WO2017007039A1 - Batch exothermic reactor - Google Patents

Batch exothermic reactor Download PDF

Info

Publication number
WO2017007039A1
WO2017007039A1 PCT/KR2015/006937 KR2015006937W WO2017007039A1 WO 2017007039 A1 WO2017007039 A1 WO 2017007039A1 KR 2015006937 W KR2015006937 W KR 2015006937W WO 2017007039 A1 WO2017007039 A1 WO 2017007039A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
jacket
wall
batch
cooling water
Prior art date
Application number
PCT/KR2015/006937
Other languages
French (fr)
Korean (ko)
Inventor
한기도
김영조
박춘욱
이혜원
이상욱
Original Assignee
한화케미칼 주식회사
우양에이치씨(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사, 우양에이치씨(주) filed Critical 한화케미칼 주식회사
Priority to PCT/KR2015/006937 priority Critical patent/WO2017007039A1/en
Publication of WO2017007039A1 publication Critical patent/WO2017007039A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used

Definitions

  • the present invention relates to a batch exothermic reactor, and more particularly, to a batch exothermic reactor that performs a polymerization reaction while controlling the temperature inside the exothermic reaction chamber.
  • the reaction chamber of the batch exothermic reactor employs a cooling method in which cooling water is circulated in the jacket during the resin polymerization reaction.
  • the jacket cooling method uses a chiller to increase the cooling capacity of the jacket.
  • the chiller method minimizes seasonal variations in quality, but it limits the cooling capacity in large reactors.
  • a jacket is provided on the outer surface of the reaction chamber to regulate the reaction temperature inside the reaction chamber by circulating the cooling water through the jacket.
  • the jacket is formed in a spiral partition on the outer surface of the reaction chamber. Therefore, the cooling water circulates from the lower side to the upper side of the reaction chamber spirally along the inside of the jacket to control the internal temperature of the reaction chamber.
  • the cooling water cools to the reaction chamber connected to the jacket through the jacket. Therefore, the temperature control effect of the reaction chamber by the cooling water circulating the jacket can be lowered. In other words, the productivity and quality of the product may be reduced.
  • the batch exothermic reactor the reaction chamber for introducing the reactant to discharge the product produced by the polymerization reaction, and is provided on the inner surface of the reaction chamber to control the internal temperature of the reaction chamber by circulating cooling water
  • a jacket the jacket protruding from the inner surface of the reaction chamber into the reaction chamber and having a pitch in the height direction of the reaction chamber and spirally connected along the inner surface of the reaction chamber;
  • a jacket member connecting neighboring ends to form a spiral cooling water passage and exposed inside the reaction chamber.
  • the jacket member may be welded to an end of the wall and protrude convexly into the reaction chamber to form a cooling water passage between the neighboring walls.
  • the jacket member may connect an end portion of the wall in an arc shape.
  • the pitch of the wall may be set larger than the height of the wall.
  • the arch shape of the jacket member is set to 1 / n cut based on the radial direction in the cylindrical cross section, n may include 2 to 4.
  • the additional area may further comprise a micro area set between an end of the wall and an end of the jacket member and between a weld of the jacket member and an end of the wall.
  • the jacket may be connected to a coolant inlet provided at a lower side of the reaction chamber and may be connected to a coolant outlet provided at a side upper portion of the reaction chamber.
  • the batch exothermic reactor according to an embodiment of the present invention may further include a baffle mounted inside the reactor chamber to circulate the cooling water.
  • the batch exothermic reactor according to an embodiment of the present invention may further include a stirrer installed at the center of the reaction chamber and driven by an external driving force of the reaction chamber.
  • the reaction chamber is provided in the upper part of the reaction chamber, the inlet for injecting the reactant, the lower part of the reaction chamber is provided in the discharge port for discharging the product, and the condenser connected to the external condenser at one side of the inlet to reflux the inside
  • the port may further include.
  • the reaction chamber may polymerize a polyvinyl chloride resin.
  • the cooling water is circulated by installing a jacket that forms a cooling water passage as a wall and a jacket member in the reaction chamber, and thus the cooling water is directly cooled inside the reaction chamber through the jacket. .
  • the coolant circulating in the jacket the temperature inside the reaction chamber can be effectively controlled. That is, productivity and quality of the product (eg, polyvinyl chloride resin) through the reaction chamber can be improved.
  • FIG. 1 is a cross-sectional view of a batch exothermic reactor according to one embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional perspective view of a jacket configured inside the reaction chamber of FIG. 1.
  • FIG. 3 is a partial perspective view of the jacket member of FIG. 2.
  • FIG. 4 is a detailed view of the jacket of FIG. 2.
  • FIG. 5 is an enlarged view of a welded portion of the wall and the jacket member in FIG. 4.
  • FIG. 6 is a relationship diagram between a wall and a cut of the jacket member.
  • reaction chamber 2 jacket
  • baffle 4 stirrer
  • Cooling water inlet 16 Cooling water outlet
  • V total area
  • V1 base area
  • V2 Additional Area
  • V3 Fine Area
  • Cooling water passage C1, C2, C3, C4 1/4, 2/5, 1/3, 1/2 cut
  • T1, t22 thickness G1, G2, G3: gap of jacket member
  • the batch exothermic reactor of one embodiment includes a reaction chamber 1 for performing an exothermic polymerization reaction and a jacket 2 for controlling the internal temperature of the reaction chamber 1.
  • a batch exothermic reactor may produce a polyvinyl chloride resin.
  • the reaction chamber 1 is configured to inject the reactants into the inlet 11 provided in the upper portion, and discharge the product generated by performing a polymerization reaction of exotherm therein through the outlet 12 provided in the lower portion.
  • the reaction chamber 1 connects the external condenser 14 to the condenser port 13 provided at one side of the inlet 11 to reflux and cool the inside.
  • a baffle 3 is mounted inside the reactor chamber 1, and the baffle 3 controls the internal temperature of the reactor chamber 1 by circulating cooling water. That is, the baffle 3 is provided at one side of the inside of the reactor chamber 1 to control the internal temperature, the reactants introduced and the temperature of the resulting product.
  • the baffle (3) is supplied to the cooling water of the low temperature through the cooling water inlet 31 provided in the outer lower side of the reactor chamber 1, and controls the internal temperature while circulating, and is provided on the outer upper side of the reactor chamber (1)
  • the high temperature coolant is discharged through the coolant discharge port 32.
  • a stirrer 4 is installed at the center of the reactor chamber 1, and the stirrer 4 is installed at the center of the reaction chamber 1 to stir the reactants driven by the external driving force of the reaction chamber 1. Done.
  • the stirrer 4 may be driven by a motor 41 provided in the lower center of the reaction chamber 1.
  • FIG. 2 is a partial cross-sectional perspective view of a jacket configured in the reaction chamber of FIG. 1
  • FIG. 3 is a partial perspective view of the jacket member of FIG. 2.
  • a jacket 2 is provided on the inner surface of the reaction chamber 1 to circulate the cooling water so that the internal temperature of the reaction chamber 1, the reactants introduced and generated And to further control the temperature of the product being produced.
  • the jacket 2 is a jacket member that connects the wall 21 spirally connected along the inner surface of the reaction chamber 1 and the neighboring ends of the wall 21 to form a coolant passageway W. (22).
  • the wall 21 protrudes from the inner surface of the reaction chamber 1 into the reaction chamber 1 and is formed spirally with a pitch P set in the height direction of the reaction chamber 1.
  • the jacket member 22 is welded to the ends of the walls 21 and protrudes convexly into the reaction chamber 1 to form the cooling water passage W towards the neighboring walls 21.
  • the jacket member 22 is formed convexly toward the inner space on the inner surface of the reaction chamber 1 by connecting the end of the wall 21 in the form of an arch.
  • the arch shape of the coolant passage W by the jacket member 22 sets the heat transfer area of the jacket member 22 to be wide.
  • the jacket member 22 also has a thickness t22, t22 ⁇ t1, which is thinner than the thickness t1 of the reactor wall of the reaction chamber 1 (see FIG. 4), so that heat transfer is faster.
  • the jacket member 22 may have better heat transfer performance than the reaction chamber 1.
  • the jacket 2 is connected to the coolant inlet 15 provided at the lower side of the reaction chamber 1, and connected to the coolant outlet 16 provided at the upper side of the reaction chamber 1. do.
  • the jacket 2 is introduced into the cooling water inlet 15 provided in the outer lower side of the reactor chamber 1, and controls the internal temperature while circulating, and is provided on the outer upper side of the reactor chamber 1
  • the high temperature coolant is discharged through the coolant outlet 16.
  • the jacket 2 absorbs internal heat of the reaction chamber 1 with cooling water circulating in the cooling water passage W.
  • the wall 21 and the jacket member 22 forming the jacket 2 set the coolant passage W in the inner surface of the reaction chamber 1.
  • the pitch P of the wall 21 for setting the coolant passage W may be set larger than the height H of the wall 21 (P> H).
  • the total area V is formed of the basic area V1 along the height H of the wall 21 and the additional area V2 by the jacket member 22.
  • the jacket member 22 sets the additional area V2 at the end of the wall 21.
  • the arch shape of the jacket member 22 for setting the additional area V2 is set to 1 / n cut, where n comprises 2 to 4.
  • the cut refers to a shape in which the arc shape of the jacket member 22 extends into n equal portions in the cylindrical cross section based on the radial direction when forming a circle.
  • the additional area V2 according to the arch shape increases the total area V of the cooling water passage W.
  • the arch shape of the jacket member 22 may be set to 1/4 cut C1, 1/3 cut C2, 2/5 cut C3 and 1/2 cut C4 ( See FIG. 6).
  • the additional area V2 increases the flow rate of the cooling water and increases the contact area between the jacket member 22 and the inside of the reaction chamber 1. As the additional area V2 is smaller, the flow rate of the cooling water decreases, and when the jacket member 21 is less than 1/4 cut, the effect of increasing the heat transfer area inside the reaction chamber 1 may be lowered.
  • FIG. 5 is an enlarged view of a welded portion of the wall and the jacket member in FIG. 4.
  • the wall 21 welds the jacket member 22, thereby reducing the gap (that is, the pitch P) of the arch of the jacket member 22 and thus not participating in heat transfer between the coolant and the internal space. (dead zone) can be minimized.
  • the welded portion 23 of the wall 21 and the jacket member 22 further secures a heat transfer area with the internal space by the arch shape of the jacket member 22.
  • the fine area V3 is further set between the end of the wall 21 and the end of the jacket member 22 and between the end of the wall 21 and the weld 23.
  • the fine area V3 can further increase the flow rate of the coolant in the additional area V2 in the pitch P direction without increasing the distance from the inner wall of the reaction chamber 1 to the upper end of the jacket member 22. have. Therefore, the welding part 23, which is in contact with the cooling water passing through the micro area V3, may further heat transfer with the inside of the reaction chamber 1.
  • the wall 21 provided on the inner surface of the reaction chamber 1 can maximize the heat transfer area by the jacket member 22 by minimizing the interval of the additional area V2 set as the spiral jacket member 22. Can be.
  • FIG. 6 is a relationship diagram between a wall and a cut of the jacket member.
  • the arch shape of the jacket member 22 is 1 /.
  • the arch length of the jacket member 22 is formed shortest, and the space
  • the arch shape of the jacket member 22 is 1/2 cut C4
  • the arch length of the jacket member 22 is formed longest, and the space
  • the coolant passage W formed by the jacket 2 is formed in a single row structure on the inner surface of the reaction chamber 1, but a plurality of coolant passages W are formed according to the capacity of the reaction chamber 1. It can also be formed in a row structure.
  • the multiple row structure of the cooling water passage can circulate a large amount of cooling water, further reducing the pressure loss due to the cooling water circulation. Therefore, the plurality of string structures of the cooling water passage can further improve the cooling effect compared to the one string structure.
  • the cooling water circulating the jacket since the temperature inside the reaction chamber can be effectively controlled, the productivity and quality of the product through the reaction chamber can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The objective of the present invention is to provide a batch exothermic reactor that effectively controls the inner temperature of an exothermic reaction chamber that performs an exothermic polymerization reaction. A batch exothermic reactor, according to one embodiment of the present invention, comprises: a reaction chamber having a reactant introduced thereinto and discharging a product generated in a polymerization reaction; and a jacket provided on the inner surface of the reaction chamber and circulating a cooling water to control the inner temperature of the reaction chamber, wherein the jacket includes: a wall body protruding inward from the inner surface of the reaction chamber and having a pitch in the height direction of the reaction chamber, the wall body being connected to the inner surface of the reaction chamber in a helical form along the same; and a jacket member connecting adjacent end portions of the wall body to form a helical cooling-water passage, the jacket member being exposed to the inside of the reaction chamber.

Description

회분식 발열 반응기Batch exothermic reactor
본 발명은 회분식 발열 반응기에 관한 것으로서, 보다 상세하게는 발열 반응 챔버 내부의 온도를 제어하면서 중합 반응을 수행하는 회분식 발열 반응기에 관한 것이다.The present invention relates to a batch exothermic reactor, and more particularly, to a batch exothermic reactor that performs a polymerization reaction while controlling the temperature inside the exothermic reaction chamber.
일반적으로 회분식 발열 반응 공정은 균일한 생성물을 생산하고, 생산성을 높이며, 생성물 품질의 안정성을 위해서는 반응 챔버의 내부 온도를 적절하게 제어할 필요가 있다.In general, a batch exothermic process requires adequate control of the internal temperature of the reaction chamber to produce a uniform product, increase productivity, and ensure product quality stability.
일례를 들면, 회분식 발열 반응기의 반응 챔버는 수지 중합 반응시, 자켓(jacket)에 냉각수를 순환시키는 냉각 방식을 적용한다. 자켓 냉각 방식은 칠러(chiller)를 이용하여 자켓의 냉각 용량을 키울 수 있다. 칠러를 이용하는 방법은 계절에 따른 품질의 변화를 최소화 시킬 수 있지만 대형의 반응기에서는 냉각 능력의 제약을 가진다.For example, the reaction chamber of the batch exothermic reactor employs a cooling method in which cooling water is circulated in the jacket during the resin polymerization reaction. The jacket cooling method uses a chiller to increase the cooling capacity of the jacket. The chiller method minimizes seasonal variations in quality, but it limits the cooling capacity in large reactors.
다른 일례를 들면, 반응 챔버의 외면에 자켓이 설치되어, 자켓으로 냉각수를 순환시킴으로써 반응 챔버 내부의 반응 온도를 조절한다. 자켓은 반응 챔버의 외면에 나선형 칸막이로 형성된다. 따라서 냉각수가 자켓의 내부를 따라 나선형으로 반응 챔버의 외부를 하측에서 상측으로 순환하여 반응 챔버의 내부 온도를 제어한다.As another example, a jacket is provided on the outer surface of the reaction chamber to regulate the reaction temperature inside the reaction chamber by circulating the cooling water through the jacket. The jacket is formed in a spiral partition on the outer surface of the reaction chamber. Therefore, the cooling water circulates from the lower side to the upper side of the reaction chamber spirally along the inside of the jacket to control the internal temperature of the reaction chamber.
그러나 반응 챔버의 외면에 자켓이 배치됨에 따라 냉각수가 자켓을 통하여 자켓에 연결되는 반응 챔버로 냉각 작용하다. 따라서 자켓을 순환하는 냉각수에 의한 반응 챔버의 온도 제어 효과가 낮아질 수 있다. 즉 제품의 생산성 및 품질이 저하될 수 있다. However, as the jacket is disposed on the outer surface of the reaction chamber, the cooling water cools to the reaction chamber connected to the jacket through the jacket. Therefore, the temperature control effect of the reaction chamber by the cooling water circulating the jacket can be lowered. In other words, the productivity and quality of the product may be reduced.
본 발명의 목적은 발열 중합 반응을 수행하는 발열 반응 챔버 내부의 온도를 효과적으로 제어하는 회분식 발열 반응기를 제공하는 것이다.It is an object of the present invention to provide a batch exothermic reactor which effectively controls the temperature inside an exothermic reaction chamber in which an exothermic polymerization reaction is carried out.
본 발명의 일 실시예에 회분식 발열 반응기는, 반응물을 유입하여 중합 반응으로 생성되는 생성물을 배출하는 반응 챔버, 및 상기 반응 챔버의 내면에 구비되어 냉각수를 순환시켜 상기 반응 챔버의 내부 온도를 제어하는 자켓을 포함하며, 상기 자켓은, 상기 반응 챔버의 내면에서 상기 반응 챔버의 내부로 돌출되고 상기 반응 챔버의 높이 방향으로 피치를 가지고 상기 반응 챔버의 내면을 따라 나선형으로 연결되는 벽체, 및 상기 벽체의 이웃하는 단부를 연결하여 나선형 냉각수 통로를 형성하여 상기 반응 챔버의 내부에 노출되는 자켓 부재를 포함한다.In one embodiment of the present invention, the batch exothermic reactor, the reaction chamber for introducing the reactant to discharge the product produced by the polymerization reaction, and is provided on the inner surface of the reaction chamber to control the internal temperature of the reaction chamber by circulating cooling water A jacket, the jacket protruding from the inner surface of the reaction chamber into the reaction chamber and having a pitch in the height direction of the reaction chamber and spirally connected along the inner surface of the reaction chamber; And a jacket member connecting neighboring ends to form a spiral cooling water passage and exposed inside the reaction chamber.
상기 자켓 부재는, 상기 벽체의 단부에 용접되고 상기 반응 챔버의 내부로 볼록하게 돌출되어 이웃하는 상기 벽체 사이를 향하여 냉각수 통로를 형성할 수 있다.The jacket member may be welded to an end of the wall and protrude convexly into the reaction chamber to form a cooling water passage between the neighboring walls.
상기 자켓 부재는, 상기 벽체의 단부를 아치 형태로 연결할 수 있다.The jacket member may connect an end portion of the wall in an arc shape.
상기 벽체의 피치는, 상기 벽체의 높이 보다 더 크게 설정될 수 있다.The pitch of the wall may be set larger than the height of the wall.
상기 자켓 부재의 아치 형태는 원통 단면에서 직경 방향을 기준으로 1/n 컷으로 설정되며, 상기 n은 2 내지 4를 포함할 수 있다.The arch shape of the jacket member is set to 1 / n cut based on the radial direction in the cylindrical cross section, n may include 2 to 4.
상기 추가 면적은, 상기 벽체의 단부와 상기 자켓 부재의 단부 사이 및 상기 자켓 부재의 용접부와 상기 벽체의 단부 사이에 설정되는 미세 면적을 더 포함할 수 있다.The additional area may further comprise a micro area set between an end of the wall and an end of the jacket member and between a weld of the jacket member and an end of the wall.
상기 자켓은, 상기 반응 챔버의 측방 하부에 구비되는 냉각수 유입구에 연결되고, 상기 반응 챔버의 측방 상부에 구비되는 냉각수 배출구에 연결될 수 있다.The jacket may be connected to a coolant inlet provided at a lower side of the reaction chamber and may be connected to a coolant outlet provided at a side upper portion of the reaction chamber.
본 발명의 일 실시예에 따른 회분식 발열 반응기는, 상기 반응기 챔버의 내부에 장착되어 냉각수를 순환시키는 배플을 더 포함할 수 있다.The batch exothermic reactor according to an embodiment of the present invention may further include a baffle mounted inside the reactor chamber to circulate the cooling water.
본 발명의 일 실시예에 따른 회분식 발열 반응기는, 상기 반응 챔버의 중앙에 설치되고, 상기 반응 챔버의 외부 구동력에 의하여 구동되는 교반기를 더 포함할 수 있다.The batch exothermic reactor according to an embodiment of the present invention may further include a stirrer installed at the center of the reaction chamber and driven by an external driving force of the reaction chamber.
상기 반응 챔버는, 상기 반응 챔버의 상부에 구비되어 반응물을 투입하는 투입구, 상기 반응 챔버의 하부에 구비되어 생성물을 토출하는 토출구, 및 내부를 환류 냉각하도록 상기 투입구의 일측에서 외부 응축기가 연결되는 응축기 포트를 더 포함할 수 있다.The reaction chamber is provided in the upper part of the reaction chamber, the inlet for injecting the reactant, the lower part of the reaction chamber is provided in the discharge port for discharging the product, and the condenser connected to the external condenser at one side of the inlet to reflux the inside The port may further include.
상기 반응 챔버는 폴리염화비닐 수지를 중합할 수 있다.The reaction chamber may polymerize a polyvinyl chloride resin.
이와 같이 본 발명의 일 실시예에 따르면, 반응 챔버의 내부에 벽체와 자켓 부재로 냉각수 통로를 형성하는 자켓을 설치하여 냉각수를 순환시키므로 냉각수가 자켓을 통하여 반응 챔버 내부에서 직접 냉각 작용하는 효과가 있다.As described above, according to one embodiment of the present invention, the cooling water is circulated by installing a jacket that forms a cooling water passage as a wall and a jacket member in the reaction chamber, and thus the cooling water is directly cooled inside the reaction chamber through the jacket. .
따라서 자켓을 순환하는 냉각수에 의하여, 반응 챔버 내부의 온도가 효과적으로 제어될 수 있다. 즉 반응 챔버를 통한 생성물(예를 들면, 폴리염화비닐 수지)의 생산성 및 품질이 향상될 수 있다.Therefore, by the coolant circulating in the jacket, the temperature inside the reaction chamber can be effectively controlled. That is, productivity and quality of the product (eg, polyvinyl chloride resin) through the reaction chamber can be improved.
도 1은 본 발명의 일 실시예에 따른 회분식 발열 반응기의 단면도이다.1 is a cross-sectional view of a batch exothermic reactor according to one embodiment of the present invention.
도 2는 도 1의 반응 챔버의 내부에 구성되는 자켓의 부분 단면 사시도이다.FIG. 2 is a partial cross-sectional perspective view of a jacket configured inside the reaction chamber of FIG. 1.
도 3은 도 2의 자켓 부재의 부분 사시도이다.3 is a partial perspective view of the jacket member of FIG. 2.
도 4은 도 2의 자켓의 상세도이다.4 is a detailed view of the jacket of FIG. 2.
도 5는 도 4에서 벽체와 자켓 부재의 용접부에 대한 확대도이다.FIG. 5 is an enlarged view of a welded portion of the wall and the jacket member in FIG. 4.
도 6은 벽체와 자켓 부재의 컷과의 관계도이다.6 is a relationship diagram between a wall and a cut of the jacket member.
- 부호의 설명 -Description of the sign
1: 반응 챔버 2: 자켓1: reaction chamber 2: jacket
3: 배플 4: 교반기3: baffle 4: stirrer
11: 투입구 12: 토출구11: inlet 12: outlet
13: 응축기 포트 14: 외부 응축기13: condenser port 14: external condenser
15: 냉각수 유입구 16: 냉각수 배출구15: Cooling water inlet 16: Cooling water outlet
21: 벽체 22: 자켓 부재21: wall 22: jacket member
23: 용접부 31: 냉각수 유입구23: welding part 31: cooling water inlet
32: 냉각수 배출구 41: 모터32: coolant outlet 41: motor
H: 벽체의 높이 P: 피치H: Height of the wall P: Pitch
V: 전체 면적 V1: 기본 면적V: total area V1: base area
V2: 추가 면적 V3: 미세 면적V2: Additional Area V3: Fine Area
W: 냉각수 통로 C1, C2, C3, C4: 1/4, 2/5, 1/3, 1/2 컷W: Cooling water passage C1, C2, C3, C4: 1/4, 2/5, 1/3, 1/2 cut
T1, t22: 두께 G1, G2, G3: 자켓 부재의 간격T1, t22: thickness G1, G2, G3: gap of jacket member
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
도 1은 본 발명의 일 실시예에 따른 회분식 발열 반응기의 단면도이다. 도 1을 참조하면, 일 실시예의 회분식 발열 반응기는 발열 중합 반응을 수행하는 반응 챔버(1)와 반응 챔버(1)의 내부 온도를 제어하는 자켓(2)을 포함한다. 일례를 들면, 회분식 발열 반응기는 폴리염화비닐 수지를 생성할 수 있다.1 is a cross-sectional view of a batch exothermic reactor according to one embodiment of the present invention. Referring to FIG. 1, the batch exothermic reactor of one embodiment includes a reaction chamber 1 for performing an exothermic polymerization reaction and a jacket 2 for controlling the internal temperature of the reaction chamber 1. For example, a batch exothermic reactor may produce a polyvinyl chloride resin.
반응 챔버(1)는 상부에 구비되는 투입구(11)로 반응물을 투입하고, 내부에서 발열의 중합 반응을 수행하여 생성되는 생성물을 하부에 구비되는 토출구(12)를 통하여 토출하도록 구성된다. 또한 반응 챔버(1)는 투입구(11)의 일측에서 구비되는 응축기 포트(13)에 외부 응축기(14)를 연결하여 내부를 환류 냉각하고 있다.The reaction chamber 1 is configured to inject the reactants into the inlet 11 provided in the upper portion, and discharge the product generated by performing a polymerization reaction of exotherm therein through the outlet 12 provided in the lower portion. In addition, the reaction chamber 1 connects the external condenser 14 to the condenser port 13 provided at one side of the inlet 11 to reflux and cool the inside.
반응기 챔버(1)의 내부에는 배플(3)이 장착되며, 배플(3)은 냉각수를 순환시켜 반응기 챔버(1)의 내부 온도를 제어한다. 즉 배플(3)은 반응기 챔버(1)의 내부 일측에 구비되어, 내부 온도, 투입되는 반응물 및 생성되는 생성물의 온도를 제어한다.A baffle 3 is mounted inside the reactor chamber 1, and the baffle 3 controls the internal temperature of the reactor chamber 1 by circulating cooling water. That is, the baffle 3 is provided at one side of the inside of the reactor chamber 1 to control the internal temperature, the reactants introduced and the temperature of the resulting product.
배플(3)은 반응기 챔버(1)의 외부 하측에 구비되는 냉각수 유입구(31)를 통하여 저온의 냉각수를 유입하여, 순환하면서 내부 온도를 제어한 후, 반응기 챔버(1)의 외부 상측에 구비되는 냉각수 배출구(32)를 통하여 고온의 냉각수를 배출한다.The baffle (3) is supplied to the cooling water of the low temperature through the cooling water inlet 31 provided in the outer lower side of the reactor chamber 1, and controls the internal temperature while circulating, and is provided on the outer upper side of the reactor chamber (1) The high temperature coolant is discharged through the coolant discharge port 32.
또한, 반응기 챔버(1)의 중앙에는 교반기(4)가 설치되며, 교반기(4)는 반응 챔버(1)의 중앙에 설치되어 반응 챔버(1)의 외부 구동력에 의하여 구동되어 투입되는 반응물을 교반하게 된다. 예를 들면, 교반기(4)는 반응 챔버(1)의 중앙 하부에 구비되는 모터(41)에 의하여 구동될 수 있다.In addition, a stirrer 4 is installed at the center of the reactor chamber 1, and the stirrer 4 is installed at the center of the reaction chamber 1 to stir the reactants driven by the external driving force of the reaction chamber 1. Done. For example, the stirrer 4 may be driven by a motor 41 provided in the lower center of the reaction chamber 1.
도 2는 도 1의 반응 챔버의 내부에 구성되는 자켓의 부분 단면 사시도이고, 도 3은 도 2의 자켓 부재의 부분 사시도이다. 도 2 및 도 3을 참조하면, 배플(3)에 더하여, 자켓(2)은 반응 챔버(1)의 내면에 구비되어, 냉각수를 순환시켜 반응 챔버(1)의 내부 온도, 투입되는 반응물 및 생성되는 생성물의 온도를 더 제어하도록 구성된다.FIG. 2 is a partial cross-sectional perspective view of a jacket configured in the reaction chamber of FIG. 1, and FIG. 3 is a partial perspective view of the jacket member of FIG. 2. 2 and 3, in addition to the baffle 3, a jacket 2 is provided on the inner surface of the reaction chamber 1 to circulate the cooling water so that the internal temperature of the reaction chamber 1, the reactants introduced and generated And to further control the temperature of the product being produced.
예를 들면, 자켓(2)은 반응 챔버(1)의 내면을 따라 나선형으로 연결되는 벽체(21)와, 벽체(21)의 이웃하는 단부들을 서로 연결하여 냉각수 통로(W)를 형성하는 자켓 부재(22)를 포함한다.For example, the jacket 2 is a jacket member that connects the wall 21 spirally connected along the inner surface of the reaction chamber 1 and the neighboring ends of the wall 21 to form a coolant passageway W. (22).
벽체(21)는 반응 챔버(1)의 내면에서 반응 챔버(1)의 내부로 돌출되고 반응 챔버(1)의 높이 방향으로 설정된 피치(P)를 가지고 나선형으로 이어져 형성된다. 자켓 부재(22)는 이웃하는 벽체(1)와 함께 나선형 냉각수 통로(W)를 형성하여 반응 챔버(1)의 내부에 노출된다.The wall 21 protrudes from the inner surface of the reaction chamber 1 into the reaction chamber 1 and is formed spirally with a pitch P set in the height direction of the reaction chamber 1. The jacket member 22, together with the neighboring wall 1, forms a helical cooling water passage W and is exposed to the interior of the reaction chamber 1.
자켓 부재(22)는 벽체들(21)의 단부에 용접되고 반응 챔버(1)의 내부로 볼록하게 돌출되어 이웃하는 벽체들(21) 사이를 향하여 냉각수 통로(W)를 형성한다. 일례로써, 자켓 부재(22)는 벽체(21)의 단부를 아치 형태로 연결하여 반응 챔버(1)의 내면에서 내부 공간을 향하여 볼록하게 형성된다.The jacket member 22 is welded to the ends of the walls 21 and protrudes convexly into the reaction chamber 1 to form the cooling water passage W towards the neighboring walls 21. As an example, the jacket member 22 is formed convexly toward the inner space on the inner surface of the reaction chamber 1 by connecting the end of the wall 21 in the form of an arch.
자켓 부재(22)에 의한 냉각수 통로(W)의 아치 형태는 자켓 부재(22)의 열전달 면적을 넓게 설정한다. 또한 자켓 부재(22)는 반응 챔버(1)(도 4 참조)의 반응기 벽의 두께(t1)보다 얇은 두께(t22, t22<t1)를 가지므로 열전달이 빠르다. 따라서 자켓 부재(22)는 반응 챔버(1) 보다 우수한 열전달 성능을 가질 수 있다.The arch shape of the coolant passage W by the jacket member 22 sets the heat transfer area of the jacket member 22 to be wide. The jacket member 22 also has a thickness t22, t22 < t1, which is thinner than the thickness t1 of the reactor wall of the reaction chamber 1 (see FIG. 4), so that heat transfer is faster. Thus, the jacket member 22 may have better heat transfer performance than the reaction chamber 1.
다시 도 1을 참조하면, 자켓(2)은 반응 챔버(1)의 측방 하부에 구비되는 냉각수 유입구(15)에 연결되고, 반응 챔버(1)의 측방 상부에 구비되는 냉각수 배출구(16)에 연결된다.Referring back to FIG. 1, the jacket 2 is connected to the coolant inlet 15 provided at the lower side of the reaction chamber 1, and connected to the coolant outlet 16 provided at the upper side of the reaction chamber 1. do.
따라서 자켓(2)은 반응기 챔버(1)의 외부 하측에 구비되는 냉각수 유입구(15)로 저온의 냉각수를 유입하여, 순환하면서 내부 온도를 제어한 후, 반응기 챔버(1)의 외부 상측에 구비되는 냉각수 배출구(16)를 통하여 고온의 냉각수를 배출한다. 자켓(2)은 냉각수 통로(W)를 순환하는 냉각수로 반응 챔버(1)의 내부 열을 흡수한다.Therefore, the jacket 2 is introduced into the cooling water inlet 15 provided in the outer lower side of the reactor chamber 1, and controls the internal temperature while circulating, and is provided on the outer upper side of the reactor chamber 1 The high temperature coolant is discharged through the coolant outlet 16. The jacket 2 absorbs internal heat of the reaction chamber 1 with cooling water circulating in the cooling water passage W.
도 4은 도 2의 자켓의 상세도이다. 도 4를 참조하면, 자켓(2)을 형성하는 벽체(21)와 자켓 부재(22)는 반응 챔버(1)의 내면에 냉각수 통로(W)를 설정한다. 예를 들면, 냉각수 통로(W)를 설정하는 벽체(21)의 피치(P)는 벽체(21)의 높이(H) 보다 더 크게 설정될 수 있다(P>H).4 is a detailed view of the jacket of FIG. 2. Referring to FIG. 4, the wall 21 and the jacket member 22 forming the jacket 2 set the coolant passage W in the inner surface of the reaction chamber 1. For example, the pitch P of the wall 21 for setting the coolant passage W may be set larger than the height H of the wall 21 (P> H).
냉각수 통로(W)의 단면에서, 전체 면적(V)은 벽체(21)의 높이(H)에 따른 기본 면적(V1)과 자켓 부재(22)에 의한 추가 면적(V2)으로 형성된다. 즉 자켓 부재(22)는 벽체(21)의 단부에서 추가 면적(V2)을 설정한다.In the cross section of the cooling water passage W, the total area V is formed of the basic area V1 along the height H of the wall 21 and the additional area V2 by the jacket member 22. In other words, the jacket member 22 sets the additional area V2 at the end of the wall 21.
추가 면적(V2)을 설정하는 자켓 부재(22)의 아치 형태는 1/n 컷(cut)으로 설정되며, n은 2 내지 4를 포함한다. 컷은 자켓 부재(22)의 아치 형태를 연장하여 원을 형성할 시, 원통 단면에서 직경 방향을 기준으로 n등분하는 형태를 의미한다. 아치 형태에 따른 추가 면적(V2)은 냉각수 통로(W)의 전체 면적(V)을 증가시킨다. 예를 들면, 자켓 부재(22)의 아치 형태는 1/4 컷(C1), 1/3 컷(C2), 2/5 컷(C3) 및 1/2 컷(C4)으로 설정될 수 있다(도 6 참조).The arch shape of the jacket member 22 for setting the additional area V2 is set to 1 / n cut, where n comprises 2 to 4. The cut refers to a shape in which the arc shape of the jacket member 22 extends into n equal portions in the cylindrical cross section based on the radial direction when forming a circle. The additional area V2 according to the arch shape increases the total area V of the cooling water passage W. For example, the arch shape of the jacket member 22 may be set to 1/4 cut C1, 1/3 cut C2, 2/5 cut C3 and 1/2 cut C4 ( See FIG. 6).
추가 면적(V2)은 냉각수의 유통량을 증대시키고 자켓 부재(22)와 반응 챔버(1) 내부와의 접촉 면적을 증대시킨다. 추가 면적(V2)이 작을수록 냉각수의 유통량이 적어지고, 자켓 부재(21)가 1/4 컷(cut) 미만인 경우, 반응 챔버(1)의 내부에서 열전달 면적의 증대 효과가 저하될 수 있다.The additional area V2 increases the flow rate of the cooling water and increases the contact area between the jacket member 22 and the inside of the reaction chamber 1. As the additional area V2 is smaller, the flow rate of the cooling water decreases, and when the jacket member 21 is less than 1/4 cut, the effect of increasing the heat transfer area inside the reaction chamber 1 may be lowered.
추가 면적(V2)이 클수록 냉각수의 유통량이 증대되지만 자켓 부재(22)가 1/2 컷을 초과하는 경우, 과도하게 돌출되어 반응물 혹은 생성물이 끼이거나 교반 효과가 미치지 못하는 영역이 발생될 수 있다.As the additional area V2 increases, the flow rate of the cooling water increases, but when the jacket member 22 exceeds 1/2 cut, an excessively protruding portion may cause a region of the reactants or products to be caught or the stirring effect may not be generated.
도 5는 도 4에서 벽체와 자켓 부재의 용접부에 대한 확대도이다. 도 5를 참조하면, 벽체(21)는 자켓 부재(22)를 용접시키므로 자켓 부재(22)의 아치의 간격(즉 피치(P))을 줄이므로 냉각수와 내부 공간의 열전달에 참여하지 않는 데드존(dead zone)을 최소화 할 수 있다.FIG. 5 is an enlarged view of a welded portion of the wall and the jacket member in FIG. 4. Referring to FIG. 5, the wall 21 welds the jacket member 22, thereby reducing the gap (that is, the pitch P) of the arch of the jacket member 22 and thus not participating in heat transfer between the coolant and the internal space. (dead zone) can be minimized.
뿐만 아니라 벽체(21)와 자켓 부재(22)의 용접부(23)는 자켓 부재(22)의 아치 형상에 의하여 내부 공간과의 열전달 면적을 더 확보한다. 즉 벽체(21)의 단부와 자켓 부재(22)의 단부 사이 및 벽체(21)의 단부와 용접부(23) 사이에 미세 면적(V3)이 더 설정된다.In addition, the welded portion 23 of the wall 21 and the jacket member 22 further secures a heat transfer area with the internal space by the arch shape of the jacket member 22. In other words, the fine area V3 is further set between the end of the wall 21 and the end of the jacket member 22 and between the end of the wall 21 and the weld 23.
미세 면적(V3)은 반응 챔버(1)의 내벽에서 자켓 부재(22)의 상단에 이르는 거리를 증가시키지 않으면서, 추가 면적(V2)에서 냉각수의 유통량을 피치(P) 방향으로 더 증대시킬 수 있다. 따라서 미세 면적(V3)을 유통하는 냉각수에 접촉되는 용접부(23)가 반응 챔버(1)의 내부와 더 열전달할 수 있다.The fine area V3 can further increase the flow rate of the coolant in the additional area V2 in the pitch P direction without increasing the distance from the inner wall of the reaction chamber 1 to the upper end of the jacket member 22. have. Therefore, the welding part 23, which is in contact with the cooling water passing through the micro area V3, may further heat transfer with the inside of the reaction chamber 1.
본 실시예의 회분식 발열 반응기는, 자켓(2)을 반응 챔버(1)의 내부에 설치함으로써, 중합 과정에서 반응 챔버(1)의 열전달 저항에 따른 냉각 손실을 방지 및 최소화 할 수 있다.In the batch exothermic reactor of the present embodiment, by installing the jacket 2 inside the reaction chamber 1, it is possible to prevent and minimize the cooling loss due to the heat transfer resistance of the reaction chamber 1 in the polymerization process.
또한 반응 챔버(1)의 내면에서 구비되는 벽체(21)는 나선형 자켓 부재(22)로 설정되는 추가 면적(V2)의 간격을 최소화 함으로써, 자켓 부재(22)에 의한 열전달 면적을 최대로 증대시킬 수 있다.In addition, the wall 21 provided on the inner surface of the reaction chamber 1 can maximize the heat transfer area by the jacket member 22 by minimizing the interval of the additional area V2 set as the spiral jacket member 22. Can be.
도 6은 벽체와 자켓 부재의 컷과의 관계도이다. 도 6을 참조하면, 1/4 컷(C1), 2/5 컷(C2), 1/3 컷(C3) 및 1/2 컷(C4) 중에서, 자켓 부재(22)의 아치 형태가 1/4 컷(C1)인 경우, 자켓 부재(22)의 아치 길이가 가장 짧게 형성되고, 벽체(21) 위에서 이웃하는 자켓 부재(22)의 간격(G1)이 최대로 설정된다. 따라서 자켓 부재(22)에 의한 열전달 면적이 최소로 형성된다.6 is a relationship diagram between a wall and a cut of the jacket member. Referring to FIG. 6, among the 1/4 cut C1, 2/5 cut C2, 1/3 cut C3, and 1/2 cut C4, the arch shape of the jacket member 22 is 1 /. In the case of four-cut C1, the arch length of the jacket member 22 is formed shortest, and the space | interval G1 of the jacket member 22 which adjoins on the wall 21 is set to the maximum. Therefore, the heat transfer area by the jacket member 22 is formed to a minimum.
또한. 자켓 부재(22)의 아치 형태가 1/2 컷(C4)인 경우, 자켓 부재(22)의 아치 길이가 가장 길게 형성되고, 벽체(21) 위에서 이웃하는 자켓 부재(22)의 간격이 최소(영)로 설정된다. 따라서 자켓 부재(22)에 의한 열전달 면적이 최대로 형성된다.Also. When the arch shape of the jacket member 22 is 1/2 cut C4, the arch length of the jacket member 22 is formed longest, and the space | interval of the jacket member 22 which adjoins on the wall 21 is minimum ( Zero). Therefore, the heat transfer area by the jacket member 22 is maximum.
자켓 부재(22)의 아치 형태가 2/5 컷(C2)과 1/3 컷(C3)인 경우, 아치 길이가 점점 길어지고, 벽체(21) 위에서 이웃하는 자켓 부재(22)의 간격(G2, G3)이 점점 감소한다. 따라서 자켓 부재(22)에 의한 열전달 면적이 점점 증가한다.When the arches of the jacket member 22 are 2/5 cut C2 and 1/3 cut C3, the arch length becomes longer and the gap G2 of the jacket member 22 neighboring on the wall 21 is increased. , G3) gradually decreases. Therefore, the heat transfer area by the jacket member 22 increases gradually.
본 실시예는 자켓(2)에 의한 냉각수 통로(W)를 반응 챔버(1) 내면에 한 줄 구조로 형성한 것으로 설명하고 있으나, 반응 챔버(1)의 용량에 따라 냉각수 통로(W)를 복수 개 줄 구조로 형성할 수도 있다.In the present embodiment, the coolant passage W formed by the jacket 2 is formed in a single row structure on the inner surface of the reaction chamber 1, but a plurality of coolant passages W are formed according to the capacity of the reaction chamber 1. It can also be formed in a row structure.
냉각수 통로의 복수 개 줄 구조는 다량의 냉각수를 순환시킬 수 있으므로 냉각수 순환에 따른 압력 손실을 더 줄일 수 있다. 따라서 냉각수 통로의 복수 개 줄 구조는 한 줄 구조에 비하여 냉각 효과를 더 향상시킬 수 있다.The multiple row structure of the cooling water passage can circulate a large amount of cooling water, further reducing the pressure loss due to the cooling water circulation. Therefore, the plurality of string structures of the cooling water passage can further improve the cooling effect compared to the one string structure.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.
본 발명의 일 실시예에 따르면, 자켓을 순환하는 냉각수에 의하여, 반응 챔버 내부의 온도가 효과적으로 제어될 수 있으므로, 반응 챔버를 통한 생성물의 생산성 및 품질이 향상될 수 있다.According to one embodiment of the invention, by the cooling water circulating the jacket, since the temperature inside the reaction chamber can be effectively controlled, the productivity and quality of the product through the reaction chamber can be improved.

Claims (11)

  1. 반응물을 유입하여 중합 반응으로 생성되는 생성물을 배출하는 반응 챔버; 및A reaction chamber for introducing a reactant to discharge a product produced by the polymerization reaction; And
    상기 반응 챔버의 내면에 구비되어 냉각수를 순환시켜 상기 반응 챔버의 내부 온도를 제어하는 자켓을 포함하며,It is provided on the inner surface of the reaction chamber includes a jacket for controlling the internal temperature of the reaction chamber by circulating cooling water,
    상기 자켓은,The jacket,
    상기 반응 챔버의 내면에서 상기 반응 챔버의 내부로 돌출되고 상기 반응 챔버의 높이 방향으로 피치를 가지고 상기 반응 챔버의 내면을 따라 나선형으로 연결되는 벽체, 및A wall protruding from the inner surface of the reaction chamber into the reaction chamber and spirally connected along the inner surface of the reaction chamber with a pitch in the height direction of the reaction chamber, and
    상기 벽체의 이웃하는 단부를 연결하여 나선형 냉각수 통로를 형성하여 상기 반응 챔버의 내부에 노출되는 자켓 부재A jacket member exposed to the inside of the reaction chamber by connecting a neighboring end of the wall to form a spiral cooling water passage
    를 포함하는 회분식 발열 반응기.Batch exothermic reactor comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 자켓 부재는,The jacket member,
    상기 벽체의 단부에 용접되고 상기 반응 챔버의 내부로 볼록하게 돌출되어 이웃하는 상기 벽체 사이를 향하여 냉각수 통로를 형성하는 회분식 발열 반응기.A batch exothermic reactor welded to an end of the wall and convexly protruding into the reaction chamber to form a cooling water passage between the neighboring walls.
  3. 제2항에 있어서,The method of claim 2,
    상기 자켓 부재는,The jacket member,
    상기 벽체의 단부를 아치 형태로 연결하는 회분식 발열 반응기.Batch exothermic reactor for connecting the end of the wall in the form of an arch.
  4. 제3항에 있어서,The method of claim 3,
    상기 벽체의 피치는,The pitch of the wall,
    상기 벽체의 높이 보다 더 크게 설정되는 회분식 발열 반응기.A batch exothermic reactor set greater than the height of the wall.
  5. 제3항에 있어서,The method of claim 3,
    상기 자켓 부재의 아치 형태는,The arch form of the jacket member,
    원통 단면에서 직경 방향을 기준으로 1/n 컷으로 설정되며,In the cylindrical section it is set to 1 / n cut relative to the radial direction,
    상기 n은 2 내지 4를 포함하는 회분식 발열 반응기.N is 2 to 4 batch exothermic reactor.
  6. 제5항에 있어서,The method of claim 5,
    상기 추가 면적은,The additional area,
    상기 벽체의 단부와 상기 자켓 부재의 단부 사이 및 상기 자켓 부재의 용접부와 상기 벽체의 단부 사이에 설정되는 미세 면적을 더 포함하는 회분식 발열 반응기.And a micro area set between the end of the wall and the end of the jacket member and between the weld of the jacket member and the end of the wall.
  7. 제1항에 있어서,The method of claim 1,
    상기 자켓은,The jacket,
    상기 반응 챔버의 측방 하부에 구비되는 냉각수 유입구에 연결되고,It is connected to the cooling water inlet provided in the lower side of the reaction chamber,
    상기 반응 챔버의 측방 상부에 구비되는 냉각수 배출구에 연결되는 회분식 발열 반응기.Batch exothermic reactor connected to the cooling water outlet provided on the upper side of the reaction chamber.
  8. 제1항에 있어서,The method of claim 1,
    상기 반응기 챔버의 내부에 장착되어 냉각수를 순환시키는 배플을 더 포함하는 회분식 발열 반응기.And a baffle mounted inside the reactor chamber to circulate the cooling water.
  9. 제1항에 있어서,The method of claim 1,
    상기 반응 챔버의 중앙에 설치되고, 상기 반응 챔버의 외부 구동력에 의하여 구동되는 교반기를 더 포함하는 회분식 발열 반응기.And a stirrer installed at the center of the reaction chamber and driven by an external driving force of the reaction chamber.
  10. 제1항에 있어서,The method of claim 1,
    상기 반응 챔버는,The reaction chamber,
    상기 반응 챔버의 상부에 구비되어 반응물을 투입하는 투입구,An inlet provided at an upper portion of the reaction chamber to inject a reactant,
    상기 반응 챔버의 하부에 구비되어 생성물을 토출하는 토출구, 및A discharge port provided at a lower portion of the reaction chamber to discharge a product, and
    내부를 환류 냉각하도록 상기 투입구의 일측에서 외부 응축기가 연결되는 응축기 포트를 더 포함하는 회분식 발열 반응기.And a condenser port to which an external condenser is connected at one side of the inlet to reflux the inside.
  11. 제1항에 있어서,The method of claim 1,
    상기 반응 챔버는,The reaction chamber,
    폴리염화비닐 수지를 중합하는 회분식 발열 반응기.Batch exothermic reactor that polymerizes polyvinyl chloride resin.
PCT/KR2015/006937 2015-07-06 2015-07-06 Batch exothermic reactor WO2017007039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/006937 WO2017007039A1 (en) 2015-07-06 2015-07-06 Batch exothermic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/006937 WO2017007039A1 (en) 2015-07-06 2015-07-06 Batch exothermic reactor

Publications (1)

Publication Number Publication Date
WO2017007039A1 true WO2017007039A1 (en) 2017-01-12

Family

ID=57685640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006937 WO2017007039A1 (en) 2015-07-06 2015-07-06 Batch exothermic reactor

Country Status (1)

Country Link
WO (1) WO2017007039A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259606A (en) * 1995-01-24 1996-10-08 Mitsubishi Chem Corp Control of reaction temperature
JPH10342A (en) * 1996-06-18 1998-01-06 Kobe Steel Ltd Horizontal type reaction apparatus for agitating high-viscosity material
KR20090079476A (en) * 2008-01-17 2009-07-22 케이엔디티앤아이 주식회사 Reaction apparatus with precise temperature control for continuous cooling crystallization and the system comprising the same
WO2011016443A1 (en) * 2009-08-04 2011-02-10 大陽日酸株式会社 Reaction device
KR101074833B1 (en) * 2010-11-15 2011-10-19 (주) 라미나 Apparatus for reaction capable of performing batch type and continuous type reaction with temperature gradient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259606A (en) * 1995-01-24 1996-10-08 Mitsubishi Chem Corp Control of reaction temperature
JPH10342A (en) * 1996-06-18 1998-01-06 Kobe Steel Ltd Horizontal type reaction apparatus for agitating high-viscosity material
KR20090079476A (en) * 2008-01-17 2009-07-22 케이엔디티앤아이 주식회사 Reaction apparatus with precise temperature control for continuous cooling crystallization and the system comprising the same
WO2011016443A1 (en) * 2009-08-04 2011-02-10 大陽日酸株式会社 Reaction device
KR101074833B1 (en) * 2010-11-15 2011-10-19 (주) 라미나 Apparatus for reaction capable of performing batch type and continuous type reaction with temperature gradient

Similar Documents

Publication Publication Date Title
US7438871B2 (en) Catalytic oxidation reactor with enhanced heat exchanging system
WO2011087203A2 (en) Heat exchanger, a food handler including the heat exchanger, and a manufacturing method of the heat exchanger
WO2011034281A2 (en) Baffle pipe and core-cooling device for an injection mold
MY140160A (en) Heat exchanger for carrying out an exothermic reaction
CN1817435A (en) Multi-tube reactor for carrying exothermic or endothermic gas phase reaction
KR101666634B1 (en) Exothermic batch reactor
WO2017007039A1 (en) Batch exothermic reactor
WO2020149559A1 (en) Gene amplification module
US4657741A (en) Reactor construction
US4588024A (en) Indirect heat exchanger with baffles
WO2021215660A1 (en) Battery module and battery pack including same
CN206082490U (en) Continuous nitrification system of tubular
WO2018009034A2 (en) Reactor for metallocene-based solution polymerization process of polyolefins
WO2021049883A1 (en) Batch-type stirrer for suspension polymerization of polyvinyl chloride resin, and batch-type suspension polymerization reactor using same
CN214562719U (en) Water cooling assembly
WO2021096261A1 (en) Polymerization reactor
WO2018043801A1 (en) Cooling water reservoir and nuclear reactor building passive cooling system comprising same
CN112747623A (en) High-efficiency heat exchanger
WO2020055115A1 (en) Batch reactor having baffle
WO2014065478A1 (en) Heat exchanger having water housings
CN217230854U (en) High-precision aging furnace
CN214261893U (en) K30 polymeric kettle
CN218550527U (en) Charging and discharging equipment and charging and discharging system
CN216273787U (en) Cooler for glass fiber production
CN218146323U (en) Structure for cooling electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897761

Country of ref document: EP

Kind code of ref document: A1