WO2017008742A1 - Method and device for determining indoor approachable area - Google Patents

Method and device for determining indoor approachable area Download PDF

Info

Publication number
WO2017008742A1
WO2017008742A1 PCT/CN2016/089900 CN2016089900W WO2017008742A1 WO 2017008742 A1 WO2017008742 A1 WO 2017008742A1 CN 2016089900 W CN2016089900 W CN 2016089900W WO 2017008742 A1 WO2017008742 A1 WO 2017008742A1
Authority
WO
WIPO (PCT)
Prior art keywords
surveying
indoor
area
approachable
mapping
Prior art date
Application number
PCT/CN2016/089900
Other languages
French (fr)
Inventor
Lei Luo
Original Assignee
Cloudminds (Shenzhen) Robotics Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cloudminds (Shenzhen) Robotics Systems Co., Ltd. filed Critical Cloudminds (Shenzhen) Robotics Systems Co., Ltd.
Publication of WO2017008742A1 publication Critical patent/WO2017008742A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the present disclosure relates to the technical field of robots, and more particularly, to a method and device for determining an indoor approachable area.
  • robots for example, sweeping robots and mopping robots
  • sweeping robots and mopping robots have generally entered family life at present.
  • the related art has shortcomings as follows:
  • Embodiments of the present disclosure discloses a method and device for determining an indoor approachable area, so as to solve technical problems of long time and low accuracy of room outline detection of a robot in the related art.
  • An embodiment of the present disclosure provides a method for determining an indoor approachable area, which includes:
  • the embodiment of the present disclosure provides a device for determining an indoor approachable area, which includes:
  • a first determining module configured to determine an indoor area
  • a surveying and mapping module configured to select a plurality of surveying and mapping points in the indoor area, to perform 360-degree scanning at each surveying and mapping point, and to obtain a approachable area measured at each surveying and mapping point;
  • a second determining module configured to determine the indoor approachable area according to the approachable areas obtained at the surveying and mapping points.
  • the indoor area is determined at first, the plurality of surveying and mapping points are selected in the indoor area, 360-degree scanning is performed at each surveying and mapping point to obtain the approachable area measured at each surveying and mapping point, and the indoor approachable area can be determined according to the approachable areas measured at the surveying and mapping points; in the embodiment of the present disclosure, 360-degree scanning is performed at each surveying and mapping point in the indoor area, and the indoor approachable area is determined according to the approachable areas measured at the surveying and mapping points, so that a robot is not required to continuously transmit infrared rays or ultrasonic waves for detection when walking along a wall, and higher efficiency is achieved; and moreover, detection is not based on walking along the wall but by 360-degree scanning at each surveying and mapping point in the embodiment of the present disclosure, so that an object not against the wall can also be correctly detected in the embodiment of the present disclosure, and higher accuracy is be ensured.
  • Fig. 1 is an implementation flowchart of a method for determining an indoor approachable area according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of scanning at any point in a room according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of determining an indoor area according to an embodiment of the present disclosure
  • Fig. 4 is a plane view of arrangement in a room according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of a position of each point in a room according to an embodiment of the present disclosure
  • Fig. 6 is a profile diagram of laser ranging at point B according to an embodiment of the present disclosure.
  • Fig. 7 is an overlay diagram of outlines measured at point A and point B according to an embodiment of the present disclosure.
  • Fig. 8 is a structure diagram of a device for determining an indoor approachable area according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure discloses a method and device for determining an indoor approachable area, which are described below.
  • Fig. 1 is an implementation flowchart of a method for determining an indoor approachable area according to an embodiment of the present disclosure. As shown in Fig. 1, the method for determining the indoor approachable area includes the following steps:
  • step 101 determining an indoor area
  • step 102 selecting a plurality of surveying and mapping points in the indoor area, performing 360-degree scanning at each surveying and mapping point, and obtaining a approachable area measured at each surveying and mapping point;
  • step 103 determining the indoor approachable area according to the approachable areas measured at the surveying and mapping points.
  • the indoor area is determined at first, and the indoor area can be an overall outline of a room, i.e., a space enclosed by covering objects such as a wall and glass. There may be placed many objects in the indoor area, which may usually cause the condition that the indoor approachable area is smaller than the indoor area, and a robot usually carries out work such as cleaning and sweeping in the indoor approachable area to avoid collision with the wall or the objects.
  • an original area of the room is 18 square meters
  • furniture such as a bed and a cabinet may be placed in the room, and the furniture may occupy a certain area, so that a approachable area of the room is a part except positions of the furniture, i.e., a walking range of the robot.
  • a plurality of surveying and mapping points are selected in the indoor area, and the robot can move to each surveying and mapping point and perform 360-degree scanning at each surveying and mapping point.
  • laser ranging, infrared ranging, ultrasonic ranging and the like in the related art may be adopted for scanning, and a specific scanning process will not be repeated in the present disclosure.
  • the robot can perform scanning such as 360-degree laser ranging at a current position to initially determine its own position and position relationships between its own position and the surveying and mapping points; then it can walk to one certain surveying and mapping point, and determine the position relationship between its own position and the surveying and mapping point in real time according to parameters such as turning direction and walking distance when walking, thereby moving to a specified place finally (i.e., the surveying and mapping point) . If an error is generated due to a certain reason, the robot can perform 360-degree ranging at the current position immediately to determine its own position and the position relationships between its own position and the surveying and mapping points.
  • scanning such as 360-degree laser ranging at a current position to initially determine its own position and position relationships between its own position and the surveying and mapping points; then it can walk to one certain surveying and mapping point, and determine the position relationship between its own position and the surveying and mapping point in real time according to parameters such as turning direction and walking distance when walking, thereby moving to a specified place finally (i.e., the survey
  • the approachable area measured at each surveying and mapping point can be obtained by performing 360-degree scanning at each surveying and mapping point.
  • the approachable areas measured at different surveying and mapping points may exist an overlapped part or a part which is measured at one surveying and mapping point but not measured at another surveying and mapping point. In the embodiment of the present disclosure, it is considered that the area measured at each surveying and mapping point is within the indoor approachable area, so that the indoor approachable area can finally be determined.
  • the indoor approachable area can be determined only by performing 360-degree scanning at the selected surveying and mapping points without walking around the room along the wall or according to another algorithm and continuously transmitting infrared rays and the like for continuous detection, so that detection time is shorter, efficiency is higher, the indoor approachable area can be rapidly determined, and time is greatly saved.
  • the indoor approachable area is determined not in manners of walking along the wall, walking according to a certain rule or the like (in these manners, only the area the robot passes through can be detected, and the robot usually only walk along an edge of an obstacle at present) but according to the approachable areas measured at the surveying and mapping points by performing 360-degree scanning at the plurality of surveying and mapping points, positions of the objects placed in the room (i.e., areas which can not be measured at all the surveying and mapping points) can be effectively detected, and compared with the related art, the method is higher in accuracy. After the high-accuracy indoor approachable area is obtained, a perfect traversing/walking route can subsequently be planned according to the indoor approachable area.
  • an accurate outline of the indoor approachable area is obtained in the embodiment of the present disclosure, and the robot can obtain its own accurate position in the indoor approachable area by performing comparison between data obtained by 360-degree ranging and the accurate outline of the indoor approachable area after performing 360-degree ranging at any current position. That is to say, the robot can determine its own accurate position in the room at any time.
  • the determining the indoor area specifically includes that: performing 360-degree scanning at any point in the room, and determining a rectangle enclosed by two parallel lines which are transversely farthest away from each other and two parallel lines which are longitudinally farthest away from each other in an obtained outline as the indoor area.
  • Fig. 2 is a schematic diagram of scanning at any point in a room according to an embodiment of the present disclosure. As shown in Fig. 2, an outline formed by the dotted line is a result obtained by 360-degree laser ranging at point A.
  • Fig. 3 is a schematic diagram of determining an indoor area according to an embodiment of the present disclosure. As shown in Fig. 3, the rectangle MNQP enclosed by the two parallel lines MP and NQ which are transversely farthest away from each other and the two parallel lines MN and PQ which are longitudinally farthest away from each other is the indoor area determined in the embodiment of the present disclosure.
  • the maximum area of the room can be surveyed and mapped by determining the indoor area in the abovementioned manner, thereby providing a good support to subsequent surveying and mapping of the approachable areas and avoiding inaccuracy of a detection result of the indoor approachable area caused by selection of improper surveying and mapping points due to inaccuracy of the determined indoor area.
  • the selecting the plurality of surveying and mapping points in the indoor area includes that: selecting a plurality of isometric surveying and mapping points in the indoor area by taking a central point of the indoor area as a centre.
  • the plurality of isometric surveying and mapping points can be selected by taking the central point of the determined indoor area as the centre when surveying and mapping points selecting. If the indoor area is a rectangle or a square, an intersection of diagonals can be taken as the centre; and if the indoor area is a circle, the centre of the circle can be taken as the centre; and the same to other shapes.
  • the isometric surveying and mapping points are selected by taking the central point of the indoor area as the centre, so that the surveying and mapping points can be arranged more reasonably, and all places which can be scanned in the room can be scanned reasonably and accurately during subsequent scanning at each surveying and mapping point.
  • the number of surveying and mapping points is not less than 4, and a distance between every two surveying and mapping points may be not less than 1/3 of a width of the indoor area.
  • the surveying and mapping points in the embodiment of the present disclosure may be not less than 4.
  • the distance between every two surveying and mapping points may be not less than 1/3 of the width of the indoor area, so that the condition of that the measured areas are more overlapped but the other areas in the room are not scanned due to excessively small distances between the surveying and mapping points is avoided.
  • the determining the indoor approachable area according to the approachable areas measured at the surveying and mapping points specifically includes that:
  • the indoor object placement position is an indoor area which is not measured at all the surveying and mapping points
  • the indoor approachable area is the indoor area except the indoor object placement position.
  • the approachable areas measured at the surveying and mapping points may be different polygons, and when these polygons are overlaid, a part of the areas may be overlapped, some areas may be measured at one or more surveying and mapping points, the areas measured at all these surveying and mapping points is wholly determined as the indoor approachable area, the area which is not measured at all the surveying and mapping points in the indoor area may be determined as a position where the object is placed, and may be obstacles for the robot, and correspondingly, the area except all the indoor object placement position can be determined as the indoor approachable area.
  • Fig. 4 is a plane view of arrangement in a room according to an embodiment of the present disclosure. As shown in Fig. 4, it is supposed that a television cabinet and a sofa are placed in a room.
  • 360-degree laser scanning can be performed at any point in the current room, so that an outline can be obtained; in addition, the position of the robot in the outline can also be obtained.
  • the dotted box is a room outline obtained by 360-degree laser scanning at a surveying and mapping point A.
  • a rectangle enclosed by two parallel lines which are transversely farthest away from each other and two parallel lines which are longitudinally farthest away from each other in the obtained outline is initially determined as a wall or an actual approachable area in the room.
  • a central point of the initially determined approachable area is temporarily taken as a central point of the room, and a plurality of isometric surveying and mapping points are selected by taking this point as the centre.
  • the surveying and mapping points can be not less than 4, and a distance between every two surveying and mapping points can be not less than 1/3 of a width of the initially determined approachable area.
  • Fig. 5 is a schematic diagram of a position of each point in a room according to an embodiment of the present disclosure. As shown in Fig. 5, it is supposed that a centre of the room is a position shown by using a black point in Fig. 5, and points A, B, C and D are 4 surveying and mapping points which are isometric away from the centre of the room respectively.
  • the robot can sequentially move to the 4 surveying and mapping points according to its own position and an absolute distance and angle obtained by ranging.
  • the robot can move to the next surveying and mapping point according to an along-the-edge movement algorithm or another algorithm if the robot cannot reach the next point along a straight line; if the robot cannot move to the next surveying and mapping point finally, a point which is closest to the surveying and mapping point is selected as a substitutive surveying and mapping point.
  • the robot can sequentially perform 360-degree laser ranging at each surveying and mapping point to obtain distance information measured at each surveying and mapping point.
  • Fig. 6 is a profile diagram of laser ranging at point B according to an embodiment of the present disclosure. Then the robot can move to point C and point D from point B for 360-degree laser ranging respectively, which is not shown in any of the drawings in the present disclosure.
  • Fig. 7 is an overlay diagram of outlines measured at point A and point B according to an embodiment of the present disclosure.
  • an octagon between the television cabinet and the sofa is an overlapped part, i.e., an area which can be measured at point A and point B; triangular areas on two sides of the television cabinet are un-overlapped parts containing data, i.e., areas which can be measured at point A or point B only; and an area where the television cabinet is located is a completely-excluded part, so that it can be determined that an object (obstacle) is placed in the area.
  • areas which can not be measured at any point are the positions of the television cabinet and the sofa, and the robot can accordingly determine that the two positions are object placement positions (where the obstacles exist) , which can not be collided or passed through but bypass.
  • the relatively accurate outline and object placement data of the room can be obtained by overlaying the maximum area which is surveyed and mapped.
  • accuracy depends on the number of the surveying and mapping points, the distances between the surveying and mapping points and complexity of the room.
  • the robot can determine its own position in the room at any time according to its own turning direction, walking distance and the like, can also perform 360-degree annular ranging at any current position even though an error is generated by a certain condition, and can perform overlapping comparison to obtain its own accurate current position according to new data and initially determined room outline.
  • the robot can traverse the room, clean the room and the like according to its own algorithm, without colliding with the wall.
  • an embodiment of the present disclosure further provides a device for determining an indoor approachable area. Since a principle for problem solving of the device is similar to that for a method for determining an indoor approachable area, implementation of the device can refer to implementation of the method, and repeated parts will not be repeated.
  • Fig. 8 is a structure diagram of a device for determining an indoor approachable area according to an embodiment of the present disclosure. As shown in Fig. 8, the device for determining the indoor approachable area includes:
  • a first determining module 801, configured to determine an indoor area
  • a surveying and mapping module 802 configured to select a plurality of surveying and mapping points in the indoor area, to perform 360-degree scanning at each surveying and mapping point, and to obtain a approachable area measured at each surveying and mapping point;
  • a second determining module 803 configured to determine the indoor approachable area according to the approachable areas measured at the surveying and mapping points.
  • the first determining module is specifically configured to perform 360-degree scanning at any point in a room, and to determine a rectangle enclosed by two parallel lines which are transversely farthest away from each other and two parallel lines which are longitudinally farthest away from each other in an obtained outline as the indoor area.
  • the surveying and mapping module is specifically configured to select a plurality of isometric surveying and mapping points in the indoor area by taking a central point of the indoor area as the centre, and to perform 360-degree scanning at each surveying and mapping point, and to obtain the approachable area measured at each surveying and mapping point.
  • the number of selected surveying and mapping points is not less than 4, and a distance between every two surveying and mapping points is not less than 1/3 of a width of the indoor area.
  • the second determining module is specifically configured to overlay the approachable areas measured at the surveying and mapping points to obtain an indoor object placement position; and the indoor object placement position is an indoor area which is not measured at any surveying and mapping point, and the indoor approachable area is an indoor area except the indoor object placement position.
  • each part of the device is functionally divided into various modules or units for respective description. Nevertheless, functions of each module or unit can be implemented in the same or multiple pieces of software or hardware during implementation of the present disclosure.
  • the embodiment of the present disclosure may be provided as a method, a system or a computer program product. Therefore, the present disclosure may adopt a form of pure hardware embodiment, pure software embodiment and combined software and hardware embodiment. Moreover, the present disclosure may adopt a form of computer program product implemented on one or more computer-available storage media (including, but not limited to, a disk memory, a Compact Disc Read-Only Memory (CD-ROM) and an optical memory) including computer-available program codes.
  • CD-ROM Compact Disc Read-Only Memory
  • each flow and/or block in the flowcharts and/or the block diagrams and combinations of the flows and/or blocks in the flowcharts and/or the block diagrams may be implemented by computer program instructions.
  • These computer program instructions may be provided for a universal computer, a dedicated computer, an embedded processor or a processor of other programmable data processing equipment to generate a machine, so that a device for realizing a function specified in one or more flows in the flowcharts and/or one or more blocks in the block diagrams is generated by the instructions executed through the computer or the processor of the other programmable data processing equipment.
  • These computer program instructions may also be stored in a computer-readable memory capable of guiding the computer or the other programmable data processing equipment to work in a specific manner, so that a product including an instruction device may be generated by the instructions stored in the computer-readable memory, the instruction device realizing the function specified in one flow or many flows in the flowcharts and/or one block or many blocks in the block diagrams.
  • These computer program instructions may further be loaded onto the computer or the other programmable data processing equipment, so that a series of operating steps are executed on the computer or the other programmable data processing equipment to generate processing implemented by the computer, and steps for realizing the function specified in one flow or many flows in the flowcharts and/or one block or many blocks in the block diagrams are provided by the instructions executed on the computer or the other programmable data processing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A method and device for determining an indoor approachable area. The method includes: an indoor area is determined (101); a plurality of surveying and mapping points are selected in the indoor area, 360 degree scanning is performed at each surveying and mapping point to obtain an approachable area measured at each surveying and mapping point (102); and the indoor approachable area is determined according to the approachable areas measured at the surveying and mapping points (103). According to the method and device, a robot is not required to continuously transmit infrared rays or ultrasonic waves for detecting when walking along a wall, so that higher efficiency is achieved; and moreover,detection is not based on walking along the wall but by 360 degree scanning at each surveying and mapping point, so that an object not against the wall can also be correctly detected, and higher accuracy is ensured.

Description

METHOD AND DEVICE FOR DETERMINING INDOOR APPROACHABLE AREA TECHNICAL FIELD
The present disclosure relates to the technical field of robots, and more particularly, to a method and device for determining an indoor approachable area.
BACKGROUND
With the development of the intelligent technologies, robots (for example, sweeping robots and mopping robots) have generally entered family life at present.
Most of existing robots walk around a circle according to their own route algorithms or walk along walls by means of infrared detection, ultrasonic detection or the like; they are prevented from colliding with the walls when walking by continuously transmitting infrared rays or ultrasonic waves and receiving reflected waves from the walls or objects, and are continuously corrected to get a general room outline when walking.
However, it is necessary to continuously transmit infrared rays or ultrasonic waves and receive reflected waves from a wall or an object during walking, so that the existing way is time-consuming, low in efficiency and low in accuracy; and usually an object which is in the centre of a room and not against the wall can not be correctly detected.
The related art has shortcomings as follows:
Existing robot takes a long time to detect room outline, and the accuracy is low.
SUMMARY
Embodiments of the present disclosure discloses a method and device for determining an indoor approachable area, so as to solve technical problems of long time and low accuracy of room outline detection of a robot in the related art.
An embodiment of the present disclosure provides a method for determining an indoor approachable area, which includes:
determining an indoor area;
selecting a plurality of surveying and mapping points in the indoor area, performing 360-degree scanning at each surveying and mapping point to obtain a approachable area measured at each surveying and mapping point; and
determining the indoor approachable area according to the approachable areas obtained at the surveying and mapping points.
The embodiment of the present disclosure provides a device for determining an indoor approachable area, which includes:
a first determining module, configured to determine an indoor area;
a surveying and mapping module, configured to select a plurality of surveying and mapping points in the indoor area, to perform 360-degree scanning at each surveying and mapping point, and to obtain a approachable area measured at each surveying and mapping point; and
a second determining module, configured to determine the indoor approachable area according to the approachable areas obtained at the surveying and mapping points.
The following beneficial effects are achieved:
according to the method and device for determining the indoor approachable area in embodiments of the present disclosure, the indoor area is determined at first, the plurality of surveying and mapping points are selected in the indoor area, 360-degree scanning is performed at each surveying and mapping point to obtain the approachable area measured at each surveying and mapping point, and the indoor approachable area can be determined according to the approachable areas measured at the surveying and mapping points; in the embodiment of the present disclosure, 360-degree scanning is performed at each surveying and mapping point in the indoor area, and the indoor approachable area is determined according to the approachable areas measured at the surveying and mapping points, so that a robot is not required to continuously transmit infrared rays or ultrasonic waves for detection when walking along a wall, and higher efficiency is achieved; and moreover, detection is not based on walking along the wall but by 360-degree scanning at each surveying and mapping point in the embodiment of the present disclosure, so that an object not against the wall can also be correctly detected in the embodiment of the present disclosure, and higher accuracy is be ensured.
BRIEF DESCRIPTION OF THE DRAWINGS
Specific embodiments of the present disclosure will be described below with reference to the drawings, wherein:
Fig. 1 is an implementation flowchart of a method for determining an indoor approachable area according to an embodiment of the present disclosure;
Fig. 2 is a schematic diagram of scanning at any point in a room according to an embodiment of the present disclosure;
Fig. 3 is a schematic diagram of determining an indoor area according to an embodiment of the present disclosure;
Fig. 4 is a plane view of arrangement in a room according to an embodiment of the present disclosure;
Fig. 5 is a schematic diagram of a position of each point in a room according to an embodiment of the present disclosure;
Fig. 6 is a profile diagram of laser ranging at point B according to an embodiment of the present disclosure;
Fig. 7 is an overlay diagram of outlines measured at point A and point B according to an embodiment of the present disclosure; and
Fig. 8 is a structure diagram of a device for determining an indoor approachable area according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
In order to make technical solutions and advantages of the present disclosure clearer, exemplary embodiments of the present disclosure will be further described below with reference to the drawings in detail. Obviously, the described embodiments are not all embodiments but only part of embodiments of the present disclosure. Moreover, the embodiments in the present disclosure and characteristics in the embodiments can be combined under the condition of no conflicts.
For the shortcoming of the related art, an embodiment of the present disclosure discloses a method and device for determining an indoor approachable area, which are described below.
Fig. 1 is an implementation flowchart of a method for determining an indoor approachable area according to an embodiment of the present disclosure. As shown in Fig. 1, the method for determining the indoor approachable area includes the following steps:
step 101: determining an indoor area;
step 102: selecting a plurality of surveying and mapping points in the indoor area, performing 360-degree scanning at each surveying and mapping point, and obtaining a approachable area measured at each surveying and mapping point; and
step 103: determining the indoor approachable area according to the approachable areas measured at the surveying and mapping points.
According to the embodiment of the present disclosure, the indoor area is determined at first, and the indoor area can be an overall outline of a room, i.e., a space enclosed by covering objects such as a wall and glass. There may be placed many objects in the indoor area, which may usually cause the condition that the indoor approachable area is smaller than the indoor area, and a robot usually carries out work such as cleaning and sweeping in the indoor approachable area to avoid collision with the wall or the objects. For example: in a living room, an original area of the room is 18 square meters, furniture such as a bed and a cabinet may be placed in the room, and the furniture may occupy a certain area, so that a approachable area of the room is a part except positions of the furniture, i.e., a walking range of the robot.
According to the method in the embodiment of the present disclosure, in consideration that there may exist some objects against the wall or not against the wall in the indoor area, a plurality of surveying and mapping points are selected in the indoor area, and the robot can move to each surveying and mapping point and perform 360-degree scanning at each surveying and mapping point. During specific implementation, laser ranging, infrared ranging, ultrasonic ranging and the like in the related art may be adopted for scanning, and a specific scanning process will not be repeated in the present disclosure.
When moving to each surveying and mapping point for scanning, the robot can perform scanning such as 360-degree laser ranging at a current position to initially determine its own position and position relationships between its own position and the surveying and mapping points; then it can walk to one certain surveying and mapping point, and determine the position relationship between its own position and the surveying and mapping point in real time according to parameters such as turning direction and walking distance when walking, thereby moving to a specified place finally (i.e., the surveying and mapping point) . If an error is generated due to a certain reason, the robot can perform 360-degree ranging at the current position immediately to determine its own position and the position relationships between its own position and the surveying and  mapping points.
The approachable area measured at each surveying and mapping point can be obtained by performing 360-degree scanning at each surveying and mapping point. The approachable areas measured at different surveying and mapping points may exist an overlapped part or a part which is measured at one surveying and mapping point but not measured at another surveying and mapping point. In the embodiment of the present disclosure, it is considered that the area measured at each surveying and mapping point is within the indoor approachable area, so that the indoor approachable area can finally be determined.
In the embodiment of the present disclosure, after the indoor area is determined, a plurality of surveying and mapping points are selected in the indoor area, and 360-degree scanning is performed at each surveying and mapping point to obtain the approachable area measured at each surveying and mapping point, so that the indoor approachable area is finally obtained. According to the method in the embodiment of the present disclosure, the indoor approachable area can be determined only by performing 360-degree scanning at the selected surveying and mapping points without walking around the room along the wall or according to another algorithm and continuously transmitting infrared rays and the like for continuous detection, so that detection time is shorter, efficiency is higher, the indoor approachable area can be rapidly determined, and time is greatly saved.
In addition, according to the method in the embodiment of the present disclosure, the indoor approachable area is determined not in manners of walking along the wall, walking according to a certain rule or the like (in these manners, only the area the robot passes through can be detected, and the robot usually only walk along an edge of an obstacle at present) but according to the approachable areas measured at the surveying and mapping points by performing 360-degree scanning at the plurality of surveying and mapping points, positions of the objects placed in the room (i.e., areas which can not be measured at all the surveying and mapping points) can be effectively detected, and compared with the related art, the method is higher in accuracy. After the high-accuracy indoor approachable area is obtained, a perfect traversing/walking route can subsequently be planned according to the indoor approachable area.
In addition, an accurate outline of the indoor approachable area is obtained in the embodiment of the present disclosure, and the robot can obtain its own accurate position  in the indoor approachable area by performing comparison between data obtained by 360-degree ranging and the accurate outline of the indoor approachable area after performing 360-degree ranging at any current position. That is to say, the robot can determine its own accurate position in the room at any time.
During implementation, the determining the indoor area specifically includes that: performing 360-degree scanning at any point in the room, and determining a rectangle enclosed by two parallel lines which are transversely farthest away from each other and two parallel lines which are longitudinally farthest away from each other in an obtained outline as the indoor area.
During specific implementation, the robot can perform 360-degree laser ranging at any point in the room to obtain an outline in a certain shape. Fig. 2 is a schematic diagram of scanning at any point in a room according to an embodiment of the present disclosure. As shown in Fig. 2, an outline formed by the dotted line is a result obtained by 360-degree laser ranging at point A.
In the embodiment of the present disclosure, the rectangle enclosed by the two parallel lines which are transversely farthest away from each other and the two parallel lines which are longitudinally farthest away from each other in the outline is determined as the indoor area after the outline is obtained. Fig. 3 is a schematic diagram of determining an indoor area according to an embodiment of the present disclosure. As shown in Fig. 3, the rectangle MNQP enclosed by the two parallel lines MP and NQ which are transversely farthest away from each other and the two parallel lines MN and PQ which are longitudinally farthest away from each other is the indoor area determined in the embodiment of the present disclosure.
According to the embodiment of the present disclosure, the maximum area of the room can be surveyed and mapped by determining the indoor area in the abovementioned manner, thereby providing a good support to subsequent surveying and mapping of the approachable areas and avoiding inaccuracy of a detection result of the indoor approachable area caused by selection of improper surveying and mapping points due to inaccuracy of the determined indoor area.
During implementation, the selecting the plurality of surveying and mapping points in the indoor area includes that: selecting a plurality of isometric surveying and mapping points in the indoor area by taking a central point of the indoor area as a centre.
According to the embodiment of the present disclosure, the plurality of isometric  surveying and mapping points can be selected by taking the central point of the determined indoor area as the centre when surveying and mapping points selecting. If the indoor area is a rectangle or a square, an intersection of diagonals can be taken as the centre; and if the indoor area is a circle, the centre of the circle can be taken as the centre; and the same to other shapes.
According to the embodiment of the present disclosure, the isometric surveying and mapping points are selected by taking the central point of the indoor area as the centre, so that the surveying and mapping points can be arranged more reasonably, and all places which can be scanned in the room can be scanned reasonably and accurately during subsequent scanning at each surveying and mapping point.
During implementation, the number of surveying and mapping points is not less than 4, and a distance between every two surveying and mapping points may be not less than 1/3 of a width of the indoor area.
During specific implementation, in consideration of that most of existing indoor buildings are quadrangles such as squares and rectangles, the surveying and mapping points in the embodiment of the present disclosure may be not less than 4. The distance between every two surveying and mapping points may be not less than 1/3 of the width of the indoor area, so that the condition of that the measured areas are more overlapped but the other areas in the room are not scanned due to excessively small distances between the surveying and mapping points is avoided.
During implementation, the determining the indoor approachable area according to the approachable areas measured at the surveying and mapping points specifically includes that:
overlaying the approachable areas measured at the surveying and mapping points to obtain an indoor object placement position, wherein the indoor object placement position is an indoor area which is not measured at all the surveying and mapping points; and
the indoor approachable area is the indoor area except the indoor object placement position.
During specific implementation, the approachable areas measured at the surveying and mapping points may be different polygons, and when these polygons are overlaid, a part of the areas may be overlapped, some areas may be measured at one or more  surveying and mapping points, the areas measured at all these surveying and mapping points is wholly determined as the indoor approachable area, the area which is not measured at all the surveying and mapping points in the indoor area may be determined as a position where the object is placed, and may be obstacles for the robot, and correspondingly, the area except all the indoor object placement position can be determined as the indoor approachable area.
In order to facilitate implementation of the present disclosure, description will be given below with an example.
Fig. 4 is a plane view of arrangement in a room according to an embodiment of the present disclosure. As shown in Fig. 4, it is supposed that a television cabinet and a sofa are placed in a room.
According to the embodiment of the present disclosure, 360-degree laser scanning can be performed at any point in the current room, so that an outline can be obtained; in addition, the position of the robot in the outline can also be obtained. As shown in Fig. 4, the dotted box is a room outline obtained by 360-degree laser scanning at a surveying and mapping point A.
A rectangle enclosed by two parallel lines which are transversely farthest away from each other and two parallel lines which are longitudinally farthest away from each other in the obtained outline is initially determined as a wall or an actual approachable area in the room.
A central point of the initially determined approachable area is temporarily taken as a central point of the room, and a plurality of isometric surveying and mapping points are selected by taking this point as the centre. Under a normal condition, the surveying and mapping points can be not less than 4, and a distance between every two surveying and mapping points can be not less than 1/3 of a width of the initially determined approachable area.
Fig. 5 is a schematic diagram of a position of each point in a room according to an embodiment of the present disclosure. As shown in Fig. 5, it is supposed that a centre of the room is a position shown by using a black point in Fig. 5, and points A, B, C and D are 4 surveying and mapping points which are isometric away from the centre of the room respectively.
The robot can sequentially move to the 4 surveying and mapping points according  to its own position and an absolute distance and angle obtained by ranging. During specific implementation, the robot can move to the next surveying and mapping point according to an along-the-edge movement algorithm or another algorithm if the robot cannot reach the next point along a straight line; if the robot cannot move to the next surveying and mapping point finally, a point which is closest to the surveying and mapping point is selected as a substitutive surveying and mapping point.
The robot can sequentially perform 360-degree laser ranging at each surveying and mapping point to obtain distance information measured at each surveying and mapping point.
For example: the robot moves from point A to point B, and performs 360-degree laser ranging at point B. Fig. 6 is a profile diagram of laser ranging at point B according to an embodiment of the present disclosure. Then the robot can move to point C and point D from point B for 360-degree laser ranging respectively, which is not shown in any of the drawings in the present disclosure.
Surveying and mapping data obtained at the 4 points is overlaid to obtain the following types:
1) an overlapped part, which is an area can be measured at two points or more;
2) an un-overlapped part containing data, which is an area can be measured at only one point; and
3) a completely-excluded part, which is an area where an object is placed in the room.
Fig. 7 is an overlay diagram of outlines measured at point A and point B according to an embodiment of the present disclosure. As shown in Fig. 7, description is given with an upper part of the room as an example, an octagon between the television cabinet and the sofa is an overlapped part, i.e., an area which can be measured at point A and point B; triangular areas on two sides of the television cabinet are un-overlapped parts containing data, i.e., areas which can be measured at point A or point B only; and an area where the television cabinet is located is a completely-excluded part, so that it can be determined that an object (obstacle) is placed in the area.
Furthermore, after 360-degree laser ranging at point C and point D respectively, areas which can not be measured at any point are the positions of the television cabinet and the sofa, and the robot can accordingly determine that the two positions are object  placement positions (where the obstacles exist) , which can not be collided or passed through but bypass.
From the above, the relatively accurate outline and object placement data of the room can be obtained by overlaying the maximum area which is surveyed and mapped. During specific implementation, accuracy depends on the number of the surveying and mapping points, the distances between the surveying and mapping points and complexity of the room.
The robot can determine its own position in the room at any time according to its own turning direction, walking distance and the like, can also perform 360-degree annular ranging at any current position even though an error is generated by a certain condition, and can perform overlapping comparison to obtain its own accurate current position according to new data and initially determined room outline.
After obtaining the accurate data, the robot can traverse the room, clean the room and the like according to its own algorithm, without colliding with the wall.
On the basis of the same inventive concept, an embodiment of the present disclosure further provides a device for determining an indoor approachable area. Since a principle for problem solving of the device is similar to that for a method for determining an indoor approachable area, implementation of the device can refer to implementation of the method, and repeated parts will not be repeated.
Fig. 8 is a structure diagram of a device for determining an indoor approachable area according to an embodiment of the present disclosure. As shown in Fig. 8, the device for determining the indoor approachable area includes:
a first determining module 801, configured to determine an indoor area;
a surveying and mapping module 802, configured to select a plurality of surveying and mapping points in the indoor area, to perform 360-degree scanning at each surveying and mapping point, and to obtain a approachable area measured at each surveying and mapping point; and
a second determining module 803, configured to determine the indoor approachable area according to the approachable areas measured at the surveying and mapping points.
During implementation, the first determining module is specifically configured to perform 360-degree scanning at any point in a room, and to determine a rectangle  enclosed by two parallel lines which are transversely farthest away from each other and two parallel lines which are longitudinally farthest away from each other in an obtained outline as the indoor area.
During implementation, the surveying and mapping module is specifically configured to select a plurality of isometric surveying and mapping points in the indoor area by taking a central point of the indoor area as the centre, and to perform 360-degree scanning at each surveying and mapping point, and to obtain the approachable area measured at each surveying and mapping point.
During implementation, the number of selected surveying and mapping points is not less than 4, and a distance between every two surveying and mapping points is not less than 1/3 of a width of the indoor area.
During implementation, the second determining module is specifically configured to overlay the approachable areas measured at the surveying and mapping points to obtain an indoor object placement position; and the indoor object placement position is an indoor area which is not measured at any surveying and mapping point, and the indoor approachable area is an indoor area except the indoor object placement position.
In order to facilitate description, each part of the device is functionally divided into various modules or units for respective description. Nevertheless, functions of each module or unit can be implemented in the same or multiple pieces of software or hardware during implementation of the present disclosure.
Those skilled in the art should know that the embodiment of the present disclosure may be provided as a method, a system or a computer program product. Therefore, the present disclosure may adopt a form of pure hardware embodiment, pure software embodiment and combined software and hardware embodiment. Moreover, the present disclosure may adopt a form of computer program product implemented on one or more computer-available storage media (including, but not limited to, a disk memory, a Compact Disc Read-Only Memory (CD-ROM) and an optical memory) including computer-available program codes.
The present disclosure is described with reference to flowcharts and/or block diagrams of the method, equipment (system) and computer program product according to the embodiment of the present disclosure. It should be understood that each flow and/or block in the flowcharts and/or the block diagrams and combinations of the flows and/or blocks in the flowcharts and/or the block diagrams may be implemented by  computer program instructions. These computer program instructions may be provided for a universal computer, a dedicated computer, an embedded processor or a processor of other programmable data processing equipment to generate a machine, so that a device for realizing a function specified in one or more flows in the flowcharts and/or one or more blocks in the block diagrams is generated by the instructions executed through the computer or the processor of the other programmable data processing equipment.
These computer program instructions may also be stored in a computer-readable memory capable of guiding the computer or the other programmable data processing equipment to work in a specific manner, so that a product including an instruction device may be generated by the instructions stored in the computer-readable memory, the instruction device realizing the function specified in one flow or many flows in the flowcharts and/or one block or many blocks in the block diagrams.
These computer program instructions may further be loaded onto the computer or the other programmable data processing equipment, so that a series of operating steps are executed on the computer or the other programmable data processing equipment to generate processing implemented by the computer, and steps for realizing the function specified in one flow or many flows in the flowcharts and/or one block or many blocks in the block diagrams are provided by the instructions executed on the computer or the other programmable data processing equipment.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed here. This application is intended to cover any variations, uses, or adaptations of the invention following the general principles thereof and including such departures from the present disclosure as come within known or customary practice in the art. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims (10)

  1. A method for determining an indoor approachable area, comprising:
    determining an indoor area;
    selecting a plurality of surveying and mapping points within the indoor area, performing 360-degree scanning at each surveying and mapping point to obtain a approachable area measured at each surveying and mapping point; and
    determining the indoor approachable area according to the approachable areas obtained at the surveying and mapping points.
  2. The method according to claim 1, wherein the determining the indoor area comprises: performing 360-degree scanning at any point in a room, and determining a rectangle enclosed by two parallel lines which are transversely farthest away and two parallel lines which are longitudinally farthest away from each other in an obtained outline as the indoor area.
  3. The method according to claim 1, wherein the selecting the plurality of surveying and mapping points in the indoor area comprises: selecting a plurality of isometric surveying and mapping points in the indoor area by taking a central point of the indoor area as a centre.
  4. The method according to claim 3, wherein the number of surveying and mapping points is not less than 4, and a distance between every two surveying and mapping points is not less than 1/3 of a width of the indoor area.
  5. The method according to claim 1, wherein the determining the indoor approachable area according to the approachable areas measured at the surveying and mapping points comprises:
    overlaying the approachable areas measured at all the surveying and mapping points to obtain indoor object placement position, wherein the indoor object placement position is an indoor area which is not measured at all the surveying and mapping points; and
    the indoor approachable area is the indoor area except the indoor object placement position.
  6. A device for determining an indoor approachable area, comprising:
    a first determining module, configured to determine an indoor area;
    a surveying and mapping module, configured to select a plurality of surveying and mapping points in the indoor area, and perform 360-degree scanning at each surveying and mapping point to obtain a approachable area measured at each surveying and mapping point; and
    a second determining module, configured to determine the indoor approachable area according to the approachable areas obtained at the surveying and mapping points.
  7. The device according to claim 6, wherein the first determining module is specifically configured to perform 360-degree scanning at any point in a room, and to determine a rectangle enclosed by two parallel lines which are transversely farthest away from each other and two parallel lines which are longitudinally farthest away from each other in an obtained outline as the indoor area.
  8. The device according to claim 6, wherein the surveying and mapping module is specifically configured to select a plurality of isometric surveying and mapping points in the indoor area by taking a central point of the indoor area as a centre, and to perform 360-degree scanning at each surveying and mapping point to obtain the approachable area measured at each surveying and mapping point.
  9. The device according to claim 8, wherein the number of surveying and mapping points selected by the surveying and mapping module is not less than 4, and a distance between every two surveying and mapping points is not less than 1/3 of a width of the indoor area.
  10. The device according to claim 6, wherein the second determining module is specifically configured to overlay the approachable areas measured at the surveying and mapping points to obtain an indoor object placement position; wherein the indoor object placement position is an indoor area which is not measured at all the surveying and mapping points, and the indoor approachable area is an indoor area except the indoor object placement position.
PCT/CN2016/089900 2015-07-16 2016-07-13 Method and device for determining indoor approachable area WO2017008742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510420205.X 2015-07-16
CN201510420205.XA CN105115490A (en) 2015-07-16 2015-07-16 Method for determining indoor active area, and apparatus thereof

Publications (1)

Publication Number Publication Date
WO2017008742A1 true WO2017008742A1 (en) 2017-01-19

Family

ID=54663535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089900 WO2017008742A1 (en) 2015-07-16 2016-07-13 Method and device for determining indoor approachable area

Country Status (2)

Country Link
CN (1) CN105115490A (en)
WO (1) WO2017008742A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505652A (en) * 2020-04-08 2020-08-07 惠州拓邦电气技术有限公司 Map establishing method, device and operation equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115490A (en) * 2015-07-16 2015-12-02 深圳前海达闼科技有限公司 Method for determining indoor active area, and apparatus thereof
CN111374603A (en) * 2018-12-28 2020-07-07 珠海市一微半导体有限公司 Control method and chip for partitioned cleaning of vision robot and intelligent sweeping robot
CN110362079B (en) * 2019-07-11 2022-07-08 珠海一微半导体股份有限公司 Traversal control method and chip of robot and cleaning robot
CN112155487A (en) * 2019-08-21 2021-01-01 追创科技(苏州)有限公司 Sweeping robot, control method of sweeping robot and storage medium
CN112447272A (en) * 2019-08-30 2021-03-05 华为技术有限公司 Prompting method for fitness training and electronic equipment
CN112183476B (en) * 2020-10-28 2022-12-23 深圳市商汤科技有限公司 Obstacle detection method and device, electronic equipment and storage medium
CN113190638A (en) * 2021-05-08 2021-07-30 苏州触达信息技术有限公司 Electronic map drawing method based on sound distance measurement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365647A (en) * 2001-01-15 2002-08-28 泰怡凯电器(苏州)有限公司 Method for recognizing cleanable region and barrier region of automatic duster
JP2010127849A (en) * 2008-11-28 2010-06-10 Sogo Keibi Hosho Co Ltd Moving body detecting device and method
EP2294960A2 (en) * 2009-09-11 2011-03-16 Vorwerk & Co. Interholding GmbH Method for operating a cleaning robot
US20130060382A1 (en) * 2009-04-24 2013-03-07 Robert Bosch Gmbh Method of accurate mapping with mobile robots
CN104731101A (en) * 2015-04-10 2015-06-24 河海大学常州校区 Indoor scene map modeling method of cleaning robot and robot
CN105115490A (en) * 2015-07-16 2015-12-02 深圳前海达闼科技有限公司 Method for determining indoor active area, and apparatus thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1365647A (en) * 2001-01-15 2002-08-28 泰怡凯电器(苏州)有限公司 Method for recognizing cleanable region and barrier region of automatic duster
JP2010127849A (en) * 2008-11-28 2010-06-10 Sogo Keibi Hosho Co Ltd Moving body detecting device and method
US20130060382A1 (en) * 2009-04-24 2013-03-07 Robert Bosch Gmbh Method of accurate mapping with mobile robots
EP2294960A2 (en) * 2009-09-11 2011-03-16 Vorwerk & Co. Interholding GmbH Method for operating a cleaning robot
CN104731101A (en) * 2015-04-10 2015-06-24 河海大学常州校区 Indoor scene map modeling method of cleaning robot and robot
CN105115490A (en) * 2015-07-16 2015-12-02 深圳前海达闼科技有限公司 Method for determining indoor active area, and apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505652A (en) * 2020-04-08 2020-08-07 惠州拓邦电气技术有限公司 Map establishing method, device and operation equipment
CN111505652B (en) * 2020-04-08 2024-04-30 惠州拓邦电气技术有限公司 Map building method and device and operation equipment

Also Published As

Publication number Publication date
CN105115490A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2017008742A1 (en) Method and device for determining indoor approachable area
US20220050468A1 (en) Robot-assisted processing of a surface using a robot
US9939529B2 (en) Robot positioning system
CN106863305B (en) Floor sweeping robot room map creating method and device
CN109227533B (en) Movement planning device, mobile robot, and movement planning program
EP3764186A1 (en) Method for controlling autonomous mobile robot to travel along edge
US10345821B2 (en) Floor-treatment apparatus and navigation system therefor
CN109085834B (en) Robot determines the method that the method for reference edge and robot screening refer to wall side
EP2256574B1 (en) Autonomous mobile robot, self-position estimation method, environment map generation method, environment map generating device, and environment map generating computer program
CN111582566B (en) Path planning method and device, intelligent robot and storage medium
CN111562777A (en) Sweeping path planning method and device of sweeping robot
CN110874101B (en) Method and device for generating cleaning path of robot
US11822340B2 (en) Method and system for obstacle avoidance in robot path planning using depth sensors
JP6649743B2 (en) Matching evaluation device and matching evaluation method
JP6074205B2 (en) Autonomous mobile
CN110850859B (en) Robot and obstacle avoidance method and obstacle avoidance system thereof
Chen et al. An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation
JP2010026727A (en) Autonomous moving device
JP5427662B2 (en) Robot system
CN114049393A (en) Robot map scanning method, device, equipment and medium
CN115202330A (en) Control method for cleaning robot to move along obstacle and cleaning robot
CN118141285A (en) Method for cleaning dense obstacle area
CN117055584A (en) Robot path planning method, system and computer readable storage medium
Halperin et al. Localization with Few Distance Measurements
CN116465404A (en) Optimal collision point searching method based on preset detection distance range

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16823889

Country of ref document: EP

Kind code of ref document: A1