WO2017009516A1 - Device for emitting torsional ultrasonic waves and transducer comprising said device - Google Patents

Device for emitting torsional ultrasonic waves and transducer comprising said device Download PDF

Info

Publication number
WO2017009516A1
WO2017009516A1 PCT/ES2016/070540 ES2016070540W WO2017009516A1 WO 2017009516 A1 WO2017009516 A1 WO 2017009516A1 ES 2016070540 W ES2016070540 W ES 2016070540W WO 2017009516 A1 WO2017009516 A1 WO 2017009516A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
specimen
waves
rings
wave
Prior art date
Application number
PCT/ES2016/070540
Other languages
Spanish (es)
French (fr)
Inventor
Guillermo Rus Calborg
Alicia VALERA MARTÍNEZ
Elena SÁNCHEZ MUÑOZ
Francisca MOLINA GARCÍA
Original Assignee
Universidad De Granada
Servicio Andaluz De Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada, Servicio Andaluz De Salud filed Critical Universidad De Granada
Priority to AU2016293204A priority Critical patent/AU2016293204B2/en
Priority to CA2996877A priority patent/CA2996877A1/en
Priority to US15/747,402 priority patent/US11161149B2/en
Priority to PL16823934T priority patent/PL3324181T3/en
Priority to EP16823934.1A priority patent/EP3324181B1/en
Priority to RS20201484A priority patent/RS61310B1/en
Priority to DK16823934.1T priority patent/DK3324181T3/en
Priority to ES16823934T priority patent/ES2846738T3/en
Priority to SI201631014T priority patent/SI3324181T1/en
Publication of WO2017009516A1 publication Critical patent/WO2017009516A1/en
Priority to HRP20201958TT priority patent/HRP20201958T1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/10Measuring characteristics of vibrations in solids by using direct conduction to the detector of torsional vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body
    • G01N11/162Oscillations being torsional, e.g. produced by rotating bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02475Tissue characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves

Definitions

  • the present invention is related to piezoelectric transducers, used in the industries of medical diagnosis, industrial and aeronautical monitoring, among others. More specifically, it is a piezoelectric transducer for the generation and reception of ultrasonic and sonic torsion waves in solid, quasi-incompressible media (with Poisson coefficient close to 0.5), gels and certain fluids.
  • Torsion waves are a spatial distribution of transverse waves that propagate along an axis in which a movement of particles occurs along a circle centered on that axis, so that the amplitude of the movement in the Generation plane is proportional to the distance to the axis within the diameter of the transducer.
  • a transducer is a device capable of transforming or converting a certain type of input energy, into another one other than the output.
  • electromechanical transducers which transform electrical energy into mechanics in the form of displacements coupled elastically with voltages, in a bidirectional way.
  • Ultrasonic transducers emit and receive ultrasonic waves allowing, from mechanics of solids, to identify changes of consistency in tissues that could indicate the presence of tumors, quantify mechanical or physical changes in the tissue can anticipate certain pathologies before other diagnostic techniques.
  • the only practical technique for screening nodules is manual palpation.
  • Quasi-compressible materials soft tissues and gels
  • whose Poisson coefficient is approximately 0.5 have the difficulty that the compressibility module and the shear module are different.
  • types of P and S waves are propagated, with different magnitudes, spurious P waves are generated that dominate and mask S waves, not allowing commercial devices to read S waves, which are what provide us with information about the shear module.
  • the ultrasonic technique is a low-cost technique that does not have ionizing effects such as other diagnostic means such as X-rays.
  • the usual ultrasonic transducers emit and receive P waves and S waves, P waves are longitudinal waves while the S waves are transverse propagating waves, it is also known that the speed of the P probes is of much greater order than the speed of the S probes. They are generated by the electrical excitation of piezoelectric crystals arranged in certain directions with respect to their polarization, thereby generating compression or shear movements.
  • the propagation of the torsion waves is correlated by the elastic wave propagation equations with the shear module, while the longitudinal ones, with the compressibility module.
  • the compressibility module varies only percentage fractions with pathologies, while the shear modulus varies in several orders of magnitude, so that, using ultrasonic transducers based on torsion waves, a sensitivity much higher than that obtained can be achieved. with ultrasonic transducers based on P and S waves.
  • Winding torsion wave generators are known, but they have as their main drawback the higher frequency limitation, since they do not allow the emission of ultrasonic waves, and more importantly, contamination with other spurious waves due to the complexity of the systems and the coupling between several movement modes. This is the case of US 5,321, 333, which presents a bilateral device (generates two waves at each end) to generate shear movements based on the combination of polarized piezoelectric elements, which are attached to a solid stem to transmit the movement. Transducers that emit torsion waves are also known, such as those described in [WO 2012172136].
  • torsion waves is performed thanks to a transmission disk that combines a pair of elastic discs that provides the necessary inertia to reduce the resonance frequency and stiffness to reduce the expansion waves, and a selection of transversely polarized piezoelectric elements that transform the electrical signal into mechanical movement.
  • the signal received with the described devices contains too much noise, so their analysis presents serious difficulties.
  • the lack of quality of this signal does not allow a correct reconstruction of the structural characteristics of the specimen in certain situations.
  • the physical principle to mechanically characterize the structure of a medium is as follows: A physical quantity is propagated in a waveform through the medium to be analyzed, which distorts the wave until it is measured on an accessible surface. The mechanical parameters responsible for the modification of the wave can be deduced from the measurements that are made through the theory of the inverse problem based on models. This technique is the most powerful strategy known so far.
  • Fibroscan® http: /7www.fibroscan. Co.uk/
  • Fibroscan® http: /7www.fibroscan. Co.uk/
  • the present invention refers to a device that allows to identify consistency changes in materials under study.
  • the invention describes a torsion wave emitter, hereinafter “emitter of the invention” comprising an electromechanical actuator stimulated by a signal generator that allows to generate torsion waves with a greater amplitude.
  • a second aspect of the invention relates to an ultrasonic transducer, hereinafter "transducer of the invention” comprising the emitter of the invention.
  • This invention is based on the generation and measurement of ultrasound by the unconventional use of shear and / or surface waves instead of longitudinal waves, since they are several orders of magnitude more sensitive to variations in the microstructure of the relevant cervical stroma, closely related to viscoelastic tissue shear modules.
  • the generation of the waves is produced with an electromechanical actuator stimulated by an electric signal generator and translates into a magnitude of signal up to 10 times greater (passing from values between 2 and 3 mV to maximum values between 20 and 40mV), which reduces the noise level considerably and, consequently, facilitates the analysis of the received waves.
  • the emitter of the invention allows to emit torsion waves at various frequencies, by means of electrical excitation at said frequencies, whose propagation speed depends directly on the shear module, the main indicator of soft tissue consistency.
  • the use of torsion waves offers greater sensitivity in the detection of irregularities in the consistency of tissues and has the advantage of virtually eliminating compression waves that pollute the signal due to its complex propagation modes.
  • ultrasonic waves as physical magnitude has two fundamental advantages. First, it is a controllable mechanical wave and therefore more sensitive to mechanical properties than any other indirect measurement. Second, the wave is generated in a low energy regime, which is more sensitive to variations in tissue consistency than those generated at high energy
  • transducer of the invention it is possible, from mechanics of solids, to identify changes in consistency in tissues that could indicate the presence of tumors and any disorder that are manifested in the form of said consistency changes.
  • FIG. 1 DESCRIPTION OF THE FIGURES Figure 1.- Representation of the issuer.
  • the contact element (1), the electromechanical actuator (2) and the electrical signal generator (3) can be appreciated.
  • (e) represents the axis of the emitter.
  • Figure 2. Representation of a particular embodiment of the contact element (1).
  • (B) represents the major base of the trunk and (b) the minor base.
  • Figure 3. Representation of a section of the receiver in which the rings (anterior, 4a, and posterior, 4b) and the piezoelectric elements (5) are appreciated.
  • (e ') represents the axis of the receiver.
  • Figure 4.- represents the arrangement of the emitter and the receiver in which the contact element (1), the rings (4) and the piezoelectric elements (5) can be seen.
  • (e ') represents the axis of the receiver, which in this arrangement coincides with that of the transmitter.
  • Figure 5. Schematic representation of the contact between the transducer and the specimen (S).
  • P represents the contact plane, (1) the contact element, (2) the electromechanical actuator, (4a) the anterior ring, (4b) the rear ring and (5) the piezoelectric elements (5).
  • Figure 7. Section of the transducer of the invention in which the arrangement of the emitter is appreciated, in which (1) represents the contact element and (2) the electromagnetic actuator, with respect to the receiver, where (4a) and ( 4b) represent the anterior and posterior rings and (5) the piezoelectric elements, and their arrangement inside a housing (7) together with the attenuator elements (8).
  • the material preferably tissue, tissue culture or cell culture, through which the waves emitted by the transducer are passed to know its structural characteristics (elastic parameters, viscoelastic, microstructural geometry, porous, or energy dissipation models, among others).
  • electromechanical actuator shall be understood as a device capable of transforming electrical energy into a movement, particularly a rotational movement.
  • the electromechanical actuator is stimulated with an electrical signal generated by an electric pulse generator and is capable of transforming that signal into a minimum turn fraction, which will be used to generate the wave that is subsequently analyzed. .
  • An example of this type of actuator may consist of an electromagnetic motor.
  • the electromechanical actuator is stimulated by means capable of generating waves or electrical signals, hereinafter "generator of electrical signals”.
  • electrical signal an electrical quantity whose value depends on time.
  • constant magnitudes will be considered as particular cases of electrical signals.
  • the electrical signals generated by an electric signal generator can be periodic (sine, square, triangular, shaped like "sawtooth", etc.). In this way, when connected to an actuator that transforms the signal into a rotational movement, it rotates a minimum fraction of a turn depending on the voltage, frequency and / or time between pulses that are determined by the signal.
  • any electronic circuit that digitizes the electrical signals at the desired frequencies can be used.
  • Another example of an electrical signal generator, used in the experimental designs of the present invention can be an oscilloscope, since it allows to emit an electrical signal with a variable voltage over a given time.
  • Biocompatible material means a material whose composition does not interfere or degrade the biological medium in which it is used. These materials usually used to make devices or elements thereof that must be in direct, brief or prolonged contact with the tissues and internal fluids of the body such as probes, syringes, prostheses, etc.
  • An example of this material is polylactic acid (PLA).
  • contact element the part or element located in the distal or anterior part of the transducer and that comes into contact with the specimen on which the wave is intended to be transmitted.
  • the surface of the contact element that comes into contact with the specimen must be substantially flat to allow adequate transmission of the wave.
  • a first aspect of the invention consists of an emitting device ("emitter of the invention") of torsional ultrasonic waves comprising ( Figure 1) an electrical signal generator (3) connected to an electromechanical actuator (2 ) which in turn is connected to the contact element (1), so that when the actuator receives electrical signals, it induces a rotation movement to the contact element and this, when coming into contact with the specimen, induces a torsion wave that goes through that specimen.
  • emitter of the invention torsional ultrasonic waves
  • Figure 1 an electrical signal generator (3) connected to an electromechanical actuator (2 ) which in turn is connected to the contact element (1), so that when the actuator receives electrical signals, it induces a rotation movement to the contact element and this, when coming into contact with the specimen, induces a torsion wave that goes through that specimen.
  • the wave transmitted by the transducer of the invention is a torsion wave, not longitudinal, which improves the quality of the received signals.
  • the wave front that is achieved with the emitter of the invention is propagated radially and penetrating simultaneously (toroidal front).
  • Another aspect of the invention relates to the torsion wave emission method employed by the emitter of the invention.
  • the electrical signal used to stimulate the actuator in this procedure will be an oscillatory signal, more preferably a sinusoidal signal and even more preferably a sinusoidal signal.
  • the variation of the voltage over time responds to the function
  • V (t) A ⁇ sen (ct)
  • A is the maximum amplitude of the wave, which corresponds to the maximum generation voltage.
  • the contact element has a substantially frustoconical shape (Figure 2), so that its minor base (b) is attached to the electromechanical actuator and its major base (B) is disposed at the distal end of the transducer of the invention for contacting the specimen on which it is desired to transmit the shear wave.
  • the contact element is made of biocompatible material.
  • the electromechanical actuator is coated by a Faraday cage that eliminates electronic noise. Specifically, the electromechanical actuator is wrapped with a conductive coating that acts like a Faraday cage.
  • a second aspect of the invention is a transducer capable of generating an ultrasonic torsion pulse that propagates through the specimen and capable of picking up the distorted pulse after traversing the specimen.
  • Said transducer (“transducer of the invention”) is a transducer comprising the emitter of the invention and means for receiving the distorted signal after crossing the specimen, hereinafter "receiver”.
  • the transducer receiver of the invention comprises two or more piezoelectric elements (5) located equidistant from each other, and placed between two rings (4a and 4b).
  • the rings are preferably made of non-conductive material, more preferably in biocompatible material, so that each piezoelectric element is in contact with two electrodes of different charge, arranged perpendicular to the polarization of said piezoelectric elements.
  • the faces of the rings that come into contact with the piezoelectric elements will be coated with conductive silver resin, which will act as an electrode on the joint faces between the piezoelectric elements and the shape rings that each ring will act independently as anode and cathode.
  • the polarization, understanding as such that the direction between the positive and negative electrode charges, of the piezoelectric elements can be carried out in two different ways.
  • the polarization is parallel to the axis, the electrodes being arranged on the lateral faces of said piezoelectric elements;
  • the polarization (P) is perpendicular to the axis in the radial direction, the electrodes being arranged at the junction between said piezoelectric elements and the rings ( Figure 6).
  • the piezoelectric elements (5) are made of PZT-4 or PZT-5 piezoelectric ceramics.
  • the transmission and reception elements of the transducer are arranged inside a housing (7, Figure 7) which, in addition to protecting the transducer against physical aggressions (such as falls or scratches), ensures the functionality of the device by fixing each element in its correct position.
  • the housing In the particular case where the transducer receiver of the invention is made up of concentric rings, the housing must keep the emitter located inside said rings, so that its axes of rotation.
  • the housing is made of polylactic acid (PLA).
  • PLA polylactic acid
  • the transducer of the invention further comprises an attenuating element (8), preferably of attenuating resin, fixed to the outer face of the ring that is furthest from the area of contact with the specimen, with the object of preventing the propagation of torsion waves in the opposite direction to the specimen, and therefore also avoiding energy losses.
  • an attenuating element (8) preferably of attenuating resin, fixed to the outer face of the ring that is furthest from the area of contact with the specimen, with the object of preventing the propagation of torsion waves in the opposite direction to the specimen, and therefore also avoiding energy losses.
  • the effective emission of torsion waves occurs on only one side of the transducer, which will be the one that comes into contact with the specimen, canceling the oscillation of the rear face by means of the attenuating element.
  • the cancellation of the emitted waves in the opposite direction to the specimen causes that the emitted waves require a simpler processing, since a cleaner signal is achieved.
  • the transducer of the invention which allows to emit and receive torsion waves, comprises the following elements:
  • a receiver that includes:
  • a housing that keeps the transmitter located inside the receiver so that the axes of the contact element and the rings coincide and the outside of said contact element and the outer face of one of the rings are kept in the same plane so that they can come into contact with the specimen.
  • the transducer is completed with a latex membrane adapted to the shape of the device that guarantees the dissipation of the wave that travels through it with an involution adapted between the emitter and the receiver.
  • a computational model is used that is combined with an "inverse problem" algorithm that receives as input the measurements of mechanical parameters such as Young's module, related to the compressibility of the samples, the attenuation of the waves transmitted through said samples, as well as the compressibility and / or shear modules of the ultrasonic wave with the specimen.
  • mechanical parameters such as Young's module, related to the compressibility of the samples, the attenuation of the waves transmitted through said samples, as well as the compressibility and / or shear modules of the ultrasonic wave with the specimen.
  • the mechanical properties of the specimen are reconstructed by comparing the received wave (subtracting the wave that travels through the capsule) with a simulated wave from the excitation signal of the electromechanical actuator, taking into account the internal delay of the system that refers to the transformation of the wave from the moment the pulse is emitted in the actuator until it reaches the end of the biocompatible element in contact with the specimen. This internal delay is independent of the specimen as well as the wave that is transmitted through the capsule.
  • the transducer comprises:
  • An oscilloscope connected to the electromechanical actuator in such a way that it transmits an electrical signal that the actuator transforms into a rotating movement that the contact element converts into a cut-off wave when it comes into contact with the specimen.
  • An aluminum foil arranged to form a coating of the electromechanical actuator and its conductive elements, and connected to the negative cable of the electromechanical actuator, so that it acts as a Faraday cage.
  • a first ring made of plastic material, preferably PLA of 17 mm outside diameter, 13 mm inside diameter and 5mm thick.
  • a second ring made of plastic material preferably PLA of 17 mm outside diameter, 13 mm inside diameter and 5 mm thick, placed parallel to the first ring.
  • a conductive coating located on the inner faces of each ring, so that it is in contact with the electrodes and functions as an electrode
  • piezoelectric elements made of PZT-4 or PZT-5 piezoelectric ceramics, with dimensions 1.5x1.5x2.5 mm, fixed to the rings. These piezoelectric elements are polarized in the circumferential direction, parallel to the rings, while electrodes are located at the junction between the piezoelectric elements and the inner face of the rings.
  • connection of the piezoelectric and wiring elements to the electrodes is done with conductive silver resin.
  • the union of the electromechanical actuator, which induces a torsion movement, with its aluminum coating is made with conductive silver resin.
  • the entire assembly is inserted into a housing adapted to the diagnostic device, made of PLA that ensures the functionality of the device with its corresponding attenuator elements with respect to the receiver and maintaining the relative arrangement between the transmitter and the receiver so that its axes of rotation coincide and the front part of the contact element and the outer part of the previous disk remain in the same plane.
  • the transducer is completed, for hygienic reasons, with a latex membrane adapted to the shape of the device. The use of the latex guarantees the dissipation of the wave that travels through it with an adapted involution between the emitter and the receiver.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Surgical Instruments (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

The invention relates to a wave-emitting device comprising an electromechanical actuator stimulated by a signal generator that allows it to generate torsional waves with a higher amplitude, and to an ultrasonic transducer comprising said device. The use of said devices allows the reconstruction of the structural characteristics of the materials subjected to the waves generated by the emitter device.

Description

DISPOSITIVO EMISOR DE ONDAS ULTRASÓNICAS DE TORSIÓN Y TRANSDUCTOR QUE LO COMPRENDE  ULTRASONIC TORSION WAVE AND TRANSDUCER EMISSING DEVICE THAT UNDERSTANDS
SECTOR DE LA TÉCNICA SECTOR OF THE TECHNIQUE
La presente invención está relacionada con transductores piezoeléctricos, utilizados en las industrias de diagnóstico médico, monitorización industrial y aeronáutica, entre otras. Más concretamente se trata de un transductor piezoeléctrico para la generación y recepción de ondas ultrasónicas y sónicas de torsión en medios sólidos, cuasi- incompresibles (con coeficiente de Poisson cercano a 0.5), geles y ciertos fluidos. The present invention is related to piezoelectric transducers, used in the industries of medical diagnosis, industrial and aeronautical monitoring, among others. More specifically, it is a piezoelectric transducer for the generation and reception of ultrasonic and sonic torsion waves in solid, quasi-incompressible media (with Poisson coefficient close to 0.5), gels and certain fluids.
Su campo de aplicación es el de los análisis no destructivos de materiales y concretamente, el uso de ondas ultrasónicas para analizar, preferentemente, tejidos biológicos. Este tipo de dispositivos permiten obtener información estructural de entornos físicos y químicos y conseguir, a partir de esta información, señales o impulsos eléctricos o viceversa. Its field of application is that of non-destructive analysis of materials and specifically, the use of ultrasonic waves to analyze, preferably, biological tissues. This type of device allows to obtain structural information of physical and chemical environments and to obtain, from this information, electrical signals or impulses or vice versa.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Las ondas de torsión son una distribución espacial de ondas transversales que se propagan a lo largo de un eje en las que se produce un movimiento de partículas a lo largo de una circunferencia con centro en dicho eje, de forma que la amplitud del movimiento en el plano de generación es proporcional a la distancia al eje dentro del diámetro del transductor. Torsion waves are a spatial distribution of transverse waves that propagate along an axis in which a movement of particles occurs along a circle centered on that axis, so that the amplitude of the movement in the Generation plane is proportional to the distance to the axis within the diameter of the transducer.
Estas ondas se propagan a través de medios sólidos y semisólidos, pero no a través de líquidos perfectos, por lo que la medición de la velocidad del sonido en este tipo de medios puede ser de gran utilidad para estudiar sus características estructurales. These waves propagate through solid and semi-solid media, but not through perfect liquids, so the measurement of the speed of sound in this type of media can be very useful for studying its structural characteristics.
Un transductor es un dispositivo capaz de transformar o convertir un determinado tipo de energía de entrada, en otra de diferente a la salida. Entre estos dispositivos se encuentran los transductores electromecánicos, que transforman energía eléctrica en mecánica en forma de desplazamientos acoplados elásticamente con tensiones, de forma bidireccional. Los transductores ultrasónicos emiten y reciben ondas ultrasónicas permitiendo, a partir de mecánica de sólidos, identificar cambios de consistencia en tejidos que podrían indicar la presencia de tumores, cuantificar cambios mecánicos o físicos en el tejido puede anticipar ciertas patologías antes que otras técnicas de diagnosis. Actualmente, la única técnica práctica de screening de nodulos consiste en la palpación manual. A transducer is a device capable of transforming or converting a certain type of input energy, into another one other than the output. Among these devices are electromechanical transducers, which transform electrical energy into mechanics in the form of displacements coupled elastically with voltages, in a bidirectional way. Ultrasonic transducers emit and receive ultrasonic waves allowing, from mechanics of solids, to identify changes of consistency in tissues that could indicate the presence of tumors, quantify mechanical or physical changes in the tissue can anticipate certain pathologies before other diagnostic techniques. Currently, the only practical technique for screening nodules is manual palpation.
Los materiales cuasi-compresibles (tejidos blandos y geles), cuyo coeficiente de Poisson es aproximadamente 0.5, tienen la dificultad de que el módulo de compresibilidad y el módulo de cizalla son diferentes. En estos materiales se propagan tipos de ondas P y S, con magnitudes diferentes, se generan ondas P espurias que predominan y enmascaran a las ondas S, no permitiendo a los dispositivos comerciales leer las ondas S, que son las que nos proporcionan información sobre el módulo de cizalla. Quasi-compressible materials (soft tissues and gels), whose Poisson coefficient is approximately 0.5, have the difficulty that the compressibility module and the shear module are different. In these materials, types of P and S waves are propagated, with different magnitudes, spurious P waves are generated that dominate and mask S waves, not allowing commercial devices to read S waves, which are what provide us with information about the shear module.
Además, la técnica de ultrasonidos es una técnica de bajo coste que no presenta efectos ionizantes como otros medios de diagnóstico tales como los rayos X. Los transductores ultrasónicos habituales emiten y reciben ondas P y ondas S, las ondas P son ondas longitudinales mientras que las ondas S son ondas que se propagan transversalmente, también es conocido que la velocidad de la sondas P es de orden muy superior a la velocidad de la sondas S. Son generadas por la excitación eléctrica de cristales piezoeléctricos dispuestos en ciertas direcciones respecto a su polarización, con lo que generan movimientos de compresión o de cizalla. In addition, the ultrasonic technique is a low-cost technique that does not have ionizing effects such as other diagnostic means such as X-rays. The usual ultrasonic transducers emit and receive P waves and S waves, P waves are longitudinal waves while the S waves are transverse propagating waves, it is also known that the speed of the P probes is of much greater order than the speed of the S probes. They are generated by the electrical excitation of piezoelectric crystals arranged in certain directions with respect to their polarization, thereby generating compression or shear movements.
La propagación de las ondas de torsión viene correlacionada mediante las ecuaciones de propagación de ondas elásticas con el módulo de cizalla, mientras que las longitudinales, con el módulo de compresibilidad. En tejidos blandos, el módulo de compresibilidad varía sólo fracciones de porcentaje con patologías, mientras que el de cizalla varía en varios órdenes de magnitud, con lo que, utilizando transductores ultrasónicos basados en ondas de torsión, puede conseguirse una sensibilidad muy superior a la obtenida con transductores ultrasónicos basados en ondas P y S. Se conocen generadores de ondas a torsión por bobinados, pero presentan como principal inconveniente la limitación superior de frecuencias, ya que no permiten emitir ondas ultrasónicas, y más importante, contaminación con otras ondas espurias consecuencia de la complejidad de los sistemas y el acoplamiento entre varios modos de movimiento. Es el caso de la patente US 5,321 ,333, que presenta un dispositivo bilateral (genera sendas ondas en cada extremo) para generar movimientos de cizalla basado en la combinación de elementos piezoeléctricos polarizados, que están unidos a un vástago sólido para trasmitir el movimiento. También se conocen transductores que emiten ondas de torsión, como los descritos en [WO 2012172136]. En esta patente, la generación de ondas de torsión se realiza gracias a un disco de transmisión que combina un par de discos elásticos que proporciona la inercia necesaria para reducir la frecuencia de resonancia y la rigidez para reducir las ondas de dilatación, y una selección de elementos piezoeléctricos transversalmente polarizados que transforman la señal eléctrica en movimiento mecánico. No obstante, la señal recibida con los dispositivos descritos contiene demasiado ruido por lo que su análisis presenta serias dificultades. La falta de calidad de esta señal no permite una correcta reconstrucción de las características estructurales del espécimen en determinadas situaciones. The propagation of the torsion waves is correlated by the elastic wave propagation equations with the shear module, while the longitudinal ones, with the compressibility module. In soft tissues, the compressibility module varies only percentage fractions with pathologies, while the shear modulus varies in several orders of magnitude, so that, using ultrasonic transducers based on torsion waves, a sensitivity much higher than that obtained can be achieved. with ultrasonic transducers based on P and S waves. Winding torsion wave generators are known, but they have as their main drawback the higher frequency limitation, since they do not allow the emission of ultrasonic waves, and more importantly, contamination with other spurious waves due to the complexity of the systems and the coupling between several movement modes This is the case of US 5,321, 333, which presents a bilateral device (generates two waves at each end) to generate shear movements based on the combination of polarized piezoelectric elements, which are attached to a solid stem to transmit the movement. Transducers that emit torsion waves are also known, such as those described in [WO 2012172136]. In this patent, the generation of torsion waves is performed thanks to a transmission disk that combines a pair of elastic discs that provides the necessary inertia to reduce the resonance frequency and stiffness to reduce the expansion waves, and a selection of transversely polarized piezoelectric elements that transform the electrical signal into mechanical movement. However, the signal received with the described devices contains too much noise, so their analysis presents serious difficulties. The lack of quality of this signal does not allow a correct reconstruction of the structural characteristics of the specimen in certain situations.
También se conocen técnicas [Parra-Saavedra, M., Gómez, L, Barrero, A., Parra, G., Vergara, F., and Navarro, E. (201 1) Ultrasound in Obstetrics \&Gynecology 38, 44-51], [Peralta, L, Bochud, N., and Rus, G. (2013) Submitted to J. MechanicalBehavior of BiomedicalMaterials], [Feltovich, H., Hall, T., and Berghella, V. (2012) American journal of obstetrics and gynecology 207, 345-354] o [Feltovich, H., Hall, T., and Berghella, V. (2012) American journal of obstetrics and gynecology 207, 345-354] para evaluar la elasticidad del tejido como la elastografía de onda de corte (SSI) o el índice de consistencia cervical (CCI) y el histograma de niveles medios de gris. Ambas técnicas presentan varios inconvenientes, y es que generan ondas de compresión espurias que enmascaran las ondas de corte relevantes. Además la velocidad que define la rigidez cervical suele ser mucho más alta que la velocidad máxima de onda de corte ya que ésta se encuentra limitada por la velocidad de toma de imágenes del SSI. Por otro lado el mapa de color de la elastografía cuasi estática es sólo una descripción cualitativa de la distribución relativa de tensiones, no llega a ser una descripción cuantitativa de la rigidez real del tejido. El principio físico para caracterizar mecánicamente la estructura de un medio es el siguiente: Una magnitud física se propaga en forma de onda a través del medio a analizar, lo que distorsiona la onda hasta que se mide en una superficie accesible. Los parámetros mecánicos responsables de la modificación de la onda se pueden deducir a partir de las medidas que se realicen por medio de la teoría del problema inverso basado en modelos. Esta técnica es la estrategia más potente conocida hasta el momento. Techniques are also known [Parra-Saavedra, M., Gómez, L, Barrero, A., Parra, G., Vergara, F., and Navarro, E. (201 1) Ultrasound in Obstetrics \ & Gynecology 38, 44-51 ], [Peralta, L, Bochud, N., and Rus, G. (2013) Submitted to J. MechanicalBehavior of BiomedicalMaterials], [Feltovich, H., Hall, T., and Berghella, V. (2012) American journal of obstetrics and gynecology 207, 345-354] or [Feltovich, H., Hall, T., and Berghella, V. (2012) American journal of obstetrics and gynecology 207, 345-354] to evaluate tissue elasticity such as Cut-wave elastography (SSI) or cervical consistency index (ICC) and histogram of medium gray levels. Both techniques have several drawbacks, and they generate spurious compression waves that mask the relevant shear waves. In addition, the speed that defines the cervical stiffness is usually much higher than the maximum cut-off wave velocity since it is limited by the SSI image rate. On the other hand, the color map of quasi-static elastography is only a qualitative description of the relative stress distribution, it does not become a quantitative description of the actual tissue stiffness. The physical principle to mechanically characterize the structure of a medium is as follows: A physical quantity is propagated in a waveform through the medium to be analyzed, which distorts the wave until it is measured on an accessible surface. The mechanical parameters responsible for the modification of the wave can be deduced from the measurements that are made through the theory of the inverse problem based on models. This technique is the most powerful strategy known so far.
Entre los dispositivos para elastosonografía se conocen diversos productos comerciales como Fibroscan® (http:/7www.fibroscan. co.uk/) que emite únicamente un pulso de ondas de compresión de baja frecuencia, cuya propagación se monitoriza mediante el principio elastográfica usando un segundo frente de ondas de compresión a mayor frecuencia. Se hace, por tanto, necesario, desarrollar transductores alternativas capaces emitir y recibir ondas de torsión con frecuencia ultrasónica que permitan obtener una sensibilidad apropiada para la detección de irregularidades en la consistencia de tejidos indetectables hasta ahora salvo por palpación sin que la señal se vea contaminada por ondas espurias. Among the devices for elastosonography, several commercial products are known as Fibroscan® (http: /7www.fibroscan. Co.uk/) that emits only one pulse of low frequency compression waves, the propagation of which is monitored by the elastographic principle using a second compression wave front at higher frequency. It is therefore necessary to develop alternative transducers capable of emitting and receiving torsion waves with ultrasonic frequency that allow obtaining an appropriate sensitivity for the detection of irregularities in the consistency of undetectable tissues until now except by palpation without the signal being contaminated by spurious waves.
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención hace referencia a un dispositivo que permite identificar cambios de consistencia en materiales bajo estudio. The present invention refers to a device that allows to identify consistency changes in materials under study.
Concretamente, en un primer aspecto, la invención describe un emisor de ondas de torsión, en adelante "emisor de la invención" que comprende un actuador electromecánico estimulado por un generador de señales que permite generar ondas de torsión con una mayor amplitud. Specifically, in a first aspect, the invention describes a torsion wave emitter, hereinafter "emitter of the invention" comprising an electromechanical actuator stimulated by a signal generator that allows to generate torsion waves with a greater amplitude.
Un segundo aspecto de la invención se refiere a un transductor ultrasónico, en adelante "transductor de la invención" que comprende el emisor de la invención. Esta invención se basa en la generación y medida de ultrasonidos mediante el uso no convencional de ondas de corte y/o superficie en lugar de ondas longitudinales, ya que son varios órdenes de magnitud más sensibles a las variaciones de la microestructura del estroma cervical relevante, estrechamente relacionadas con los módulos viscoelásticos de cizalla del tejido. A second aspect of the invention relates to an ultrasonic transducer, hereinafter "transducer of the invention" comprising the emitter of the invention. This invention is based on the generation and measurement of ultrasound by the unconventional use of shear and / or surface waves instead of longitudinal waves, since they are several orders of magnitude more sensitive to variations in the microstructure of the relevant cervical stroma, closely related to viscoelastic tissue shear modules.
A diferencia de los dispositivos conocidos, en particular, los descritos en [WO 2012172136], la generación de las ondas se produce con un actuador electromecánico estimulado por un generador de señales eléctricas y se traduce en una magnitud de señal hasta 10 veces mayor (pasando de valores de entre 2 y 3 mV a valores máximos de entre 20 y 40mV), lo que reduce el nivel de ruido considerablemente y, consecuentemente, facilita el análisis de las ondas recibidas. Unlike the known devices, in particular, those described in [WO 2012172136], the generation of the waves is produced with an electromechanical actuator stimulated by an electric signal generator and translates into a magnitude of signal up to 10 times greater (passing from values between 2 and 3 mV to maximum values between 20 and 40mV), which reduces the noise level considerably and, consequently, facilitates the analysis of the received waves.
Asimismo, el emisor de la invención permite emitir ondas de torsión a varias frecuencias, mediante excitación eléctrica a dichas frecuencias, cuya velocidad de propagación depende directamente del módulo de cizalla, principal indicador de consistencia de tejidos blandos. La utilización de ondas de torsión ofrece mayor sensibilidad en la detección de irregularidades en la consistencia de los tejidos y tiene la ventaja de eliminar prácticamente en su totalidad ondas de compresión que contaminan la señal por sus complejos modos de propagación. Likewise, the emitter of the invention allows to emit torsion waves at various frequencies, by means of electrical excitation at said frequencies, whose propagation speed depends directly on the shear module, the main indicator of soft tissue consistency. The use of torsion waves offers greater sensitivity in the detection of irregularities in the consistency of tissues and has the advantage of virtually eliminating compression waves that pollute the signal due to its complex propagation modes.
La utilización de ondas ultrasónicas como magnitud física presenta dos ventajas fundamentales. En primer lugar, es una onda mecánica controlable y por lo tanto más sensible a las propiedades mecánicas que cualquier otra medida indirecta. En segundo lugar, la onda se genera en un régimen de baja energía, que es más sensible a las variaciones en la consistencia de tejidos que las generadas a alta energía The use of ultrasonic waves as physical magnitude has two fundamental advantages. First, it is a controllable mechanical wave and therefore more sensitive to mechanical properties than any other indirect measurement. Second, the wave is generated in a low energy regime, which is more sensitive to variations in tissue consistency than those generated at high energy
Así, con el transductor de la invención es posible, a partir de mecánica de sólidos, identificar cambios de consistencia en tejidos que podrían indicar la presencia de tumores y cualquier trastorno que se manifiestan en forma de dichos cambios de consistencia. Thus, with the transducer of the invention it is possible, from mechanics of solids, to identify changes in consistency in tissues that could indicate the presence of tumors and any disorder that are manifested in the form of said consistency changes.
DESCRIPCIÓN DE LAS FIGURAS Figura 1.- Representación del emisor. Puede apreciarse el elemento de contacto (1), el actuador electromecánico (2) y el generador de señales eléctricas (3). (e) representa el eje del emisor. Figura 2.- Representación de una realización particular del elemento de contacto (1). (B) representa la base mayor del troncocono y (b) la base menor. DESCRIPTION OF THE FIGURES Figure 1.- Representation of the issuer. The contact element (1), the electromechanical actuator (2) and the electrical signal generator (3) can be appreciated. (e) represents the axis of the emitter. Figure 2.- Representation of a particular embodiment of the contact element (1). (B) represents the major base of the trunk and (b) the minor base.
Figura 3.- Representación de una sección del receptor en el que se aprecian los anillos (anterior, 4a, y posterior, 4b) y los elementos piezoeléctricos (5). (e') representa el eje del receptor. Figure 3.- Representation of a section of the receiver in which the rings (anterior, 4a, and posterior, 4b) and the piezoelectric elements (5) are appreciated. (e ') represents the axis of the receiver.
Figura 4.- Representación de la disposición del emisor y el receptor en el que se aprecia el elemento de contacto (1), los anillos (4) y los elementos piezoeléctricos (5). (e') representa el eje del receptor, que en esta disposición coincide con el del emisor. Figure 4.- Representation of the arrangement of the emitter and the receiver in which the contact element (1), the rings (4) and the piezoelectric elements (5) can be seen. (e ') represents the axis of the receiver, which in this arrangement coincides with that of the transmitter.
Figura 5.- Representación esquemática del contacto entre el transductor y el espécimen (S). (P) representa el plano de contacto, (1) el elemento de contacto, (2) el actuador electromecánico, (4a) el anillo anterior, (4b) el anillo posterior y (5) los elementos piezoeléctricos (5). Figure 5.- Schematic representation of the contact between the transducer and the specimen (S). (P) represents the contact plane, (1) the contact element, (2) the electromechanical actuator, (4a) the anterior ring, (4b) the rear ring and (5) the piezoelectric elements (5).
Figura 6.- Representación de un elemento piezoeléctrico (5) y la dirección de su polarización (P). Figure 6.- Representation of a piezoelectric element (5) and the direction of its polarization (P).
Figura 7.- Sección del transductor de la invención en la que se aprecia la disposición del emisor, en el que (1) representa el elemento de contacto y (2) el actuador electromagnético, respecto al receptor, en donde (4a) y (4b) representan los anillos anterior y posterior y (5) los elementos piezoeléctricos, y su disposición en el interior una carcasa (7) junto con el elementos atenuador (8). Figure 7.- Section of the transducer of the invention in which the arrangement of the emitter is appreciated, in which (1) represents the contact element and (2) the electromagnetic actuator, with respect to the receiver, where (4a) and ( 4b) represent the anterior and posterior rings and (5) the piezoelectric elements, and their arrangement inside a housing (7) together with the attenuator elements (8).
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
A lo largo de la presente descripción entenderemos como "espécimen" al material, preferentemente tejido, cultivo tisular o cultivo celular, por el que se hacen pasar las ondas emitidas por el transductor para conocer sus características estructurales (parámetros elásticos, viscoelásticos, de geometría microestructural, porosa, o modelos de disipación energética, entre otros). Throughout the present description we will understand as "specimen" the material, preferably tissue, tissue culture or cell culture, through which the waves emitted by the transducer are passed to know its structural characteristics (elastic parameters, viscoelastic, microstructural geometry, porous, or energy dissipation models, among others).
A efectos de la presente invención se entenderá como "actuador electromecánico" a un dispositivo capaz de transformar energía eléctrica en un movimiento, particularmente un movimiento de rotación. En una realización particular, adecuada para esta invención, el actuador electromecánico es estimulado con una señal eléctrica generada por un generador de pulsos eléctricos y es capaz de transformar esa señal en una fracción de giro mínima, que servirá para generar la onda que se analiza posteriormente. For the purposes of the present invention, "electromechanical actuator" shall be understood as a device capable of transforming electrical energy into a movement, particularly a rotational movement. In a particular embodiment, suitable for this invention, the electromechanical actuator is stimulated with an electrical signal generated by an electric pulse generator and is capable of transforming that signal into a minimum turn fraction, which will be used to generate the wave that is subsequently analyzed. .
Un ejemplo de este tipo de actuadores puede consistir en un motor electromagnético. An example of this type of actuator may consist of an electromagnetic motor.
A los efectos de la presente invención, el actuador electromecánico está estimulado por medios capaces de generar ondas o señales eléctricas, en adelante "generador de señales eléctricas". For the purposes of the present invention, the electromechanical actuator is stimulated by means capable of generating waves or electrical signals, hereinafter "generator of electrical signals".
Entenderemos por "señal eléctrica" a una magnitud eléctrica cuyo valor depende del tiempo. A los efectos de la presente invención, se considerarán las magnitudes constantes como casos particulares de señales eléctricas. We will understand by "electrical signal" an electrical quantity whose value depends on time. For the purposes of the present invention, constant magnitudes will be considered as particular cases of electrical signals.
Las señales eléctricas generadas por un generador de señales eléctricas pueden ser periódicas (senoidal, cuadrada, triangular, con forma en "dientes de sierra", etc.). De esta manera, al conectarlo a un actuador que transforma la señal en un movimiento de rotación, éste gira una fracción mínima de vuelta en función del voltaje, frecuencia y/o tiempo entre pulsos que están determinados por la señal. The electrical signals generated by an electric signal generator can be periodic (sine, square, triangular, shaped like "sawtooth", etc.). In this way, when connected to an actuator that transforms the signal into a rotational movement, it rotates a minimum fraction of a turn depending on the voltage, frequency and / or time between pulses that are determined by the signal.
Como generador de señales eléctricas se puede emplear cualquier circuito electrónico que digitalice las señales eléctricas a las frecuencias deseadas. Otro ejemplo de generador de señales eléctricas, empleado en los diseños experimentales de la presente invención, puede ser un osciloscopio, ya que permite emitir una señal eléctrica con un voltaje variable a lo largo de un tiempo determinado. As an electrical signal generator, any electronic circuit that digitizes the electrical signals at the desired frequencies can be used. Another example of an electrical signal generator, used in the experimental designs of the present invention, can be an oscilloscope, since it allows to emit an electrical signal with a variable voltage over a given time.
Se entenderá por "material biocompatible" a un material con cuya composición no interfiera ni degrade el medio biológico en el que es utilizado. Estos materiales suelen emplearse para confeccionar dispositivos o elementos de los mismos que deben estar en contacto directo, breve o prolongado con los tejidos y fluidos internos del cuerpo como pueden ser las sondas, jeringuillas, prótesis, etc. Un ejemplo de este material es el ácido poliláctico (PLA). "Biocompatible material" means a material whose composition does not interfere or degrade the biological medium in which it is used. These materials usually used to make devices or elements thereof that must be in direct, brief or prolonged contact with the tissues and internal fluids of the body such as probes, syringes, prostheses, etc. An example of this material is polylactic acid (PLA).
Denominaremos "elemento de contacto" a la parte o elemento situados en la parte distal o anterior del transductor y que entra en contacto con el espécimen sobre el que se pretende transmitir la onda. La superficie del elemento de contacto que entra en contacto con el espécimen debe ser sensiblemente plana para permitir una transmisión adecuada de la onda. We will call "contact element" the part or element located in the distal or anterior part of the transducer and that comes into contact with the specimen on which the wave is intended to be transmitted. The surface of the contact element that comes into contact with the specimen must be substantially flat to allow adequate transmission of the wave.
Emisor de la invención Issuer of the invention
En el contexto definido, un primer aspecto de la invención consiste en un dispositivo emisor ("emisor de la invención") de ondas ultrasónicas de torsión que comprende (Figura 1) un generador de señales eléctricas (3) conectado a un actuador electromecánico (2) que a su vez está unido al elemento de contacto (1), de forma que cuando el actuador recibe señales eléctricas, induce un movimiento de rotación al elemento de contacto y éste, al entrar en contacto con el espécimen, induce una onda de torsión que atraviesa dicho espécimen.  In the defined context, a first aspect of the invention consists of an emitting device ("emitter of the invention") of torsional ultrasonic waves comprising (Figure 1) an electrical signal generator (3) connected to an electromechanical actuator (2 ) which in turn is connected to the contact element (1), so that when the actuator receives electrical signals, it induces a rotation movement to the contact element and this, when coming into contact with the specimen, induces a torsion wave that goes through that specimen.
Con esta configuración, la onda transmitida por el transductor de la invención es una onda de torsión, no longitudinal, que mejora la calidad de las señales recibidas. A diferencia de otros transductores conocidos, que tienen un frente de ondas plano que avanza en profundidad, el frente de ondas que se consigue con el emisor de la invención se propaga radialmente y penetrando simultáneamente (frente toroidal). With this configuration, the wave transmitted by the transducer of the invention is a torsion wave, not longitudinal, which improves the quality of the received signals. Unlike other known transducers, which have a flat wave front that advances in depth, the wave front that is achieved with the emitter of the invention is propagated radially and penetrating simultaneously (toroidal front).
Con este emisor es posible conseguir una magnitud de señal con valores máximos de entre 20 y 40mV. Otro aspecto de la invención se refiere al procedimiento de emisión de ondas de torsión que emplea el emisor de la invención. With this transmitter it is possible to achieve a signal magnitude with maximum values between 20 and 40mV. Another aspect of the invention relates to the torsion wave emission method employed by the emitter of the invention.
En una realización particular, la señal eléctrica empleada para estimular el actuador en este procedimiento será una señal oscilatoria, más preferentemente una señal sinusoidal y aún más preferentemente una señal senoidal. En este caso, la variación del voltaje a lo largo del tiempo responde a la función In a particular embodiment, the electrical signal used to stimulate the actuator in this procedure will be an oscillatory signal, more preferably a sinusoidal signal and even more preferably a sinusoidal signal. In this case, the variation of the voltage over time responds to the function
V(t) = A sen(c t ) V (t) = A sen (ct)
Donde A es la amplitud máxima de la onda, que se corresponde con el voltaje máximo de generación.  Where A is the maximum amplitude of the wave, which corresponds to the maximum generation voltage.
En otra realización particular, el elemento de contacto tiene una forma sensiblemente troncocónica (Figura 2), de forma que su base menor (b) está unida al actuador electromecánico y su base mayor (B) se dispone en el extremo distal del transductor de la invención para entrar en contacto el espécimen sobre el que se desea transmitir la onda de corte. In another particular embodiment, the contact element has a substantially frustoconical shape (Figure 2), so that its minor base (b) is attached to the electromechanical actuator and its major base (B) is disposed at the distal end of the transducer of the invention for contacting the specimen on which it is desired to transmit the shear wave.
En una realización preferente el elemento de contacto está fabricado en material biocompatible. En otra realización particular, el actuador electromecánico está recubierto por una jaula de Faraday que elimina el ruido electrónico. Concretamente, el actuador electromecánico está envuelto con un recubrimiento conductor que actúa como una jaula de Faraday. In a preferred embodiment the contact element is made of biocompatible material. In another particular embodiment, the electromechanical actuator is coated by a Faraday cage that eliminates electronic noise. Specifically, the electromechanical actuator is wrapped with a conductive coating that acts like a Faraday cage.
Transductor de la invención Transducer of the invention
Un segundo aspecto de la invención es un transductor capaz de generar un pulso ultrasónico de torsión que se propaga atravesando el espécimen y capaz de recoger el pulso distorsionado tras atravesar el espécimen. Dicho transductor ("transductor de la invención") es un transductor que comprende el emisor de la invención y medios para recibir la señal distorsionada tras atravesar el espécimen, en adelante "receptor". A second aspect of the invention is a transducer capable of generating an ultrasonic torsion pulse that propagates through the specimen and capable of picking up the distorted pulse after traversing the specimen. Said transducer ("transducer of the invention") is a transducer comprising the emitter of the invention and means for receiving the distorted signal after crossing the specimen, hereinafter "receiver".
En una realización particular, (Figura 3) el receptor del transductor de la invención comprende dos o más elementos piezoeléctricos (5) situados de forma equidistante entre sí, y colocados entre dos anillos (4a y 4b). Los anillos están fabricados preferentemente en material no conductor, más preferentemente en material biocompatible, de forma que cada elemento piezoeléctrico está en contacto con dos electrodos de distinta carga, dispuestos de forma perpendicular a la polarización de los dichos elementos piezoeléctricos. In a particular embodiment, (Figure 3) the transducer receiver of the invention comprises two or more piezoelectric elements (5) located equidistant from each other, and placed between two rings (4a and 4b). The rings are preferably made of non-conductive material, more preferably in biocompatible material, so that each piezoelectric element is in contact with two electrodes of different charge, arranged perpendicular to the polarization of said piezoelectric elements.
En su disposición preferente (Figura 4), el eje de rotación de los anillos (4) del receptor (e') y el eje (e) del elemento de contacto (1) deben coincidir, quedando el emisor situado en el interior de los anillos. In its preferred arrangement (Figure 4), the axis of rotation of the rings (4) of the receiver (e ') and the axis (e) of the contact element (1) must coincide, leaving the emitter located inside the rings
Asimismo, (Figura 5) para que tanto el emisor como el receptor estén en contacto con el espécimen (S),la cara exterior de uno de los anillos, que denominaremos anillo anterior (4a), y la superficie plana del elemento de contacto (1) deben estar situadas en el mismo plano (P) (plano de contacto). Likewise, (Figure 5) so that both the emitter and the receiver are in contact with the specimen (S), the outer face of one of the rings, which we will call the anterior ring (4a), and the flat surface of the contact element ( 1) must be located in the same plane (P) (contact plane).
En otra realización particular, las caras de los anillos que entran en contacto con los elementos piezoeléctricos (caras interiores) estarán recubiertas con resina de plata conductora, que hará las veces de electrodo en las caras de unión entre los elementos piezoeléctricos y los anillos de forma que cada anillo actuará de modo independiente como ánodo y cátodo. In another particular embodiment, the faces of the rings that come into contact with the piezoelectric elements (inner faces) will be coated with conductive silver resin, which will act as an electrode on the joint faces between the piezoelectric elements and the shape rings that each ring will act independently as anode and cathode.
La polarización, entendiendo como tal que la dirección entre las cargas positiva y negativa del electrodo, de los elementos piezoeléctricos puede llevarse a cabo de dos modos diferentes. En una realización preferente la polarización es paralela al eje, estando los electrodos dispuestos en caras laterales de dichos elementos piezoeléctricos; en una realización más preferente, la polarización (P) es perpendicular al eje en dirección radial, estando los electrodos dispuestos en la unión entre dichos elementos piezoeléctricos y los anillos (figura 6). The polarization, understanding as such that the direction between the positive and negative electrode charges, of the piezoelectric elements can be carried out in two different ways. In a preferred embodiment the polarization is parallel to the axis, the electrodes being arranged on the lateral faces of said piezoelectric elements; In a more preferred embodiment, the polarization (P) is perpendicular to the axis in the radial direction, the electrodes being arranged at the junction between said piezoelectric elements and the rings (Figure 6).
En una realización preferente, los elementos piezoeléctricos (5) están fabricados en cerámica piezoeléctrica PZT-4 o PZT-5. Los elementos de transmisión y recepción del transductor se disponen el interior de una carcasa (7, Figura 7) que, además de proteger al transductor frente a agresiones físicas (como caídas o arañazos), asegura la funcionalidad del dispositivo al fijar cada elemento en su posición correcta. En el caso particular en el que el receptor del transductor de la invención está constituido por anillos concéntricos, la carcasa debe mantener el emisor situado en el interior de dichos anillos, de forma que sus ejes de rotación. In a preferred embodiment, the piezoelectric elements (5) are made of PZT-4 or PZT-5 piezoelectric ceramics. The transmission and reception elements of the transducer are arranged inside a housing (7, Figure 7) which, in addition to protecting the transducer against physical aggressions (such as falls or scratches), ensures the functionality of the device by fixing each element in its correct position. In the particular case where the transducer receiver of the invention is made up of concentric rings, the housing must keep the emitter located inside said rings, so that its axes of rotation.
En una realización preferente, la carcasa está fabricada en ácido poliláctico (PLA). In a preferred embodiment, the housing is made of polylactic acid (PLA).
Opcionalmente, en otra realización particular, el transductor de la invención además comprende un elemento atenuante (8), preferentemente de resina atenuante, fijado a la cara exterior del anillo que se encuentra más alejado de la zona de contacto con el espécimen, con el objeto de evitar la propagación de ondas de torsión en sentido contrario al espécimen, y por lo tanto también evitando pérdidas de energía. De este modo, la emisión efectiva de ondas de torsión se produce en una sola cara del transductor, que será la que se ponga en contacto con el espécimen, anulándose la oscilación de la cara posterior mediante el elemento atenuante. Además, la anulación de las ondas emitidas en sentido opuesto al espécimen ocasiona que las ondas emitidas requieren un procesado más sencillo, ya que se consigue una señal más limpia. Optionally, in another particular embodiment, the transducer of the invention further comprises an attenuating element (8), preferably of attenuating resin, fixed to the outer face of the ring that is furthest from the area of contact with the specimen, with the object of preventing the propagation of torsion waves in the opposite direction to the specimen, and therefore also avoiding energy losses. In this way, the effective emission of torsion waves occurs on only one side of the transducer, which will be the one that comes into contact with the specimen, canceling the oscillation of the rear face by means of the attenuating element. In addition, the cancellation of the emitted waves in the opposite direction to the specimen causes that the emitted waves require a simpler processing, since a cleaner signal is achieved.
En una realización aún más particular el transductor de la invención, que permite emitir y recibir ondas de torsión, comprende los siguientes elementos: In an even more particular embodiment, the transducer of the invention, which allows to emit and receive torsion waves, comprises the following elements:
• Un emisor que comprende: • An issuer that includes:
o un generador de señales eléctricas  or an electrical signal generator
o un actuador electromecánico, conectado al generador de señales eléctricas y recubierto por una jaula de Faraday,  or an electromechanical actuator, connected to the electrical signal generator and covered by a Faraday cage,
o un elemento de contacto elemento de contacto, unido al actuador electromecánico de forma que cuando el actuador recibe señales eléctricas, le induce un movimiento de rotación; y  or a contact element contact element, attached to the electromechanical actuator so that when the actuator receives electrical signals, it induces a rotational movement; Y
• Un receptor que comprende:  • A receiver that includes:
o dos anillos, fabricados preferentemente en material no conductor,  or two rings, preferably made of non-conductive material,
o dos o más elementos piezoeléctricos dispuestos entre los anillos anteriores y separados de forma equidistante  or two or more piezoelectric elements arranged between the anterior rings and equidistant apart
• Una carcasa que mantiene el emisor situado en el interior del receptor de forma que los ejes del elemento de contacto y los anillos coinciden y la parte exterior de dicho elemento de contacto y la cara exterior de uno de los anillos se mantienen en el mismo plano de forma que puedan entrar en contacto con el espécimen. • A housing that keeps the transmitter located inside the receiver so that the axes of the contact element and the rings coincide and the outside of said contact element and the outer face of one of the rings are kept in the same plane so that they can come into contact with the specimen.
Además, en otra realización más preferente, el transductor se completa con una membrana de látex adaptada a la forma del dispositivo que garantiza la disipación de la onda que viaja a través de ella con una involución adaptada entre el emisor y el receptor. In addition, in another more preferred embodiment, the transducer is completed with a latex membrane adapted to the shape of the device that guarantees the dissipation of the wave that travels through it with an involution adapted between the emitter and the receiver.
Procedimiento de reconstrucción de parámetros mecánicos Mechanical parameter reconstruction procedure
Para reconstruir los parámetros mecánicos del espécimen se utiliza un modelo computacional que se combina con un algoritmo de "problema inverso" que recibe como entrada las medidas de parámetros mecánicos tales como el módulo de Young, relacionado con la compresibilidad de las muestras, la atenuación de las ondas transmitidas a través de dichas muestras, así como los módulos de compresibilidad y/o cizalladura de la onda ultrasónica con el espécimen. To reconstruct the mechanical parameters of the specimen, a computational model is used that is combined with an "inverse problem" algorithm that receives as input the measurements of mechanical parameters such as Young's module, related to the compressibility of the samples, the attenuation of the waves transmitted through said samples, as well as the compressibility and / or shear modules of the ultrasonic wave with the specimen.
En particular, las propiedades mecánicas del espécimen se reconstruyen mediante la comparación de la onda recibida (restándole la onda que viaja por la cápsula) con una onda simulada a partir de la señal de excitación del actuador electromecánico, teniendo en cuenta el retardo interno propio del sistema que se refiere a la transformación propia de la onda desde que se emite el pulso en el actuador hasta que llega al extremo del elemento biocompatible en contacto con el espécimen. Éste retardo interno es independiente del espécimen al igual que la onda que se transmite por la cápsula. In particular, the mechanical properties of the specimen are reconstructed by comparing the received wave (subtracting the wave that travels through the capsule) with a simulated wave from the excitation signal of the electromechanical actuator, taking into account the internal delay of the system that refers to the transformation of the wave from the moment the pulse is emitted in the actuator until it reaches the end of the biocompatible element in contact with the specimen. This internal delay is independent of the specimen as well as the wave that is transmitted through the capsule.
MODO DE REALIZACIÓN MODE OF REALIZATION
Se propone, de forma no excluyente, la realización del transductor objeto de la invención con las siguientes dimensiones y materiales. It is proposed, not exclusively, the realization of the transducer object of the invention with the following dimensions and materials.
El transductor comprende: The transducer comprises:
• Un elemento de contacto fabricado en PLA, con forma troncocónica, cuya base mayor entrará en contacto con el espécimen y su base menor está fijada al eje del actuador electromecánico. • Un actuador electromecánico consistente en un motor miniaturizado de 4 mm de diámetro, fijado al extremo posterior (base menor) del elemento de contacto.• A contact element made of PLA, with a truncated conical shape, whose major base will come into contact with the specimen and its minor base is fixed to the axis of the electromechanical actuator. • An electromechanical actuator consisting of a 4 mm diameter miniaturized motor, fixed to the rear end (minor base) of the contact element.
• Un osciloscopio conectado al actuador electromecánico de forma que transmite una señal eléctrica que el actuador transforma en movimiento de rotación que el elemento de contacto convierte en onda de corte al entrar en contacto con el espécimen. • An oscilloscope connected to the electromechanical actuator in such a way that it transmits an electrical signal that the actuator transforms into a rotating movement that the contact element converts into a cut-off wave when it comes into contact with the specimen.
• Una lámina de aluminio, dispuesta formando un recubrimiento del actuador electromecánico y de sus elementos conductores, y conectado al cable de negativos del actuador electromecánico, de forma que actúa como jaula de Faraday.  • An aluminum foil, arranged to form a coating of the electromechanical actuator and its conductive elements, and connected to the negative cable of the electromechanical actuator, so that it acts as a Faraday cage.
• Un primer anillo fabricado en material plástico, preferentemente PLA de 17 mm de diámetro exterior, 13 mm de diámetro interior y 5mm de espesor.  • A first ring made of plastic material, preferably PLA of 17 mm outside diameter, 13 mm inside diameter and 5mm thick.
• Un segundo anillo fabricado en material plástico preferentemente PLA de 17 mm de diámetro exterior, 13 mm de diámetro interior y 5 mm de espesor, colocado de manera paralela al primer anillo.  • A second ring made of plastic material preferably PLA of 17 mm outside diameter, 13 mm inside diameter and 5 mm thick, placed parallel to the first ring.
• Un recubrimiento conductor situado en las caras interiores de cada anillo, de forma que está en contacto con los electrodos y que funciona como electrodo • A conductive coating located on the inner faces of each ring, so that it is in contact with the electrodes and functions as an electrode
• 4 elementos piezoeléctricos fabricados de cerámica piezoeléctrica PZT-4 o PZT-5, con dimensiones 1.5x1.5x2.5 mm, fijados a los anillos. Estos elementos piezoeléctricos están polarizados en la dirección circunferencial, en paralelo a los anillos, mientras que electrodos están ubicados en la unión entre los elementos piezoeléctricos y la cara interior de los anillos. • 4 piezoelectric elements made of PZT-4 or PZT-5 piezoelectric ceramics, with dimensions 1.5x1.5x2.5 mm, fixed to the rings. These piezoelectric elements are polarized in the circumferential direction, parallel to the rings, while electrodes are located at the junction between the piezoelectric elements and the inner face of the rings.
La unión de los elementos piezoeléctricos y de cableado a los electrodos se realiza con resina de plata conductora. The connection of the piezoelectric and wiring elements to the electrodes is done with conductive silver resin.
La unión del actuador electromecánico, que induce un movimiento de torsión, con su recubrimiento de aluminio se realiza con resina de plata conductora. Todo el conjunto se introduce en una carcasa adaptada al dispositivo de diagnóstico, fabricada en PLA que asegura la funcionalidad del dispositivo con sus correspondientes elementos atenuadores del emisor con respecto al receptor y manteniendo la disposición relativa entre el emisor y el receptor de forma que sus ejes de rotación coincidan y la parte anterior del elemento de contacto y la parte exterior del disco anterior permanezcan en el mismo plano. El transductor se completa, por motivos higiénicos, con una membrana de látex adaptada a la forma del dispositivo. El uso del látex garantiza la disipación de la onda que viaja a través de ella con una involución adaptada entre el emisor y el receptor. The union of the electromechanical actuator, which induces a torsion movement, with its aluminum coating is made with conductive silver resin. The entire assembly is inserted into a housing adapted to the diagnostic device, made of PLA that ensures the functionality of the device with its corresponding attenuator elements with respect to the receiver and maintaining the relative arrangement between the transmitter and the receiver so that its axes of rotation coincide and the front part of the contact element and the outer part of the previous disk remain in the same plane. The transducer is completed, for hygienic reasons, with a latex membrane adapted to the shape of the device. The use of the latex guarantees the dissipation of the wave that travels through it with an adapted involution between the emitter and the receiver.

Claims

REIVINDICACIONES
1.- Dispositivo emisor de ondas ultrasónicas de torsión que comprende un generador de señales eléctricas (3) conectado a un actuador electromecánico (2) que a su vez está unido a un elemento (1) que entra en contacto con el espécimen, de forma que cuando el actuador recibe señales eléctricas, induce un movimiento de rotación al elemento de contacto y éste, al entrar en contacto con el espécimen, induce una onda de torsión que atraviesa dicho espécimen. 1.- Torsion ultrasonic wave emitting device comprising an electric signal generator (3) connected to an electromechanical actuator (2) which in turn is connected to an element (1) that comes into contact with the specimen, so that when the actuator receives electrical signals, it induces a rotation movement to the contact element and this, when coming into contact with the specimen, induces a torsion wave that passes through said specimen.
2.- Dispositivo según reivindicación anterior caracterizado porque el actuador electromecánico está recubierto por una jaula de Faraday que elimina el ruido electrónico. 2. Device according to previous claim characterized in that the electromechanical actuator is covered by a Faraday cage that eliminates electronic noise.
3. - Transductor que comprende el dispositivo emisor según reivindicaciones anteriores y medios para recibir la señal distorsionada tras atravesar el espécimen. 3. - Transducer comprising the emitting device according to previous claims and means for receiving the distorted signal after crossing the specimen.
4. - Transductor según reivindicación anterior caracterizado porque los medios para recibir la señal distorsionada comprenden dos o más elementos piezoeléctricos (5) situados de forma equidistante entre sí y colocados entre dos anillos (4a y 4b) fabricados en material no conductor. 4. - Transducer according to previous claim characterized in that the means for receiving the distorted signal comprise two or more piezoelectric elements (5) located equidistant from each other and placed between two rings (4a and 4b) made of non-conductive material.
5. - Transductor según reivindicación anterior caracterizado porque el eje de rotación de los anillos coincide con el eje de rotación del actuador electromecánico. 5. - Transducer according to the preceding claim characterized in that the axis of rotation of the rings coincides with the axis of rotation of the electromechanical actuator.
6.- Transductor según reivindicación anterior, caracterizado porque la cara exterior de uno de los anillos (4a) y la superficie del elemento del dispositivo emisor que entra en contacto con el espécimen están situadas en el mismo plano. 6. Transducer according to the preceding claim, characterized in that the outer face of one of the rings (4a) and the surface of the element of the emitting device that comes into contact with the specimen are located in the same plane.
7. - Transductor según reivindicaciones 4 a 6 caracterizado porque la polarización de los elementos piezoeléctricos es perpendicular al eje de rotación de los anillos en dirección radial. 7. - Transducer according to claims 4 to 6 characterized in that the polarization of the piezoelectric elements is perpendicular to the axis of rotation of the rings in the radial direction.
8. - Procedimiento de emisión de ondas de torsión que emplea el dispositivo emisor según reivindicaciones 1 o 2. 8. - Torsion wave emission procedure using the emitting device according to claims 1 or 2.
9.- Procedimiento según reivindicación anterior caracterizado porque la señal eléctrica empleada para estimular el actuador en este procedimiento es una señal oscilatoria, más preferentemente una señal sinusoidal y aún más preferentemente una señal senoidal. 9. Method according to the preceding claim characterized in that the electrical signal used to stimulate the actuator in this method is an oscillatory signal, more preferably a sinusoidal signal and even more preferably a sinusoidal signal.
PCT/ES2016/070540 2015-07-16 2016-07-18 Device for emitting torsional ultrasonic waves and transducer comprising said device WO2017009516A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2016293204A AU2016293204B2 (en) 2015-07-16 2016-07-18 Device for emitting torsional ultrasonic waves and transducer comprising said device
CA2996877A CA2996877A1 (en) 2015-07-16 2016-07-18 Device for emitting torsional ultrasonic waves and transducer comprising said device
US15/747,402 US11161149B2 (en) 2015-07-16 2016-07-18 Device for emitting torsional ultrasonic waves and transducer comprising said device
PL16823934T PL3324181T3 (en) 2015-07-16 2016-07-18 Transducer comprising a device for emitting torsional ultrasonic waves
EP16823934.1A EP3324181B1 (en) 2015-07-16 2016-07-18 Transducer comprising a device for emitting torsional ultrasonic waves
RS20201484A RS61310B1 (en) 2015-07-16 2016-07-18 Transducer comprising a device for emitting torsional ultrasonic waves
DK16823934.1T DK3324181T3 (en) 2015-07-16 2016-07-18 Transducer omfattende en indretning til at emittere torsionsultralydbølger
ES16823934T ES2846738T3 (en) 2015-07-16 2016-07-18 Transducer comprising a device for emitting torsional ultrasonic waves
SI201631014T SI3324181T1 (en) 2015-07-16 2016-07-18 Transducer comprising a device for emitting torsional ultrasonic waves
HRP20201958TT HRP20201958T1 (en) 2015-07-16 2020-12-07 Transducer comprising a device for emitting torsional ultrasonic waves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201500600 2015-07-16
ES201500600A ES2602508B1 (en) 2015-07-16 2015-07-16 Ultrasonic torsion wave transmitter and transducer device comprising

Publications (1)

Publication Number Publication Date
WO2017009516A1 true WO2017009516A1 (en) 2017-01-19

Family

ID=57757133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070540 WO2017009516A1 (en) 2015-07-16 2016-07-18 Device for emitting torsional ultrasonic waves and transducer comprising said device

Country Status (12)

Country Link
US (1) US11161149B2 (en)
EP (1) EP3324181B1 (en)
AU (1) AU2016293204B2 (en)
CA (1) CA2996877A1 (en)
DK (1) DK3324181T3 (en)
ES (2) ES2602508B1 (en)
HR (1) HRP20201958T1 (en)
PL (1) PL3324181T3 (en)
PT (1) PT3324181T (en)
RS (1) RS61310B1 (en)
SI (1) SI3324181T1 (en)
WO (1) WO2017009516A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085832B1 (en) * 2018-09-18 2021-07-30 Echosens TRANSIENT ELASTOGRAPHY PROBE WITH SEALING MEMBRANE INTEGRATED IN THE ULTRASONIC TRANSDUCER
US11918245B2 (en) 2018-10-05 2024-03-05 Kogent Surgical, LLC Ultrasonic surgical handpiece with torsional transducer
ES2933386B2 (en) 2021-08-04 2023-08-23 Univ Granada ULTRASONIC RECEIVER AND SENSOR FOR THE MEASUREMENT OF THE ANISOTROPY OF A SAMPLE BY MEANS OF TORSION WAVES, METHOD AND ITS USES
ES2938808B2 (en) * 2021-10-11 2023-10-09 Univ Granada TORSIONAL WAVE ULTRASONIC RECEIVER, DEVICE, PROCEDURES AND ASSOCIATED USES FOR THE EVALUATION OF MECHANICAL PROPERTIES OF FABRICS WITH CURVED SURFACES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761156A (en) * 1995-04-03 1998-06-02 Marco Systemanalyse Und Piezoelectric ultrasonic transducer
US20060145692A1 (en) * 2004-12-31 2006-07-06 Seoul National University Industry Foundation Magnetostrictive transducer using tailed patches and apparatus for measuring elastic wave using the magnetostrictive transducer
CN201184875Y (en) * 2007-10-11 2009-01-21 华中科技大学 Apparatus for detecting magnetic conduction component defect base on magnetic deformation torsion wave
CN102012249A (en) * 2009-09-07 2011-04-13 深圳万讯自控股份有限公司 Piezoelectric type torsional wave transducer and piezoelectric transduction type magnetostrictive sensor
WO2012172136A1 (en) * 2011-06-14 2012-12-20 Universidad De Granada Torsion wave transducer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640455B1 (en) * 1988-07-08 1991-05-17 Thomson Csf ELECTROACOUSTIC TRANSDUCER, USABLE IN PARTICULAR AS A SOURCE OF ACOUSTIC WAVES FOR UNDERWATER APPLICATIONS
FR2663182B1 (en) * 1990-06-12 1992-09-18 Grosso Gilles UNDERWATER ELECTRO-ACOUSTIC TRANSDUCER.
US6310426B1 (en) * 1999-07-14 2001-10-30 Halliburton Energy Services, Inc. High resolution focused ultrasonic transducer, for LWD method of making and using same
US7215536B2 (en) * 2002-12-23 2007-05-08 Hewlett-Packard Development Company, L.P. Electromagnetic shield assembly
US6975519B2 (en) * 2003-04-17 2005-12-13 Sun Microsystems, Inc. Insertion and extraction mechanism for circuit boards
US20050095351A1 (en) * 2003-05-29 2005-05-05 Jona Zumeris Method, apparatus and system for nanovibration coating and biofilm prevention associated with medical devices
AU2005331251B2 (en) * 2004-05-18 2011-08-11 Nanovibronix, Inc. Nanovibration coating process for medical devices using multi vibration modes of a thin piezo element
WO2007100731A2 (en) * 2006-02-24 2007-09-07 Nanovibronix Inc. System and method for surface acoustic wave treatment of medical devices
US7332849B2 (en) * 2006-05-19 2008-02-19 Nanyang Technological University Method and transducers for dynamic testing of structures and materials
US7615912B2 (en) * 2007-06-18 2009-11-10 The Penn State Research Foundation Acoustic transducer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761156A (en) * 1995-04-03 1998-06-02 Marco Systemanalyse Und Piezoelectric ultrasonic transducer
US20060145692A1 (en) * 2004-12-31 2006-07-06 Seoul National University Industry Foundation Magnetostrictive transducer using tailed patches and apparatus for measuring elastic wave using the magnetostrictive transducer
CN201184875Y (en) * 2007-10-11 2009-01-21 华中科技大学 Apparatus for detecting magnetic conduction component defect base on magnetic deformation torsion wave
CN102012249A (en) * 2009-09-07 2011-04-13 深圳万讯自控股份有限公司 Piezoelectric type torsional wave transducer and piezoelectric transduction type magnetostrictive sensor
WO2012172136A1 (en) * 2011-06-14 2012-12-20 Universidad De Granada Torsion wave transducer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM J.O. ET AL.: "Vibration characteristics of piezoelectric torsional transducers", JOURNAL OF SOUND AND VIBRATION, vol. 264, no. 2, 3 July 2003 (2003-07-03), UK, pages 453 - 473, XP055347237 *
MELCHOR J ET AL.: "Torsional ultrasonic transducer computational design optimization", ULTRASONICS, vol. 54, no. 7, 15 May 2014 (2014-05-15), GUILDFORD, GB, pages 1950 - 1962, XP029009703 *

Also Published As

Publication number Publication date
AU2016293204A1 (en) 2018-03-15
EP3324181B1 (en) 2020-09-09
ES2602508B1 (en) 2017-11-30
US20180214913A1 (en) 2018-08-02
CA2996877A1 (en) 2017-01-19
AU2016293204B2 (en) 2021-06-10
ES2602508A1 (en) 2017-02-21
EP3324181A4 (en) 2019-03-20
PL3324181T3 (en) 2021-04-06
ES2846738T3 (en) 2021-07-29
EP3324181A1 (en) 2018-05-23
DK3324181T3 (en) 2020-12-14
RS61310B1 (en) 2021-02-26
PT3324181T (en) 2020-12-15
HRP20201958T1 (en) 2021-02-05
US11161149B2 (en) 2021-11-02
SI3324181T1 (en) 2021-02-26

Similar Documents

Publication Publication Date Title
US11730448B2 (en) Device and method for measuring the viscoelastic properties of a viscoelastic medium
WO2017009516A1 (en) Device for emitting torsional ultrasonic waves and transducer comprising said device
ES2926791T3 (en) Hybrid Elastography Procedure, Probe and Device for Hybrid Elastography
ES2370735T3 (en) PROCEDURE FOR MEASURING VISCOELASTIC PROPERTIES OF BIOLOGICAL FABRICS BY PRACTICEING AN ULTRASONIC TRANSDUCER.
WO2017134327A1 (en) Method for obtaining data relating to the elasticity of materials, using torsional waves
RU2616652C2 (en) Device for measurement of ultrasonic or biomechanical parameters of viscoelastic medium
Gattiker et al. Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS)
WO2012172136A1 (en) Torsion wave transducer
WO2018172591A1 (en) Transluminal device and method for the mechanical characterisation of structures
Torbatian et al. Listening to the cochlea with high-frequency ultrasound
JP2020110382A (en) Crystalline lens hardness measurement device
Fatemi et al. Characteristics of the audio sound generated by ultrasound imaging systems
CN209899435U (en) Probe for elastography
US11096604B2 (en) Determining a presence of an object
ES2933386B2 (en) ULTRASONIC RECEIVER AND SENSOR FOR THE MEASUREMENT OF THE ANISOTROPY OF A SAMPLE BY MEANS OF TORSION WAVES, METHOD AND ITS USES
Kamimura et al. Pressure transducer for measuring acoustic radiation force based on a magnetic sensor
JP2022501160A (en) Transient elastography probe with sealed membrane integrated into ultrasonic transducer
Lewin et al. Ultrasound Exposimetry: An Essential Component of Ultrasonic Device Characterization
Zhu et al. Detection of scatters motion induced by mechanical vibrator using 7-chip barker-coded excitation
Umchid Measurement of the field characteristics from High Intensity Focused Ultrasound transducer
Iborra CHARACTERIZATION OF ULTRASOUND TRANSDUCERS
James et al. A transcranial device and method for detecting cerebellar brain motion
Saidi et al. Conception of an ultrasonic system for assistance to the diagnosis of the osteoporosis
Cai et al. Performance evaluation of a prototype pneumatic driver for MR elastography by MR elastography
Wu et al. MR imaging of low frequency shear waves generated by focused ultrasound radiation force

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15747402

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016823934

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2996877

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016293204

Country of ref document: AU

Date of ref document: 20160718

Kind code of ref document: A