual printing, it is preferable to print the second linear portion 216 first and then print the first linear portion 214 from the viewpoint of improving current collection efficiency and conduction reliability.
  • the electrode 212 formed on the antireflection film is then electrically connected to the cell substrate by fire-through during firing.
  • the electrode forming material includes a conductive component such as metal (for example, silver, copper, aluminum, etc.) as a main component (a component having the highest blending ratio. For example, a component that can be contained by 70% by weight or more based on solid content. Is included.
  • a conductive component such as metal (for example, silver, copper, aluminum, etc.) as a main component (a component having the highest blending ratio.
  • Preferable examples include conductive paste containing a metal powder such as silver or aluminum as a main component, and metal plating such as copper.
  • a conductive powder is used as a main component.
  • a conductive paste containing an inorganic material such as glass frit or an organic vehicle is preferably used.
  • the conductive powder include metal powders such as silver and aluminum.
  • Preferred examples of the glass frit include, but are not limited to, PbO.
  • a binder and an organic solvent are used.
  • the binder include cellulosic resins (methylcellulose, ethylcellulose, nitrocellulose, etc.), acrylic resins, and alkyd resins.
  • the organic solvent various organic solvents such as texanol and xylene can be used without limitation. By adding and mixing these components so as to have desired conductivity and viscosity, a conductive paste is produced. In addition, the conductive paste may contain various additives known or commonly used in this field as necessary.
  • the configuration of the upper surface (front surface) of the solar battery cell 210 has been described above, but the technology disclosed herein can also be applied to the lower surface (back surface) of the solar battery cell 210.
  • Such a configuration is preferably applied to, for example, a double-sided light receiving solar cell.
  • the details in that case are basically the same as those of the upper surface of the solar battery cell 210, and therefore, redundant description is omitted here.
  • the lower surface (back surface) of the solar battery cell 210 is not limited to the above configuration, and can be the same as a conventionally known configuration.
  • the structure which provided the electrode for example, combined use of an aluminum containing electrode and a silver containing electrode
  • a configuration including only an aluminum-containing electrode without using a silver-containing electrode as a back electrode is used. Is also possible.
  • the conductive portion is not limited to the shape, structure, and the like of the above embodiment.
  • various shapes, structures, and the like that can realize electrical connection of solar cells using a conductive portion can be employed.
  • the conductive portion of the above embodiment is a plurality of conductive lines that extend linearly and are arranged in parallel to each other, but the conductive lines may extend in a curved shape. In the case of having a plurality of conductive lines, the plurality of conductive lines may be separated from each other, connected, or non-parallel to each other (for example, may be crossed or non-parallel so as not to contact each other). ).
  • the conductive portion is composed of conductive lines, the number of conductive lines in the wiring structure is 2 or more (typically 2 to 20, more preferably 4 to 12, more preferably 6 to 10). It is preferable, or it may be one.
  • the conductive portion in the second region is disposed on the back surface side of the solar battery cell, it may not have a thin line shape such as a conductive wire. You may have.
  • the conductive portion of the first region located on the front (front) surface side of one solar cell is defined as a conductive wire (for example, copper wire), and the first region located on the back surface side of the other solar cell.
  • the conductive portion in the two regions may be a conductive sheet having substantially the same shape as the second region (for example, a metal sheet such as a rectangular copper foil).
  • the conductive portion has a shape in which a stripe-shaped portion made of a conductive line and a quadrangular portion are continuous.
  • the 1st resin layer and the 2nd resin layer had the square shape of substantially the same shape as a photovoltaic cell, it is not limited to this, The shape of a photovoltaic cell, etc. Various shapes can be taken.
  • the first resin layer and the second resin layer may be made of the same material (same composition) or may be made of different materials (having different compositions).
  • the solar battery cell is a single-sided light receiving type
  • only the first resin layer is a transparent resin layer (preferably has a total light transmittance greater than or equal to a predetermined value described later), and the second resin layer is transparent.
  • the non-transparent resin layer which does not have may be sufficient.
  • the second resin layer specifically has a total light transmittance described below of less than 70% (for example, less than 50%, typically less than 30%). Therefore, the first resin layer and the second resin layer may have different total light transmittance. Or when a photovoltaic cell is a double-sided light reception type, it is preferable that both the 1st resin layer and the 2nd resin layer are transparent resin layers, and it is more preferable to have the total light transmittance more than the predetermined mentioned later. In addition, when the electroconductive part in a 2nd area
  • the first linear portion is By disposing the conductive line on the first linear part, the desired effect (improvement of current collection efficiency and conduction reliability) is realized Is done. Therefore, the configuration of the electrodes provided on the surface of the solar battery cell is not particularly limited as long as it is.
  • the shape, the arrangement relationship, and the number of the first linear portion are the same shape, arrangement relationship, and number as the conductive wire. can do.
  • the first linear portion may extend in a curved shape, and the plurality of first linear portions may be separated from each other, connected, or non-parallel to each other. (For example, non-parallel so as not to contact each other).
  • the first linear portion may have a shape extending in a curved shape while being bent regularly or irregularly on the surface of the solar battery cell.
  • the aspect in which a some 1st linear part exhibits a wavy stripe pattern may be sufficient.
  • the shape extending in a curved shape include curved wave shapes such as a sine wave, pseudo sine wave, and arc wave, and non-curved shapes such as a zigzag shape and a triangular wave.
  • the number of the first linear portions on the solar battery cell is 2 or more (typically 2 to 20, more preferably 4 to 12, more preferably 6 to 6) corresponding to the number of conductive wires. 10).
  • the width of the first linear portion may be thicker than the width of the conductive line overlapping therewith.
  • the intersection angle between the first linear portion and the second linear portion is:
  • the angle is not limited to the right angle as in the second embodiment, and a desired angle can be adopted in consideration of current collection efficiency and the like.
  • the first linear portion and the second linear portion usually intersect so that the acute angle side is 45 ° or more (typically 70 ° or more and 90 ° or less).
  • the surface electrode of a photovoltaic cell has a 1st linear part, the width
  • the portion that intersects the second linear portion may be configured to have a large width (for example, a dot shape larger than the other portions), and the width of the first linear portion is regular or irregular. It may change to. For example, the width may gradually or suddenly become thicker or thinner.
  • one of the first linear portions may be partially divided into two, for example, by providing an electrode non-forming portion in a part thereof. As described above, when the width of the first linear portion is not constant, the average value of the widths at a plurality of arbitrary positions is adopted as the width value of the first linear portion.
  • the second linear portion can be configured as described above.
  • the solar cells arranged in one solar cell module are usually 5 or more (for example, 10 or more, typically 30 or more), and typically 50 or more (50 to 70).
  • the number of wiring structures per row composed of a plurality of solar cells is basically a number obtained by subtracting 1 from the number of solar cells.
  • conductive portions connected to extraction electrodes (terminal bars) (not shown) can be arranged on the front surface or the back surface.
  • the several photovoltaic cell was comprised as a photovoltaic cell group arranged in a line
  • positioning) of a several photovoltaic cell is not limited to this, A linear form, a curve It may be a pattern, a regular pattern, or an irregular pattern.
  • interval of a photovoltaic cell does not need to be constant.
  • the conductive portion, the first resin layer, and the second resin layer that constitute the wiring structure are not limited to those of the above-described embodiment, and various modifications can be made within a range in which the effects of the invention are exhibited. The same applies to the components of the solar cell module.
  • each element which comprises a wiring structure and a solar cell module is demonstrated.
  • the conductive portion typically includes a conductive material.
  • a metal material such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, zinc, or an alloy thereof can be preferably used.
  • silver, copper, aluminum, and iron are more preferable, and copper and aluminum are more preferable.
  • Conductive paths composed essentially of metal have the advantage of lower resistance.
  • the metal wire those having a tensile strength measured according to JIS Z 2241: 2011 of 200 N / mm 2 or more are preferably used from the viewpoint of strength, handling property, and the like.
  • a copper metal wire is preferably used.
  • coated part using a copper metal wire as a core material is more preferable.
  • the film thickness (for example, plating thickness) of the covering portion may be about 10 ⁇ m or less (for example, 5 ⁇ m or less, and further, for example, 3 ⁇ m or less).
  • the film thickness is suitably about 0.1 ⁇ m or more (for example, 0.5 ⁇ m or more). From the viewpoint of improving the diffuse reflectance, it is preferably 1.0 ⁇ m or more, more preferably 1.5 ⁇ m or more (for example, 2 ⁇ m). Further, for example, 3 ⁇ m or more).
  • a method for forming the covering portion a conventionally known method such as a clad method can be adopted in addition to the above-described plating method.
  • a conductive wire typically a metal wire subjected to rust prevention treatment is preferably used as the conductive portion.
  • the part located in the second region of the conductive part may be a conductive sheet.
  • the conductive sheet is typically a metal sheet (for example, a metal foil).
  • a metal sheet for example, a metal foil.
  • the metal sheet what gave at least 1 sort (s) of surface treatment of a roughening process, a rust prevention process, and an adhesive improvement process is used preferably.
  • Suitable examples of the metal sheet include copper foil (in particular, electrolytic copper foil).
  • the conductive part in the first region is a conductive line and the conductive part in the second region is a conductive sheet
  • the conductive part is produced by fixing the conductive line and the conductive sheet.
  • a method for fixing the conductive wire and the conductive sheet it is preferable to employ welding.
  • welding method conventionally known various types of welding can be employed. For example, arc welding, resistance welding, laser beam welding, electron beam welding, and ultrasonic welding are preferably employed. Or it is also possible to employ
  • the conductive part may be formed from a patterned metal sheet.
  • a conductive part can be formed by etching a metal sheet.
  • a resist is attached to the surface of a metal sheet (typically a metal foil), and a predetermined resist pattern is formed by applying a photolithography technique.
  • the metal sheet is patterned using a known or conventional etching solution. In this way, the conductive portion is formed.
  • a similar configuration can be obtained by various vapor deposition methods.
  • the conductive portion may be formed, for example, by applying a conductive paste as a conductive material.
  • a conductive paste conductive components made of metal materials such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, and alloys thereof, and conductive components made of non-metals such as carbon (hereinafter referred to as “conductive paste”) The same)) and a resin component such as polyester or epoxy resin can be used in a suitable solvent.
  • conductive paste conductive components made of metal materials such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, and alloys thereof, and conductive components made of non-metals such as carbon
  • a resin component such as polyester or epoxy resin
  • the conductive paste examples include silver paste (trade name “Pertron K-3105”, manufactured by Pernox, conductive component: Ag, resin component: polyester resin, specific resistance: 6.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm) Is mentioned.
  • the specific resistance of the conductive paste at 25 ° C. is about 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less (for example, 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, typically 5.0 ⁇ 10 ⁇ 7 ⁇ ⁇ m or less). Preferably there is.
  • the specific resistance of the conductive component constituting the conductive paste is preferably 5.0 ⁇ 10 ⁇ 7 ⁇ ⁇ m or less.
  • the conductive portion can be formed by applying a conductive paste to the surface of a resin layer, a peelable support or the like using a known dispenser.
  • the surface of the conductive portion (at least the surface on the solar cell module incident surface side.
  • the surface layer portion for example, the portion having a depth of 1 ⁇ m or less from the surface of the conductive portion, the same applies hereinafter) is made of silver.
  • a metal material for example, copper wire
  • the surface of the conductive part is made of silver
  • the purity of silver on the surface is not particularly limited, and is suitably about 95% by weight (for example, 99% by weight or more). It is.
  • the silver purity is preferably 99.7% by weight or more, more preferably 99.9% by weight or more.
  • the concentration of the additive component (component other than silver, such as selenium and antimony) on the surface of the conductive portion is preferably about 0.3% by weight or less (preferably 0.1% by weight or less).
  • the purity of silver and the concentration of components other than silver can be measured using an inductively coupled plasma mass spectrometer (ICP-MS) and an inductively coupled plasma emission spectrometer (ICP-AES). The same method can be adopted in the embodiments described later.
  • the conductive portion is formed by hot-melt coating a metal material (typically an alloy) having a low melting point (for example, a melting point of 300 ° C. or lower, preferably 250 ° C. or lower).
  • a low melting point alloy for example, “SnBi solder” manufactured by Arakawa Chemical Industry Co., Ltd.), 139 ° C.
  • the same configuration as described above can be obtained by employing various printing methods such as screen printing.
  • the arithmetic average roughness (Ra) of the surface of the conductive part is preferably 60 nm or more. This tends to increase the diffuse reflectance and improve the power generation efficiency.
  • the Ra is more preferably 70 nm or more, further preferably 80 nm or more (for example, 110 nm or more, further for example, 140 nm or more), and particularly preferably 200 nm or more (for example, 220 nm or more, further, for example, 250 nm or more).
  • the surface of the conductive portion is composed of silver (typically a silver plating layer), the purity thereof is 99.7% by weight or more (preferably 99.9% by weight or more), and the film thickness of silver
  • the diffuse reflectance can be significantly improved.
  • the Ra can be adjusted by selecting a metal material type on the surface of the conductive portion, roughening using an embossing roll, or surface treatment such as etching.
  • the above Ra is measured by the following method.
  • a shape profile is measured for the surface of the conductive portion using an optical interference type shape measuring device.
  • the measurement range is about 600 ⁇ m ⁇ 450 ⁇ m.
  • an optical interference type shape measuring device manufactured by Veeco, model “Wyko NT9100” or its equivalent may be used.
  • Ra of the surface of the conductive portion is calculated.
  • Ra is calculated by the above method for any three of the conductive parts, and the value obtained by arithmetically averaging them is defined as Ra on the surface of the conductive part. It is preferable to adopt. In the examples described later, the same method is used.
  • the surface of the conductive part preferably exhibits a diffuse reflectance of about 60% or more.
  • the diffuse reflectance refers to the diffuse reflectance with respect to light having a wavelength of 550 nm (the ratio (%) of diffuse reflection with respect to incident light).
  • the diffuse reflectance is more preferably 80% or more, further preferably 85% or more, particularly preferably 87% or more, and particularly preferably 90% or more.
  • the ratio of diffuse reflection to the total reflection on the surface of the conductive portion is preferably about 80% or more.
  • the diffuse reflection ratio refers to the ratio (%) of diffuse reflection in total reflection (the sum of regular reflection (also referred to as specular reflection) and diffuse reflection) with respect to light having a wavelength of 550 nm.
  • the diffuse reflection ratio is more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more.
  • the above diffuse reflectance and diffuse reflectance ratio can be measured using a commercially available spectrophotometer.
  • a commercially available spectrophotometer For example, an integrating sphere unit manufactured by JASCO (for example, product name “ISV-722”), a spectrophotometer manufactured by the same (for example, product name “V-660”), and a standard white plate manufactured by Labsphere (for example, Spectralon ( (Registered trademark) 6916-H422A).
  • the measurement is performed on the portion of the conductive portion that is the surface on the light incident surface side of the solar cell module.
  • the irradiation area of the electroconductive part for example, conductive wire
  • the ratio of the height (H) to the width (W) (H / W) in the cross section orthogonal to the longitudinal direction of the conductive portion (typically conductive wire) is set to be 1 ⁇ 2 or less. preferable. Thereby, excellent performance can be exhibited.
  • the ratio (H / W) is preferably about 1/3 or less from the viewpoint of wiring workability and connection reliability, and preferably 1/5 or more (for example, 1/4 or more) from the viewpoint of power generation efficiency. It is.
  • the conductive wire has a rectangular shape in a cross section orthogonal to the longitudinal direction. Thereby, almost the whole area of one surface of the conductive wire can be in surface contact with the surface of the solar battery cell.
  • the rectangular shape may be chamfered at each corner.
  • the cross-sectional shape of the conductive wire is not limited to this, and may be a circular shape, an elliptical shape, a semicircular shape, a trapezoidal shape, a triangular shape, or the like. From the viewpoint of the contact area with the solar battery cell, it is preferable that the conductive portion (typically conductive wire) has a flat portion (typically a surface) in contact with the solar battery cell.
  • the width of the conductive line is preferably 0.03 mm or more from the viewpoint of reduction of current collection loss, strength, handling properties, and workability. More preferably, it is 0.1 mm or more, More preferably, it is 0.2 mm or more.
  • the width is preferably 1.5 mm or less, more preferably 1.2 mm or less, and further preferably 1.0 mm or less from the viewpoint of reducing shadow loss.
  • variety points out the length (width) orthogonal to the longitudinal direction of a conductive wire.
  • the distance between the conductive lines is preferably 0.1 cm or more, more preferably 0.8 cm or more, from the viewpoint of reducing shadow loss. More preferably 1.5 cm or more.
  • the distance is preferably less than 4.0 cm, more preferably less than 3.0 cm, and even more preferably 2.8 cm or less (for example, 2.5 cm or less) from the viewpoint of reducing current collection loss.
  • interval is a pitch and points out the distance between the centerlines in the width direction of a conductive wire.
  • the thickness (height) of the conductive portion is 0.01 to 1 mm (for example, 0.02 to 0.5 mm, typically 0.05 to 0.00 mm) from the viewpoints of conductivity, strength, handling properties, and workability. 3 mm) or so is preferable.
  • the thickness of the conductive wire is also preferably selected from the same range.
  • the first resin layer and the second resin layer (hereinafter collectively referred to as “resin layer”) disclosed herein can function as layers that favorably maintain the contact state between the solar battery cell and the conductive portion.
  • the resin layer is preferably a layer that exhibits the properties of an elastic body or a viscoelastic body in a temperature range near room temperature.
  • the viscoelastic body referred to here is a material having both properties of viscosity and elasticity, that is, a material having a property that satisfies the phase of the complex elastic modulus exceeding 0 and less than ⁇ / 2 (typically at 25 ° C. A material having the above properties).
  • the resin layer is preferably insulative.
  • the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%, 150 ° C.) of the resin layer disclosed herein is preferably 5,000 Pa or more.
  • the resin layer more preferably satisfies tan ⁇ described later in addition to the storage elastic modulus G ′.
  • the 150 ° C. storage elastic modulus G ′ is more preferably 10,000 Pa or more, further preferably 20,000 Pa or more, particularly preferably 25,000 Pa or more (for example, 50,000 Pa or more, typically 80,000 Pa or more). is there.
  • the 150 ° C. storage elastic modulus G ′ is usually 1,000,000 Pa or less, preferably 500,000 Pa or less, more preferably 200,000 Pa or less (for example, 150,000 Pa or less, typically 100,000 or less). 000 Pa or less).
  • the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%) of the resin layer is preferably in the range of 5,000 Pa to 1,000,000 Pa in the temperature range of 80 ° C. to 150 ° C. That the change in the storage elastic modulus G ′ in the high temperature range is within a predetermined range may mean that the physical properties of the resin layer are not easily affected by the temperature change.
  • the storage elastic modulus G ′ of the resin layer in the temperature range of 80 ° C. to 150 ° C. is more preferably 5,000 Pa to 500,000 Pa, still more preferably 5,000 Pa to 200,000 Pa (for example, 10,000 Pa to 100,000 Pa). Is within the range.
  • the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%) of the resin layer is preferably in the range of 5,000 Pa to 10,000,000 Pa in the temperature range of 30 ° C. to 150 ° C.
  • the change in the storage elastic modulus G ′ within the wide temperature range as described above being within a predetermined range may mean that the physical properties of the resin layer are not easily affected by the temperature change.
  • the storage elastic modulus G ′ of the resin layer in the temperature range of 30 ° C. to 150 ° C. is more preferably 5,000 Pa to 1,000,000 Pa, still more preferably 5,000 Pa to 500,000 Pa (for example, 10,000 Pa to 200, 000 Pa).
  • the maximum value of tan ⁇ of the resin layer disclosed herein is preferably less than 0.4 in the temperature range of 80 ° C. to 150 ° C.
  • tan ⁇ is a value (G ′′ / G ′) obtained from loss elastic modulus G ′′ / storage elastic modulus G ′.
  • the maximum value of tan ⁇ of the resin layer in the temperature range of 80 ° C. to 150 ° C. is more preferably less than 0.3.
  • the minimum value of tan ⁇ in the above temperature range can be usually 0.01 or more (for example, 0.1 or more).
  • the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%, 150 ° C.) and tan ⁇ (G ′′ / G ′) and tan ⁇ (G ′′ / G ′) of the resin layer are commercially available rheometers (for example, device name “ARES 2KFRT”, TA Instruments). Measured by a specified temperature range (a temperature range including 80 ° C to 150 ° C, and a temperature range including 30 ° C to 150 ° C) under the conditions of a frequency of 1 Hz and a strain of 0.1%. Good. What is necessary is just to set a measurement temperature range and a temperature increase rate appropriately according to the model etc. of a measuring apparatus. For example, a temperature range of 30 ° C.
  • a temperature increase rate of about 0.5 ° C. to 20 ° C./min (for example, 10 ° C./min) can be achieved.
  • the resin layer may or may not have adhesiveness (typically adhesiveness).
  • the resin layer may be an adhesive layer or a non-adhesive layer.
  • the “adhesive layer” refers to a SUS304 stainless steel plate as an adherend in accordance with JIS Z 0237: 2009, and a 2 kg roller is reciprocated once in a measurement environment at 23 ° C. to be bonded to the adherend. 30 minutes later, the peel strength when peeled in the direction of 180 ° at a pulling speed of 300 mm / min is 0.1 N / 20 mm or more.
  • non-adhesive layer refers to a layer that does not correspond to the adhesive layer, and typically refers to a layer having a peel strength of less than 0.1 N / 20 mm.
  • the layer that does not stick to the stainless steel plate when the 2 kg roller is reciprocated once in a measurement environment of 23 ° C. and pressed against the SUS304 stainless steel plate is a non-adhesive layer here. This is a typical example included in the concept.
  • the technique disclosed here is preferably implemented in a form including a resin layer corresponding to an adhesive layer (also referred to as an adhesive layer) formed from an adhesive.
  • the resin layer forming composition may be a pressure-sensitive adhesive composition.
  • the “pressure-sensitive adhesive” refers to a material that exhibits a soft solid (viscoelastic body) state in a temperature range near room temperature and has a property of easily adhering to an adherend by pressure.
  • the adhesive here is generally complex elastic modulus E * (1 Hz) as defined in “C. A. Dahlquist,“ Adhesion: Fundamental and Practice ”, McLaren & Sons, (1966) P. 143”. ⁇ 10 ⁇ 7 > dyne / cm ⁇ 2 > material (typically a material having the above properties at 25 [deg.] C.).
  • the surface of the resin layer has adhesiveness.
  • the conductive portion is satisfactorily fixed to the resin layer.
  • the conductive part non-arrangement region on the surface of the resin layer adheres well to the solar battery cell when the solar battery module is constructed.
  • the sealing resin and the conductive portion can be fixed satisfactorily.
  • the surface of the resin layer is weakly adhesive or substantially non-adhesive, the conductive portion and the solar battery cell may be fixed to the resin layer using a known adhesive, pressure-sensitive adhesive, or the like. .
  • the surface of the resin layer exhibits a 180-degree peel strength (adhesive power to solar cell) of 3N / 10 mm or more with respect to the crystalline Si solar cell.
  • the adhesive strength to the solar battery cell is more preferably 5 N / 10 mm or more, further preferably 8 N / 10 mm or more (for example, 10 N / 10 mm or more, typically 12 N). / 10 mm or more).
  • the surface of the resin layer exhibits a 180-degree peel strength of 15 N / 10 mm or more with respect to the crystalline Si solar battery cell.
  • the upper limit of the adhesive strength to the solar cell on the surface of the resin layer is not particularly limited, and the above adhesive strength is usually 50 N / 10 mm or less (for example, 30 N / 10 mm or less, typically from the viewpoint of workability such as reattachment). 20N / 10 mm or less).
  • the adherend used for the measurement of the adhesion to solar cells is a crystalline Si solar cell.
  • a crystalline Si solar battery cell manufactured by Q CELLS a single crystalline Si cell manufactured by GINTECH, or a polycrystalline Si cell is preferably used.
  • a commercially available tensile tester for example, “Autograph AGS-J”, manufactured by Shimadzu Corporation
  • the resin layer typically has translucency.
  • mode is a transparent resin layer (for example, transparent adhesive layer).
  • the transparent resin layer refers to a resin layer having a total light transmittance of 70% or more. From the viewpoint of power generation efficiency of the solar battery cell, the total light transmittance of the resin layer is more preferably 85% or more, and further preferably 90% or more.
  • the total light transmittance of the resin layer can be measured using a commercially available haze meter (for example, trade name “HR-100”, manufactured by Murakami Color Research Laboratory Co., Ltd.).
  • the resin layer disclosed herein is preferably composed of a resin material having a melt mass flow rate (MFR) at 150 ° C. of 9 g / 10 min or less.
  • the resin layer exhibiting the MFR can exhibit good shape stability.
  • the MFR is more preferably 3 g / 10 min or less, further preferably 1 g / 10 min or less, and particularly preferably 0.5 g / 10 min or less (for example, 0.2 g / 10 min or less).
  • the above MFR measurement is based on JIS K 7210: 1999 or ASTM D 1238, and the amount of resin flowing out at a constant time under conditions of a temperature of 190 ° C. and a load of 2.16 Kg is weighed with a balance and unit time (10 minutes) This may be done by calculating the amount of resin discharged.
  • the linear expansion coefficient of the resin layer is preferably less than 15% in the temperature range of ⁇ 40 ° C. to 85 ° C. According to the resin layer exhibiting the above linear expansion coefficient, a wiring with further improved durability is realized.
  • the linear expansion coefficient is more preferably 12% or less (for example, 10% or less).
  • As the linear expansion coefficient of the resin layer either one (preferably both) values of the tensile mode and the compression mode measured by the following method are adopted. [Linear expansion coefficient] (Tensile mode) Each resin layer is cut into a size of 10 mm in length ⁇ about 0.5 mm 2 in cross-sectional area to produce a test piece. Using this test piece, a line at ⁇ 40 ° C. to 85 ° C.
  • the resin layer disclosed here is a resin layer formed from a resin material.
  • a resin layer containing a crosslinked resin as a base polymer (for example, a resin layer subjected to crosslinking treatment) is preferable.
  • the resin layer has physical properties different from those of the sealing resin, and can typically be formed from a resin material different from the resin material of the sealing resin.
  • the resin that forms the resin layer is an acrylic resin, EVA resin, polyolefin resin, rubber, silicone resin, polyester resin, urethane resin, polyether resin, polyamide resin, fluorine resin, etc. 1 type or 2 types or more selected from these resin.
  • the acrylic resin is an acrylic polymer as a base polymer (the main component of the polymer component, that is, the component having the largest blending ratio in the polymer component, typically a component that exceeds 50% by weight).
  • the resin material The same meaning applies to EVA and other resins.
  • the resin layer according to a preferred embodiment is an EVA resin layer formed from an EVA resin.
  • the proportion of EVA in the resin layer (which may also be a resin layer forming composition) is not particularly limited and is typically 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight. That's it.
  • the EVA resin layer is subjected to a thermosetting treatment at about 80 to 200 ° C. (eg, 100 to 180 ° C., typically 120 to 160 ° C.) from the viewpoint of obtaining desired physical properties. Is preferred.
  • the heat curing treatment time is not particularly limited and is usually 5 minutes or longer, preferably 10 minutes or longer, more preferably 20 minutes or longer (for example, 30 minutes or longer, typically 40 minutes to 120 minutes).
  • the EVA resin layer is preferably subjected to a press treatment before or during the thermosetting treatment.
  • the resin layer may be a layer containing an acrylic polymer as a base polymer, that is, an acrylic resin layer.
  • a resin layer having such a composition is preferable because it can be easily adjusted to desired physical properties such as shape stability and flexibility.
  • the proportion of the acrylic polymer in the resin layer is not particularly limited, and is typically 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight or more.
  • (meth) acrylate” means acrylate and methacrylate comprehensively.
  • (meth) acryloyl” means acryloyl and methacryloyl
  • “(meth) acryl” generically means acrylic and methacryl.
  • the “monomer component constituting the acrylic polymer” refers to a monomer unit constituting the acrylic polymer in the resin material forming the resin layer.
  • the monomer component may be contained in the resin layer forming composition used for forming the resin layer in an unpolymerized form (that is, in the form of a raw material monomer in which the polymerizable functional group is unreacted). , May be included in the form of a polymer, or may be included in both forms.
  • the resin layer forming composition disclosed herein preferably contains the component (A) as a monomer component constituting the acrylic polymer.
  • the component (A) is an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms at the ester end.
  • an alkyl (meth) acrylate having an alkyl group having a carbon number of X or more and Y or less at the ester end may be referred to as “C XY alkyl (meth) acrylate”.
  • the structure of the C 1-20 alkyl group in the C 1-20 alkyl (meth) acrylate is not particularly limited, and either a linear or branched alkyl group can be used.
  • the component (A) one kind of such C 1-20 alkyl (meth) acrylate can be used alone or in combination of two or more kinds.
  • C 1-20 alkyl (meth) acrylates having a linear alkyl group at the ester end include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, n- Pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate, n-undecyl (Meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth) acrylate, n-tetradecyl (meth) acrylate, n-pentadecyl (meth) acrylate,
  • C 3-20 alkyl (meth) acrylate having a branched alkyl group at the ester terminal isopropyl (meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, isopentyl (meth) acrylate, t- Pentyl (meth) acrylate, neopentyl (meth) acrylate, isohexyl (meth) acrylate, isoheptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) Acrylate, 2-propylheptyl (meth) acrylate, isoundecyl (meth) acrylate, isododecyl (meth) acrylate, isotridecy
  • the component (A) can be preferably implemented in an embodiment containing C 4-9 alkyl (meth) acrylate as the component (A1).
  • the component (A1) may be one or more selected from C 4-9 alkyl (meth) acrylates. From the viewpoint of compatibility with other monomer components (for example, cyclic nitrogen-containing monomers), C 4-9 alkyl acrylate is preferably used as component (A1).
  • Preferable examples of C 4-9 alkyl acrylate include n-butyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate and isononyl acrylate.
  • the proportion of the component (A1) in the component (A) is usually 20% by weight or more (eg 20 to 80% by weight), preferably 30% by weight or more. (For example, 30 to 70% by weight), more preferably 40% by weight or more (for example, 40 to 60% by weight).
  • the proportion of the component (A1) in the component (A) may be 50% by weight or more (for example, 80% by weight or more, typically 90 to 100% by weight).
  • the embodiment in which the component (A) includes C 10-18 alkyl (meth) acrylate as the component (A2) can be preferably carried out.
  • the component (A2) may be one or more selected from C 10-18 alkyl (meth) acrylates.
  • the component (A2) preferably contains a C 10-18 alkyl (meth) acrylate in which the alkyl group is a branched chain, and more preferably from the viewpoint of compatibility with other monomer components (for example, a cyclic nitrogen-containing monomer). From C10-18 alkyl acrylates in which the alkyl group is branched.
  • C 10-18 alkyl (meth) acrylate examples include isodecyl acrylate, isodecyl methacrylate, dodecyl methacrylate, tridecyl methacrylate, isomistyryl acrylate, isostearyl acrylate and stearyl methacrylate.
  • the proportion of the component (A2) in the component (A) is usually 20% by weight or more (for example, 20 to 80% by weight), preferably 30% by weight or more. (For example, 30 to 70% by weight), more preferably 40% by weight or more (for example, 40 to 60% by weight).
  • the proportion of the component (A2) in the component (A) may be 50% by weight or more (for example, 80% by weight or more, typically 90 to 100% by weight).
  • the weight ratio (A1: A2) between the component (A1) and the component (A2) is not particularly limited, and is usually 1:
  • the ratio is suitably 9 to 9: 1, and preferably 2: 8 to 8: 2 (eg, 3: 7 to 7: 3, typically 4: 6 to 6: 4).
  • the component (A) may contain one or more of C 1-3 alkyl (meth) acrylate and C 19-20 alkyl (meth) acrylate as the component (A3).
  • the proportion of the component (A3) in the component (A) is usually 30% by weight or less (for example, 15% by weight or less, typically 1 to 5% by weight) is preferable.
  • the technique disclosed here is an embodiment in which the component (A) does not substantially contain the component (A3) (the proportion of the component (A3) in the component (A) is less than 1% by weight, and further 0.1% by weight. In an embodiment that is less than).
  • the proportion of the component (A) in the monomer component is not particularly limited. From the viewpoint of physical properties of the resin layer and adhesive properties such as adhesive strength, the proportion of the component (A) is usually suitably 30% by weight or more, preferably 50% by weight or more, more preferably 60%. % By weight or more (eg, 75% by weight or more). In addition, the upper limit of the proportion of the component (A) is suitably about 98% by weight or less from the viewpoint of sufficiently obtaining the effects of the later-described components (B) and (C), and is 95% by weight. It is preferable that the amount be less than or equal to (for example, 90% by weight or less, typically 85% by weight or less).
  • the resin layer forming composition contains a component (B) as a monomer component constituting the acrylic polymer.
  • the component (B) is a heterocycle-containing monomer such as a cyclic nitrogen-containing monomer or a cyclic ether group-containing monomer.
  • the component (B) can advantageously contribute to improving the shape stability and transparency of the resin layer.
  • the heterocyclic ring-containing monomer can be used alone or in combination of two or more.
  • cyclic nitrogen-containing monomer those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a cyclic nitrogen structure can be used without particular limitation.
  • the cyclic nitrogen structure preferably has a nitrogen atom in the cyclic structure.
  • cyclic nitrogen-containing monomers include lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone; 2-vinyl-2-oxazoline, 2-vinyl-5-methyl-2- Oxazoline group-containing monomers such as oxazoline and 2-isopropenyl-2-oxazoline; vinyl-based compounds having nitrogen-containing heterocycles such as vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, and vinylmorpholine And monomers.
  • lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone
  • 2-vinyl-2-oxazoline 2-vinyl-5-methyl-2- Oxazoline group-containing monomers such as oxazoline and 2-isopropenyl-2-ox
  • the (meth) acryl monomer containing nitrogen-containing heterocyclic rings such as a morpholine ring, a piperidine ring, a pyrrolidine ring, a piperazine ring, an aziridine ring.
  • nitrogen-containing heterocyclic rings such as a morpholine ring, a piperidine ring, a pyrrolidine ring, a piperazine ring, an aziridine ring.
  • nitrogen-containing heterocyclic rings such as a morpholine ring, a piperidine ring, a pyrrolidine ring, a piperazine ring, an aziridine ring.
  • Specific examples include N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine, N-acryloylaziridine and the like.
  • lactam vinyl monomers are preferable and N-vinylpyrrolidone is more preferable from the viewpoint
  • the monomer having a cyclic ether group a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and a cyclic ether group such as an epoxy group or an oxetane group.
  • a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and a cyclic ether group such as an epoxy group or an oxetane group.
  • the epoxy group-containing monomer include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and the like.
  • Examples of the oxetane group-containing monomer include 3-oxetanylmethyl (meth) acrylate, 3-methyl-oxetanylmethyl (meth) acrylate, 3-ethyl-oxetanylmethyl (meth) acrylate, and 3-butyl-oxetanylmethyl (meth) acrylate. , 3-hexyl-oxetanylmethyl (meth) acrylate, and the like.
  • the proportion of the component (B) in the monomer component is usually 0.5% by weight or more, preferably 1% by weight or more, more preferably 3% by weight. More preferably, it is 10% by weight or more (for example, 12% by weight or more).
  • the proportion of the component (B) is suitably about 50% by weight or less, preferably 40% by weight or less (for example, 30% by weight or less), from the viewpoint of sufficiently obtaining the effect of containing the component (A). , Typically 25% by weight or less).
  • the resin layer forming composition includes a component (C) as a monomer component constituting the acrylic polymer.
  • the component (C) is a monomer having at least one of a hydroxy group and a carboxy group.
  • hydroxy group-containing monomer those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a hydroxy group can be used without particular limitation.
  • the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl ( Hydroxyalkyl (meth) acrylates such as (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate; -Hydroxyalkylcycloalkane (meth) acrylates such as -hydroxymethylcyclohexyl) methyl (meth) acrylate.
  • hydroxyethyl (meth) acrylamide examples include hydroxyethyl (meth) acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, and the like. These can be used alone or in combination of two or more. Of these, hydroxyalkyl (meth) acrylate is preferred. For example, a hydroxyalkyl (meth) acrylate having a hydroxyalkyl group having 2 to 6 carbon atoms can be preferably used. Of these, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are more preferable.
  • carboxy group-containing monomer a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a carboxy group can be used without particular limitation.
  • carboxy group-containing monomers include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate; itaconic acid, maleic acid, fumaric acid, And ethylenically unsaturated dicarboxylic acids such as citraconic acid; metal salts thereof (for example, alkali metal salts); anhydrides of the above ethylenically unsaturated dicarboxylic acids such as maleic anhydride and itaconic anhydride. These can be used alone or in combination of two or more. Among these, acrylic acid and methacrylic acid are preferable.
  • the technique disclosed herein can be preferably implemented in a mode in which the component (C) includes a hydroxy group-containing monomer. That is, it is preferable that the component (C) includes only a hydroxy group-containing monomer or includes a hydroxy group-containing monomer and a carboxy group-containing monomer. By increasing the proportion of the hydroxy group-containing monomer in the component (C), metal corrosion caused by the carboxy group can be reduced. From this, the technique disclosed here can be preferably implemented in a mode in which the monomer component does not substantially contain a carboxy group-containing monomer. For example, the proportion of the carboxy group-containing monomer in the monomer component can be less than 1% by weight, preferably less than 0.5% by weight, more preferably less than 0.2% by weight.
  • the proportion of the component (C) in the monomer component is usually suitably 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 0, from the viewpoint of the physical properties of the resin layer. .8% by weight or more.
  • the proportion of the component (C) may be 3% by weight or more, or 5% by weight or more (for example, 8% by weight or more, typically 10% by weight or more).
  • the proportion of the component (C) is suitably about 35% by weight or less, preferably 30% by weight or less, more preferably 25% by weight or less (typically 5% by weight or less, eg 3 % By weight or less).
  • the monomer component constituting the acrylic polymer includes all the components (A), (B), and (C).
  • the proportion of component (A) is 50 to 99% by weight (more preferably 60 to 95% by weight, still more preferably Is preferably 70 to 85% by weight, and the proportion of component (B) is 0.9 to 49.9% by weight (more preferably 4.5 to 39.5% by weight, still more preferably 14.2 to 29.2% by weight), and the proportion of component (C) is 0.1 to 35% by weight (more preferably 0.5 to 30% by weight, still more preferably 0.8 to 25% by weight). It is preferable to do.
  • the constituent monomer component in the technique disclosed herein may contain a monomer other than the components (A), (B) and (C) (hereinafter also referred to as “optional monomer”) as necessary.
  • the optional monomer examples include monomers containing a functional group other than a hydroxy group and a carboxy group. Such a functional group-containing monomer can be used for the purpose of introducing a crosslinking point into the acrylic polymer or increasing the cohesive strength of the acrylic polymer.
  • the functional group-containing monomer examples include amide group-containing monomers such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, and N-methylol (meth) acrylamide; cyano group-containing monomers such as acrylonitrile and methacrylonitrile;
  • amide group-containing monomers such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, and N-methylol (meth) acrylamide
  • cyano group-containing monomers such as acrylonitrile and methacrylonitrile
  • sulfonic acid group-containing monomers such as styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid
  • phosphoric acid group-containing monomers such as 2-hydroxyethyl acryloyl phosphate
  • Keto group-containing monomers such as acrylamide, diacetone (me
  • the optional monomer examples include alicyclic monomers.
  • the alicyclic monomer those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having an alicyclic structure-containing group can be used without particular limitation. it can.
  • the “alicyclic structure-containing group” refers to a portion containing at least one alicyclic structure.
  • the “alicyclic structure” refers to a saturated or unsaturated carbocyclic structure having no aromaticity. In the present specification, the alicyclic structure-containing group is sometimes simply referred to as “alicyclic group”.
  • Preferable examples of the alicyclic group include a hydrocarbon group and a hydrocarbon oxy group containing an alicyclic structure.
  • Examples of preferred alicyclic monomers include alicyclic (meth) acrylates having an alicyclic group and a (meth) acryloyl group.
  • Specific examples of the alicyclic (meth) acrylate include cyclopropyl (meth) acrylate, cyclobutyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, and cyclooctyl (meth).
  • Examples include acrylate, isobornyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. These can be used alone or in combination of two or more.
  • the monomer component in the technology disclosed herein can be copolymerized with the above components (A), (B), and (C) as the above arbitrary monomer for the purpose of adjusting Tg of acrylic polymer and improving cohesion.
  • a copolymerizable monomer other than those exemplified above may be included.
  • copolymerizable monomers examples include carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; aromatic vinyl compounds such as styrene, substituted styrene ( ⁇ -methylstyrene, etc.), vinyltoluene; ) Aromatic ring-containing acrylate (eg phenyl (meth) acrylate), aryloxyalkyl (meth) acrylate (eg phenoxyethyl (meth) acrylate), arylalkyl (meth) acrylate (eg benzyl (meth) acrylate) ( (Meth) acrylates; olefinic monomers such as ethylene, propylene, isoprene, butadiene, and isobutylene; chlorine-containing monomers such as vinyl chloride and vinylidene chloride; for example, methyl vinyl ether, ethyl vinyl ether, and the like Vinyl ether monomers; other, macromonomers, and the like Vinyl
  • the amount of these optional monomers used is not particularly limited and can be determined as appropriate. Usually, the total amount of the arbitrary monomers used is suitably less than 50% by weight of the monomer component, preferably 30% by weight or less, and more preferably 20% by weight or less.
  • the technique disclosed here can be preferably implemented in an embodiment in which the total amount of any monomer used is 10% by weight or less (for example, 5% by weight or less) of the monomer component.
  • the technique disclosed here is an embodiment in which an optional monomer is not substantially used (for example, an embodiment in which the amount of the optional monomer used is 0.3% by weight or less, typically 0.1% by weight or less) of the monomer component. However, it can be preferably implemented.
  • the above-described component (A), component (B), component (C) and optional monomer are typically monofunctional monomers.
  • the monomer component in the technique disclosed herein can contain a polyfunctional monomer as necessary for the purpose of adjusting the cohesive force of the resin layer.
  • the monofunctional monomer in this specification refers to a monomer having one polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group, and a polyfunctional monomer. As described later, refers to a monomer having at least two polymerizable functional groups.
  • the polyfunctional monomer is a monomer having at least two polymerizable functional groups having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group.
  • polyfunctional monomers include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, penta Erythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, 1,12-dodecanediol di (meth)
  • a polyfunctional monomer can be used individually by 1 type or in combination of 2 or more types.
  • trimethylolpropane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and dipentaerythritol hexa (meth) acrylate can be preferably used.
  • a polyfunctional monomer having two or more acryloyl groups is usually preferable.
  • the amount of the polyfunctional monomer used varies depending on the molecular weight, the number of functional groups, and the like, but is preferably 3% by weight or less of the above monomer component from the viewpoint of balancing cohesion and adhesion in a balanced manner. Is more preferable, and 1% by weight or less (for example, 0.5% by weight or less) is more preferable. Moreover, the lower limit of the usage-amount in the case of using a polyfunctional monomer should just be larger than 0 weight%, and is not specifically limited. Usually, the effect of improving the cohesive force can be appropriately exhibited by setting the amount of the polyfunctional monomer used to 0.001% by weight or more (for example, 0.01% by weight or more) of the monomer component.
  • the proportion of the total amount of the component (A), the component (B) and the component (C) in the monomer component is typically more than 50% by weight, preferably 70% by weight. Above, more preferably 80% by weight or more, still more preferably 90% by weight or more.
  • the technique disclosed here can be preferably implemented in an embodiment in which the ratio of the total amount is 95% by weight or more (for example, 99% by weight or more).
  • the technology disclosed herein can be preferably implemented in an embodiment in which the ratio of the total amount in the monomer components is 99.999% by weight or less (for example, 99.99% by weight or less).
  • the Tg of the polymer corresponding to the composition of the monomer component is preferably ⁇ 20 ° C. or less, preferably ⁇ 25 ° C. or less, from the viewpoints of physical properties and adhesiveness of the resin layer. More preferably -80 ° C or higher, preferably -60 ° C or higher, -50 ° C or higher (eg -40 ° C or higher, typically -35 ° C or higher). It is more preferable.
  • the Tg of the polymer corresponding to the composition of the monomer component refers to the Fox based on the Tg of the homopolymer of each monomer contained in the monomer component and the weight fraction of the monomer.
  • the formula of Fox is a relational expression between Tg of a copolymer and glass transition temperature Tgi of a homopolymer obtained by homopolymerizing each of the monomers constituting the copolymer, as shown below.
  • Tg is the glass transition temperature (unit: K) of the copolymer
  • Wi is the weight fraction of monomer i in the copolymer (copolymerization ratio on a weight basis)
  • Tgi is the monomer i.
  • the calculation of Tg is performed considering only the monofunctional monomer.
  • the total amount of the monofunctional monomer contained in the monomer component is defined as 100% by weight, and the Tg of the homopolymer of each monofunctional monomer and the above total amount of the monofunctional monomer Tg is calculated based on the weight fraction relative to.
  • Tg of the homopolymer the following values are adopted for the monomers shown below. 2-Ethylhexyl acrylate -70 ° C n-Butyl acrylate -55 ° C Isostearyl acrylate -18 °C Cyclohexyl acrylate 15 ° C Isobornyl acrylate 94 ° C N-Vinyl-2-pyrrolidone 54 ° C 2-Hydroxyethyl acrylate -15 ° C 4-hydroxybutyl acrylate -40 ° C Acrylic acid 106 °C
  • the values described in “Polymer Handbook” (3rd edition, John Wiley & Sons, Inc., 1989) are used as the Tg of the homopolymer. The highest value is adopted for the monomer whose values are described in this document. When not described in the above Polymer Handbook, values obtained by the measurement method described in Japanese Patent Application Publication No. 2007-51271 are used
  • composition for resin layer formation includes a monomer component having the above-described composition in the form of a polymer, an unpolymerized product (that is, a form in which the polymerizable functional group is unreacted), or a mixture thereof. Can be included.
  • the composition for forming a resin layer is a composition in which an organic solvent contains a resin layer forming component (for example, an adhesive component) (a composition for forming a solvent type resin layer), and a form in which the resin layer forming component is dispersed in an aqueous solvent.
  • composition water-dispersed resin layer forming composition
  • a composition prepared to cure with active energy rays such as ultraviolet rays and radiation to form a resin layer forming component (active energy ray curable resin layer formation)
  • active energy ray curable resin layer formation active energy ray curable resin layer formation
  • a hot melt type resin layer forming composition that forms a resin layer when coated in a heated and melted state and cooled to near room temperature.
  • the resin layer forming composition typically contains at least part of the monomer components of the composition (may be part of the type of monomer or part of the quantity).
  • the polymerization method for forming the polymer is not particularly limited, and various conventionally known polymerization methods can be appropriately employed.
  • thermal polymerization such as solution polymerization, emulsion polymerization and bulk polymerization (typically performed in the presence of a thermal polymerization initiator); photopolymerization performed by irradiation with light such as ultraviolet rays (typically It is carried out in the presence of a photopolymerization initiator.); Radiation polymerization carried out by irradiation with radiation such as ⁇ -rays and ⁇ -rays; Of these, photopolymerization is preferred.
  • the mode of polymerization is not particularly limited, and conventionally known monomer supply methods, polymerization conditions (temperature, time, pressure, light irradiation amount, radiation irradiation amount, etc.), materials used other than monomers (polymerization initiator) , Surfactant, etc.) can be selected as appropriate.
  • a known or commonly used photopolymerization initiator or thermal polymerization initiator can be used depending on the polymerization method, polymerization mode, and the like.
  • a polymerization initiator can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the photopolymerization initiator is not particularly limited.
  • a polymerization initiator or the like can be used.
  • ketal photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one (for example, trade name “Irgacure 651” manufactured by BASF).
  • acetophenone photopolymerization initiator examples include 1-hydroxycyclohexyl-phenyl-ketone (for example, trade name “Irgacure 184” manufactured by BASF), 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (for example, trade name “Irgacure 2959” manufactured by BASF), 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one (for example, trade name “Darocur 1173” manufactured by BASF), methoxyacetophenone and the like are included.
  • benzoin ether photopolymerization initiator examples include benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether and benzoin isobutyl ether, and substituted benzoin ethers such as anisole methyl ether.
  • acylphosphine oxide photopolymerization initiator examples include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (for example, trade name “Irgacure 819” manufactured by BASF), bis (2,4,6 -Trimethylbenzoyl) -2,4-di-n-butoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (for example, trade name “Lucirin TPO” manufactured by BASF), bis (2,6- Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and the like.
  • ⁇ -ketol photopolymerization initiator examples include 2-methyl-2-hydroxypropiophenone, 1- [4- (2-hydroxyethyl) phenyl] -2-methylpropan-1-one, and the like. It is.
  • aromatic sulfonyl chloride photopolymerization initiator examples include 2-naphthalenesulfonyl chloride and the like.
  • photoactive oxime photopolymerization initiator include 1-phenyl-1,1-propanedione-2- (o-ethoxycarbonyl) -oxime and the like.
  • benzoin photopolymerization initiator examples include benzoin and the like.
  • benzyl photopolymerization initiator examples include benzyl and the like.
  • benzophenone photopolymerization initiator examples include benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, ⁇ -hydroxycyclohexyl phenyl ketone, and the like.
  • thioxanthone photopolymerization initiator examples include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone. 2,4-diisopropylthioxanthone, dodecylthioxanthone and the like.
  • the thermal polymerization initiator is not particularly limited.
  • an azo polymerization initiator, a peroxide initiator, a redox initiator by a combination of a peroxide and a reducing agent, a substituted ethane initiator. Etc. can be used.
  • the amount of such a thermal polymerization initiator or photopolymerization initiator used can be a normal amount used according to the polymerization method, polymerization mode, etc., and is not particularly limited.
  • a polymerization initiator of 0.001 to 5 parts by weight typically 0.01 to 2 parts by weight, for example, 0.01 to 1 part by weight
  • a polymerization initiator of 0.001 to 5 parts by weight typically 0.01 to 2 parts by weight, for example, 0.01 to 1 part by weight
  • the resin layer forming composition includes a polymerization reaction product of a monomer mixture containing at least a part of the monomer component (raw material monomer) of the composition. Typically, a part of the monomer component is included in the form of a polymer, and the remainder is included in the form of an unpolymerized substance (unreacted monomer).
  • the polymerization reaction product of the monomer mixture can be prepared by at least partially polymerizing the monomer mixture.
  • the polymerization reaction product is preferably a partial polymerization product of the monomer mixture.
  • Such a partial polymer is a mixture of a polymer derived from the monomer mixture and an unreacted monomer, and typically exhibits a syrup shape (viscous liquid).
  • a partially polymerized product may be referred to as “monomer syrup” or simply “syrup”.
  • the polymerization method for obtaining the polymerization reaction product is not particularly limited, and various polymerization methods as described above can be appropriately selected and used. From the viewpoints of efficiency and simplicity, a photopolymerization method can be preferably employed. According to photopolymerization, the polymerization conversion rate of the monomer mixture can be easily controlled by polymerization conditions such as the amount of light irradiation (light quantity).
  • the polymerization conversion rate (monomer conversion) of the monomer mixture in the partial polymer is not particularly limited.
  • the polymerization conversion rate can be, for example, 70% by weight or less, and preferably 60% by weight or less. From the viewpoint of ease of preparation of the resin layer forming composition containing the partial polymer, coating properties, and the like, usually, the polymerization conversion rate is suitably 50% by weight or less, and 40% by weight or less (for example, 35% by weight). % Or less) is preferable.
  • the lower limit of the polymerization conversion rate is not particularly limited and is typically 1% by weight or more, and usually 5% by weight or more is appropriate.
  • the resin layer forming composition containing a partial polymer of the monomer mixture can be easily obtained by, for example, partially polymerizing a monomer mixture containing all of the raw material monomers by an appropriate polymerization method (for example, photopolymerization method).
  • the resin layer forming composition containing the partial polymer may contain other components used as necessary (for example, a photopolymerization initiator, a polyfunctional monomer, a crosslinking agent, an acrylic oligomer described later, and the like).
  • the method of blending such other components is not particularly limited, and for example, it may be previously contained in the monomer mixture or added to the partial polymer.
  • a complete polymerization product of a monomer mixture containing some types of monomers among the monomer components is converted into the remaining types of monomers or partial polymerization products thereof. It may be in a dissolved form.
  • Such a resin layer forming composition is also included in examples of the resin layer forming composition containing a polymerized monomer component and an unpolymerized product.
  • the “completely polymerized product” means that the polymerization conversion rate is more than 95% by weight.
  • a photopolymerization method can be preferably employed as a curing method (polymerization method) when forming a resin layer from a resin layer forming composition containing a polymerized monomer component and an unpolymerized product.
  • the resin layer forming composition containing the polymerization reaction product prepared by the photopolymerization method it is particularly preferable to employ the photopolymerization method as the curing method. Since the polymerization reaction product obtained by the photopolymerization method already contains a photopolymerization initiator, when the resin layer forming composition containing this polymerization reaction product is further cured to form a resin layer, a new photopolymerization start is started. It can be photocured without adding an agent.
  • the composition for resin layer formation of the composition which added the photoinitiator as needed to the polymerization reaction material prepared by the photopolymerization method may be sufficient.
  • the photopolymerization initiator to be added may be the same as or different from the photopolymerization initiator used for the preparation of the polymerization reaction product.
  • the resin layer forming composition prepared by a method other than photopolymerization can be made photocurable by adding a photopolymerization initiator.
  • the photocurable resin layer forming composition has an advantage that even a thick resin layer can be easily formed.
  • the photopolymerization when forming the resin layer from the resin layer forming composition can be performed by ultraviolet irradiation.
  • a known high-pressure mercury lamp, low-pressure mercury lamp, metal halide lamp, or the like can be used for ultraviolet irradiation.
  • the resin layer forming composition includes the monomer component of the composition in the form of a completely polymerized product.
  • a resin layer forming composition is, for example, a solvent-type resin layer forming composition containing an acrylic polymer, which is a complete polymer of monomer components, in an organic solvent, water in which the acrylic polymer is dispersed in an aqueous solvent. It may be in the form of a dispersion type resin layer forming composition.
  • the composition for forming a resin layer disclosed herein may contain a (meth) acrylic oligomer from the viewpoint of improving adhesive strength. By including a (meth) acrylic oligomer, the adhesive force of the resin layer can be improved.
  • the (meth) acrylic oligomer preferably has a Tg of about 0 ° C. or higher and 300 ° C. or lower, preferably about 20 ° C. or higher and 300 ° C. or lower, more preferably about 40 ° C. or higher and 300 ° C. or lower.
  • Tg is within the above range, the adhesive force can be preferably improved.
  • the Tg of the (meth) acrylic oligomer is a value calculated based on the Fox equation, similar to the Tg of the acrylic polymer.
  • the weight average molecular weight (Mw) of the (meth) acrylic oligomer may typically be 1000 or more and less than 30000, preferably 1500 or more and less than 20000, and more preferably 2000 or more and less than 10,000. It is preferable for Mw to be within the above range because good adhesive force and holding characteristics can be obtained.
  • Mw of the (meth) acrylic oligomer is measured by GPC and can be obtained as a standard polystyrene equivalent value. Specifically, it is measured on a “HPLC 8020” manufactured by Tosoh Corporation using two TSKgelGMH-H (20) columns as a column and a tetrahydrofuran solvent at a flow rate of about 0.5 mL / min.
  • a monomer constituting the (meth) acrylic oligomer for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl ( (Meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, is
  • Examples of (meth) acrylic oligomers include alkyl (meth) acrylates in which alkyl groups such as isobutyl (meth) acrylate and t-butyl (meth) acrylate have a branched structure; cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, Esters of (meth) acrylic acid and alicyclic alcohols such as dicyclopentanyl (meth) acrylate; cyclic structures such as aryl (meth) acrylates such as phenyl (meth) acrylate and benzyl (meth) acrylate It is preferable that an acrylic monomer having a relatively bulky structure typified by (meth) acrylate is included as a monomer unit from the viewpoint of further improving adhesiveness.
  • an alkyl (meth) acrylate having an ester or an ester with an alicyclic alcohol can be preferably used as a monomer constituting the (meth) acrylic oligomer.
  • suitable (meth) acrylic oligomers include, for example, dicyclopentanyl methacrylate (DCPMA), cyclohexyl methacrylate (CHMA), isobornyl methacrylate (IBXMA), isobornyl acrylate (IBXA),
  • DCPMA dicyclopentanyl methacrylate
  • CHMA cyclohexyl methacrylate
  • IBXMA isobornyl methacrylate
  • IBXA isobornyl acrylate
  • DCPA dicyclopentanyl acrylate
  • ADMA 1-adamantyl methacrylate
  • ADA 1-adamantyl acrylate
  • a copolymer of CHMA and isobutyl methacrylate (IBMA), CHMA and IBXMA Copolymer Copolymer of CHMA and acryloylmorpholine (ACMO), Copolymer of CHMA and diethylacrylamide (DEAA), Copolymer of
  • the content thereof is not particularly limited, and is approximately about 100 parts by weight of the monomer component contained in the resin layer forming composition. It is appropriate that the amount is 1 part by weight or more. From the viewpoint of better exhibiting the effect of the (meth) acrylic oligomer, the content of the (meth) acrylic oligomer is 3 parts by weight or more (for example, 5 parts by weight or more, typically 8 parts by weight or more). It is preferable to do.
  • the content of the (meth) acrylic oligomer from the viewpoint of the curability of the resin layer forming composition and the compatibility with the partial polymer or the complete polymer of the acrylic polymer (and thus the transparency of the resin layer).
  • the technique disclosed here can also be implemented in an embodiment that does not use a (meth) acrylic oligomer.
  • the resin layer forming composition disclosed herein may contain a silane coupling agent.
  • silane coupling agents that can be preferably used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2- (3,4-epoxy.
  • (Meth) acrylic group Isocyanate group-containing silane coupling agents such as 3-isocyanate propyl triethoxysilane; Yes silane coupling agent, and the like. These can be used alone or in combination of two or more.
  • the amount of the silane coupling agent is preferably 1 part by weight or less (for example, 0.01 to 1 part by weight), more preferably 0.02 to 100 parts by weight with respect to 100 parts by weight of the monomer component constituting the acrylic polymer. 0.6 parts by weight.
  • the composition for resin layer formation disclosed here can contain a crosslinking agent.
  • the crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, a silicone crosslinking agent, an oxazoline crosslinking agent, an aziridine crosslinking agent, a silane crosslinking agent, an alkyl etherified melamine crosslinking agent, and a metal chelate crosslinking agent. Etc. These can be used alone or in combination of two or more. The addition amount of a crosslinking agent is appropriately set based on technical common sense. Or the composition for resin layer formation may not contain the above crosslinking agents.
  • the resin layer forming composition disclosed herein may contain various additives known in the field of pressure-sensitive adhesives, for example.
  • powders such as colorants, pigments, dyes, surfactants, plasticizers, tackifying resins, surface lubricants, leveling agents, softeners, antioxidants, anti-aging agents, light stabilizers, UV absorbers, A polymerization inhibitor, an inorganic or organic filler, metal powder, particles, foils, etc. can be appropriately added depending on the application.
  • the resin layer disclosed herein can be formed, for example, as a resin layer by applying any of the resin layer forming compositions disclosed herein to a support and drying or curing.
  • a coating method of the resin layer forming composition various conventionally known methods can be used. Specifically, for example, by roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples thereof include an extrusion coating method.
  • the resin layer forming composition can be dried under heating.
  • the drying temperature is preferably 40 ° C to 200 ° C, more preferably 50 ° C to 180 ° C, and further preferably 70 ° C to 170 ° C. By setting the heating temperature within the above range, a resin layer having excellent physical properties can be obtained.
  • As the drying time an appropriate time can be adopted as appropriate.
  • the drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and even more preferably 10 seconds to 5 minutes.
  • a crosslinking treatment, a thermosetting treatment, or the like can be further performed.
  • a thermosetting treatment can be performed at about 80 to 200 ° C. (eg, 100 to 180 ° C., typically 120 to 160 ° C.) for 5 minutes or more.
  • the heat curing treatment time is preferably 10 minutes or longer, more preferably 20 minutes or longer (for example, 30 minutes or longer, typically 40 minutes to 120 minutes).
  • the resin layer is preferably subjected to press treatment before or during the thermosetting treatment.
  • the resin layer disclosed herein can be obtained from the resin layer forming composition.
  • the thickness of the resin layer is not particularly limited, and can be, for example, about 1 to 400 ⁇ m. Usually, the thickness of the resin layer is preferably 1 to 200 ⁇ m, more preferably 2 to 150 ⁇ m, further preferably 2 to 100 ⁇ m, and particularly preferably 5 to 75 ⁇ m.
  • the resin layer before the conductive portion is placed is spirally overlapped with a release liner (support) whose front surface and back surface are both release surfaces (peelable surfaces). It may be in a form wound in a shape. Alternatively, the first surface and the second surface may be respectively protected by two independent release liners (supports). As the release liner, those described below can be preferably used.
  • a conventional release paper or the like can be used, and is not particularly limited.
  • a release liner having a release treatment layer on the surface of a substrate such as a plastic film or paper, or a release made of a low adhesive material such as a fluorine polymer (polytetrafluoroethylene, etc.) or a polyolefin resin (polyethylene, polypropylene, etc.)
  • a liner or the like can be used.
  • the release treatment layer may be formed by surface-treating the base material with a release treatment agent.
  • the release treatment agent include a silicone release treatment agent, a long-chain alkyl release treatment agent, a fluorine release treatment agent, and molybdenum (IV) sulfide.
  • the type of the solar battery cell to be used is not particularly limited, and for example, a single crystal type or a polycrystalline type Si cell is suitable.
  • the crystalline Si cell may be a p-type cell (a cell in which n-type is added to a p-type substrate) or an n-type cell (a cell in which p-type is added to an n-type substrate).
  • the solar battery cell may be an amorphous Si cell, a compound solar battery, an organic solar battery cell or the like. Further, the solar cell may be either a single-sided light receiving type or a double-sided light receiving type.
  • the shape of the solar battery cell is not particularly limited, and it may be a wafer having a substantially rectangular plane, or may be a belt shape.
  • the configuration of the second embodiment is preferably employed, but is not limited thereto, and a known or conventional electrode can be appropriately employed depending on the purpose or the like.
  • the thickness of the solar battery cell is preferably about 0.5 mm or less, more preferably about 0.3 mm or less (for example, about 180 to 200 ⁇ m), and further preferably about 160 ⁇ m or less from the viewpoint of lightness and the like.
  • the sealing resin disclosed herein may have insulating properties and translucency.
  • it may be a resin layer that can exhibit fluidity by heat or pressure.
  • “having insulation” means a specific resistance at 25 ° C. of 1 ⁇ 10 6 ⁇ ⁇ cm or more (preferably 1 ⁇ 10 8 ⁇ ⁇ cm or more, typically 1 ⁇ 10 10 ⁇ ). -Cm or more).
  • the electric resistance is a value at 25 ° C. unless otherwise specified.
  • “having translucency” means that the total light transmittance defined by JIS K 7375: 2008 is 50% or more (preferably 80% or more, typically 95% or more). That means.
  • the sealing resin may preferably be a thermosetting resin.
  • the sealing resin made of a thermosetting resin can be well sealed in the solar battery module by, for example, laminating and heating the solar battery cell.
  • an ethylene-vinyl acetate copolymer (EVA) is preferably used from the viewpoints of translucency, workability, weather resistance, and the like.
  • the above resins include ethylene-vinyl ester copolymers represented by EVA, ethylene-unsaturated carboxylic acid copolymers such as ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid esters, etc.
  • An ethylene-unsaturated carboxylic acid ester copolymer, an unsaturated carboxylic acid ester-based polymer such as polymethyl methacrylate, and the like may be used.
  • fluoropolymers such as vinylidene fluoride resin and polyethylene tetrafluoroethylene; manufactured using low density polyethylene (LDPE), linear low density polyethylene (LLDPE, typically Ziegler catalyst, vanadium catalyst, metallocene catalyst, etc.
  • PE polyethylene
  • PP polypropylene
  • PP polypropylene
  • PP polypropylene
  • Polyolefins such as ethylene / ⁇ -olefin copolymers and their modified products (modified polyolefins); Polybutadienes; Polyvinyl acetals such as polyvinyl formal, polyvinyl butyral (PVB resin), and modified PVB; polyethylene Terephthalate (PET); polyimide; amorphous polycarbonate; siloxane sol - gel; polyurethane; polystyrene; polyether sulfone; polyarylate, epoxy resins, may be like; silicone resin; ionomers. These resins may be used alone or in combination of two or more.
  • the resin may contain various additives known in the art such as an ultraviolet absorber and a light stabilizer.
  • an adhesion improver may be added to the sealing resin in order to improve the adhesion with the wiring structure.
  • an adhesion improver is applied to the surface of the sheet-shaped sealing resin before heat curing, the wiring structure is disposed on the surface, and the sealing resin and the wiring structure are heat-treated. Adhesion with is improved.
  • a silane coupling agent is preferably used as the adhesion improver.
  • Various surface treatments such as corona treatment and atmospheric pressure plasma treatment can be applied to the surface of the sheet-shaped sealing resin alone or in combination for the purpose of improving adhesion and the like.
  • the thickness of the sheet-shaped sealing resin used for the construction of the solar cell module is about 100 to 2000 ⁇ m (for example, 200 to 1000 ⁇ m, typically 400 to 800 ⁇ m) from the viewpoint of the sealing performance of the solar battery cell. It is preferable.
  • ⁇ Surface covering member> As the surface covering member, various materials having translucency can be used.
  • Surface covering member is glass plate, fluororesin sheet such as tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride resin, chlorotrifluoroethylene resin, acrylic resin, polyethylene terephthalate It may be a resin sheet composed of a material such as polyester such as (PET) or polyethylene naphthalate (PEN).
  • PET polyester
  • PEN polyethylene naphthalate
  • a flat plate member or a sheet member having a total light transmittance of 70% or more (for example, 90% or more, typically 95% or more) can be preferably used. The total light transmittance may be measured according to JIS K 7375: 2008.
  • the thickness of the surface covering member is preferably about 0.5 to 10 mm (for example, 1 to 8 mm, typically 2 to 5 mm) from the viewpoint
  • a flat plate member or a sheet member made of various materials exemplified as the material of the surface covering member is preferably used. Especially, it is more preferable to use polyester, such as PET and PEN, as a back surface covering member forming material. Or as a back surface covering member, you may use the metal sheet (for example, aluminum plate) which has corrosion resistance, resin sheets, such as an epoxy resin, and composite sheets, such as silica vapor deposition resin.
  • the thickness of the back surface covering member is preferably about 0.1 to 10 mm (for example, 0.2 to 5 mm) from the viewpoints of handleability and lightness. In addition, the back surface covering member may not have translucency.
  • a layer forming composition was prepared.
  • the composition for forming a resin layer prepared above is applied to the release treatment surface of a 38 ⁇ m thick polyester film (trade name “Diafoil MRF”, manufactured by Mitsubishi Plastics, Inc.) whose one surface is release-treated with a silicone release treatment agent.
  • the coated layer was formed by coating so that the final thickness was 50 ⁇ m.
  • a 38 ⁇ m thick polyester film (trade name “Diafoil MRE”, manufactured by Mitsubishi Plastics Co., Ltd.) having one side peeled with silicone is applied to the surface of the coating layer. I put it on the side. Thereby, the coating layer was shielded from oxygen.
  • the coating layer is shielded from oxygen.
  • the coating layer is cured and a resin layer (adhesive) Agent layer) was formed to obtain resin sheets (adhesive sheets) as the first resin layer and the second resin layer.
  • the polyester film coated on both surfaces of the resin sheet functions as a release liner.
  • the illuminance value is a value measured by an industrial UV checker (trade name “UVR-T1”, light receiving unit type UD-T36, manufactured by Topcon Corporation) having a peak sensitivity wavelength of about 350 nm.
  • a copper wire (width 0.8 mm, thickness 0.25 mm) was prepared. A copper wire having a width tolerance of ⁇ 10%, a thickness tolerance of ⁇ 4%, a plating thickness of 1 ⁇ m (tolerance of ⁇ 15%), and a tensile strength of 200 N / mm 2 or more was used. Ag was used as the plating type.
  • EVA sheet (Sealing resin) EVA sheet (trade name “EVASKY”, manufactured by Bridgestone, thickness 450 ⁇ m)
  • Solar cell Si solar cell (polycrystalline Si cell, manufactured by GINTECH)
  • Surface covering member Glass plate (white plate heat-treated glass, manufactured by Asahi Glass Co., Ltd., thickness 3.2 mm)
  • Back cover member Back sheet (trade name “KOBATEC PV KB-Z1-3”, manufactured by Kobayashi Corporation, thickness 200 ⁇ m)
  • a test solar cell module having the same configuration as that of the first embodiment was constructed.
  • two solar cells were used.
  • Resin sheets as the first resin layer and the second resin layer were cut into appropriate sizes in accordance with the shape of the solar battery cells and arranged in the first region and the second region, respectively.
  • Eight copper wires were used as the conductive part, and the copper wires were arranged at 2 cm intervals so that the longitudinal direction of the copper wires was parallel to the arrangement direction of the solar cells.
  • the sealing resin was also cut into an appropriate size according to the shape of the module.
  • the solar cell module for testing was placed on the above materials, then laminated using a commercially available laminator (manufactured by NPC) at 150 ° C. and 100 kPa for 5 minutes, cured for 15 minutes, and further commercially available. This was constructed by performing a drying treatment at 150 ° C. for 15 minutes using a blast constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.).
  • a Si-based solar cell in which bus bar electrodes (trade name “SSA-SPS”, 1.5 mm ⁇ 0.2 mm solder-coated copper wire, manufactured by Hitachi Cable Ltd.) are fixed by solder bonding without using a wiring structure (
  • a solar cell module according to a comparative example was constructed in the same manner as in the above example except that a polycrystalline cell manufactured by GINTECH was used.
  • the conversion efficiency of the example was 17.30%, while the conversion efficiency of the comparative example was 16.53%.
  • an efficiency improvement of about 4.6% was realized compared to the conventional product using soldered bus bar electrodes.
  • preparing three types of resin sheets (adhesive sheets) different from the examples such as changing the monomer type, using these as the first resin layer and the second resin layer, respectively, constructing solar cell modules for testing When the power generation efficiency was evaluated, all of them achieved a conversion efficiency of 17.20% or more.
  • the EL (Electro-Luminescence) inspection image as shown in FIG.
  • ⁇ Experiment 2 ⁇ ⁇ Materials used> A plurality of plated copper wires (width 0.8 mm, thickness 0.25 mm, rectangular cross section) shown in Table 1 were prepared as conductive portions.
  • the plated copper wire used had a width tolerance of ⁇ 10%, a thickness tolerance of ⁇ 4%, a plating thickness of 1.5 ⁇ m or more, and a tensile strength of 200 N / mm 2 or more.
  • As the plating type silver having the purity shown in Table 1 was used. The roughness of the conductive part surface and the diffuse reflectance are adjusted by the etching process of the copper wire, the purity of the silver plating, and the plating thickness (film thickness).
  • the 1st resin layer and the 2nd resin layer the thing similar to the said experiment 1 was prepared except the thickness having been 46 micrometers.
  • the same materials as in Experiment 1 were prepared.
  • a test solar cell module having the same configuration as that of the first embodiment was constructed.
  • two solar cells were used.
  • the resin sheets as the first resin layer and the second resin layer were each cut into an appropriate size according to the shape of the solar battery cell, and placed in two solar battery cells.
  • As the conductive part eight plated copper wires shown in Table 1 were used, and the copper wires were arranged at 2 cm intervals so that the longitudinal direction of the copper wires was parallel to the arrangement direction of the solar cells.
  • the sealing resin was also cut into an appropriate size according to the shape of the module.
  • the solar cell module for testing was placed on the above materials, then laminated using a commercially available laminator (manufactured by NPC) at 150 ° C. and 100 kPa for 5 minutes, cured for 15 minutes, and further commercially available. This was constructed by performing a drying treatment at 150 ° C. for 15 minutes using a blast constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.).
  • the diffuse reflectance on the surface of the conductive part and the short-circuit current Jsc showed a positive proportional relationship.
  • Samples 2-1 to 2-6 in which the diffuse reflectance on the surface of the conductive part was 60% or more showed a relatively high short-circuit current Jsc. From this result, it can be seen that the power generation efficiency is improved according to the solar cell module using the conductive portion having a diffuse reflectance of 60% or more on the solar cell module light incident surface side.
  • Example 3 A plurality of plated copper wires (width 0.8 mm, thickness 0.25 mm, rectangular cross section) having different plating thicknesses were prepared as the conductive portions.
  • the plated copper wire one having a width tolerance of ⁇ 10%, a thickness tolerance of ⁇ 4%, a tensile strength of 200 N / mm 2 or more, and a plating type of silver having a purity of 99.9 wt% or more was used.
  • the diffuse reflectance (%) of the surface was measured.
  • FIG. 11 shows the relationship between the plating thickness ( ⁇ m) and the diffuse reflectance (%).
  • the diffuse reflectance improved as the plating thickness of the conductive part increased.
  • the plating thickness is 1.5 ⁇ m or more, a diffuse reflectance of 90% or more is realized.
  • the power generation efficiency can be improved by increasing the plating thickness of the conductive part.
  • Test solar cell modules were constructed using the materials used in Experiment 1 above. Specifically, a conductive portion is disposed on the upper surface of one solar cell, a first resin layer is disposed thereon, a conductive portion is disposed on the lower surface of the solar cell, and a second resin is disposed below the conductive portion. Layers were placed. Eight copper wires were used as the conductive portions, and were arranged at 2 cm intervals so as to be parallel to each other. Two copper terminal bars were installed on both sides of the solar battery cell as take-out electrodes, and fixed to conductive parts (copper wires) arranged vertically.
  • Example 4-2> Without using the conductive part and the first and second resin layers, three bus bar electrodes (trade name “SSA-SPS”, 1.5 mm ⁇ 0.2 mm solder-coated copper wire, manufactured by Hitachi Cable Ltd.) are soldered together.
  • SSA-SPS trade name “SSA-SPS”
  • 1.5 mm ⁇ 0.2 mm solder-coated copper wire manufactured by Hitachi Cable Ltd.
  • a test solar cell module was constructed in the same manner as Sample 4-1, except that the Si-based solar cell (polycrystalline cell, manufactured by GINTECH) was used.
  • DH test About the solar cell module for a test obtained above, DH test was implemented on 85 degreeC85% RH conditions. The module was taken out before the test was started (initially) and at predetermined intervals (approximately every 500 hours) from the start of the test, the light conversion efficiency was measured, and the maintenance ratio (%) of the light conversion efficiency with respect to the initial light conversion efficiency was evaluated. . The results are shown in FIG. FIG. 12 also shows an EL inspection image of the solar battery cell after completion of the DH test. The light conversion efficiency was measured by the same method as in Experiment 1 above.
  • Example 5-1 A test solar cell module was constructed using the above materials. Specifically, the solar battery cell was cut into a 5 cm square. As shown in FIG. 13, on the surface of the solar cell SC, one bus bar electrode BE is arranged at the center, and a plurality of finger electrodes FE orthogonal to the bus bar electrode BE are arranged. The width of the finger electrode FE is approximately in the range of 40 to 80 ⁇ m. Two conductive lines CW were arranged on the upper surface of the solar cell SC so as not to contact the finger electrode FE but to contact the bus bar electrode BE only at one point.
  • one conductive line CW is arranged on one end side of the bus bar electrode BE, and the other conductive line CW is arranged on the other end side of the bus bar electrode BE.
  • the two conductive lines CW are each parallel to the longitudinal direction of the finger electrode FE, and thus the two conductive lines CW are parallel to each other. The distance between them was 3 cm.
  • the upper surface (front surface) of the solar battery cell SC on which the conductive line CW is arranged is schematically shown in FIG.
  • the 1st resin layer was arrange
  • a solar cell module for test was constructed by performing a drying treatment at 150 ° C. for 15 minutes.
  • the test solar cell module TM has a rectangular shape (size of 7 cm ⁇ 15 cm), and a solar cell SC is arranged at the center thereof.
  • the two conductive lines CW extend to one short side (7 cm side) and the other short side constituting the outer edge of the test solar cell module TM, and are exposed to the outside of the module TM.
  • each of the two conductive lines CW is disposed so as to run on the finger electrode FE, and is in line contact with the bus bar electrode BE at one point while being in contact with the finger electrode FE. Otherwise, a test solar cell module was constructed in the same manner as in Sample 5-1.
  • FIG. 16 shows the relationship between the resistance value change (times) and the strain deformation amount (mm) with respect to the initial resistance value.
  • the strain deformation amount is the strain height (arrow height) of the test solar cell module TM bent into a convex shape in an arc shape as schematically shown in FIG.
  • a test solar cell module was constructed by the following method. Specifically, as shown schematically in FIG. 18 (a), a solar cell SC of approximately 6 inches square having three finger electrodes FE printed in parallel on the surface at intervals was prepared. On this solar cell SC, as shown in FIG. 18B, two conductive lines CW were arranged so as to be orthogonal to the three finger electrodes FE of the solar cell SC. These two conductive lines CW are parallel to each other with an interval of 10 cm, and are arranged so as to contact each of the three finger electrodes FE only at one point. The 1st resin layer was arrange
  • Example 6-2 About 6 inch square solar cells SC schematically shown in FIG. 19A were prepared. On the surface of the solar cell SC, as shown in the figure, there are three finger electrodes FE parallel to each other at intervals, and an orthogonal electrode PE (Perpendicular Electrode surface electrode first linear) perpendicular to the finger electrodes FE. Corresponding to the portion, also referred to as a conductive wire contact portion). The distance between the two orthogonal electrodes PE shown on the surface of the solar cell SC in FIG. 19A is 10 cm. On this solar cell SC, as shown in FIG. 19B, two conductive lines CW were disposed on the lines of the two orthogonal electrodes PE, respectively. The conductive line CW is in continuous contact with the orthogonal electrode PE and in contact with each of the three finger electrodes FE. A test resin module was constructed in the same manner as Sample 6-1 except that the first resin layer was disposed thereon.
  • PE Perpendicular Electrode surface electrode first linear
  • test solar cell module For the test solar cell module produced, a digital multimeter cable (model “VOAC7522”, manufactured by Iwasaki Keiki Co., Ltd.) is attached to the end of the two conductive wires on the diagonal line, and the resistance value (initial) Resistance value) was measured. Next, the test solar cell module is subjected to a heat treatment at 80 ° C. for 5 minutes with a commercially available air constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.) so that the back surface side of the solar cell faces upward (so that it becomes the upper surface ), The test solar cell module was fixed on two sides (two sides facing each other) on the side from which the conductive wire was drawn.
  • a digital multimeter cable model “VOAC7522”, manufactured by Iwasaki Keiki Co., Ltd.
  • the test solar cell module after applying the load is bent using a stretching machine so that the light-receiving surface side is convex, and the amount of distortion deformation (synonymous with the amount of distortion deformation shown in FIG. 17. The strain was applied until 2 cm was obtained. After that, heat treatment is further performed at 80 ° C. for 5 minutes in a ventilation constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.), and this time, with the surface (light receiving surface) side of the solar cell facing upward (to be the upper surface) The test solar cell module was fixed at the two sides.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a wiring structure having high connection reliability and excellent wiring workability. According to the present invention, a wiring structure is provided which bridges over from the upper surface of one solar cell to the lower surface of the other solar cell of two solar cells arranged in a solar cell module. Said wiring structure has a first region which corresponds to the one solar cell and a second region which corresponds to the other solar cell. Further, the wiring structure is provided with a conductive section which is continuous from the first region to the second region, a first resin layer which is disposed above the conductive section in the first region, and a second resin layer which is disposed below the conductive section in the second region. Also, the conductive section is partially disposed in the first region.

Description

[規則37.2に基づきISAが決定した発明の名称] 配線構造体、太陽電池モジュールおよび太陽電池セル[Name of invention determined by ISA based on Rule 37.2] Wiring structure, solar cell module and solar cell
 本発明は、配線構造体および太陽電池モジュールに関する。詳しくは、太陽電池モジュールに好ましく用いられる配線構造体および太陽電池モジュールに関する。
 本出願は、2015年7月10日に出願された日本国特許出願2015-139211号、2015年11月6日に出願された日本国特許出願2015-218976号、および2016年3月18日に出願された日本国特許出願2016-054789号に基づく優先権を主張しており、それらの出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a wiring structure and a solar cell module. Specifically, the present invention relates to a wiring structure and a solar cell module that are preferably used for a solar cell module.
This application includes Japanese Patent Application No. 2015-139211 filed on July 10, 2015, Japanese Patent Application No. 2015-218976 filed on November 6, 2015, and March 18, 2016. Claims priority based on the filed Japanese Patent Application No. 2016-054789, the entire contents of which are incorporated herein by reference.
 光エネルギーを電力に変換する太陽電池モジュールは、クリーンな発電装置として幅広く利用されている。太陽電池モジュールは、太陽電池セルと、該セルに接続した配線とを備えており、この配線を通って上記セルにて発電された電力は外部に供給されるように構成されている。この種の従来技術を開示する文献として特許文献1~8が挙げられる。特許文献1~6は、太陽電池セルの表面側にn型電極を部分的に配置し、裏面側にp型電極を配置するタイプの太陽電池モジュールに関するものであり、特許文献7,8は、裏面側に両電極が配置されたバックコンタクト方式を採用する太陽電池モジュールに関するものである。 Solar cell modules that convert light energy into electric power are widely used as clean power generators. The solar cell module includes a solar cell and a wiring connected to the cell, and the power generated in the cell through the wiring is configured to be supplied to the outside. Patent documents 1 to 8 are cited as documents disclosing this type of prior art. Patent Documents 1 to 6 relate to a solar cell module in which an n-type electrode is partially disposed on the front surface side of the solar battery cell and a p-type electrode is disposed on the back surface side. The present invention relates to a solar cell module that employs a back contact method in which both electrodes are arranged on the back side.
日本国特許出願公開2005-72115号公報Japanese Patent Application Publication No. 2005-72115 日本国特許出願公開2013-232496号公報Japanese Patent Application Publication No. 2013-232496 日本国公表特許公報2005-536894号Japanese published patent publication 2005-536894 日本国特許第5185913号公報Japanese Patent No. 5185913 日本国特許出願公開2014-63978号公報Japanese Patent Application Publication No. 2014-63978 日本国特許出願公開2014-3064号公報Japanese Patent Application Publication No. 2014-3064 日本国特許出願公開2010-41009号公報Japanese Patent Application Publication No. 2010-41009 日本国特許出願公開2011-238849号公報Japanese Patent Application Publication No. 2011-238849
 表裏面に電極を有するタイプの太陽電池モジュールにおいて、例えば特許文献1,2に開示されている構造は、太陽電池セルの配線をはんだ等を用いて個別に接合しなければならず配線作業に手間と時間を要する。はんだ接合等のように接合の際に加熱を行う場合には、加熱によりセルの特性が低下したり、セルに反りや割れが生じるおそれがある。はんだ接合ではフラックス汚染の問題もある。 In solar cell modules of the type having electrodes on the front and back surfaces, for example, the structures disclosed in Patent Documents 1 and 2 require that the wiring of solar cells must be individually joined using solder etc. And takes time. When heating is performed at the time of bonding, such as solder bonding, the characteristics of the cell may be reduced by heating, or the cell may be warped or cracked. Solder joints also have a problem of flux contamination.
 また、特許文献3~6では、予め形成した配線パターンで太陽電池セルを上下から挟み、セルの間にて上下の配線パターンを導通させる技術が提案されている。例えば、特許文献5に記載されている太陽電池モジュールは、金属配線を表面に有する封止シートを一対用意し、この一対の封止シートで複数の太陽電池セルを挟んで、上記金属配線と太陽電池セルとを当接させて押圧および加熱することによって、はんだ接合を必要とすることなく複数の太陽電池セルを電気的に接続するとしている。しかし、上下の金属配線の導通は、接触面積の確保、位置合わせの精度等の要素を含み、また、上記金属配線の導通状態(当接状態)は封止樹脂の流動等によって損なわれるおそれがある。これらは集電効率の低下や配線不良の原因となり得る。特許文献3,4および6では、上下の配線パターンの接続に低融点合金や導電性フィルムを用いているが、上下に分離した配線パターンをモジュール構築時に接触させるという点では、特許文献5と同じ手法を採用しており、配線の上下接続における信頼性は万全ではない。 Patent Documents 3 to 6 propose a technique in which a solar battery cell is sandwiched from above and below by a previously formed wiring pattern, and the upper and lower wiring patterns are conducted between the cells. For example, a solar cell module described in Patent Document 5 prepares a pair of sealing sheets having metal wiring on the surface, sandwiches a plurality of solar cells between the pair of sealing sheets, and the metal wiring and the solar cell. By pressing and heating the battery cells in contact with each other, a plurality of solar battery cells are electrically connected without requiring solder bonding. However, the conduction between the upper and lower metal wirings includes factors such as securing the contact area and accuracy of alignment, and the conduction state (contact state) of the metal wirings may be impaired by the flow of the sealing resin or the like. is there. These can cause a decrease in current collection efficiency and wiring defects. In Patent Documents 3, 4 and 6, a low melting point alloy or a conductive film is used to connect the upper and lower wiring patterns, but the same as Patent Document 5 in that the wiring patterns separated vertically are brought into contact when the module is constructed. This method is used, and the reliability of the upper and lower wiring connections is not perfect.
 本発明は、上記の事情に鑑みて創出されたものであり、接続信頼性が高く、配線作業性に優れる配線構造体を提供することを目的とする。関連する他の目的は、接続信頼性が高く、発電効率および耐久性に優れる太陽電池モジュールを提供することである。 The present invention was created in view of the above circumstances, and an object thereof is to provide a wiring structure having high connection reliability and excellent wiring workability. Another related object is to provide a solar cell module having high connection reliability and excellent power generation efficiency and durability.
 本発明によると、太陽電池モジュール内に配列される2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面にかけ渡される配線構造体(太陽電池モジュール用配線構造体)が提供される。この配線構造体は、前記一方の太陽電池セルに対応する第1領域と、前記他方の太陽電池セルに対応する第2領域と、を有する。また、前記配線構造体は、前記第1領域から前記第2領域まで連続する導電部と、前記第1領域において前記導電部の上方に配置される第1樹脂層と、前記第2領域において前記導電部の下方に配置される第2樹脂層と、を備える。そして、前記導電部は、前記第1領域において部分的に配置されている。
 上記の構成によると、導電部は、一体型などの連続した構造で2つの太陽電池セルの上下にかけ渡されるので、上下に分離した2つの配線を重ね合わせて接続する方法と比べて、配線の接続信頼性に優れる。上下の配線の位置合わせをする必要もない。また、導電部は第1樹脂層および第2樹脂層に支持されているので、導電部の形状にかかわらず、配線構造体は取り扱いやすく、配線作業性に優れる。さらに、第1樹脂層および第2樹脂層は、太陽電池モジュール構築時にそれぞれ導電部と封止樹脂との間に位置し、これによって封止樹脂の導電部側への流動を防ぎ、例えば封止樹脂の流動が太陽電池セルと導電部との接触状態に悪影響を及ぼす事象を防止する。その結果、太陽電池セルと導電部との接触状態は良好に保たれ、集電効率の低下は防止される。
According to the present invention, there is provided a wiring structure (solar cell module wiring structure) that extends from the upper surface of one of the two solar cells arranged in the solar cell module to the lower surface of the other solar cell. Provided. The wiring structure includes a first region corresponding to the one solar battery cell and a second region corresponding to the other solar battery cell. In addition, the wiring structure includes a conductive portion continuous from the first region to the second region, a first resin layer disposed above the conductive portion in the first region, and the second region in the second region. A second resin layer disposed below the conductive portion. The conductive portion is partially disposed in the first region.
According to the above configuration, the conductive portion is connected to the upper and lower sides of the two solar cells in a continuous structure such as an integral type, so that the wiring is compared with the method in which the two upper and lower separated wirings are overlapped and connected. Excellent connection reliability. There is no need to align the upper and lower wires. Further, since the conductive portion is supported by the first resin layer and the second resin layer, the wiring structure is easy to handle and has excellent wiring workability regardless of the shape of the conductive portion. Furthermore, the first resin layer and the second resin layer are positioned between the conductive portion and the sealing resin, respectively, when the solar cell module is constructed, thereby preventing the flow of the sealing resin toward the conductive portion, for example, sealing The phenomenon in which the resin flow adversely affects the contact state between the solar battery cell and the conductive portion is prevented. As a result, the contact state between the solar battery cell and the conductive portion is kept good, and a decrease in current collection efficiency is prevented.
 ここに開示される技術(配線構造体、太陽電池モジュール、それらの製造方法を包含する。以下同じ。)の好ましい一態様では、前記導電部は、前記第1領域から前記第2領域まで延びる複数の導電線から構成されている。また、前記複数の導電線は、互いに間隔をおいて配置されていることが好ましい。このように構成することで、シャドーロスの増大を抑制しつつ高い集電効率を実現することができる。 In a preferred aspect of the technology disclosed herein (including a wiring structure, a solar cell module, and a method for manufacturing them, the same applies hereinafter), the conductive portion extends from the first region to the second region. It is comprised from this. Further, it is preferable that the plurality of conductive lines are arranged at intervals. By comprising in this way, high current collection efficiency is realizable, suppressing the increase in shadow loss.
 ここに開示される技術の好ましい一態様では、前記導電線は、めっきが施された銅線である。また、前記めっきは銀めっきであることがより好ましい。さらに好ましい一態様では、前記銀めっきの純度は99.7重量%以上である。このように構成することで、発電効率が向上する。 In a preferred aspect of the technology disclosed herein, the conductive wire is a copper wire plated. The plating is more preferably silver plating. In a more preferred embodiment, the silver plating has a purity of 99.7% by weight or more. With this configuration, power generation efficiency is improved.
 ここに開示される技術の好ましい一態様では、前記導電線は60%以上の拡散反射率を示す。このように構成することで、発電効率が向上する。 In a preferred aspect of the technology disclosed herein, the conductive wire exhibits a diffuse reflectance of 60% or more. With this configuration, power generation efficiency is improved.
 ここに開示される技術の好ましい一態様では、前記第1樹脂層および前記第2樹脂層は、いずれも粘着剤層である。これにより、粘着剤層の接着力を利用して、導電部は、第1樹脂層および前記第2樹脂層に良好に固定される。また、第1樹脂層および第2樹脂層は、導電部越しに太陽電池セルに接着することで、太陽電池セルと導電部とを密着させ、かつその密着状態を良好に維持し得る。より好ましい一態様では、前記第1樹脂層および前記第2樹脂層は、いずれも架橋された粘着剤層である。架橋された粘着剤層は、第1および第2の樹脂層として、好ましい物性(典型的には貯蔵弾性率)を発揮する。 In a preferred aspect of the technology disclosed herein, the first resin layer and the second resin layer are both adhesive layers. Thereby, the conductive part is satisfactorily fixed to the first resin layer and the second resin layer using the adhesive force of the pressure-sensitive adhesive layer. Moreover, a 1st resin layer and a 2nd resin layer can adhere | attach a photovoltaic cell and a conductive part, and can maintain the contact | adherence state favorably by adhere | attaching a photovoltaic cell over a conductive part. In a more preferred embodiment, the first resin layer and the second resin layer are both crosslinked adhesive layers. The crosslinked pressure-sensitive adhesive layer exhibits preferable physical properties (typically storage elastic modulus) as the first and second resin layers.
 ここに開示される技術の好ましい一態様では、前記第1樹脂層および前記第2樹脂層の貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は、いずれも5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である。このように構成することで、第1樹脂層および第2樹脂層の特性を利用して、太陽電池モジュール構築時に導電部を太陽電池セル表面に良好に当接させることができる。 In a preferred aspect of the technology disclosed herein, the storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of each of the first resin layer and the second resin layer is 5000 Pa or more, and The tan δ at 80 ° C. to 150 ° C. is less than 0.4. By comprising in this way, the electroconductive part can be made to contact | abut to the solar cell surface favorably at the time of solar cell module construction using the characteristic of the 1st resin layer and the 2nd resin layer.
 また、本発明によると、剥離ライナー付き配線構造体が提供される。この剥離ライナー付き配線構造体は:ここに開示されるいずれかの配線構造体と;前記第1領域において前記第1樹脂層の上面に配置される第1剥離ライナーと;前記第1領域において前記導電部の下面に配置される第2剥離ライナーと;前記第2領域において前記導電部の上面に配置される第3剥離ライナーと;前記第2領域において前記第2樹脂層の下面に配置される第4剥離ライナーと;を備える。
 上記構成の剥離ライナー付き配線構造体を利用することで、太陽電池モジュールを効率よく、かつ精度よく製造することができる。特に限定解釈されるものではないが、例えば、第2剥離ライナーと第3剥離ライナーとを配線構造体から剥がして、配線構造体の第1領域の露出箇所に一の太陽電池セルの表面を重ね合わせ、第2領域の露出箇所に他の一の太陽電池セルの裏面を重ね合わせる。その後、第1剥離ライナーと第4剥離ライナーを剥がして、配線構造体が接続した太陽電池セルを2枚の封止樹脂で上下から挟んで封止することにより、太陽電池モジュールを構築することができる。このような作業性に優れた方法によって、接続信頼性に優れた配線が実現される。
Moreover, according to this invention, a wiring structure with a release liner is provided. The wiring structure with release liner includes: any of the wiring structures disclosed herein; a first release liner disposed on an upper surface of the first resin layer in the first region; A second release liner disposed on the lower surface of the conductive portion; a third release liner disposed on the upper surface of the conductive portion in the second region; and a lower surface of the second resin layer in the second region. A fourth release liner.
By using the wiring structure with a release liner having the above configuration, the solar cell module can be manufactured efficiently and accurately. Although not particularly limited, for example, the second release liner and the third release liner are peeled from the wiring structure, and the surface of one solar battery cell is overlaid on the exposed portion of the first region of the wiring structure. In addition, the back surface of the other solar cell is overlaid on the exposed portion of the second region. Thereafter, the first release liner and the fourth release liner are peeled off, and the solar battery module connected to the wiring structure is sandwiched between two sealing resins from above and below to form a solar battery module. it can. By such a method with excellent workability, wiring excellent in connection reliability is realized.
 また、本発明によると、太陽電池モジュール内に配列される2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面にかけ渡される配線構造体(太陽電池モジュール用配線構造体)が提供される。この配線構造体は、前記一方の太陽電池セルに対応する第1領域と、前記他方の太陽電池セルに対応する第2領域と、を有する。また、前記配線構造体は、前記第1領域から前記第2領域まで連続する導電部と、前記第1領域において前記導電部の上方に配置される樹脂層と、を備える。そして、前記導電部は、前記第1領域において部分的に配置されている。このように構成することによって、接続信頼性が高く、配線作業性に優れる配線構造体が得られる。なお、前記樹脂層は上述の第1樹脂層に相当する。 In addition, according to the present invention, a wiring structure (a wiring structure for a solar battery module) spans from the upper surface of one of the two solar cells arranged in the solar battery module to the lower surface of the other solar cell. ) Is provided. The wiring structure includes a first region corresponding to the one solar battery cell and a second region corresponding to the other solar battery cell. The wiring structure includes a conductive portion that continues from the first region to the second region, and a resin layer that is disposed above the conductive portion in the first region. The conductive portion is partially disposed in the first region. With such a configuration, a wiring structure having high connection reliability and excellent wiring workability can be obtained. The resin layer corresponds to the first resin layer described above.
 また、本発明によると、剥離ライナー付き配線構造体が提供される。この剥離ライナー付き配線構造体は:ここに開示されるいずれかの配線構造体と;前記第1領域において前記第1樹脂層の上面に配置される第1剥離ライナーと;前記第1領域において前記導電部の下面に配置される第2剥離ライナーと;を備える。上記構成の剥離ライナー付き配線構造体を利用することで、太陽電池モジュールを効率よく製造することができる。 Moreover, according to the present invention, a wiring structure with a release liner is provided. The wiring structure with release liner includes: any of the wiring structures disclosed herein; a first release liner disposed on an upper surface of the first resin layer in the first region; A second release liner disposed on the lower surface of the conductive portion. A solar cell module can be efficiently manufactured by using the wiring structure with a release liner having the above-described configuration.
 また、本発明によると、第1領域と第2領域とを有する構造体が提供される。この構造体は、前記第1領域から前記第2領域まで連続する導電部と、前記第1領域において前記導電部の一方の表面に配置される樹脂層と、を備える。前記導電部は、前記第1領域において部分的に配置されている。好ましい一態様に係る前記構造体は、前記樹脂層として、前記第1領域において前記導電部の第1面(例えば上方。上面でもあり得る。)に配置される第1樹脂層を備え、さらに、前記第2領域において前記導電部の第2面(例えば下方。下面でもあり得る。)に配置される第2樹脂層を備える。 Further, according to the present invention, a structure having a first region and a second region is provided. The structure includes a conductive portion that continues from the first region to the second region, and a resin layer that is disposed on one surface of the conductive portion in the first region. The conductive portion is partially disposed in the first region. The structure according to a preferred aspect includes, as the resin layer, a first resin layer disposed on a first surface (for example, an upper side or an upper surface) of the conductive portion in the first region, The second region includes a second resin layer disposed on a second surface (for example, a lower side or a lower surface) of the conductive portion in the second region.
 また、本発明によると、ここに開示されるいずれかの構造体または配線構造体を備える太陽電池モジュールが提供される。上記構造体を使用することで、効率よく且つ精度よく太陽電池モジュールを構築することができる。また、モジュール内の配線は接続信頼性に優れるので、優れた集電効率を確実かつ安定して実現することができる。 Also, according to the present invention, a solar cell module including any one of the structures or wiring structures disclosed herein is provided. By using the structure, a solar cell module can be constructed efficiently and accurately. Moreover, since the wiring in the module is excellent in connection reliability, excellent current collection efficiency can be realized reliably and stably.
 また、本発明によると、太陽電池モジュールが提供される。この太陽電池モジュールは、間隔をおいて配列される複数の太陽電池セルと、前記複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面にかけ渡されて該隣りあう2つの太陽電池セルを電気的に接続する導電部と、前記隣りあう2つの太陽電池セルの一方の太陽電池セルの上方に配置される第1樹脂層と、前記隣りあう2つの太陽電池セルの他方の太陽電池セルの下方に配置される第2樹脂層と、を備える。また、前記導電部は、前記一方の太陽電池セルと前記第1樹脂層との間、および前記他方の太陽電池セルと前記第2樹脂層との間に配置されており、かつ前記一方の太陽電池セルの上面に部分的に配置されている。
 上記の構成によると、導電部は、連続した構造で2つの太陽電池セルの上下にかけ渡されるので、上下に分離した2つの配線を重ね合わせて接続する方法と比べて、配線の接続信頼性に優れる。また、第1樹脂層および第2樹脂層は、太陽電池モジュール構築時にそれぞれ導電部と封止樹脂との間に位置し、封止樹脂の導電部側への流動を防ぐ。これによって、例えば、封止樹脂の流動が太陽電池セルと導電部との接触状態に悪影響を及ぼす事象が防止される。その結果、太陽電池セルと導電部との接触状態は良好に保たれ、集電効率の低下は防止される。換言すると、ここに開示される太陽電池モジュールは、発電効率および耐久性に優れる。
Moreover, according to this invention, a solar cell module is provided. The solar cell module includes a plurality of solar cells arranged at intervals and an upper surface of one solar cell of two adjacent solar cells out of the plurality of solar cells from the other solar cell. A conductive part that is spanned across the lower surface and electrically connects the two adjacent solar cells; a first resin layer disposed above one of the two adjacent solar cells; A second resin layer disposed below the other solar cell of the two adjacent solar cells. The conductive portion is disposed between the one solar cell and the first resin layer, and between the other solar cell and the second resin layer, and the one solar cell. It is partially arranged on the upper surface of the battery cell.
According to the above configuration, the conductive portion is connected to the top and bottom of the two solar cells in a continuous structure, so that the connection reliability of the wiring is improved as compared to the method of connecting the two wirings separated from each other vertically. Excellent. The first resin layer and the second resin layer are located between the conductive portion and the sealing resin, respectively, when the solar cell module is constructed, and prevent the sealing resin from flowing toward the conductive portion. Thereby, for example, an event in which the flow of the sealing resin adversely affects the contact state between the solar battery cell and the conductive portion is prevented. As a result, the contact state between the solar battery cell and the conductive portion is kept good, and a decrease in current collection efficiency is prevented. In other words, the solar cell module disclosed here is excellent in power generation efficiency and durability.
 ここに開示される技術の好ましい一態様では、前記導電部は、前記隣りあう2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面まで延びる複数の導電線から構成されている。また、前記複数の導電線は、互いに間隔をおいて配置されていることが好ましい。このように構成することで、シャドーロスの増大を抑制しつつ高い集電効率を実現することができる。 In a preferred aspect of the technology disclosed herein, the conductive portion is composed of a plurality of conductive lines extending from the upper surface of one of the two adjacent solar cells to the lower surface of the other solar cell. ing. Further, it is preferable that the plurality of conductive lines are arranged at intervals. By comprising in this way, high current collection efficiency is realizable, suppressing the increase in shadow loss.
 ここに開示される技術の好ましい一態様では、前記第1樹脂層は前記他方の太陽電池セルの上方には配置されておらず、前記第2樹脂層は前記一方の太陽電池セルの下方には配置されていない。このような構成において、ここに開示される技術による効果は実現される。 In a preferred aspect of the technology disclosed herein, the first resin layer is not disposed above the other solar battery cell, and the second resin layer is disposed below the one solar battery cell. Not placed. In such a configuration, the effect of the technique disclosed herein is realized.
 ここに開示される技術の好ましい一態様では、太陽電池モジュールは、前記第1樹脂層および前記第2樹脂層の外方から前記複数の太陽電池セルを覆う封止樹脂を備える。また、太陽電池モジュールは、前記封止樹脂の外方から前記複数の太陽電池セルを挟む表面被覆部材および裏面被覆部材を備えることがより好ましい。換言すると、太陽電池モジュールは、上方から、封止樹脂/第1樹脂層/導電部(表面側導電部)/太陽電池セル/導電部(裏面側導電部)/第2樹脂層/封止樹脂がこの順で積層された断面構造を有するものであり得る。また、太陽電池モジュールは、上方に位置する封止樹脂の上に表面被覆部材が配置されており、下方に位置する封止樹脂の下に裏面被覆部材が配置されているものであり得る。なお、表面側導電部と裏面側導電部とは分離した別部材である。 In a preferred aspect of the technology disclosed herein, the solar cell module includes a sealing resin that covers the plurality of solar cells from the outside of the first resin layer and the second resin layer. The solar cell module more preferably includes a surface covering member and a back surface covering member that sandwich the plurality of solar cells from the outside of the sealing resin. In other words, the solar cell module includes, from above, sealing resin / first resin layer / conductive portion (front side conductive portion) / solar battery cell / conductive portion (back side conductive portion) / second resin layer / sealing resin. May have a cross-sectional structure laminated in this order. Further, the solar cell module may be one in which the surface covering member is disposed on the sealing resin positioned above and the back surface covering member is disposed below the sealing resin positioned below. The front surface side conductive portion and the back surface side conductive portion are separate members.
 ここに開示される技術の好ましい一態様では、前記複数の太陽電池セルの各々の表面には電極が設けられている。前記電極は、前記複数の導電線に沿って線状に延びる複数の第1の線状部分と、該第1の線状部分と交差するように線状に延びる複数の第2の線状部分と、を有する。太陽電池セルの表面電極に、導電線に沿うように配置される第1の線状部分を設け、これを導電線と重ねることで、導電線と電極との接触面積が大きくなり集電効率が向上する。また、太陽電池セルの表面電極は、上記第1の線状部分にて導電線と線状に連続して接触(線接触)するため、接触部分に浮き等があった場合でも接触不良が生じ難く導通信頼性に優れる。ここに開示される技術は、太陽電池セルの表面電極と導電線とが、接着手段(直接的な接着手段)を用いずに当接によって導通するものであり得る。かかる構成において、接触面積を増大し導通信頼性を向上させることの利点は大きい。 In a preferred aspect of the technology disclosed herein, an electrode is provided on each surface of the plurality of solar cells. The electrode includes a plurality of first linear portions extending linearly along the plurality of conductive lines, and a plurality of second linear portions extending linearly so as to intersect the first linear portions. And having. A first linear portion arranged along the conductive wire is provided on the surface electrode of the solar battery cell, and by overlapping this with the conductive wire, the contact area between the conductive wire and the electrode is increased, and the current collection efficiency is increased. improves. Further, since the surface electrode of the solar battery cell is in continuous contact (line contact) with the conductive wire at the first linear portion, contact failure occurs even when the contact portion has a float or the like. It is difficult and excellent in conduction reliability. The technique disclosed here may be such that the surface electrode of the solar battery cell and the conductive wire are brought into conduction by contact without using an adhesive means (direct adhesive means). In such a configuration, the advantage of increasing the contact area and improving the conduction reliability is great.
 なお、本明細書では、太陽電池セルの表面電極と導電線との当接による配線を、はんだ接合や導電性接着剤等の接着手段(直接的な接着手段。導電性接着手段ともいう。以下同じ。)が用いられた接合と区別する意味で「物理接触」ということがある。物理接触とは、接着手段を用いることなく当接のみで接触し導通が実現された接触状態や接触方法を指す。ここに開示される第1樹脂層や第2樹脂層は、接着性を有するものであり得るが、上記物理接触を補助および保持する役割を担うものであり、上記接着手段とは異なるものとして把握される。はんだ等の低融点金属を使用しない「はんだレス配線」は、物理接触型配線の典型例である。本明細書において、物理接触型配線によって構築された太陽電池モジュールを物理接触型太陽電池モジュールということがある。物理接触型太陽電池モジュールは、非加熱で導通可能であるので、加熱によるセル特性の低下を防止することができる。また、はんだレス配線を行う太陽電池モジュール(はんだレス太陽電池モジュール)によると、上述のフラックス汚染を回避できるだけでなく、はんだ接合を原因とするリーチングやクレータリング等の問題も解消することができる。 In the present specification, the wiring formed by the contact between the surface electrode of the solar battery cell and the conductive wire is also referred to as an adhesive means such as solder joint or conductive adhesive (direct adhesive means. Also referred to as conductive adhesive means). The same)) may be referred to as “physical contact” in order to distinguish it from the joint used. Physical contact refers to a contact state or a contact method in which conduction is achieved by contact only by contact without using an adhesive means. Although the 1st resin layer and 2nd resin layer which are disclosed here may have adhesiveness, they play the role which assists and hold | maintains the said physical contact, and grasp it as a thing different from the said adhesion | attachment means. Is done. “Solderless wiring” that does not use low melting point metal such as solder is a typical example of physical contact type wiring. In this specification, a solar cell module constructed by physical contact type wiring may be referred to as a physical contact type solar cell module. Since the physical contact type solar cell module can be conducted without heating, cell characteristics can be prevented from being deteriorated due to heating. Moreover, according to the solar cell module that performs solderless wiring (solderless solar cell module), not only the above-mentioned flux contamination can be avoided, but also problems such as leaching and cratering caused by solder bonding can be solved.
 ここに開示される技術の好ましい一態様では、前記第1の線状部分の幅は前記導電線の幅よりも小さい。ここに開示される技術においては、太陽電池セルの表面電極に第1の線状部分を設けて、表面電極と導電線とが線状に接触していれば、第1の線状部分の幅を導電線の幅よりも小さくしても、集電効率は導電線により十分に確保することができる。このことは、接合強度を確保するために配線材よりも太幅に構成されていた従来のバスバー電極と本質的に異なる点である。第1の線状部分を導電線よりも細幅にすることは、シャドーロス低減や電極材料節減の点でも有益である。 In a preferred aspect of the technology disclosed herein, the width of the first linear portion is smaller than the width of the conductive line. In the technique disclosed here, if the first linear portion is provided on the surface electrode of the solar battery cell and the surface electrode and the conductive wire are in linear contact, the width of the first linear portion is determined. Even if it is smaller than the width of the conductive wire, the current collection efficiency can be sufficiently secured by the conductive wire. This is a point that is essentially different from the conventional bus bar electrode configured to be wider than the wiring material in order to ensure the bonding strength. Making the first linear portion narrower than the conductive line is also beneficial in terms of reducing shadow loss and saving electrode material.
 ここに開示される技術の好ましい一態様では、前記第1の線状部分の幅W1と前記第2の線状部分の幅W2との比(W1/W2)は、0.1~10の範囲内である。第1および第2の線状部分の幅を所定の範囲とすることにより、スクリーン印刷等の各種電極形成手段を第1および第2の線状部分に対して同時に適用することが可能となり、生産性が向上する。また、電極の各線状部分の幅が所定の範囲内となるので、精度よい電極形成が実現され得る。 In a preferred aspect of the technology disclosed herein, a ratio (W1 / W2) of the width W1 of the first linear portion and the width W2 of the second linear portion is in a range of 0.1 to 10. Is within. By setting the width of the first and second linear portions within a predetermined range, various electrode forming means such as screen printing can be simultaneously applied to the first and second linear portions, and production Improves. Further, since the width of each linear portion of the electrode falls within a predetermined range, accurate electrode formation can be realized.
 ここに開示される技術の好ましい一態様では、前記太陽電池セルの表面に設けられた電極は、前記第1の線状部分にて前記導電線と当接している。また、上記当接には接着手段が用いられていないことがより好ましい。ここに開示される技術によると、上記のように、はんだ付けや導電性接着剤等の接着手段を用いることなく太陽電池モジュール内の配線が可能であるので、集電効率、導通信頼性の向上に加えて、生産性も向上させることができる。 In a preferred aspect of the technology disclosed herein, the electrode provided on the surface of the solar cell is in contact with the conductive wire at the first linear portion. More preferably, no adhesive means is used for the contact. According to the technology disclosed herein, as described above, wiring in the solar cell module is possible without using an adhesive means such as soldering or conductive adhesive, so that the current collection efficiency and the conduction reliability are improved. In addition, productivity can be improved.
 また、本発明によると、太陽電池モジュールの製造方法が提供される。この製造方法は、ここに開示されるいずれかの構造体または配線構造体を用いて実施される。前記製造方法によると、配線作業性および接続信頼性に優れた太陽電池モジュールが実現される。具体的には、前記製造方法は、ここに開示されるいずれかの構造体または配線構造体を用いて太陽電池セルの配線を行う工程を含む。好ましい一態様では、太陽電池モジュールの製造方法は:少なくとも2つの太陽電池セルを用意する工程と;ここに開示されるいずれかの構造体または配線構造体を用意する工程と;一の太陽電池セルの上面から他の一の太陽電池セルの下面に前記構造体をかけ渡す工程と;を含む。より具体的には、前記一の太陽電池セルの表(おもて)面に前記構造体の前記第1領域(具体的には第1領域の導電部)の下面を接触させ、前記他の一の太陽電池セルの裏面に前記構造体の前記第2領域(具体的には第2領域の導電部)の上面を接触させる工程を含む。 Moreover, according to the present invention, a method for manufacturing a solar cell module is provided. This manufacturing method is carried out using any of the structures or wiring structures disclosed herein. According to the said manufacturing method, the solar cell module excellent in wiring workability | operativity and connection reliability is implement | achieved. Specifically, the manufacturing method includes a step of wiring a solar battery cell using any of the structures or wiring structures disclosed herein. In one preferred embodiment, a method for manufacturing a solar cell module includes: providing at least two solar cells; preparing any of the structures or wiring structures disclosed herein; and one solar cell Crossing the structure from the upper surface of the solar cell to the lower surface of the other solar battery cell. More specifically, the lower surface of the first region (specifically, the conductive portion of the first region) of the structure is brought into contact with the front surface of the one solar cell, and the other A step of bringing the upper surface of the second region (specifically, the conductive portion of the second region) of the structure into contact with the back surface of one solar battery cell.
 ここに開示される製造方法の好ましい一態様では、前記構造体は、2枚または4枚の剥離ライナーを備える剥離ライナー付き構造体(配線構造体)として用意される。剥離ライナー付き構造体が2枚の剥離ライナーを備える場合、前記第1領域において前記第1樹脂層の上面に配置される第1剥離ライナーと、前記第1領域において前記導電部の下面に配置される第2剥離ライナーと、を備える形態で好ましく用意され得る。剥離ライナー付き構造体が4枚の剥離ライナーを備える場合、前記第1領域において前記第1樹脂層の上面に配置される第1剥離ライナーと、前記第1領域において前記導電部の下面に配置される第2剥離ライナーと、前記第2領域において前記導電部の上面に配置される第3剥離ライナーと、前記第2領域において前記第2樹脂層の下面に配置される第4剥離ライナーと、を備える形態で好ましく用意され得る。 In a preferred aspect of the manufacturing method disclosed herein, the structure is prepared as a structure with a release liner (wiring structure) including two or four release liners. When the structure with a release liner includes two release liners, the first release liner disposed on the upper surface of the first resin layer in the first region, and the lower surface of the conductive portion in the first region. And a second release liner. When the structure with a release liner includes four release liners, the first release liner is disposed on the upper surface of the first resin layer in the first region, and is disposed on the lower surface of the conductive portion in the first region. A second release liner, a third release liner disposed on the upper surface of the conductive portion in the second region, and a fourth release liner disposed on the lower surface of the second resin layer in the second region. It can be preferably prepared in the form of comprising.
 また、本明細書によると、間隔をおいて配列される複数の太陽電池セルを備える太陽電池モジュールが提供される。この太陽電池モジュールは、前記複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面にかけ渡されて該隣りあう2つの太陽電池セルを電気的に接続する複数の導電線を備える。この太陽電池モジュールにおいて、前記複数の太陽電池セルの各々の表面には電極が設けられている。また、前記電極は、前記複数の導電線に沿って線状に延びる複数の第1の線状部分と、該第1の線状部分と交差するように線状に延びる複数の第2の線状部分と、を有する。さらに、前記第1の線状部分の幅は前記導電線の幅よりも小さい。
 上記の構成によると、電極の第1の線状部分が導電線に沿って重なるので、導電線と電極との接触面積が大きくなり集電効率が向上する。また、太陽電池セルの表面電極は、上記第1の線状部分にて導電線と線接触するので、接触部分に浮き等があった場合でも接触不良が生じ難く導通信頼性に優れる。さらに、上記第1の線状部分の幅を導電線の幅よりも小さくすることで、集電効率を損なうことなく、シャドーロス低減や電極材料節減を実現し得る。上記の構成を有する太陽電池モジュールは、物理接触による配線を行う態様に好ましく適用される。なかでも、ここに開示される配線構造体を組み込むことが有意義である。
Moreover, according to this specification, a solar cell module provided with the several photovoltaic cell arranged at intervals is provided. The solar cell module is configured such that two adjacent solar cells are extended from the upper surface of one of the two adjacent solar cells out of the plurality of solar cells to the lower surface of the other solar cell. A plurality of conductive wires are provided for electrical connection. In this solar cell module, an electrode is provided on each surface of the plurality of solar cells. The electrode includes a plurality of first linear portions extending linearly along the plurality of conductive lines and a plurality of second lines extending linearly so as to intersect the first linear portions. And a shaped portion. Furthermore, the width of the first linear portion is smaller than the width of the conductive line.
According to said structure, since the 1st linear part of an electrode overlaps along a conductive wire, the contact area of a conductive wire and an electrode becomes large and current collection efficiency improves. In addition, since the surface electrode of the solar battery cell is in line contact with the conductive wire at the first linear portion, even when there is a floating or the like in the contact portion, poor contact is unlikely to occur and the conduction reliability is excellent. Furthermore, by making the width of the first linear portion smaller than the width of the conductive line, it is possible to realize a reduction in shadow loss and a reduction in electrode material without impairing the current collection efficiency. The solar cell module having the above configuration is preferably applied to an embodiment in which wiring by physical contact is performed. In particular, it is meaningful to incorporate the wiring structure disclosed herein.
 また、本明細書によると、太陽電池セルが提供される。前記太陽電池セルの表面には電極が設けられている。前記電極は、線状に延びる複数の第1の線状部分と、該第1の線状部分と交差するように線状に延びる複数の第2の線状部分と、を有する。また、前記第1の線状部分の幅は、前記太陽電池セルと他の太陽電池セルとを電気的に接続する導電線の幅よりも小さい。
 上記の構成を有する太陽電池セルによると、表面電極の第1の線状部分と導電線とを、それらを線状に一致させて配置することで、集電効率が向上し、かつシャドーロス低減や電極材料節減を実現し得る。上記構成の太陽電池セルは、ここに開示される太陽電池モジュール用の太陽電池セルとして特に好ましい。上記太陽電池セルを、ここに開示される物理接触型太陽電池モジュールその他の太陽電池モジュールに用いることで、集電効率および導通信頼性が向上する。
Moreover, according to this specification, a photovoltaic cell is provided. An electrode is provided on the surface of the solar battery cell. The electrode includes a plurality of first linear portions extending linearly and a plurality of second linear portions extending linearly so as to intersect the first linear portions. Moreover, the width | variety of a said 1st linear part is smaller than the width | variety of the electrically conductive line which electrically connects the said photovoltaic cell and another photovoltaic cell.
According to the solar battery cell having the above-described configuration, the first linear portion of the surface electrode and the conductive wire are arranged so as to coincide with each other, thereby improving the current collection efficiency and reducing the shadow loss. And electrode material savings. The solar cell having the above configuration is particularly preferable as a solar cell for the solar cell module disclosed herein. By using the solar cell in the physical contact solar cell module or other solar cell module disclosed herein, the current collection efficiency and the conduction reliability are improved.
一実施形態に係る配線構造体を模式的に示す上面図である。It is a top view which shows typically the wiring structure which concerns on one Embodiment. 図1の配線構造体のII-II線における断面図である。FIG. 2 is a cross-sectional view taken along line II-II of the wiring structure of FIG. 図2に対応する図であって、一実施形態に係る剥離ライナー付き配線構造体を模式的に示す断面図である。FIG. 3 is a view corresponding to FIG. 2, and is a cross-sectional view schematically showing a wiring structure with a release liner according to an embodiment. 第1実施形態に係る太陽電池モジュールの配線方法の説明図である。It is explanatory drawing of the wiring method of the solar cell module which concerns on 1st Embodiment. 第1実施形態に係る太陽電池モジュールの主要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the solar cell module which concerns on 1st Embodiment. 第2実施形態に係る太陽電池セルの表面の一部を拡大して示す模式的上面図である。It is a typical top view which expands and shows a part of surface of the photovoltaic cell concerning 2nd Embodiment. 第2実施形態に係る太陽電池セルの表面電極と導電線との配置関係を説明するための拡大分解斜視図である。It is an expansion disassembled perspective view for demonstrating the arrangement | positioning relationship between the surface electrode of the photovoltaic cell which concerns on 2nd Embodiment, and a conductive wire. 第2実施形態に係る太陽電池セルの表面電極と導電線との配置関係を説明するための図であって、導電線と表面電極との当接状態を拡大して示す模式的断面図である。It is a figure for demonstrating the arrangement | positioning relationship between the surface electrode of a photovoltaic cell and conductive wire which concerns on 2nd Embodiment, Comprising: It is typical sectional drawing which expands and shows the contact state of a conductive wire and a surface electrode. . 試験用太陽電池モジュールにおける太陽電池セルのEL検査画像である。It is EL test | inspection image of the photovoltaic cell in the solar cell module for a test. 実験2における導電部表面の拡散反射率(%)と短絡電流Jsc(mA/cm)の測定結果を示すグラフである。It is a graph which shows the measurement result of the diffuse reflectance (%) of the electrically-conductive part surface in Experiment 2, and short circuit current Jsc (mA / cm < 2 >). 実験3におけるめっき厚(μm)と拡散反射率(%)との関係を示すグラフである。It is a graph which shows the relationship between the plating thickness (micrometer) in Experiment 3, and a diffuse reflectance (%). 実験4におけるダンプヒート(DH)試験の結果を示すグラフである。It is a graph which shows the result of the dump heat (DH) test in Experiment 4. 実験5(効果検証試験)におけるサンプル5-1に係る太陽電池セル上面の導電線の配置状態を模式的に示す上面図である。FIG. 10 is a top view schematically showing the arrangement state of conductive lines on the upper surface of a solar battery cell related to Sample 5-1 in Experiment 5 (effect verification test). 実験5(効果検証試験)におけるサンプル5-1に係る試験用太陽電池モジュールを模式的に示す上面図である。FIG. 10 is a top view schematically showing a test solar cell module according to Sample 5-1 in Experiment 5 (effect verification test). 実験5(効果検証試験)におけるサンプル5-2に係る太陽電池セル上面の導電線の配置状態を模式的に示す上面図である。FIG. 10 is a top view schematically showing the arrangement state of conductive lines on the upper surface of a solar battery cell related to sample 5-2 in Experiment 5 (effect verification test). 実験5(効果検証試験)における歪変形量(mm)と抵抗値変化(倍)との関係を示すグラフである。It is a graph which shows the relationship between the amount of distortion deformation (mm) and resistance value change (times) in Experiment 5 (effect verification test). 実験5(効果検証試験)における歪変形量(mm)の模式的説明図である。It is typical explanatory drawing of the distortion deformation amount (mm) in Experiment 5 (effect verification test). 実験6(効果検証試験)におけるサンプル6-1に係る太陽電池セル上面の導電線の配置状態を説明するための模式的上面図であって、(a)は導電線配置前の状態を示す図であり、(b)は導電線配置後の状態を示す図である。It is a schematic top view for demonstrating the arrangement | positioning state of the conductive wire of the photovoltaic cell upper surface which concerns on the sample 6-1 in Experiment 6 (effect verification test), (a) is a figure which shows the state before conductive wire arrangement | positioning (B) is a figure which shows the state after conductive line arrangement | positioning. 実験6(効果検証試験)におけるサンプル6-2に係る太陽電池セル上面の導電線の配置状態を説明するための模式的上面図であって、(a)は導電線配置前の状態を示す図であり、(b)は導電線配置後の状態を示す図である。It is a schematic top view for demonstrating the arrangement | positioning state of the electrically conductive line of the photovoltaic cell upper surface which concerns on the sample 6-2 in experiment 6 (effect verification test), Comprising: (a) is a figure which shows the state before conductor line arrangement | positioning (B) is a figure which shows the state after conductive line arrangement | positioning.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、本明細書に記載された発明の実施についての教示と出願時の技術常識とに基づいて当業者に理解され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際に提供される製品のサイズや縮尺を必ずしも正確に表したものではない。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention are based on the teachings on the implementation of the invention described in the present specification and the common general technical knowledge at the time of filing. Can be understood by those skilled in the art. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Further, in the following drawings, members / parts having the same action are described with the same reference numerals, and overlapping descriptions may be omitted or simplified. In addition, the embodiments described in the drawings are schematically illustrated in order to clearly explain the present invention, and do not necessarily accurately represent the size and scale of a product actually provided.
 ≪配線構造体≫
 図1は一実施形態に係る配線構造体を模式的に示す上面図であり、図2は図1の配線構造体のII-II線における断面図である。
<< Wiring structure >>
FIG. 1 is a top view schematically showing a wiring structure according to an embodiment, and FIG. 2 is a cross-sectional view taken along the line II-II of the wiring structure of FIG.
 図1,2に示すように、配線構造体1は、導電部30と、導電部30の上方に配置された第1樹脂層50と、導電部30の下方に配置された第2樹脂層60と、を備える。また、配線構造体1は、第1領域10と第2領域12とを有する。第1領域10および第2領域12は、太陽電池モジュールにおいて隣りあう2つの太陽電池セルの一方および他方にそれぞれ対応する領域である。具体的には、太陽電池モジュール構築時において、第1領域10は一方の太陽電池セルと重なる領域であり、第2領域12は他方の太陽電池セルと重なる領域である。この実施形態では、第1領域10および第2領域12は、配線構造体1を上面から見たときに、いずれも四角形状を有する領域であり、第1領域10と第2領域12との間には所定の間隔が設けられている。この実施形態の太陽電池セルは、ほぼ正方形状(凡そ15.5cm×15.5cm)を有しており、第1領域10および第2領域12も同形状、同サイズを有する。 As shown in FIGS. 1 and 2, the wiring structure 1 includes a conductive portion 30, a first resin layer 50 disposed above the conductive portion 30, and a second resin layer 60 disposed below the conductive portion 30. And comprising. In addition, the wiring structure 1 has a first region 10 and a second region 12. The first region 10 and the second region 12 are regions corresponding to one and the other of two adjacent solar cells in the solar cell module, respectively. Specifically, when the solar cell module is constructed, the first region 10 is a region overlapping with one solar cell, and the second region 12 is a region overlapping with the other solar cell. In this embodiment, each of the first region 10 and the second region 12 is a region having a quadrangular shape when the wiring structure 1 is viewed from above, and is between the first region 10 and the second region 12. Is provided with a predetermined interval. The solar battery cell of this embodiment has a substantially square shape (approximately 15.5 cm × 15.5 cm), and the first region 10 and the second region 12 have the same shape and the same size.
 導電部30は、第1領域10から第2領域12まで連続した形状を有する。導電部30は、第1領域10および第2領域12の配列方向(太陽電池セルの配列方向でもあり得る。)において配線構造体1のほぼ両端まで延びるように配置されている。また、導電部30は、第1領域10において部分的に配置されている。導電部30は、第2領域12においても部分的に配置されている。具体的には、導電部30は、第1領域10から第2領域12まで延びる複数の導電線40から構成されている。複数の導電線40は、第1領域10および第2領域12の配列方向に沿って、互いに間隔をおいて配置されている。導電線40は、互いに平行するように直線状に配置されており、第1領域10および第2領域12の配列方向において配線構造体1のほぼ両端まで延びている。換言すると、各導電線40は、第1領域10における第1樹脂層50の外端部から、第2樹脂層60の外端部まで一直線に延びている。この実施形態では、導電線40として、幅0.8mmで厚さ0.25mmの銅製のワイヤーが用いられている。 The conductive part 30 has a continuous shape from the first region 10 to the second region 12. The conductive portion 30 is arranged so as to extend to almost both ends of the wiring structure 1 in the arrangement direction of the first region 10 and the second region 12 (which may also be the arrangement direction of solar cells). Further, the conductive portion 30 is partially disposed in the first region 10. The conductive portion 30 is also partially disposed in the second region 12. Specifically, the conductive portion 30 is composed of a plurality of conductive lines 40 extending from the first region 10 to the second region 12. The plurality of conductive lines 40 are arranged at intervals from each other along the arrangement direction of the first region 10 and the second region 12. The conductive lines 40 are arranged in a straight line so as to be parallel to each other, and extend to almost both ends of the wiring structure 1 in the arrangement direction of the first region 10 and the second region 12. In other words, each conductive wire 40 extends in a straight line from the outer end portion of the first resin layer 50 in the first region 10 to the outer end portion of the second resin layer 60. In this embodiment, a copper wire having a width of 0.8 mm and a thickness of 0.25 mm is used as the conductive wire 40.
 第1樹脂層50は第1領域10に配置されている。第1樹脂層50は第1領域10とほぼ同形状、同サイズを有する。したがって、この実施形態の第1樹脂層50は、凡そ15.5cm×15.5cmのサイズを有するほぼ正方形状である。そのような第1領域10において、第1樹脂層50は導電部30(具体的には導電線40)の上方に配置されている。第1樹脂層50の上面は、配線構造体1の外表面(上面)の一部(第1領域10の上面)を構成している。一方、配線構造体1の第1領域10の下面は、第1樹脂層50と導電部30とによって構成されている。この実施形態では、第1樹脂層50は、厚さ0.05mm程度の透明な粘着剤層であり、導電線40は、第1樹脂層50の表面に接着されている。なお、本明細書における配線構造体の上下は、後述する太陽電池セルの表裏に対応し、ひいては太陽電池モジュールの表裏(上下)に対応する。太陽電池モジュールは、その設置の仕方によっては表裏が必ずしも厳密な上下とはならないことがあるため、配線構造体の上下も厳密な上下に限定されず、相対的な位置関係を示すものとして把握される。 The first resin layer 50 is disposed in the first region 10. The first resin layer 50 has substantially the same shape and size as the first region 10. Therefore, the first resin layer 50 of this embodiment has a substantially square shape having a size of about 15.5 cm × 15.5 cm. In such a first region 10, the first resin layer 50 is disposed above the conductive portion 30 (specifically, the conductive wire 40). The upper surface of the first resin layer 50 constitutes a part of the outer surface (upper surface) of the wiring structure 1 (the upper surface of the first region 10). On the other hand, the lower surface of the first region 10 of the wiring structure 1 is constituted by the first resin layer 50 and the conductive portion 30. In this embodiment, the first resin layer 50 is a transparent adhesive layer having a thickness of about 0.05 mm, and the conductive wire 40 is bonded to the surface of the first resin layer 50. In addition, the upper and lower sides of the wiring structure in the present specification correspond to the front and back of the solar battery cell described later, and thus correspond to the front and back (up and down) of the solar battery module. Depending on how the solar cell module is installed, the top and bottom may not necessarily be strictly up and down, so the top and bottom of the wiring structure is not limited to exact top and bottom, and is understood to indicate a relative positional relationship. The
 第2樹脂層60は第2領域12に配置されている。第2樹脂層60は第2領域12とほぼ同形状、同サイズを有する。したがって、この実施形態の第2樹脂層60は、凡そ15.5cm×15.5cmのサイズを有するほぼ正方形状である。そのような第2領域12において、第2樹脂層60は導電部30(具体的には導電線40)の下方に配置されている。第2樹脂層60の下面は、配線構造体1の外表面(下面)の一部(第2領域12の下面)を構成している。この実施形態では、第2樹脂層60は、厚さ0.05mm程度の透明な粘着剤層であり、導電線40は、第2樹脂層60の表面に接着されている。また、この実施形態では、配線構造体1の第2領域12の上面は、第2樹脂層60と導電部30とによって構成されている。なお、太陽電池セルの裏面に配置される第2樹脂層60は透明でなくてもよい。 The second resin layer 60 is disposed in the second region 12. The second resin layer 60 has substantially the same shape and size as the second region 12. Therefore, the second resin layer 60 of this embodiment has a substantially square shape having a size of approximately 15.5 cm × 15.5 cm. In such a second region 12, the second resin layer 60 is disposed below the conductive portion 30 (specifically, the conductive wire 40). The lower surface of the second resin layer 60 constitutes a part of the outer surface (lower surface) of the wiring structure 1 (the lower surface of the second region 12). In this embodiment, the second resin layer 60 is a transparent adhesive layer having a thickness of about 0.05 mm, and the conductive wire 40 is bonded to the surface of the second resin layer 60. In this embodiment, the upper surface of the second region 12 of the wiring structure 1 is constituted by the second resin layer 60 and the conductive portion 30. In addition, the 2nd resin layer 60 arrange | positioned at the back surface of a photovoltaic cell does not need to be transparent.
 ≪剥離ライナー付き配線構造体≫
 図3は、図2に対応する図であって、一実施形態に係る剥離ライナー付き配線構造体を模式的に示す断面図である。
≪Wiring structure with release liner≫
FIG. 3 is a view corresponding to FIG. 2, and is a cross-sectional view schematically showing a wiring structure with a release liner according to an embodiment.
 配線構造体1は、剥離ライナーに保護された形態で太陽電池モジュールの製造に提供され得る。図3に示すように、剥離ライナー付き配線構造体2は、配線構造体1と、その第1領域10の上面および下面ならびに第2領域12の上面および下面をそれぞれ覆う4枚の剥離ライナーとして、第1剥離ライナー70,第2剥離ライナー72,第3剥離ライナー74および第4剥離ライナー76を備える。第1剥離ライナー70は、配線構造体1の第1領域10において第1樹脂層50の上面に配置されている。第2剥離ライナー72は、第1領域10において導電部30の下面に配置されている。第3剥離ライナー74は、第2領域12において導電部30の上面に配置されている。第4剥離ライナー76は、第2領域12において第2樹脂層60の下面に配置されている。このように、配線構造体1の上下各面において、剥離ライナーを第1領域10および第2領域12の2つに分離して剥離できるように配することで、太陽電池モジュール内における配線を効率よく行うことができる。この点については後述する。なお、この実施形態では、上記剥離ライナー70,72,74,76として、片面が剥離処理されたポリエステル樹脂フィルムが用いられている。 The wiring structure 1 can be provided for manufacturing a solar cell module in a form protected by a release liner. As shown in FIG. 3, the wiring structure 2 with a release liner includes the wiring structure 1 and four release liners covering the upper and lower surfaces of the first region 10 and the upper and lower surfaces of the second region 12, respectively. A first release liner 70, a second release liner 72, a third release liner 74, and a fourth release liner 76 are provided. The first release liner 70 is disposed on the upper surface of the first resin layer 50 in the first region 10 of the wiring structure 1. The second release liner 72 is disposed on the lower surface of the conductive portion 30 in the first region 10. The third release liner 74 is disposed on the upper surface of the conductive portion 30 in the second region 12. The fourth release liner 76 is disposed on the lower surface of the second resin layer 60 in the second region 12. As described above, the wiring in the solar cell module is efficiently arranged by arranging the release liner so that it can be separated into the first region 10 and the second region 12 on each of the upper and lower surfaces of the wiring structure 1. Can be done well. This point will be described later. In this embodiment, as the release liners 70, 72, 74, and 76, a polyester resin film whose one side has been subjected to a release treatment is used.
 上記のような配線構造体1および剥離ライナー付き配線構造体2は、例えば次の方法で作製することができる。まず、導電部30(例えば複数の導電線40)を用意する。また、剥離ライナー(例えば第1剥離ライナー70、第4剥離ライナー76)に片面が保護された第1樹脂層50、第2樹脂層60をそれぞれ用意する。そして、導電部30の一部(第1領域10となる部分)に第1樹脂層50の露出面(例えば第1剥離ライナー70で保護された面とは反対側の表面)を固定(例えば接着)する。また、導電部30の他の一部(第2領域12となる部分)に第2樹脂層60の露出面(例えば第4剥離ライナー76で保護された面とは反対側の表面)を固定(例えば接着)する。第2樹脂層60は、導電部30の表面のうち第1樹脂層50が固定された側とは反対側の表面に固定される。その後、第1領域10となる部分における第1樹脂層50の露出面と導電部30に対して第2剥離ライナー72を貼り合わせ、第2領域となる部分における第2樹脂層60の露出面と導電部30に対して第3剥離ライナー74を貼り合わせる。このようにして、配線構造体1および剥離ライナー付き配線構造体2は作製される。なお、第1樹脂層50、第2樹脂層60の成形(所定形状への加工)のタイミングは特に限定されず、所定形状に加工された第1樹脂層50、第2樹脂層60を予め用意して、導電部30との固定を行ってもよく、第1樹脂層50、第2樹脂層60を導電部30に固定した後、第1樹脂層50、第2樹脂層60を所定の形状、サイズにカッティングすることも可能である。 The wiring structure 1 and the wiring structure 2 with a release liner as described above can be manufactured, for example, by the following method. First, the conductive part 30 (for example, a plurality of conductive lines 40) is prepared. Moreover, the 1st resin layer 50 and the 2nd resin layer 60 by which one side was protected by the release liner (For example, the 1st release liner 70 and the 4th release liner 76) are prepared, respectively. Then, the exposed surface (for example, the surface opposite to the surface protected by the first release liner 70) of the first resin layer 50 is fixed (for example, bonded) to a part of the conductive portion 30 (the portion that becomes the first region 10). ) Further, the exposed surface of the second resin layer 60 (for example, the surface opposite to the surface protected by the fourth release liner 76) is fixed to the other part of the conductive portion 30 (the portion that becomes the second region 12) ( For example, bonding). The second resin layer 60 is fixed to the surface of the conductive part 30 opposite to the side on which the first resin layer 50 is fixed. Thereafter, the second release liner 72 is bonded to the exposed surface of the first resin layer 50 in the portion that becomes the first region 10 and the conductive portion 30, and the exposed surface of the second resin layer 60 in the portion that becomes the second region. A third release liner 74 is bonded to the conductive portion 30. In this way, the wiring structure 1 and the wiring structure 2 with the release liner are manufactured. The timing of molding (processing into a predetermined shape) of the first resin layer 50 and the second resin layer 60 is not particularly limited, and the first resin layer 50 and the second resin layer 60 processed into a predetermined shape are prepared in advance. The first resin layer 50 and the second resin layer 60 may be fixed to the conductive portion 30, and then the first resin layer 50 and the second resin layer 60 may be formed in a predetermined shape. It is also possible to cut to size.
 好ましい一態様では、長尺状の第1樹脂層50、長尺状の第2樹脂層60を所定の間隔をおいて平行に(かつ例えば水平に)配置し、第1樹脂層50、第2樹脂層60の長手方向と交差(典型的には直交)する方向から、導電部30(典型的には導電線40)を、第2樹脂層60の上方および第1樹脂層50の下方を通るように挿し込み、第1樹脂層50および第2樹脂層60を、それらの長手方向と交差(典型的には直交)する方向に切断することで、配線構造体1を作製することができる。この場合、第1樹脂層50の上面および第2樹脂層60の下面は、典型的にはそれぞれ剥離ライナーで保護された形態であり得る。また、配線構造体1の作製において、第1樹脂層50と第2樹脂層60とは、導電部30の挿し込みやすさの観点から、側方からみたときに段差(挿し込み空間)を有するように配置することが好ましい。例えば、一方の表面が剥離ライナーで覆われた長尺状の第1樹脂層50のロールと、同じく一方の表面が剥離ライナーで覆われた長尺状の第2樹脂層60のロールとを並べて配置して、第1樹脂層50および第2樹脂層60を平行して引き出して、その間に導電部30を順次挿し込み、所定の間隔でカットすることにより、配線構造体1を連続して作製することができる。第1樹脂層50および第2樹脂層60がともに粘着剤層である場合には、導電部30を第1樹脂層50および第2樹脂層60に対して所定の位置に挿し込んだ後、適当なタイミングでプレスすることにより、導電部30は第1樹脂層50および第2樹脂層60に良好に固定され得る。 In a preferred embodiment, the long first resin layer 50 and the long second resin layer 60 are arranged in parallel (and horizontally, for example) at a predetermined interval, and the first resin layer 50 and the second resin layer 50 are arranged in parallel. From the direction intersecting (typically orthogonal) with the longitudinal direction of the resin layer 60, the conductive portion 30 (typically the conductive wire 40) passes above the second resin layer 60 and below the first resin layer 50. By inserting the first resin layer 50 and the second resin layer 60 in such a manner as to intersect (typically orthogonal) their longitudinal direction, the wiring structure 1 can be produced. In this case, the upper surface of the first resin layer 50 and the lower surface of the second resin layer 60 may typically be in a form protected by a release liner, respectively. Further, in the production of the wiring structure 1, the first resin layer 50 and the second resin layer 60 have a step (insertion space) when viewed from the side from the viewpoint of ease of insertion of the conductive portion 30. It is preferable to arrange in such a manner. For example, a roll of a long first resin layer 50 whose one surface is covered with a release liner and a roll of a long second resin layer 60 whose one surface is covered with a release liner are arranged side by side. The wiring structure 1 is continuously produced by arranging, drawing out the first resin layer 50 and the second resin layer 60 in parallel, sequentially inserting the conductive portions 30 therebetween, and cutting them at predetermined intervals. can do. When both the first resin layer 50 and the second resin layer 60 are pressure-sensitive adhesive layers, the conductive portion 30 is inserted into a predetermined position with respect to the first resin layer 50 and the second resin layer 60 and then appropriately By pressing at a proper timing, the conductive portion 30 can be satisfactorily fixed to the first resin layer 50 and the second resin layer 60.
 ≪太陽電池モジュール≫
 (第1実施形態)
 図4は第1一実施形態に係る太陽電池モジュールの配線方法の説明図であり、図5は、第1実施形態に係る太陽電池モジュールの主要部を模式的に示す断面図である。
≪Solar cell module≫
(First embodiment)
FIG. 4 is an explanatory diagram of a solar cell module wiring method according to the first embodiment, and FIG. 5 is a cross-sectional view schematically showing main parts of the solar cell module according to the first embodiment.
 次に、配線構造体1(剥離ライナー付き配線構造体2であり得る。)を用いて行われる太陽電池モジュール100における配線と、それによって得られる太陽電池モジュール100について説明する。図4に示すように、配線構造体1の第1領域10の下方に太陽電池セル110aを配置し、第2領域12の上方に太陽電池セル110bを配置する。第1領域10の下面が剥離ライナー(例えば第2剥離ライナー)で覆われている場合には、当該剥離ライナーを第1領域10の下面から剥がして、第1領域10の導電部30に太陽電池セル110aの表(おもて)面を当接させる。また、第2領域12の上面が剥離ライナー(例えば第3剥離ライナー)で覆われている場合には、当該剥離ライナーを第2領域12の上面から剥がして、第2領域12の導電部30に太陽電池セル110bの裏面を当接させる。これにより、太陽電池セル110aの上面と太陽電池セル110bの下面とが、配線構造体1の導電部30によって導通する。そして、太陽電池セル110aの下面に、別の配線構造体1の第2領域12の上面を当接させ、太陽電池セル110bの上面に、さらに別の配線構造体1の第1領域10の下面を当接させる。この作業を他の太陽電池セル(例えば太陽電池セル110c,110d)にも適用して繰り返すことで、図5に示すような、複数の太陽電池セル110a,110b,110c,110dの上下配線が完了する。上記当接による導通は、はんだ等の接着手段による接合を必要としない。また、2つの太陽電池セルの上下配線は、配線構造体を間に配置するだけで実現されるので、配線作業性に優れる。上記の構成による太陽電池セルへの導電部の接触状態は、はんだ接合等の固定方法と比べて自由度が高いので、耐衝撃性に優れる。さらに、この実施形態では、第1樹脂層50および第2樹脂層60は、接着性を有する粘着剤層であるので、第1領域10および第2領域12において部分的に配置された導電部30(具体的には導電線40)越しに太陽電池セル110a、110bと接着する。そのため、導電性接着剤等の別途の接着手段は不要であり、この点においても配線作業性に優れる。 Next, wiring in the solar cell module 100 performed using the wiring structure 1 (which may be the wiring structure 2 with a release liner) and the solar cell module 100 obtained thereby will be described. As shown in FIG. 4, the solar cell 110 a is disposed below the first region 10 of the wiring structure 1, and the solar cell 110 b is disposed above the second region 12. When the lower surface of the first region 10 is covered with a release liner (for example, a second release liner), the release liner is peeled off from the lower surface of the first region 10 and the solar cell is formed on the conductive portion 30 of the first region 10. The front surface of the cell 110a is brought into contact. In addition, when the upper surface of the second region 12 is covered with a release liner (for example, a third release liner), the release liner is peeled off from the upper surface of the second region 12 to form the conductive portion 30 in the second region 12. The back surface of the solar battery cell 110b is brought into contact. Thereby, the upper surface of the solar battery cell 110 a and the lower surface of the solar battery cell 110 b are electrically connected by the conductive portion 30 of the wiring structure 1. And the upper surface of the 2nd area | region 12 of another wiring structure 1 is made to contact | abut to the lower surface of the photovoltaic cell 110a, and the lower surface of the 1st area | region 10 of another wiring structure 1 is made to contact the upper surface of the photovoltaic cell 110b. Abut. By repeating this operation by applying it to other solar cells (for example, solar cells 110c and 110d), the vertical wiring of the plurality of solar cells 110a, 110b, 110c and 110d as shown in FIG. 5 is completed. To do. The conduction by the contact does not require joining by an adhesive means such as solder. Moreover, since the upper and lower wirings of the two solar cells are realized only by arranging the wiring structure therebetween, the wiring workability is excellent. The contact state of the conductive portion to the solar battery cell having the above configuration has a high degree of freedom compared to a fixing method such as solder bonding, and thus has excellent impact resistance. Further, in this embodiment, since the first resin layer 50 and the second resin layer 60 are adhesive layers having adhesiveness, the conductive portion 30 partially disposed in the first region 10 and the second region 12. It adheres to the solar cells 110a and 110b through (specifically, the conductive wire 40). Therefore, a separate bonding means such as a conductive adhesive is not necessary, and the wiring workability is excellent also in this respect.
 上記のようにして配線構造体1が取り付けられた太陽電池セル群(配線済み太陽電池セル群)120を、2枚のシート状封止樹脂150で挟み、さらにその外方に表面被覆部材160および裏面被覆部材170を配置することで、複数の太陽電池セル110a,110b,110c,110dを、それらを導通した状態で内蔵した太陽電池モジュール100が構築される。なお、2枚のシート状封止樹脂150は、表面被覆部材160および裏面被覆部材170で挟まれ、さらに図示しない枠体が取り付けられた後、加熱硬化することにより、一体化して図5に示す封止樹脂150となる。このようにして得られる太陽電池モジュール100には、太陽電池モジュール100の表(おもて)面を構成する表面被覆部材160と裏面を構成する裏面被覆部材170との間に、封止樹脂150に覆われた状態で、配線構造体1が取り付けられた太陽電池セル群(配線済み太陽電池セル群)120が収容されている。なお、この実施形態では、太陽電池セル110a,110b,110c,110dとして結晶系Siセル(凡そ15.5cm×15.5cm)を使用し、封止樹脂150としてエチレン-酢酸ビニル共重合体(EVA)を使用し、表面被覆部材160として厚さ3.2mmのガラス板を使用し、裏面被覆部材170として市販のバックシートを使用している。 The solar cell group (wiring solar cell group) 120 to which the wiring structure 1 is attached as described above is sandwiched between two sheet-like sealing resins 150, and the surface covering member 160 and By disposing the back surface covering member 170, the solar cell module 100 in which a plurality of solar cells 110a, 110b, 110c, and 110d are built in a state where they are conducted is constructed. Note that the two sheet-like sealing resins 150 are sandwiched between the front surface covering member 160 and the back surface covering member 170, and after being attached with a frame (not shown), they are integrated by heat curing and shown in FIG. The sealing resin 150 is obtained. In the solar cell module 100 obtained in this way, the sealing resin 150 is provided between the front surface covering member 160 constituting the front (front) surface of the solar cell module 100 and the rear surface covering member 170 constituting the back surface. The solar cell group (wiring solar cell group) 120 to which the wiring structure 1 is attached is housed in a state covered with the solar cell. In this embodiment, crystalline Si cells (approximately 15.5 cm × 15.5 cm) are used as the solar cells 110a, 110b, 110c, and 110d, and an ethylene-vinyl acetate copolymer (EVA) is used as the sealing resin 150. ), A glass plate having a thickness of 3.2 mm is used as the surface covering member 160, and a commercially available back sheet is used as the back surface covering member 170.
 太陽電池モジュール100の構造について、さらに説明する。太陽電池モジュール100は、上述のように、太陽電池セル110a,110b,110c,110dを含む複数の太陽電池セルと、上記複数の太陽電池セルを覆う(取り囲む)封止樹脂150と、封止樹脂150を挟むように配置された表面被覆部材160および裏面被覆部材170と、を備える。太陽電池セル110a,110b,110c,110dを含む複数の太陽電池セルは、所定の間隔をおいて直線状に一列に配列されており、太陽電池セル群を構成している。太陽電池セル110a,110b,110c,110dの上面(表(おもて)面)にはn型電極(表面電極)が部分的に形成されており、下面(裏面)にはp型電極(裏面電極)が形成されている。なお、本明細書における太陽電池セルの上下は、太陽電池セルの表裏に対応し、ひいては太陽電池モジュールの表裏(上下)に対応する。太陽電池モジュールの表面は入光面である。太陽電池モジュールは、その設置の仕方によっては表裏が必ずしも厳密な上下とはならないことがあるため、太陽電池セルの上下も厳密な上下に限定されず、相対的な位置関係を示すものとして把握される。 The structure of the solar cell module 100 will be further described. As described above, the solar cell module 100 includes a plurality of solar cells including the solar cells 110a, 110b, 110c, and 110d, a sealing resin 150 that covers (surrounds) the solar cells, and a sealing resin. The front surface covering member 160 and the back surface covering member 170 are disposed so as to sandwich the surface 150. A plurality of solar cells including the solar cells 110a, 110b, 110c, and 110d are arranged in a straight line at a predetermined interval to constitute a solar cell group. An n-type electrode (front electrode) is partially formed on the upper surface (front surface) of solar cells 110a, 110b, 110c, and 110d, and a p-type electrode (rear surface) is formed on the lower surface (back surface). Electrode). In addition, the upper and lower sides of the solar battery cell in this specification correspond to the front and back of the solar battery cell, and thus correspond to the front and back (upper and lower) of the solar battery module. The surface of the solar cell module is a light incident surface. Depending on how the solar cell module is installed, the top and bottom may not necessarily be strictly up and down, so the top and bottom of the solar cells are not limited to exact top and bottom, and are understood to indicate relative positional relationships. The
 上記太陽電池セル群において、隣りあう2つの太陽電池セル(例えば太陽電池セル110aと太陽電池セル110b)は、一の導電部30によって電気的に接続されている。この導電部30は、太陽電池セル110aの上面から太陽電池セル110bの下面にかけ渡されている。より具体的には、一の導電部30は、太陽電池セル群の上方では太陽電池セル110aの上面に配置されており、太陽電池セル110aと太陽電池セル110bとの間の空間を通って、太陽電池セル群の下方に移動し、太陽電池セル110bの下面に配置されている。当該導電部30は、太陽電池セル110aの端(太陽電池セル110b側とは反対側の端)から太陽電池セル110bの端(太陽電池セル110a側とは反対側の端)まで延びており、太陽電池セル110aの上面および太陽電池セル110bの下面に接触(具体的には当接)している。このように、導電部30は一部材で太陽電池セル110aの上面から太陽電池セル110bの下面まで連続しているので、接続信頼性が高く、耐久性にも優れる。 In the solar cell group, two adjacent solar cells (for example, the solar cell 110a and the solar cell 110b) are electrically connected by one conductive portion 30. The conductive portion 30 is extended from the upper surface of the solar battery cell 110a to the lower surface of the solar battery cell 110b. More specifically, one conductive portion 30 is disposed on the upper surface of the solar battery cell 110a above the solar battery group, and passes through the space between the solar battery cell 110a and the solar battery cell 110b. It moves below the solar cell group and is disposed on the lower surface of the solar cell 110b. The conductive portion 30 extends from the end of the solar cell 110a (the end opposite to the solar cell 110b side) to the end of the solar cell 110b (the end opposite to the solar cell 110a side), It contacts (specifically, contacts) the upper surface of the solar battery cell 110a and the lower surface of the solar battery cell 110b. Thus, since the electroconductive part 30 is one member and continues from the upper surface of the solar cell 110a to the lower surface of the solar cell 110b, the connection reliability is high and the durability is also excellent.
 この実施形態では、一の導電部30は、上述のように太陽電池セル110aの上面から太陽電池セル110bの下面まで延びる複数の導電線40から構成されている。上記複数の導電線40は、太陽電池セル110a,110bの配列方向に沿って延びており、互いに間隔をおいて配置されている。これら導電線40は、互いに平行するように直線状に配置されており、太陽電池セル110a,110bの配列方向において、太陽電池セル110a,110bのほぼ両端(太陽電池セル110aの端(太陽電池セル110b側とは反対側の端)から太陽電池セル110bの端(太陽電池セル110a側とは反対側の端))まで延びている。 In this embodiment, one conductive portion 30 is composed of a plurality of conductive wires 40 extending from the upper surface of the solar battery cell 110a to the lower surface of the solar battery cell 110b as described above. The plurality of conductive lines 40 extend along the arrangement direction of the solar cells 110a and 110b, and are arranged at intervals. These conductive wires 40 are arranged in a straight line so as to be parallel to each other. In the arrangement direction of the solar cells 110a and 110b, substantially both ends of the solar cells 110a and 110b (ends of the solar cells 110a (solar cells) 110b (the end opposite to the 110b side)) to the end of the solar battery cell 110b (the end opposite to the solar battery 110a side).
 太陽電池モジュール100内において、第1樹脂層50は、太陽電池セル群の上方に配置されている。具体的には、一の第1樹脂層50は、一の太陽電池セル110aの上方にのみ配置されており、他の太陽電池セル(例えば太陽電池セル110b)の上方には配置されていない。他の太陽電池セル(例えば太陽電池セル110b)の上方には、異なる第1樹脂層50が配置されている。また、第1樹脂層50は、太陽電池セル110aの上方に位置する導電部30よりも上方に配置されている。換言すると、導電部30は、太陽電池セル110aと第1樹脂層50との間に配置されている。第1樹脂層50は、太陽電池セル110aとほぼ同形状、同サイズを有しており、太陽電池セル110aの上面からはみ出していない。この実施形態の第1樹脂層50は、ほぼ正方形状(具体的には、凡そ15.5cm×15.5cmのサイズを有するほぼ正方形状)である。 In the solar cell module 100, the first resin layer 50 is disposed above the solar cell group. Specifically, one first resin layer 50 is disposed only above one solar battery cell 110a and is not disposed above another solar battery cell (for example, solar battery cell 110b). Different first resin layers 50 are disposed above other solar cells (for example, solar cells 110b). Moreover, the 1st resin layer 50 is arrange | positioned upwards rather than the electroconductive part 30 located above the photovoltaic cell 110a. In other words, the conductive part 30 is disposed between the solar battery cell 110 a and the first resin layer 50. The first resin layer 50 has substantially the same shape and size as the solar battery cell 110a, and does not protrude from the upper surface of the solar battery cell 110a. The first resin layer 50 of this embodiment has a substantially square shape (specifically, a substantially square shape having a size of approximately 15.5 cm × 15.5 cm).
 第1樹脂層50は、透明な樹脂層であり、少なくとも太陽電池セル側の表面が接着性を有する。この実施形態の第1樹脂層50は透明な粘着剤層である。第1樹脂層50は、導電部30の上方から、導電部30の非存在領域にて太陽電池セル110aの上面に接触している。具体的には、第1樹脂層50は、導電部30としての複数の導電線40間の空間から、導電部30越しに太陽電池セル110aの上面に接着している。つまり、第1樹脂層50の下面(太陽電池セル側の表面)は、導電部30(具体的には複数の導電線40)と接着し、かつ、導電部30と接着していない箇所にて太陽電池セル110aの上面に接着している。これによって、導電部30を太陽電池セル110aの上面に確実かつ安定的に接触(具体的には当接)させている。 The first resin layer 50 is a transparent resin layer, and at least the surface on the solar cell side has adhesiveness. The first resin layer 50 in this embodiment is a transparent pressure-sensitive adhesive layer. The first resin layer 50 is in contact with the upper surface of the solar battery cell 110 a from above the conductive part 30 in the non-existing region of the conductive part 30. Specifically, the first resin layer 50 is bonded to the upper surface of the solar battery cell 110 a through the conductive portion 30 from the space between the plurality of conductive wires 40 as the conductive portion 30. That is, the lower surface (surface on the solar cell side) of the first resin layer 50 is bonded to the conductive portion 30 (specifically, the plurality of conductive wires 40) and is not bonded to the conductive portion 30. It adheres to the upper surface of the solar battery cell 110a. As a result, the conductive portion 30 is reliably and stably brought into contact (specifically, contacted) with the upper surface of the solar battery cell 110a.
 一方、第2樹脂層60は、太陽電池モジュール100内において、太陽電池セル群の下方に配置されている。具体的には、一の第2樹脂層60は、一の太陽電池セル110bの下方にのみ配置されており、他の太陽電池セル(例えば太陽電池セル110a,110c)の下方には配置されていない。他の太陽電池セル(例えば太陽電池セル110a,110c)の下方には、異なる第2樹脂層60が配置されている。また、第2樹脂層60は、太陽電池セル110bの下方に位置する導電部30よりも下方に配置されている。換言すると、導電部30は、太陽電池セル110bと第2樹脂層60との間に配置されている。第2樹脂層60は、太陽電池セル110bとほぼ同形状、同サイズを有しており、太陽電池セル110bの下面からはみ出していない。この実施形態の第2樹脂層60は、ほぼ正方形状(具体的には、凡そ15.5cm×15.5cmのサイズを有するほぼ正方形状)である。 On the other hand, the second resin layer 60 is disposed below the solar cell group in the solar cell module 100. Specifically, one second resin layer 60 is disposed only below one solar battery cell 110b, and is disposed below other solar battery cells (for example, solar battery cells 110a and 110c). Absent. Different second resin layers 60 are arranged below other solar cells (for example, solar cells 110a and 110c). Moreover, the 2nd resin layer 60 is arrange | positioned below the electroconductive part 30 located under the photovoltaic cell 110b. In other words, the conductive part 30 is disposed between the solar battery cell 110 b and the second resin layer 60. The second resin layer 60 has substantially the same shape and size as the solar battery cell 110b, and does not protrude from the lower surface of the solar battery cell 110b. The second resin layer 60 of this embodiment has a substantially square shape (specifically, a substantially square shape having a size of approximately 15.5 cm × 15.5 cm).
 第2樹脂層60は、少なくとも太陽電池セル側の表面が接着性を有する。また、第2樹脂層60は、この実施形態では透明な粘着剤層である。第2樹脂層60は、導電部30の下方から、導電部30の非存在領域にて太陽電池セル110bの下面に接触している。具体的には、第2樹脂層60は、導電部30としての複数の導電線40間の空間から、導電部30越しに太陽電池セル110bの下面に接着している。つまり、第2樹脂層60の上面(太陽電池セル側の表面)は、導電部30(具体的には複数の導電線40)と接着し、かつ、導電部30と接着していない箇所にて太陽電池セル110bの下面に接着している。これによって、導電部30を太陽電池セル110bの下面に確実かつ安定的に接触させている。 The second resin layer 60 has at least a solar cell side surface having adhesiveness. The second resin layer 60 is a transparent adhesive layer in this embodiment. The second resin layer 60 is in contact with the lower surface of the solar battery cell 110 b from below the conductive part 30 in the non-existing region of the conductive part 30. Specifically, the second resin layer 60 is bonded to the lower surface of the solar battery cell 110 b through the conductive portion 30 from the space between the plurality of conductive wires 40 as the conductive portion 30. That is, the upper surface (surface on the solar cell side) of the second resin layer 60 is bonded to the conductive portion 30 (specifically, the plurality of conductive wires 40) and is not bonded to the conductive portion 30. It is bonded to the lower surface of the solar battery cell 110b. As a result, the conductive portion 30 is reliably and stably brought into contact with the lower surface of the solar battery cell 110b.
 上記の構成を断面構造で説明すると下記のとおりである。すなわち、太陽電池セル110aの配置箇所においては、太陽電池モジュール100は、上方から、表面被覆部材160/封止樹脂150/第1樹脂層50/導電部(表面側導電部)30/太陽電池セル110a/導電部(裏面側導電部)30/第2樹脂層60/封止樹脂150/裏面被覆部材170がこの順で積層された断面構造を有する。また、太陽電池セル110bの配置箇所においては、太陽電池モジュール100は、上方から、表面被覆部材160/封止樹脂150/第1樹脂層50/導電部(表面側導電部)30/太陽電池セル110b/導電部(裏面側導電部)30/第2樹脂層60/封止樹脂150/裏面被覆部材170がこの順で積層された断面構造を有する。太陽電池セル110aの表面側に配置される導電部(表面側導電部)30と、太陽電池セル110aの裏面側に配置される導電部(裏面側導電部)30とは、分離した別部材である。また、太陽電池セル110bの表面側に配置される導電部(表面側導電部)30と、太陽電池セル110bの裏面側に配置される導電部(裏面側導電部)30も、分離した別部材である。しかし、太陽電池セル110aにおける表面側導電部30と、太陽電池セル110bにおける裏面側導電部30とは、連続した一部材である。さらに、太陽電池セル110a,110bの間においては、太陽電池モジュール100は、上方から、表面被覆部材160/封止樹脂150/導電部30/封止樹脂150/裏面被覆部材170がこの順で積層された断面構造を有する。 The above configuration will be described in terms of a cross-sectional structure as follows. That is, in the arrangement | positioning location of the photovoltaic cell 110a, the solar cell module 100 is the surface coating member 160 / sealing resin 150 / first resin layer 50 / conductive part (surface side conductive part) 30 / solar battery cell from upper direction. 110a / conductive portion (back side conductive portion) 30 / second resin layer 60 / sealing resin 150 / back surface covering member 170 has a cross-sectional structure laminated in this order. Moreover, in the arrangement | positioning location of the photovoltaic cell 110b, the solar cell module 100 is the surface coating member 160 / sealing resin 150 / first resin layer 50 / conductive part (surface side conductive part) 30 / solar battery cell from upper direction. 110b / conductive portion (back side conductive portion) 30 / second resin layer 60 / sealing resin 150 / back surface covering member 170 has a cross-sectional structure laminated in this order. The conductive part (front surface side conductive part) 30 disposed on the front surface side of the solar battery cell 110a and the conductive part (back surface side conductive part) 30 disposed on the back surface side of the solar battery cell 110a are separate members. is there. In addition, the conductive part (front surface side conductive part) 30 disposed on the front surface side of the solar battery cell 110b and the conductive part (back surface side conductive part) 30 disposed on the back surface side of the solar battery cell 110b are also separated separate members. It is. However, the front surface side conductive portion 30 in the solar battery cell 110a and the back surface side conductive portion 30 in the solar battery cell 110b are one continuous member. Further, between the solar cells 110a and 110b, the solar cell module 100 has a surface covering member 160 / sealing resin 150 / conductive portion 30 / sealing resin 150 / back surface covering member 170 stacked in this order from above. Having a cross-sectional structure.
 以上、太陽電池セル110a,110bと、それらの電気的接続に関わる構成について説明したが、太陽電池セル群を構成する他の太陽電池セル(例えば太陽電池セル110c,110d)についても基本的に同様の構成が繰り返されているので、重複する説明は省略する。なお、太陽電池セル群の両端に位置する太陽電池セルの上面または下面に配置される導電部(より具体的には導電線)は、太陽電池セル同士の電気的接続ではなく、図示しない取出し電極(端子バー)に接続される。また、上記構成の太陽電池モジュール100は、配線構造体1を用いて好ましく作製され得るが、これに限定されず、導電部30、第1樹脂層50、第2樹脂層60等の構成材料をそれぞれモジュール内の適切な場所に配置することによっても作製することができる。 As described above, the solar cells 110a and 110b and the configuration relating to the electrical connection thereof have been described. Since the above configuration is repeated, a duplicate description is omitted. In addition, the conductive part (more specifically, the conductive wire) disposed on the upper surface or the lower surface of the solar cells located at both ends of the solar cell group is not an electrical connection between the solar cells, but an extraction electrode (not shown) Connected to (terminal bar). Moreover, the solar cell module 100 having the above-described configuration can be preferably manufactured using the wiring structure 1, but is not limited thereto. They can also be produced by placing them at appropriate locations in the module.
 上記の構成によると、配線の接続信頼性が高く、優れた耐久性が実現されることは上述のとおりであるが、封止樹脂としてEVAを用い、第1および第2の樹脂層としてアクリル系樹脂層を採用した場合には、さらなる利点を得ることができる。具体的には、封止樹脂が酸やアルカリを放出する組成を有する場合には、これら酸またはアルカリが太陽電池セルを腐食し、経時的に太陽電池モジュールの発電効率を低下させ得る。例えば、封止樹脂としてEVAを用いた場合、EVAから酢酸が徐々に放出されて太陽電池セル表面の電極を腐食し、発電効率は経時的に低下し得る。しかし、上記の構成では、封止樹脂としてのEVAと太陽電池セルとの間に第1または第2の樹脂層が配置されているので、この樹脂層の介在によって、EVA由来の酢酸が太陽電池セルに接触することが防止される。その結果、太陽電池モジュールの発電効率は、長期に亘って良好に維持される。かかる構成の太陽電池モジュールはより耐久性に優れたものとなり得る。 According to the above configuration, the wiring connection reliability is high and excellent durability is realized as described above, but EVA is used as the sealing resin, and acrylic is used as the first and second resin layers. When a resin layer is employed, further advantages can be obtained. Specifically, when the sealing resin has a composition that releases an acid or an alkali, the acid or alkali can corrode the solar battery cell, and the power generation efficiency of the solar battery module can be lowered over time. For example, when EVA is used as the sealing resin, acetic acid is gradually released from the EVA to corrode the electrode on the surface of the solar battery cell, and the power generation efficiency may decrease with time. However, in the above configuration, since the first or second resin layer is disposed between the EVA as the sealing resin and the solar battery cell, the acetic acid derived from EVA is converted into the solar battery by the interposition of this resin layer. Contact with the cell is prevented. As a result, the power generation efficiency of the solar cell module is favorably maintained over a long period. The solar cell module having such a configuration can be more durable.
 また、上記のように構成された太陽電池モジュールは、配線のためにはんだ接合を必要としないため、はんだ接合による不具合(典型的には、セルの反りや割れ、特性低下、フラックス汚染)を回避することが可能である。はんだレス太陽電池モジュールは、上述のフラックス汚染を回避できるだけでなく、はんだ接合を原因とするリーチングやクレータリング等の問題をも解消し得る。また、はんだ接合を必要としないことは、太陽電池セルの構造にも利点をもたらす。具体的には、太陽電池セルの裏面には、BSF(Back Surface Field)効果等の観点から、裏面電極としてセル裏面の全面にアルミニウム含有電極(典型的には、アルミニウムからなる電極。アルミニウム電極ともいう。)を設けることが好ましい。しかし、アルミニウムははんだ接合性に劣るため、金属配線との接合箇所には、通常、はんだ接合性に優れる銀を主成分として含む電極(銀含有電極)が配置されている。つまり、太陽電池セルの裏面電極としては、通常はアルミニウム含有電極と銀含有電極とが併用されている。ここに開示される技術によると、太陽電池セルの裏面における電気的接続は、当該裏面における裏面電極(アルミニウム含有電極)と導電部とが当接するだけで実現されるので、太陽電池セル裏面でのはんだ接合は不要となる。したがって、ここに開示される技術を採用することによって、裏面電極が銀を実質的に含まない太陽電池セルを備える太陽電池モジュールが実現され得る。この構成によるコスト低減および生産性向上の利点は大きい。 In addition, since the solar cell module configured as described above does not require soldering for wiring, problems due to soldering (typically cell warpage or cracking, characteristic deterioration, flux contamination) are avoided. Is possible. The solderless solar cell module not only can avoid the above-mentioned flux contamination, but can also solve problems such as leaching and cratering caused by solder joints. In addition, the fact that the solder joint is not required brings an advantage to the structure of the solar battery cell. Specifically, an aluminum-containing electrode (typically an electrode made of aluminum, typically an aluminum electrode) is provided on the entire back surface of the cell as a back electrode from the viewpoint of a BSF (Back Surface Field) effect or the like. It is preferable to provide. However, since aluminum is inferior in solder jointability, an electrode (silver-containing electrode) containing silver, which is excellent in solder jointability, as a main component is usually disposed at a joint location with a metal wiring. That is, as the back electrode of the solar battery cell, an aluminum-containing electrode and a silver-containing electrode are usually used in combination. According to the technology disclosed herein, the electrical connection on the back surface of the solar battery cell is realized simply by contacting the back surface electrode (aluminum-containing electrode) on the back surface with the conductive portion. Solder bonding is not necessary. Therefore, by adopting the technique disclosed herein, a solar battery module including a solar battery cell whose back electrode substantially does not contain silver can be realized. This configuration has significant advantages in cost reduction and productivity improvement.
 (第2実施形態)
 図6は、第2実施形態に係る太陽電池セルの表面の一部を拡大して示す上面図である。図7は、第2実施形態に係る太陽電池セルの表面電極と導電線との配置関係を説明するための拡大分解斜視図である。図8は、第2実施形態に係る太陽電池セルの表面電極と導電線との配置関係を説明するための図であって、導電線と表面電極との当接状態を拡大して示す模式的断面図である。
(Second Embodiment)
FIG. 6 is an enlarged top view showing a part of the surface of the solar battery cell according to the second embodiment. FIG. 7 is an enlarged exploded perspective view for explaining the positional relationship between the surface electrode and the conductive wire of the solar battery cell according to the second embodiment. FIG. 8 is a diagram for explaining the arrangement relationship between the surface electrode and the conductive wire of the solar battery cell according to the second embodiment, and schematically showing the contact state between the conductive wire and the surface electrode. It is sectional drawing.
 第2実施形態に係る太陽電池モジュール200は、太陽電池セル210の表面電極212のパターンが異なる他は上記第1実施形態と基本的に同じ構成を有する。したがって、この実施形態については、太陽電池セル210の表面電極212を中心に説明し、その他の点についての説明は省略する。なお、図6中の導電線240は、説明の便宜上、破線で示し透過させている。 The solar cell module 200 according to the second embodiment has basically the same configuration as the first embodiment except that the pattern of the surface electrode 212 of the solar cell 210 is different. Therefore, about this embodiment, it demonstrates centering on the surface electrode 212 of the photovoltaic cell 210, and abbreviate | omits description about another point. Note that the conductive wire 240 in FIG. 6 is shown by a broken line and is transmitted for convenience of explanation.
 図6~8に示すように、太陽電池モジュール200を構成する太陽電池セル210には、その表面に電極(表面電極)212が設けられている。電極212は、線状に延びる複数の第1の線状部分214と、第1の線状部分214と交差するように線状に延びる複数の第2の線状部分216と、を有する。具体的には、第1の線状部分214と第2の線状部分216とは、いずれも直線状に延びる部分である。複数の第1の線状部分214の各々は、隣接する第1の線状部分214と間隔をおいて配置されており、より具体的には、複数の第1の線状部分214は、それぞれ間隔をおいて平行に配列されている。同様に、複数の第2の線状部分216の各々は、隣接する第2の線状部分216と間隔をおいて配置されており、より具体的には、複数の第2の線状部分216は、それぞれ間隔をおいて平行に配列されている。また、この実施形態では、第1の線状部分214と第2の線状部分216とは、ほぼ直交している。その結果、電極212は、図6において、上面からみたときに第1の線状部分214が横線、第2の線状部分216が縦線を構成する格子状パターンを呈している。 As shown in FIGS. 6 to 8, the solar cell 210 constituting the solar cell module 200 is provided with an electrode (surface electrode) 212 on the surface thereof. The electrode 212 includes a plurality of first linear portions 214 extending linearly and a plurality of second linear portions 216 extending linearly so as to intersect the first linear portions 214. Specifically, the first linear portion 214 and the second linear portion 216 are both portions that extend linearly. Each of the plurality of first linear portions 214 is spaced from the adjacent first linear portion 214. More specifically, each of the plurality of first linear portions 214 includes They are arranged in parallel at intervals. Similarly, each of the plurality of second linear portions 216 is spaced from the adjacent second linear portion 216, and more specifically, the plurality of second linear portions 216. Are arranged in parallel at intervals. In this embodiment, the first linear portion 214 and the second linear portion 216 are substantially orthogonal. As a result, the electrode 212 has a lattice pattern in which the first linear portion 214 forms a horizontal line and the second linear portion 216 forms a vertical line when viewed from above in FIG.
 複数の第1の線状部分214の各々の上には、導電線240が配置されている。この導電線240は、太陽電池セル210の上面から、太陽電池セル210の隣りに位置する太陽電池セル(図示せず)の下面にかけ渡される線状に延びる導電部材であり、これによって太陽電池セル間の上下配線(電気的接続)がなされている。この点については上述のとおりである。導電線240は、その長手方向が第1の線状部分214の長手方向と一致するように第1の線状部分214と重なっており、これによって、電極212と導電線240とは線状に連続して当接している。第1の線状部分214は導電線当接部分であるともいえる。また、第1の線状部分214の幅は、導電線240の幅よりも小さい。そのため、太陽電池セル210の表面において導電線240は第1の線状部分214を覆っている。 A conductive wire 240 is disposed on each of the plurality of first linear portions 214. The conductive wire 240 is a conductive member extending in a line extending from the upper surface of the solar battery cell 210 to the lower surface of a solar battery cell (not shown) located adjacent to the solar battery cell 210. Between the upper and lower wiring (electrical connection) is made. This point is as described above. The conductive line 240 overlaps the first linear portion 214 so that the longitudinal direction thereof coincides with the longitudinal direction of the first linear portion 214, whereby the electrode 212 and the conductive line 240 are linearly formed. Abuts continuously. It can be said that the first linear portion 214 is a conductive wire contact portion. Further, the width of the first linear portion 214 is smaller than the width of the conductive line 240. Therefore, the conductive wire 240 covers the first linear portion 214 on the surface of the solar battery cell 210.
 この実施形態では、第1の線状部分214の幅は凡そ40~80μmであり、導電線240の幅は約0.8mmであるが、これに限定されない。第1の線状部分214の幅W1に対する導電線240の幅Wcの比(Wc/W1)は、シャドーロス低減、電極材料節減の観点から、好ましくは1よりも大きく、より好ましくは2以上であり、さらに好ましくは5以上(例えば8以上、典型的には10以上)である。また、電極212と導電線240との導通信頼性や集電効率向上の観点から、上記比(Wc/W1)は、好ましくは160以下、より好ましくは50以下、さらに好ましくは30以下(例えば15以下、典型的には12以下)である。第1の線状部分214の幅W1の具体値は、好ましくは1mm以下、より好ましくは800μm以下、さらに好ましくは500μm以下(例えば300μm以下)である。物理接触による配線を利用することで、第1の線状部分214が細幅であっても、十分な導通(高い集電効率、導通信頼性)を得ることができる。また、断線を防いで導通信頼性を高める観点から、上記幅W1は、好ましくは5μm以上、より好ましくは10μm以上(典型的には30μm以上、例えば40μm以上)である。 In this embodiment, the width of the first linear portion 214 is approximately 40 to 80 μm, and the width of the conductive wire 240 is approximately 0.8 mm, but is not limited thereto. The ratio (Wc / W1) of the width Wc of the conductive wire 240 to the width W1 of the first linear portion 214 is preferably larger than 1, more preferably 2 or more, from the viewpoint of reducing shadow loss and electrode material. More preferably 5 or more (for example, 8 or more, typically 10 or more). In addition, from the viewpoint of improving the conduction reliability between the electrode 212 and the conductive wire 240 and improving the current collection efficiency, the ratio (Wc / W1) is preferably 160 or less, more preferably 50 or less, and even more preferably 30 or less (for example, 15 Hereinafter, typically 12 or less). The specific value of the width W1 of the first linear portion 214 is preferably 1 mm or less, more preferably 800 μm or less, and even more preferably 500 μm or less (for example, 300 μm or less). By using the wiring by physical contact, sufficient conduction (high current collection efficiency, conduction reliability) can be obtained even if the first linear portion 214 is narrow. In addition, from the viewpoint of preventing disconnection and improving conduction reliability, the width W1 is preferably 5 μm or more, more preferably 10 μm or more (typically 30 μm or more, for example, 40 μm or more).
 また、電極形成性の観点から、第1の線状部分214の幅W1の最小値W1minと最大値W1maxとは、それらの比(W1max/W1min)が好ましくは200以下、より好ましくは100以下、さらに好ましくは50以下となるよう設定される。好ましい一態様では、上記比(W1max/W1min)は20以下であり、より好ましくは10以下、さらに好ましくは2以下(例えば1.5以下、典型的には1.2以下)である。ほぼ一定の幅を有する直線状に形成された第1の線状部分214は、各種方法(例えばスクリーン印刷法等)により形成しやすく、また幅の最小値部分における断線も生じ難いので、生産性、信頼性に優れたものになり得る。なお、上記比(W1max/W1min)の下限値は原理上1である。第2の線状部分216の幅についても、同様の観点から、上記第1の線状部分214における幅の最小値と最大値の関係を満足することが好ましい。 From the viewpoint of electrode formability, the ratio (W1 max / W1 min ) of the minimum value W1 min and the maximum value W1 max of the width W1 of the first linear portion 214 is preferably 200 or less, more preferably. Is set to 100 or less, more preferably 50 or less. In a preferred embodiment, the ratio (W1 max / W1 min ) is 20 or less, more preferably 10 or less, still more preferably 2 or less (for example, 1.5 or less, typically 1.2 or less). The first linear portion 214 formed in a straight line having a substantially constant width is easy to be formed by various methods (for example, a screen printing method), and disconnection at the minimum width portion is less likely to occur. Can be reliable. The lower limit of the ratio (W1 max / W1 min ) is 1 in principle. Regarding the width of the second linear portion 216, it is preferable that the relationship between the minimum value and the maximum value of the width in the first linear portion 214 is satisfied from the same viewpoint.
 第1の線状部分214の膜厚(高さ)T1は、直接抵抗低減の観点から、第1の線状部分214の膜厚T1と幅W1との比で表わされるアスペクト比(T1/W1)が好ましくは1/200以上、より好ましくは1/100以上となるよう設計される。好ましい一態様では、上記アスペクト比(T1/W1)は1/50以上であり、より好ましくは1/10以上(典型的には1/5以上、例えば1/3以上)である。また電極形成性の観点から、上記アスペクト比(T1/W1)は、2未満(例えば1未満、典型的には1/2以下)であってもよい。第1の線状部分214の膜厚T1は、電極形成方法の選択、重ね塗り(典型的には印刷回数)等によって調節することができる。 The film thickness (height) T1 of the first linear portion 214 is an aspect ratio (T1 / W1) represented by the ratio between the film thickness T1 of the first linear portion 214 and the width W1 from the viewpoint of direct resistance reduction. ) Is preferably 1/200 or more, more preferably 1/100 or more. In a preferred embodiment, the aspect ratio (T1 / W1) is 1/50 or more, more preferably 1/10 or more (typically 1/5 or more, for example, 1/3 or more). Further, from the viewpoint of electrode formability, the aspect ratio (T1 / W1) may be less than 2 (for example, less than 1, typically 1/2 or less). The film thickness T1 of the first linear portion 214 can be adjusted by selecting an electrode forming method, overcoating (typically, the number of printings), and the like.
 また、この実施形態では、第1の線状部分214の間隔および導電線240の間隔はいずれも約2cmであるが、これに限定されない。第1の線状部分214の間隔は、基本的に導電線240の間隔と同じであり、その本数も導電線240の本数と同じである。複数の第1の線状部分214と複数の導電線240とは、対応するもの同士がそれぞれ重なるように間隔を設定すればよい。これによって、導通信頼性、集電効率が向上する。第1の線状部分214の間隔は、好ましくは0.1cm以上、より好ましくは0.8cm以上、さらに好ましくは1.5cm以上である。また上記間隔は、6cm未満とすることが適当であり、好ましくは4.0cm未満、より好ましくは3.0cm未満、さらに好ましくは2.8cm以下である。なお、上記間隔はピッチであり、第1の線状部分214の幅方向における中心線間の距離を指す。後述の第2の線状部分の間隔についても同様である。 In this embodiment, the distance between the first linear portions 214 and the distance between the conductive lines 240 are both about 2 cm, but are not limited thereto. The interval between the first linear portions 214 is basically the same as the interval between the conductive lines 240, and the number thereof is the same as the number of the conductive lines 240. The plurality of first linear portions 214 and the plurality of conductive lines 240 may be set so that the corresponding ones overlap each other. Thereby, conduction reliability and current collection efficiency are improved. The interval between the first linear portions 214 is preferably 0.1 cm or more, more preferably 0.8 cm or more, and further preferably 1.5 cm or more. The interval is suitably less than 6 cm, preferably less than 4.0 cm, more preferably less than 3.0 cm, and even more preferably 2.8 cm or less. In addition, the said space | interval is a pitch and points out the distance between the centerlines in the width direction of the 1st linear part 214. FIG. The same applies to the interval between second linear portions described later.
 また、この実施形態では、第2の線状部分216の幅も、第1の線状部分214と同様に凡そ40~80μmであるが、これに限定されない。第1の線状部分214の幅W1と第2の線状部分216の幅W2との比(W1/W2)は、電極形成性の観点から、好ましくは凡そ0.1以上、より好ましくは0.15以上、さらに好ましくは0.2以上(例えば0.25以上、典型的には0.5以上)であり、また同様の観点から、好ましくは凡そ10以下、より好ましくは6以下、さらに好ましくは5以下(例えば4以下、典型的には2以下)である。太陽電池セル210の表面電極212を、例えばスクリーン印刷法等の方法により一回の印刷で形成する場合には、高精度な電極を生産性よく形成する観点から、上記比(W1/W2)は0.8~1.2の範囲内であることが特に好ましい。第2の線状部分216の幅W2の具体値は、シャドーロス低減の観点から、好ましくは1mm以下、より好ましくは800μm以下、さらに好ましくは500μm以下(例えば300μm以下)である。また断線防止や直列抵抗低減の観点から、上記幅W2は、好ましくは5μm以上、より好ましくは10μm以上(典型的には30μm以上、例えば40μm以上)である。 Further, in this embodiment, the width of the second linear portion 216 is about 40 to 80 μm as in the case of the first linear portion 214, but is not limited to this. The ratio (W1 / W2) between the width W1 of the first linear portion 214 and the width W2 of the second linear portion 216 is preferably about 0.1 or more, more preferably 0, from the viewpoint of electrode formability. .15 or more, more preferably 0.2 or more (for example, 0.25 or more, typically 0.5 or more), and from the same viewpoint, preferably about 10 or less, more preferably 6 or less, still more preferably Is 5 or less (for example, 4 or less, typically 2 or less). When the surface electrode 212 of the solar battery cell 210 is formed by a single printing by a method such as a screen printing method, the ratio (W1 / W2) is from the viewpoint of forming a highly accurate electrode with high productivity. A range of 0.8 to 1.2 is particularly preferable. The specific value of the width W2 of the second linear portion 216 is preferably 1 mm or less, more preferably 800 μm or less, and even more preferably 500 μm or less (for example, 300 μm or less) from the viewpoint of reducing shadow loss. From the viewpoint of preventing disconnection and reducing series resistance, the width W2 is preferably 5 μm or more, more preferably 10 μm or more (typically 30 μm or more, for example, 40 μm or more).
 また、この実施形態では、第2の線状部分216の間隔(ピッチ)は、約1.3~2.2mmの範囲内であるが、上記間隔は、太陽電池セル210表面における集電効率(シャドーロスと短絡電流(Jsc)とのバランス)を考慮して適切に設定すればよく、上記の値に限定されるものではない。例えば、第2の線状部分216の間隔は、シャドーロス低減の観点から、凡そ0.1mm以上(例えば0.5mm以上、典型的には1mm以上)である。また短絡電流(Jsc)低減、信頼性の観点から、凡そ10mm以下(例えば5mm以下、典型的には3mm以下)である。 In this embodiment, the interval (pitch) between the second linear portions 216 is in the range of about 1.3 to 2.2 mm, but the interval is not limited to the current collection efficiency ( What is necessary is just to set suitably in consideration of a shadow loss and the short circuit current (Jsc), and it is not limited to said value. For example, the interval between the second linear portions 216 is approximately 0.1 mm or more (for example, 0.5 mm or more, typically 1 mm or more) from the viewpoint of reducing shadow loss. From the viewpoint of short circuit current (Jsc) reduction and reliability, it is about 10 mm or less (for example, 5 mm or less, typically 3 mm or less).
 第2の線状部分216の膜厚(高さ)T2も、第1の線状部分214の膜厚T1と同様に、直接抵抗低減の観点から、第2の線状部分216の膜厚T2と幅W2との比で表わされるアスペクト比(T2/W2)が好ましくは1/200以上、より好ましくは1/100以上となるよう設計される。好ましい一態様では、上記アスペクト比(T2/W2)は1/50以上であり、より好ましくは1/10以上(典型的には1/5以上、例えば1/3以上)である。また電極形成性の観点から、上記アスペクト比(T2/W2)は、2未満(例えば1未満、典型的には1/2以下)であってもよい。第2の線状部分216の膜厚T2は、電極形成方法の選択、重ね塗り(典型的には印刷回数)等によって調節することができる。 Similarly to the film thickness T1 of the first linear portion 214, the film thickness (height) T2 of the second linear portion 216 is also the film thickness T2 of the second linear portion 216 from the viewpoint of direct resistance reduction. The aspect ratio (T2 / W2) represented by the ratio of the width W2 is preferably 1/200 or more, more preferably 1/100 or more. In a preferred embodiment, the aspect ratio (T2 / W2) is 1/50 or more, more preferably 1/10 or more (typically 1/5 or more, for example, 1/3 or more). From the viewpoint of electrode formability, the aspect ratio (T2 / W2) may be less than 2 (for example, less than 1, typically ½ or less). The film thickness T2 of the second linear portion 216 can be adjusted by selecting an electrode formation method, overcoating (typically, the number of printings), and the like.
 第1の線状部分214の膜厚T1と第2の線状部分216の膜厚T2とは、電極形成性や導電線240との接触性の観点から、それらの比(T1/T2)が2以下(例えば1.5以下、典型的には1.2以下)となるように設定されることが適当である。好ましい一態様では、上記(T1/T2)はほぼ1である。換言すると、第1の線状部分214の上面と第2の線状部分216の上面はほぼ面一に形成されていることが好ましい。このような電極212は、導電線240との接触面積を得やすく、導通信頼性にも優れる傾向がある。また、第1の線状部分214の膜厚T1と第2の線状部分216の膜厚T2とが異なる場合には、導電線240との導通信頼性の観点から、上記(T1/T2)は1よりも大きいこと(例えば1.1以上、さらには1.2以上)が好ましい。 The film thickness T1 of the first linear portion 214 and the film thickness T2 of the second linear portion 216 are such that their ratio (T1 / T2) is from the viewpoint of electrode formation and contact with the conductive wire 240. It is appropriate to set it to 2 or less (for example, 1.5 or less, typically 1.2 or less). In a preferred embodiment, the above (T1 / T2) is approximately 1. In other words, it is preferable that the upper surface of the first linear portion 214 and the upper surface of the second linear portion 216 are formed substantially flush with each other. Such an electrode 212 tends to obtain a contact area with the conductive wire 240 and tends to have excellent conduction reliability. When the film thickness T1 of the first linear portion 214 and the film thickness T2 of the second linear portion 216 are different, the above (T1 / T2) from the viewpoint of conduction reliability with the conductive wire 240. Is preferably larger than 1 (for example, 1.1 or more, further 1.2 or more).
 上記のような電極212は、従来公知の方法を利用して形成することができ、その形成方法は特に限定されない。例えば、スクリーン印刷法、ステンシル印刷法、ディスペンサ法(インクジェット法)、めっき法等を利用して、電極形成材料を太陽電池セル基板の表面(より具体的には、太陽電池セル基板の表面に形成された反射防止膜の表面)に付与することにより、上記実施形態のようなパターンを有する電極212を形成することが可能である。なかでも、スクリーン印刷が好ましい。スクリーン印刷の版としては、メッシュ版が好ましく用いられる。スクリーン印刷を採用する場合、シングルプリントや、デュアルプリント、ダブルプリント等の複数回プリントのいずれを採用してもよい。例えば、第1の線状部分214と第2の線状部分216の幅や膜厚を近似させたパターンでは、シングルプリントによる1回の操作で精度よく電極212を形成することができる。このことは、複数回プリントで必要となる位置合わせの手間を省略できる点や、材料ロス低減の点でも有利である。あるいは、第1の線状部分214と第2の線状部分216の幅や膜厚、材質等を異ならせたい場合には、デュアルプリントやダブルプリントが好ましい。例えば、集電効率向上等を目的として第1の線状部分214と第2の線状部分216の膜厚を分厚くする場合にはダブルプリントが適している。デュアルプリントを採用する場合、集電効率向上や導通信頼性の観点から、第2の線状部分216の印刷をまず行い、次いで第1の線状部分214の印刷を行うことが好ましい。なお、反射防止膜上に形成された電極212は、その後、焼成時のファイヤースルーによりセル基板と導通する。 The electrode 212 as described above can be formed using a conventionally known method, and the formation method is not particularly limited. For example, using a screen printing method, a stencil printing method, a dispenser method (inkjet method), a plating method, etc., the electrode forming material is formed on the surface of the solar cell substrate (more specifically, on the surface of the solar cell substrate). It is possible to form the electrode 212 having the pattern as in the above embodiment by applying to the surface of the antireflection film. Of these, screen printing is preferable. As a screen printing plate, a mesh plate is preferably used. When screen printing is employed, any of multiple printing such as single printing, dual printing, and double printing may be employed. For example, in a pattern in which the width and film thickness of the first linear portion 214 and the second linear portion 216 are approximated, the electrode 212 can be formed with high accuracy by a single operation by single printing. This is advantageous in that the labor of alignment required for printing a plurality of times can be omitted and the material loss can be reduced. Alternatively, when it is desired to make the width, film thickness, material, and the like of the first linear portion 214 and the second linear portion 216 different, dual printing or double printing is preferable. For example, double printing is suitable for increasing the film thickness of the first linear portion 214 and the second linear portion 216 for the purpose of improving the current collection efficiency. In the case of adopting dual printing, it is preferable to print the second linear portion 216 first and then print the first linear portion 214 from the viewpoint of improving current collection efficiency and conduction reliability. The electrode 212 formed on the antireflection film is then electrically connected to the cell substrate by fire-through during firing.
 電極形成材料についても、従来公知のものを使用することができ、特定の材料に限定されない。電極形成材料は、金属(例えば銀、銅、アルミニウム等)等の導電成分を主成分(配合割合の最も大きい成分。例えば、固形分基準で70重量%以上含まれ得る成分。以下同じ。)として含むものである。好適例としては、銀やアルミニウム等の金属粉末を主成分として含む導電性ペーストや、銅等の金属めっきが挙げられる。例えば、Siセルに代表される太陽電池セル(より具体的には、太陽電池セル基板の表面に形成された窒化ケイ素や酸化ケイ素からなる反射防止膜)に対して、導電性粉末を主成分とし、ガラスフリット等の無機材料や有機ビヒクルを含む導電性ペーストが好ましく用いられる。導電性粉末の好適例としては、銀やアルミニウム等の金属粉末が挙げられる。ガラスフリットの好適例としては、PbOが挙げられるが、これに限定されず、環境負荷を考慮して、鉛フリーのB、SiO、Bi、MgO、CaO、SrO、BaO、LiO、NaO、KO、TiO、ZrO、V、Nb、Ta、CuO、ZnO、GeO、Al、P等のなかから適切な軟化点を有するものの1種または2種以上を選択して使用してもよい。有機ビヒクルとしては、バインダおよび有機溶剤が用いられる。バインダの例としては、セルロース系樹脂(メチルセルロース、エチルセルロース、ニトロセルロース等)やアクリル系樹脂、アルキド系樹脂が挙げられる。有機溶剤としては、テキサノール、キシレン等の各種有機溶剤を制限なく使用することができる。これらの成分を、所望の導電性、粘度となるように添加混合することにより、導電性ペーストは作製される。導電性ペーストには、その他にも本分野で公知または慣用の各種添加剤が必要に応じて含まれ得る。 A conventionally well-known thing can also be used also about an electrode formation material, It is not limited to a specific material. The electrode forming material includes a conductive component such as metal (for example, silver, copper, aluminum, etc.) as a main component (a component having the highest blending ratio. For example, a component that can be contained by 70% by weight or more based on solid content. Is included. Preferable examples include conductive paste containing a metal powder such as silver or aluminum as a main component, and metal plating such as copper. For example, for a solar cell represented by a Si cell (more specifically, an antireflection film made of silicon nitride or silicon oxide formed on the surface of a solar cell substrate), a conductive powder is used as a main component. A conductive paste containing an inorganic material such as glass frit or an organic vehicle is preferably used. Preferable examples of the conductive powder include metal powders such as silver and aluminum. Preferred examples of the glass frit include, but are not limited to, PbO. In consideration of environmental load, lead-free B 2 O 3 , SiO 2 , Bi 2 O 3 , MgO, CaO, SrO, BaO , Li 2 O, Na 2 O, K 2 O, TiO 2 , ZrO 2 , V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 , CuO, ZnO, GeO 2 , Al 2 O 3 , P 2 O 5 Among them, one having two or more appropriate softening points may be selected and used. As the organic vehicle, a binder and an organic solvent are used. Examples of the binder include cellulosic resins (methylcellulose, ethylcellulose, nitrocellulose, etc.), acrylic resins, and alkyd resins. As the organic solvent, various organic solvents such as texanol and xylene can be used without limitation. By adding and mixing these components so as to have desired conductivity and viscosity, a conductive paste is produced. In addition, the conductive paste may contain various additives known or commonly used in this field as necessary.
 以上、太陽電池セル210の上面(表面)の構成について説明したが、ここに開示される技術は、太陽電池セル210の下面(裏面)に対しても適用可能である。そのような構成は、例えば、両面受光型の太陽電池セルに対して好ましく適用される。その場合の詳細については、太陽電池セル210の上面と基本的に同様であるので、ここでは重複する説明は省略する。なお、太陽電池セル210の下面(裏面)は、上記の構成に限定されるものではなく、従来公知の構成と同様とすることができる。例えば、太陽電池セルの裏面全体に電極(例えば、アルミニウム含有電極と銀含有電極との併用)を設けた構成が挙げられる。あるいはまた、上述のように、裏面電極として銀含有電極を使用せずにアルミニウム含有電極のみからなる構成(典型的には、太陽電池セルの裏面全体がアルミニウム電極で覆われた構成)とすることも可能である。 The configuration of the upper surface (front surface) of the solar battery cell 210 has been described above, but the technology disclosed herein can also be applied to the lower surface (back surface) of the solar battery cell 210. Such a configuration is preferably applied to, for example, a double-sided light receiving solar cell. The details in that case are basically the same as those of the upper surface of the solar battery cell 210, and therefore, redundant description is omitted here. In addition, the lower surface (back surface) of the solar battery cell 210 is not limited to the above configuration, and can be the same as a conventionally known configuration. For example, the structure which provided the electrode (for example, combined use of an aluminum containing electrode and a silver containing electrode) was provided in the whole back surface of the photovoltaic cell. Alternatively, as described above, a configuration including only an aluminum-containing electrode without using a silver-containing electrode as a back electrode (typically, a configuration in which the entire back surface of a solar battery cell is covered with an aluminum electrode) is used. Is also possible.
 なお、導電部は、上記実施形態の形状、構造等に限定されない。太陽電池モジュールに配線構造体を適用したときに、導電部を利用して太陽電池セルの電気的接続が実現できる種々の形状、構造等を採用することが可能である。上記実施形態の導電部は、直線状に延びて且つ互いに平行に配置された複数の導電線であったが、導電線は曲線状に延びるものであってもよい。複数の導電線を有する場合には、複数の導電線は互いに分離していてもよく、接続していてもよく、互いに非平行(例えば交差していてもよく、あるいは互いに接触しない程度に非平行)であってもよい。導電部を導電線で構成する場合、配線構造体における導電線の数は2本以上(典型的には2~20本、より好ましくは4~12本、さらに好ましくは6~10本)であることが好ましく、あるいは1本であってもよい。 Note that the conductive portion is not limited to the shape, structure, and the like of the above embodiment. When a wiring structure is applied to a solar cell module, various shapes, structures, and the like that can realize electrical connection of solar cells using a conductive portion can be employed. The conductive portion of the above embodiment is a plurality of conductive lines that extend linearly and are arranged in parallel to each other, but the conductive lines may extend in a curved shape. In the case of having a plurality of conductive lines, the plurality of conductive lines may be separated from each other, connected, or non-parallel to each other (for example, may be crossed or non-parallel so as not to contact each other). ). When the conductive portion is composed of conductive lines, the number of conductive lines in the wiring structure is 2 or more (typically 2 to 20, more preferably 4 to 12, more preferably 6 to 10). It is preferable, or it may be one.
 また、第2領域における導電部は、太陽電池セルの裏面側に配置されるため、導電線のような細線形状を有していなくてもよく、例えば太陽電池セルの裏面全体を覆う四角形状を有するものであってもよい。換言すると、一の太陽電池セルの表(おもて)面側に位置する第1領域の導電部を導電線(例えば銅線)とし、他の一の太陽電池セルの裏面側に位置する第2領域の導電部を第2領域とほぼ同形状の導電シート(例えば四角形状の銅箔等の金属シート)としてもよい。この場合、導電部は、導電線からなるストライプ状部分と四角形状部分とが連続した形状となる。 In addition, since the conductive portion in the second region is disposed on the back surface side of the solar battery cell, it may not have a thin line shape such as a conductive wire. You may have. In other words, the conductive portion of the first region located on the front (front) surface side of one solar cell is defined as a conductive wire (for example, copper wire), and the first region located on the back surface side of the other solar cell. The conductive portion in the two regions may be a conductive sheet having substantially the same shape as the second region (for example, a metal sheet such as a rectangular copper foil). In this case, the conductive portion has a shape in which a stripe-shaped portion made of a conductive line and a quadrangular portion are continuous.
 また、上記実施形態では、第1樹脂層および第2樹脂層は、太陽電池セルとほぼ同形状の四角形状を有していたが、これに限定されるものではなく、太陽電池セルの形状等にあわせて種々の形状をとり得る。また、第1樹脂層および第2樹脂層は、同じ材料(同一組成)からなるものであってもよく、異なる材料からなるもの(異なる組成を有するもの)であってもよい。例えば、太陽電池セルが片面受光型の場合は、第1樹脂層のみが透明樹脂層であり(好適には、後述する所定以上の全光線透過率を有し)、第2樹脂層は透明性を有しない非透明樹脂層であってもよい。その場合、第2樹脂層は、具体的には、後述する全光線透過率が70%未満(例えば50%未満、典型的には30%未満)となる。したがって、第1樹脂層と第2樹脂層とは、異なる全光線透過率を有するものであり得る。あるいは、太陽電池セルが両面受光型の場合は、第1樹脂層と第2樹脂層とはともに透明樹脂層であることが好ましく、後述する所定以上の全光線透過率を有することがより好ましい。なお、第2領域における導電部が導電シートの場合には、第2樹脂層はなくてもよい。ここに開示される技術は、第1樹脂層および第2樹脂層を含むものに限定されない。 Moreover, in the said embodiment, although the 1st resin layer and the 2nd resin layer had the square shape of substantially the same shape as a photovoltaic cell, it is not limited to this, The shape of a photovoltaic cell, etc. Various shapes can be taken. The first resin layer and the second resin layer may be made of the same material (same composition) or may be made of different materials (having different compositions). For example, when the solar battery cell is a single-sided light receiving type, only the first resin layer is a transparent resin layer (preferably has a total light transmittance greater than or equal to a predetermined value described later), and the second resin layer is transparent. The non-transparent resin layer which does not have may be sufficient. In that case, the second resin layer specifically has a total light transmittance described below of less than 70% (for example, less than 50%, typically less than 30%). Therefore, the first resin layer and the second resin layer may have different total light transmittance. Or when a photovoltaic cell is a double-sided light reception type, it is preferable that both the 1st resin layer and the 2nd resin layer are transparent resin layers, and it is more preferable to have the total light transmittance more than the predetermined mentioned later. In addition, when the electroconductive part in a 2nd area | region is an electroconductive sheet, the 2nd resin layer does not need to be. The technique disclosed here is not limited to the one including the first resin layer and the second resin layer.
 また、上記第2実施形態のように、太陽電池セルの表面に設けられる電極が第1の線状部分と第2の線状部分とを有する場合には、第1の線状部分は、第2の線状部分と交差するように配置されていることにより、第1の線状部分の上に導電線を配置することで、所望の効果(集電効率および導通信頼性の向上)が実現される。したがって、その限りにおいて、太陽電池セルの表面に設けられる電極の構成等は特に制限されない。例えば、太陽電池セルの表面電極が第1の線状部分を有する場合には、当該第1の線状部分の形状、配置関係、本数は、上記導電線と同様の形状、配置関係、本数とすることができる。したがって、第1の線状部分は曲線状に延びるものであってもよく、また、複数の第1の線状部分は、互いに分離していてもよく、接続していてもよく、互いに非平行(例えば、互いに接触しない程度に非平行)であってもよい。例えば、第1の線状部分は、太陽電池セルの表面において規則的にまたは不規則的に繰り返し折れ曲がりながら曲線状に延びる形状を有してもよい。また、複数の第1の線状部分が波状のストライプパターンを呈する態様であってもよい。上記曲線状に延びる形状の例としては、サインウェーブや疑似サインウェーブ、円弧波等の曲線状の波形状や、ジグザグ状、三角波等の非曲線状のものが挙げられる。太陽電池セル上における第1の線状部分の本数は、導電線の本数に対応して、2本以上(典型的には2~20本、より好ましくは4~12本、さらに好ましくは6~10本)であることが好ましい。他の一態様において、第1の線状部分の幅は、それに重なる導電線の幅よりも太幅であってもよい。 Moreover, when the electrode provided on the surface of the solar battery cell has the first linear portion and the second linear portion as in the second embodiment, the first linear portion is By disposing the conductive line on the first linear part, the desired effect (improvement of current collection efficiency and conduction reliability) is realized Is done. Therefore, the configuration of the electrodes provided on the surface of the solar battery cell is not particularly limited as long as it is. For example, when the surface electrode of the solar battery cell has a first linear portion, the shape, the arrangement relationship, and the number of the first linear portion are the same shape, arrangement relationship, and number as the conductive wire. can do. Accordingly, the first linear portion may extend in a curved shape, and the plurality of first linear portions may be separated from each other, connected, or non-parallel to each other. (For example, non-parallel so as not to contact each other). For example, the first linear portion may have a shape extending in a curved shape while being bent regularly or irregularly on the surface of the solar battery cell. Moreover, the aspect in which a some 1st linear part exhibits a wavy stripe pattern may be sufficient. Examples of the shape extending in a curved shape include curved wave shapes such as a sine wave, pseudo sine wave, and arc wave, and non-curved shapes such as a zigzag shape and a triangular wave. The number of the first linear portions on the solar battery cell is 2 or more (typically 2 to 20, more preferably 4 to 12, more preferably 6 to 6) corresponding to the number of conductive wires. 10). In another aspect, the width of the first linear portion may be thicker than the width of the conductive line overlapping therewith.
 また、太陽電池セルの表面に設けられる電極が第1の線状部分と第2の線状部分とを有する場合において、第1の線状部分と第2の線状部分との交差角度は、上記第2実施形態のような直角に限定されず、集電効率等を考慮して所望の角度が採用され得る。例えば、第1の線状部分と第2の線状部分とは、通常は鋭角側が45°以上(典型的には70°以上90°以下)となるように交差することが好ましい。また、太陽電池セルの表面電極が第1の線状部分を有する場合には、第1の線状部分の幅は、一定でなく変化するものであってもよい。例えば、第2の線状部分と交差する部分が太幅(例えば、他の部分よりも大きいドット状)に構成されていてもよく、第1の線状部分の幅が規則的にまたは不規則に変化するものであってもよい。例えば、上記幅が緩やかにまたは急激に太くなったり細くなったりするものであってもよい。また、第1の線状部分の一つは、その一部に電極非形成部分が設けられるなどして部分的に2本に分かれてもよい。上記のように第1の線状部分の幅が一定でない場合、第1の線状部分の幅の値としては、任意の複数箇所における幅の平均値が採用される。第2の線状部分についても、第1の線状部分と同様、上記の構成とすることが可能である。 In the case where the electrode provided on the surface of the solar battery cell has the first linear portion and the second linear portion, the intersection angle between the first linear portion and the second linear portion is: The angle is not limited to the right angle as in the second embodiment, and a desired angle can be adopted in consideration of current collection efficiency and the like. For example, it is preferable that the first linear portion and the second linear portion usually intersect so that the acute angle side is 45 ° or more (typically 70 ° or more and 90 ° or less). Moreover, when the surface electrode of a photovoltaic cell has a 1st linear part, the width | variety of a 1st linear part may not be constant but may change. For example, the portion that intersects the second linear portion may be configured to have a large width (for example, a dot shape larger than the other portions), and the width of the first linear portion is regular or irregular. It may change to. For example, the width may gradually or suddenly become thicker or thinner. Further, one of the first linear portions may be partially divided into two, for example, by providing an electrode non-forming portion in a part thereof. As described above, when the width of the first linear portion is not constant, the average value of the widths at a plurality of arbitrary positions is adopted as the width value of the first linear portion. Similarly to the first linear portion, the second linear portion can be configured as described above.
 また、一の太陽電池モジュールに配置される太陽電池セルは、通常は5以上(例えば10以上、典型的には30以上)であり、典型的には50以上(50~70)程度であり得る。複数の太陽電池セルからなる一列あたりの配線構造体の数は、基本的に太陽電池セルの数から1減じた数となる。太陽電池セル群の両端に位置する太陽電池セルでは、その表(おもて)面または裏面に、図示しない取出し電極(端子バー)に接続する導電部が配置され得る。また、上記実施形態では、複数の太陽電池セルは一列に配列された太陽電池セル群として構成されていたが、複数の太陽電池セルの配列(配置)はこれに限定されず、直線状、曲線状、規則的なパターン、あるいは不規則的なパターンであってもよい。また、太陽電池セルの間隔は一定でなくてもよい。 In addition, the solar cells arranged in one solar cell module are usually 5 or more (for example, 10 or more, typically 30 or more), and typically 50 or more (50 to 70). . The number of wiring structures per row composed of a plurality of solar cells is basically a number obtained by subtracting 1 from the number of solar cells. In the solar cells located at both ends of the solar cell group, conductive portions connected to extraction electrodes (terminal bars) (not shown) can be arranged on the front surface or the back surface. Moreover, in the said embodiment, although the several photovoltaic cell was comprised as a photovoltaic cell group arranged in a line, the arrangement | sequence (arrangement | positioning) of a several photovoltaic cell is not limited to this, A linear form, a curve It may be a pattern, a regular pattern, or an irregular pattern. Moreover, the space | interval of a photovoltaic cell does not need to be constant.
 ≪配線構造体および太陽電池モジュールの構成要素≫
 配線構造体を構成する導電部や第1樹脂層、第2樹脂層は、上記実施形態のものに限定されず、発明の効果を発揮する範囲で種々の変更が可能である。太陽電池モジュールの構成要素についても同様である。以下、配線構造体および太陽電池モジュールを構成する各要素について説明する。
≪Components of wiring structure and solar cell module≫
The conductive portion, the first resin layer, and the second resin layer that constitute the wiring structure are not limited to those of the above-described embodiment, and various modifications can be made within a range in which the effects of the invention are exhibited. The same applies to the components of the solar cell module. Hereinafter, each element which comprises a wiring structure and a solar cell module is demonstrated.
 <導電部>
 導電部(導電線を包含する。以下同じ。)は、典型的には導電性材料を含む。導電部を構成する材料として、金、銀、銅、アルミニウム、鉄、ニッケル、錫、クロム、ビスマス、インジウム、亜鉛、それらの合金等の金属材料が好ましく用いられ得る。なかでも、銀、銅、アルミニウム、鉄がより好ましく、銅、アルミニウムがさらに好ましい。実質的に金属から構成された導電経路は、より低抵抗であるという利点を有する。一典型例として、金属ワイヤーからなる導電線から構成された導電部が挙げられる。上記金属ワイヤーとしては、強度、ハンドリング性等の観点から、JIS Z 2241:2011にしたがって測定される引張強度が200N/mm以上のものが好ましく用いられる。その具体例としては、銅製の金属ワイヤーが好ましく用いられる。なかでも、銅製の金属ワイヤーを芯材として、被覆部として錫(Sn)や銀(Ag)、ニッケル(Ni)等のめっきが施された金属ワイヤーがより好ましい。その被覆部の膜厚(例えばめっき厚)は10μm以下(例えば5μm以下、さらに例えば3μm以下)程度であり得る。上記膜厚は凡そ0.1μm以上(例えば0.5μm以上)であることが適当であり、拡散反射率向上の観点からは、好ましくは1.0μm以上、さらに好ましくは1.5μm以上(例えば2μm以上、さらに例えば3μm以上)である。被覆部の形成方法としては、上述のめっき法以外にもクラッド法等の従来公知の方法が採用され得る。他の一態様では、導電部として、防錆処理が施された導電線(典型的には金属ワイヤー)が好ましく使用される。
<Conductive part>
The conductive portion (including a conductive line, the same applies hereinafter) typically includes a conductive material. As a material constituting the conductive portion, a metal material such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, zinc, or an alloy thereof can be preferably used. Among these, silver, copper, aluminum, and iron are more preferable, and copper and aluminum are more preferable. Conductive paths composed essentially of metal have the advantage of lower resistance. As a typical example, there is a conductive portion made of a conductive wire made of a metal wire. As the metal wire, those having a tensile strength measured according to JIS Z 2241: 2011 of 200 N / mm 2 or more are preferably used from the viewpoint of strength, handling property, and the like. As a specific example, a copper metal wire is preferably used. Especially, the metal wire by which plating, such as tin (Sn), silver (Ag), nickel (Ni), was given as a coating | coated part using a copper metal wire as a core material is more preferable. The film thickness (for example, plating thickness) of the covering portion may be about 10 μm or less (for example, 5 μm or less, and further, for example, 3 μm or less). The film thickness is suitably about 0.1 μm or more (for example, 0.5 μm or more). From the viewpoint of improving the diffuse reflectance, it is preferably 1.0 μm or more, more preferably 1.5 μm or more (for example, 2 μm). Further, for example, 3 μm or more). As a method for forming the covering portion, a conventionally known method such as a clad method can be adopted in addition to the above-described plating method. In another aspect, a conductive wire (typically a metal wire) subjected to rust prevention treatment is preferably used as the conductive portion.
 導電部のうち第2領域に位置する部分は、導電シートであってもよい。導電シートは、典型的には金属シート(例えば金属箔)である。上記金属シートとしては、粗化処理や防錆処理、密着性向上処理の少なくとも1種の表面処理を施したものが好ましく用いられる。金属シートの好適例としては銅箔(なかでも電解銅箔)が挙げられる。第1領域における導電部を導電線とし、第2領域における導電部を導電シートとする場合、導電部は、導電線と導電シートとを固定することによって作製される。導電線と導電シートとの固定方法としては、溶接を採用することが好ましい。溶接方法としては、従来公知の各種の溶接を採用することができ、例えば、アーク溶接、抵抗溶接、レーザービーム溶接、電子ビーム溶接、超音波溶接が好ましく採用される。あるいは、めっき接合や、導電性粘着剤による固定方法を採用することも可能である。 The part located in the second region of the conductive part may be a conductive sheet. The conductive sheet is typically a metal sheet (for example, a metal foil). As said metal sheet, what gave at least 1 sort (s) of surface treatment of a roughening process, a rust prevention process, and an adhesive improvement process is used preferably. Suitable examples of the metal sheet include copper foil (in particular, electrolytic copper foil). When the conductive part in the first region is a conductive line and the conductive part in the second region is a conductive sheet, the conductive part is produced by fixing the conductive line and the conductive sheet. As a method for fixing the conductive wire and the conductive sheet, it is preferable to employ welding. As the welding method, conventionally known various types of welding can be employed. For example, arc welding, resistance welding, laser beam welding, electron beam welding, and ultrasonic welding are preferably employed. Or it is also possible to employ | adopt the fixing method by plating joining and a conductive adhesive.
 導電部が例えば導電線と導電シートとの組合せ形状を有する場合には、導電部は、パターン化された金属シートから形成されていてもよい。そのような導電部は、金属シートをエッチングすることによって形成することができる。具体的には、金属シート(典型的には金属箔)の表面にレジストを貼り、フォトリソグラフィ技術を適用して所定のレジストパターンを形成する。次いで、公知ないし慣用のエッチング液を用いて金属シートをパターン化する。このようにして導電部は形成される。なお、各種蒸着法によっても同様の構成を得ることができる。 When the conductive part has a combined shape of, for example, a conductive wire and a conductive sheet, the conductive part may be formed from a patterned metal sheet. Such a conductive part can be formed by etching a metal sheet. Specifically, a resist is attached to the surface of a metal sheet (typically a metal foil), and a predetermined resist pattern is formed by applying a photolithography technique. Next, the metal sheet is patterned using a known or conventional etching solution. In this way, the conductive portion is formed. A similar configuration can be obtained by various vapor deposition methods.
 あるいは、導電部は、例えば、導電性材料としての導電性ペーストを付与することによって形成してもよい。導電性ペーストとしては、金、銀、銅、アルミニウム、鉄、ニッケル、錫、クロム、ビスマス、インジウム、それらの合金等の金属材料からなる導電成分や、カーボン等の非金属からなる導電成分(以下同じ。)と、ポリエステルやエポキシ樹脂等の樹脂成分とを適当な溶媒を用いて混合してなるペースト状組成物が用いられ得る。なかでも、経時安定性の観点から、導電成分として銀または銅を使用することが好ましい。導電性ペーストの具体例としては、銀ペースト(商品名「ペルトロンK-3105」、ペルノックス社製、導電成分:Ag、樹脂成分:ポリエステル樹脂、比抵抗:6.5×10-5Ω・cm)が挙げられる。導電性ペーストの25℃における比抵抗は、凡そ5×10-4Ω・cm以下(例えば1×10-4Ω・cm以下、典型的には5.0×10-7Ω・m以下)であることが好ましい。また、導電性ペーストを構成する導電成分の比抵抗は5.0×10-7Ω・m以下であることが好ましい。導電部は、公知のディスペンサを用いて導電性ペーストを樹脂層や剥離性支持体等の表面に塗布することによって形成することができる。 Alternatively, the conductive portion may be formed, for example, by applying a conductive paste as a conductive material. As the conductive paste, conductive components made of metal materials such as gold, silver, copper, aluminum, iron, nickel, tin, chromium, bismuth, indium, and alloys thereof, and conductive components made of non-metals such as carbon (hereinafter referred to as “conductive paste”) The same)) and a resin component such as polyester or epoxy resin can be used in a suitable solvent. Especially, it is preferable to use silver or copper as a conductive component from a viewpoint of temporal stability. Specific examples of the conductive paste include silver paste (trade name “Pertron K-3105”, manufactured by Pernox, conductive component: Ag, resin component: polyester resin, specific resistance: 6.5 × 10 −5 Ω · cm) Is mentioned. The specific resistance of the conductive paste at 25 ° C. is about 5 × 10 −4 Ω · cm or less (for example, 1 × 10 −4 Ω · cm or less, typically 5.0 × 10 −7 Ω · m or less). Preferably there is. The specific resistance of the conductive component constituting the conductive paste is preferably 5.0 × 10 −7 Ω · m or less. The conductive portion can be formed by applying a conductive paste to the surface of a resin layer, a peelable support or the like using a known dispenser.
 好ましい一態様では、導電部の表面(少なくとも太陽電池モジュール入光面側表面。典型的には表層部分。例えば、導電部の表面から深さ1μm以下の部分。以下同じ。)は銀からなる。そのような導電部として、銀めっきが施された金属材料(例えば銅線)が挙げられる。導電部の表面が銀で構成されている場合、当該表面における銀の純度(例えば、銀めっきの純度)は特に制限されず、凡そ95重量%以上(例えば99重量%以上)であることが適当である。上記銀の純度は、好ましくは99.7重量%以上であり、より好ましくは99.9重量%以上である。このように高純度の銀を導電部の表面に配することで、拡散反射率が高まり発電効率が向上する。導電部の表面における添加成分(セレン、アンチモン等の銀以外の成分)の濃度は、凡そ0.3重量%以下(好ましくは0.1重量%以下)であることが好ましい。銀の純度および銀以外の成分の濃度は、誘導結合プラズマ質量分析計(ICP-MS)および誘導結合プラズマ発光分光分析計(ICP-AES)を利用して測定することができる。後述の実施例においても同様の方法を採用することができる。 In a preferred embodiment, the surface of the conductive portion (at least the surface on the solar cell module incident surface side. Typically, the surface layer portion, for example, the portion having a depth of 1 μm or less from the surface of the conductive portion, the same applies hereinafter) is made of silver. As such a conductive part, a metal material (for example, copper wire) subjected to silver plating can be used. When the surface of the conductive part is made of silver, the purity of silver on the surface (for example, the purity of silver plating) is not particularly limited, and is suitably about 95% by weight (for example, 99% by weight or more). It is. The silver purity is preferably 99.7% by weight or more, more preferably 99.9% by weight or more. Thus, by disposing high-purity silver on the surface of the conductive portion, the diffuse reflectance is increased and the power generation efficiency is improved. The concentration of the additive component (component other than silver, such as selenium and antimony) on the surface of the conductive portion is preferably about 0.3% by weight or less (preferably 0.1% by weight or less). The purity of silver and the concentration of components other than silver can be measured using an inductively coupled plasma mass spectrometer (ICP-MS) and an inductively coupled plasma emission spectrometer (ICP-AES). The same method can be adopted in the embodiments described later.
 他の好ましい一態様では、導電部は、低融点(例えば融点300℃以下、好ましくは250℃以下)の金属材料(典型的には合金)をホットメルト塗工することにより形成される。具体的には、樹脂層や剥離性支持体等の表面に、市販のホットメルトディスペンサー(例えば武蔵エンジニアリング社製)を用いて低融点合金(例えば、荒川化学工業社製の「SnBiはんだ」、融点139℃)を塗工することにより、導電部を形成することができる。なお、スクリーン印刷等の各種印刷法を採用することによっても、上記と同様の構成を得ることができる。 In another preferred embodiment, the conductive portion is formed by hot-melt coating a metal material (typically an alloy) having a low melting point (for example, a melting point of 300 ° C. or lower, preferably 250 ° C. or lower). Specifically, a low melting point alloy (for example, “SnBi solder” manufactured by Arakawa Chemical Industry Co., Ltd.), 139 ° C.) can be applied to form the conductive portion. Note that the same configuration as described above can be obtained by employing various printing methods such as screen printing.
 導電部表面の算術平均粗さ(Ra)は、60nm以上であることが好ましい。これによって、拡散反射率が高まり発電効率が向上する傾向がある。上記Raは、より好ましくは70nm以上、さらに好ましくは80nm以上(例えば110nm以上、さらに例えば140nm以上)であり、特に好ましくは200nm以上(例えば220nm以上、さらに例えば250nm以上)である。特に、導電部の表面が銀(典型的には銀めっき層)で構成されており、その純度が99.7重量%以上(好ましくは99.9重量%以上)であり、かつ銀の膜厚が1.0μm以上(好ましくは1.5μm以上)である構成に対して上記範囲のRaを適用することで、拡散反射率を有意に向上させることができる。上記Raは、導電部表面の金属材料種の選択、エンボスロールを利用した粗化処理、エッチング処理等の表面処理等によって調節することができる。 The arithmetic average roughness (Ra) of the surface of the conductive part is preferably 60 nm or more. This tends to increase the diffuse reflectance and improve the power generation efficiency. The Ra is more preferably 70 nm or more, further preferably 80 nm or more (for example, 110 nm or more, further for example, 140 nm or more), and particularly preferably 200 nm or more (for example, 220 nm or more, further, for example, 250 nm or more). In particular, the surface of the conductive portion is composed of silver (typically a silver plating layer), the purity thereof is 99.7% by weight or more (preferably 99.9% by weight or more), and the film thickness of silver By applying Ra in the above-mentioned range to a configuration in which is 1.0 μm or more (preferably 1.5 μm or more), the diffuse reflectance can be significantly improved. The Ra can be adjusted by selecting a metal material type on the surface of the conductive portion, roughening using an embossing roll, or surface treatment such as etching.
 上記Raの測定は、下記の方法で測定される。まず、導電部の表面につき、光干渉型形状測定装置を用いて形状プロファイルを計測する。計測する範囲は約600μm×450μmとする。光干渉型形状測定装置としては、Veeco社製の光干渉型形状測定装置、型式「Wyko NT9100」またはその相当品を使用するとよい。得られた計測結果に含まれるうねりをGaussian処理で除去した後、導電部表面のRaは算出される。導電部が複数(例えば3本以上)の導電線からなる場合、導電部を構成する任意の3本につき、上記の方法でRaを算出し、それらを算術平均した値を導電部表面のRaとして採用することが好ましい。後述の実施例においても同様の方法で測定される。 The above Ra is measured by the following method. First, a shape profile is measured for the surface of the conductive portion using an optical interference type shape measuring device. The measurement range is about 600 μm × 450 μm. As the optical interference type shape measuring device, an optical interference type shape measuring device manufactured by Veeco, model “Wyko NT9100” or its equivalent may be used. After removing the waviness included in the obtained measurement result by Gaussian processing, Ra of the surface of the conductive portion is calculated. When the conductive part is composed of a plurality of (for example, three or more) conductive wires, Ra is calculated by the above method for any three of the conductive parts, and the value obtained by arithmetically averaging them is defined as Ra on the surface of the conductive part. It is preferable to adopt. In the examples described later, the same method is used.
 導電部表面は、凡そ60%以上の拡散反射率を示すことが好ましい。これによって、発電効率を向上させることができる。ここで拡散反射率とは、波長550nmの光に対する拡散反射率(入射光に対する拡散反射の割合(%))をいう。上記拡散反射率は、より好ましくは80%以上、さらに好ましくは85%以上、殊に好ましくは87%以上、特に好ましくは90%以上である。 The surface of the conductive part preferably exhibits a diffuse reflectance of about 60% or more. Thereby, power generation efficiency can be improved. Here, the diffuse reflectance refers to the diffuse reflectance with respect to light having a wavelength of 550 nm (the ratio (%) of diffuse reflection with respect to incident light). The diffuse reflectance is more preferably 80% or more, further preferably 85% or more, particularly preferably 87% or more, and particularly preferably 90% or more.
 また、導電部表面における全反射に占める拡散反射の割合(拡散反射比率)は、凡そ80%以上であることが好ましい。拡散反射比率とは、具体的には、波長550nmの光に対する全反射(正反射(鏡面反射ともいう。)と拡散反射との和)に占める拡散反射の割合(%)をいう。上記拡散反射比率は、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上である。 The ratio of diffuse reflection to the total reflection on the surface of the conductive portion (diffuse reflection ratio) is preferably about 80% or more. Specifically, the diffuse reflection ratio refers to the ratio (%) of diffuse reflection in total reflection (the sum of regular reflection (also referred to as specular reflection) and diffuse reflection) with respect to light having a wavelength of 550 nm. The diffuse reflection ratio is more preferably 90% or more, further preferably 95% or more, and particularly preferably 99% or more.
 上記拡散反射率および拡散反射比率は、市販の分光光度計を用いて測定することができる。例えば、JASCO社製の積分球ユニット(例えば製品名「ISV-722」)、同社製の分光光度計(例えば製品名「V-660」)、およびラブスフェア社製の標準白板(例えば、スペクトラロン(登録商標)6916-H422A)を用いて測定される。測定は、導電部において太陽電池モジュールの入光面側の表面となる部分に対して行うものとする。また、測定対象である導電部(例えば導電線)の照射面積が不十分の場合には、複数の導電部を密接するよう並べて測定を行うものとする。後述の実施例においても同様の方法で測定される。 The above diffuse reflectance and diffuse reflectance ratio can be measured using a commercially available spectrophotometer. For example, an integrating sphere unit manufactured by JASCO (for example, product name “ISV-722”), a spectrophotometer manufactured by the same (for example, product name “V-660”), and a standard white plate manufactured by Labsphere (for example, Spectralon ( (Registered trademark) 6916-H422A). The measurement is performed on the portion of the conductive portion that is the surface on the light incident surface side of the solar cell module. Moreover, when the irradiation area of the electroconductive part (for example, conductive wire) which is a measuring object is inadequate, it shall measure by arranging a several electroconductive part closely. In the examples described later, the same method is used.
 導電部(典型的には導電線)は、その長手方向に直交する断面における高さ(H)と幅(W)との比(H/W)が1/2以下に設定されていることが好ましい。これによって、優れた性能を発揮することができる。上記比(H/W)は、配線作業性や接続信頼性の観点から、好ましくは1/3以下程度であり、また発電効率の観点から、好ましくは1/5以上(例えば1/4以上)である。また、導電部が導電線を有する場合、導電線は、その長手方向に直交する断面において長方形状を有する。これによって、導電線の一面のほぼ全域が太陽電池セル表面と面接触することができる。上記長方形状は、各角にアール等の面取りが施されていてもよい。なお、導電線の断面形状はこれに限定されず、円形、楕円形、半円形、台形、三角形等の形状であってもよい。太陽電池セルとの接触面積の観点から、導電部(典型的には導電線)は、太陽電池セルと接触する部分(典型的には面)が平面となっていることが好ましい。 The ratio of the height (H) to the width (W) (H / W) in the cross section orthogonal to the longitudinal direction of the conductive portion (typically conductive wire) is set to be ½ or less. preferable. Thereby, excellent performance can be exhibited. The ratio (H / W) is preferably about 1/3 or less from the viewpoint of wiring workability and connection reliability, and preferably 1/5 or more (for example, 1/4 or more) from the viewpoint of power generation efficiency. It is. Moreover, when a conductive part has a conductive wire, the conductive wire has a rectangular shape in a cross section orthogonal to the longitudinal direction. Thereby, almost the whole area of one surface of the conductive wire can be in surface contact with the surface of the solar battery cell. The rectangular shape may be chamfered at each corner. The cross-sectional shape of the conductive wire is not limited to this, and may be a circular shape, an elliptical shape, a semicircular shape, a trapezoidal shape, a triangular shape, or the like. From the viewpoint of the contact area with the solar battery cell, it is preferable that the conductive portion (typically conductive wire) has a flat portion (typically a surface) in contact with the solar battery cell.
 導電部が導電線を有する場合、導電線の幅(複数の導電線を有する場合は各々の幅)は、集電ロス低減、強度、ハンドリング性および作業性の観点から、好ましくは0.03mm以上であり、より好ましくは0.1mm以上であり、さらに好ましくは0.2mm以上である。また上記幅は、シャドーロス低減等の観点から、好ましくは1.5mm以下であり、より好ましくは1.2mm以下であり、さらに好ましくは1.0mm以下である。なお、上記幅は、導電線の長手方向に直交する長さ(幅)を指す。 When the conductive part has a conductive line, the width of the conductive line (in the case of having a plurality of conductive lines, each width) is preferably 0.03 mm or more from the viewpoint of reduction of current collection loss, strength, handling properties, and workability. More preferably, it is 0.1 mm or more, More preferably, it is 0.2 mm or more. The width is preferably 1.5 mm or less, more preferably 1.2 mm or less, and further preferably 1.0 mm or less from the viewpoint of reducing shadow loss. In addition, the said width | variety points out the length (width) orthogonal to the longitudinal direction of a conductive wire.
 また、線状に延びる複数の導電線を間隔をおいて配置する場合、導電線の間隔は、シャドーロス低減等の観点から、好ましくは0.1cm以上であり、より好ましくは0.8cm以上であり、さらに好ましくは1.5cm以上である。また上記間隔は、集電ロス低減の観点からは、好ましくは4.0cm未満であり、より好ましくは3.0cm未満であり、さらに好ましくは2.8cm以下(例えば2.5cm以下)である。なお、上記間隔はピッチであり、導電線の幅方向における中心線間の距離を指す。 In addition, when arranging a plurality of conductive lines extending in a line at intervals, the distance between the conductive lines is preferably 0.1 cm or more, more preferably 0.8 cm or more, from the viewpoint of reducing shadow loss. More preferably 1.5 cm or more. The distance is preferably less than 4.0 cm, more preferably less than 3.0 cm, and even more preferably 2.8 cm or less (for example, 2.5 cm or less) from the viewpoint of reducing current collection loss. In addition, the said space | interval is a pitch and points out the distance between the centerlines in the width direction of a conductive wire.
 導電部の厚さ(高さ)は、導電性、強度、ハンドリング性および作業性の観点から、0.01~1mm(例えば0.02~0.5mm、典型的には0.05~0.3mm)程度とすることが好ましい。導電線の厚さも同様の範囲から好ましく選定される。 The thickness (height) of the conductive portion is 0.01 to 1 mm (for example, 0.02 to 0.5 mm, typically 0.05 to 0.00 mm) from the viewpoints of conductivity, strength, handling properties, and workability. 3 mm) or so is preferable. The thickness of the conductive wire is also preferably selected from the same range.
 <第1樹脂層および第2樹脂層>
 (樹脂層の特性)
 ここに開示される第1樹脂層および第2樹脂層(以下、まとめて「樹脂層」ともいう。)は、太陽電池セルと導電部との接触状態を良好に保持する層として機能し得る。樹脂層は、典型的には、室温付近の温度域において弾性体または粘弾性体の性質を示す層であることが好ましい。なお、ここでいう粘弾性体は、粘性と弾性の性質を併せ持つ材料、すなわち、複素弾性率の位相が0を超えてπ/2未満、を満たす性質を有する材料(典型的には25℃において上記性質を有する材料)である。また、樹脂層は絶縁性であることが好ましい。
<First resin layer and second resin layer>
(Resin layer characteristics)
The first resin layer and the second resin layer (hereinafter collectively referred to as “resin layer”) disclosed herein can function as layers that favorably maintain the contact state between the solar battery cell and the conductive portion. Typically, the resin layer is preferably a layer that exhibits the properties of an elastic body or a viscoelastic body in a temperature range near room temperature. The viscoelastic body referred to here is a material having both properties of viscosity and elasticity, that is, a material having a property that satisfies the phase of the complex elastic modulus exceeding 0 and less than π / 2 (typically at 25 ° C. A material having the above properties). The resin layer is preferably insulative.
 ここに開示される樹脂層の貯蔵弾性率G’(周波数1Hz、歪み0.1%、150℃)は5,000Pa以上であることが好ましい。高温時に所定以上の貯蔵弾性率G’を示す樹脂層を用いることで、高温条件下において太陽電池セルと導電部とが良好に接触し、かつ様々な条件下(例えば幅広い温度条件下)において、その接触状態が安定的に維持され得る。樹脂層は、上記貯蔵弾性率G’に加えて、後述のtanδを満足することがより好ましい。例えば、太陽電池モジュールの構築に際して樹脂層の外方から導電部を太陽電池セルに押し当てたときに、高温条件下においても導電部を太陽電池セル表面に良好に当接させることができる。上記150℃貯蔵弾性率G’は、より好ましくは10,000Pa以上、さらに好ましくは20,000Pa以上、特に好ましくは25,000Pa以上(例えば50,000Pa以上、典型的には80,000Pa以上)である。また、上記150℃貯蔵弾性率G’は、通常は1,000,000Pa以下であり、好ましくは500,000Pa以下、より好ましくは200,000Pa以下(例えば150,000Pa以下、典型的には100,000Pa以下)であり得る。 The storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%, 150 ° C.) of the resin layer disclosed herein is preferably 5,000 Pa or more. By using a resin layer exhibiting a storage elastic modulus G ′ of a predetermined value or higher at high temperature, the solar cell and the conductive part are in good contact under high temperature conditions, and under various conditions (for example, wide temperature conditions), The contact state can be stably maintained. The resin layer more preferably satisfies tan δ described later in addition to the storage elastic modulus G ′. For example, when the conductive part is pressed against the solar battery cell from the outside of the resin layer when constructing the solar battery module, the conductive part can be brought into good contact with the surface of the solar battery cell even under high temperature conditions. The 150 ° C. storage elastic modulus G ′ is more preferably 10,000 Pa or more, further preferably 20,000 Pa or more, particularly preferably 25,000 Pa or more (for example, 50,000 Pa or more, typically 80,000 Pa or more). is there. The 150 ° C. storage elastic modulus G ′ is usually 1,000,000 Pa or less, preferably 500,000 Pa or less, more preferably 200,000 Pa or less (for example, 150,000 Pa or less, typically 100,000 or less). 000 Pa or less).
 また、樹脂層の貯蔵弾性率G’(周波数1Hz、歪み0.1%)は、80℃~150℃の温度域において、5,000Pa~1,000,000Paの範囲内にあることが好ましい。上記高温域における貯蔵弾性率G’の変化が所定の範囲内にあることは、樹脂層の物性が温度変化の影響を受けにくいことを意味し得る。80℃~150℃の温度域における樹脂層の貯蔵弾性率G’は、より好ましくは5,000Pa~500,000Pa、さらに好ましくは5,000Pa~200,000Pa(例えば10,000Pa~100,000Pa)の範囲内である。 The storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%) of the resin layer is preferably in the range of 5,000 Pa to 1,000,000 Pa in the temperature range of 80 ° C. to 150 ° C. That the change in the storage elastic modulus G ′ in the high temperature range is within a predetermined range may mean that the physical properties of the resin layer are not easily affected by the temperature change. The storage elastic modulus G ′ of the resin layer in the temperature range of 80 ° C. to 150 ° C. is more preferably 5,000 Pa to 500,000 Pa, still more preferably 5,000 Pa to 200,000 Pa (for example, 10,000 Pa to 100,000 Pa). Is within the range.
 さらに、樹脂層の貯蔵弾性率G’(周波数1Hz、歪み0.1%)は、30℃~150℃の温度域において、5,000Pa~10,000,000Paの範囲内にあることが好ましい。上記のような広い温度域における貯蔵弾性率G’の変化が所定の範囲内にあることは、樹脂層の物性が温度変化の影響を受けにくいことを意味し得る。30℃~150℃の温度域における樹脂層の貯蔵弾性率G’は、より好ましくは5,000Pa~1,000,000Pa、さらに好ましくは5,000Pa~500,000Pa(例えば10,000Pa~200,000Pa)の範囲内である。 Furthermore, the storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%) of the resin layer is preferably in the range of 5,000 Pa to 10,000,000 Pa in the temperature range of 30 ° C. to 150 ° C. The change in the storage elastic modulus G ′ within the wide temperature range as described above being within a predetermined range may mean that the physical properties of the resin layer are not easily affected by the temperature change. The storage elastic modulus G ′ of the resin layer in the temperature range of 30 ° C. to 150 ° C. is more preferably 5,000 Pa to 1,000,000 Pa, still more preferably 5,000 Pa to 500,000 Pa (for example, 10,000 Pa to 200, 000 Pa).
 また、ここに開示される樹脂層のtanδの最大値は、80℃~150℃の温度域において0.4未満であることが好ましい。高温域におけるtanδが所定値以下の樹脂層を用いることで、高温域において太陽電池セルと導電部とが良好に接触し、かつ様々な条件下(例えば幅広い温度条件下)において、その接触状態が安定的に維持され得る。例えば、太陽電池モジュールの構築に際して樹脂層の外方から導電部を太陽電池セルに押し当てたときに、高温条件下においても導電部を太陽電池セル表面に良好に当接させることができる。なお、tanδは、損失弾性率G”/貯蔵弾性率G’から求められる値(G”/G’)である。80℃~150℃の温度域における樹脂層のtanδの最大値は、より好ましくは0.3未満である。また、上記温度域におけるtanδの最小値は、通常は0.01以上(例えば0.1以上)であり得る。 Also, the maximum value of tan δ of the resin layer disclosed herein is preferably less than 0.4 in the temperature range of 80 ° C. to 150 ° C. By using a resin layer having a tan δ of a predetermined value or less in a high temperature region, the solar battery cell and the conductive part are in good contact in the high temperature region, and the contact state is various under various conditions (for example, a wide temperature condition). It can be stably maintained. For example, when the conductive part is pressed against the solar battery cell from the outside of the resin layer when constructing the solar battery module, the conductive part can be brought into good contact with the surface of the solar battery cell even under high temperature conditions. Here, tan δ is a value (G ″ / G ′) obtained from loss elastic modulus G ″ / storage elastic modulus G ′. The maximum value of tan δ of the resin layer in the temperature range of 80 ° C. to 150 ° C. is more preferably less than 0.3. In addition, the minimum value of tan δ in the above temperature range can be usually 0.01 or more (for example, 0.1 or more).
 樹脂層の貯蔵弾性率G’(周波数1Hz、歪み0.1%、150℃)およびtanδ(G”/G’)は、市販のレオメーター(例えば、装置名「ARES 2KFRT」、TAインスツルメント社製)を用いて、周波数1Hz、歪み0.1%の条件で、所定の温度範囲(80℃~150℃を含む温度域、さらには30℃~150℃を含む温度域)で測定すればよい。測定温度域および昇温速度は、測定装置の機種等に応じて適切に設定すればよい。例えば、30℃~160℃の温度域、0.5℃~20℃/分(例えば10℃/分)程度の昇温速度とすることができる。測定サンプルとしては、約2mm厚とした樹脂層を直径8mm程度に打ち抜いたものを使用することが望ましい。 The storage elastic modulus G ′ (frequency 1 Hz, strain 0.1%, 150 ° C.) and tan δ (G ″ / G ′) and tan δ (G ″ / G ′) of the resin layer are commercially available rheometers (for example, device name “ARES 2KFRT”, TA Instruments). Measured by a specified temperature range (a temperature range including 80 ° C to 150 ° C, and a temperature range including 30 ° C to 150 ° C) under the conditions of a frequency of 1 Hz and a strain of 0.1%. Good. What is necessary is just to set a measurement temperature range and a temperature increase rate appropriately according to the model etc. of a measuring apparatus. For example, a temperature range of 30 ° C. to 160 ° C. and a temperature increase rate of about 0.5 ° C. to 20 ° C./min (for example, 10 ° C./min) can be achieved. As a measurement sample, it is desirable to use a resin layer having a thickness of about 2 mm punched out to a diameter of about 8 mm.
 樹脂層は、接着性(典型的には粘着性)を有してもよく、有しなくてもよい。換言すると、樹脂層は、粘着層であってもよく、非粘着層であってもよい。ここで「粘着層」とは、JIS Z 0237:2009に準じて、SUS304ステンレス鋼板を被着体とし、23℃の測定環境下において2kgのローラを1往復させて上記被着体に圧着してから30分後に引張速度300mm/分の条件で180°方向に剥離した場合の剥離強度が0.1N/20mm以上である層をいう。また、「非粘着層」とは、上記粘着層に該当しない層をいい、典型的には上記剥離強度が0.1N/20mm未満である層をいう。23℃の測定環境下において2kgのローラを1往復させてSUS304ステンレス鋼板に圧着した場合に該ステンレス鋼板に貼り付かない層(実質的に粘着性を示さない層)は、ここでいう非粘着層の概念に含まれる典型例である。 The resin layer may or may not have adhesiveness (typically adhesiveness). In other words, the resin layer may be an adhesive layer or a non-adhesive layer. Here, the “adhesive layer” refers to a SUS304 stainless steel plate as an adherend in accordance with JIS Z 0237: 2009, and a 2 kg roller is reciprocated once in a measurement environment at 23 ° C. to be bonded to the adherend. 30 minutes later, the peel strength when peeled in the direction of 180 ° at a pulling speed of 300 mm / min is 0.1 N / 20 mm or more. The “non-adhesive layer” refers to a layer that does not correspond to the adhesive layer, and typically refers to a layer having a peel strength of less than 0.1 N / 20 mm. The layer that does not stick to the stainless steel plate when the 2 kg roller is reciprocated once in a measurement environment of 23 ° C. and pressed against the SUS304 stainless steel plate is a non-adhesive layer here. This is a typical example included in the concept.
 ここに開示される技術は、粘着剤から形成された粘着層(粘着剤層ともいう。)に該当する樹脂層を含む形態で好ましく実施される。この場合、樹脂層形成用組成物は粘着剤組成物であり得る。なお、本明細書において「粘着剤」とは、室温付近の温度域において柔らかい固体(粘弾性体)の状態を呈し、圧力により簡単に被着体に接着する性質を有する材料をいう。ここでいう粘着剤は、「C. A. Dahlquist, “Adhesion : Fundamental and Practice”, McLaren & Sons, (1966) P. 143」に定義されているとおり、一般的に、複素引張弾性率E(1Hz)<10dyne/cmを満たす性質を有する材料(典型的には、25℃において上記性質を有する材料)である。 The technique disclosed here is preferably implemented in a form including a resin layer corresponding to an adhesive layer (also referred to as an adhesive layer) formed from an adhesive. In this case, the resin layer forming composition may be a pressure-sensitive adhesive composition. In the present specification, the “pressure-sensitive adhesive” refers to a material that exhibits a soft solid (viscoelastic body) state in a temperature range near room temperature and has a property of easily adhering to an adherend by pressure. The adhesive here is generally complex elastic modulus E * (1 Hz) as defined in “C. A. Dahlquist,“ Adhesion: Fundamental and Practice ”, McLaren & Sons, (1966) P. 143”. <10 < 7 > dyne / cm < 2 > material (typically a material having the above properties at 25 [deg.] C.).
 樹脂層の表面は接着性を有することが好ましい。これによって、導電部は樹脂層に良好に固定される。また、樹脂層表面における導電部非配置領域は、太陽電池モジュール構築の際に太陽電池セルに良好に接着する。両面に接着性を有する樹脂層を用いることで、封止樹脂と導電部とを良好に固定することができる。なお、樹脂層の表面が弱接着性であったり実質的に非接着性である場合は、公知の接着剤、粘着剤等を利用して導電部や太陽電池セルを樹脂層に固定すればよい。 It is preferable that the surface of the resin layer has adhesiveness. As a result, the conductive portion is satisfactorily fixed to the resin layer. Moreover, the conductive part non-arrangement region on the surface of the resin layer adheres well to the solar battery cell when the solar battery module is constructed. By using a resin layer having adhesiveness on both surfaces, the sealing resin and the conductive portion can be fixed satisfactorily. In addition, when the surface of the resin layer is weakly adhesive or substantially non-adhesive, the conductive portion and the solar battery cell may be fixed to the resin layer using a known adhesive, pressure-sensitive adhesive, or the like. .
 好ましい一態様では、樹脂層の表面は、結晶系Si太陽電池セルに対して3N/10mm以上の180度剥離強度(対太陽電池セル接着力)を示す。上記対太陽電池セル接着力は、太陽電池セルや導電部との固定等の観点から、より好ましくは5N/10mm以上、さらに好ましくは8N/10mm以上(例えば10N/10mm以上、典型的には12N/10mm以上)である。特に好ましい一態様では、樹脂層の表面は、結晶系Si太陽電池セルに対して15N/10mm以上の180度剥離強度を示す。樹脂層表面の対太陽電池セル接着力の上限は特に限定されず、上記接着力は、貼り直し等の作業性の観点から、通常は50N/10mm以下(例えば30N/10mm以下、典型的には20N/10mm以下)程度である。 In a preferred embodiment, the surface of the resin layer exhibits a 180-degree peel strength (adhesive power to solar cell) of 3N / 10 mm or more with respect to the crystalline Si solar cell. From the viewpoint of fixing to the solar battery cell or the conductive part, the adhesive strength to the solar battery cell is more preferably 5 N / 10 mm or more, further preferably 8 N / 10 mm or more (for example, 10 N / 10 mm or more, typically 12 N). / 10 mm or more). In a particularly preferred embodiment, the surface of the resin layer exhibits a 180-degree peel strength of 15 N / 10 mm or more with respect to the crystalline Si solar battery cell. The upper limit of the adhesive strength to the solar cell on the surface of the resin layer is not particularly limited, and the above adhesive strength is usually 50 N / 10 mm or less (for example, 30 N / 10 mm or less, typically from the viewpoint of workability such as reattachment). 20N / 10 mm or less).
 上記対太陽電池セル接着力の測定に用いられる被着体は、結晶系Si太陽電池セルである。例えば、Qセルズ社製の結晶系Si太陽電池セルや、GINTECH社製の単結晶系Siセル、多結晶系Siセルが好ましく用いられる。測定は、ラミネート等によって樹脂層を被着体にしっかりと貼り合わせた後、市販の引張試験機(例えば、装置名「オートグラフAGS-J」、島津製作所製)を用いて、23℃、50%RHの雰囲気下、引張速度30mm/分、剥離角度180度の条件で実施することができる。 The adherend used for the measurement of the adhesion to solar cells is a crystalline Si solar cell. For example, a crystalline Si solar battery cell manufactured by Q CELLS, a single crystalline Si cell manufactured by GINTECH, or a polycrystalline Si cell is preferably used. For measurement, after the resin layer is firmly bonded to the adherend by laminating or the like, using a commercially available tensile tester (for example, “Autograph AGS-J”, manufactured by Shimadzu Corporation) at 23 ° C., 50 It can be carried out in an atmosphere of% RH under the conditions of a tensile speed of 30 mm / min and a peeling angle of 180 degrees.
 樹脂層は典型的には透光性を有する。好ましい一態様に係る樹脂層は、透明樹脂層(例えば透明粘着剤層)である。本明細書において透明樹脂層とは、全光線透過率が70%以上である樹脂層をいう。太陽電池セルの発電効率の観点から、樹脂層の全光線透過率は、より好ましくは85%以上であり、さらに好ましくは90%以上である。樹脂層の全光線透過率は、市販のヘーズメーター(例えば、商品名「HR-100」、村上色彩技術研究所社製)を用いて測定することができる。 The resin layer typically has translucency. The resin layer which concerns on a preferable one aspect | mode is a transparent resin layer (for example, transparent adhesive layer). In this specification, the transparent resin layer refers to a resin layer having a total light transmittance of 70% or more. From the viewpoint of power generation efficiency of the solar battery cell, the total light transmittance of the resin layer is more preferably 85% or more, and further preferably 90% or more. The total light transmittance of the resin layer can be measured using a commercially available haze meter (for example, trade name “HR-100”, manufactured by Murakami Color Research Laboratory Co., Ltd.).
 ここに開示される樹脂層は、150℃におけるメルトマスフローレート(MFR)が9g/10分以下を示す樹脂材料から構成されていることが好ましい。上記MFRを示す樹脂層は、良好な形状安定性を発揮することができる。上記MFRは、より好ましくは3g/10分以下、さらに好ましくは1g/10分以下、特に好ましくは0.5g/10分以下(例えば0.2g/10分以下)である。上記MFRの測定は、JIS K 7210:1999またはASTM D 1238に準拠し、温度190℃、荷重2.16Kgの条件で一定時間に流れ出てきた樹脂量を天秤で秤量して単位時間(10分間)に吐出した樹脂量を計算することによって行えばよい。 The resin layer disclosed herein is preferably composed of a resin material having a melt mass flow rate (MFR) at 150 ° C. of 9 g / 10 min or less. The resin layer exhibiting the MFR can exhibit good shape stability. The MFR is more preferably 3 g / 10 min or less, further preferably 1 g / 10 min or less, and particularly preferably 0.5 g / 10 min or less (for example, 0.2 g / 10 min or less). The above MFR measurement is based on JIS K 7210: 1999 or ASTM D 1238, and the amount of resin flowing out at a constant time under conditions of a temperature of 190 ° C. and a load of 2.16 Kg is weighed with a balance and unit time (10 minutes) This may be done by calculating the amount of resin discharged.
 また、樹脂層の線膨張率は、-40℃~85℃の温度域において15%未満であることが好ましい。上記の線膨張率を示す樹脂層によると、耐久性がさらに改善された配線が実現される。上記線膨張率は、より好ましくは12%以下(例えば10%以下)である。樹脂層の線膨張率としては、下記の方法で測定される引張モードおよび圧縮モードによる値のいずれか一方(好ましくは両方)の値が採用される。
 [線膨張率]
 (引張モード)
 各樹脂層を長さ10mm×断面積約0.5mmのサイズに切断して、試験片を作製する。この試験片につき、熱分析装置(商品名「EXSTAR6000」、セイコーインスツル社製)を用いて、引張荷重20mN、昇温速度1.7℃/分の条件で、-40℃~85℃における線膨張率(%)を測定する。上記線膨張率は次式より求められる。
 -40℃~85℃における線膨張率(%)=(A-B)/B×100
 A:-40℃~85℃における試験片の長さの最大値(mm)
 B:-40℃~85℃における試験片の長さの最小値(mm)
 (圧縮モード)
 各樹脂層を約5mm角のサイズに切断して、試験片を作製する。この試験片につき、TMA(Thermal Mechanical Analysis)装置(装置名「TMA/SS7100」、エスアイアイ・ナノテクノロジー社製)を用いて下記の条件で、-40℃~85℃における線膨張率(%)を測定する。上記線膨張率は次式より求められる。
 -40℃~85℃における線膨張率(%)=(A-B)/B×100
 A:-40℃~85℃における試験片の厚さの最大値(μm)
 B:-40℃~85℃における試験片の厚さの最小値(μm)
 測定条件:
 押込試験時の荷重; 9.8mN
 プローブ径; φ3.5mm
 温度プログラム; -60℃→160℃、10℃/分
 測定雰囲気; N(流量 200mL/分)
The linear expansion coefficient of the resin layer is preferably less than 15% in the temperature range of −40 ° C. to 85 ° C. According to the resin layer exhibiting the above linear expansion coefficient, a wiring with further improved durability is realized. The linear expansion coefficient is more preferably 12% or less (for example, 10% or less). As the linear expansion coefficient of the resin layer, either one (preferably both) values of the tensile mode and the compression mode measured by the following method are adopted.
[Linear expansion coefficient]
(Tensile mode)
Each resin layer is cut into a size of 10 mm in length × about 0.5 mm 2 in cross-sectional area to produce a test piece. Using this test piece, a line at −40 ° C. to 85 ° C. under the conditions of a tensile load of 20 mN and a temperature increase rate of 1.7 ° C./min using a thermal analyzer (trade name “EXSTAR6000”, manufactured by Seiko Instruments Inc.) The expansion rate (%) is measured. The linear expansion coefficient is obtained from the following equation.
Linear expansion coefficient (%) at −40 ° C. to 85 ° C. = (AB) / B × 100
A: Maximum length of test piece at −40 ° C. to 85 ° C. (mm)
B: Minimum value of length of test piece at −40 ° C. to 85 ° C. (mm)
(Compression mode)
Each resin layer is cut into a size of about 5 mm square to produce a test piece. Using this test piece, a linear expansion coefficient (%) at −40 ° C. to 85 ° C. under the following conditions using a TMA (Thermal Mechanical Analysis) device (device name “TMA / SS7100”, manufactured by SII Nano Technology) Measure. The linear expansion coefficient is obtained from the following equation.
Linear expansion coefficient (%) at −40 ° C. to 85 ° C. = (AB) / B × 100
A: Maximum thickness of test piece at −40 ° C. to 85 ° C. (μm)
B: Minimum thickness of specimen at -40 ° C to 85 ° C (μm)
Measurement condition:
Load during indentation test: 9.8 mN
Probe diameter: φ3.5mm
Temperature program; −60 ° C. → 160 ° C., 10 ° C./min Measurement atmosphere; N 2 (flow rate 200 mL / min)
 (樹脂層の組成)
 ここに開示される樹脂層は、樹脂材料から形成された樹脂層である。好ましくは、架橋された樹脂をベースポリマーとして含む樹脂層(例えば、架橋処理が施された樹脂層)である。樹脂層は、封止樹脂と異なる物性を有し、典型的には、封止樹脂の樹脂材料とは異なる樹脂材料から形成され得る。樹脂層を形成する樹脂は、アクリル系樹脂、EVA系樹脂、ポリオレフィン系樹脂、ゴム類、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、ポリエーテル系樹脂、ポリアミド系樹脂、フッ素系樹脂等の各種の樹脂から選択される1種または2種以上であり得る。また、アクリル系樹脂とは、アクリル系ポリマーをベースポリマー(ポリマー成分のなかの主成分、すなわちポリマー成分のなかで配合割合の最も大きい成分、典型的には50重量%を超えて含まれる成分)とする樹脂材料をいう。EVA系その他の樹脂についても同様の意味である。
(Composition of resin layer)
The resin layer disclosed here is a resin layer formed from a resin material. A resin layer containing a crosslinked resin as a base polymer (for example, a resin layer subjected to crosslinking treatment) is preferable. The resin layer has physical properties different from those of the sealing resin, and can typically be formed from a resin material different from the resin material of the sealing resin. The resin that forms the resin layer is an acrylic resin, EVA resin, polyolefin resin, rubber, silicone resin, polyester resin, urethane resin, polyether resin, polyamide resin, fluorine resin, etc. 1 type or 2 types or more selected from these resin. The acrylic resin is an acrylic polymer as a base polymer (the main component of the polymer component, that is, the component having the largest blending ratio in the polymer component, typically a component that exceeds 50% by weight). The resin material. The same meaning applies to EVA and other resins.
 (EVA系樹脂)
 好ましい一態様に係る樹脂層は、EVA系樹脂から形成されたEVA系樹脂層である。かかる樹脂層(樹脂層形成用組成物でもあり得る。)に占めるEVAの割合は特に限定されず、典型的には50重量%以上であり、好ましくは70重量%以上、より好ましくは80重量%以上である。また、上記EVA系樹脂層は、所望の物性を得る観点から、凡そ80~200℃(例えば100~180℃、典型的には120~160℃)で熱硬化処理が施されたものであることが好ましい。熱硬化処理時間は、特に限定されず、通常は5分以上であり、好ましくは10分以上、より好ましくは20分以上(例えば30分以上、典型的には40分~120分)である。上記EVA系樹脂層は、熱硬化処理前または処理中にプレス処理が行われていることが好ましい。
(EVA resin)
The resin layer according to a preferred embodiment is an EVA resin layer formed from an EVA resin. The proportion of EVA in the resin layer (which may also be a resin layer forming composition) is not particularly limited and is typically 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight. That's it. The EVA resin layer is subjected to a thermosetting treatment at about 80 to 200 ° C. (eg, 100 to 180 ° C., typically 120 to 160 ° C.) from the viewpoint of obtaining desired physical properties. Is preferred. The heat curing treatment time is not particularly limited and is usually 5 minutes or longer, preferably 10 minutes or longer, more preferably 20 minutes or longer (for example, 30 minutes or longer, typically 40 minutes to 120 minutes). The EVA resin layer is preferably subjected to a press treatment before or during the thermosetting treatment.
 (アクリル系ポリマー)
 好ましい一態様において、樹脂層は、ベースポリマーとしてアクリル系ポリマーを含む層、すなわちアクリル系樹脂層であり得る。かかる組成の樹脂層は、形状安定性や柔軟性など所望の物性に調節しやすいので好ましい。また、樹脂層に占めるアクリル系ポリマーの割合は特に限定されず、典型的には50重量%以上であり、好ましくは70重量%以上、より好ましくは80重量%以上である。
 なお、本明細書において「(メタ)アクリレート」とは、アクリレートおよびメタクリレートを包括的に指す意味である。同様に、「(メタ)アクリロイル」とは、アクリロイルおよびメタクリロイルを、「(メタ)アクリル」とはアクリルおよびメタクリルを、それぞれ包括的に指す意味である。
 また、本明細書において「アクリル系ポリマーを構成するモノマー成分」とは、樹脂層を形成する樹脂材料においてアクリル系ポリマーを構成するモノマー単位をいう。モノマー成分は、樹脂層を形成するために用いられる樹脂層形成用組成物中に、未重合物の形態(すなわち、重合性官能基が未反応である原料モノマーの形態)で含まれてもよく、重合物の形態で含まれていてもよく、これらの両方の形態で含まれていてもよい。
(Acrylic polymer)
In a preferred embodiment, the resin layer may be a layer containing an acrylic polymer as a base polymer, that is, an acrylic resin layer. A resin layer having such a composition is preferable because it can be easily adjusted to desired physical properties such as shape stability and flexibility. The proportion of the acrylic polymer in the resin layer is not particularly limited, and is typically 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight or more.
In the present specification, “(meth) acrylate” means acrylate and methacrylate comprehensively. Similarly, “(meth) acryloyl” means acryloyl and methacryloyl, and “(meth) acryl” generically means acrylic and methacryl.
Further, in this specification, the “monomer component constituting the acrylic polymer” refers to a monomer unit constituting the acrylic polymer in the resin material forming the resin layer. The monomer component may be contained in the resin layer forming composition used for forming the resin layer in an unpolymerized form (that is, in the form of a raw material monomer in which the polymerizable functional group is unreacted). , May be included in the form of a polymer, or may be included in both forms.
 ここに開示される樹脂層形成用組成物は、上記アクリル系ポリマーを構成するモノマー成分として(A)成分を含むことが好ましい。 The resin layer forming composition disclosed herein preferably contains the component (A) as a monomer component constituting the acrylic polymer.
 上記(A)成分は、炭素数1~20のアルキル基をエステル末端に有するアルキル(メタ)アクリレートである。以下、炭素数がX以上Y以下のアルキル基をエステル末端に有するアルキル(メタ)アクリレートを「CX-Yアルキル(メタ)アクリレート」と表記することがある。C1-20アルキル(メタ)アクリレートにおけるC1-20アルキル基の構造は特に限定されず、上記アルキル基が直鎖のものおよび分岐鎖のもののいずれも使用可能である。(A)成分としては、このようなC1-20アルキル(メタ)アクリレートの1種を単独でまたは2種以上を組み合わせて用いることができる。 The component (A) is an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms at the ester end. Hereinafter, an alkyl (meth) acrylate having an alkyl group having a carbon number of X or more and Y or less at the ester end may be referred to as “C XY alkyl (meth) acrylate”. The structure of the C 1-20 alkyl group in the C 1-20 alkyl (meth) acrylate is not particularly limited, and either a linear or branched alkyl group can be used. As the component (A), one kind of such C 1-20 alkyl (meth) acrylate can be used alone or in combination of two or more kinds.
 直鎖アルキル基をエステル末端に有するC1-20アルキル(メタ)アクリレートとして、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-へプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、n-ウンデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、n-ペンタデシル(メタ)アクリレート、n-ヘキサデシル(メタ)アクリレート、n-ヘプタデシル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、n-ノナデシル(メタ)アクリレート、n-エイコシル(メタ)アクリレートが挙げられる。また、分岐鎖アルキル基をエステル末端に有するC3-20アルキル(メタ)アクリレートとして、イソプロピル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、イソヘキシル(メタ)アクリレート、イソへプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、2-プロピルヘプチル(メタ)アクリレート、イソウンデシル(メタ)アクリレート、イソドデシル(メタ)アクリレート、イソトリデシル(メタ)アクリレート、イソミスチリル(メタ)アクリレート、イソペンタデシル(メタ)アクリレート、イソヘキサデシル(メタ)アクリレート、イソヘプタデシル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソノナデシル(メタ)アクリレート、イソエイコシル(メタ)アクリレート等が例示される。これらアルキル(メタ)アクリレートは、1種を単独でまたは2種以上を組み合わせて用いることができる。 Examples of C 1-20 alkyl (meth) acrylates having a linear alkyl group at the ester end include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, n- Pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate, n-undecyl (Meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth) acrylate, n-tetradecyl (meth) acrylate, n-pentadecyl (meth) acrylate, n-hexadecyl (meth) acrylate, n-heptadecyl (meta) ) Acrylate, n- Examples include octadecyl (meth) acrylate, n-nonadecyl (meth) acrylate, and n-eicosyl (meth) acrylate. Further, as C 3-20 alkyl (meth) acrylate having a branched alkyl group at the ester terminal, isopropyl (meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, isopentyl (meth) acrylate, t- Pentyl (meth) acrylate, neopentyl (meth) acrylate, isohexyl (meth) acrylate, isoheptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) Acrylate, 2-propylheptyl (meth) acrylate, isoundecyl (meth) acrylate, isododecyl (meth) acrylate, isotridecyl (meth) acrylate, isomistyryl (meth) Examples include acrylate, isopentadecyl (meth) acrylate, isohexadecyl (meth) acrylate, isoheptadecyl (meth) acrylate, isostearyl (meth) acrylate, isononadecyl (meth) acrylate, and isoeicosyl (meth) acrylate. These alkyl (meth) acrylates can be used alone or in combination of two or more.
 (A)成分は、(A1)成分としてC4-9アルキル(メタ)アクリレートを含む態様で好ましく実施され得る。アクリル系ポリマーがモノマー単位として(A1)成分を含むことで、所望の物性を有する樹脂層が得られやすい傾向があり、また粘着性も得られやすい傾向がある。(A1)成分はC4-9アルキル(メタ)アクリレートから選択される1種または2種以上であり得る。他のモノマー成分(例えば環状窒素含有モノマー)との相溶性等の観点から、(A1)成分として、C4-9アルキルアクリレートが好ましく使用される。C4-9アルキルアクリレートの好適例としては、n-ブチルアクリレート、2-エチルヘキシルアクリレート、イソオクチルアクリレートおよびイソノニルアクリレートが挙げられる。 The component (A) can be preferably implemented in an embodiment containing C 4-9 alkyl (meth) acrylate as the component (A1). When the acrylic polymer contains the component (A1) as a monomer unit, a resin layer having desired physical properties tends to be easily obtained, and tackiness tends to be easily obtained. The component (A1) may be one or more selected from C 4-9 alkyl (meth) acrylates. From the viewpoint of compatibility with other monomer components (for example, cyclic nitrogen-containing monomers), C 4-9 alkyl acrylate is preferably used as component (A1). Preferable examples of C 4-9 alkyl acrylate include n-butyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate and isononyl acrylate.
 (A)成分が(A1)成分を含む場合、(A)成分に占める(A1)成分の割合は、通常は20重量%以上(例えば20~80重量%)であり、好ましくは30重量%以上(例えば30~70重量%)であり、より好ましくは40重量%以上(例えば40~60重量%)である。(A)成分に占める(A1)成分の割合は、50重量%以上(例えば80重量%以上、典型的には90~100重量%)であってもよい。 When the component (A) includes the component (A1), the proportion of the component (A1) in the component (A) is usually 20% by weight or more (eg 20 to 80% by weight), preferably 30% by weight or more. (For example, 30 to 70% by weight), more preferably 40% by weight or more (for example, 40 to 60% by weight). The proportion of the component (A1) in the component (A) may be 50% by weight or more (for example, 80% by weight or more, typically 90 to 100% by weight).
 また、(A)成分は、(A2)成分としてC10-18アルキル(メタ)アクリレートを含む態様でも好ましく実施され得る。アクリル系ポリマーがモノマー単位として(A2)成分を含むことで、所望の物性を有する樹脂層がより得られやすい傾向がある。(A2)成分は、C10-18アルキル(メタ)アクリレートから選択される1種または2種以上であり得る。(A2)成分は、より好ましくはアルキル基が分岐鎖であるC10-18アルキル(メタ)アクリレートを含み、さらに好ましくは、他のモノマー成分(例えば環状窒素含有モノマー)との相溶性等の観点から、アルキル基が分岐鎖であるC10-18アルキルアクリレートを含む。C10-18アルキル(メタ)アクリレートの好適例としては、イソデシルアクリレート、イソデシルメタクリレート、ドデシルメタクリレート、トリデシルメタクリレート、イソミスチリルアクリレート、イソステアリルアクリレート、ステアリルメタクリレートが挙げられる。 Further, the embodiment in which the component (A) includes C 10-18 alkyl (meth) acrylate as the component (A2) can be preferably carried out. When the acrylic polymer contains the component (A2) as a monomer unit, a resin layer having desired physical properties tends to be more easily obtained. The component (A2) may be one or more selected from C 10-18 alkyl (meth) acrylates. The component (A2) preferably contains a C 10-18 alkyl (meth) acrylate in which the alkyl group is a branched chain, and more preferably from the viewpoint of compatibility with other monomer components (for example, a cyclic nitrogen-containing monomer). From C10-18 alkyl acrylates in which the alkyl group is branched. Preferable examples of the C 10-18 alkyl (meth) acrylate include isodecyl acrylate, isodecyl methacrylate, dodecyl methacrylate, tridecyl methacrylate, isomistyryl acrylate, isostearyl acrylate and stearyl methacrylate.
 (A)成分が(A2)成分を含む場合、(A)成分に占める(A2)成分の割合は、通常は20重量%以上(例えば20~80重量%)であり、好ましくは30重量%以上(例えば30~70重量%)であり、より好ましくは40重量%以上(例えば40~60重量%)である。(A)成分に占める(A2)成分の割合は、50重量%以上(例えば80重量%以上、典型的には90~100重量%)であってもよい。 When the component (A) includes the component (A2), the proportion of the component (A2) in the component (A) is usually 20% by weight or more (for example, 20 to 80% by weight), preferably 30% by weight or more. (For example, 30 to 70% by weight), more preferably 40% by weight or more (for example, 40 to 60% by weight). The proportion of the component (A2) in the component (A) may be 50% by weight or more (for example, 80% by weight or more, typically 90 to 100% by weight).
 (A)成分として、(A1)成分と(A2)成分とを併用する場合、(A1)成分と(A2)成分との重量比(A1:A2)は、特に限定されず、通常は1:9~9:1とすることが適当であり、好ましくは2:8~8:2(例えば3:7~7:3、典型的には4:6~6:4)である。 When the component (A1) and the component (A2) are used in combination as the component (A), the weight ratio (A1: A2) between the component (A1) and the component (A2) is not particularly limited, and is usually 1: The ratio is suitably 9 to 9: 1, and preferably 2: 8 to 8: 2 (eg, 3: 7 to 7: 3, typically 4: 6 to 6: 4).
 また、(A)成分は、(A3)成分としてC1-3アルキル(メタ)アクリレートおよびC19-20アルキル(メタ)アクリレートの1種または2種以上を含有してもよい。(A)成分が(A3)成分を含む場合、樹脂層の物性の観点から、(A)成分に占める(A3)成分の割合は、通常は30重量%以下(例えば15重量%以下、典型的には1~5重量%)程度とすることが好ましい。ここに開示される技術は、(A)成分が(A3)成分を実質的に含まない態様((A)成分に占める(A3)成分の割合が1重量%未満、さらには0.1重量%未満である態様)で好ましく実施される。 The component (A) may contain one or more of C 1-3 alkyl (meth) acrylate and C 19-20 alkyl (meth) acrylate as the component (A3). When the component (A) includes the component (A3), from the viewpoint of the physical properties of the resin layer, the proportion of the component (A3) in the component (A) is usually 30% by weight or less (for example, 15% by weight or less, typically 1 to 5% by weight) is preferable. The technique disclosed here is an embodiment in which the component (A) does not substantially contain the component (A3) (the proportion of the component (A3) in the component (A) is less than 1% by weight, and further 0.1% by weight. In an embodiment that is less than).
 上記モノマー成分に占める(A)成分の割合は特に限定されない。樹脂層の物性や、接着力等の粘着特性の観点から、上記(A)成分の割合は、通常は30重量%以上とすることが適当であり、好ましくは50重量%以上、より好ましくは60重量%以上(例えば75重量%以上)である。また、上記(A)成分の割合の上限は、後述の(B)成分や(C)成分含有による効果を十分に得る観点から、凡そ98重量%以下とすることが適当であり、95重量%以下(例えば90重量%以下、典型的には85重量%以下)とすることが好ましい。 The proportion of the component (A) in the monomer component is not particularly limited. From the viewpoint of physical properties of the resin layer and adhesive properties such as adhesive strength, the proportion of the component (A) is usually suitably 30% by weight or more, preferably 50% by weight or more, more preferably 60%. % By weight or more (eg, 75% by weight or more). In addition, the upper limit of the proportion of the component (A) is suitably about 98% by weight or less from the viewpoint of sufficiently obtaining the effects of the later-described components (B) and (C), and is 95% by weight. It is preferable that the amount be less than or equal to (for example, 90% by weight or less, typically 85% by weight or less).
 好ましい一態様では、樹脂層形成用組成物は、上記アクリル系ポリマーを構成するモノマー成分として(B)成分を含む。上記(B)成分は、環状窒素含有モノマー、環状エーテル基含有モノマー等のヘテロ環含有モノマーである。上記(B)成分は、樹脂層の形状安定性や透明性の向上に有利に寄与し得る。ヘテロ環含有モノマーは1種を単独でまたは2種以上を組み合わせて用いることができる。 In a preferred embodiment, the resin layer forming composition contains a component (B) as a monomer component constituting the acrylic polymer. The component (B) is a heterocycle-containing monomer such as a cyclic nitrogen-containing monomer or a cyclic ether group-containing monomer. The component (B) can advantageously contribute to improving the shape stability and transparency of the resin layer. The heterocyclic ring-containing monomer can be used alone or in combination of two or more.
 環状窒素含有モノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつ環状窒素構造を有するものを特に制限なく用いることができる。環状窒素構造は、環状構造内に窒素原子を有するものが好ましい。環状窒素含有モノマーとしては、例えば、N-ビニルピロリドン、N-ビニル-ε-カプロラクタム、メチルビニルピロリドン等のラクタム系ビニルモノマー;2-ビニル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリンのようなオキサゾリン基含有モノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルモルホリン等の窒素含有複素環を有するビニル系モノマー等が挙げられる。また、モルホリン環、ピペリジン環、ピロリジン環、ピペラジン環、アジリジン環等の窒素含有複素環を含有する(メタ)アクリルモノマーが挙げられる。具体的には、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン、N-アクリロイルアジリジン等が挙げられる。上記環状窒素含有モノマーのなかでも、凝集性等の点からは、ラクタム系ビニルモノマーが好ましく、N-ビニルピロリドンがより好ましい。 As the cyclic nitrogen-containing monomer, those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a cyclic nitrogen structure can be used without particular limitation. The cyclic nitrogen structure preferably has a nitrogen atom in the cyclic structure. Examples of cyclic nitrogen-containing monomers include lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl-ε-caprolactam, and methylvinylpyrrolidone; 2-vinyl-2-oxazoline, 2-vinyl-5-methyl-2- Oxazoline group-containing monomers such as oxazoline and 2-isopropenyl-2-oxazoline; vinyl-based compounds having nitrogen-containing heterocycles such as vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, vinylpyrrole, vinylimidazole, and vinylmorpholine And monomers. Moreover, the (meth) acryl monomer containing nitrogen-containing heterocyclic rings, such as a morpholine ring, a piperidine ring, a pyrrolidine ring, a piperazine ring, an aziridine ring, is mentioned. Specific examples include N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine, N-acryloylaziridine and the like. Among the cyclic nitrogen-containing monomers, lactam vinyl monomers are preferable and N-vinylpyrrolidone is more preferable from the viewpoint of cohesiveness and the like.
 環状エーテル基を有するモノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつエポキシ基またはオキセタン基等の環状エーテル基を有するものを特に制限なく用いることができる。エポキシ基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等が挙げられる。オキセタン基含有モノマーとしては、例えば、3-オキセタニルメチル(メタ)アクリレート、3-メチル-オキセタニルメチル(メタ)アクリレート、3-エチル-オキセタニルメチル(メタ)アクリレート、3-ブチル-オキセタニルメチル(メタ)アクリレート、3-ヘキシル-オキセタニルメチル(メタ)アクリレート、等が挙げられる。 As the monomer having a cyclic ether group, a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and a cyclic ether group such as an epoxy group or an oxetane group. It can be used without particular limitation. Examples of the epoxy group-containing monomer include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and the like. Examples of the oxetane group-containing monomer include 3-oxetanylmethyl (meth) acrylate, 3-methyl-oxetanylmethyl (meth) acrylate, 3-ethyl-oxetanylmethyl (meth) acrylate, and 3-butyl-oxetanylmethyl (meth) acrylate. , 3-hexyl-oxetanylmethyl (meth) acrylate, and the like.
 上記モノマー成分に占める(B)成分の割合は、樹脂層の物性の観点から、通常は0.5重量%以上とすることが適当であり、好ましくは1重量%以上、より好ましくは3重量%以上、さらに好ましくは10重量%以上(例えば12重量%以上)である。また、上記(B)成分の割合は、(A)成分含有による効果を十分に得る観点から、凡そ50重量%以下とすることが適当であり、好ましくは40重量%以下(例えば30重量%以下、典型的には25重量%以下)とすることが好ましい。 From the viewpoint of the physical properties of the resin layer, the proportion of the component (B) in the monomer component is usually 0.5% by weight or more, preferably 1% by weight or more, more preferably 3% by weight. More preferably, it is 10% by weight or more (for example, 12% by weight or more). The proportion of the component (B) is suitably about 50% by weight or less, preferably 40% by weight or less (for example, 30% by weight or less), from the viewpoint of sufficiently obtaining the effect of containing the component (A). , Typically 25% by weight or less).
 好ましい一態様では、樹脂層形成用組成物は、上記アクリル系ポリマーを構成するモノマー成分として(C)成分を含む。上記(C)成分は、ヒドロキシ基およびカルボキシ基の少なくともいずれかを有するモノマーである。 In a preferred embodiment, the resin layer forming composition includes a component (C) as a monomer component constituting the acrylic polymer. The component (C) is a monomer having at least one of a hydroxy group and a carboxy group.
 ヒドロキシ基含有モノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつヒドロキシ基を有するものを特に制限なく用いることができる。ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;(4-ヒドロキシメチルシクロへキシル)メチル(メタ)アクリレート等のヒドロキシアルキルシクロアルカン(メタ)アクリレートが挙げられる。その他、ヒドロキシエチル(メタ)アクリルアミド、アリルアルコール、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。これらのなかでもヒドロキシアルキル(メタ)アクリレートが好ましい。例えば、炭素数2~6のヒドロキシアルキル基を有するヒドロキシアルキル(メタ)アクリレートを好ましく使用し得る。なかでも、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレートがより好ましい。 As the hydroxy group-containing monomer, those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a hydroxy group can be used without particular limitation. Examples of the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl ( Hydroxyalkyl (meth) acrylates such as (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate; -Hydroxyalkylcycloalkane (meth) acrylates such as -hydroxymethylcyclohexyl) methyl (meth) acrylate. Other examples include hydroxyethyl (meth) acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, and the like. These can be used alone or in combination of two or more. Of these, hydroxyalkyl (meth) acrylate is preferred. For example, a hydroxyalkyl (meth) acrylate having a hydroxyalkyl group having 2 to 6 carbon atoms can be preferably used. Of these, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are more preferable.
 カルボキシ基含有モノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつカルボキシ基を有するものを特に制限なく用いることができる。カルボキシ基含有モノマーの例としては、アクリル酸、メタクリル酸、クロトン酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート等のエチレン性不飽和モノカルボン酸;イタコン酸、マレイン酸、フマル酸、シトラコン酸等のエチレン性不飽和ジカルボン酸;これらの金属塩(例えばアルカリ金属塩);無水マレイン酸、無水イタコン酸等の、上記エチレン性不飽和ジカルボン酸の無水物等;が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。これらのなかでも、アクリル酸、メタクリル酸が好ましい。 As the carboxy group-containing monomer, a monomer having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a carboxy group can be used without particular limitation. Examples of carboxy group-containing monomers include ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate; itaconic acid, maleic acid, fumaric acid, And ethylenically unsaturated dicarboxylic acids such as citraconic acid; metal salts thereof (for example, alkali metal salts); anhydrides of the above ethylenically unsaturated dicarboxylic acids such as maleic anhydride and itaconic anhydride. These can be used alone or in combination of two or more. Among these, acrylic acid and methacrylic acid are preferable.
 ここに開示される技術は、(C)成分がヒドロキシ基含有モノマーを含む態様で好ましく実施することができる。すなわち、(C)成分がヒドロキシ基含有モノマーのみを含むか、ヒドロキシ基含有モノマーおよびカルボキシ基含有モノマーを含むことが好ましい。(C)成分に占めるヒドロキシ基含有モノマーの割合を多くすることにより、カルボキシ基に起因する金属腐食等を低減することができる。このことから、ここに開示される技術は、モノマー成分がカルボキシ基含有モノマーを実質的に含有しない態様で好ましく実施され得る。例えば、モノマー成分に占めるカルボキシ基含有モノマーの割合を、1重量%未満、好ましくは0.5重量%未満、より好ましくは0.2重量%未満とすることができる。 The technique disclosed herein can be preferably implemented in a mode in which the component (C) includes a hydroxy group-containing monomer. That is, it is preferable that the component (C) includes only a hydroxy group-containing monomer or includes a hydroxy group-containing monomer and a carboxy group-containing monomer. By increasing the proportion of the hydroxy group-containing monomer in the component (C), metal corrosion caused by the carboxy group can be reduced. From this, the technique disclosed here can be preferably implemented in a mode in which the monomer component does not substantially contain a carboxy group-containing monomer. For example, the proportion of the carboxy group-containing monomer in the monomer component can be less than 1% by weight, preferably less than 0.5% by weight, more preferably less than 0.2% by weight.
 上記モノマー成分に占める(C)成分の割合は、樹脂層の物性の観点から、通常は0.1重量%以上とすることが適当であり、好ましくは0.5重量%以上、より好ましくは0.8重量%以上である。(C)成分の割合は、3重量%以上であってもよく、5重量%以上(例えば8重量%以上、典型的には10重量%以上)であってもよい。また、上記(C)成分の割合は、凡そ35重量%以下とすることが適当であり、好ましくは30重量%以下、より好ましくは25重量%以下(典型的には5重量%以下、例えば3重量%以下)である。 The proportion of the component (C) in the monomer component is usually suitably 0.1% by weight or more, preferably 0.5% by weight or more, more preferably 0, from the viewpoint of the physical properties of the resin layer. .8% by weight or more. The proportion of the component (C) may be 3% by weight or more, or 5% by weight or more (for example, 8% by weight or more, typically 10% by weight or more). The proportion of the component (C) is suitably about 35% by weight or less, preferably 30% by weight or less, more preferably 25% by weight or less (typically 5% by weight or less, eg 3 % By weight or less).
 特に好ましい一態様では、アクリル系ポリマーを構成するモノマー成分は、上記(A)、(B)および(C)成分をすべて含む。その場合、上記(A)、(B)および(C)成分の総量を100重量%としたときの(A)成分の割合は50~99重量%(より好ましくは60~95重量%、さらに好ましくは70~85重量%)とすることが好ましく、(B)成分の割合は0.9~49.9重量%(より好ましくは4.5~39.5重量%、さらに好ましくは14.2~29.2重量%)とすることが好ましく、(C)成分の割合は0.1~35重量%(より好ましくは0.5~30重量%、さらに好ましくは0.8~25量%)とすることが好ましい。 In a particularly preferred embodiment, the monomer component constituting the acrylic polymer includes all the components (A), (B), and (C). In that case, when the total amount of the above components (A), (B) and (C) is 100% by weight, the proportion of component (A) is 50 to 99% by weight (more preferably 60 to 95% by weight, still more preferably Is preferably 70 to 85% by weight, and the proportion of component (B) is 0.9 to 49.9% by weight (more preferably 4.5 to 39.5% by weight, still more preferably 14.2 to 29.2% by weight), and the proportion of component (C) is 0.1 to 35% by weight (more preferably 0.5 to 30% by weight, still more preferably 0.8 to 25% by weight). It is preferable to do.
 ここに開示される技術における上記構成モノマー成分は、上記(A)、(B)成分および(C)成分以外のモノマー(以下「任意モノマー」ともいう。)を必要に応じて含有し得る。 The constituent monomer component in the technique disclosed herein may contain a monomer other than the components (A), (B) and (C) (hereinafter also referred to as “optional monomer”) as necessary.
 上記任意モノマーの例として、ヒドロキシ基およびカルボキシ基以外の官能基を含有するモノマーが挙げられる。このような官能基含有モノマーは、アクリル系ポリマーに架橋点を導入したり、アクリル系ポリマーの凝集力を高めたりする目的で使用され得る。官能基含有モノマーとしては、例えば(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等のアミド基含有モノマー;例えばアクリロニトリル、メタクリロニトリル等のシアノ基含有モノマー; 例えばスチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基含有モノマー;例えば2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー;例えばジアセトン(メタ)アクリルアミド、ジアセトン(メタ)アクリレート、ビニルメチルケトン、ビニルアセトアセテート等のケト基含有モノマー;例えば2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基含有モノマー;例えばメトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等のアルコキシ基含有モノマー;例えば3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等のアルコキシシリル基含有モノマー;等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。 Examples of the optional monomer include monomers containing a functional group other than a hydroxy group and a carboxy group. Such a functional group-containing monomer can be used for the purpose of introducing a crosslinking point into the acrylic polymer or increasing the cohesive strength of the acrylic polymer. Examples of the functional group-containing monomer include amide group-containing monomers such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, and N-methylol (meth) acrylamide; cyano group-containing monomers such as acrylonitrile and methacrylonitrile; For example, sulfonic acid group-containing monomers such as styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid; for example, phosphoric acid group-containing monomers such as 2-hydroxyethyl acryloyl phosphate; Keto group-containing monomers such as acrylamide, diacetone (meth) acrylate, vinyl methyl ketone, vinyl acetoacetate; for example, isocyanate group-containing monomers such as 2- (meth) acryloyloxyethyl isocyanate; For example, alkoxy group-containing monomers such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate; for example, alkoxysilyl groups such as 3- (meth) acryloxypropyltrimethoxysilane and 3- (meth) acryloxypropyltriethoxysilane Containing monomer; and the like. These can be used alone or in combination of two or more.
 上記任意モノマーの他の例として、脂環式モノマーが挙げられる。脂環式モノマーとしては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつ脂環構造含有基を有するものを、特に制限なく用いることができる。ここで「脂環構造含有基」とは、少なくとも一つの脂環構造を含む部分をいう。また、「脂環構造」とは、芳香族性を有しない飽和または不飽和の炭素環構造をいう。本明細書では、脂環構造含有基を単に「脂環式基」ということがある。脂環式基の好適例としては、脂環構造を含む炭化水素基や炭化水素オキシ基が挙げられる。 Other examples of the optional monomer include alicyclic monomers. As the alicyclic monomer, those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having an alicyclic structure-containing group can be used without particular limitation. it can. Here, the “alicyclic structure-containing group” refers to a portion containing at least one alicyclic structure. The “alicyclic structure” refers to a saturated or unsaturated carbocyclic structure having no aromaticity. In the present specification, the alicyclic structure-containing group is sometimes simply referred to as “alicyclic group”. Preferable examples of the alicyclic group include a hydrocarbon group and a hydrocarbon oxy group containing an alicyclic structure.
 好ましい脂環式モノマーの例として、脂環式基と(メタ)アクリロイル基とを有する脂環式(メタ)アクリレートが挙げられる。脂環式(メタ)アクリレートの具体例としては、シクロプロピル(メタ)アクリレート、シクロブチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて用いることができる。 Examples of preferred alicyclic monomers include alicyclic (meth) acrylates having an alicyclic group and a (meth) acryloyl group. Specific examples of the alicyclic (meth) acrylate include cyclopropyl (meth) acrylate, cyclobutyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, and cyclooctyl (meth). Examples include acrylate, isobornyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. These can be used alone or in combination of two or more.
 ここに開示される技術におけるモノマー成分は、アクリル系ポリマーのTgの調整や凝集力の向上等の目的で、上記任意モノマーとして、上記(A),(B),(C)成分と共重合可能であって上記で例示した以外の共重合性モノマーを含んでいてもよい。そのような共重合性モノマーとしては、例えば酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;例えばスチレン、置換スチレン(α-メチルスチレン等)、ビニルトルエン等の芳香族ビニル化合物;例えばアリール(メタ)アクリレート(例えばフェニル(メタ)アクリレート)、アリールオキシアルキル(メタ)アクリレート(例えばフェノキシエチル(メタ)アクリレート)、アリールアルキル(メタ)アクリレート(例えばベンジル(メタ)アクリレート)等の芳香族性環含有(メタ)アクリレート;例えばエチレン、プロピレン、イソプレン、ブタジエン、イソブチレン等のオレフィン系モノマー;例えば塩化ビニル、塩化ビニリデン等の塩素含有モノマー;例えばメチルビニルエーテル、エチルビニルエーテル等のビニルエーテル系モノマー;その他、ビニル基を重合したモノマー末端にラジカル重合性ビニル基を有するマクロモノマー等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。 The monomer component in the technology disclosed herein can be copolymerized with the above components (A), (B), and (C) as the above arbitrary monomer for the purpose of adjusting Tg of acrylic polymer and improving cohesion. In addition, a copolymerizable monomer other than those exemplified above may be included. Examples of such copolymerizable monomers include carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; aromatic vinyl compounds such as styrene, substituted styrene (α-methylstyrene, etc.), vinyltoluene; ) Aromatic ring-containing acrylate (eg phenyl (meth) acrylate), aryloxyalkyl (meth) acrylate (eg phenoxyethyl (meth) acrylate), arylalkyl (meth) acrylate (eg benzyl (meth) acrylate) ( (Meth) acrylates; olefinic monomers such as ethylene, propylene, isoprene, butadiene, and isobutylene; chlorine-containing monomers such as vinyl chloride and vinylidene chloride; for example, methyl vinyl ether, ethyl vinyl ether, and the like Vinyl ether monomers; other, macromonomers, and the like having a radical polymerizable vinyl group in the monomer ends obtained by polymerizing a vinyl group. These can be used alone or in combination of two or more.
 これらの任意モノマーの使用量は特に限定されず、適宜決定することができる。通常、任意モノマーの合計使用量は、モノマー成分の50重量%未満とすることが適当であり、30重量%以下とすることが好ましく、20重量%以下とすることがより好ましい。ここに開示される技術は、任意モノマーの合計使用量がモノマー成分の10重量%以下(例えば5重量%以下)である態様で好ましく実施され得る。ここに開示される技術は、任意モノマーを実質的に使用しない態様(例えば、任意モノマーの使用量がモノマー成分の0.3重量%以下、典型的には0.1重量%以下である態様)でも好ましく実施され得る。 The amount of these optional monomers used is not particularly limited and can be determined as appropriate. Usually, the total amount of the arbitrary monomers used is suitably less than 50% by weight of the monomer component, preferably 30% by weight or less, and more preferably 20% by weight or less. The technique disclosed here can be preferably implemented in an embodiment in which the total amount of any monomer used is 10% by weight or less (for example, 5% by weight or less) of the monomer component. The technique disclosed here is an embodiment in which an optional monomer is not substantially used (for example, an embodiment in which the amount of the optional monomer used is 0.3% by weight or less, typically 0.1% by weight or less) of the monomer component. However, it can be preferably implemented.
 上述した(A)成分、(B)成分、(C)成分および任意モノマーは、典型的には単官能モノマーである。ここに開示される技術におけるモノマー成分は、このような単官能モノマーの他に、樹脂層の凝集力調整等の目的で、必要に応じて多官能モノマーを含有することができる。ここで、本明細書において単官能モノマーとは、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を1つ有するモノマーを指し、これに対して多官能モノマーとは、後述するように、上記重合性の官能基を少なくとも2つ有するモノマーを指す。 The above-described component (A), component (B), component (C) and optional monomer are typically monofunctional monomers. In addition to such a monofunctional monomer, the monomer component in the technique disclosed herein can contain a polyfunctional monomer as necessary for the purpose of adjusting the cohesive force of the resin layer. Here, the monofunctional monomer in this specification refers to a monomer having one polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group, and a polyfunctional monomer. As described later, refers to a monomer having at least two polymerizable functional groups.
 多官能モノマーは、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を少なくとも2つ有するモノマーである。多官能モノマーの例としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2-エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート,1,6-ヘキサンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート等の、多価アルコールと(メタ)アクリル酸とのエステル;アリル(メタ)アクリレート、ビニル(メタ)アクリレート、ジビニルベンゼン、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート等が挙げられる。多官能性モノマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。これらのなかでも、トリメチロールプロパントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートを好ましく使用することができる。反応性等の観点から、通常は、2以上のアクリロイル基を有する多官能モノマーが好ましい。 The polyfunctional monomer is a monomer having at least two polymerizable functional groups having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group. Examples of polyfunctional monomers include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, penta Erythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylol methanetri (meth) ) Of acrylate, esters of polyhydric alcohols and (meth) acrylic acid; allyl (meth) acrylate, vinyl (meth) acrylate, divinylbenzene, epoxy acrylate, polyester acrylate, urethane acrylate. A polyfunctional monomer can be used individually by 1 type or in combination of 2 or more types. Among these, trimethylolpropane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and dipentaerythritol hexa (meth) acrylate can be preferably used. From the viewpoint of reactivity and the like, a polyfunctional monomer having two or more acryloyl groups is usually preferable.
 多官能モノマーの使用量は、その分子量や官能基数等により異なるが、凝集力と接着力とをバランスよく両立する観点から、上記モノマー成分の3重量%以下とすることが好ましく、2重量%以下がより好ましく、1重量%以下(例えば0.5重量%以下)がさらに好ましい。また、多官能モノマーを使用する場合における使用量の下限値は、0重量%より大きければよく、特に限定されない。通常は、多官能モノマーの使用量をモノマー成分の0.001重量%以上(例えば0.01重量%以上)とすることにより、凝集力を向上させる効果が適切に発揮され得る。 The amount of the polyfunctional monomer used varies depending on the molecular weight, the number of functional groups, and the like, but is preferably 3% by weight or less of the above monomer component from the viewpoint of balancing cohesion and adhesion in a balanced manner. Is more preferable, and 1% by weight or less (for example, 0.5% by weight or less) is more preferable. Moreover, the lower limit of the usage-amount in the case of using a polyfunctional monomer should just be larger than 0 weight%, and is not specifically limited. Usually, the effect of improving the cohesive force can be appropriately exhibited by setting the amount of the polyfunctional monomer used to 0.001% by weight or more (for example, 0.01% by weight or more) of the monomer component.
 特に限定するものではないが、上記モノマー成分に占める(A)成分、(B)成分および(C)成分の合計量の割合は、典型的には50重量%超であり、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上である。ここに開示される技術は、上記合計量の割合が95重量%以上(例えば99重量%以上)である態様で好ましく実施され得る。ここに開示される技術は、上記モノマー成分に占める上記合計量の割合が99.999重量%以下(例えば99.99重量%以下)である態様で好ましく実施され得る。 Although not particularly limited, the proportion of the total amount of the component (A), the component (B) and the component (C) in the monomer component is typically more than 50% by weight, preferably 70% by weight. Above, more preferably 80% by weight or more, still more preferably 90% by weight or more. The technique disclosed here can be preferably implemented in an embodiment in which the ratio of the total amount is 95% by weight or more (for example, 99% by weight or more). The technology disclosed herein can be preferably implemented in an embodiment in which the ratio of the total amount in the monomer components is 99.999% by weight or less (for example, 99.99% by weight or less).
 特に限定するものではないが、上記モノマー成分の組成に対応する重合体のTgは、樹脂層の物性、接着性等の観点から、-20℃以下であることが好ましく、-25℃以下であることがより好ましく、また-80℃以上であることが適当であり、-60℃以上であることが好ましく、-50℃以上(例えば-40℃以上、典型的には-35℃以上)であることがより好ましい。 Although not particularly limited, the Tg of the polymer corresponding to the composition of the monomer component is preferably −20 ° C. or less, preferably −25 ° C. or less, from the viewpoints of physical properties and adhesiveness of the resin layer. More preferably -80 ° C or higher, preferably -60 ° C or higher, -50 ° C or higher (eg -40 ° C or higher, typically -35 ° C or higher). It is more preferable.
 ここで、モノマー成分の組成に対応する重合体のTgとは、上記モノマー成分に含まれる各モノマーの単独重合体(ホモポリマー)のTgおよび該モノマーの重量分率に基づいて、フォックス(Fox)の式から計算される値をいう。Foxの式とは、以下に示すように、共重合体のTgと、該共重合体を構成するモノマーのそれぞれを単独重合したホモポリマーのガラス転移温度Tgiとの関係式である。
   1/Tg=Σ(Wi/Tgi)
 なお、上記Foxの式において、Tgは共重合体のガラス転移温度(単位:K)、Wiは該共重合体におけるモノマーiの重量分率(重量基準の共重合割合)、Tgiはモノマーiのホモポリマーのガラス転移温度(単位:K)を表す。ただし、本明細書において、Tgの計算は単官能モノマーのみを考慮して行うものとする。したがって、モノマー成分が多官能モノマーを含む場合には、該モノマー成分に含まれる単官能モノマーの合計量を100重量%として、各単官能モノマーのホモポリマーのTgおよび該単官能モノマーの上記合計量に対する重量分率に基づいてTgを算出する。
Here, the Tg of the polymer corresponding to the composition of the monomer component refers to the Fox based on the Tg of the homopolymer of each monomer contained in the monomer component and the weight fraction of the monomer. The value calculated from the formula. The formula of Fox is a relational expression between Tg of a copolymer and glass transition temperature Tgi of a homopolymer obtained by homopolymerizing each of the monomers constituting the copolymer, as shown below.
1 / Tg = Σ (Wi / Tgi)
In the above Fox equation, Tg is the glass transition temperature (unit: K) of the copolymer, Wi is the weight fraction of monomer i in the copolymer (copolymerization ratio on a weight basis), and Tgi is the monomer i. Represents the glass transition temperature (unit: K) of the homopolymer. However, in this specification, the calculation of Tg is performed considering only the monofunctional monomer. Therefore, when the monomer component includes a polyfunctional monomer, the total amount of the monofunctional monomer contained in the monomer component is defined as 100% by weight, and the Tg of the homopolymer of each monofunctional monomer and the above total amount of the monofunctional monomer Tg is calculated based on the weight fraction relative to.
 ホモポリマーのTgとしては、以下に示すモノマーについては下記の値を採用するものとする。
    2-エチルヘキシルアクリレート    -70℃
    n-ブチルアクリレート        -55℃
    イソステアリルアクリレート      -18℃
    シクロヘキシルアクリレート       15℃
    イソボルニルアクリレート        94℃
    N-ビニル-2-ピロリドン       54℃
    2-ヒドロキシエチルアクリレート   -15℃
    4-ヒドロキシブチルアクリレート   -40℃
    アクリル酸              106℃
 上記で例示した以外のモノマーについては、ホモポリマーのTgとして、「Polymer Handbook」(第3版、John Wiley & Sons, Inc., 1989)に記載の数値を用いるものとする。本文献に複数種類の値が記載されているモノマーについては、最も高い値が採用される。上記Polymer Handbookにも記載されていない場合には、日本国特許出願公開2007-51271号公報に記載の測定方法により得られる値を用いるものとする。
As the Tg of the homopolymer, the following values are adopted for the monomers shown below.
2-Ethylhexyl acrylate -70 ° C
n-Butyl acrylate -55 ° C
Isostearyl acrylate -18 ℃
Cyclohexyl acrylate 15 ° C
Isobornyl acrylate 94 ° C
N-Vinyl-2-pyrrolidone 54 ° C
2-Hydroxyethyl acrylate -15 ° C
4-hydroxybutyl acrylate -40 ° C
Acrylic acid 106 ℃
For monomers other than those exemplified above, the values described in “Polymer Handbook” (3rd edition, John Wiley & Sons, Inc., 1989) are used as the Tg of the homopolymer. The highest value is adopted for the monomer whose values are described in this document. When not described in the above Polymer Handbook, values obtained by the measurement method described in Japanese Patent Application Publication No. 2007-51271 are used.
 (樹脂層形成用組成物)
 ここに開示される樹脂層形成用組成物は、上述のような組成のモノマー成分を、重合物、未重合物(すなわち、重合性官能基が未反応である形態)、あるいはこれらの混合物の形態で含み得る。上記樹脂層形成用組成物は、有機溶媒中に樹脂層形成成分(例えば粘着成分)を含む形態の組成物(溶剤型樹脂層形成用組成物)、樹脂層形成成分が水性溶媒に分散した形態の組成物(水分散型樹脂層形成用組成物)、紫外線や放射線等の活性エネルギー線により硬化して樹脂層形成成分を形成するように調製された組成物(活性エネルギー線硬化型樹脂層形成用組成物)、加熱溶融状態で塗工され、室温付近まで冷えると樹脂層を形成するホットメルト型樹脂層形成用組成物等の、種々の形態であり得る。
(Composition for resin layer formation)
The composition for forming a resin layer disclosed herein includes a monomer component having the above-described composition in the form of a polymer, an unpolymerized product (that is, a form in which the polymerizable functional group is unreacted), or a mixture thereof. Can be included. The composition for forming a resin layer is a composition in which an organic solvent contains a resin layer forming component (for example, an adhesive component) (a composition for forming a solvent type resin layer), and a form in which the resin layer forming component is dispersed in an aqueous solvent. Composition (water-dispersed resin layer forming composition), a composition prepared to cure with active energy rays such as ultraviolet rays and radiation to form a resin layer forming component (active energy ray curable resin layer formation) And a hot melt type resin layer forming composition that forms a resin layer when coated in a heated and melted state and cooled to near room temperature.
 上記樹脂層形成用組成物は、典型的には、該組成物のモノマー成分のうち少なくとも一部(モノマーの種類の一部であってもよく、分量の一部であってもよい。)を重合物の形態で含む。上記重合物を形成する際の重合方法は特に限定されず、従来公知の各種重合方法を適宜採用することができる。例えば、溶液重合、エマルション重合、塊状重合等の熱重合(典型的には、熱重合開始剤の存在下で行われる。);紫外線等の光を照射して行う光重合(典型的には、光重合開始剤の存在下で行われる。);β線、γ線等の放射線を照射して行う放射線重合;等を適宜採用することができる。なかでも光重合が好ましい。これらの重合方法において、重合の態様は特に限定されず、従来公知のモノマー供給方法、重合条件(温度、時間、圧力、光照射量、放射線照射量等)、モノマー以外の使用材料(重合開始剤、界面活性剤等)等を適宜選択して行うことができる。 The resin layer forming composition typically contains at least part of the monomer components of the composition (may be part of the type of monomer or part of the quantity). In the form of a polymer. The polymerization method for forming the polymer is not particularly limited, and various conventionally known polymerization methods can be appropriately employed. For example, thermal polymerization such as solution polymerization, emulsion polymerization and bulk polymerization (typically performed in the presence of a thermal polymerization initiator); photopolymerization performed by irradiation with light such as ultraviolet rays (typically It is carried out in the presence of a photopolymerization initiator.); Radiation polymerization carried out by irradiation with radiation such as β-rays and γ-rays; Of these, photopolymerization is preferred. In these polymerization methods, the mode of polymerization is not particularly limited, and conventionally known monomer supply methods, polymerization conditions (temperature, time, pressure, light irradiation amount, radiation irradiation amount, etc.), materials used other than monomers (polymerization initiator) , Surfactant, etc.) can be selected as appropriate.
 重合にあたっては、重合方法や重合態様等に応じて、公知または慣用の光重合開始剤や熱重合開始剤を使用し得る。このような重合開始剤は、1種を単独でまたは2種以上を適宜組み合わせて用いることができる。 In the polymerization, a known or commonly used photopolymerization initiator or thermal polymerization initiator can be used depending on the polymerization method, polymerization mode, and the like. Such a polymerization initiator can be used individually by 1 type or in combination of 2 or more types as appropriate.
 光重合開始剤としては、特に限定されるものではないが、例えばケタール系光重合開始剤、アセトフェノン系光重合開始剤、ベンゾインエーテル系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤、α-ケトール系光重合開始剤、芳香族スルホニルクロリド系光重合開始剤、光活性オキシム系光重合開始剤、ベンゾイン系光重合開始剤、ベンジル系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤等を用いることができる。 The photopolymerization initiator is not particularly limited. For example, ketal photopolymerization initiator, acetophenone photopolymerization initiator, benzoin ether photopolymerization initiator, acylphosphine oxide photopolymerization initiator, α- Ketol photoinitiator, aromatic sulfonyl chloride photoinitiator, photoactive oxime photoinitiator, benzoin photoinitiator, benzyl photoinitiator, benzophenone photoinitiator, thioxanthone light A polymerization initiator or the like can be used.
 ケタール系光重合開始剤の具体例には、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(例えば、BASF社製の商品名「イルガキュア651」)等が含まれる。
 アセトフェノン系光重合開始剤の具体例には、1-ヒドロキシシクロヘキシル-フェニル-ケトン(例えば、BASF社製の商品名「イルガキュア184」)、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(例えば、BASF社製の商品名「イルガキュア2959」)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(例えば、BASF社製の商品名「ダロキュア1173」)、メトキシアセトフェノン等が含まれる。
 ベンゾインエーテル系光重合開始剤の具体例には、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテルおよびアニソールメチルエーテル等の置換ベンゾインエーテルが含まれる。
 アシルホスフィンオキサイド系光重合開始剤の具体例には、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(例えば、BASF社製の商品名「イルガキュア819」)、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジ-n-ブトキシフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(例えば、BASF社製の商品名「ルシリンTPO」)、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド等が含まれる。
 α-ケトール系光重合開始剤の具体例には、2-メチル-2-ヒドロキシプロピオフェノン、1-[4-(2-ヒドロキシエチル)フェニル]-2-メチルプロパン-1-オン等が含まれる。芳香族スルホニルクロリド系光重合開始剤の具体例には、2-ナフタレンスルホニルクロライド等が含まれる。光活性オキシム系光重合開始剤の具体例には、1-フェニル-1,1-プロパンジオン-2-(o-エトキシカルボニル)-オキシム等が含まれる。ベンゾイン系光重合開始剤の具体例にはベンゾイン等が含まれる。ベンジル系光重合開始剤の具体例にはベンジル等が含まれる。
 ベンゾフェノン系光重合開始剤の具体例には、ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノン、ポリビニルベンゾフェノン、α-ヒドロキシシクロヘキシルフェニルケトン等が含まれる。
 チオキサントン系光重合開始剤の具体例には、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、ドデシルチオキサントン等が含まれる。
Specific examples of the ketal photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one (for example, trade name “Irgacure 651” manufactured by BASF).
Specific examples of the acetophenone photopolymerization initiator include 1-hydroxycyclohexyl-phenyl-ketone (for example, trade name “Irgacure 184” manufactured by BASF), 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one (for example, trade name “Irgacure 2959” manufactured by BASF), 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one (for example, trade name “Darocur 1173” manufactured by BASF), methoxyacetophenone and the like are included.
Specific examples of the benzoin ether photopolymerization initiator include benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether and benzoin isobutyl ether, and substituted benzoin ethers such as anisole methyl ether.
Specific examples of the acylphosphine oxide photopolymerization initiator include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (for example, trade name “Irgacure 819” manufactured by BASF), bis (2,4,6 -Trimethylbenzoyl) -2,4-di-n-butoxyphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (for example, trade name “Lucirin TPO” manufactured by BASF), bis (2,6- Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and the like.
Specific examples of the α-ketol photopolymerization initiator include 2-methyl-2-hydroxypropiophenone, 1- [4- (2-hydroxyethyl) phenyl] -2-methylpropan-1-one, and the like. It is. Specific examples of the aromatic sulfonyl chloride photopolymerization initiator include 2-naphthalenesulfonyl chloride and the like. Specific examples of the photoactive oxime photopolymerization initiator include 1-phenyl-1,1-propanedione-2- (o-ethoxycarbonyl) -oxime and the like. Specific examples of the benzoin photopolymerization initiator include benzoin and the like. Specific examples of the benzyl photopolymerization initiator include benzyl and the like.
Specific examples of the benzophenone photopolymerization initiator include benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, α-hydroxycyclohexyl phenyl ketone, and the like.
Specific examples of the thioxanthone photopolymerization initiator include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone. 2,4-diisopropylthioxanthone, dodecylthioxanthone and the like.
 熱重合開始剤としては、特に限定されるものではないが、例えばアゾ系重合開始剤、過酸化物系開始剤、過酸化物と還元剤との組合せによるレドックス系開始剤、置換エタン系開始剤等を使用することができる。より具体的には、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]ハイドレート等のアゾ系開始剤;例えば過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化水素等の過酸化物系開始剤;例えばフェニル置換エタン等の置換エタン系開始剤;例えば過硫酸塩と亜硫酸水素ナトリウムとの組合せ、過酸化物とアスコルビン酸ナトリウムとの組合せ等のレドックス系開始剤;等が例示されるが、これらに限定されない。なお、熱重合は、例えば20~100℃(典型的には40~80℃)程度の温度で好ましく実施され得る。 The thermal polymerization initiator is not particularly limited. For example, an azo polymerization initiator, a peroxide initiator, a redox initiator by a combination of a peroxide and a reducing agent, a substituted ethane initiator. Etc. can be used. More specifically, for example, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylpropionamidine) disulfate, 2,2′-azobis (2-amidinopropane) dihydrochloride 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis (N, N′-dimethyleneisobutylamidine), 2,2 ′ -Azo initiators such as azobis [N- (2-carboxyethyl) -2-methylpropionamidine] hydrate; persulfates such as potassium persulfate and ammonium persulfate; benzoyl peroxide, t-butyl hydroperoxide Peroxide initiators such as hydrogen peroxide; substituted ethane initiators such as phenyl substituted ethane; persulfates and sulfites Combination of sodium hydrogen, redox initiators such as a combination of a peroxide and sodium ascorbate; but the like, without limitation. The thermal polymerization can be preferably carried out at a temperature of, for example, about 20 to 100 ° C. (typically 40 to 80 ° C.).
 このような熱重合開始剤または光重合開始剤の使用量は、重合方法や重合態様等に応じた通常の使用量とすることができ、特に限定されない。例えば、重合対象のモノマー成分100重量部に対して重合開始剤0.001~5重量部(典型的には0.01~2重量部、例えば0.01~1重量部)を用いることができる。 The amount of such a thermal polymerization initiator or photopolymerization initiator used can be a normal amount used according to the polymerization method, polymerization mode, etc., and is not particularly limited. For example, a polymerization initiator of 0.001 to 5 parts by weight (typically 0.01 to 2 parts by weight, for example, 0.01 to 1 part by weight) can be used with respect to 100 parts by weight of the monomer component to be polymerized. .
 (モノマー成分の重合物と未重合物とを含む樹脂層形成用組成物)
 好ましい一態様に係る樹脂層形成用組成物は、該組成物のモノマー成分(原料モノマー)の少なくとも一部を含むモノマー混合物の重合反応物を含む。典型的には、上記モノマー成分の一部を重合物の形態で含み、残部を未重合物(未反応のモノマー)の形態で含む。上記モノマー混合物の重合反応物は、該モノマー混合物を少なくとも部分的に重合させることにより調製することができる。
 上記重合反応物は、好ましくは上記モノマー混合物の部分重合物である。このような部分重合物は、上記モノマー混合物に由来する重合物と未反応のモノマーとの混合物であって、典型的にはシロップ状(粘性のある液状)を呈する。以下、かかる性状の部分重合物を「モノマーシロップ」または単に「シロップ」ということがある。
(Composition for forming a resin layer containing a polymerized monomer component and an unpolymerized product)
The resin layer forming composition according to a preferred embodiment includes a polymerization reaction product of a monomer mixture containing at least a part of the monomer component (raw material monomer) of the composition. Typically, a part of the monomer component is included in the form of a polymer, and the remainder is included in the form of an unpolymerized substance (unreacted monomer). The polymerization reaction product of the monomer mixture can be prepared by at least partially polymerizing the monomer mixture.
The polymerization reaction product is preferably a partial polymerization product of the monomer mixture. Such a partial polymer is a mixture of a polymer derived from the monomer mixture and an unreacted monomer, and typically exhibits a syrup shape (viscous liquid). Hereinafter, such a partially polymerized product may be referred to as “monomer syrup” or simply “syrup”.
 上記重合反応物を得る際の重合方法は特に制限されず、上述のような各種重合方法を適宜選択して用いることができる。効率や簡便性の観点から、光重合法を好ましく採用し得る。光重合によると、光の照射量(光量)等の重合条件によって、上記モノマー混合物の重合転化率を容易に制御することができる。 The polymerization method for obtaining the polymerization reaction product is not particularly limited, and various polymerization methods as described above can be appropriately selected and used. From the viewpoints of efficiency and simplicity, a photopolymerization method can be preferably employed. According to photopolymerization, the polymerization conversion rate of the monomer mixture can be easily controlled by polymerization conditions such as the amount of light irradiation (light quantity).
 上記部分重合物におけるモノマー混合物の重合転化率(モノマーコンバーション)は、特に限定されない。上記重合転化率は、例えば70重量%以下とすることができ、60重量%以下とすることが好ましい。上記部分重合物を含む樹脂層形成用組成物の調製容易性や塗工性等の観点から、通常、上記重合転化率は、50重量%以下が適当であり、40重量%以下(例えば35重量%以下)が好ましい。重合転化率の下限は特に制限されず、典型的には1重量%以上であり、通常は5重量%以上とすることが適当である。 The polymerization conversion rate (monomer conversion) of the monomer mixture in the partial polymer is not particularly limited. The polymerization conversion rate can be, for example, 70% by weight or less, and preferably 60% by weight or less. From the viewpoint of ease of preparation of the resin layer forming composition containing the partial polymer, coating properties, and the like, usually, the polymerization conversion rate is suitably 50% by weight or less, and 40% by weight or less (for example, 35% by weight). % Or less) is preferable. The lower limit of the polymerization conversion rate is not particularly limited and is typically 1% by weight or more, and usually 5% by weight or more is appropriate.
 上記モノマー混合物の部分重合物を含む樹脂層形成用組成物は、例えば、原料モノマーの全部を含むモノマー混合物を適当な重合方法(例えば光重合法)により部分重合させることにより容易に得ることができる。上記部分重合物を含む樹脂層形成用組成物には、必要に応じて用いられる他の成分(例えば、光重合開始剤、多官能モノマー、架橋剤、後述するアクリル系オリゴマー等)が配合され得る。そのような他の成分を配合する方法は特に限定されず、例えば上記モノマー混合物にあらかじめ含有させてもよく、上記部分重合物に添加してもよい。 The resin layer forming composition containing a partial polymer of the monomer mixture can be easily obtained by, for example, partially polymerizing a monomer mixture containing all of the raw material monomers by an appropriate polymerization method (for example, photopolymerization method). . The resin layer forming composition containing the partial polymer may contain other components used as necessary (for example, a photopolymerization initiator, a polyfunctional monomer, a crosslinking agent, an acrylic oligomer described later, and the like). . The method of blending such other components is not particularly limited, and for example, it may be previously contained in the monomer mixture or added to the partial polymer.
 また、ここに開示される樹脂層形成用組成物は、モノマー成分(原料モノマー)のうち一部の種類のモノマーを含むモノマー混合物の完全重合物が、残りの種類のモノマーまたはその部分重合物に溶解した形態であってもよい。このような形態の樹脂層形成用組成物も、モノマー成分の重合物と未重合物とを含む樹脂層形成用組成物の例に含まれる。なお、本明細書において「完全重合物」とは、重合転化率が95重量%超であることをいう。 Further, in the resin layer forming composition disclosed herein, a complete polymerization product of a monomer mixture containing some types of monomers among the monomer components (raw material monomers) is converted into the remaining types of monomers or partial polymerization products thereof. It may be in a dissolved form. Such a resin layer forming composition is also included in examples of the resin layer forming composition containing a polymerized monomer component and an unpolymerized product. In the present specification, the “completely polymerized product” means that the polymerization conversion rate is more than 95% by weight.
 このようにモノマー成分の重合物と未重合物とを含む樹脂層形成用組成物から樹脂層を形成する際の硬化方法(重合方法)としては、光重合法を好ましく採用することができる。光重合法によって調製された重合反応物を含む樹脂層形成用組成物では、その硬化方法として光重合法を採用することが特に好ましい。光重合法により得られた重合反応物は、すでに光重合開始剤を含むので、この重合反応物を含む樹脂層形成用組成物をさらに硬化させて樹脂層を形成する際、新たな光重合開始剤を追加しなくても光硬化し得る。あるいは、光重合法により調製された重合反応物に、必要に応じて光重合開始剤を追加した組成の樹脂層形成用組成物であってもよい。追加する光重合開始剤は、重合反応物の調製に使用した光重合開始剤と同じでもよく、異なってもよい。光重合以外の方法で調製された樹脂層形成用組成物は、光重合開始剤を添加することにより光硬化性とすることができる。光硬化性の樹脂層形成用組成物は、厚手の樹脂層であっても容易に形成し得るという利点を有する。好ましい一態様において、樹脂層形成用組成物から樹脂層を形成する際の光重合は、紫外線照射により行うことができる。紫外線照射には、公知の高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ等を用いることができる。 As described above, a photopolymerization method can be preferably employed as a curing method (polymerization method) when forming a resin layer from a resin layer forming composition containing a polymerized monomer component and an unpolymerized product. In the resin layer forming composition containing the polymerization reaction product prepared by the photopolymerization method, it is particularly preferable to employ the photopolymerization method as the curing method. Since the polymerization reaction product obtained by the photopolymerization method already contains a photopolymerization initiator, when the resin layer forming composition containing this polymerization reaction product is further cured to form a resin layer, a new photopolymerization start is started. It can be photocured without adding an agent. Or the composition for resin layer formation of the composition which added the photoinitiator as needed to the polymerization reaction material prepared by the photopolymerization method may be sufficient. The photopolymerization initiator to be added may be the same as or different from the photopolymerization initiator used for the preparation of the polymerization reaction product. The resin layer forming composition prepared by a method other than photopolymerization can be made photocurable by adding a photopolymerization initiator. The photocurable resin layer forming composition has an advantage that even a thick resin layer can be easily formed. In a preferred embodiment, the photopolymerization when forming the resin layer from the resin layer forming composition can be performed by ultraviolet irradiation. A known high-pressure mercury lamp, low-pressure mercury lamp, metal halide lamp, or the like can be used for ultraviolet irradiation.
 (モノマー成分を完全重合物の形態で含む樹脂層形成用組成物)
 好ましい他の一態様に係る樹脂層形成用組成物は、該組成物のモノマー成分を完全重合物の形態で含む。このような樹脂層形成用組成物は、例えば、モノマー成分の完全重合物であるアクリル系ポリマーを有機溶媒中に含む溶剤型樹脂層形成用組成物、上記アクリル系ポリマーが水性溶媒に分散した水分散型樹脂層形成用組成物、等の形態であり得る。
(Composition for forming a resin layer containing a monomer component in the form of a completely polymerized product)
The resin layer forming composition according to another preferred embodiment includes the monomer component of the composition in the form of a completely polymerized product. Such a resin layer forming composition is, for example, a solvent-type resin layer forming composition containing an acrylic polymer, which is a complete polymer of monomer components, in an organic solvent, water in which the acrylic polymer is dispersed in an aqueous solvent. It may be in the form of a dispersion type resin layer forming composition.
 ((メタ)アクリル系オリゴマー)
 ここに開示される樹脂層形成用組成物には、接着力向上の観点から、(メタ)アクリル系オリゴマーを含有させることができる。(メタ)アクリル系オリゴマーを含有させることにより、樹脂層の接着力は向上し得る。
((Meth) acrylic oligomer)
The composition for forming a resin layer disclosed herein may contain a (meth) acrylic oligomer from the viewpoint of improving adhesive strength. By including a (meth) acrylic oligomer, the adhesive force of the resin layer can be improved.
 上記(メタ)アクリル系オリゴマーは、Tgが約0℃以上300℃以下、好ましくは約20℃以上300℃以下、さらに好ましくは約40℃以上300℃以下であることが望ましい。Tgが上記範囲内であることにより、接着力を好ましく向上することができる。なお(メタ)アクリル系オリゴマーのTgは、上記アクリル系ポリマーのTgと同様、Foxの式に基づいて計算される値である。 The (meth) acrylic oligomer preferably has a Tg of about 0 ° C. or higher and 300 ° C. or lower, preferably about 20 ° C. or higher and 300 ° C. or lower, more preferably about 40 ° C. or higher and 300 ° C. or lower. When Tg is within the above range, the adhesive force can be preferably improved. Note that the Tg of the (meth) acrylic oligomer is a value calculated based on the Fox equation, similar to the Tg of the acrylic polymer.
 (メタ)アクリル系オリゴマーの重量平均分子量(Mw)は、典型的には1000以上30000未満、好ましくは1500以上20000未満、さらに好ましくは2000以上10000未満であり得る。Mwが上記範囲内にあることで、良好な接着力や保持特性が得られるため好ましい。(メタ)アクリル系オリゴマーのMwは、GPCにより測定し、標準ポリスチレン換算の値として求めることができる。具体的には、東ソー社製「HPLC8020」に、カラムとしてTSKgelGMH-H(20)×2本を用いて、テトラヒドロフラン溶媒で流速約0.5mL/分の条件にて測定される。 The weight average molecular weight (Mw) of the (meth) acrylic oligomer may typically be 1000 or more and less than 30000, preferably 1500 or more and less than 20000, and more preferably 2000 or more and less than 10,000. It is preferable for Mw to be within the above range because good adhesive force and holding characteristics can be obtained. Mw of the (meth) acrylic oligomer is measured by GPC and can be obtained as a standard polystyrene equivalent value. Specifically, it is measured on a “HPLC 8020” manufactured by Tosoh Corporation using two TSKgelGMH-H (20) columns as a column and a tetrahydrofuran solvent at a flow rate of about 0.5 mL / min.
 (メタ)アクリル系オリゴマーを構成するモノマーとしては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレートのようなアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートのような(メタ)アクリル酸と脂環族アルコールとのエステル;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートのようなアリール(メタ)アクリレート;テルペン化合物誘導体アルコールから得られる(メタ)アクリレート;等が挙げられる。このような(メタ)アクリレートは、1種を単独でまたは2種以上を組み合わせて使用することができる。 As a monomer constituting the (meth) acrylic oligomer, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl ( (Meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl Alkyl (meth) acrylates such as meth) acrylate, dodecyl (meth) acrylate; (meth) acrylic acid and alicyclic such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate Examples include esters with alcohols; aryl (meth) acrylates such as phenyl (meth) acrylate and benzyl (meth) acrylate; (meth) acrylates obtained from terpene compound derivative alcohols; and the like. Such (meth) acrylate can be used individually by 1 type or in combination of 2 or more types.
 (メタ)アクリル系オリゴマーとしては、イソブチル(メタ)アクリレートやt-ブチル(メタ)アクリレートのようなアルキル基が分岐構造を有するアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレートやイソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートのような(メタ)アクリル酸と脂環式アルコールとのエステル;フェニル(メタ)アクリレートやベンジル(メタ)アクリレートのようなアリール(メタ)アクリレート等の環状構造を有する(メタ)アクリレートに代表される、比較的嵩高い構造を有するアクリル系モノマーをモノマー単位として含んでいることが、接着性をさらに向上させることができる観点から好ましい。また、(メタ)アクリル系オリゴマーの合成の際や樹脂層の作製の際に紫外線を採用する場合には、重合阻害を起こしにくいという点で、飽和結合を有するものが好ましく、アルキル基が分岐構造を有するアルキル(メタ)アクリレート、または脂環式アルコールとのエステルを、(メタ)アクリル系オリゴマーを構成するモノマーとして好ましく用いることができる。 Examples of (meth) acrylic oligomers include alkyl (meth) acrylates in which alkyl groups such as isobutyl (meth) acrylate and t-butyl (meth) acrylate have a branched structure; cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, Esters of (meth) acrylic acid and alicyclic alcohols such as dicyclopentanyl (meth) acrylate; cyclic structures such as aryl (meth) acrylates such as phenyl (meth) acrylate and benzyl (meth) acrylate It is preferable that an acrylic monomer having a relatively bulky structure typified by (meth) acrylate is included as a monomer unit from the viewpoint of further improving adhesiveness. In addition, when ultraviolet rays are used in the synthesis of a (meth) acrylic oligomer or in the production of a resin layer, those having a saturated bond are preferred in that polymerization inhibition is unlikely to occur, and the alkyl group has a branched structure. An alkyl (meth) acrylate having an ester or an ester with an alicyclic alcohol can be preferably used as a monomer constituting the (meth) acrylic oligomer.
 このような点から、好適な(メタ)アクリル系オリゴマーとしては、例えば、ジシクロペンタニルメタクリレート(DCPMA)、シクロヘキシルメタクリレート(CHMA)、イソボルニルメタクリレート(IBXMA)、イソボルニルアクリレート(IBXA)、ジシクロペンタニルアクリレート(DCPA)、1-アダマンチルメタクリレート(ADMA)、1-アダマンチルアクリレート(ADA)の各単独重合体のほか、CHMAとイソブチルメタクリレート(IBMA)との共重合体、CHMAとIBXMAとの共重合体、CHMAとアクリロイルモルホリン(ACMO)との共重合体、CHMAとジエチルアクリルアミド(DEAA)との共重合体、ADAとメチルメタクリレート(MMA)の共重合体、DCPMAとIBXMAとの共重合体、DCPMAとMMAの共重合体、等が挙げられる。 From this point, suitable (meth) acrylic oligomers include, for example, dicyclopentanyl methacrylate (DCPMA), cyclohexyl methacrylate (CHMA), isobornyl methacrylate (IBXMA), isobornyl acrylate (IBXA), In addition to dicyclopentanyl acrylate (DCPA), 1-adamantyl methacrylate (ADMA), and 1-adamantyl acrylate (ADA) homopolymers, a copolymer of CHMA and isobutyl methacrylate (IBMA), CHMA and IBXMA Copolymer, Copolymer of CHMA and acryloylmorpholine (ACMO), Copolymer of CHMA and diethylacrylamide (DEAA), Copolymer of ADA and methyl methacrylate (MMA), DCPMA and IB Copolymers of MA, copolymers of DCPMA and MMA, and the like.
 ここに開示される樹脂層形成用組成物に(メタ)アクリル系オリゴマーを含有させる場合、その含有量は特に限定されず、樹脂層形成用組成物に含まれるモノマー成分100重量部に対して凡そ1重量部以上とすることが適当である。(メタ)アクリル系オリゴマーの効果をよりよく発揮させる観点からは、上記(メタ)アクリル系オリゴマーの含有量は、3重量部以上(例えば5重量部以上、典型的には8重量部以上)とすることが好ましい。また、樹脂層形成用組成物の硬化性やアクリル系ポリマーの部分重合物や完全重合物との相溶性(ひいては樹脂層の透明性)等の観点から、上記(メタ)アクリル系オリゴマーの含有量は、樹脂層形成用組成物に含まれるモノマー成分100重量部に対して70重量部以下(例えば40重量部以下、典型的には20重量部以下)とすることが適当である。ここに開示される技術は、(メタ)アクリル系オリゴマーを使用しない態様でも実施され得る。 When the (meth) acrylic oligomer is contained in the resin layer forming composition disclosed herein, the content thereof is not particularly limited, and is approximately about 100 parts by weight of the monomer component contained in the resin layer forming composition. It is appropriate that the amount is 1 part by weight or more. From the viewpoint of better exhibiting the effect of the (meth) acrylic oligomer, the content of the (meth) acrylic oligomer is 3 parts by weight or more (for example, 5 parts by weight or more, typically 8 parts by weight or more). It is preferable to do. In addition, the content of the (meth) acrylic oligomer from the viewpoint of the curability of the resin layer forming composition and the compatibility with the partial polymer or the complete polymer of the acrylic polymer (and thus the transparency of the resin layer). Is suitably 70 parts by weight or less (for example 40 parts by weight or less, typically 20 parts by weight or less) with respect to 100 parts by weight of the monomer component contained in the resin layer forming composition. The technique disclosed here can also be implemented in an embodiment that does not use a (meth) acrylic oligomer.
 (シランカップリング剤)
 さらに、ここに開示される樹脂層形成用組成物は、シランカップリング剤を含有することができる。好ましく用いられ得るシランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シランカップリング剤;3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリル基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤;等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、アクリル系ポリマーを構成するモノマー成分100重量部に対して、好ましくは1重量部以下(例えば0.01~1重量部)であり、より好ましくは0.02~0.6重量部である。
(Silane coupling agent)
Further, the resin layer forming composition disclosed herein may contain a silane coupling agent. Examples of silane coupling agents that can be preferably used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2- (3,4-epoxy. (Cyclohexyl) ethyltrimethoxysilane and other epoxy group-containing silane coupling agents; 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N- ( Amino group-containing silane coupling agents such as 1,3-dimethylbutylidene) propylamine, N-phenyl-γ-aminopropyltrimethoxysilane; 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, etc. (Meth) acrylic group Isocyanate group-containing silane coupling agents such as 3-isocyanate propyl triethoxysilane; Yes silane coupling agent, and the like. These can be used alone or in combination of two or more. The amount of the silane coupling agent is preferably 1 part by weight or less (for example, 0.01 to 1 part by weight), more preferably 0.02 to 100 parts by weight with respect to 100 parts by weight of the monomer component constituting the acrylic polymer. 0.6 parts by weight.
 (架橋剤)
 ここに開示される樹脂層形成用組成物は、架橋剤を含有することができる。架橋剤としては、例えば、エポキシ系架橋剤、イソシアネート系架橋剤、シリコーン系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、シラン系架橋剤、アルキルエーテル化メラミン系架橋剤、金属キレート系架橋剤等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。架橋剤の添加量は、技術常識に基づき適切に設定される。あるいは、樹脂層形成用組成物は、上述のような架橋剤を含まないものであってもよい。
(Crosslinking agent)
The composition for resin layer formation disclosed here can contain a crosslinking agent. Examples of the crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, a silicone crosslinking agent, an oxazoline crosslinking agent, an aziridine crosslinking agent, a silane crosslinking agent, an alkyl etherified melamine crosslinking agent, and a metal chelate crosslinking agent. Etc. These can be used alone or in combination of two or more. The addition amount of a crosslinking agent is appropriately set based on technical common sense. Or the composition for resin layer formation may not contain the above crosslinking agents.
 (その他の添加剤)
 その他、ここに開示される樹脂層形成用組成物には、例えば粘着剤の分野において公知の各種添加剤を含有させることができる。例えば、着色剤、顔料等の粉体、染料、界面活性剤、可塑剤、粘着付与樹脂、表面潤滑剤、レベリング剤、軟化剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、重合禁止剤、無機または有機の充填剤、金属粉、粒子状、箔状物等を、用途に応じて適宜添加することができる。
(Other additives)
In addition, the resin layer forming composition disclosed herein may contain various additives known in the field of pressure-sensitive adhesives, for example. For example, powders such as colorants, pigments, dyes, surfactants, plasticizers, tackifying resins, surface lubricants, leveling agents, softeners, antioxidants, anti-aging agents, light stabilizers, UV absorbers, A polymerization inhibitor, an inorganic or organic filler, metal powder, particles, foils, etc. can be appropriately added depending on the application.
 (形成方法等)
 ここに開示される樹脂層は、例えば、ここに開示されるいずれかの樹脂層形成用組成物を支持体に塗布して乾燥または硬化させることにより樹脂層として形成することができる。樹脂層形成用組成物の塗布方法としては、従来公知の各種の方法を使用可能である。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーター等による押出しコート法等の方法が挙げられる。
(Formation method, etc.)
The resin layer disclosed herein can be formed, for example, as a resin layer by applying any of the resin layer forming compositions disclosed herein to a support and drying or curing. As a coating method of the resin layer forming composition, various conventionally known methods can be used. Specifically, for example, by roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples thereof include an extrusion coating method.
 樹脂層形成用組成物の乾燥は加熱下で行うことができる。乾燥温度は、40℃~200℃が好ましく、50℃~180℃がより好ましく、70℃~170℃がさらに好ましい。加熱温度を上記の範囲とすることによって、優れた物性を有する樹脂層を得ることができる。乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、5秒~20分が好ましく、5秒~10分がより好ましく、10秒~5分がさらに好ましい。 The resin layer forming composition can be dried under heating. The drying temperature is preferably 40 ° C to 200 ° C, more preferably 50 ° C to 180 ° C, and further preferably 70 ° C to 170 ° C. By setting the heating temperature within the above range, a resin layer having excellent physical properties can be obtained. As the drying time, an appropriate time can be adopted as appropriate. The drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and even more preferably 10 seconds to 5 minutes.
 樹脂層の形成にあたっては、所望の物性を得るため、さらに架橋処理、熱硬化処理等が施され得る。例えば、凡そ80~200℃(例えば100~180℃、典型的には120~160℃)で、5分以上の熱硬化処理が施され得る。熱硬化処理時間は、好ましくは10分以上、より好ましくは20分以上(例えば30分以上、典型的には40分~120分)である。上記樹脂層は、熱硬化処理前または処理中にプレス処理を行うことが好ましい。 In forming the resin layer, in order to obtain desired physical properties, a crosslinking treatment, a thermosetting treatment, or the like can be further performed. For example, a thermosetting treatment can be performed at about 80 to 200 ° C. (eg, 100 to 180 ° C., typically 120 to 160 ° C.) for 5 minutes or more. The heat curing treatment time is preferably 10 minutes or longer, more preferably 20 minutes or longer (for example, 30 minutes or longer, typically 40 minutes to 120 minutes). The resin layer is preferably subjected to press treatment before or during the thermosetting treatment.
 ここに開示される樹脂層は、上記樹脂層形成用組成物から得ることができる。樹脂層の厚さは特に制限されず、例えば1~400μm程度であり得る。通常、樹脂層の厚さは、1~200μmが好ましく、2~150μmがより好ましく、2~100μmがさらに好ましく、5~75μmが特に好ましい。 The resin layer disclosed herein can be obtained from the resin layer forming composition. The thickness of the resin layer is not particularly limited, and can be, for example, about 1 to 400 μm. Usually, the thickness of the resin layer is preferably 1 to 200 μm, more preferably 2 to 150 μm, further preferably 2 to 100 μm, and particularly preferably 5 to 75 μm.
 導電部をあらかじめ樹脂層に積層する態様において、導電部を配置する前の樹脂層は、前面および背面がいずれも剥離面(剥離性の表面)である剥離ライナー(支持体)と重ね合わされて渦巻き状に巻回された形態であり得る。あるいは、第1表面および第2表面が2枚の独立した剥離ライナー(支持体)によりそれぞれ保護された形態であってもよい。剥離ライナーとしては、後述のものを好ましく使用し得る。 In a mode in which the conductive portion is laminated on the resin layer in advance, the resin layer before the conductive portion is placed is spirally overlapped with a release liner (support) whose front surface and back surface are both release surfaces (peelable surfaces). It may be in a form wound in a shape. Alternatively, the first surface and the second surface may be respectively protected by two independent release liners (supports). As the release liner, those described below can be preferably used.
 <剥離ライナー>
 第1樹脂層や第2樹脂層、配線構造体の上下面を保護する剥離ライナーとしては、慣用の剥離紙等を使用することができ、特に限定されない。例えば、プラスチックフィルムや紙等の基材の表面に剥離処理層を有する剥離ライナーや、フッ素系ポリマー(ポリテトラフルオロエチレン等)やポリオレフィン系樹脂(ポリエチレン、ポリプロピレン等)の低接着性材料からなる剥離ライナー等を用いることができる。上記剥離処理層は、上記基材を剥離処理剤により表面処理して形成されたものであり得る。剥離処理剤の例としては、シリコーン系剥離処理剤、長鎖アルキル系剥離処理剤、フッ素系剥離処理剤、硫化モリブデン(IV)等が挙げられる。
<Release liner>
As the release liner for protecting the first resin layer, the second resin layer, and the upper and lower surfaces of the wiring structure, a conventional release paper or the like can be used, and is not particularly limited. For example, a release liner having a release treatment layer on the surface of a substrate such as a plastic film or paper, or a release made of a low adhesive material such as a fluorine polymer (polytetrafluoroethylene, etc.) or a polyolefin resin (polyethylene, polypropylene, etc.) A liner or the like can be used. The release treatment layer may be formed by surface-treating the base material with a release treatment agent. Examples of the release treatment agent include a silicone release treatment agent, a long-chain alkyl release treatment agent, a fluorine release treatment agent, and molybdenum (IV) sulfide.
 <太陽電池セル>
 使用される太陽電池セルの種類は特に限定されず、例えば単結晶型や多結晶型の結晶系Siセルが好適である。結晶系Siセルは、p型セル(p型基板にn型が付加されたセル)であってもよく、n型セル(n型基板にp型が付加されたセル)であってもよい。また、太陽電池セルは、アモルファス系Siセル、化合物系、有機系等の太陽電池セルであってもよい。また、太陽電池セルは片面受光型、両面受光型のいずれであってもよい。太陽電池セルの形状も特に限定されず、ほぼ四角形状平面を有するウエハであってもよく、帯状等であってもよい。太陽電池セルに形成される電極としては、上記第2実施形態の構成が好ましく採用されるが、これに限定されず、公知または慣用の電極を目的等に応じて適宜採用することができる。太陽電池セルの厚さは、軽量性等の観点から、好ましくは0.5mm以下程度であり、より好ましくは0.3mm以下(例えば180~200μm程度)、さらに好ましくは160μm以下程度であり得る。
<Solar cell>
The type of the solar battery cell to be used is not particularly limited, and for example, a single crystal type or a polycrystalline type Si cell is suitable. The crystalline Si cell may be a p-type cell (a cell in which n-type is added to a p-type substrate) or an n-type cell (a cell in which p-type is added to an n-type substrate). Further, the solar battery cell may be an amorphous Si cell, a compound solar battery, an organic solar battery cell or the like. Further, the solar cell may be either a single-sided light receiving type or a double-sided light receiving type. The shape of the solar battery cell is not particularly limited, and it may be a wafer having a substantially rectangular plane, or may be a belt shape. As the electrode formed in the solar battery cell, the configuration of the second embodiment is preferably employed, but is not limited thereto, and a known or conventional electrode can be appropriately employed depending on the purpose or the like. The thickness of the solar battery cell is preferably about 0.5 mm or less, more preferably about 0.3 mm or less (for example, about 180 to 200 μm), and further preferably about 160 μm or less from the viewpoint of lightness and the like.
 <封止樹脂>
 ここに開示される封止樹脂は、絶縁性を有し、かつ透光性を有するものであり得る。また例えば、熱や圧力によって流動性を示し得る樹脂層であり得る。なお、本明細書において「絶縁性を有する」とは、25℃における比抵抗が1×10Ω・cm以上(好ましくは1×108Ω・cm以上、典型的には1×1010Ω・cm以上)であることをいう。また、本明細書において電気抵抗(例えば比抵抗)は、特記しないかぎり25℃における値をいうものとする。また、本明細書において「透光性を有する」とは、JIS K 7375:2008で規定される全光線透過率が50%以上(好ましくは80%以上、典型的には95%以上)であることをいう。
<Sealing resin>
The sealing resin disclosed herein may have insulating properties and translucency. For example, it may be a resin layer that can exhibit fluidity by heat or pressure. In this specification, “having insulation” means a specific resistance at 25 ° C. of 1 × 10 6 Ω · cm or more (preferably 1 × 10 8 Ω · cm or more, typically 1 × 10 10 Ω). -Cm or more). In this specification, the electric resistance (for example, specific resistance) is a value at 25 ° C. unless otherwise specified. Further, in the present specification, “having translucency” means that the total light transmittance defined by JIS K 7375: 2008 is 50% or more (preferably 80% or more, typically 95% or more). That means.
 封止樹脂は、好ましくは熱硬化性樹脂であり得る。熱硬化性樹脂からなる封止樹脂は、例えば太陽電池セルに積層し加熱することで、太陽電池モジュールにおいて太陽電池セルを良好に封止することができる。上記樹脂としては、透光性、加工性、耐候性等の観点から、エチレン-酢酸ビニル共重合体(EVA)が好ましく使用される。上記樹脂は、EVAに代表されるエチレン-ビニルエステル共重合体の他、エチレン-(メタ)アクリル酸共重合体等のエチレン-不飽和カルボン酸共重合体、エチレン-(メタ)アクリル酸エステル等のエチレン-不飽和カルボン酸エステル共重合体、ポリメタクリル酸メチル等の不飽和カルボン酸エステル系重合体等であってもよい。あるいは、フッ化ビニリデン樹脂、ポリエチレンテトラフルオロエチレン等のフッ素樹脂;低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE。典型的にはチーグラー触媒、バナジウム触媒、メタロセン触媒等を用いて製造され得るLLDPE)等のポリエチレン(PE)、ポリプロピレン(PP。例えば、チーグラー触媒、フィリップス触媒、メタロセン触媒等を用いて製造され得るPP)、チーグラー触媒、バナジウム触媒、メタロセン触媒等を用いて製造することができるエチレン・α-オレフィン共重合体、それらの変性物(変性ポリオレフィン)等のポリオレフィン類;ポリブタジエン類;ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB等のポリビニルアセタール;ポリエチレンテレフタレート(PET);ポリイミド;非晶質ポリカーボネート;シロキサンゾル-ゲル;ポリウレタン;ポリスチレン;ポリエーテルサルフォン;ポリアリレート;エポキシ樹脂;シリコーン樹脂;アイオノマー;等であってもよい。これらの樹脂は単独で使用してもよく、2種以上を混合して使用してもよい。上記樹脂は、紫外線吸収剤や光安定剤等の、この分野に公知の各種添加剤を含み得る。 The sealing resin may preferably be a thermosetting resin. The sealing resin made of a thermosetting resin can be well sealed in the solar battery module by, for example, laminating and heating the solar battery cell. As the resin, an ethylene-vinyl acetate copolymer (EVA) is preferably used from the viewpoints of translucency, workability, weather resistance, and the like. The above resins include ethylene-vinyl ester copolymers represented by EVA, ethylene-unsaturated carboxylic acid copolymers such as ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid esters, etc. An ethylene-unsaturated carboxylic acid ester copolymer, an unsaturated carboxylic acid ester-based polymer such as polymethyl methacrylate, and the like may be used. Alternatively, fluoropolymers such as vinylidene fluoride resin and polyethylene tetrafluoroethylene; manufactured using low density polyethylene (LDPE), linear low density polyethylene (LLDPE, typically Ziegler catalyst, vanadium catalyst, metallocene catalyst, etc. Can be produced using polyethylene (PE) such as LLDPE), polypropylene (PP. For example, PP that can be produced using Ziegler catalyst, Phillips catalyst, metallocene catalyst, etc.), Ziegler catalyst, vanadium catalyst, metallocene catalyst, etc. Polyolefins such as ethylene / α-olefin copolymers and their modified products (modified polyolefins); Polybutadienes; Polyvinyl acetals such as polyvinyl formal, polyvinyl butyral (PVB resin), and modified PVB; polyethylene Terephthalate (PET); polyimide; amorphous polycarbonate; siloxane sol - gel; polyurethane; polystyrene; polyether sulfone; polyarylate, epoxy resins, may be like; silicone resin; ionomers. These resins may be used alone or in combination of two or more. The resin may contain various additives known in the art such as an ultraviolet absorber and a light stabilizer.
 また、封止樹脂には、配線構造体との密着性を高めるため、密着性向上剤が付与されていてもよい。例えば、加熱硬化前のシート状封止樹脂の表面に密着性向上剤を付与した後、当該表面に配線構造体を配置し、封止樹脂を加熱処理することで、封止樹脂と配線構造体との密着性は向上する。封止樹脂としてEVAシートが用いられる場合には、密着性向上剤としてシランカップリング剤が好ましく使用される。また、上記シート状封止樹脂の表面には、密着性向上その他を目的として、コロナ処理、大気圧プラズマ処理等の各種表面処理を単独でまたは組み合わせて施すことができる。 In addition, an adhesion improver may be added to the sealing resin in order to improve the adhesion with the wiring structure. For example, after an adhesion improver is applied to the surface of the sheet-shaped sealing resin before heat curing, the wiring structure is disposed on the surface, and the sealing resin and the wiring structure are heat-treated. Adhesion with is improved. When an EVA sheet is used as the sealing resin, a silane coupling agent is preferably used as the adhesion improver. Various surface treatments such as corona treatment and atmospheric pressure plasma treatment can be applied to the surface of the sheet-shaped sealing resin alone or in combination for the purpose of improving adhesion and the like.
 太陽電池モジュールの構築に用いられるシート状封止樹脂の厚さは、太陽電池セルの封止性等の観点から、100~2000μm(例えば200~1000μm、典型的には400~800μm)程度とすることが好ましい。 The thickness of the sheet-shaped sealing resin used for the construction of the solar cell module is about 100 to 2000 μm (for example, 200 to 1000 μm, typically 400 to 800 μm) from the viewpoint of the sealing performance of the solar battery cell. It is preferable.
 <表面被覆部材>
 表面被覆部材としては、透光性を有する各種材料が使用され得る。表面被覆部材は、ガラス板や、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン樹脂、クロロトリフルオロエチレン樹脂等のフッ素樹脂シート、アクリル樹脂、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル等の材料から構成された樹脂シートであり得る。例えば、全光線透過率が70%以上(例えば90%以上、典型的には95%以上)の平板状部材またはシート状部材が好ましく用いられ得る。上記全光線透過率は、JIS K 7375:2008に基づいて測定すればよい。表面被覆部材の厚さは、保護性や軽量性等の観点から、0.5~10mm(例えば1~8mm、典型的には2~5mm)程度とすることが好ましい。
<Surface covering member>
As the surface covering member, various materials having translucency can be used. Surface covering member is glass plate, fluororesin sheet such as tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride resin, chlorotrifluoroethylene resin, acrylic resin, polyethylene terephthalate It may be a resin sheet composed of a material such as polyester such as (PET) or polyethylene naphthalate (PEN). For example, a flat plate member or a sheet member having a total light transmittance of 70% or more (for example, 90% or more, typically 95% or more) can be preferably used. The total light transmittance may be measured according to JIS K 7375: 2008. The thickness of the surface covering member is preferably about 0.5 to 10 mm (for example, 1 to 8 mm, typically 2 to 5 mm) from the viewpoint of protection and light weight.
 <裏面被覆部材>
 裏面被覆部材としては、表面被覆部材の材料として例示した各種材料からなる平板状部材またはシート状部材が好ましく使用される。なかでも、裏面被覆部材形成材料として、PETやPEN等のポリエステルを使用することがより好ましい。あるいは、裏面被覆部材として、耐食性を有する金属板(例えばアルミニウム板)や、エポキシ樹脂等の樹脂シート、シリカ蒸着樹脂等の複合シートを用いてもよい。裏面被覆部材の厚さは、取扱い性や軽量性等の観点から、0.1~10mm(例えば0.2~5mm)程度とすることが好ましい。なお、裏面被覆部材は透光性を有していなくてもよい。
<Backside coating member>
As the back surface covering member, a flat plate member or a sheet member made of various materials exemplified as the material of the surface covering member is preferably used. Especially, it is more preferable to use polyester, such as PET and PEN, as a back surface covering member forming material. Or as a back surface covering member, you may use the metal sheet (for example, aluminum plate) which has corrosion resistance, resin sheets, such as an epoxy resin, and composite sheets, such as silica vapor deposition resin. The thickness of the back surface covering member is preferably about 0.1 to 10 mm (for example, 0.2 to 5 mm) from the viewpoints of handleability and lightness. In addition, the back surface covering member may not have translucency.
 以下、本発明に関する実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。なお、以下の説明中の「部」および「%」は、特に断りがない限り重量基準である。 Hereinafter, examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the specific examples. In the following description, “parts” and “%” are based on weight unless otherwise specified.
 ≪実験1≫
 <使用材料>
 (第1樹脂層および第2樹脂層)
 2-エチルヘキシルアクリレート40.5部、イソステアリルアクリレート40.5部、N-ビニル-2-ピロリドン18部、4-ヒドロキシブチルアクリレート1部と、光重合開始剤としての2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」、BASF社製)0.05部および1-ヒドロキシシクロヘキシル-フェニル-ケトン(商品名「イルガキュア184」、BASF社製)0.05部とを混合し、窒素雰囲気下で紫外線を照射して部分重合物(モノマーシロップ)を作製した。得られたモノマーシロップにシランカップリング剤(商品名「KBM403」、信越化学工業社製)0.3部およびトリメチロールプロパントリアクリレート(TMPTA)0.02部を添加し、均一に混合して樹脂層形成用組成物を調製した。
 片面がシリコーン系剥離処理剤で剥離処理されている厚さ38μmのポリエステルフィルム(商品名「ダイアホイルMRF」、三菱樹脂社製)の剥離処理面に、上記で調製した樹脂層形成用組成物を、最終的な厚さが50μmになるように塗布して塗布層を形成した。次いで、上記塗布層の表面に、片面がシリコーンで剥離処理されている厚さ38μmのポリエステルフィルム(商品名「ダイアホイルMRE」、三菱樹脂社製)を、当該フィルムの剥離処理面が上記塗布層側になるようにして被せた。これにより上記塗布層を酸素から遮断した。このようにして得られた塗布層を有するシートにケミカルライトランプ(東芝社製)を用いて照度5mW/cmの紫外線を360秒間照射することにより、上記塗布層を硬化させて樹脂層(粘着剤層)を形成し、第1樹脂層および第2樹脂層としての樹脂シート(粘着シート)を得た。この樹脂シートにおいて、樹脂シートの両面に被覆されたポリエステルフィルムは、剥離ライナーとして機能する。
 なお、上記照度の値は、ピーク感度波長約350nmの工業用UVチェッカー(商品名「UVR-T1」、受光部型式UD-T36、トプコン社製)による測定値である。
Experiment 1≫
<Materials used>
(First resin layer and second resin layer)
40.5 parts of 2-ethylhexyl acrylate, 40.5 parts of isostearyl acrylate, 18 parts of N-vinyl-2-pyrrolidone, 1 part of 4-hydroxybutyl acrylate, and 2,2-dimethoxy-1, as a photopolymerization initiator 0.05 part of 2-diphenylethane-1-one (trade name “Irgacure 651”, manufactured by BASF) and 0.05 part of 1-hydroxycyclohexyl-phenyl-ketone (trade name “Irgacure 184”, manufactured by BASF) Were mixed and irradiated with ultraviolet rays in a nitrogen atmosphere to prepare a partially polymerized product (monomer syrup). To the obtained monomer syrup, 0.3 part of a silane coupling agent (trade name “KBM403”, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.02 part of trimethylolpropane triacrylate (TMPTA) are added and mixed uniformly. A layer forming composition was prepared.
The composition for forming a resin layer prepared above is applied to the release treatment surface of a 38 μm thick polyester film (trade name “Diafoil MRF”, manufactured by Mitsubishi Plastics, Inc.) whose one surface is release-treated with a silicone release treatment agent. The coated layer was formed by coating so that the final thickness was 50 μm. Next, a 38 μm thick polyester film (trade name “Diafoil MRE”, manufactured by Mitsubishi Plastics Co., Ltd.) having one side peeled with silicone is applied to the surface of the coating layer. I put it on the side. Thereby, the coating layer was shielded from oxygen. By irradiating the sheet having the coating layer thus obtained with ultraviolet rays having an illuminance of 5 mW / cm 2 for 360 seconds using a chemical light lamp (manufactured by Toshiba Corporation), the coating layer is cured and a resin layer (adhesive) Agent layer) was formed to obtain resin sheets (adhesive sheets) as the first resin layer and the second resin layer. In this resin sheet, the polyester film coated on both surfaces of the resin sheet functions as a release liner.
The illuminance value is a value measured by an industrial UV checker (trade name “UVR-T1”, light receiving unit type UD-T36, manufactured by Topcon Corporation) having a peak sensitivity wavelength of about 350 nm.
 (導電部)
 銅ワイヤー(幅0.8mm、厚さ0.25mm)を用意した。銅ワイヤーとしては、幅公差±10%、厚さ公差±4%、めっき厚さ1μm(公差±15%)、引張強度が200N/mm以上であるものを用いた。めっき種としてはAgを用いた。
(Conductive part)
A copper wire (width 0.8 mm, thickness 0.25 mm) was prepared. A copper wire having a width tolerance of ± 10%, a thickness tolerance of ± 4%, a plating thickness of 1 μm (tolerance of ± 15%), and a tensile strength of 200 N / mm 2 or more was used. Ag was used as the plating type.
 (封止樹脂)
 EVAシート(商品名「EVASKY」、ブリヂストン社製、厚さ450μm)
 (太陽電池セル)
 Si系太陽電池セル(多結晶Siセル、GINTECH社製)
 (表面被覆部材)
 ガラス板(白板熱処理ガラス、旭硝子社製、厚さ3.2mm)
 (裏面被覆部材)
 バックシート(商品名「コバテックPV KB-Z1-3」、コバヤシ社製、厚さ200μm)
(Sealing resin)
EVA sheet (trade name “EVASKY”, manufactured by Bridgestone, thickness 450 μm)
(Solar cell)
Si solar cell (polycrystalline Si cell, manufactured by GINTECH)
(Surface covering member)
Glass plate (white plate heat-treated glass, manufactured by Asahi Glass Co., Ltd., thickness 3.2 mm)
(Back cover member)
Back sheet (trade name “KOBATEC PV KB-Z1-3”, manufactured by Kobayashi Corporation, thickness 200 μm)
 <実施例>
 上記材料を用いて、上記第1実施形態と同様の構成を有する試験用太陽電池モジュールを構築した。この試験用太陽電池モジュールでは、2枚の太陽電池セルを使用した。第1樹脂層および第2樹脂層としての樹脂シートは、太陽電池セルの形状にあわせて適当なサイズにカットしたものを、第1領域、第2領域にそれぞれ配置した。導電部としての銅ワイヤーは8本使用し、銅ワイヤーの長手方向が太陽電池セルの配列方向に平行するように2cm間隔で配置した。封止樹脂もモジュールの形状にあわせて適当なサイズにカットしたものを使用した。試験用太陽電池モジュールは、上記材料を配置した後、市販のラミネータ(NPC社製)を用いて150℃、100kPa、5分間の条件でラミネートを行い、15分間のキュアを実施し、さらに、市販の送風定温恒温器(ヤマト科学社製)を用いて150℃、15分間の乾燥処理を行うことにより構築した。
<Example>
Using the above materials, a test solar cell module having the same configuration as that of the first embodiment was constructed. In this solar cell module for test, two solar cells were used. Resin sheets as the first resin layer and the second resin layer were cut into appropriate sizes in accordance with the shape of the solar battery cells and arranged in the first region and the second region, respectively. Eight copper wires were used as the conductive part, and the copper wires were arranged at 2 cm intervals so that the longitudinal direction of the copper wires was parallel to the arrangement direction of the solar cells. The sealing resin was also cut into an appropriate size according to the shape of the module. The solar cell module for testing was placed on the above materials, then laminated using a commercially available laminator (manufactured by NPC) at 150 ° C. and 100 kPa for 5 minutes, cured for 15 minutes, and further commercially available. This was constructed by performing a drying treatment at 150 ° C. for 15 minutes using a blast constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.).
 <比較例>
 配線構造体を用いず、バスバー電極(商品名「SSA-SPS」、1.5mm×0.2mmのはんだ被覆銅線、日立電線社製)を3本はんだ接合により固定したSi系太陽電池セル(GINTECH社製、多結晶セル)を用いた他は上記実施例と同様にして比較例に係る太陽電池モジュールを構築した。
<Comparative example>
A Si-based solar cell in which bus bar electrodes (trade name “SSA-SPS”, 1.5 mm × 0.2 mm solder-coated copper wire, manufactured by Hitachi Cable Ltd.) are fixed by solder bonding without using a wiring structure ( A solar cell module according to a comparative example was constructed in the same manner as in the above example except that a polycrystalline cell manufactured by GINTECH was used.
 [発電効率]
 得られた太陽電池モジュールにつき、JIS C 8913:2005に準拠し、ソーラーシミュレータ(装置名「XES-450S1」、三永電機製作所製)を用いて下記の条件で光変換効率(%)を測定した。
 (測定条件)
 電圧スイープ法
 スタート電圧: -0.01V
 ストップ電圧: 1.6V
 ステップ: 0.02V
 制限電流: 10000A
 保持時間: 26.68ms
 光量:Reference PV CELL(商品名「AK-200」、コニカミノルタ社製)を用いて短絡電流が約129mA(±3%)になるよう調整した。
[Power generation efficiency]
About the obtained solar cell module, based on JIS C 8913: 2005, the light conversion efficiency (%) was measured on condition of the following using a solar simulator (device name "XES-450S1," manufactured by Mitsunaga Electric Mfg. Co., Ltd.). .
(Measurement condition)
Voltage sweep method Start voltage: -0.01V
Stop voltage: 1.6V
Step: 0.02V
Current limit: 10000A
Retention time: 26.68ms
Light amount: Reference PV CELL (trade name “AK-200”, manufactured by Konica Minolta, Inc.) was used to adjust the short-circuit current to about 129 mA (± 3%).
 上記評価の結果、実施例の変換効率は17.30%であったのに対し、比較例の変換効率は16.53%であった。ここに開示される技術を適用することにより、はんだ付けバスバー電極を用いる従来品と比べて約4.6%の効率向上が実現された。また、モノマー種を変更するなど実施例とは異なる樹脂シート(粘着シート)を3種類用意し、これらを第1樹脂層および第2樹脂層として用いて、それぞれ試験用太陽電池モジュールを構築し、発電効率の評価を行ったところ、いずれも17.20%以上の変換効率を実現した。
 また、試験用太陽電池モジュールの太陽電池セルにおける欠陥の有無をEL(Electro-Luminescence)検査画像により確認したところ、図9に示されるように、クラックや断線等の欠陥は認められなかった。
 上記より、ここに開示される配線構造体を用いることで、太陽電池モジュール構築時における配線作業性が改善され、得られる太陽電池モジュールは配線接続の信頼性に優れることがわかる。また、ここに開示される配線構造体を用いることで、太陽電池モジュールの発電効率を向上させることができる。
As a result of the evaluation, the conversion efficiency of the example was 17.30%, while the conversion efficiency of the comparative example was 16.53%. By applying the technology disclosed herein, an efficiency improvement of about 4.6% was realized compared to the conventional product using soldered bus bar electrodes. In addition, preparing three types of resin sheets (adhesive sheets) different from the examples such as changing the monomer type, using these as the first resin layer and the second resin layer, respectively, constructing solar cell modules for testing, When the power generation efficiency was evaluated, all of them achieved a conversion efficiency of 17.20% or more.
Moreover, when the presence or absence of the defect in the photovoltaic cell of the solar cell module for a test was confirmed by the EL (Electro-Luminescence) inspection image, as shown in FIG. 9, defects such as cracks and disconnection were not recognized.
From the above, it can be seen that by using the wiring structure disclosed herein, wiring workability at the time of construction of the solar cell module is improved, and the obtained solar cell module is excellent in reliability of wiring connection. Moreover, the power generation efficiency of a solar cell module can be improved by using the wiring structure disclosed here.
 ≪実験2≫
 <使用材料>
 導電部として、表1に示す複数のめっき銅ワイヤー(幅0.8mm、厚さ0.25mm、断面長方形状)を用意した。めっき銅ワイヤーとしては、幅公差±10%、厚さ公差±4%、めっき厚さ1.5μm以上、引張強度が200N/mm以上であるものを用いた。めっき種としては、表1に示す純度の銀を用いた。導電部表面の粗さおよび拡散反射率は、銅ワイヤーのエッチング処理、銀めっきの純度およびめっき厚(膜厚)によって調節されている。
 第1樹脂層および第2樹脂層としては、厚さ46μmとした他は上記実験1と同様のものを用意した。
 その他の材料としては、上記実験1と同じものを用意した。
Experiment 2≫
<Materials used>
A plurality of plated copper wires (width 0.8 mm, thickness 0.25 mm, rectangular cross section) shown in Table 1 were prepared as conductive portions. The plated copper wire used had a width tolerance of ± 10%, a thickness tolerance of ± 4%, a plating thickness of 1.5 μm or more, and a tensile strength of 200 N / mm 2 or more. As the plating type, silver having the purity shown in Table 1 was used. The roughness of the conductive part surface and the diffuse reflectance are adjusted by the etching process of the copper wire, the purity of the silver plating, and the plating thickness (film thickness).
As the 1st resin layer and the 2nd resin layer, the thing similar to the said experiment 1 was prepared except the thickness having been 46 micrometers.
As other materials, the same materials as in Experiment 1 were prepared.
 <サンプル2-1~2-9>
 上記材料を用いて、上記第1実施形態と同様の構成を有する試験用太陽電池モジュールを構築した。この試験用太陽電池モジュールでは、2枚の太陽電池セルを使用した。第1樹脂層および第2樹脂層としての樹脂シートは、太陽電池セルの形状にあわせて適当なサイズにカットしたものを、2枚の太陽電池セルにそれぞれ配置した。導電部としては、表1に示すめっき銅ワイヤーを8本使用し、それら銅ワイヤーの長手方向が太陽電池セルの配列方向に平行するように2cm間隔で配置した。封止樹脂もモジュールの形状にあわせて適当なサイズにカットしたものを使用した。試験用太陽電池モジュールは、上記材料を配置した後、市販のラミネータ(NPC社製)を用いて150℃、100kPa、5分間の条件でラミネートを行い、15分間のキュアを実施し、さらに、市販の送風定温恒温器(ヤマト科学社製)を用いて150℃、15分間の乾燥処理を行うことにより構築した。
<Samples 2-1 to 2-9>
Using the above materials, a test solar cell module having the same configuration as that of the first embodiment was constructed. In this solar cell module for test, two solar cells were used. The resin sheets as the first resin layer and the second resin layer were each cut into an appropriate size according to the shape of the solar battery cell, and placed in two solar battery cells. As the conductive part, eight plated copper wires shown in Table 1 were used, and the copper wires were arranged at 2 cm intervals so that the longitudinal direction of the copper wires was parallel to the arrangement direction of the solar cells. The sealing resin was also cut into an appropriate size according to the shape of the module. The solar cell module for testing was placed on the above materials, then laminated using a commercially available laminator (manufactured by NPC) at 150 ° C. and 100 kPa for 5 minutes, cured for 15 minutes, and further commercially available. This was constructed by performing a drying treatment at 150 ° C. for 15 minutes using a blast constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.).
 <参考サンプル>
 導電部および第1樹脂層、第2樹脂層を用いず、バスバー電極(商品名「SSA-SPS」、1.5mm×0.2mmのはんだ被覆銅線、日立電線社製)を3本はんだ接合により固定したSi系太陽電池セル(GINTECH社製、多結晶セル)を用いた他は上記サンプルと同様にして太陽電池モジュールを構築した。
<Reference sample>
Without using the conductive part and the first and second resin layers, three bus bar electrodes (trade name “SSA-SPS”, 1.5 mm × 0.2 mm solder-coated copper wire, manufactured by Hitachi Cable Ltd.) are soldered together A solar cell module was constructed in the same manner as the above sample except that the Si-based solar cells (polycrystalline cell manufactured by GINTECH) were used.
 上記で得た太陽電池モジュールにつき、ソーラーシミュレータ(装置名「XES-450S1」、三永電機製作所製)を用いて、短絡電流Jsc(mA/cm)を測定した。結果を表1および図10に示す。表には、導電部表面の拡散反射率(%)、銀めっき純度(%)およびRa(μm)もあわせて示している。なお、表中、「-」は未測定を表す。 With respect to the solar cell module obtained above, a short circuit current Jsc (mA / cm 2 ) was measured using a solar simulator (device name “XES-450S1”, manufactured by Mitsunaga Electric Mfg. Co., Ltd.). The results are shown in Table 1 and FIG. The table also shows the diffuse reflectance (%), silver plating purity (%), and Ra (μm) on the surface of the conductive part. In the table, “-” represents unmeasured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図10に示されるように、導電部表面の拡散反射率と短絡電流Jscとは正の比例関係を示した。なかでも、導電部表面の拡散反射率が60%以上であったサンプル2-1~2-6は、相対的に高い短絡電流Jscを示した。この結果から、少なくとも太陽電池モジュール入光面側表面が60%以上の拡散反射率を示す導電部を使用した太陽電池モジュールによると、発電効率が向上することがわかる。 As shown in Table 1 and FIG. 10, the diffuse reflectance on the surface of the conductive part and the short-circuit current Jsc showed a positive proportional relationship. In particular, Samples 2-1 to 2-6 in which the diffuse reflectance on the surface of the conductive part was 60% or more showed a relatively high short-circuit current Jsc. From this result, it can be seen that the power generation efficiency is improved according to the solar cell module using the conductive portion having a diffuse reflectance of 60% or more on the solar cell module light incident surface side.
 ≪実験3≫
 導電部として、めっき厚さの異なる複数のめっき銅ワイヤー(幅0.8mm、厚さ0.25mm、断面長方形状)を用意した。めっき銅ワイヤーとしては、幅公差±10%、厚さ公差±4%、引張強度が200N/mm以上で、めっき種が純度99.9重量%以上の銀であるものを使用した。上記導電部につき、表面の拡散反射率(%)を測定した。めっき厚(μm)と拡散反射率(%)との関係を図11に示す。
Experiment 3≫
A plurality of plated copper wires (width 0.8 mm, thickness 0.25 mm, rectangular cross section) having different plating thicknesses were prepared as the conductive portions. As the plated copper wire, one having a width tolerance of ± 10%, a thickness tolerance of ± 4%, a tensile strength of 200 N / mm 2 or more, and a plating type of silver having a purity of 99.9 wt% or more was used. About the said electroconductive part, the diffuse reflectance (%) of the surface was measured. FIG. 11 shows the relationship between the plating thickness (μm) and the diffuse reflectance (%).
 図11に示されるように、導電部のめっき厚が大きくなるにつれて拡散反射率が向上した。特に、めっき厚が1.5μm以上になると、90%以上の拡散反射率が実現されることが示された。上記実験2において、導電部表面の拡散反射率と短絡電流Jscとは正の比例関係を示すことから、導電部のめっき厚を大きくすることにより、発電効率が向上し得ることがわかる。 As shown in FIG. 11, the diffuse reflectance improved as the plating thickness of the conductive part increased. In particular, it was shown that when the plating thickness is 1.5 μm or more, a diffuse reflectance of 90% or more is realized. In Experiment 2, since the diffuse reflectance of the surface of the conductive part and the short circuit current Jsc show a positive proportional relationship, it can be seen that the power generation efficiency can be improved by increasing the plating thickness of the conductive part.
 ≪実験4≫
 <サンプル4-1>
 上記実験1で使用した材料を用いて、試験用太陽電池モジュールを構築した。具体的には、1枚の太陽電池セルの上面に導電部を配置し、その上に第1樹脂層を配置し、上記太陽電池セルの下面に導電部を配置し、その下に第2樹脂層を配置した。導電部としての銅ワイヤーは8本使用し、互いに平行するように2cm間隔で配置した。2本の銅製端子バーを、取出し電極として太陽電池セルの両横に設置し、上下に配置された導電部(銅ワイヤー)に、それぞれ固定した。さらにその上下に封止樹脂を配置したものを、表面被覆部材と裏面被覆部材とで挟み込んだ。次いで、市販のラミネータ(NPC社製)を用いて150℃、100kPa、5分間の条件でラミネートを行い、15分間のキュアを実施し、さらに、市販の送風定温恒温器(ヤマト科学社製)を用いて150℃、15分間の乾燥処理を行うことにより、試験用太陽電池モジュールを構築した。
Experiment 4≫
<Sample 4-1>
Test solar cell modules were constructed using the materials used in Experiment 1 above. Specifically, a conductive portion is disposed on the upper surface of one solar cell, a first resin layer is disposed thereon, a conductive portion is disposed on the lower surface of the solar cell, and a second resin is disposed below the conductive portion. Layers were placed. Eight copper wires were used as the conductive portions, and were arranged at 2 cm intervals so as to be parallel to each other. Two copper terminal bars were installed on both sides of the solar battery cell as take-out electrodes, and fixed to conductive parts (copper wires) arranged vertically. Furthermore, what placed sealing resin on the upper and lower sides was sandwiched between the surface covering member and the back surface covering member. Next, using a commercially available laminator (manufactured by NPC), laminating is carried out under conditions of 150 ° C. and 100 kPa for 5 minutes, curing for 15 minutes, and further, a commercially available air blow thermostat (manufactured by Yamato Kagaku) A solar cell module for test was constructed by performing a drying treatment at 150 ° C. for 15 minutes.
 <サンプル4-2>
 導電部および第1樹脂層、第2樹脂層を用いず、バスバー電極(商品名「SSA-SPS」、1.5mm×0.2mmのはんだ被覆銅線、日立電線社製)を3本はんだ接合により固定したSi系太陽電池セル(GINTECH社製、多結晶セル)を用いた他は上記サンプル4-1と同様にして試験用太陽電池モジュールを構築した。
<Sample 4-2>
Without using the conductive part and the first and second resin layers, three bus bar electrodes (trade name “SSA-SPS”, 1.5 mm × 0.2 mm solder-coated copper wire, manufactured by Hitachi Cable Ltd.) are soldered together A test solar cell module was constructed in the same manner as Sample 4-1, except that the Si-based solar cell (polycrystalline cell, manufactured by GINTECH) was used.
 [ダンプヒート(DH)試験]
 上記で得た試験用太陽電池モジュールにつき、85℃85%RHの条件でDH試験を実施した。試験開始前(初期)および試験開始から所定の間隔(概ね500時間毎)で上記モジュールを取り出して光変換効率を測定し、初期の光変換効率に対する光変換効率の維持率(%)を評価した。結果を図12に示す。図12には、DH試験終了後の太陽電池セルのEL検査画像も付している。光変換効率は上記実験1と同様の方法で測定した。
[Dump heat (DH) test]
About the solar cell module for a test obtained above, DH test was implemented on 85 degreeC85% RH conditions. The module was taken out before the test was started (initially) and at predetermined intervals (approximately every 500 hours) from the start of the test, the light conversion efficiency was measured, and the maintenance ratio (%) of the light conversion efficiency with respect to the initial light conversion efficiency was evaluated. . The results are shown in FIG. FIG. 12 also shows an EL inspection image of the solar battery cell after completion of the DH test. The light conversion efficiency was measured by the same method as in Experiment 1 above.
 図12に示されるように、上記DH試験において、3000時間まではサンプル4-1および4-2は同様の傾向を示したが、3000時間を超えてからは、サンプル4-1は高い変換効率維持率を示したのに対し、従来構造のサンプル4-2では変換効率が顕著に低下する傾向が認められた。この結果から、ここに開示される技術を適用することにより、耐久性に優れる太陽電池モジュールを実現し得ることがわかる。 As shown in FIG. 12, in the DH test, samples 4-1 and 4-2 showed the same tendency until 3000 hours, but after 3,000 hours, sample 4-1 had a high conversion efficiency. While the retention rate was exhibited, the conversion efficiency of the conventional sample 4-2 tended to decrease significantly. From this result, it is understood that a solar cell module having excellent durability can be realized by applying the technology disclosed herein.
 ≪実験5≫
 (セル表面電極の効果検証試験1)
 <使用材料>
 導電線として、銅ワイヤー(幅0.8mm、厚さ0.25mm)を用意した。銅ワイヤーとしては、幅公差±10%、厚さ公差±4%、めっき厚さ1μm(公差±15%)、引張強度が350N/mm以上であるものを用いた。めっき種としてはAgを用いた。
 表面被覆部材としては、ポリカーボネート板(商品名「PC1600」、タキロン社製、厚さ2mm)を用意した。
 第1樹脂層、封止樹脂、太陽電池セル、裏面被覆部材としては、上記実験1と同じ材料を用意した。
Experiment 5≫
(Cell surface electrode effect verification test 1)
<Materials used>
A copper wire (width 0.8 mm, thickness 0.25 mm) was prepared as the conductive wire. A copper wire having a width tolerance of ± 10%, a thickness tolerance of ± 4%, a plating thickness of 1 μm (tolerance of ± 15%), and a tensile strength of 350 N / mm 2 or more was used. Ag was used as the plating type.
As a surface covering member, a polycarbonate plate (trade name “PC1600”, manufactured by Takiron Co., Ltd., thickness 2 mm) was prepared.
As the first resin layer, the sealing resin, the solar battery cell, and the back surface covering member, the same materials as those in Experiment 1 were prepared.
 <サンプル5-1>
 上記の材料を用いて、試験用太陽電池モジュールを構築した。具体的には、太陽電池セルを5cm角にカットした。図13に示すように、太陽電池セルSCの表面には、その中央に1本のバスバー電極BEが配置されており、またバスバー電極BEと直交するフィンガー電極FEが複数配置されている。このフィンガー電極FEの幅は凡そ40~80μmの範囲内である。上記太陽電池セルSCの上面に、フィンガー電極FEと接触せずバスバー電極BEと一点でのみ接触するように2本の導電線CWを配置した。具体的には、一方の導電線CWをバスバー電極BEの一方の端部側に、他方の導電線CWをバスバー電極BEの他方の端部側にそれぞれ配置した。2本の導電線CWは、それぞれフィンガー電極FEの長手方向と平行しており、したがって2本の導電線CWは互いに平行している。両者の間隔は3cmとした。導電線CWを配置した太陽電池セルSCの上面(表面)を図13に模式的に示す。上記導電線CWを配置した太陽電池セルSCの上に第1樹脂層を配置した。さらに、その上下に封止樹脂を配置したものを、表面被覆部材(ポリカーボネート板)と裏面被覆部材とで挟み込んだ。次いで、市販のラミネータ(NPC社製)を用いて150℃、100kPa、5分間の条件でラミネートを行い、15分間のキュアを実施し、さらに、市販の送風定温恒温器(ヤマト科学社製)を用いて150℃、15分間の乾燥処理を行うことにより、試験用太陽電池モジュールを構築した。図14に模式的に示すように、上記試験用太陽電池モジュールTMは、長方形状(7cm×15cmのサイズ)を有し、その中央に太陽電池セルSCが配置されている。2本の導電線CWは、試験用太陽電池モジュールTMの外縁を構成する一方の短辺(7cm辺)および他方の短辺にそれぞれ延びており、上記モジュールTMの外部に露出している。
<Sample 5-1>
A test solar cell module was constructed using the above materials. Specifically, the solar battery cell was cut into a 5 cm square. As shown in FIG. 13, on the surface of the solar cell SC, one bus bar electrode BE is arranged at the center, and a plurality of finger electrodes FE orthogonal to the bus bar electrode BE are arranged. The width of the finger electrode FE is approximately in the range of 40 to 80 μm. Two conductive lines CW were arranged on the upper surface of the solar cell SC so as not to contact the finger electrode FE but to contact the bus bar electrode BE only at one point. Specifically, one conductive line CW is arranged on one end side of the bus bar electrode BE, and the other conductive line CW is arranged on the other end side of the bus bar electrode BE. The two conductive lines CW are each parallel to the longitudinal direction of the finger electrode FE, and thus the two conductive lines CW are parallel to each other. The distance between them was 3 cm. The upper surface (front surface) of the solar battery cell SC on which the conductive line CW is arranged is schematically shown in FIG. The 1st resin layer was arrange | positioned on the photovoltaic cell SC which has arrange | positioned the said conductive wire CW. Furthermore, what placed sealing resin on the upper and lower sides was sandwiched between the surface covering member (polycarbonate plate) and the back surface covering member. Next, using a commercially available laminator (manufactured by NPC), laminating is carried out under conditions of 150 ° C. and 100 kPa for 5 minutes, curing for 15 minutes, and further, a commercially available air blow thermostat (manufactured by Yamato Kagaku) A solar cell module for test was constructed by performing a drying treatment at 150 ° C. for 15 minutes. As schematically shown in FIG. 14, the test solar cell module TM has a rectangular shape (size of 7 cm × 15 cm), and a solar cell SC is arranged at the center thereof. The two conductive lines CW extend to one short side (7 cm side) and the other short side constituting the outer edge of the test solar cell module TM, and are exposed to the outside of the module TM.
 <サンプル5-2>
 図15に示すように、2本の導電線CWの各々をフィンガー電極FEの線上を走るように配置し、フィンガー電極FEに接触させながらバスバー電極BEと一点で線接触させた。その他は上記サンプル5-1と同様にして、試験用太陽電池モジュールを構築した。
<Sample 5-2>
As shown in FIG. 15, each of the two conductive lines CW is disposed so as to run on the finger electrode FE, and is in line contact with the bus bar electrode BE at one point while being in contact with the finger electrode FE. Otherwise, a test solar cell module was constructed in the same manner as in Sample 5-1.
 [導通信頼性の評価]
 上記で用意した試験用太陽電池モジュール(7cm×15cmの長方形モジュール)を用いて、2本の導電線から2点間の抵抗値(初期抵抗値)を測定した。次いで、試験用太陽電池モジュールを、その長辺が太陽電池セル上面側に凸状にたわむように段階的に変形させた状態で抵抗値を測定した。初期抵抗値に対する抵抗値変化(倍)と歪変形量(mm)との関係を図16に示す。なお、歪変形量とは、図17に模式的に示すように、凸状にたわんで弧状となった試験用太陽電池モジュールTMの歪高さ(矢高)のことである。
[Evaluation of conduction reliability]
Using the test solar cell module (7 cm × 15 cm rectangular module) prepared above, the resistance value (initial resistance value) between two points from two conductive wires was measured. Next, the resistance value was measured in a state where the test solar cell module was deformed stepwise so that the long side of the test solar cell module was bent convexly toward the upper surface side of the solar cell. FIG. 16 shows the relationship between the resistance value change (times) and the strain deformation amount (mm) with respect to the initial resistance value. Note that the strain deformation amount is the strain height (arrow height) of the test solar cell module TM bent into a convex shape in an arc shape as schematically shown in FIG.
 図16に示すように、導電線とフィンガー電極とを線状に重ねたサンプル5-2では、太陽電池モジュールを変形させても、抵抗は増加しなかった。これに対し、導電線がバスバー電極とのみ接触したサンプル5-1では、太陽電池モジュールの変形量が大きくなるほど、抵抗が大きく増大した。この結果から、太陽電池セルの表面電極に、導電線と沿うように延びる線状部分を設け、この線状部分を導電線と重ねることにより、導通信頼性が向上し得ることがわかる。
 また、サンプル5-2では、フィンガー電極の幅が導電線の幅よりも小さいにもかかわらず抵抗増加は生じなかったことから、太陽電池セル表面に設けられる上記線状部分の幅は、導電線よりも細幅であっても、良好な導通信頼性が得られることがわかる。
As shown in FIG. 16, in Sample 5-2 in which conductive wires and finger electrodes were linearly overlapped, the resistance did not increase even when the solar cell module was deformed. In contrast, in sample 5-1, in which the conductive wire was in contact only with the bus bar electrode, the resistance increased greatly as the amount of deformation of the solar cell module increased. From this result, it is understood that the conduction reliability can be improved by providing a linear portion extending along the conductive line on the surface electrode of the solar battery cell and overlapping the linear portion with the conductive line.
In Sample 5-2, since the resistance did not increase even though the width of the finger electrode was smaller than the width of the conductive line, the width of the linear portion provided on the surface of the solar battery cell was as follows. It can be seen that good conduction reliability can be obtained even with a narrower width.
 ≪実験6≫
 (セル表面電極の効果検証試験2)
 <使用材料>
 導電線として、銅ワイヤー(幅0.8mm、厚さ0.25mm)を用意した。銅ワイヤーとしては、幅公差±10%、厚さ公差±4%、めっき厚さ1μm(公差±15%)、引張強度が350N/mm以上であるものを用いた。めっき種としてはAgを用いた。
 表面被覆部材としては、ポリカーボネート板(商品名「PC1600」、タキロン社製、厚さ2mm)を用意した。
 第1樹脂層、封止樹脂および裏面被覆部材としては、上記実験5と同じ材料を用意した。
 太陽電池セルとしては、上記実験1と基本的に同じものを使用した。なお、本実験に使用した太陽電池セルには、表面電極が後述のように形成されている。
Experiment 6≫
(Cell surface electrode effect verification test 2)
<Materials used>
A copper wire (width 0.8 mm, thickness 0.25 mm) was prepared as the conductive wire. A copper wire having a width tolerance of ± 10%, a thickness tolerance of ± 4%, a plating thickness of 1 μm (tolerance of ± 15%), and a tensile strength of 350 N / mm 2 or more was used. Ag was used as the plating type.
As a surface covering member, a polycarbonate plate (trade name “PC1600”, manufactured by Takiron Co., Ltd., thickness 2 mm) was prepared.
As the first resin layer, the sealing resin, and the back surface covering member, the same materials as those in Experiment 5 were prepared.
As the solar cell, the basically same cell as in Experiment 1 was used. The solar cell used in this experiment has a surface electrode formed as described later.
 <サンプル6-1>
 上記材料を用いて、試験用太陽電池モジュールを次の方法で構築した。具体的には、図18の(a)に模式的に示すような、表面にフィンガー電極FE3本が間隔をおいて平行に印刷された約6インチ角の太陽電池セルSCを用意した。この太陽電池セルSCの上に、図18の(b)に示すように、太陽電池セルSCのフィンガー電極FE3本と直交するように2本の導電線CWを配置した。これら2本の導電線CWは、10cmの間隔をおいて互いに平行しており、それぞれ、3本のフィンガー電極FEの各々と一点でのみ接触するように配置されている。上記導電線CWを配置した太陽電池セルSCの上に第1樹脂層を配置した。さらに、その上下に封止樹脂を配置したものを、約20cm角の表面被覆部材(ポリカーボネート板)と約20cm角の裏面被覆部材とで挟み込んだ。次いで、市販のラミネータ(NPC社製)を用いて150℃、100kPa、5分間の条件でラミネートを行い、15分間のキュアを実施し、さらに、市販の送風定温恒温器(ヤマト科学社製)を用いて150℃、15分間の乾燥処理を行うことにより、試験用太陽電池モジュールを構築した。
<Sample 6-1>
Using the above materials, a test solar cell module was constructed by the following method. Specifically, as shown schematically in FIG. 18 (a), a solar cell SC of approximately 6 inches square having three finger electrodes FE printed in parallel on the surface at intervals was prepared. On this solar cell SC, as shown in FIG. 18B, two conductive lines CW were arranged so as to be orthogonal to the three finger electrodes FE of the solar cell SC. These two conductive lines CW are parallel to each other with an interval of 10 cm, and are arranged so as to contact each of the three finger electrodes FE only at one point. The 1st resin layer was arrange | positioned on the photovoltaic cell SC which has arrange | positioned the said conductive wire CW. Furthermore, what placed sealing resin on the upper and lower sides was sandwiched between a surface covering member (polycarbonate plate) of about 20 cm square and a back surface covering member of about 20 cm square. Next, using a commercially available laminator (manufactured by NPC), laminating is carried out under conditions of 150 ° C. and 100 kPa for 5 minutes, curing for 15 minutes, and further, a commercially available air blow thermostat (manufactured by Yamato Kagaku) A solar cell module for test was constructed by performing a drying treatment at 150 ° C. for 15 minutes.
 <サンプル6-2>
 図19の(a)に模式的に示す約6インチ角の太陽電池セルSCを用意した。この太陽電池セルSCの表面には、図示されるように、間隔をおいて平行する3本のフィンガー電極FEと、フィンガー電極FEに直交する直交電極PE(Perpendicular Electrode 表面電極の第1の線状部分に対応する。導電線当接部分ともいう。)とが印刷されている。図19の(a)の太陽電池セルSCの表面に示された2本の直交電極PEの間隔は10cmである。この太陽電池セルSCの上に、図19の(b)に示すように、2本の直交電極PEの線上にそれぞれ2本の導電線CWを配置した。上記導電線CWは、直交電極PEと連続接触し、かつ、3本のフィンガー電極FEの各々とも交差するように接触している。その上に第1樹脂層を配置し、その他はサンプル6-1と同様にして、試験用太陽電池モジュールを構築した。
<Sample 6-2>
About 6 inch square solar cells SC schematically shown in FIG. 19A were prepared. On the surface of the solar cell SC, as shown in the figure, there are three finger electrodes FE parallel to each other at intervals, and an orthogonal electrode PE (Perpendicular Electrode surface electrode first linear) perpendicular to the finger electrodes FE. Corresponding to the portion, also referred to as a conductive wire contact portion). The distance between the two orthogonal electrodes PE shown on the surface of the solar cell SC in FIG. 19A is 10 cm. On this solar cell SC, as shown in FIG. 19B, two conductive lines CW were disposed on the lines of the two orthogonal electrodes PE, respectively. The conductive line CW is in continuous contact with the orthogonal electrode PE and in contact with each of the three finger electrodes FE. A test resin module was constructed in the same manner as Sample 6-1 except that the first resin layer was disposed thereon.
 [導通信頼性の評価]
 作製した試験用太陽電池モジュールにつき、2本の導電線の対角線上にある端部に、デジタルマルチメーター(型式「VOAC7522」、岩崎計測社製)のケーブルを取り付けて4端子法で抵抗値(初期抵抗値)を測定した。次いで、試験用太陽電池モジュールを市販の送風定温恒温器(ヤマト科学社製)にて80℃、5分間の加熱処理を行い、太陽電池セルの裏面側が上方を向くように(上面となるように)、導電線が引き出された側の2辺(互いに対向する2辺)にて試験用太陽電池モジュールを固定した。そして、当該上面に4kgの錘を置き、5分間負荷をかけた。負荷をかけた後の試験用太陽電池モジュールにつき、延伸機を用いて、その受光面側が凸となるようにたわませ、歪変形量(図17に示す歪み変形量と同義。歪み高さともいう。)が2cmとなるまで歪みを加えた。その後、さらに送風定温恒温器(ヤマト科学社製)にて80℃、5分間の加熱処理を行い、今度は、太陽電池セルの表面(受光面)側が上方を向くようにして(上面となるようにして)、上記2辺にて試験用太陽電池モジュールを固定した。そして、当該上面に4kgの錘を置き、5分間負荷をかけた。負荷をかけた後の試験用太陽電池モジュールにつき、延伸機を用いて、その裏面側が凸となるようにたわませ、歪変形量(図17に示す歪み変形量と同義。歪み高さともいう。)が2cmとなるまで歪みを加えた。その状態で(すなわち、歪変形量2cmの状態で)、初期抵抗値と同様にして抵抗値(変形時抵抗値)を測定し、式:抵抗増加率(%)=(変形時抵抗値-初期抵抗値)/初期抵抗値;より抵抗増加率(%)を求め、これを導通信頼性の指標とした。結果を表2に示す。
[Evaluation of conduction reliability]
For the test solar cell module produced, a digital multimeter cable (model “VOAC7522”, manufactured by Iwasaki Keiki Co., Ltd.) is attached to the end of the two conductive wires on the diagonal line, and the resistance value (initial) Resistance value) was measured. Next, the test solar cell module is subjected to a heat treatment at 80 ° C. for 5 minutes with a commercially available air constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.) so that the back surface side of the solar cell faces upward (so that it becomes the upper surface ), The test solar cell module was fixed on two sides (two sides facing each other) on the side from which the conductive wire was drawn. Then, a 4 kg weight was placed on the upper surface, and a load was applied for 5 minutes. The test solar cell module after applying the load is bent using a stretching machine so that the light-receiving surface side is convex, and the amount of distortion deformation (synonymous with the amount of distortion deformation shown in FIG. 17. The strain was applied until 2 cm was obtained. After that, heat treatment is further performed at 80 ° C. for 5 minutes in a ventilation constant temperature thermostat (manufactured by Yamato Kagaku Co., Ltd.), and this time, with the surface (light receiving surface) side of the solar cell facing upward (to be the upper surface) The test solar cell module was fixed at the two sides. Then, a 4 kg weight was placed on the upper surface, and a load was applied for 5 minutes. The test solar cell module after applying the load is bent using a stretching machine so that the back side is convex, and the amount of strain deformation (synonymous with the amount of strain deformation shown in FIG. 17; also referred to as strain height). .) Was strained to 2 cm. In that state (that is, in a state where the strain deformation amount is 2 cm), the resistance value (resistance value at deformation) is measured in the same manner as the initial resistance value, and the formula: resistance increase rate (%) = (resistance value at deformation−initial value) Resistance value) / initial resistance value; the rate of increase in resistance (%) was determined and used as an index of conduction reliability. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、導電線と電極(直交電極)とを線状に重ねたサンプル6-2では、試験用太陽電池モジュールを変形させても、抵抗増加率は40%程度に抑制することができた。これに対し、導電線がフィンガー電極とのみ接触したサンプル6-1では、抵抗増加率が大きくなり170%を超えた。この結果から、太陽電池セルの表面電極に、導電線と沿うように延びる線状部分を設け、この線状部分を導電線と重ねることにより、導通信頼性が向上し得ることがわかる。 As shown in Table 2, in Sample 6-2 in which conductive wires and electrodes (orthogonal electrodes) are linearly overlapped, the resistance increase rate is suppressed to about 40% even if the test solar cell module is deformed. I was able to. On the other hand, in the sample 6-1 in which the conductive wire was in contact only with the finger electrode, the resistance increase rate increased and exceeded 170%. From this result, it is understood that the conduction reliability can be improved by providing a linear portion extending along the conductive line on the surface electrode of the solar battery cell and overlapping the linear portion with the conductive line.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
  1  配線構造体
  2  剥離ライナー付き配線構造体
 10  第1領域
 12  第2領域
 30  導電部
 40,240  導電線
 50  第1樹脂層
 60  第2樹脂層
 70  第1剥離ライナー
 72  第2剥離ライナー
 74  第3剥離ライナー
 76  第4剥離ライナー
100,200  太陽電池モジュール
110a、110b、110c、110d、210  太陽電池セル
120  配線済み太陽電池セル群
150  封止樹脂
160  表面被覆部材
170  裏面被覆部材
212  電極(表面電極)
214  第1の線状部分
216  第2の線状部分

 
DESCRIPTION OF SYMBOLS 1 Wiring structure 2 Wiring structure with release liner 10 1st area | region 12 2nd area | region 30 Conductive part 40,240 Conductive line 50 1st resin layer 60 2nd resin layer 70 1st release liner 72 2nd release liner 74 3rd Release liner 76 Fourth release liner 100, 200 Solar cell module 110a, 110b, 110c, 110d, 210 Solar cell 120 Wired solar cell group 150 Sealing resin 160 Surface covering member 170 Back surface covering member 212 Electrode (surface electrode)
214 First linear portion 216 Second linear portion

Claims (27)

  1.  太陽電池モジュール内に配列される2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面にかけ渡される配線構造体であって、
     前記一方の太陽電池セルに対応する第1領域と、前記他方の太陽電池セルに対応する第2領域と、を有しており、
     前記第1領域から前記第2領域まで連続する導電部と、
     前記第1領域において前記導電部の上方に配置される第1樹脂層と、
     前記第2領域において前記導電部の下方に配置される第2樹脂層と、
    を備え、
     前記導電部は、前記第1領域において部分的に配置されている、配線構造体。
    A wiring structure spanning from the upper surface of one of the two solar cells arranged in the solar cell module to the lower surface of the other solar cell,
    A first region corresponding to the one solar cell, and a second region corresponding to the other solar cell,
    A conductive portion continuous from the first region to the second region;
    A first resin layer disposed above the conductive portion in the first region;
    A second resin layer disposed below the conductive portion in the second region;
    With
    The conductive structure is a wiring structure that is partially disposed in the first region.
  2.  前記導電部は、前記第1領域から前記第2領域まで延びる複数の導電線から構成されており、
     前記複数の導電線は、互いに間隔をおいて配置されている、請求項1に記載の配線構造体。
    The conductive portion is composed of a plurality of conductive lines extending from the first region to the second region,
    The wiring structure according to claim 1, wherein the plurality of conductive lines are arranged at intervals.
  3.  前記導電線は、めっきが施された銅線である、請求項2に記載の配線構造体。 The wiring structure according to claim 2, wherein the conductive wire is a plated copper wire.
  4.  前記めっきは銀めっきである、請求項3に記載の配線構造体。 The wiring structure according to claim 3, wherein the plating is silver plating.
  5.  前記銀めっきの純度は99.7重量%以上である、請求項4に記載の配線構造体。 The wiring structure according to claim 4, wherein the silver plating has a purity of 99.7% by weight or more.
  6.  前記導電線は60%以上の拡散反射率を示す、請求項3~5のいずれか一項に記載の配線構造体。 The wiring structure according to any one of claims 3 to 5, wherein the conductive wire exhibits a diffuse reflectance of 60% or more.
  7.  前記第1樹脂層および前記第2樹脂層は、いずれも粘着剤層である、請求項1~6のいずれか一項に記載の配線構造体。 The wiring structure according to any one of claims 1 to 6, wherein each of the first resin layer and the second resin layer is an adhesive layer.
  8.  前記第1樹脂層および前記第2樹脂層は、いずれも架橋された粘着剤層である、請求項1~7のいずれか一項に記載の配線構造体。 The wiring structure according to any one of claims 1 to 7, wherein each of the first resin layer and the second resin layer is a crosslinked adhesive layer.
  9.  前記第1樹脂層および前記第2樹脂層の貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は、いずれも5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、請求項1~8のいずれか一項に記載の配線構造体。 The storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the first resin layer and the second resin layer are both 5000 Pa or more, and tan δ at 80 ° C. to 150 ° C. is less than 0.4. The wiring structure according to any one of claims 1 to 8, wherein
  10.  請求項1~9のいずれか一項に記載の配線構造体と、
     前記第1領域において前記第1樹脂層の上面に配置される第1剥離ライナーと、
     前記第1領域において前記導電部の下面に配置される第2剥離ライナーと、
     前記第2領域において前記導電部の上面に配置される第3剥離ライナーと、
     前記第2領域において前記第2樹脂層の下面に配置される第4剥離ライナーと、
    を備える、剥離ライナー付き配線構造体。
    A wiring structure according to any one of claims 1 to 9,
    A first release liner disposed on an upper surface of the first resin layer in the first region;
    A second release liner disposed on the lower surface of the conductive portion in the first region;
    A third release liner disposed on the upper surface of the conductive portion in the second region;
    A fourth release liner disposed on the lower surface of the second resin layer in the second region;
    A wiring structure with a release liner.
  11.  請求項1~9のいずれか一項に記載の配線構造体を備える、太陽電池モジュール。 A solar cell module comprising the wiring structure according to any one of claims 1 to 9.
  12.  間隔をおいて配列される複数の太陽電池セルと、
     前記複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面にかけ渡されて該隣りあう2つの太陽電池セルを電気的に接続する導電部と、
     前記隣りあう2つの太陽電池セルの一方の太陽電池セルの上方に配置される第1樹脂層と、
     前記隣りあう2つの太陽電池セルの他方の太陽電池セルの下方に配置される第2樹脂層と、
     を備え、
     前記導電部は、前記一方の太陽電池セルと前記第1樹脂層との間、および前記他方の太陽電池セルと前記第2樹脂層との間に配置されており、かつ前記一方の太陽電池セルの上面に部分的に配置されている、太陽電池モジュール。
    A plurality of solar cells arranged at intervals, and
    Conductivity that is connected from the upper surface of one solar cell of two adjacent solar cells to the lower surface of the other solar cell among the plurality of solar cells and electrically connects the two adjacent solar cells. And
    A first resin layer disposed above one of the two adjacent solar cells;
    A second resin layer disposed below the other solar cell of the two adjacent solar cells;
    With
    The conductive portion is disposed between the one solar cell and the first resin layer, and between the other solar cell and the second resin layer, and the one solar cell. A solar cell module partially disposed on the upper surface of the solar cell module.
  13.  前記導電部は、前記隣りあう2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面まで延びる複数の導電線から構成されており、
     前記複数の導電線は、互いに間隔をおいて配置されている、請求項12に記載の太陽電池モジュール。
    The conductive portion is composed of a plurality of conductive lines extending from the upper surface of one solar cell of the two adjacent solar cells to the lower surface of the other solar cell,
    The solar cell module according to claim 12, wherein the plurality of conductive lines are arranged at intervals.
  14.  前記導電線は、めっきが施された銅線である、請求項13に記載の太陽電池モジュール。 The solar cell module according to claim 13, wherein the conductive wire is a plated copper wire.
  15.  前記めっきは銀めっきである、請求項14に記載の太陽電池モジュール。 The solar cell module according to claim 14, wherein the plating is silver plating.
  16.  前記銀めっきの純度は99.7重量%以上である、請求項15に記載の太陽電池モジュール。 The solar cell module according to claim 15, wherein the silver plating has a purity of 99.7% by weight or more.
  17.  前記導電線は60%以上の拡散反射率を示す、請求項13~16のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 13 to 16, wherein the conductive wire exhibits a diffuse reflectance of 60% or more.
  18.  前記第1樹脂層は前記他方の太陽電池セルの上方には配置されておらず、前記第2樹脂層は前記一方の太陽電池セルの下方には配置されていない、請求項12~17のいずれか一項に記載の太陽電池モジュール。 The first resin layer is not disposed above the other solar cell, and the second resin layer is not disposed below the one solar cell. A solar cell module according to claim 1.
  19.  前記第1樹脂層および前記第2樹脂層は、いずれも粘着剤層である、請求項12~18のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 12 to 18, wherein each of the first resin layer and the second resin layer is an adhesive layer.
  20.  前記第1樹脂層および前記第2樹脂層は、いずれも架橋された粘着剤層である、請求項12~19のいずれか一項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 12 to 19, wherein each of the first resin layer and the second resin layer is a crosslinked adhesive layer.
  21.  前記第1樹脂層および前記第2樹脂層の貯蔵弾性率(周波数1Hz、歪み0.1%、150℃)は、いずれも5000Pa以上であり、かつ80℃~150℃におけるtanδは0.4未満である、請求項12~20のいずれか一項に記載の太陽電池モジュール。 The storage elastic modulus (frequency 1 Hz, strain 0.1%, 150 ° C.) of the first resin layer and the second resin layer are both 5000 Pa or more, and tan δ at 80 ° C. to 150 ° C. is less than 0.4. The solar cell module according to any one of claims 12 to 20, wherein
  22.  前記複数の太陽電池セルの各々の表面には電極が設けられており、
     前記電極は、前記複数の導電線に沿って線状に延びる複数の第1の線状部分と、該第1の線状部分と交差するように線状に延びる複数の第2の線状部分と、を有する、請求項13~17のいずれか一項に記載の太陽電池モジュール。
    An electrode is provided on each surface of the plurality of solar cells,
    The electrode includes a plurality of first linear portions extending linearly along the plurality of conductive lines, and a plurality of second linear portions extending linearly so as to intersect the first linear portions. The solar cell module according to any one of claims 13 to 17, comprising:
  23.  前記第1の線状部分の幅は前記導電線の幅よりも小さい、請求項22に記載の太陽電池モジュール。 The solar cell module according to claim 22, wherein a width of the first linear portion is smaller than a width of the conductive line.
  24.  前記第1の線状部分の幅W1と前記第2の線状部分の幅W2との比(W1/W2)は、0.1~10の範囲内である、請求項22または23に記載の太陽電池モジュール。 The ratio (W1 / W2) between the width W1 of the first linear portion and the width W2 of the second linear portion is in the range of 0.1 to 10, according to claim 22 or 23. Solar cell module.
  25.  前記太陽電池セルの表面に設けられた電極は、前記第1の線状部分にて前記導電線と当接しており、該当接には接着手段が用いられていない、請求項22~24のいずれか一項に記載の太陽電池モジュール。 The electrode provided on the surface of the solar cell is in contact with the conductive wire at the first linear portion, and no adhesive means is used for the contact. A solar cell module according to claim 1.
  26.  間隔をおいて配列される複数の太陽電池セルを備える太陽電池モジュールであって、
     前記複数の太陽電池セルのうち隣りあう2つの太陽電池セルの一方の太陽電池セルの上面から他方の太陽電池セルの下面にかけ渡されて該隣りあう2つの太陽電池セルを電気的に接続する複数の導電線を備え、
     前記太陽電池モジュールにおいて、前記複数の太陽電池セルの各々の表面には電極が設けられており、
     前記電極は、前記複数の導電線に沿って線状に延びる複数の第1の線状部分と、該第1の線状部分と交差するように線状に延びる複数の第2の線状部分と、を有し、
     前記第1の線状部分の幅は前記導電線の幅よりも小さい、太陽電池モジュール。
    A solar cell module comprising a plurality of solar cells arranged at intervals,
    A plurality of the plurality of adjacent solar cells that are connected from the upper surface of one of the two adjacent solar cells to the lower surface of the other solar cell and electrically connect the two adjacent solar cells. With conductive wires
    In the solar cell module, an electrode is provided on each surface of the plurality of solar cells,
    The electrode includes a plurality of first linear portions extending linearly along the plurality of conductive lines, and a plurality of second linear portions extending linearly so as to intersect the first linear portions. And having
    The solar cell module, wherein a width of the first linear portion is smaller than a width of the conductive line.
  27.  表面に電極が設けられた太陽電池セルであって、
     前記電極は、線状に延びる複数の第1の線状部分と、該第1の線状部分と交差するように線状に延びる複数の第2の線状部分と、を有し、
     前記第1の線状部分の幅は、前記太陽電池セルと他の太陽電池セルとを電気的に接続する導電線の幅よりも小さい、太陽電池セル。
     
     

     
    A solar battery cell with electrodes provided on the surface,
    The electrode has a plurality of first linear portions extending linearly, and a plurality of second linear portions extending linearly so as to intersect the first linear portions,
    The width of the first linear portion is a solar cell that is smaller than the width of a conductive line that electrically connects the solar cell and another solar cell.



PCT/JP2016/070069 2015-07-10 2016-07-07 Wiring structure, solar cell module, and solar cell WO2017010384A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015139211 2015-07-10
JP2015-139211 2015-07-10
JP2015-218976 2015-11-06
JP2015218976 2015-11-06
JP2016-054789 2016-03-18
JP2016054789 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017010384A1 true WO2017010384A1 (en) 2017-01-19

Family

ID=57757908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070069 WO2017010384A1 (en) 2015-07-10 2016-07-07 Wiring structure, solar cell module, and solar cell

Country Status (1)

Country Link
WO (1) WO2017010384A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135646A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module, and method for manufacturing the same
WO2012002216A1 (en) * 2010-06-30 2012-01-05 三洋電機株式会社 Solar cell module
JP2013211266A (en) * 2012-02-29 2013-10-10 Nippon Steel & Sumitomo Metal Tape-like conductive material, interconnector for solar cell, and solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135646A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module, and method for manufacturing the same
WO2012002216A1 (en) * 2010-06-30 2012-01-05 三洋電機株式会社 Solar cell module
JP2013211266A (en) * 2012-02-29 2013-10-10 Nippon Steel & Sumitomo Metal Tape-like conductive material, interconnector for solar cell, and solar cell module

Similar Documents

Publication Publication Date Title
JP5415396B2 (en) Solar cell module manufacturing method and solar cell module
US20150147556A1 (en) Electro-conductive pressure-sensitive adhesive tape, an electronic member, and a pressure-sensitive adhesive
JP2016130747A (en) Polarization film with adhesive layer and image display device
WO2011132682A1 (en) Solar cell module, and production method for solar cell module
JP5798772B2 (en) Solar cell module, method for manufacturing solar cell module, tab wire
WO2017010385A1 (en) Solar module, solar module manufacturing method, and solar cell wiring method
WO2016158543A1 (en) Sheet with conductive part and use thereof
JP2014154671A (en) Inter connector
WO2013061923A1 (en) Conductive adhesive, solar cell module, and method for manufacturing solar cell module
JP2018113280A (en) Solar battery module, conductive connector-attached solar battery cell, adhesive sheet for solar battery module wiring, wiring structure for solar battery module, and method for manufacturing solar battery module
US20210139750A1 (en) Electrically conductive adhesive for attaching solar cells
JP6154625B2 (en) Conductive adhesive, solar cell module, and method for manufacturing solar cell module
WO2013150976A1 (en) Crystal system solar battery module and method for manufacturing same
WO2012099257A1 (en) Solar cell module and method of manufacturing solar cell module
JP2015228457A (en) Conductive adhesive for solar cell, solar cell module, and manufacturing method of solar cell module
JP2016195146A (en) Sealing sheet for solar battery module and use thereof
WO2017010384A1 (en) Wiring structure, solar cell module, and solar cell
EP3401928B1 (en) Electrically conductive adhesive for attaching solar cells
WO2017010383A1 (en) Solar battery module, conductive material for solar battery module, and wiring structure
JP2015010109A (en) Conductive adhesive tape
JP6563254B2 (en) Laminated body, method for manufacturing touch panel sensor, and touch panel sensor
US20230392044A1 (en) Peeling method
JP2019011439A (en) Adhesive insulation film kit with release film
EP4286488A1 (en) Snap-cure flexible electrically conductive one-component (1k) epoxy adhesive composition
WO2022030565A1 (en) Electrically peelable adhesive sheet and bonded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16824364

Country of ref document: EP

Kind code of ref document: A1