WO2017009921A1 - Power distributor and power distribution method - Google Patents

Power distributor and power distribution method Download PDF

Info

Publication number
WO2017009921A1
WO2017009921A1 PCT/JP2015/070002 JP2015070002W WO2017009921A1 WO 2017009921 A1 WO2017009921 A1 WO 2017009921A1 JP 2015070002 W JP2015070002 W JP 2015070002W WO 2017009921 A1 WO2017009921 A1 WO 2017009921A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
switching
phases
switching device
Prior art date
Application number
PCT/JP2015/070002
Other languages
French (fr)
Japanese (ja)
Inventor
重雄 大前
直樹 丸
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/070002 priority Critical patent/WO2017009921A1/en
Publication of WO2017009921A1 publication Critical patent/WO2017009921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a power distributor.
  • facilities that use large-scale power such as factories and data centers, transmit power from power companies using three-phase AC with less power loss than single-phase AC.
  • factories and data centers for electronic devices that operate with single-phase AC, power is distributed from three-phase AC to single-phase AC using a power distribution facility such as a distribution board.
  • Patent Document 1 A method of connecting an appropriate dummy resistor between each phase (Patent Document 1) has been proposed. Also, a method of connecting a three-phase input single-phase output conversion device composed of a rectifier circuit and a single-phase inverter circuit between a three-phase AC power supply facility and an electronic device that operates by single-phase AC power supply (Patent Document 2) ) has been proposed.
  • a power divider is measured at a plurality of switching devices connected to a three-phase AC power source and connected to a plurality of electronic devices, and a plurality of locations.
  • a control device that obtains current information indicating a magnitude of current, selects two phases of the three phases based on the current information, and instructs the output of the selected two phases for each switching device; Prepare.
  • Each switching device outputs a single-phase alternating current to the corresponding electronic device by outputting the designated two phases of the three phases.
  • Three-phase current imbalance can be suppressed while preventing power loss.
  • distributor of embodiment of this invention is shown.
  • the structure of the phase switching part 3n of a 1st modification is shown.
  • the structure of the phase switching part 3n of a 2nd modification is shown.
  • the direction of the current flowing in the load between each phase is shown.
  • the time change of the voltage between each phase is shown.
  • the current value comparison process is shown.
  • the phase switching control process is shown.
  • the specific example of a phase switching control process is shown.
  • xxx table information may be described using the expression “xxx table”, but the information may be expressed in any data structure. That is, “xxx table” can be referred to as “xxx information” to indicate that the information does not depend on the data structure.
  • xxx information information may be described using the expression “xxx table”, but the information may be expressed in any data structure. That is, “xxx table” can be referred to as “xxx information” to indicate that the information does not depend on the data structure.
  • the configuration of each table is an example, and one table may be divided into two or more tables, or all or part of the two or more tables may be a single table. Good.
  • an ID is used as element identification information, but other types of identification information may be used instead of or in addition thereto.
  • a reference number or a common number in the reference number is used, and when a description is made by distinguishing the same type of element, the reference number of the element is used.
  • an ID assigned to the element may be used instead of the reference code.
  • FIG. 1 shows a configuration of a power distributor according to an embodiment of the present invention.
  • the power distributor 100 receives a three-phase AC power supply and outputs a plurality of single-phase AC power supplies.
  • the power distributor 100 includes a three-phase AC power receiving unit 1 (three-phase input terminal), three-phase AC ammeters 21, 22, and 23 (current measuring unit), and n (n is a positive integer) phase switching unit. 31 to 3n, n single-phase AC output units 61 to 6n (output terminals, single-phase output terminals), and a control unit 7 (control device).
  • Phase switching units 31 to 3n switching devices
  • switching devices include switching units 411 to 4n1, respectively, include switching units 412 to 4n2, and include switching control units 51 to 5n.
  • the switches 411 to 4n1 include switching switches SW111A to SWn11A, respectively, include switching switches SW112A to SWn12A, and include switching switches SW113A to SWn13A.
  • the switches 412 to 4n2 include changeover switches SW121A to SWn21A, respectively, SW122A to SWn22A, and SW123A to SWn23A.
  • the power distributor 100 may not include the external signal input terminal 9 and the electronic device information SIG81 to SIG8n.
  • the power distributor 100 receives the three-phase AC power from the three-phase AC power receiving unit 1.
  • the three-phase AC power source passes through three-phase AC ammeters 21, 22, and 23.
  • the three-phase AC power source that has passed through the three-phase AC ammeters 21, 22, and 23 is switched to a single-phase AC power source by the phase switching units 31 to 3n.
  • the phase switching units 31 to 3n output the two phases L11 and L12, L21 and L22,..., Ln1 and Ln2 in the three-phase AC power source to the single-phase AC output units 61 to 6n, respectively.
  • the single-phase AC output units 61 to 6n supply single-phase AC power to the electronic devices 81 to 8n connected thereto.
  • Each of the three-phase AC ammeters 21, 22, and 23 is an ammeter, for example, and converts the effective value of the AC current of the corresponding phase into a DC voltage.
  • the three-phase AC ammeters 21, 22, and 23 output phase current information SIG21, SIG22, and SIG23, respectively, indicating phase current values based on the DC voltage at preset measurement time intervals.
  • the phase current information may be an I2C signal.
  • Each of the change-over switches SW111A to SWn11A, SW112A to SWn12A, SW113A to SWn13A, SW121A to SWn21A, SW122A to SWn22A, SW123A to SWn23A has a terminal for receiving a switch signal indicating a high or low level from the outside.
  • This is a switch element having a function of switching contacts according to the level.
  • the instantaneous power failure time of Class A having the shortest instantaneous power failure time is 3 mS or less. That is, the operation quality of the Class A electronic device must be guaranteed in an instantaneous power failure of 3 mS.
  • the switching time of a switch having a general control terminal is on the order of several nS to several ⁇ S for a transistor-based switch, and is about several tens of ⁇ S even for a switch product sold for a load line. Since these switching times are sufficiently shorter than the above-described instantaneous power failure time, the operation quality of the electronic device is not impaired by switching the contacts of the switching switch.
  • the switching control units 51 to 5n receive the phase switching instruction signals SIG31 to SIG3n (control signals) from the control unit 7, respectively.
  • Each of the phase switching instruction signals SIG31 to SIG3n is, for example, an I2C signal.
  • Each of the switching control units 51 to 5n outputs a switching signal indicating a high or low level to each switching switch.
  • the switching control units 51 to 5n are, for example, integrated circuits such as I / O Expander and FPGA.
  • the control unit 7 acquires the phase current values Ir [t], Is [t], and It [t] of the R phase, the S phase, and the T phase indicated in the phase current information SIG21, SIG22, and SIG23 at time t, respectively.
  • the control unit 7 determines the stored three phase current values in order from the largest value as the maximum phase current value MaxI [t], the intermediate phase current value MidI [t], and the minimum phase current value MinI [t].
  • the current difference DeltaI [t] between the maximum phase current value MaxI [t] and the minimum phase current value MinI [t] is calculated, the magnitude relationship between the phase current values, and the current difference between the maximum phase current value and the minimum phase current value Then, two phases to be output from each of the phase switching units 31 to 3n are selected.
  • the control unit 7 outputs phase switching instruction signals SIG31 to SIG3n such as I2C signals to the switching control units 51 to 5n, respectively.
  • the control unit 7 includes, for example, an integrated circuit such as an FPGA or an embedded microprocessor, and a memory.
  • the switching control units 51 to 5n are connected to the switching switches SW111A to SWn11A, SW112A to SWn12A, SW113A to SWn13A, and SW113A to SWn13A, SW113A to SnnA, S112A to Sn12A, S113A to Sn13A, S121A to Sn21A, By switching ON / OFF of SWn21A, SW122A to SWn22A, SW123A to SWn23A, the output of each of the switches 411 to 4n1, 412 to 4n2 is set to any one of R phase, S phase, and T phase. Is possible.
  • FIG. 2 shows a configuration of the phase switching unit 3n according to the first modification.
  • the switches 4n1 and 4n2 include contact switching switches SWn11B and SWn21B that output any one of the R phase and the S phase, respectively.
  • the switches 4n1 and 4n2 further include contact switching switches SWn12B and SWn22B that output one of the outputs of the contact switching switches SWn11B and SWn21B and the T phase, respectively.
  • the switching control unit 5n switches the contacts of the contact selector switches SWn11B, SWn12B, SWn21B, and SWn22B according to the switching signals Sn11B, Sn12B, Sn21B, and Sn22B, respectively, and outputs the outputs of the switches 4n1 and 4n2 to the R phase and Sn, respectively. It can be set to either one of the phase and the T phase.
  • the number of parts and the number of signals can be reduced as compared with the phase switching unit 3n in FIG.
  • FIG. 3 shows the configuration of the phase switching unit 3n of the second modification.
  • the switch 4n1 includes a contact switch SWn11C that outputs any one of the R phase and the S phase.
  • the switch 4n2 includes a contact switch SWn21C that outputs one of the S phase and the T phase.
  • the switching control unit 5n can set the output of the switch 4n1 to one of the R phase and the S phase by switching the contacts of the SWn11C and SWn21C respectively by the switching signals Sn11C and Sn21C, and the output of the switch 4n2 Can be set to one of the S phase and the T phase.
  • the number of parts and the number of signals can be reduced as compared with the phase switching unit 3n in FIG.
  • each phase switching unit 3n described above the two phases indicated in the phase switching instruction signal from the control unit 7 among the three phases input from the three-phase AC power receiving unit 1 are converted into corresponding single-phase AC outputs. Can be output to the unit 6n.
  • FIG. 4 shows the direction of the current flowing through the load between the phases.
  • Z1 is a load to which a voltage is applied between the R phase and the S phase.
  • Z2 is a load to which a voltage is applied between the S phase and the T phase.
  • Z3 is a load to which a voltage is applied between the T phase and the R phase or between the R phase and the T phase.
  • a voltage is applied to Z3 between the T phase and the R phase.
  • the load current flowing through Z1 is represented by a load current value I1 from the R phase toward the S phase
  • the load current flowing through Z2 is the load current value I2 from the S phase toward the T phase.
  • the load current flowing through Z3 is represented by a load current value I3 from the T phase to the R phase.
  • the output of the switch 4n1 can be set to any one of the R phase and the S phase
  • the output of the switch 4n2 can be set to any one of the S phase and the T phase.
  • the load current flowing through Z3 is represented by a load current value I3 'from the R phase to the T phase.
  • the current flowing through Z3 may be represented by either I3 or I3 '.
  • FIG. 5 shows the time change of the voltage between the phases.
  • the R phase-S phase voltage, the S phase-T phase voltage, and the T phase-R phase voltage are out of phase by 120 °.
  • the control unit 7 calculates the R-phase current vector, the S-phase current vector, and the T-phase current vector according to the equations (1), (2), and (3), respectively. calculate. Further, the control unit 7 calculates phase current values Ir, Is, It, which are absolute values of the R-phase, S-phase, and T-phase current vectors, using the equations (7), (8), and (9), respectively. .
  • the control unit 7 calculates the R-phase, S-phase, and T-phase current vectors using Equation (4), Equation (5), and Equation (6), respectively.
  • FIG. 6 shows a current value comparison process
  • control unit 7 sets the phase current values Ir [t], Is [t], and It [t] at time t in descending order of the maximum phase current value MaxI [t] and the intermediate phase current value MidI [ t] and the minimum phase current value MinI [t].
  • the control unit 7 first compares the magnitudes of the phase current value Ir [t] of the R phase and the phase current value Is [t] of the S phase (S110), and the larger one is obtained as a result of the first magnitude comparison.
  • the phase current value It [t] of the T phase is compared (S120 or S320).
  • the control unit 7 determines the larger phase current value as the maximum phase current value MaxI [t] as a result of the second magnitude comparison (S130, S230, S330, or S430).
  • the control unit 7 determines the intermediate phase current value MidI.
  • the control unit 7 compares two phase current values other than the maximum phase current value MaxI [t] (S140 or In step S340, the intermediate phase current value MidI [t] and the minimum phase current value MinI [t] are determined based on the comparison result (S150, S160, S350, or S360).
  • phase current values Ir [t], Is [t], It [t] are changed from the largest phase current value to the maximum phase current value MaxI [t] and the intermediate phase current value MidI [t. ], The minimum phase current value MinI [t].
  • the phase corresponding to the maximum phase current value is the first phase (maximum phase)
  • the phase corresponding to the intermediate phase current value is the second phase (intermediate phase)
  • the phase corresponding to the minimum phase current value is the third phase (minimum phase). Phase).
  • FIG. 7 shows the phase switching control process
  • the voltage of each output of the phase switching units 31 to 36 is any one of the R phase-S phase voltage, the S phase-T phase voltage, and the T phase-R phase voltage.
  • the control unit 7 changes the state of the phase switching units 31 to 36 by sending a phase switching instruction signal for setting the switch to the switching control unit of each phase switching unit.
  • the control unit 7 stores output state values (state values) indicating the output states of the phase switching units 31 to 36 at time t as arrays O61C [t] to O66C [t], respectively.
  • the control unit 7 stores the switching priorities of the phase switching units 31 to 36 at time t as arrays O61P [t] to O66P [t].
  • the switching priority is set as a numerical value from 1 to n.
  • the control unit 7 selects the phase switching unit in which 1 which is the smallest numerical value is set, and changes the phase switching instruction signal of the selected phase switching unit.
  • the maximum switching priority that is the maximum value of the RS switching priority is a variable X
  • the maximum switching priority of ST is a variable Y
  • the maximum switching priority of TR is a variable Z.
  • the phase switching instruction signal of the phase switching unit 32 is changed, and the output state value O62C [t] of the phase switching unit 32 is changed according to the phase switching instruction signal.
  • the maximum switching priority order X corresponding to RS is 3.
  • the control unit 7 sets the phase switching instruction signals of the phase switching units 31 and 34 to the R phase and the S phase, and accordingly the output state values of the phase switching units 31 and 34 RS is stored, phase switching instruction signals of the phase switching units 32 and 35 are set to S phase and T phase, and ST is stored in the output state values of the phase switching units 32 and 35 accordingly, and the phase switching unit 33 , 36 are set to the T phase and the R phase, and TR is stored in the output state values of the phase switching units 33, 36 accordingly.
  • control unit 7 sets the switching priority of the phase switching units 31, 32, and 33 to 1, sets the switching priority of the phase switching units 34, 35, and 36 to 2, sets the maximum switching priority X of the RS to 2, ST Is set to 2 and the maximum switching priority Z of TR is set to 2.
  • control unit 7 sets a current threshold Ith (evaluation threshold) indicating a target current difference to 3A.
  • control unit 7 acquires the effective value of the current and executes a current value comparison process (S520).
  • the control unit 7 receives the phase current values of the three-phase AC ammeters 21, 22, and 23 at time t and stores the respective phase current values in the arrays Ir [t], Is [t], and It [t]. To do.
  • the control unit 7 determines the maximum phase current value MaxI [t], the intermediate phase current value MidI [t], and the minimum phase current value MinI [t] by the above-described current value comparison processing.
  • control unit 7 calculates the current difference DeltaI [t] (evaluation value) by subtracting the minimum phase current value MinI [t] from the maximum phase current value MaxI [t] (S530).
  • the control unit 7 compares the current difference DeltaI [t] with the current threshold value Ith (S540). When the current difference DeltaI [t] is less than the current threshold Ith (S540: YES), the control unit 7 determines that the R phase, the S phase, and the T phase are in an equilibrium state, and the phase switching units 31 to 3n Without changing the phase switching instruction signal, 1 is added to t as shown in Equation (10) (S550), and after the measurement time interval elapses from the acquisition of the phase current value, the three-phase AC ammeters 21, 22, 23 The process returns to the operation of acquiring the phase current value (S520). When the current difference DeltaI [t] is equal to or greater than the current threshold Ith (S540: NO), the control unit 7 determines that the state is unbalanced, selects one phase switching unit, and changes the phase switching instruction signal. To do.
  • the current difference DeltaI [t] is equal to or greater than the current threshold Ith (S540: NO)
  • TR representing between the phases of [t] is selected as a change source state
  • ST representing between the phase of the intermediate phase current value MidI [t] and the phase of the minimum phase current value MinI [t] is changed. Select as the destination state.
  • the control unit 7 selects a phase switching unit whose output state value is the change source state TR and whose switching priority is set to 1 as a changed phase switching unit (specific switching device).
  • the control unit 7 changes the phase switching instruction signal of the changed phase switching unit to the change destination state. That is, the control unit 7 sets the phase switching instruction signal TR of the phase switching unit 33 to ST (S700). Thereafter, the control unit 7 adds 1 to the time t as shown in Expression (10) (S710).
  • control unit 7 adds 1 to the maximum switching priority Y corresponding to the change destination state ST by the equation (13), and 1 from the maximum switching priority Z corresponding to the change source state TR by the equation (14). Is reduced (S740). Thereafter, the control unit 7 returns to the operation (S520) of acquiring the phase current values of the three-phase AC ammeters 21, 22, and 23 after the measurement time interval has elapsed since the acquisition of the phase current values.
  • the control unit 7 changes in the same manner as S700 to S740.
  • a process (S750 to S790) in which the original state is RS and the change destination state is ST is executed, and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
  • the control unit 7 When the maximum phase current value is the phase current value of the S phase (S610: NO, S630: YES) and the minimum phase current value is the phase current value of the T phase (S640: YES), the control unit 7 is the same as S700 to S740. Then, the process (S800 to S840) is executed in which the change source state is RS and the change destination state is TR (S800 to S840), and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
  • the control unit 7 When the maximum phase current value is the phase current value of the S phase (S610: NO, S630: YES) and the minimum phase current value is the phase current value of the R phase (S640: NO), the control unit 7 is the same as S700 to S740. Then, the process (S850 to S890) is executed in which the change source state is ST and the change destination state is TR (S850 to S890), and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
  • the control unit 7 When the maximum phase current value is the phase current value of the T phase (S610: NO, S630: NO), and the minimum phase current value is the phase current value of the R phase (S640: YES), the control unit 7 is the same as S700 to S740. Then, a process (S900 to S940) is executed in which the change source state is ST and the change destination state is RS (S900 to S940), and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
  • the control unit 7 When the maximum phase current value is the phase current value of the T phase (S610: NO, S630: NO), and the minimum phase current value is the phase current value of the S phase (S640: NO), the control unit 7 is the same as S700 to S740. Then, a process (S950 to S990) is executed in which the change source state is TR and the change destination state is RS (S950 to S990), and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
  • the control unit 7 calculates the evaluation value indicating the magnitude of the unbalance of the three-phase current, and changes the phase switching on the condition that the magnitude of the unbalance is reduced. By selecting the part and the change destination state, the current unbalance rate can be reduced.
  • the control unit 7 periodically acquires phase current information, determines whether the evaluation value satisfies a preset unbalance condition, and determines that the evaluation value satisfies the unbalance condition
  • the current unbalance rate can be reduced by selecting the changed phase switching unit from among the plurality of phase switching units.
  • the control part 7 can adapt the state of a phase switching part even when the load current of an electronic device fluctuates, and can prevent an unbalanced state.
  • the control unit 7 can maintain the state of the phase switching unit when the evaluation value does not satisfy the unbalanced condition.
  • control unit 7 can evaluate the magnitude of the unbalance of the three-phase current by setting the current difference obtained by subtracting the minimum phase current value from the maximum phase current value as an evaluation value. Further, when the current difference exceeds the current threshold, the control unit 7 can recognize the unbalanced state by selecting the changed phase switching unit and controlling the changed phase switching unit. Moreover, the control part 7 selects the state which outputs a 1st phase and a 2nd phase as a change origin state, selects the state which outputs a 2nd phase and a 3rd phase as a change destination state, and changes a change origin state By switching the phase switching unit to the change destination state, the current unbalance rate can be reduced.
  • control unit 7 selects the phase switching unit having the highest switching priority from the phase switching unit group in the change source state as the changed phase switching unit, and decreases the switching priority of the changed phase switching unit. Thereby, the control part 7 can select an appropriate change phase switching part, even when a some phase switching part is a change origin state. Moreover, the control part 7 can prevent that two states are repeated alternately because the same phase switching part is continuously selected as a change phase switching part.
  • control unit 7 selects the phase switching unit having the highest priority from the phase switching unit group in the change source state as the changed phase switching unit, and decreases the priority of the changed phase switching unit.
  • FIG. 8 shows a specific example of the phase switching control process.
  • the effective value of the load current flowing through the electronic device is called the load current value.
  • n 6
  • the load current value of the electronic device 81 is 25 A
  • the load current value of the electronic device 82 is 8 A
  • the load current value of the electronic device 83 is 11 A
  • the load current value of the electronic device 84 is 15 A
  • the load current value of the electronic device 86 is 10A
  • the current threshold Ith 3A is shown.
  • Each state includes a load current flowing through each of the electronic devices 81 to 86, a state of the phase switching units 31 to 36 output to the electronic device (phase switching unit state), and phase current values Ir [t] and Is [t]. , It [t] (MaxI [t], MidI [t], MinI [t] in descending order) and current difference determination results.
  • the control unit 7 outputs two values in the phase switching unit 34 whose output state value is RS and whose switching priority is 1. The switch is switched to the T phase and the R phase, respectively.
  • control unit 7 changes the output state values of the phase switching units 31 to 36 so that the current difference DeltaI [t] becomes smaller than the current threshold value Ith.
  • the power distributor 100 measures the input three-phase current, and controls the phase switching unit based on the measured current, thereby suppressing the three-phase current imbalance. be able to. Thereby, overcurrent of one phase can be prevented while suppressing power consumption.
  • each of the electronic devices 81 to 8n of the present embodiment measures the direct current converted from the single-phase alternating current power source to the direct current power source in the electronic device, and based on the measured direct current value. Load current information indicating the effective value of the load current is generated. Furthermore, each of the electronic devices 81 to 8n stores connection information indicating which of the single-phase AC output units 61 to 6n of the power distributor 100 is connected to the electronic device.
  • the connection information includes, for example, electronic device identification information that identifies an electronic device, and terminal identification information that identifies a single-phase AC output unit connected to the electronic device. Further, each of the electronic devices 81 to 8n outputs electronic device information SIG81 to SIG8n including load current information and connection information to the power distributor 100.
  • the electronic device information SIG81 to SIG8n is, for example, an I2C signal.
  • the power distributor 100 of the present embodiment may not include the three-phase AC ammeters 21, 22, and 23 and the phase current information SIG21, SIG22, and SIG23.
  • the electronic device information SIG81 to SIG8n is input to the control unit 7 through the external signal input terminal 9.
  • the control unit 7 is connected to the load current information, the electronic device corresponding to the electronic device identification information, the single-phase AC output unit corresponding to the terminal identification information, and the single-phase AC output unit based on the electronic device information. And the output state value of the phase switching unit. Further, based on this association and the load current information, the control unit 7 loads the load current value I1 of the voltage between the R phase and the S phase, the load current value I2 of the voltage between the S phase and the T phase, and the voltage between the T phase and the R phase voltage. A load current value I3 is calculated.
  • the load current value of the electronic device 81 is I81
  • the load current value of the electronic device 82 is I82
  • the load current value of the electronic device 83 is I83
  • the load current value of the electronic device 84 is I84
  • the electronic device 85 Is assumed to be I85
  • the load current value of the electronic device 86 is assumed to be I86.
  • Control is performed in a state where the electronic devices 81 and 84 are connected between the R phase and the S phase, the electronic devices 82 and 85 are connected between the S phase and the T phase, and the electronic devices 83 and 86 are connected between the T phase and the R phase.
  • the unit 7 calculates the load current values I1, I2, and I3 by the equations (15), (16), and (17), respectively.
  • I1 I81 + I84 (15)
  • I2 I82 + I85 (16)
  • I3 I83 + I86 (17)
  • the control unit 7 uses the load current values I1, I2, and I3, and the expressions (1), (2), (3), (7), (8), and (9).
  • the phase current value Ir of the R phase, the phase current value Is of the S phase, and the phase current value It of the T phase are calculated.
  • the control part 7 can calculate a three-phase phase current value by receiving load current information and connection information from an electronic device.
  • the control unit 7 uses the phase switching unit control process similar to that in the first embodiment using the phase current value Ir of the R phase, the phase current value Is of the S phase, and the phase current value It of the T phase at the time t.
  • the maximum phase current value MaxI [t], the intermediate phase current value MidI [t], and the minimum phase current value MinI [t] are determined, and the current difference DeltaI [t] is calculated and compared with the current threshold Ith.
  • the equilibrium state of the R phase, the S phase, and the T phase is determined. If it is determined that the state is an unbalanced state, the output state values and switching priority of the phase switching units 31 to 36 are changed.
  • the control unit 7 may store the connection information by inputting the connection information to the control unit 7 in advance.
  • the electronic device information does not include connection information.
  • the electronic device may measure load information indicating the magnitude of the load on the electronic device instead of the load current value.
  • the load information is, for example, a CPU usage rate or a memory usage rate in the electronic device.
  • the control unit 7 may estimate the load current value from the load information.
  • the power distributor 100 acquires the load current value measured by the electronic devices 81 to 8n without measuring the input three-phase AC phase current value, and sets the load current value as the load current value. By calculating the phase current value based on this, the phase switching unit can be controlled as in the first embodiment.
  • control part 7 may call phase current information, load current information, etc. as current information.
  • the control unit 7 can detect an unbalanced state of three-phase currents by acquiring current information indicating the magnitudes of currents measured at a plurality of locations in this way. Based on the current information, the control unit 7 outputs a control signal indicating two of the three phases to each phase switching unit.
  • the single-phase AC output voltage is the R-phase to S-phase voltage, the S-phase to T-phase voltage, and the T-phase to R-phase voltage, but is not limited thereto.
  • control unit 7 uses the current difference DeltaI [t] as the evaluation value in S530, but is not limited thereto. For example, the control unit 7 calculates a normal phase current and a reverse phase current from Ir, Is, It, calculates a current unbalance rate as an evaluation value from the positive phase current and the reverse phase current, and sets the current unbalance rate in advance. It may be the unbalanced condition that the current unbalance rate is equal to or greater than the threshold value.
  • the control unit 7 acquires phase current information, load current information, and the like as current information, and outputs a phase switching instruction signal for each phase switching unit based on the current information.
  • the control unit 7 controls the phase switching unit based on currents measured at a plurality of locations such as a three-phase current and a plurality of electronic devices, thereby suppressing a three-phase current imbalance. Can do.
  • power loss can be prevented by using a plurality of switches without using a dummy load, an AC / DC power converter, a DC / AC power converter, or the like.
  • the three-phase current imbalance can be reduced, and only a specific phase has a large current. It is possible to prevent the occurrence of abnormalities such as overcurrent and to effectively use the power equipment capacity.
  • SYMBOLS 1 Three-phase alternating current power receiving part 21, 22, 23 ... Three-phase alternating current ammeter, 3n ... Phase switching part, 4n1, 4n2 ... Switching part, 5n ... Switching control part, 6n ... Single phase alternating current output part, 7 ... Control 8n ... electronic equipment, 9 ... external signal input terminal, 100 ... power distributor, SWn11A, SWn12A, SWn13A, SWn21A, SWn22A, SWn23A, SWn11B, SWn12B, SWn21B, SWn22B, SWn11C, SWn21C ...

Abstract

The present invention minimizes any imbalance in a three-phase current while preventing a loss of power. In the present invention, a power distributor is provided with: a plurality of switching devices that are connected to a three-phase AC power supply and are connected in a respective manner to a plurality of electronic devices; and a control device for acquiring electrical current information that indicates the magnitude of electrical current measured at a plurality of sites, selecting two of three phases on the basis of the electrical current information, and issuing an instruction to the switching devices to output the selected two phases. The switching devices output single-phase alternating current to a corresponding electronic device by outputting the two instructed phases of the three phases.

Description

電力分配器および電力分配方法Power distributor and power distribution method
 本発明は、電力分配器に関する。 The present invention relates to a power distributor.
 工場やデータセンタなど、大規模電力を利用する施設には、電力会社から、単相交流に比べて電力損失の少ない三相交流で送電されるのが一般的である。工場やデータセンタでは、単相交流で動作する電子機器用に、分電盤等の電力分配設備で三相交流から単相交流に分割して配電している。 In general, facilities that use large-scale power, such as factories and data centers, transmit power from power companies using three-phase AC with less power loss than single-phase AC. In factories and data centers, for electronic devices that operate with single-phase AC, power is distributed from three-phase AC to single-phase AC using a power distribution facility such as a distribution board.
 世界的には三相交流で動作する電子機器は多いが、日本では単相交流で動作する電子機器が一般的である。近年省電力化の対応や、性能向上に伴う消費電力向上によって、サーバなど電子計算機では三相交流対応の製品が増えてきているが、単相交流で動作する電子計算機が大半を占めている。また、ネットワーク機器やストレージ機器でも単相交流で動作する製品が一般的である。 In the world, there are many electronic devices that operate with three-phase alternating current, but in Japan electronic devices that operate with single-phase alternating current are common. In recent years, the number of products that support three-phase alternating current has increased in electronic computers such as servers due to power saving and increased power consumption due to improved performance. However, most computers are operated by single-phase alternating current. In addition, products that operate with single-phase alternating current are also common in network devices and storage devices.
 単相交流給電で動作し負荷が異なる複数の電子機器を三相交流の給電設備に接続すると、給電設備の各相の電流バランスが不平衡状態となる。電流バランスが不平衡状態になると、ある相の電流が大きくなり、保護機構にて過電流が検出されやすい、電流が大きい相での損失が大きくなるなど、電子機器の運用にあたり不具合が発生しやすくなる。 When a plurality of electronic devices that operate with single-phase AC power supply and have different loads are connected to a three-phase AC power supply facility, the current balance of each phase of the power supply facility becomes unbalanced. If the current balance is in an unbalanced state, the current in one phase will increase, and overcurrent will be easily detected by the protection mechanism, and loss in the phase with a large current will increase. Become.
 三相交流電源の各相の電流の不平衡状態を平衡状態にする技術として、三相交流電源が不平衡状態である場合に、三相交流電源の各相の電流が平衡状態になるように各相間に適当なダミー抵抗を接続する方法(特許文献1)が提案されている。また、三相交流の給電設備と単相交流給電で動作する電子機器との間に、整流回路と単相インバータ回路から構成される三相入力単相出力変換装置を接続する方法(特許文献2)が提案されている。 As a technique to balance the unbalanced state of the current of each phase of the three-phase AC power supply so that the current of each phase of the three-phase AC power supply is in a balanced state when the three-phase AC power supply is in an unbalanced state A method of connecting an appropriate dummy resistor between each phase (Patent Document 1) has been proposed. Also, a method of connecting a three-phase input single-phase output conversion device composed of a rectifier circuit and a single-phase inverter circuit between a three-phase AC power supply facility and an electronic device that operates by single-phase AC power supply (Patent Document 2) ) Has been proposed.
特開2009-301742号公報JP 2009-301742 A 特開2011-015569号公報JP 2011-015569 A
 前述の不平衡状態となり、三相のうち、ある相のみの電流が大きくなると、設備側の保護機構にて過電流を検出する場合があるため、電力設備容量を有効活用できない。また、ある相のみの電流が大きくなると、その相での損失が大きくなるため、相電圧低下が大きくなり、電子機器の誤動作に繋がる可能性もある。 If the current in only one of the three phases becomes large due to the above-mentioned unbalanced state, overcurrent may be detected by the protection mechanism on the equipment side, so the power equipment capacity cannot be used effectively. In addition, when the current of only a certain phase increases, the loss in that phase increases, so that the phase voltage drop increases and may lead to malfunction of the electronic device.
 特許文献1の方法では、平衡状態とするためにダミー負荷で電力を消費させているので、電力を無駄に消費するという問題がある。また、特許文献2の方法では、三相入力単相出力変換装置内にて、三相交流から直流への変換と、直流から単相交流への変換とを行っており、これらの変換による変換損失が発生するという問題がある。 In the method of Patent Document 1, since power is consumed by a dummy load in order to achieve an equilibrium state, there is a problem that power is wasted. In the method of Patent Document 2, conversion from a three-phase alternating current to a direct current and conversion from a direct current to a single-phase alternating current are performed in a three-phase input single-phase output conversion device. There is a problem that loss occurs.
 上記課題を解決するために、本発明の一態様である電力分配器は、三相の交流電源に接続され複数の電子機器に夫々接続される複数の切替デバイスと、複数の箇所で計測された電流の大きさを示す電流情報を取得し、各切替デバイスに対し、前記電流情報に基づいて前記三相のうち二相を選択し前記選択された二相の出力を指示する制御デバイスと、を備える。各切替デバイスは、前記三相のうち前記指示された二相を出力することで、対応する電子機器へ単相の交流を出力する。 In order to solve the above problems, a power divider according to one aspect of the present invention is measured at a plurality of switching devices connected to a three-phase AC power source and connected to a plurality of electronic devices, and a plurality of locations. A control device that obtains current information indicating a magnitude of current, selects two phases of the three phases based on the current information, and instructs the output of the selected two phases for each switching device; Prepare. Each switching device outputs a single-phase alternating current to the corresponding electronic device by outputting the designated two phases of the three phases.
 電力の損失を防ぎつつ、三相の電流の不平衡を抑えることができる。 三 Three-phase current imbalance can be suppressed while preventing power loss.
本発明の実施形態の電力分配器の構成を示す。The structure of the power divider | distributor of embodiment of this invention is shown. 第1変形例の相切替部3nの構成を示す。The structure of the phase switching part 3n of a 1st modification is shown. 第2変形例の相切替部3nの構成を示す。The structure of the phase switching part 3n of a 2nd modification is shown. 各相間の負荷に流れる電流の向きを示す。The direction of the current flowing in the load between each phase is shown. 各相間電圧の時間変化を示す。The time change of the voltage between each phase is shown. 電流値比較処理を示す。The current value comparison process is shown. 相切替制御処理を示す。The phase switching control process is shown. 相切替制御処理の具体例を示す。The specific example of a phase switching control process is shown.
 以下の説明では、「×××テーブル」の表現にて情報を説明することがあるが、情報は、どのようなデータ構造で表現されていてもよい。すなわち、情報がデータ構造に依存しないことを示すために、「×××テーブル」を「×××情報」と呼ぶことができる。また、以下の説明において、各テーブルの構成は一例であり、1つのテーブルは、2以上のテーブルに分割されてもよいし、2以上のテーブルの全部又は一部が1つのテーブルであってもよい。 In the following description, information may be described using the expression “xxx table”, but the information may be expressed in any data structure. That is, “xxx table” can be referred to as “xxx information” to indicate that the information does not depend on the data structure. In the following description, the configuration of each table is an example, and one table may be divided into two or more tables, or all or part of the two or more tables may be a single table. Good.
 また、以下の説明では、要素の識別情報として、IDが使用されるが、それに代えて又は加えて他種の識別情報が使用されてもよい。 In the following description, an ID is used as element identification information, but other types of identification information may be used instead of or in addition thereto.
 また、以下の説明では、同種の要素を区別しないで説明する場合には、参照符号又は参照符号における共通番号を使用し、同種の要素を区別して説明する場合は、その要素の参照符号を使用又は参照符号に代えてその要素に割り振られたIDを使用することがある。 In the following description, when a description is made without distinguishing the same type of element, a reference number or a common number in the reference number is used, and when a description is made by distinguishing the same type of element, the reference number of the element is used. Alternatively, an ID assigned to the element may be used instead of the reference code.
 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態の電力分配器の構成を示す。 FIG. 1 shows a configuration of a power distributor according to an embodiment of the present invention.
 電力分配器100は、三相交流電源を入力とし複数の単相交流電源を出力する。電力分配器100は、三相交流受電部1(三相入力端子)と、三相交流電流計21、22、23(電流計測部)と、n個(nは正の整数)の相切替部31~3nと、n個の単相交流出力部61~6n(出力端子、単相出力端子)と、制御部7(制御デバイス)とを含む。相切替部31~3n(切替デバイス)は、切替器411~4n1を夫々含み、切替器412~4n2を夫々含み、切替制御部51~5nを夫々含む。切替器411~4n1は、切替スイッチSW111A~SWn11Aを夫々含み、切替スイッチSW112A~SWn12Aを夫々含み、切替スイッチSW113A~SWn13Aを夫々含む。切替器412~4n2は、切替スイッチSW121A~SWn21Aを夫々含み、SW122A~SWn22Aを夫々含み、SW123A~SWn23Aを夫々含む。 The power distributor 100 receives a three-phase AC power supply and outputs a plurality of single-phase AC power supplies. The power distributor 100 includes a three-phase AC power receiving unit 1 (three-phase input terminal), three- phase AC ammeters 21, 22, and 23 (current measuring unit), and n (n is a positive integer) phase switching unit. 31 to 3n, n single-phase AC output units 61 to 6n (output terminals, single-phase output terminals), and a control unit 7 (control device). Phase switching units 31 to 3n (switching devices) include switching units 411 to 4n1, respectively, include switching units 412 to 4n2, and include switching control units 51 to 5n. The switches 411 to 4n1 include switching switches SW111A to SWn11A, respectively, include switching switches SW112A to SWn12A, and include switching switches SW113A to SWn13A. The switches 412 to 4n2 include changeover switches SW121A to SWn21A, respectively, SW122A to SWn22A, and SW123A to SWn23A.
 なお、本実施例の電力分配器100は、外部信号入力端子9と、電子機器情報SIG81~SIG8nとを含まなくてもよい。 Note that the power distributor 100 according to the present embodiment may not include the external signal input terminal 9 and the electronic device information SIG81 to SIG8n.
 電力分配器100は、三相交流受電部1から三相交流電源を受電する。その三相交流電源は三相交流電流計21、22、23を通る。三相交流電流計21、22、23を通った三相交流電源は、相切替部31~3nにて単相交流電源に切替えられる。相切替部31~3nは、三相交流電源の中の二相L11及びL12、L21及びL22、…、Ln1及びLn2を単相交流電源として、単相交流出力部61~6nへ夫々出力する。単相交流出力部61~6nは、夫々繋がっている電子機器81~8nへ単相交流電源を供給する。 The power distributor 100 receives the three-phase AC power from the three-phase AC power receiving unit 1. The three-phase AC power source passes through three- phase AC ammeters 21, 22, and 23. The three-phase AC power source that has passed through the three- phase AC ammeters 21, 22, and 23 is switched to a single-phase AC power source by the phase switching units 31 to 3n. The phase switching units 31 to 3n output the two phases L11 and L12, L21 and L22,..., Ln1 and Ln2 in the three-phase AC power source to the single-phase AC output units 61 to 6n, respectively. The single-phase AC output units 61 to 6n supply single-phase AC power to the electronic devices 81 to 8n connected thereto.
 三相交流電流計21、22、23の夫々は、例えば電流計であり、対応する相の交流電流の実効値を直流電圧に変換する。三相交流電流計21、22、23は、予め設定された計測時間間隔毎に、その直流電圧に基づく相電流値を示す相電流情報SIG21、SIG22、SIG23を夫々出力する。相電流情報は、I2C信号であってもよい。 Each of the three- phase AC ammeters 21, 22, and 23 is an ammeter, for example, and converts the effective value of the AC current of the corresponding phase into a DC voltage. The three- phase AC ammeters 21, 22, and 23 output phase current information SIG21, SIG22, and SIG23, respectively, indicating phase current values based on the DC voltage at preset measurement time intervals. The phase current information may be an I2C signal.
 切替スイッチSW111A~SWn11A、SW112A~SWn12A、SW113A~SWn13A、SW121A~SWn21A、SW122A~SWn22A、SW123A~SWn23Aの夫々は、外部からのHigh又はLowのレベルを示す切替信号を受け取る端子を有し、その信号レベルにより接点を切替える機能を有するスイッチ素子である。 Each of the change-over switches SW111A to SWn11A, SW112A to SWn12A, SW113A to SWn13A, SW121A to SWn21A, SW122A to SWn22A, SW123A to SWn23A has a terminal for receiving a switch signal indicating a high or low level from the outside. This is a switch element having a function of switching contacts according to the level.
 JEITA IT-1004A 産業用情報処理・制御機器設置環境基準により瞬時停電に対する電子機器の供給電源に対して品質を保証する瞬時停電時間が記載されている。その瞬時停電時間は、最も短い瞬時停電時間を持つClassAの瞬時停電時間は3mS以下である。即ち、ClassAの電子機器は、3mSの瞬時停電では動作品質が保証されなければならない。一般的な制御端子を有するスイッチの切替時間は、トランジスタベースのスイッチでは数nS~数μSオーダーであり、ロードライン用として販売されているスイッチ製品でも数十μSオーダーである。これらの切替時間は、前述の瞬時停電時間よりも十分小さいので、切替スイッチの接点の切替えにより電子機器の動作品質を損なうことは無い。 JEITA IT-1004A Industrial information processing / control equipment installation environment standard describes the instantaneous power failure time that guarantees the quality of the power supply for electronic devices against instantaneous power failure. The instantaneous power failure time of Class A having the shortest instantaneous power failure time is 3 mS or less. That is, the operation quality of the Class A electronic device must be guaranteed in an instantaneous power failure of 3 mS. The switching time of a switch having a general control terminal is on the order of several nS to several μS for a transistor-based switch, and is about several tens of μS even for a switch product sold for a load line. Since these switching times are sufficiently shorter than the above-described instantaneous power failure time, the operation quality of the electronic device is not impaired by switching the contacts of the switching switch.
 切替制御部51~5nは、制御部7から相切替指示信号SIG31~SIG3n(制御信号)を夫々受信する。相切替指示信号SIG31~SIG3nの夫々は例えば、I2C信号などである。切替制御部51~5nの夫々は、各切替スイッチに対してHigh又はLowのレベルを示す切替信号を出力する。切替制御部51~5nは例えば、I/O ExpanderやFPGAなどの集積回路である。 The switching control units 51 to 5n receive the phase switching instruction signals SIG31 to SIG3n (control signals) from the control unit 7, respectively. Each of the phase switching instruction signals SIG31 to SIG3n is, for example, an I2C signal. Each of the switching control units 51 to 5n outputs a switching signal indicating a high or low level to each switching switch. The switching control units 51 to 5n are, for example, integrated circuits such as I / O Expander and FPGA.
 制御部7は、時刻tの相電流情報SIG21、SIG22、SIG23に夫々示されたR相、S相、T相の相電流値Ir[t]、Is[t]、It[t]を取得して記憶する。制御部7は、記憶された3つの相電流値を、大きい値から順に、最大相電流値MaxI[t]と、中間相電流値MidI[t]と、最小相電流値MinI[t]として判定し、最大相電流値MaxI[t]と最小相電流値MinI[t]の電流差DeltaI[t]を算出し、相電流値の大小関係と、最大相電流値と最小相電流値の電流差から、相切替部31~3nの夫々から出力する2つの相を選択する。制御部7は、I2C信号などの相切替指示信号SIG31~SIG3nを、切替制御部51~5nに対して夫々出力する。制御部7は例えば、FPGAなどの集積回路もしくは組込み型のマイクロプロセッサと、メモリとを含む。 The control unit 7 acquires the phase current values Ir [t], Is [t], and It [t] of the R phase, the S phase, and the T phase indicated in the phase current information SIG21, SIG22, and SIG23 at time t, respectively. Remember. The control unit 7 determines the stored three phase current values in order from the largest value as the maximum phase current value MaxI [t], the intermediate phase current value MidI [t], and the minimum phase current value MinI [t]. The current difference DeltaI [t] between the maximum phase current value MaxI [t] and the minimum phase current value MinI [t] is calculated, the magnitude relationship between the phase current values, and the current difference between the maximum phase current value and the minimum phase current value Then, two phases to be output from each of the phase switching units 31 to 3n are selected. The control unit 7 outputs phase switching instruction signals SIG31 to SIG3n such as I2C signals to the switching control units 51 to 5n, respectively. The control unit 7 includes, for example, an integrated circuit such as an FPGA or an embedded microprocessor, and a memory.
 切替制御部51~5nは、切替信号S111A~Sn11A、S112A~Sn12A、S113A~Sn13A、S121A~Sn21A、S122A~Sn22A、S123A~Sn23Aにより、切替スイッチSW111A~SWn11A、SW112A~SWn12A、SW113A~SWn13A、SW121A~SWn21A、SW122A~SWn22A、SW123A~SWn23AのON/OFFを夫々切替えることで、切替器411~4n1、412~4n2の夫々の出力を、R相、S相、T相の何れか一つに設定することが可能である。 The switching control units 51 to 5n are connected to the switching switches SW111A to SWn11A, SW112A to SWn12A, SW113A to SWn13A, and SW113A to SWn13A, SW113A to SnnA, S112A to Sn12A, S113A to Sn13A, S121A to Sn21A, By switching ON / OFF of SWn21A, SW122A to SWn22A, SW123A to SWn23A, the output of each of the switches 411 to 4n1, 412 to 4n2 is set to any one of R phase, S phase, and T phase. Is possible.
 図2は、第1変形例の相切替部3nの構成を示す。 FIG. 2 shows a configuration of the phase switching unit 3n according to the first modification.
 第1変形例の相切替部3nにおいて、切替器4n1、4n2は、R相とS相との何れか一つを出力する接点切替スイッチSWn11B、SWn21Bを夫々含む。切替器4n1、4n2は更に、接点切替スイッチSWn11B、SWn21Bの出力とT相との何れか一つを出力する接点切替スイッチSWn12B、SWn22Bを夫々含む。 In the phase switching unit 3n of the first modification, the switches 4n1 and 4n2 include contact switching switches SWn11B and SWn21B that output any one of the R phase and the S phase, respectively. The switches 4n1 and 4n2 further include contact switching switches SWn12B and SWn22B that output one of the outputs of the contact switching switches SWn11B and SWn21B and the T phase, respectively.
 切替制御部5nは、切替信号Sn11B、Sn12B、Sn21B、Sn22Bにより、接点切替スイッチSWn11B、SWn12B、SWn21B、SWn22Bの接点を夫々切替えることで、切替器4n1、4n2の夫々の出力を、R相、S相、T相の何れか一つに設定することが可能である。 The switching control unit 5n switches the contacts of the contact selector switches SWn11B, SWn12B, SWn21B, and SWn22B according to the switching signals Sn11B, Sn12B, Sn21B, and Sn22B, respectively, and outputs the outputs of the switches 4n1 and 4n2 to the R phase and Sn, respectively. It can be set to either one of the phase and the T phase.
 この第1変形例によれば、図1の相切替部3nに比べて、部品点数や信号数を削減することができる。 According to the first modification, the number of parts and the number of signals can be reduced as compared with the phase switching unit 3n in FIG.
 図3は、第2変形例の相切替部3nの構成を示す。 FIG. 3 shows the configuration of the phase switching unit 3n of the second modification.
 第2変形例の相切替部3nにおいて、切替器4n1は、R相とS相との何れか一つを出力する接点切替スイッチSWn11Cを含む。切替器4n2は、S相とT相との何れか一つを出力する接点切替スイッチSWn21Cを含む。切替制御部5nは、切替信号Sn11C、Sn21Cにより、SWn11C、SWn21Cの接点を夫々切替えることで、切替器4n1の出力を、R相とS相の何れか一つに設定でき、切替器4n2の出力を、S相とT相の何れか一つに設定することが可能である。 In the phase switching unit 3n of the second modification, the switch 4n1 includes a contact switch SWn11C that outputs any one of the R phase and the S phase. The switch 4n2 includes a contact switch SWn21C that outputs one of the S phase and the T phase. The switching control unit 5n can set the output of the switch 4n1 to one of the R phase and the S phase by switching the contacts of the SWn11C and SWn21C respectively by the switching signals Sn11C and Sn21C, and the output of the switch 4n2 Can be set to one of the S phase and the T phase.
 この第2変形例によれば、図1の相切替部3nに比べて、部品点数や信号数を削減することができる。 According to the second modification, the number of parts and the number of signals can be reduced as compared with the phase switching unit 3n in FIG.
 以上の各相切替部3nによれば、三相交流受電部1から入力される三相の中から、制御部7からの相切替指示信号に示された二相を、対応する単相交流出力部6nへ出力することができる。 According to each phase switching unit 3n described above, the two phases indicated in the phase switching instruction signal from the control unit 7 among the three phases input from the three-phase AC power receiving unit 1 are converted into corresponding single-phase AC outputs. Can be output to the unit 6n.
 図4は、各相間の負荷に流れる電流の向きを示す。 FIG. 4 shows the direction of the current flowing through the load between the phases.
 Z1は、R相-S相間で電圧を印加される負荷である。Z2は、S相-T相間で電圧を印加される負荷である。Z3は、T相-R相間もしくはR相―T相間に電圧を印加される負荷である。一般的な三相交流のデルタ結線では、Z3にはT相-R相間で電圧が印加される。実施例1及び第1変形例において、Z1を流れる負荷電流は、R相からS相へ向かう負荷電流値I1で表され、Z2を流れる負荷電流は、S相からT相へ向かう負荷電流値I2で表され、Z3を流れる負荷電流は、T相からR相へ向かう負荷電流値I3で表される。第2変形例において、切替器4n1の出力はR相とS相の何れか一つに設定可能であり、切替器4n2の出力はS相とT相の何れか一つに設定可能である。これにより、Z3にはR相-T相間で電圧が印加されるため、Z3を流れる負荷電流は、R相からT相へ向かう負荷電流値I3’で表される。なお、実施例1及び第1変形例において、Z3に流れる電流はI3とI3’の何れで表されてもよい。 Z1 is a load to which a voltage is applied between the R phase and the S phase. Z2 is a load to which a voltage is applied between the S phase and the T phase. Z3 is a load to which a voltage is applied between the T phase and the R phase or between the R phase and the T phase. In a general three-phase AC delta connection, a voltage is applied to Z3 between the T phase and the R phase. In Example 1 and the first modification, the load current flowing through Z1 is represented by a load current value I1 from the R phase toward the S phase, and the load current flowing through Z2 is the load current value I2 from the S phase toward the T phase. The load current flowing through Z3 is represented by a load current value I3 from the T phase to the R phase. In the second modification, the output of the switch 4n1 can be set to any one of the R phase and the S phase, and the output of the switch 4n2 can be set to any one of the S phase and the T phase. As a result, since a voltage is applied to Z3 between the R phase and the T phase, the load current flowing through Z3 is represented by a load current value I3 'from the R phase to the T phase. In the first embodiment and the first modification, the current flowing through Z3 may be represented by either I3 or I3 '.
 図5は、各相間電圧の時間変化を示す。 FIG. 5 shows the time change of the voltage between the phases.
 R相-S相間電圧と、S相-T相間電圧と、T相-R相間電圧とは、位相が120°ずつずれている。実施例1及び第1変形例において、制御部7は、R相の電流ベクトル、S相の電流ベクトル、T相の電流ベクトルを、式(1)、式(2)、式(3)により夫々算出する。更に制御部7は、R相、S相、T相の電流ベクトルの絶対値である相電流値Ir、Is、Itを、式(7)、式(8)、式(9)により夫々算出する。なお、第2変形例において、制御部7は、R相、S相、T相の電流ベクトルを式(4)、式(5)、式(6)により夫々算出する。 The R phase-S phase voltage, the S phase-T phase voltage, and the T phase-R phase voltage are out of phase by 120 °. In the first embodiment and the first modified example, the control unit 7 calculates the R-phase current vector, the S-phase current vector, and the T-phase current vector according to the equations (1), (2), and (3), respectively. calculate. Further, the control unit 7 calculates phase current values Ir, Is, It, which are absolute values of the R-phase, S-phase, and T-phase current vectors, using the equations (7), (8), and (9), respectively. . In the second modification, the control unit 7 calculates the R-phase, S-phase, and T-phase current vectors using Equation (4), Equation (5), and Equation (6), respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図6は、電流値比較処理を示す。 FIG. 6 shows a current value comparison process.
 電流値比較処理において、制御部7は、時刻tにおける相電流値Ir[t]、Is[t]、It[t]を大きい順に、最大相電流値MaxI[t]、中間相電流値MidI[t]、最小相電流値MinI[t]として判定する。 In the current value comparison process, the control unit 7 sets the phase current values Ir [t], Is [t], and It [t] at time t in descending order of the maximum phase current value MaxI [t] and the intermediate phase current value MidI [ t] and the minimum phase current value MinI [t].
 制御部7は、最初にR相の相電流値Ir[t]とS相の相電流値Is[t]との大小を比較し(S110)、その1回目の大小比較の結果で大きい方とT相の相電流値It[t]とを比較する(S120又はS320)。そして制御部7は、2回目の大小比較の結果で大きい方の相電流値を最大相電流値MaxI[t]と判定する(S130、S230、S330、又はS430)。そして制御部7は、1回目の大小比較の結果と2回目の大小比較の結果とにより、中間相電流値MidI[t]と最小相電流値MinI[t]が定まる場合、中間相電流値MidI[t]と最小相電流値MinI[t]を判定する(S250又はS450)。一方、中間相電流値MidI[t]と最小相電流値MinI[t]が定まらない場合、制御部7は、最大相電流値MaxI[t]以外の2つの相電流値を比較し(S140又はS340)、その比較の結果により中間相電流値MidI[t]と最小相電流値MinI[t]を判定する(S150、S160、S350、又はS360)。 The control unit 7 first compares the magnitudes of the phase current value Ir [t] of the R phase and the phase current value Is [t] of the S phase (S110), and the larger one is obtained as a result of the first magnitude comparison. The phase current value It [t] of the T phase is compared (S120 or S320). Then, the control unit 7 determines the larger phase current value as the maximum phase current value MaxI [t] as a result of the second magnitude comparison (S130, S230, S330, or S430). When the intermediate phase current value MidI [t] and the minimum phase current value MinI [t] are determined based on the result of the first magnitude comparison and the result of the second magnitude comparison, the control unit 7 determines the intermediate phase current value MidI. [T] and the minimum phase current value MinI [t] are determined (S250 or S450). On the other hand, when the intermediate phase current value MidI [t] and the minimum phase current value MinI [t] are not determined, the control unit 7 compares two phase current values other than the maximum phase current value MaxI [t] (S140 or In step S340, the intermediate phase current value MidI [t] and the minimum phase current value MinI [t] are determined based on the comparison result (S150, S160, S350, or S360).
 以上の電流値比較処理により、相電流値Ir[t]、Is[t]、It[t]を、大きい相電流値から順に、最大相電流値MaxI[t]、中間相電流値MidI[t]、最小相電流値MinI[t]として認識することができる。なお、最大相電流値に対応する相を第一相(最大相)、中間相電流値に対応する相を第二相(中間相)、最小相電流値に対応する相を第三相(最小相)と呼ぶことができる。 Through the above current value comparison processing, the phase current values Ir [t], Is [t], It [t] are changed from the largest phase current value to the maximum phase current value MaxI [t] and the intermediate phase current value MidI [t. ], The minimum phase current value MinI [t]. The phase corresponding to the maximum phase current value is the first phase (maximum phase), the phase corresponding to the intermediate phase current value is the second phase (intermediate phase), and the phase corresponding to the minimum phase current value is the third phase (minimum phase). Phase).
 図7は、相切替制御処理を示す。 FIG. 7 shows the phase switching control process.
 ここではn=6とした場合について説明する。 Here, the case where n = 6 will be described.
 相切替部31~36の各出力の電圧は、R相-S相間電圧、S相-T相間電圧、T相-R相間電圧の何れか一つである。制御部7は、切替器を設定するための相切替指示信号を、各相切替部の切替制御部へ送ることにより、相切替部31~36の状態を変更する。制御部7は、時刻tの相切替部31~36の出力の状態を示す出力状態値(状態値)を、配列O61C[t]~O66C[t]として夫々記憶する。出力状態値は、R相-S相間をRS、S相-T相間をST、T相-R相間をTRと表す。例えば、相切替部31の出力をR相-S相間に設定する場合、出力状態値O61C[t]=RSと設定する。 The voltage of each output of the phase switching units 31 to 36 is any one of the R phase-S phase voltage, the S phase-T phase voltage, and the T phase-R phase voltage. The control unit 7 changes the state of the phase switching units 31 to 36 by sending a phase switching instruction signal for setting the switch to the switching control unit of each phase switching unit. The control unit 7 stores output state values (state values) indicating the output states of the phase switching units 31 to 36 at time t as arrays O61C [t] to O66C [t], respectively. The output state value is represented as RS between R phase and S phase, ST between S phase and T phase, and TR between T phase and R phase. For example, when the output of the phase switching unit 31 is set between the R phase and the S phase, the output state value O61C [t] = RS is set.
 制御部7は、時刻tの相切替部31~36の切替優先順位を配列O61P[t]~O66P[t]として記憶する。切替優先順位は1~nの数値で設定される。制御部7は、最も小さい数値である1が設定された相切替部を選択し、選択された相切替部の相切替指示信号を変更する。また、RSの切替優先順位の最大値である最大切替優先順位を変数X、STの最大切替優先順位を変数Y、TRの最大切替優先順位を変数Zとする。 The control unit 7 stores the switching priorities of the phase switching units 31 to 36 at time t as arrays O61P [t] to O66P [t]. The switching priority is set as a numerical value from 1 to n. The control unit 7 selects the phase switching unit in which 1 which is the smallest numerical value is set, and changes the phase switching instruction signal of the selected phase switching unit. Further, the maximum switching priority that is the maximum value of the RS switching priority is a variable X, the maximum switching priority of ST is a variable Y, and the maximum switching priority of TR is a variable Z.
 例えば、相切替部31、32、33の出力状態値がO61C[t]=RS、O62C[t]=RS、O63C[t]=RSであり、相切替部31、32、33の切替優先順位がO61P[t]=2、O62P[t]=1、O63P[t]=3である場合、制御部7は、これらの最小値であるO62P[t]に対応する相切替部32を選択し、相切替部32の相切替指示信号を変更し、相切替部32の出力状態値O62C[t]を相切替指示信号に合わせて変更する。この場合、RSに対応する最大切替優先順位Xは3である。 For example, the output state values of the phase switching units 31, 32, and 33 are O61C [t] = RS, O62C [t] = RS, O63C [t] = RS, and the switching priority of the phase switching units 31, 32, and 33 Are O61P [t] = 2, O62P [t] = 1, and O63P [t] = 3, the control unit 7 selects the phase switching unit 32 corresponding to O62P [t] which is the minimum value thereof. The phase switching instruction signal of the phase switching unit 32 is changed, and the output state value O62C [t] of the phase switching unit 32 is changed according to the phase switching instruction signal. In this case, the maximum switching priority order X corresponding to RS is 3.
 図7において、制御部7は、初期設定(S510)として、相切替部31、34の相切替指示信号をR相とS相に設定し、それに合わせて相切替部31、34の出力状態値にRSを保存し、相切替部32、35の相切替指示信号をS相とT相に設定し、それに合わせて相切替部32、35の出力状態値にSTを保存し、相切替部33、36の相切替指示信号をT相とR相に設定し、それに合わせて相切替部33、36の出力状態値にTRを保存する。更に制御部7は、相切替部31、32、33の切替優先順位を1、相切替部34、35、36の切替優先順位を2と設定し、RSの最大切替優先順位Xを2、STの最大切替優先順位Yを2、TRの最大切替優先順位Zを2と設定する。ここで制御部7は、各最大切替優先順位の初期値を、n/3相=6/3=2とする。更に制御部7は、目標とする電流差を示す電流しきい値Ith(評価しきい値)を3Aとする。 In FIG. 7, as an initial setting (S510), the control unit 7 sets the phase switching instruction signals of the phase switching units 31 and 34 to the R phase and the S phase, and accordingly the output state values of the phase switching units 31 and 34 RS is stored, phase switching instruction signals of the phase switching units 32 and 35 are set to S phase and T phase, and ST is stored in the output state values of the phase switching units 32 and 35 accordingly, and the phase switching unit 33 , 36 are set to the T phase and the R phase, and TR is stored in the output state values of the phase switching units 33, 36 accordingly. Further, the control unit 7 sets the switching priority of the phase switching units 31, 32, and 33 to 1, sets the switching priority of the phase switching units 34, 35, and 36 to 2, sets the maximum switching priority X of the RS to 2, ST Is set to 2 and the maximum switching priority Z of TR is set to 2. Here, the control unit 7 sets the initial value of each maximum switching priority as n / 3 phase = 6/3 = 2. Further, the control unit 7 sets a current threshold Ith (evaluation threshold) indicating a target current difference to 3A.
 次に制御部7は、電流の実効値を取得し、電流値比較処理を実行する(S520)。ここで制御部7は、時刻tの三相交流電流計21、22、23の相電流値を受け取り、それぞれの相電流値を配列Ir[t]、Is[t]、It[t]に保存する。次に制御部7は、前述の電流値比較処理により、最大相電流値MaxI[t]と、中間相電流値MidI[t]と、最小相電流値MinI[t]を判定する。 Next, the control unit 7 acquires the effective value of the current and executes a current value comparison process (S520). Here, the control unit 7 receives the phase current values of the three- phase AC ammeters 21, 22, and 23 at time t and stores the respective phase current values in the arrays Ir [t], Is [t], and It [t]. To do. Next, the control unit 7 determines the maximum phase current value MaxI [t], the intermediate phase current value MidI [t], and the minimum phase current value MinI [t] by the above-described current value comparison processing.
 次に制御部7は、最大相電流値MaxI[t]から最小相電流値MinI[t]を減ずることで、電流差DeltaI[t](評価値)を算出する(S530)。 Next, the control unit 7 calculates the current difference DeltaI [t] (evaluation value) by subtracting the minimum phase current value MinI [t] from the maximum phase current value MaxI [t] (S530).
 次に制御部7は、電流差DeltaI[t]と電流しきい値Ithの大小を比較する(S540)。電流差DeltaI[t]が電流しきい値Ith未満の場合(S540:YES)、制御部7は、R相、S相、T相が平衡状態であると判定し、相切替部31~3nの相切替指示信号を変更せず、式(10)のように、tに1を加え(S550)、相電流値の取得から計測時間間隔の経過後に、三相交流電流計21、22、23の相電流値を取得する動作(S520)に戻る。電流差DeltaI[t]が電流しきい値Ith以上である場合(S540:NO)、制御部7は、不平衡状態と判定し、一つの相切替部を選択し、その相切替指示信号を変更する。 Next, the control unit 7 compares the current difference DeltaI [t] with the current threshold value Ith (S540). When the current difference DeltaI [t] is less than the current threshold Ith (S540: YES), the control unit 7 determines that the R phase, the S phase, and the T phase are in an equilibrium state, and the phase switching units 31 to 3n Without changing the phase switching instruction signal, 1 is added to t as shown in Equation (10) (S550), and after the measurement time interval elapses from the acquisition of the phase current value, the three- phase AC ammeters 21, 22, 23 The process returns to the operation of acquiring the phase current value (S520). When the current difference DeltaI [t] is equal to or greater than the current threshold Ith (S540: NO), the control unit 7 determines that the state is unbalanced, selects one phase switching unit, and changes the phase switching instruction signal. To do.
 t=t+1 …(10) T = t + 1 (10)
 電流差DeltaI[t]が電流しきい値Ith以上で(S540:NO)、最大相電流値がR相の相電流値(MaxI[t]=Ir[t])で(S610:YES)、最小相電流値がS相の相電流値(MinI[t]=Is[t])の場合(S620:YES)、制御部7は、最大相電流値MaxI[t]の相と中間相電流値MidI[t]の相との間を表すTRを、変更元状態として選択し、中間相電流値MidI[t]の相と最小相電流値MinI[t]の相との間を表すSTを、変更先状態として選択する。制御部7は、出力状態値が変更元状態TRであり、かつ切替優先順位が1に設定されている相切替部を、変更相切替部(特定切替デバイス)として選択する。ここでは制御部7は、出力状態値O63C[t]=TR且つ切替優先順位O63P[t]=1の相切替部33を、変更相切替部として選択する。次に制御部7は、変更相切替部の相切替指示信号を変更先状態に変更する。即ち、制御部7は、相切替部33の相切替指示信号TRをSTに設定する(S700)。その後、制御部7は、時刻tを式(10)のように1を加える(S710)。その後、制御部7は、相切替部33において出力状態値を変更先状態に合わせて、O63C[t]=STに設定し、式(11)により、相切替部33の切替優先順位に、変更先状態STに対応する最大切替優先順位Yを加えることで、O63P[t]=3に設定する(S720)。 The current difference DeltaI [t] is equal to or greater than the current threshold Ith (S540: NO), the maximum phase current value is the R-phase phase current value (MaxI [t] = Ir [t]) (S610: YES), and the minimum When the phase current value is the phase current value of the S phase (MinI [t] = Is [t]) (S620: YES), the control unit 7 determines the phase of the maximum phase current value MaxI [t] and the intermediate phase current value MidI. TR representing between the phases of [t] is selected as a change source state, and ST representing between the phase of the intermediate phase current value MidI [t] and the phase of the minimum phase current value MinI [t] is changed. Select as the destination state. The control unit 7 selects a phase switching unit whose output state value is the change source state TR and whose switching priority is set to 1 as a changed phase switching unit (specific switching device). Here, the control unit 7 selects the phase switching unit 33 having the output state value O63C [t] = TR and the switching priority O63P [t] = 1 as the changed phase switching unit. Next, the control unit 7 changes the phase switching instruction signal of the changed phase switching unit to the change destination state. That is, the control unit 7 sets the phase switching instruction signal TR of the phase switching unit 33 to ST (S700). Thereafter, the control unit 7 adds 1 to the time t as shown in Expression (10) (S710). Thereafter, the control unit 7 sets the output state value in the phase switching unit 33 to O63C [t] = ST in accordance with the change destination state, and changes to the switching priority order of the phase switching unit 33 according to the equation (11). By adding the maximum switching priority Y corresponding to the previous state ST, O63P [t] = 3 is set (S720).
 O63P[t]=Y+1=2+1=3 …(11) O63P [t] = Y + 1 = 2 + 1 = 3 (11)
 その後、制御部7は、変更元状態を有する相切替部で、変更相切替部以外の相切替部を、維持相切替部として選択し、維持相切替部の切替優先順位を減少させる。即ち、制御部7は、出力状態値がTRであり相切替部33以外の相切替部である相切替部36を、維持相切替部として選択し、式(12)により、相切替部36の切替優先順位から1を減ずることで、O66P[t]=1に設定する(S730)。 Thereafter, the control unit 7 selects a phase switching unit other than the changed phase switching unit as the maintenance phase switching unit in the phase switching unit having the change source state, and decreases the switching priority of the maintenance phase switching unit. That is, the control unit 7 selects the phase switching unit 36 whose output state value is TR and is a phase switching unit other than the phase switching unit 33 as a maintenance phase switching unit. By subtracting 1 from the switching priority, O66P [t] = 1 is set (S730).
 O66P[t]=O66P[t-1]-1=2-1=1 …(12) O66P [t] = O66P [t-1] -1 = 2-1 = 1 (12)
 次に制御部7は、式(13)により、変更先状態STに対応する最大切替優先順位Yに1を加え、式(14)により、変更元状態TRに対応する最大切替優先順位Zから1を減ずる(S740)。その後、制御部7は、相電流値の取得から計測時間間隔の経過後に、三相交流電流計21、22、23の相電流値を取得する動作(S520)に戻る。 Next, the control unit 7 adds 1 to the maximum switching priority Y corresponding to the change destination state ST by the equation (13), and 1 from the maximum switching priority Z corresponding to the change source state TR by the equation (14). Is reduced (S740). Thereafter, the control unit 7 returns to the operation (S520) of acquiring the phase current values of the three- phase AC ammeters 21, 22, and 23 after the measurement time interval has elapsed since the acquisition of the phase current values.
 Y=Y+1=2+1=3 …(13)
 Z=Z-1=2-1=1 …(14)
Y = Y + 1 = 2 + 1 = 3 (13)
Z = Z-1 = 2-1 = 1 (14)
 最大相電流値がR相の相電流値で(S610:YES)最小相電流値がS相の相電流値の場合(S620:NO)、制御部7は、S700~S740と同様にして、変更元状態をRSとし変更先状態をSTとする処理(S750~S790)を実行し、相電流値の取得から計測時間間隔の経過後に、S520に戻る。 When the maximum phase current value is the phase current value of the R phase (S610: YES) and the minimum phase current value is the phase current value of the S phase (S620: NO), the control unit 7 changes in the same manner as S700 to S740. A process (S750 to S790) in which the original state is RS and the change destination state is ST is executed, and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
 最大相電流値がS相の相電流値で(S610:NO、S630:YES)最小相電流値がT相の相電流値の場合(S640:YES)、制御部7は、S700~S740と同様にして、変更元状態をRSとし変更先状態をTRとする処理(S800~S840)を実行し、相電流値の取得から計測時間間隔の経過後に、S520に戻る。 When the maximum phase current value is the phase current value of the S phase (S610: NO, S630: YES) and the minimum phase current value is the phase current value of the T phase (S640: YES), the control unit 7 is the same as S700 to S740. Then, the process (S800 to S840) is executed in which the change source state is RS and the change destination state is TR (S800 to S840), and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
 最大相電流値がS相の相電流値で(S610:NO、S630:YES)最小相電流値がR相の相電流値の場合(S640:NO)、制御部7は、S700~S740と同様にして、変更元状態をSTとし変更先状態をTRとする処理(S850~S890)を実行し、相電流値の取得から計測時間間隔の経過後に、S520に戻る。 When the maximum phase current value is the phase current value of the S phase (S610: NO, S630: YES) and the minimum phase current value is the phase current value of the R phase (S640: NO), the control unit 7 is the same as S700 to S740. Then, the process (S850 to S890) is executed in which the change source state is ST and the change destination state is TR (S850 to S890), and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
 最大相電流値がT相の相電流値で(S610:NO、S630:NO)最小相電流値がR相の相電流値の場合(S640:YES)、制御部7は、S700~S740と同様にして、変更元状態をSTとし変更先状態をRSとする処理(S900~S940)を実行し、相電流値の取得から計測時間間隔の経過後に、S520に戻る。 When the maximum phase current value is the phase current value of the T phase (S610: NO, S630: NO), and the minimum phase current value is the phase current value of the R phase (S640: YES), the control unit 7 is the same as S700 to S740. Then, a process (S900 to S940) is executed in which the change source state is ST and the change destination state is RS (S900 to S940), and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
 最大相電流値がT相の相電流値で(S610:NO、S630:NO)最小相電流値がS相の相電流値の場合(S640:NO)、制御部7は、S700~S740と同様にして、変更元状態をTRとし変更先状態をRSとする処理(S950~S990)を実行し、相電流値の取得から計測時間間隔の経過後に、S520に戻る。 When the maximum phase current value is the phase current value of the T phase (S610: NO, S630: NO), and the minimum phase current value is the phase current value of the S phase (S640: NO), the control unit 7 is the same as S700 to S740. Then, a process (S950 to S990) is executed in which the change source state is TR and the change destination state is RS (S950 to S990), and after the measurement time interval elapses from the acquisition of the phase current value, the process returns to S520.
 以上の相切替制御処理によれば、制御部7が、三相の電流の不平衡の大きさを示す評価値を算出し、その不平衡の大きさを減少させることを条件として、変更相切替部と変更先状態とを選択することにより、電流不平衡率を減少させることができる。また、制御部7が、定期的に、相電流情報を取得し、評価値が予め設定された不平衡条件を満たすか否かを判定し、評価値が不平衡条件を満たすと判定された場合に、複数の相切替部の中から変更相切替部を選択することにより、電流不平衡率を減少させることができる。また、制御部7は、電子機器の負荷電流が変動した場合でも、相切替部の状態を適応させ、不平衡状態を防ぐことができる。また、制御部7は、評価値が不平衡条件を満たさない場合、相切替部の状態を維持することができる。 According to the above phase switching control processing, the control unit 7 calculates the evaluation value indicating the magnitude of the unbalance of the three-phase current, and changes the phase switching on the condition that the magnitude of the unbalance is reduced. By selecting the part and the change destination state, the current unbalance rate can be reduced. When the control unit 7 periodically acquires phase current information, determines whether the evaluation value satisfies a preset unbalance condition, and determines that the evaluation value satisfies the unbalance condition In addition, the current unbalance rate can be reduced by selecting the changed phase switching unit from among the plurality of phase switching units. Moreover, the control part 7 can adapt the state of a phase switching part even when the load current of an electronic device fluctuates, and can prevent an unbalanced state. In addition, the control unit 7 can maintain the state of the phase switching unit when the evaluation value does not satisfy the unbalanced condition.
 また、制御部7は、最大相電流値から最小相電流値を減ずることで得られる電流差を、評価値とすることにより、三相の電流の不平衡の大きさを評価することができる。また、制御部7は、電流差が電流しきい値を超える場合に、変更相切替部を選択し、変更相切替部を制御することにより、不平衡状態を認識することができる。また、制御部7は、第一相と第二相を出力する状態を変更元状態として選択し、第二相と第三相を出力する状態を変更先状態として選択し、変更元状態の変更相切替部を変更先状態に切り替えることにより、電流不平衡率を減少させることができる。 Further, the control unit 7 can evaluate the magnitude of the unbalance of the three-phase current by setting the current difference obtained by subtracting the minimum phase current value from the maximum phase current value as an evaluation value. Further, when the current difference exceeds the current threshold, the control unit 7 can recognize the unbalanced state by selecting the changed phase switching unit and controlling the changed phase switching unit. Moreover, the control part 7 selects the state which outputs a 1st phase and a 2nd phase as a change origin state, selects the state which outputs a 2nd phase and a 3rd phase as a change destination state, and changes a change origin state By switching the phase switching unit to the change destination state, the current unbalance rate can be reduced.
 また、制御部7は、変更元状態の相切替部群の中から、最高の切替優先順位を持つ相切替部を変更相切替部として選択し、変更相切替部の切替優先順位を減少させる。これにより、制御部7は、複数の相切替部が変更元状態である場合でも、適切な変更相切替部を選択することができる。また、制御部7は、同一の相切替部が連続して変更相切替部として選択されることで、二つの状態が交互に繰り返されることを防ぐことができる。 Also, the control unit 7 selects the phase switching unit having the highest switching priority from the phase switching unit group in the change source state as the changed phase switching unit, and decreases the switching priority of the changed phase switching unit. Thereby, the control part 7 can select an appropriate change phase switching part, even when a some phase switching part is a change origin state. Moreover, the control part 7 can prevent that two states are repeated alternately because the same phase switching part is continuously selected as a change phase switching part.
 なお、切替優先順位の代わりに、優先度が用いられてもよい。例えば、制御部7は、変更元状態である相切替部群の中から、最高の優先度を持つ相切替部を、変更相切替部として選択し、変更相切替部の優先度を減少させる。 Note that priority may be used instead of switching priority. For example, the control unit 7 selects the phase switching unit having the highest priority from the phase switching unit group in the change source state as the changed phase switching unit, and decreases the priority of the changed phase switching unit.
 図8は、相切替制御処理の具体例を示す。 FIG. 8 shows a specific example of the phase switching control process.
 電子機器を流れる負荷電流の実効値を負荷電流値と呼ぶ。ここでは、n=6であり、電子機器81の負荷電流値が25A、電子機器82の負荷電流値が8A、電子機器83の負荷電流値が11A、電子機器84の負荷電流値が15A、電子機器85の負荷電流値が5A、電子機器86の負荷電流値が10Aであり、電流しきい値Ithを3Aとした場合の状態遷移を示す。 The effective value of the load current flowing through the electronic device is called the load current value. Here, n = 6, the load current value of the electronic device 81 is 25 A, the load current value of the electronic device 82 is 8 A, the load current value of the electronic device 83 is 11 A, the load current value of the electronic device 84 is 15 A, the electronic The state transition when the load current value of the device 85 is 5A, the load current value of the electronic device 86 is 10A, and the current threshold Ith is 3A is shown.
 この図は、計測時間間隔毎の時刻tにおける状態を示す。各状態は、各電子機器81~86を流れる負荷電流と、当該電子機器へ出力する相切替部31~36の状態(相切替部状態)と、相電流値Ir[t]、Is[t]、It[t](大きい順にMaxI[t]、MidI[t]、MinI[t])と、電流差の判定結果とを示す。 This figure shows the state at time t for each measurement time interval. Each state includes a load current flowing through each of the electronic devices 81 to 86, a state of the phase switching units 31 to 36 output to the electronic device (phase switching unit state), and phase current values Ir [t] and Is [t]. , It [t] (MaxI [t], MidI [t], MinI [t] in descending order) and current difference determination results.
 時刻t=0において、電流差DeltaI[0]=23.96Aは電流しきい値Ith=3Aよりも大きく、最大相電流値MaxI[0]がR相の相電流値Ir[0]であり、最小相電流値MinI[0]がT相の相電流値It[0]なので、制御部7は、出力状態値がRSであり、かつ切替優先順位が1である相切替部31内の二つの切替器をS相及びT相に夫々切り替える。これにより、制御部7は、時刻t=1で、相切替部31の出力状態値O61C[1]をSTに設定し、切替優先順位O61P[1]を3に設定する。また、制御部7は、時刻t=0において出力状態値がRSである相切替部のうち相切替部31以外である相切替部34の切替優先順位O64P[t]を1に設定する。 At time t = 0, the current difference DeltaI [0] = 23.96A is larger than the current threshold Ith = 3A, and the maximum phase current value MaxI [0] is the R-phase phase current value Ir [0]. Since the minimum phase current value MinI [0] is the T-phase phase current value It [0], the control unit 7 outputs two values in the phase switching unit 31 whose output state value is RS and whose switching priority is 1. The switch is switched to the S phase and the T phase, respectively. As a result, the control unit 7 sets the output state value O61C [1] of the phase switching unit 31 to ST and sets the switching priority O61P [1] to 3 at time t = 1. Further, the control unit 7 sets the switching priority O64P [t] of the phase switching unit 34 other than the phase switching unit 31 among the phase switching units whose output state value is RS at time t = 0 to 1.
 時刻t=1において、電流差Delta[1]=20.48Aは電流しきい値Ith=3Aよりも大きく、最大相電流値MaxI[1]がT相の相電流値It[1]であり、最小相電流値MinI[1]がR相の相電流値Ir[1]なので、制御部7は、出力状態値がSTであり、かつ切替優先順位が1である相切替部32内の二つの切替器をR相及びS相に夫々切り替える。これにより、制御部7は、時刻t=2で、相切替部32の出力状態値O62C[2]をRSに設定し、切替優先順位O62P[2]を2に設定する。また、制御部7は、時刻t=1において出力状態値がSTである相切替部のうち相切替部32以外である相切替部31、35に対し、切替優先順位O61P[2]を2に設定し、切替優先順位O65P[2]を1に設定する。 At time t = 1, the current difference Delta [1] = 2.48A is larger than the current threshold Ith = 3A, and the maximum phase current value MaxI [1] is the T-phase phase current value It [1]. Since the minimum phase current value MinI [1] is the R-phase phase current value Ir [1], the control unit 7 has two output states in the phase switching unit 32 in which the output state value is ST and the switching priority is 1. The switch is switched to the R phase and the S phase, respectively. Thereby, the control unit 7 sets the output state value O62C [2] of the phase switching unit 32 to RS and sets the switching priority order O62P [2] to 2 at time t = 2. Further, the control unit 7 sets the switching priority O61P [2] to 2 for the phase switching units 31 and 35 other than the phase switching unit 32 among the phase switching units whose output state value is ST at time t = 1. And set the switching priority O65P [2] to 1.
 時刻t=2において、電流差Delta[2]=7.91Aは電流しきい値Ith=3Aよりも大きく、最大相電流値MaxI[2]がS相の相電流値Is[2]であり、最小相電流値MinI[2]がR相の相電流値Ir[2]なので、制御部7は、出力状態値がSTであり、かつ切替優先順位が1である相切替部35内の二つの切替器をT相及びR相に夫々切り替える。これにより、制御部7は、時刻t=3で、相切替部35の出力状態値O65C[3]をTRに設定し、切替優先順位O65P[3]を3に設定する。また、制御部7は、時刻t=2において出力状態値がSTである相切替部のうち相切替部35以外である相切替部31の切替優先順位O61P[3]を1に設定する。 At time t = 2, the current difference Delta [2] = 7.91A is larger than the current threshold Ith = 3A, and the maximum phase current value MaxI [2] is the S-phase phase current value Is [2]. Since the minimum phase current value MinI [2] is the R-phase phase current value Ir [2], the control unit 7 has two output states in the phase switching unit 35 whose output state value is ST and whose switching priority is 1. The switch is switched to the T phase and the R phase, respectively. As a result, the control unit 7 sets the output state value O65C [3] of the phase switching unit 35 to TR and sets the switching priority O65P [3] to 3 at time t = 3. Further, the control unit 7 sets the switching priority O61P [3] of the phase switching unit 31 other than the phase switching unit 35 among the phase switching units whose output state value is ST at time t = 2 to 1.
 時刻t=3において、電流差Delta[3]=2.59Aは電流しきい値Ith=3Aよりも小さいので、時刻t=3から時刻t=4にかけて、相切替部31~36の出力状態値と切替優先順位の変更は無い。 Since the current difference Delta [3] = 2.59A is smaller than the current threshold Ith = 3A at time t = 3, the output state values of the phase switching units 31 to 36 from time t = 3 to time t = 4. There is no change in the switching priority.
 時刻t=4において、電流差Delta[3]=2.59Aは電流しきい値Ith=3Aよりも小さいので、時刻t=4から時刻t=5にかけて、相切替部31~36の出力状態値と切替優先順位の変更は無い。 Since the current difference Delta [3] = 2.59A is smaller than the current threshold Ith = 3A at time t = 4, the output state values of the phase switching units 31 to 36 from time t = 4 to time t = 5. There is no change in the switching priority.
 時刻t=5において、電子機器81の負荷電流値が25Aから5Aに変化したとする。これにより、電流差DeltaI[5]=16.60Aは電流しきい値Ith=3Aよりも大きく、最大相電流値MaxI[5]がR相の相電流値Ir[5]であり、最小相電流値MinI[5]がS相の相電流値Is[5]なので、制御部7は、出力状態値がTRで、かつ切替優先順位が1である相切替部33内の二つの切替器をS相及びT相に夫々切り替える。これにより、制御部7は、時刻t=6で、相切替部33の出力状態値O63C[6]をSTに設定し、切替優先順位O63P[6]を2に設定する。また、制御部7は、時刻t=5において出力状態値がTRである相切替部のうち相切替部33以外である相切替部35、36に対し、切替優先順位O65P[6]を2に設定し、切替優先順位O66P[6]を1に設定する。 Assume that the load current value of the electronic device 81 changes from 25 A to 5 A at time t = 5. Thus, the current difference DeltaI [5] = 16.60A is larger than the current threshold Ith = 3A, the maximum phase current value MaxI [5] is the R-phase phase current value Ir [5], and the minimum phase current Since the value MinI [5] is the phase current value Is [5] of the S phase, the control unit 7 sets the two switches in the phase switching unit 33 whose output state value is TR and the switching priority is 1 to S Switch to phase and T phase, respectively. As a result, the control unit 7 sets the output state value O63C [6] of the phase switching unit 33 to ST and sets the switching priority O63P [6] to 2 at time t = 6. Further, the control unit 7 sets the switching priority O65P [6] to 2 for the phase switching units 35 and 36 other than the phase switching unit 33 among the phase switching units whose output state value is TR at time t = 5. And set the switching priority O66P [6] to 1.
 時刻t=6において、電流差DeltaI[6]=7.10Aは電流しきい値Ith=3Aよりも大きく、最大相電流値MaxI[6]がS相の相電流値Is[6]であり、最小相電流値MinI[6]がT相の相電流値It[6]なので、制御部7は、出力状態値がRSであり、かつ切替優先順位が1である相切替部34内の二つの切替器をT相及びR相に夫々切り替える。 At time t = 6, the current difference DeltaI [6] = 7.10A is larger than the current threshold Ith = 3A, and the maximum phase current value MaxI [6] is the S-phase phase current value Is [6]. Since the minimum phase current value MinI [6] is the T-phase phase current value It [6], the control unit 7 outputs two values in the phase switching unit 34 whose output state value is RS and whose switching priority is 1. The switch is switched to the T phase and the R phase, respectively.
 以降、制御部7は、電流差DeltaI[t]が電流しきい値Ithよりも小さくなるように相切替部31~36の出力状態値を変更する。 Thereafter, the control unit 7 changes the output state values of the phase switching units 31 to 36 so that the current difference DeltaI [t] becomes smaller than the current threshold value Ith.
 本実施例によれば、電力分配器100は、入力される三相の電流を計測し、計測された電流に基づいて、相切替部を制御することにより、三相の電流の不平衡を抑えることができる。これにより、消費電力を抑えつつ、一つの相の過電流を防ぐことができる。 According to the present embodiment, the power distributor 100 measures the input three-phase current, and controls the phase switching unit based on the measured current, thereby suppressing the three-phase current imbalance. be able to. Thereby, overcurrent of one phase can be prevented while suppressing power consumption.
 実施例1と比較すると、本実施例の電子機器81~8nの夫々は、電子機器内で単相交流電源から直流電源に変換された直流電流を計測し、計測された直流電流値に基づいて負荷電流の実効値を示す負荷電流情報を生成する。更に電子機器81~8nの夫々は、電子機器が電力分配器100の単相交流出力部61~6nの何れに接続されているかを示す接続情報を記憶する。接続情報は例えば、電子機器を識別する電子機器識別情報と、当該電子機器に接続される単相交流出力部を識別する端子識別情報とを含む。更に電子機器81~8nの夫々は、負荷電流情報と接続情報を含む電子機器情報SIG81~SIG8nを電力分配器100へ出力する。電子機器情報SIG81~SIG8nは例えば、I2C信号である。 Compared to the first embodiment, each of the electronic devices 81 to 8n of the present embodiment measures the direct current converted from the single-phase alternating current power source to the direct current power source in the electronic device, and based on the measured direct current value. Load current information indicating the effective value of the load current is generated. Furthermore, each of the electronic devices 81 to 8n stores connection information indicating which of the single-phase AC output units 61 to 6n of the power distributor 100 is connected to the electronic device. The connection information includes, for example, electronic device identification information that identifies an electronic device, and terminal identification information that identifies a single-phase AC output unit connected to the electronic device. Further, each of the electronic devices 81 to 8n outputs electronic device information SIG81 to SIG8n including load current information and connection information to the power distributor 100. The electronic device information SIG81 to SIG8n is, for example, an I2C signal.
 なお、本実施例の電力分配器100は、三相交流電流計21、22、23と、相電流情報SIG21、SIG22、SIG23とを含まなくてもよい。 Note that the power distributor 100 of the present embodiment may not include the three- phase AC ammeters 21, 22, and 23 and the phase current information SIG21, SIG22, and SIG23.
 電子機器情報SIG81~SIG8nは、外部信号入力端子9を通って制御部7に入力される。 The electronic device information SIG81 to SIG8n is input to the control unit 7 through the external signal input terminal 9.
 制御部7は、電子機器情報を基に、負荷電流情報と、電子機器識別情報に対応する電子機器と、端子識別情報に対応する単相交流出力部と、当該単相交流出力部に接続されている相切替部と、当該相切替部の出力状態値とを関連付ける。更に制御部7は、この関連付けと、負荷電流情報を基に、R相-S相間電圧の負荷電流値I1と、S相-T相間電圧の負荷電流値I2と、T相-R相間電圧の負荷電流値I3とを算出する。n=6である場合、電子機器81の負荷電流値をI81、電子機器82の負荷電流値をI82、電子機器83の負荷電流値をI83、電子機器84の負荷電流値をI84、電子機器85の負荷電流値をI85、電子機器86の負荷電流値をI86とする。 The control unit 7 is connected to the load current information, the electronic device corresponding to the electronic device identification information, the single-phase AC output unit corresponding to the terminal identification information, and the single-phase AC output unit based on the electronic device information. And the output state value of the phase switching unit. Further, based on this association and the load current information, the control unit 7 loads the load current value I1 of the voltage between the R phase and the S phase, the load current value I2 of the voltage between the S phase and the T phase, and the voltage between the T phase and the R phase voltage. A load current value I3 is calculated. When n = 6, the load current value of the electronic device 81 is I81, the load current value of the electronic device 82 is I82, the load current value of the electronic device 83 is I83, the load current value of the electronic device 84 is I84, and the electronic device 85 Is assumed to be I85, and the load current value of the electronic device 86 is assumed to be I86.
 電子機器81、84がR相-S相間に接続され、電子機器82、85がS相-T相間に接続され、電子機器83、86がT相-R相間に接続されている状態において、制御部7は、式(15)、式(16)、式(17)により、負荷電流値I1、I2、I3を夫々算出する。 Control is performed in a state where the electronic devices 81 and 84 are connected between the R phase and the S phase, the electronic devices 82 and 85 are connected between the S phase and the T phase, and the electronic devices 83 and 86 are connected between the T phase and the R phase. The unit 7 calculates the load current values I1, I2, and I3 by the equations (15), (16), and (17), respectively.
 I1=I81+I84 …(15)
 I2=I82+I85 …(16)
 I3=I83+I86 …(17)
I1 = I81 + I84 (15)
I2 = I82 + I85 (16)
I3 = I83 + I86 (17)
 制御部7は、負荷電流値I1、I2、I3と、式(1)、式(2)、式(3)、式(7)、式(8)、式(9)とを用いることで、R相の相電流値Irと、S相の相電流値Isと、T相の相電流値Itとを算出する。このように、制御部7が、電子機器から負荷電流情報と接続情報を受信することにより、三相の相電流値を算出することができる。 The control unit 7 uses the load current values I1, I2, and I3, and the expressions (1), (2), (3), (7), (8), and (9). The phase current value Ir of the R phase, the phase current value Is of the S phase, and the phase current value It of the T phase are calculated. Thus, the control part 7 can calculate a three-phase phase current value by receiving load current information and connection information from an electronic device.
 制御部7は、R相の相電流値Irと、S相の相電流値Isと、T相の相電流値Itを用いて、実施例1と同様の相切替部制御処理により、時刻tにおける最大相電流値MaxI[t]と、中間相電流値MidI[t]と、最小相電流値MinI[t]を決定し、電流差DeltaI[t]を算出して、電流しきい値Ithと比較することでR相、S相、T相の平衡状態を判定し、不平衡状態と判定した場合には、相切替部31~36の出力状態値及び切替優先順位を変更する。 The control unit 7 uses the phase switching unit control process similar to that in the first embodiment using the phase current value Ir of the R phase, the phase current value Is of the S phase, and the phase current value It of the T phase at the time t. The maximum phase current value MaxI [t], the intermediate phase current value MidI [t], and the minimum phase current value MinI [t] are determined, and the current difference DeltaI [t] is calculated and compared with the current threshold Ith. Thus, the equilibrium state of the R phase, the S phase, and the T phase is determined. If it is determined that the state is an unbalanced state, the output state values and switching priority of the phase switching units 31 to 36 are changed.
 なお、予め制御部7へ接続情報を入力することで、制御部7が接続情報を記憶してもよい。この場合、電子機器情報は、接続情報を含まない。 The control unit 7 may store the connection information by inputting the connection information to the control unit 7 in advance. In this case, the electronic device information does not include connection information.
 また、電子機器は、負荷電流値の代わりに、電子機器の負荷の大きさを示す負荷情報を計測してもよい。負荷情報は例えば、当該電子機器内のCPUの使用率やメモリの使用率等である。例えば、n個の電子機器が同一の種類である場合、制御部7は、負荷情報から負荷電流値を推定してもよい。 In addition, the electronic device may measure load information indicating the magnitude of the load on the electronic device instead of the load current value. The load information is, for example, a CPU usage rate or a memory usage rate in the electronic device. For example, when n electronic devices are of the same type, the control unit 7 may estimate the load current value from the load information.
 本実施例によれば、電力分配器100は、入力される三相交流の相電流値を計測しなくても、電子機器81~8nにより計測された負荷電流値を取得し、負荷電流値に基づいて相電流値を算出することで、実施例1と同様に、相切替部を制御することができる。 According to the present embodiment, the power distributor 100 acquires the load current value measured by the electronic devices 81 to 8n without measuring the input three-phase AC phase current value, and sets the load current value as the load current value. By calculating the phase current value based on this, the phase switching unit can be controlled as in the first embodiment.
 なお、制御部7は、相電流情報や負荷電流情報等を電流情報と呼ぶことがある。制御部7は、このように複数の箇所で計測された電流の大きさを示す電流情報を取得することにより、三相の電流の不平衡状態を検出することができる。制御部7は、電流情報に基づいて、各相切替部に対し、三相の中の二相を示す制御信号を出力する。 In addition, the control part 7 may call phase current information, load current information, etc. as current information. The control unit 7 can detect an unbalanced state of three-phase currents by acquiring current information indicating the magnitudes of currents measured at a plurality of locations in this way. Based on the current information, the control unit 7 outputs a control signal indicating two of the three phases to each phase switching unit.
 本発明は、前述の各実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでも無い。例えば、各実施例では、単相交流出力電圧を、R相-S相間電圧、S相-T相間電圧、T相-R相間電圧としたが、これに限るものではない。 The present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the scope of the invention. For example, in each embodiment, the single-phase AC output voltage is the R-phase to S-phase voltage, the S-phase to T-phase voltage, and the T-phase to R-phase voltage, but is not limited thereto.
 また、各実施例において、制御部7は、S530における評価値として、電流差DeltaI[t]を用いたが、これに限るものではない。例えば、制御部7は、Ir、Is、Itから正相電流と逆相電流を算出し、正相電流と逆相電流から電流不平衡率を評価値として算出し、電流不平衡率が予め設定された電流不平衡率しきい値以上であることを、不平衡条件としても構わない。 In each embodiment, the control unit 7 uses the current difference DeltaI [t] as the evaluation value in S530, but is not limited thereto. For example, the control unit 7 calculates a normal phase current and a reverse phase current from Ir, Is, It, calculates a current unbalance rate as an evaluation value from the positive phase current and the reverse phase current, and sets the current unbalance rate in advance. It may be the unbalanced condition that the current unbalance rate is equal to or greater than the threshold value.
 以上の各実施例によれば、制御部7は、相電流情報や負荷電流情報等を、電流情報として取得し、電流情報に基づいて、各相切替部に対する相切替指示信号を出力する。このように、制御部7が、三相の電流や複数の電子機器等、複数の箇所で計測された電流に基づいて相切替部を制御することにより、三相の電流の不平衡を抑えることができる。また、ダミー負荷、AC/DC電力変換器、DC/AC電力変換器等を用いずに、複数のスイッチを用いることにより、電力の損失を防ぐことができる。また、三相の給電設備に対し、複数の単相負荷を電流バランスの検討無しに接続した場合であっても、三相の電流不平衡を小さくでき、特定の相のみ大電流となることにより過電流などの異常の発生を防ぐと共に、電力設備容量の有効活用を図る事ができる。 According to each embodiment described above, the control unit 7 acquires phase current information, load current information, and the like as current information, and outputs a phase switching instruction signal for each phase switching unit based on the current information. In this way, the control unit 7 controls the phase switching unit based on currents measured at a plurality of locations such as a three-phase current and a plurality of electronic devices, thereby suppressing a three-phase current imbalance. Can do. Moreover, power loss can be prevented by using a plurality of switches without using a dummy load, an AC / DC power converter, a DC / AC power converter, or the like. In addition, even when multiple single-phase loads are connected to a three-phase power supply facility without considering current balance, the three-phase current imbalance can be reduced, and only a specific phase has a large current. It is possible to prevent the occurrence of abnormalities such as overcurrent and to effectively use the power equipment capacity.
 1…三相交流受電部、 21、22、23…三相交流電流計、 3n…相切替部、 4n1、4n2…切替部、 5n…切替制御部、 6n…単相交流出力部、 7…制御部、 8n…電子機器、 9…外部信号入力端子、 100…電力分配器、 SWn11A、SWn12A、SWn13A、SWn21A、SWn22A、SWn23A、SWn11B、SWn12B、SWn21B、SWn22B、SWn11C、SWn21C…切替スイッチ
 
DESCRIPTION OF SYMBOLS 1 ... Three-phase alternating current power receiving part 21, 22, 23 ... Three-phase alternating current ammeter, 3n ... Phase switching part, 4n1, 4n2 ... Switching part, 5n ... Switching control part, 6n ... Single phase alternating current output part, 7 ... Control 8n ... electronic equipment, 9 ... external signal input terminal, 100 ... power distributor, SWn11A, SWn12A, SWn13A, SWn21A, SWn22A, SWn23A, SWn11B, SWn12B, SWn21B, SWn22B, SWn11C, SWn21C ...

Claims (11)

  1.  三相の交流電源に接続され複数の電子機器に夫々接続される複数の切替デバイスと、
     複数の箇所で計測された電流の大きさを示す電流情報を取得し、各切替デバイスに対し、前記電流情報に基づいて前記三相のうち二相を選択し前記選択された二相の出力を指示する制御デバイスと、
    を備え、
     各切替デバイスは、前記三相のうち前記指示された二相を出力することで、対応する電子機器へ単相の交流を出力する、
    を備える電力分配器。
    A plurality of switching devices connected to a three-phase AC power source and respectively connected to a plurality of electronic devices;
    Current information indicating the magnitude of the current measured at a plurality of locations is obtained, and for each switching device, two phases of the three phases are selected based on the current information, and the selected two-phase output is obtained. A control device to direct;
    With
    Each switching device outputs a single-phase alternating current to the corresponding electronic device by outputting the indicated two phases of the three phases.
    A power distributor comprising:
  2.  前記制御デバイスは、前記電流情報に基づいて、前記三相の電流の不平衡の大きさを示す評価値を算出し、
     前記制御デバイスは、前記不平衡の大きさを減少させることを条件として、前記複数の切替デバイスの中から特定切替デバイスを選択し、前記特定切替デバイスに出力される二相を変更し、前記変更された二相の出力を前記特定切替デバイスへ指示する、
    請求項1に記載の電力分配器。
    The control device calculates an evaluation value indicating the magnitude of the unbalance of the three-phase current based on the current information,
    The control device selects a specific switching device from the plurality of switching devices on condition that the magnitude of the unbalance is reduced, changes two phases output to the specific switching device, and changes the change Directing the specified two-phase output to the specific switching device,
    The power distributor according to claim 1.
  3.  前記制御デバイスは、定期的に、前記電流情報を取得し、前記電流情報に基づいて前記評価値を算出し、前記評価値が予め設定された不平衡条件を満たすか否かを判定し、前記評価値が前記不平衡条件を満たすと判定された場合、前記特定切替デバイスを選択し、前記特定切替デバイスを制御する、
    請求項2に記載の電力分配器。
    The control device periodically acquires the current information, calculates the evaluation value based on the current information, determines whether the evaluation value satisfies a preset unbalance condition, When it is determined that the evaluation value satisfies the unbalanced condition, the specific switching device is selected and the specific switching device is controlled.
    The power distributor according to claim 2.
  4.  前記制御デバイスは、前記電流情報に基づいて前記三相の電流値を取得し、前記三相の中から、電流値の大きい順に第一相と第二相と第三相とを選択し、前記第一相の電流値から前記第三相の電流値を減ずることで前記評価値を算出し、前記評価値が予め設定された評価しきい値を超えるか否かを判定し、前記評価値が前記評価しきい値を超えると判定された場合、前記評価値が不平衡条件を満たすと判定する、
    請求項3に記載の電力分配器。
    The control device acquires the current value of the three phases based on the current information, and selects the first phase, the second phase, and the third phase from the three phases in descending order of the current value, The evaluation value is calculated by subtracting the current value of the third phase from the current value of the first phase, whether or not the evaluation value exceeds a preset evaluation threshold value, and the evaluation value is If it is determined that the evaluation threshold is exceeded, the evaluation value is determined to satisfy an unbalanced condition;
    The power distributor according to claim 3.
  5.  前記制御デバイスは、前記評価値が前記不平衡条件を満たすと判定された場合、前記複数の切替デバイスの中から、前記第一相と前記第二相を出力する前記特定切替デバイスを選択し、前記第二相と前記第三相の出力を前記特定切替デバイスへ指示する、
    請求項4に記載の電力分配器。
    When it is determined that the evaluation value satisfies the unbalanced condition, the control device selects the specific switching device that outputs the first phase and the second phase from the plurality of switching devices, Instructing the specific switching device to output the second phase and the third phase;
    The power distributor according to claim 4.
  6.  前記制御デバイスは、各切替デバイスに出力される二相を示す状態値と、各切替デバイスの選択の優先度とを記憶し、
     前記制御デバイスは、各切替デバイスの状態値に基づいて、前記複数の切替デバイスの中から、前記第一相と前記第二相を出力する切替デバイス群を選択し、前記切替デバイス群の中から、最高の優先度に対応する切替デバイスを前記特定切替デバイスとして選択し、前記特定切替デバイスの優先度を低下させる、
    請求項5に記載の電力分配器。
    The control device stores a state value indicating two phases output to each switching device, and a priority of selection of each switching device,
    The control device selects a switching device group that outputs the first phase and the second phase from the plurality of switching devices based on a state value of each switching device, and selects the switching device group from the switching device group Selecting the switching device corresponding to the highest priority as the specific switching device, and lowering the priority of the specific switching device;
    The power distributor according to claim 5.
  7.  各切替デバイスは、前記三相のうち前記指示された二相を、対応する電子機器に接続する、2個以上のスイッチを含む、
    請求項1に記載の電力分配器。
    Each switching device includes two or more switches that connect the indicated two phases of the three phases to a corresponding electronic device.
    The power distributor according to claim 1.
  8.  前記三相の電流の大きさを夫々示す前記三相の電流値を計測し、前記三相の電流値を含む前記電流情報を前記制御デバイスへ出力する、電流計測部を更に備える、
    請求項1に記載の電力分配器。
    Further comprising a current measurement unit that measures the current values of the three phases each indicating the magnitude of the current of the three phases, and outputs the current information including the current values of the three phases to the control device;
    The power distributor according to claim 1.
  9.  前記制御デバイスは、各電子機器と、前記電子機器に接続される切替デバイスとの関係を示す接続情報を記憶し、
     各電子機器により、前記電子機器を流れる電流の大きさを示す電流値が計測され、前記計測された電流値を含む前記電流情報が出力され、
     前記制御デバイスは、前記電流情報を取得し、
     前記制御デバイスは、前記電流情報及び前記接続情報に基づいて前記三相の電流値を算出し、前記三相の電流値に基づいて、各切替デバイスに対し前記選択された二相を選択する、
    請求項1に記載の電力分配器。
    The control device stores connection information indicating a relationship between each electronic device and a switching device connected to the electronic device,
    By each electronic device, a current value indicating the magnitude of the current flowing through the electronic device is measured, and the current information including the measured current value is output,
    The control device obtains the current information;
    The control device calculates the three-phase current value based on the current information and the connection information, and selects the selected two phases for each switching device based on the three-phase current value.
    The power distributor according to claim 1.
  10.  前記制御デバイスは、各電子機器から前記接続情報を受信する、
    請求項9に記載の電力分配器。
    The control device receives the connection information from each electronic device;
    The power distributor according to claim 9.
  11.  三相の交流電源に接続され複数の電子機器に夫々接続される複数の切替デバイスを制御する制御デバイスにより、複数の箇所で計測された電流の大きさを示す電流情報を取得し、
     前記制御デバイスにより、各切替デバイスに対し、前記電流情報に基づいて前記三相のうち二相を選択し前記選択された二相の出力を指示し、
     各切替デバイスにより、前記三相のうち前記指示された二相を出力することで、対応する電子機器へ単相の交流を出力する、
    ことを実行する電力分配方法。
     
    With a control device that controls a plurality of switching devices connected to a three-phase AC power source and connected to each of a plurality of electronic devices, current information indicating the magnitude of current measured at a plurality of locations is acquired,
    By the control device, for each switching device, select the two phases of the three phases based on the current information and instruct the output of the selected two phases,
    By each switching device, by outputting the indicated two phases of the three phases, to output a single-phase alternating current to the corresponding electronic device,
    Power distribution method to do that.
PCT/JP2015/070002 2015-07-13 2015-07-13 Power distributor and power distribution method WO2017009921A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070002 WO2017009921A1 (en) 2015-07-13 2015-07-13 Power distributor and power distribution method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070002 WO2017009921A1 (en) 2015-07-13 2015-07-13 Power distributor and power distribution method

Publications (1)

Publication Number Publication Date
WO2017009921A1 true WO2017009921A1 (en) 2017-01-19

Family

ID=57758024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070002 WO2017009921A1 (en) 2015-07-13 2015-07-13 Power distributor and power distribution method

Country Status (1)

Country Link
WO (1) WO2017009921A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065859A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Power conversion device
CN109617097A (en) * 2018-12-26 2019-04-12 贵州电网有限责任公司 Three-phase load unbalance self-decision administering method based on fuzzy neural network algorithm
CN110380434A (en) * 2019-07-03 2019-10-25 青岛鼎信通讯股份有限公司 A kind of three-phase imbalance automatic adjustment algorithm based on phase-change switch
CN112583031A (en) * 2020-10-27 2021-03-30 深圳供电局有限公司 Phase switching device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731058A (en) * 1993-07-15 1995-01-31 Mitsubishi Electric Corp Power supply output controller
JP2000514279A (en) * 1995-05-22 2000-10-24 ターゲット−ハイテック エレクトロニクス リミテッド Apparatus and method for equally distributing electrical loads to a three-phase distribution network
JP2003087977A (en) * 2001-09-10 2003-03-20 Fuji Photo Film Co Ltd Load connection controller and photograph processing system
JP2014202572A (en) * 2013-04-04 2014-10-27 富士電機株式会社 Power measurement device and power measurement system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731058A (en) * 1993-07-15 1995-01-31 Mitsubishi Electric Corp Power supply output controller
JP2000514279A (en) * 1995-05-22 2000-10-24 ターゲット−ハイテック エレクトロニクス リミテッド Apparatus and method for equally distributing electrical loads to a three-phase distribution network
JP2003087977A (en) * 2001-09-10 2003-03-20 Fuji Photo Film Co Ltd Load connection controller and photograph processing system
JP2014202572A (en) * 2013-04-04 2014-10-27 富士電機株式会社 Power measurement device and power measurement system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065859A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Power conversion device
US10811997B2 (en) 2017-09-29 2020-10-20 Daikin Industries, Ltd. Power conversion device
CN109617097A (en) * 2018-12-26 2019-04-12 贵州电网有限责任公司 Three-phase load unbalance self-decision administering method based on fuzzy neural network algorithm
CN109617097B (en) * 2018-12-26 2022-06-21 贵州电网有限责任公司 Three-phase load unbalance self-decision-making treatment method based on fuzzy neural network algorithm
CN110380434A (en) * 2019-07-03 2019-10-25 青岛鼎信通讯股份有限公司 A kind of three-phase imbalance automatic adjustment algorithm based on phase-change switch
CN112583031A (en) * 2020-10-27 2021-03-30 深圳供电局有限公司 Phase switching device and method
CN112583031B (en) * 2020-10-27 2023-08-25 深圳供电局有限公司 Phase switching device and method

Similar Documents

Publication Publication Date Title
KR100431793B1 (en) Apparatus for and Method of Evenly Distributing an Electrical Load Across a Three-Phase Power Distribution Network
US9755528B2 (en) AC-DC converter with output power suppression
WO2017009921A1 (en) Power distributor and power distribution method
US10615711B2 (en) Apparatus for controlling output voltage for single-type converter, and method therefor
US8254072B2 (en) Electrical load center
US20120275202A1 (en) Series multiplex power conversion apparatus
JP2010154613A (en) Dc power supply device
KR20090019619A (en) Apparatus and method for neutral current reduction using load switching method
US10256804B2 (en) Fault detector for anti-parallel thyristor
JP2006337193A (en) Electric power measuring apparatus
US10148091B2 (en) High voltage direct current power transmission series valve group control device
US9991712B1 (en) Reactive power compensation apparatus and control method thereof
WO2014040529A1 (en) Flexible rectifier for providing variety of on-demand voltages
JP6782442B2 (en) Measuring equipment, measuring system and computer system
US20240055994A1 (en) Method for paralleling of interleaved power converters
JP2004023922A (en) Voltage compensating circuit for parallelly operated inverter
WO2021131741A1 (en) Switching module and power supply system
JP7358007B2 (en) Vehicle charging system
JP6773204B1 (en) Distributed power system
KR102036578B1 (en) Apparatus for detecting output phase open in inverter
KR20160076379A (en) Apparatus for controlling output voltage of single type converter
JP7088702B2 (en) Power supply circuit and power supply method
CN114552303B (en) Three-phase load balancing power distribution socket and server
US10985631B1 (en) Microturbine electricity generation system and electricity management method thereof
RU2314630C1 (en) Device for measuring three-phased voltage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP