WO2017007018A1 - Nerve detecting device, and nerve detecting method - Google Patents

Nerve detecting device, and nerve detecting method Download PDF

Info

Publication number
WO2017007018A1
WO2017007018A1 PCT/JP2016/070275 JP2016070275W WO2017007018A1 WO 2017007018 A1 WO2017007018 A1 WO 2017007018A1 JP 2016070275 W JP2016070275 W JP 2016070275W WO 2017007018 A1 WO2017007018 A1 WO 2017007018A1
Authority
WO
WIPO (PCT)
Prior art keywords
nerve
signal
stimulation
detection
stimulus
Prior art date
Application number
PCT/JP2016/070275
Other languages
French (fr)
Japanese (ja)
Inventor
徹 中野
清水 一夫
Original Assignee
国立大学法人東北大学
日本SRi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 日本SRi株式会社 filed Critical 国立大学法人東北大学
Publication of WO2017007018A1 publication Critical patent/WO2017007018A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements

Definitions

  • Some embodiments according to the present invention relate to a nerve detection device and a nerve detection method.
  • the position and function of the nerve When performing surgery in humans or animals, it is preferable to specify the position and function of the nerve in advance and take care not to damage the nerve. For example, if the recurrent nerve is injured during surgery for esophageal cancer, vocal cord paralysis occurs, and symptoms such as hoarseness and aspiration occur. In other words, if the nerve and its function cannot be identified and the patient hurts, another symptom may be caused by treatment of the chief complaint. However, since the running of each nerve in humans or animals varies depending on the individual, it is not easy to specify the position of the nerve and the type of nerve found.
  • Non-Patent Document 1 disclose research relating to nerve functions and the like.
  • Some aspects of the present invention have been made in view of the above-described problems, and an object thereof is to provide a nerve detection device and a nerve detection method capable of suitably detecting a nerve.
  • One nerve detection device includes a means for generating a stimulation signal having a characteristic pattern, a stimulation means for giving a stimulation based on the stimulation signal to a nerve, and the nerve surroundings in accordance with the transmission of the stimulation in the nerve.
  • First detecting means for detecting an electromagnetic field generated in the first and second detecting means for detecting a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electromagnetic field.
  • One nerve detection device detects means for generating a stimulation signal having a characteristic pattern, stimulation means for applying a stimulation based on the stimulation signal to the nerve, and an electrical signal accompanying the transmission of the stimulation in the nerve.
  • First detection means and second detection means for detecting a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electrical signal.
  • One nerve detection method includes a step of generating a stimulus signal having a characteristic pattern, a step of giving a stimulus based on the stimulus signal to a nerve, and transmission of the stimulus in the nerve, around the nerve
  • the apparatus performs a step of detecting the generated electromagnetic field and a step of detecting a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electromagnetic field.
  • One nerve detection method includes a step of generating a stimulus signal having a characteristic pattern, a step of giving a stimulus based on the stimulus signal to a nerve, and a step of detecting an electrical signal accompanying the transmission of the stimulus in the nerve And a step of detecting a detection signal corresponding to the feature pattern based on the measurement signal corresponding to the electrical signal.
  • “part”, “means”, “apparatus”, and “system” do not simply mean physical means, but “part”, “means”, “apparatus”, “system”. This includes the case where the functions possessed by "are realized by software. Further, even if the functions of one “unit”, “means”, “apparatus”, and “system” are realized by two or more physical means or devices, two or more “parts” or “means”, The functions of “device” and “system” may be realized by a single physical means or device.
  • the electrode probe is brought into contact with the nerve and electrically stimulated, and then whether or not the reflection of the target organ related to the nerve has occurred is observed.
  • a method can be considered.
  • the human operator himself / herself must determine whether or not the target organ is reflexed. In this case, there is a case where the target organ does not respond sufficiently because the level of stimulation applied to the nerve is low, or the function of the nerve or the like cannot be specified sufficiently by misjudging the presence or absence of reflexes.
  • the position of the nerve is specified, and after the specified nerve is exposed from a tissue such as fat protecting the nerve, an electrode probe is applied to the nerve.
  • a tissue such as fat protecting the nerve
  • an electrical signal is also used in electrocardiogram monitors and surgical instruments such as an electric scalpel
  • surgical instruments such as an electric scalpel
  • the electrical signal applied by the electrode probe interferes with the electrocardiogram monitor or electric scalpel, and these Affects the equipment. That is, there is a problem that surgical devices such as an electrocardiogram monitor and an electric scalpel and nerve detection using an electrode probe cannot be performed simultaneously.
  • an artificial stimulus having a specific feature pattern having a feature such as a period is given to the nerve by magnetism, and the stimulus is applied to the electric field generated around the nerve and / or Alternatively, it is detected as a magnetic field (hereinafter simply referred to as an electromagnetic field). Accordingly, it is possible to determine the presence / absence of nerve detection, the relative distance from the nerve, and the like by signal processing of a detection signal obtained as a result of detecting the electromagnetic field. Further, it is possible to search for nerves in a state where nerves are covered with surrounding tissues, and to preserve nerve functions.
  • FIG. 1 is a diagram for explaining a technique for searching for the recurrent nerve 19.
  • a technique for searching for the recurrent nerve 19 during esophagectomy in an endoscopic operation will be mainly described.
  • the nerve to be searched is not limited to the recurrent nerve 19.
  • a similar nerve detection method may be applied to searching for a nerve such as a urinary nerve.
  • the left common carotid artery 13A and the right common carotid artery 13B pass through the inside of the cervical skin 11, and these left common carotid artery 13A and right common carotid artery 13B are Connected to the aortic arch 15. Further, the left vagus nerve 17A and the right vagus nerve 17B (hereinafter collectively referred to as the vagus nerve 17) run along the left common carotid artery 13A and the right common carotid artery 13B inside the skin 11 of the neck. ing.
  • the vagus nerve 17 is a basic parasympathetic nerve that passes from the brain through the neck to the chest.
  • the left vagus nerve 17A and the right vagus nerve 17B branch into the left recurrent nerve 19A and the right recurrent nerve 19B (hereinafter collectively referred to as the recurrent nerve 19) in the thoracic cavity, respectively.
  • the recurrent nerve 19 extends along the trachea 21 and the esophagus toward the thyroid cartilage 23 and reaches the vocal cord muscle 25.
  • the common carotid artery 13 runs directly under the skin 11 of the neck, and the position can be easily determined by palpation or the like. Therefore, the position of the vagus nerve 17 that travels along the common carotid artery 13 can also be easily identified.
  • the stimulus signal having the characteristic pattern is a pulse signal having a constant cycle, which is periodically switched ON / OFF, will be described.
  • magnetic stimulation for the vagus nerve 17 a magnetic flux density of about 0.1 to 2.0 T is required.
  • the stimulus given to the vagus nerve 17 is transmitted to the peripheral side of the vagus nerve 17 by jump conduction described later, and further transmitted to the recurrent nerve 19 branched from the vagus nerve 17.
  • the nerve stimulation method is not limited to magnetic stimulation, and a method of giving an electrical signal to the nerve is also conceivable.
  • the vagus nerve 17 that travels in the vicinity of the common carotid artery 13 is exposed after the neck is incised, and the vagus nerve 17 is brought into contact with an electrode probe by a bipolar electrode or a monopolar electrode. Stimulate it.
  • the vagus nerve 17 can be stimulated by applying a pulse voltage of about 0.1 to 5 V between the bipolar electrodes.
  • the voltage value / current value suitable for stimulation of the vagus nerve 17 varies depending on the distance between electrodes contacting the nerve, the electrode size, the contact state with the living body, and the like. Note that a technique for electrically stimulating nerves will be briefly described in modified examples and the like described later.
  • the vagus nerve 17 is magnetically stimulated, and the recurrent nerve 19 is searched for by detecting an electromagnetic field corresponding to the stimulation.
  • the vagus nerve 17 is a parasympathetic nerve, and the excitement of the parasympathetic nerve causes a decrease in heart rate, a decrease in blood pressure, an increase in gastrointestinal function, an increase in exocrine secretion, relaxation of active muscles, contraction of bladder smooth muscle, miosis, and the like. . That is, if the stimulation to the vagus nerve 17, which is a parasympathetic nerve, is too great, it may hinder life maintenance, and thus it is necessary to keep the stimulation as low as possible. Therefore, prior to searching for the vagus nerve 17, it is necessary to adjust the intensity of the stimulation signal for applying a magnetic stimulus to the vagus nerve 17.
  • the vagus nerve 17 is magnetically stimulated on the head side of the subclavian artery, and the heartbeat response due to the nerve stimulation is confirmed.
  • the vagus nerve 17 is stimulated to a certain degree or more, a heart rate drop occurs according to the stimulus, and by observing the heart rate response, the stimulation level that is the minimum threshold value at which the heart rate reduction occurs can be specified.
  • a threshold stimulation level may be automatically specified by a nerve detection device that detects a heartbeat from a sensor or the like, or specified by an operator inputting an operation while confirming the heartbeat on an electrocardiogram monitor or the like. May be.
  • a method of reducing the pulse level of the pulse signal included in the stimulation signal is considered in addition to the method of suppressing the stimulation level of the stimulation signal described above. It is done. Therefore, it is necessary to predetermine a suitable pulse width of the pulse signal included in the stimulation signal. Specifically, for example, the initial value of the pulse width is set to 1 msec, and it is confirmed whether or not a heart rate decrease occurs at the pulse width and the previously specified neural stimulation level. As a result, if a decrease in heart rate is observed, the pulse width is reduced by 0.1 msec.
  • Such a threshold pulse width may be automatically specified by a nerve detection device that detects a heartbeat from a sensor or the like, or specified by an operator performing operation input while confirming a heartbeat on an electrocardiogram monitor or the like. Also good.
  • a neural signal including a pulse signal equal to or higher than the threshold stimulation level and the threshold pulse width is searched for the recurrent nerve 19 ( Search). More specifically, the surgeon uses the stimulation signal to stimulate the vagus nerve 17 with the magnetic stimulation probe 110, while magnetizing a region where the recurrent nerve 19 in the human body 10 is estimated to be traveling. Search by the sensor 120. As a result, when an electromagnetic field associated with the transmission of the stimulus based on the stimulus signal is detected by the magnetic sensor 120, it is determined that the recurrent nerve 19 is running in the vicinity of the detection position and the stimulus is transmitted normally. Is done.
  • the stimulation level and the pulse width of the pulse signal included in the nerve signal used for nerve stimulation are the same as the threshold value or slightly less because the influence on the human body 10 can be suppressed when the stimulation given to the nerve is as small as possible. It is preferable to make it a value that exceeds.
  • the magnetic sensor 120 cannot detect magnetism, it is possible to identify the damaged site by gradually expanding the nerve search range from the stimulation site of the vagus nerve 17 toward the nerve periphery.
  • the transmission method is the same for other nerves as long as it is a myelinated nerve including the vagus nerve 17 and the recurrent nerve 19 described above.
  • the nerve 200 includes an axon 203 and a myelin sheath 205 (myelin sheath) wound around the axon 203 and made of insulating lipid.
  • the length of each myelin sheath 205 is about several millimeters, and between the myelin sheaths 205, a Lambie diaphragm 207 in which the axon 203 is exposed is formed.
  • the magnetic sensor 120 detects these electromagnetic fields generated around the recurrent nerve 19. As shown in FIG. 2, the magnetic sensor 120 may detect an electromagnetic field generated around the nerve 200 by sequentially moving positions shown as the magnetic sensors 120A to 120C, or may be arranged in an array, for example. As the magnetic sensors 120A to 120C, an electromagnetic field generated around the nerve 200 may be detected. By using the magnetic sensors 120 arranged in a two-dimensional or three-dimensional array, the operator can search a wide range simultaneously. Further, as will be described later, by comparing the detection results of the magnetic sensors 120, it is possible to determine the relative distance from the nerve stimulation position and the relative spatial distance on the nerve path from the nerve 200.
  • the magnetic sensor 130A disposed near the human body 10 and the magnetic sensor 130B disposed at a position away from the nerve 200 in the human body 10 (hereinafter, the magnetic sensors 130A and 130B are collectively referred to as the magnetic sensor 130).
  • a peripheral electric field and / or a peripheral magnetic field (hereinafter referred to as a peripheral electromagnetic field) is detected from at least one of the above.
  • an artificial stimulus having a specific characteristic pattern By subtracting the field signal, the signal generated based on the artificially applied stimulus can be detected. Further, by using an artificial stimulus having such a specific pattern, it is possible to distinguish it from a signal transmitted from the brain or the like to the nerve 200.
  • FIG. 3 is a diagram illustrating a specific example of a signal related to the nerve detection device according to the present embodiment.
  • the nerve detection device generates a periodic signal shown in FIG.
  • the periodic signal the High level corresponds to a period during which the nerve 200 is stimulated
  • the Low level corresponds to a period during which no stimulation is applied. That is, the stimulation given to the nerve 200 is provided with a period for stimulation and a period for which stimulation is not performed, and the nerve signal becomes a burst signal to which stimulation is intermittently applied.
  • the duty ratio in the periodic signal is desirably 50% or less.
  • the period length of this periodic signal can be set, for example, as 100 msec for the period for applying the stimulus and 900 msec for the period for not applying the stimulus.
  • the period for applying the stimulation is 5 seconds or less. It is desirable.
  • the duty ratio in the periodic signal is 50%, the risk of bradycardia can be reduced by setting the frequency of the periodic signal to 0.1 Hz or more.
  • the frequency of the periodic signal can be 0.1 Hz or more and 100 Hz or less.
  • the nerve detection device generates a stimulation signal shown in FIG. 3B based on the periodic signal shown in FIG. More specifically, the stimulus signal is a pulse signal having a constant period when the periodic signal is at a high level, and is a constant level (level zero in FIG. 3B) while the periodic signal is at a low level.
  • the stimulus signal is a pulse signal having a constant period when the periodic signal is at a high level, and is a constant level (level zero in FIG. 3B) while the periodic signal is at a low level.
  • a pulse signal having a frequency of 1 Hz or more can be used as a stimulation signal having a characteristic pattern for applying stimulation to the nerve 200.
  • the pulse width of the pulse signal sufficiently narrow (to the minimum necessary width)
  • the side effects associated with the applied stimulus can be kept low.
  • the characteristic pattern of the stimulation signal may be a variable frequency pulse with a variable frequency, instead of a single frequency pulse of 1 Hz or higher.
  • the nerve 200 can transmit a high-frequency signal because it transmits a stimulus by jumping conduction at a high speed. Therefore, the pulse signal included in the stimulation signal for stimulating the nerve 200 is about 1 kHz or more that is difficult for other tissues such as muscles to transmit, and about 10 kHz that the myelinated nerve can transmit.
  • the frequency is preferably within the following range. Therefore, for example, the frequency of the pulse signal included in the stimulus signal can be 2.0 kHz (the cycle is 0.5 msec). When the frequency of the pulse signal is 2.0 kHz and the period for applying the stimulus is 100 msec as described above, the pulse signal includes 200 pulses in the period for applying the stimulus.
  • the stimulation to the nerve 200 using the stimulation signal is detected by a lock-in amplifier (described later). If the number of pulses per unit time included in the stimulus signal is small, the output level of the detection signal output from the lock-in amplifier is lowered, and as a result, the possibility of erroneous detection is increased. On the other hand, if the number of stimulation pulses per unit time included in the stimulation signal is too large, as described above, the influence on each organ to which the vagus nerve 17 is connected becomes large. Therefore, it is necessary to keep the stimulation period as short as possible. is there. As a method of giving a constant number of stimulation pulses per unit time, the number of stimulation pulses included in one cycle (corresponding to the signal cycle in FIG.
  • 3A is reduced while the time of one cycle is shortened (neural)
  • a method of reducing the period of no stimulation) and a method of increasing the number of stimulation pulses included in one cycle while increasing the time of one cycle (increasing the period of no nerve stimulation) are conceivable.
  • the time for applying and not applying the stimulation pulse signal, and the number of stimulation pulses included in one cycle are not limited to the above-mentioned 100 msec, 900 msec, and 200 pulses, and can be appropriately adjusted.
  • the vagus nerve 17 when stimulating the vagus nerve 17, for example, the vagus nerve to each organ to which the vagus nerve 17 transmits the stimulation, such as the pharynx, heart, stomach, small intestine, liver and kidney. It is possible to reduce the side effects associated with applying artificial stimulation to 17.
  • the magnetic stimulation probe 110 magnetically stimulates the nerve 200, for example, using the stimulation signal shown in FIG.
  • the stimulus is transmitted to the nerve 200 by jump conduction. Since jump conduction is non-attenuating transmission, when the stimulation amount exceeds the threshold value for the nerve 200 to transmit the stimulation, the stimulation is transmitted at the same level until extinction.
  • the nerve 200 does not respond to a certain period of time called the absolute refractory period immediately after the nerve 200 is stimulated, no matter how strong the stimulus is given. Thereby, the stimulus applied during the absolute refractory period is not transmitted because the period of the stimulus signal becomes shorter than the length of the absolute refractory period of the nerve 200. That is, the period of stimulation transmitted by the nerve 200 is always longer than the length of the absolute refractory period.
  • the magnetic sensor 120 detects an electromagnetic field generated around the nerve 200.
  • the magnetic sensor 130 detects the peripheral electromagnetic field.
  • the measurement signal obtained by subtracting the signal of the peripheral electromagnetic field from the signal of the electromagnetic field detected by the magnetic sensor 120 and the reference signal which is the stimulation signal shown in FIG.
  • the detection signal shown in FIG. 3C can be obtained. Specifically, first, the measurement signal and the reference signal are multiplied while sequentially shifting the phase of the reference signal, which is a bursty signal.
  • a detection signal is obtained by applying a low-pass filter to a reference signal having a phase to which the multiplied value reacts most.
  • a detection signal equal to or greater than a certain threshold value it means that the stimulation signal artificially given to the nerve 200 by the magnetic stimulation probe 110 is detected by the magnetic sensor 120 at the position of the magnetic sensor 120. To do. That is, it can be specified that the nerve 200 is traveling in the vicinity of the magnetic sensor 120.
  • the present invention is not limited to this.
  • the fluctuation of the surrounding electromagnetic field detected by the magnetic sensor 130 is weak, it is conceivable to use the electromagnetic field signal detected by the magnetic sensor 120 as a measurement signal as it is.
  • FIG. 4 is a diagram illustrating a specific example of the configuration of the nerve detection device 100.
  • the nerve detection device 100 includes a periodic signal generator 101, a burst signal generator 103, a stimulation pulse generator 105, a driver 107, a stimulation amount adjustment unit 109, a magnetic stimulation probe 110, a stimulation pulse width adjustment unit 111, a magnetic sensor 120, and a driver. 121, a driver 123, an adder 125, a lock-in amplifier 127, and a determination unit 133.
  • the periodic signal generator 101 generates a periodic signal whose specific example is shown in FIG. As described above, the periodic signal is for switching ON / OFF whether or not to generate a pulse signal for stimulation that gives stimulation to the nerve 200.
  • the periodic signal is for switching ON / OFF whether or not to generate a pulse signal for stimulation that gives stimulation to the nerve 200.
  • the burst signal generator 103 generates the stimulation signal illustrated in FIG. 3B based on the periodic signal received from the periodic signal generator 101.
  • the burst signal generator 103 generates pulse signals at regular intervals during a period when the periodic signal is at a high level, and prevents a pulse signal from being generated during a period when the period signal is at a low level. Thereby, the stimulation signal generated by the burst signal generator 103 becomes a burst pulse signal.
  • the stimulation pulse generator 105 inputs a stimulation signal to the driver 107 so that the magnetic stimulation probe 110 generates magnetism based on the stimulation signal generated by the burst signal generator 103.
  • the driver 107 causes the magnetic stimulation probe 110 to generate magnetism based on the stimulation signal.
  • the magnitude (stimulation level) of magnetism generated by the driver 107 is adjusted by the stimulation amount adjustment unit 109.
  • the stimulation level is set to a value as low as possible while the heart rate lowers.
  • the pulse width of the pulse signal included in the stimulation signal is adjusted by the stimulation pulse width adjustment unit 111. As described above, it is preferable that the pulse width is set to a value as low as possible while the heart rate decreases.
  • the magnetic stimulation probe 110 applies magnetic stimulation to the nerve 200 by generating magnetism based on the stimulation signal.
  • the stimulus given to the nerve 200 is transmitted by jump conduction.
  • the magnetic sensor 120 detects an electromagnetic field generated around the nerve 200 according to the jump conduction, and the driver 121 outputs an electrical signal corresponding to the electromagnetic field to the adder 125.
  • the magnetic sensor 130 detects a peripheral electromagnetic field, and the driver 123 outputs an electrical signal corresponding to the peripheral electromagnetic field to the adder 125.
  • the adder 125 subtracts the electrical signal from the magnetic sensor 130 from the electrical signal from the magnetic sensor 120.
  • the measurement signal related to the electromagnetic field generated along with the jump conduction in the nerve 200 excluding the influence of the peripheral electromagnetic field is obtained. This is because both the magnetic sensor 120 and the magnetic sensor 130 are affected by the peripheral electromagnetic field.
  • the fluctuation of the electromagnetic field detected by the magnetic sensor 130 is small, it is possible to input the electric signal from the magnetic sensor 120 to the phase sensitive detector 129 without performing the subtraction process by the adder 125. It is done.
  • the level of the peripheral magnetic field detected by the magnetic sensor 130 is 45 ⁇ T, the level of the peripheral magnetic field is sufficiently small. There is no need to consider the effects of.
  • the phase sensitive detector 129 and the low-pass filter 131 constitute a lock-in amplifier 127, and the lock-in amplifier 127 outputs a detection signal for detecting a feature pattern of a stimulus signal to be stimulated by the magnetic stimulation probe 110.
  • This makes it possible to distinguish between a signal that is randomly transmitted from the brain or the like to the nerve 200 and a signal that corresponds to the artificially applied stimulus.
  • the lock-in amplifier 127 outputs a detection signal for determining whether or not a 2.0 kHz signal component is included in the measurement signal. To do. If the measurement signal includes a signal component of 2.0 kHz, which is an artificially added frequency band, the nerve 200 stimulated by the magnetic stimulation probe 110 travels in the vicinity of the magnetic sensor 120. You can see that
  • the phase-sensitive detector 129 that constitutes a part of the lock-in amplifier 127 multiplies the stimulation signal that is the reference signal input from the burst signal generator 103 and the measurement signal output from the adder 125.
  • the stimulation pulse signal included in the stimulation signal is 2.0 kHz
  • the 2.0 kHz stimulation pulse signal is input to the phase sensitive detector 129 as a reference signal.
  • the phase sensitive detector 129 specifies the phase to which the multiplication result reacts most sensitively by shifting the phase of the reference signal.
  • the signal output by the phase sensitive detector 129 is as follows.
  • ⁇ and ⁇ are phase offsets.
  • the low-pass filter 131 constituting the lock-in amplifier 127 has a sufficiently large time constant so that a frequency component (2.0 kHz in this case) to be detected is sufficiently detected.
  • the low-pass filter 131 removes cos (2 ⁇ t + ⁇ + ⁇ ), which is a high-frequency component, from the signal output from the phase sensitive detector 129.
  • the low-pass filter 131 is set to decrease by 6 dB at a cutoff frequency of 3.0 kHz. Thereby, the low-pass filter 131 can take out only the detection signal according to the feature pattern of the stimulus signal used in the nerve stimulation.
  • a specific example of the waveform of the detection signal is shown in FIG.
  • the determination unit 133 determines whether or not the neural stimulation has been detected based on the detection signal output from the lock-in amplifier 127. There are various methods for determining whether or not the determination unit 133 can detect the neural stimulation. For example, the determination can be made based on whether or not the detection signal exceeds a threshold value. If the output level of the detection signal is higher than the threshold value, it indicates that the correlation between the measurement signal detected by the magnetic sensor 120 and the stimulation pulse signal that is the reference signal is high, which is in the vicinity of the magnetic sensor 120. Means there is. On the other hand, if the output level of the detection signal is lower than the threshold value, it indicates that the correlation between the measurement signal and the stimulation pulse signal is low. When the correlation is low, it can be interpreted that the distance between the magnetic sensor 120 and the recurrent nerve 19 is long.
  • the output level of the detection signal when the output level of the detection signal is low, it can be interpreted that a part of the vagus nerve 17 is damaged. This is because, for example, when all of the bundled nerves 200 are stimulated as a unit, such as the vagus nerve 17, if there is damage to some of them, the damaged nerve 200 transmits the stimulation, That is, no jump conduction occurs. This is because if the number of nerves 200 that perform jump conduction decreases, the intensity of the electromagnetic field generated by jump conduction also decreases, and the output level of the detection signal that detects this also decreases.
  • the threshold value used when the determination unit 133 determines the level of the output level of the detection signal can be set as follows, for example.
  • A is the output level of the detection signal during application of the stimulation pulse
  • B is the output level of the detection signal during a period in which no stimulation pulse is applied. If the level of B is low, the threshold value may be A / 2.
  • the electromagnetic field intensity generated around the nerve 200 is constant regardless of the site of the nerve 200, and the electromagnetic field intensity is inversely proportional to the distance from the nerve 200. To do. Therefore, if the output level of the detected signal to be detected is large, the distance between the magnetic sensor 120 and the nerve 200 is short, and if the output level is low, it means that the distance between them is long. That is, the relative and spatial distance between the nerve 200 and the magnetic sensor 120 can be obtained by measuring the level of the detection signal at each position after moving or arranging a plurality of magnetic sensors 120. Is possible. The determination unit 133 may obtain the relative distance according to the level of the detection signal.
  • the determination unit 133 can also measure the relative distance on the path of the nerve 200 from the position where the nerve 200 is stimulated to the position where the stimulation is detected. More specifically, by measuring the time T1 when the stimulation of the nerve 200 is started and the time T2 when the detection signal exceeds the detection threshold, the time T2-T1 required for the transmission of the stimulus can be obtained. Therefore, after moving or arranging a plurality of magnetic sensors 120, it is possible to determine that a detection position with a small value of time T2-T1 is close to the stimulation position and a detection position with a large value is far from the stimulation position.
  • the nerve detection device 100 applies artificial stimulation to the nerve 200 by the magnetic stimulation probe 110 and performs jump conduction for transmitting the stimulation.
  • an electromagnetic field generated around the nerve 200 is detected by the magnetic sensor 120.
  • a predetermined detection signal is detected as a result of signal processing on the signal measured by the magnetic sensor 120, it can be determined that the nerve 200 is running in the vicinity of the magnetic sensor 120.
  • the nerve detection device 100 can also determine whether or not the nerve 200 is damaged, the relative and spatial distance between the magnetic sensor 120 and the nerve 200, the relative distance between the stimulation position and the detection position, and the like. That is, if the nerve detection device 100 is used, the position and state of the nerve 200 can be confirmed only by signal processing without the operator observing reflexes of related organs related to the nerve 200.
  • a magnetic stimulation is given to the nerve 200 and an electromagnetic field generated around the nerve 200 is detected. That is, since there is no need to expose the nerve 200 or contact the nerve 200, the risk of damaging the nerve 200 can be avoided.
  • the stimulation signal given to the nerve 200 is an intermittent burst signal and the signal level and pulse width are adjusted, the influence on the function of the related organs can be reduced.
  • magnetic stimulation is applied to the nerve 200, but an electrode probe that replaces the magnetic stimulation probe 110 is provided after the nerve 200 is exposed through incision. Electrical stimulation may be applied by contacting the nerve 200.
  • the conduction of the stimulus in the nerve 200 is detected as an electromagnetic field.
  • the present invention is not limited to this, and an electric signal flowing through the nerve 200 may be detected.
  • an electrical sensor that is an alternative to the magnetic sensor 130 may detect electrical noise on the living body. Signal processing for the electrical sensor in contact with the nerve 200 and the electrical sensor that detects biological noise can be the same as in the above embodiment.
  • the presence or absence of the stimulus can be detected only by signal processing without observing the reflection of the target organ as in the above embodiment. Further, by adjusting the stimulation level and the stimulation pulse width, the influence on the target organ can be suppressed to a low level.
  • the characteristic pattern of the stimulation signal for applying stimulation to the nerve 200 is a single-frequency pulse, but the present invention is not limited to this.
  • stimulation is applied by the magnetic stimulation probe 110 from the vagus nerve 17 traveling in the neck, and an electromagnetic field signal corresponding to the stimulation is detected by the magnetic sensor 120 near the recurrent nerve 19.
  • stimulation is performed by the magnetic stimulation probe 110 in the vicinity of the recurrent nerve 19 in the thoracic cavity, and an electromagnetic field corresponding to the stimulation is generated by the magnetic sensor 120 disposed in the vicinity of the vagus nerve 17 running around the neck or around the thyroid cartilage 23. Detection is also conceivable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The objective of the present invention is to provide a nerve detecting device and a nerve detecting method with which it is possible for nerves to be suitably detected. This nerve detecting device is provided with: a means for generating a stimulation signal having a characteristic pattern; a stimulation means for imparting stimulation based on the stimulation signal to a nerve; a first detecting means for detecting a magnetic field that is generated around the nerve concomitantly with the transmission of stimulation through the nerve; and a second detecting means for detecting a detection signal corresponding to the characteristic pattern, on the basis of the measured signal corresponding to the magnetic field.

Description

神経検出装置、及び神経検出方法Nerve detection device and nerve detection method
 本発明に係るいくつかの態様は、神経検出装置、及び神経検出方法に関する。 Some embodiments according to the present invention relate to a nerve detection device and a nerve detection method.
 ヒト若しくは動物における手術を行う際には、予め神経の位置及び機能を特定した上で、当該神経を痛めないように配慮することが好ましい。例えば食道癌の手術において反回神経を傷つけてしまうと声帯麻痺が生じ、嗄声や誤嚥などの症状が発症する。つまり、神経及びその機能を特定できずに痛めると、場合によっては主訴の治療により別の症状を発症させる可能性がある。しかしながら、ヒト若しくは動物における各神経の走行は、個体による差異があるため、神経の位置や、見つけた神経の種別を特定することは容易ではない。 When performing surgery in humans or animals, it is preferable to specify the position and function of the nerve in advance and take care not to damage the nerve. For example, if the recurrent nerve is injured during surgery for esophageal cancer, vocal cord paralysis occurs, and symptoms such as hoarseness and aspiration occur. In other words, if the nerve and its function cannot be identified and the patient hurts, another symptom may be caused by treatment of the chief complaint. However, since the running of each nerve in humans or animals varies depending on the individual, it is not easy to specify the position of the nerve and the type of nerve found.
 神経を特定するための手法の1つとして、従来より、電極プローブを神経に接触させて電気刺激を与えた上で、当該神経に係る標的器官における反射が生じたか否か等を観察する手法がある。また、神経を検出するためのものではないが、神経の機能などに関する研究としては、非特許文献1等に開示がある。 Conventionally, as one of the methods for specifying a nerve, there is a method of observing whether or not a reflection occurs in a target organ related to the nerve after applying an electrical stimulus by bringing an electrode probe into contact with the nerve. is there. Moreover, although it is not for detecting nerves, Non-Patent Document 1 and the like disclose research relating to nerve functions and the like.
 電極プローブにより神経を刺激する手法では、標的器官の反射を人間が観察し、反射の有無を判別する必要がある。しかしながら、神経に加えられた刺激レベルが低いために標的器官が十分に反応しなかったり、或いは反射の有無の判断を誤ったりすることにより、術者が十分に神経の機能を特定することができない場合もある。 In the technique of stimulating nerves with an electrode probe, it is necessary for a human to observe the reflection of the target organ and determine the presence or absence of the reflection. However, the surgeon cannot fully identify the function of the nerve because the target organ does not respond sufficiently because the level of stimulation applied to the nerve is low or the judgment of the presence or absence of reflexes is wrong. In some cases.
 本発明のいくつかの態様は前述の課題に鑑みてなされたものであり、神経を好適に検出することのできる神経検出装置及び神経検出方法を提供することを目的の1つとする。 Some aspects of the present invention have been made in view of the above-described problems, and an object thereof is to provide a nerve detection device and a nerve detection method capable of suitably detecting a nerve.
 本発明に係る1の神経検出装置は、特徴パターンを有する刺激信号を発生させる手段と、前記刺激信号に基づく刺激を神経に与える刺激手段と、前記神経における刺激の伝達に伴い、前記神経の周囲に発生する電磁界を検出する第1の検出手段と、前記電磁界に応じた測定信号に基づき、前記特徴パターンに応じた検出信号を検出する第2の検出手段とを備える。 One nerve detection device according to the present invention includes a means for generating a stimulation signal having a characteristic pattern, a stimulation means for giving a stimulation based on the stimulation signal to a nerve, and the nerve surroundings in accordance with the transmission of the stimulation in the nerve. First detecting means for detecting an electromagnetic field generated in the first and second detecting means for detecting a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electromagnetic field.
 本発明に係る1の神経検出装置は、特徴パターンを有する刺激信号を発生させる手段と、前記刺激信号に基づく刺激を神経に与える刺激手段と、前記神経における刺激の伝達に伴う電気信号を検出する第1の検出手段と、前記電気信号に応じた測定信号に基づき、前記特徴パターンに応じた検出信号を検出する第2の検出手段とを備える。 One nerve detection device according to the present invention detects means for generating a stimulation signal having a characteristic pattern, stimulation means for applying a stimulation based on the stimulation signal to the nerve, and an electrical signal accompanying the transmission of the stimulation in the nerve. First detection means and second detection means for detecting a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electrical signal.
 本発明に係る1の神経検出方法は、特徴パターンを有する刺激信号を発生させるステップと、前記刺激信号に基づく刺激を神経に与えるステップと、前記神経における刺激の伝達に伴い、前記神経の周囲に発生する電磁界を検出するステップと、前記電磁界に応じた測定信号に基づき、前記特徴パターンに応じた検出信号を検出するステップとを装置が行う。 One nerve detection method according to the present invention includes a step of generating a stimulus signal having a characteristic pattern, a step of giving a stimulus based on the stimulus signal to a nerve, and transmission of the stimulus in the nerve, around the nerve The apparatus performs a step of detecting the generated electromagnetic field and a step of detecting a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electromagnetic field.
 本発明に係る1の神経検出方法は、特徴パターンを有する刺激信号を発生させるステップと、前記刺激信号に基づく刺激を神経に与えるステップと、前記神経における刺激の伝達に伴う電気信号を検出するステップと、前記電気信号に応じた測定信号に基づき、前記特徴パターンに応じた検出信号を検出するステップとを装置が行う。 One nerve detection method according to the present invention includes a step of generating a stimulus signal having a characteristic pattern, a step of giving a stimulus based on the stimulus signal to a nerve, and a step of detecting an electrical signal accompanying the transmission of the stimulus in the nerve And a step of detecting a detection signal corresponding to the feature pattern based on the measurement signal corresponding to the electrical signal.
 なお、本発明において、「部」や「手段」、「装置」、「システム」とは、単に物理的手段を意味するものではなく、その「部」や「手段」、「装置」、「システム」が有する機能をソフトウェアによって実現する場合も含む。また、1つの「部」や「手段」、「装置」、「システム」が有する機能が2つ以上の物理的手段や装置により実現されても、2つ以上の「部」や「手段」、「装置」、「システム」の機能が1つの物理的手段や装置により実現されても良い。 In the present invention, “part”, “means”, “apparatus”, and “system” do not simply mean physical means, but “part”, “means”, “apparatus”, “system”. This includes the case where the functions possessed by "are realized by software. Further, even if the functions of one “unit”, “means”, “apparatus”, and “system” are realized by two or more physical means or devices, two or more “parts” or “means”, The functions of “device” and “system” may be realized by a single physical means or device.
実施形態に係る神経探索法を説明するための図である。It is a figure for demonstrating the nerve search method which concerns on embodiment. 実施形態に係る神経探索法において神経周囲に配置する磁気センサの位置を示す図である。It is a figure which shows the position of the magnetic sensor arrange | positioned in the nerve periphery in the nerve search method which concerns on embodiment. 実施形態に係る神経検出装置に係る信号波形の具体例を示す図である。It is a figure which shows the specific example of the signal waveform which concerns on the nerve detection apparatus which concerns on embodiment. 実施形態に係る神経検出装置の機能構成を示す図である。It is a figure which shows the function structure of the nerve detection apparatus which concerns on embodiment.
 以下に本発明の実施形態を説明する。以下の説明及び参照する図面の記載において、同一又は類似の構成には、それぞれ同一又は類似の符号が付されている。 Embodiments of the present invention will be described below. In the following description and the description of the drawings to be referred to, the same or similar components are denoted by the same or similar reference numerals.
1.概要
 ヒト若しくは動物における手術を行う際には、予め神経の位置及び機能を特定した上で、当該神経を痛めないように配慮することが好ましい。例えば食道癌の手術において反回神経を傷つけてしまうと声帯麻痺が生じ、嗄声や誤嚥などの症状が発症する。つまり、神経及びその機能を特定できずに痛めると、場合によっては主訴の治療により別の症状を発症させる可能性がある。しかしながら、ヒト若しくは動物における各神経の走行は、個体による差異があるため、一見して神経の位置や機能、状態を特定することは困難である。
1. Outline When performing surgery in humans or animals, it is preferable to consider the position and function of a nerve in advance and take care not to damage the nerve. For example, if the recurrent nerve is injured during surgery for esophageal cancer, vocal cord paralysis occurs, and symptoms such as hoarseness and aspiration occur. In other words, if the nerve and its function cannot be identified and the patient hurts, another symptom may be caused by treatment of the chief complaint. However, since the running of each nerve in humans or animals has individual differences, it is difficult to identify the position, function, and state of the nerve at first glance.
 神経の機能や損傷の有無を特定するための手法の1つとして、電極プローブを神経に接触させて電気的に刺激した上で、当該神経に係る標的器官の反射が生じたか否かを観察する手法が考えられる。しかしながら、電極プローブにより神経を刺激する手法では、標的器官の反射の有無を人間である術者自身が判別しなければならない。この場合、神経に加えられた刺激レベルが低いために標的器官が十分に反応しなかったり、或いは反射の有無の判断を誤ったりすることにより、十分に神経の機能等を特定できない場合もある。 As one of the methods for identifying the function or damage of a nerve, the electrode probe is brought into contact with the nerve and electrically stimulated, and then whether or not the reflection of the target organ related to the nerve has occurred is observed. A method can be considered. However, in the technique of stimulating nerves with an electrode probe, the human operator himself / herself must determine whether or not the target organ is reflexed. In this case, there is a case where the target organ does not respond sufficiently because the level of stimulation applied to the nerve is low, or the function of the nerve or the like cannot be specified sufficiently by misjudging the presence or absence of reflexes.
 また、神経に電気的な刺激を与えるためには、まず神経の位置を特定し、特定した神経を、当該神経を保護する脂肪等の組織から露出させた上で、当該神経に電極プローブをあてる必要がある。しかしながら前述のとおり、神経を特定することは決して容易ではなく、また露出させる過程で神経を損傷させることもある。 In order to give an electrical stimulus to a nerve, first, the position of the nerve is specified, and after the specified nerve is exposed from a tissue such as fat protecting the nerve, an electrode probe is applied to the nerve. There is a need. However, as described above, it is never easy to specify a nerve, and the nerve may be damaged in the process of exposure.
 更に、心電図モニタや電気メス等の手術機器でも電気信号を用いるため、神経検出の際に電極プローブを用いると、当該電極プローブにより印加した電気信号は、心電図モニタや電気メスなどと干渉し、これらの機器に影響を及ぼす。すなわち、心電図モニタや電気メス等の手術機器と、電極プローブを使用した神経検出とは、同時に行うことができないという課題もある。 Furthermore, since an electrical signal is also used in electrocardiogram monitors and surgical instruments such as an electric scalpel, if an electrode probe is used during nerve detection, the electrical signal applied by the electrode probe interferes with the electrocardiogram monitor or electric scalpel, and these Affects the equipment. That is, there is a problem that surgical devices such as an electrocardiogram monitor and an electric scalpel and nerve detection using an electrode probe cannot be performed simultaneously.
 そこで本実施形態に係る神経検出装置では、神経に対して磁気により、周期等に特徴を持つ特定の特徴パターンを有する人工的な刺激を与え、当該刺激を、神経の周囲に発生した電界及び/又は磁界(以下、単に電磁界と呼ぶ。)として検出する。これにより、電磁界を検出した結果得られる検出信号の信号処理により神経検出の有無や神経からの相対的な距離等を判別することを可能とする。また、神経が周辺組織に覆われた状態での神経探索を可能とし、神経機能を温存することも可能とする。 Therefore, in the nerve detection device according to the present embodiment, an artificial stimulus having a specific feature pattern having a feature such as a period is given to the nerve by magnetism, and the stimulus is applied to the electric field generated around the nerve and / or Alternatively, it is detected as a magnetic field (hereinafter simply referred to as an electromagnetic field). Accordingly, it is possible to determine the presence / absence of nerve detection, the relative distance from the nerve, and the like by signal processing of a detection signal obtained as a result of detecting the electromagnetic field. Further, it is possible to search for nerves in a state where nerves are covered with surrounding tissues, and to preserve nerve functions.
 以下、図1を参照しながら本実施形態に係る神経検出方法の具体例を説明する。図1は、反回神経19を探索する手法を説明するための図である。ここでは、鏡視下手術における食道切除に際して、反回神経19を探索する手法を中心に説明する。しかしながら、探索する神経は反回神経19に限られるものではなく、例えば泌尿器の神経など、神経の探索一般に、同様の神経検出方法を適用することも考えられる。 Hereinafter, a specific example of the nerve detection method according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram for explaining a technique for searching for the recurrent nerve 19. Here, a technique for searching for the recurrent nerve 19 during esophagectomy in an endoscopic operation will be mainly described. However, the nerve to be searched is not limited to the recurrent nerve 19. For example, a similar nerve detection method may be applied to searching for a nerve such as a urinary nerve.
 まず、人体10の頸部から胸部にかけての構造を簡単に説明する。頸部の皮膚11の内側には、左総頸動脈13A及び右総頚動脈13B(以下、総称して総頸動脈13とも呼ぶ。)が通り、これらの左総頸動脈13A及び右総頚動脈13Bは大動脈弓15に接続されている。また、頸部の皮膚11の内側には、左総頸動脈13A及び右総頚動脈13Bに沿って、左迷走神経17A及び右迷走神経17B(以下、総称して迷走神経17とも呼ぶ)が走行している。迷走神経17は、脳から頸部を通過して胸部へと至る、基幹の副交感神経である。左迷走神経17A及び右迷走神経17Bは、それぞれ胸腔内で左反回神経19A及び右反回神経19B(以下、総称して反回神経19とも呼ぶ)に分岐する。反回神経19は、気管21及び食道に沿って甲状軟骨23の方へと延び、声帯筋25へと至る。 First, the structure of the human body 10 from the neck to the chest will be briefly described. The left common carotid artery 13A and the right common carotid artery 13B (hereinafter collectively referred to as the common carotid artery 13) pass through the inside of the cervical skin 11, and these left common carotid artery 13A and right common carotid artery 13B are Connected to the aortic arch 15. Further, the left vagus nerve 17A and the right vagus nerve 17B (hereinafter collectively referred to as the vagus nerve 17) run along the left common carotid artery 13A and the right common carotid artery 13B inside the skin 11 of the neck. ing. The vagus nerve 17 is a basic parasympathetic nerve that passes from the brain through the neck to the chest. The left vagus nerve 17A and the right vagus nerve 17B branch into the left recurrent nerve 19A and the right recurrent nerve 19B (hereinafter collectively referred to as the recurrent nerve 19) in the thoracic cavity, respectively. The recurrent nerve 19 extends along the trachea 21 and the esophagus toward the thyroid cartilage 23 and reaches the vocal cord muscle 25.
 ここで、総頸動脈13は、頸部の皮膚11の直下を走行しており、触診等により容易に位置を判別できる。よって、総頸動脈13に沿って走行する迷走神経17の位置も容易に特定可能である。本実施形態においては、磁気刺激プローブ110を用いて磁気的手段により、皮膚11の直下を走行する迷走神経17に対して非接触で、特定の特徴パターンを有する刺激信号により生成された人工的な刺激を与える。ここでは、特徴パターンを有する刺激信号は、周期的にON/OFFが切り替えられる、一定周期のパルス信号である場合を中心に説明する。迷走神経17に対する磁気刺激においては、0.1~2.0T程度の磁束密度が必要である。迷走神経17に与えられた刺激は、後述する跳躍伝導により迷走神経17の末梢側に伝達され、更に、迷走神経17から分岐する反回神経19へも伝達される。 Here, the common carotid artery 13 runs directly under the skin 11 of the neck, and the position can be easily determined by palpation or the like. Therefore, the position of the vagus nerve 17 that travels along the common carotid artery 13 can also be easily identified. In the present embodiment, an artificial signal generated by a stimulation signal having a specific feature pattern without contact with the vagus nerve 17 that travels directly under the skin 11 by magnetic means using the magnetic stimulation probe 110. Give a stimulus. Here, the case where the stimulus signal having the characteristic pattern is a pulse signal having a constant cycle, which is periodically switched ON / OFF, will be described. In magnetic stimulation for the vagus nerve 17, a magnetic flux density of about 0.1 to 2.0 T is required. The stimulus given to the vagus nerve 17 is transmitted to the peripheral side of the vagus nerve 17 by jump conduction described later, and further transmitted to the recurrent nerve 19 branched from the vagus nerve 17.
 なお、神経の刺激方法は磁気刺激に限られるものではなく、電気信号を神経に与える手法も考えられる。この場合には、例えば、頸部を切開した上で、総頸動脈13近傍を走行する迷走神経17を露出させ、ここにバイポーラ電極又は単極電極による電極プローブを接触させることにより迷走神経17を刺激すれば良い。バイポーラ電極を用いる場合には、バイポーラ電極間に0.1~5V程度のパルス電圧を加える事により、迷走神経17を刺激することができる。なお、迷走神経17の刺激に好適な電圧値/電流値は、神経に接触する電極の間隔や電極サイズ、生体との接触状況等により変わる。なお、電気的に神経を刺激する手法については、後述の変形例等においても簡単に説明する。 Note that the nerve stimulation method is not limited to magnetic stimulation, and a method of giving an electrical signal to the nerve is also conceivable. In this case, for example, the vagus nerve 17 that travels in the vicinity of the common carotid artery 13 is exposed after the neck is incised, and the vagus nerve 17 is brought into contact with an electrode probe by a bipolar electrode or a monopolar electrode. Stimulate it. When bipolar electrodes are used, the vagus nerve 17 can be stimulated by applying a pulse voltage of about 0.1 to 5 V between the bipolar electrodes. The voltage value / current value suitable for stimulation of the vagus nerve 17 varies depending on the distance between electrodes contacting the nerve, the electrode size, the contact state with the living body, and the like. Note that a technique for electrically stimulating nerves will be briefly described in modified examples and the like described later.
 前述のとおり、本実施形態においては、迷走神経17を磁気的に刺激し、当該刺激に応じた電磁界を検出することにより、反回神経19を探索する。ここで、迷走神経17は副交感神経であり、副交感神経の興奮は、心拍数の減少、血圧低下、消化管機能更新、外分泌腺分泌増加、活躍筋弛緩、膀胱平滑筋収縮、縮瞳等を引き起こす。つまり、副交感神経である迷走神経17への刺激が大きすぎると生命維持に支障を来しかねないため、可能な範囲で刺激を低く抑える必要がある。よって、迷走神経17の探索に先立ち、迷走神経17に磁気刺激を与えるための刺激信号の強度等を調整する必要がある。 As described above, in this embodiment, the vagus nerve 17 is magnetically stimulated, and the recurrent nerve 19 is searched for by detecting an electromagnetic field corresponding to the stimulation. Here, the vagus nerve 17 is a parasympathetic nerve, and the excitement of the parasympathetic nerve causes a decrease in heart rate, a decrease in blood pressure, an increase in gastrointestinal function, an increase in exocrine secretion, relaxation of active muscles, contraction of bladder smooth muscle, miosis, and the like. . That is, if the stimulation to the vagus nerve 17, which is a parasympathetic nerve, is too great, it may hinder life maintenance, and thus it is necessary to keep the stimulation as low as possible. Therefore, prior to searching for the vagus nerve 17, it is necessary to adjust the intensity of the stimulation signal for applying a magnetic stimulus to the vagus nerve 17.
 そのため、まず、鎖骨下動脈頭側で迷走神経17を磁気刺激し、神経刺激による心拍反応を確認する。迷走神経17を一定程度以上刺激すると当該刺激に応じて心拍低下が生じるため、心拍反応を観察することにより、心拍低下が生じる最小閾値である刺激レベルを特定できる。これにより、反回神経19の探索の際に使用する刺激信号の適切なレベルの確認が可能である。このような閾値刺激レベルは、センサ等から心拍を検出する神経検出装置が自動的に特定してもよいし、或いは術者が心電図モニタ等で心拍を確認しながら操作入力することにより、特定してもよい。 Therefore, first, the vagus nerve 17 is magnetically stimulated on the head side of the subclavian artery, and the heartbeat response due to the nerve stimulation is confirmed. When the vagus nerve 17 is stimulated to a certain degree or more, a heart rate drop occurs according to the stimulus, and by observing the heart rate response, the stimulation level that is the minimum threshold value at which the heart rate reduction occurs can be specified. As a result, it is possible to confirm an appropriate level of the stimulus signal used when searching for the recurrent nerve 19. Such a threshold stimulation level may be automatically specified by a nerve detection device that detects a heartbeat from a sensor or the like, or specified by an operator inputting an operation while confirming the heartbeat on an electrocardiogram monitor or the like. May be.
 神経刺激に伴う影響を抑制する、すなわち神経に与えるエネルギーを低くする手法としては、前述の刺激信号の刺激レベルを低く抑える方法と共に、刺激信号に含まれるパルス信号のパルス幅を狭くする手法が考えられる。そこで、刺激信号に含まれるパルス信号の好適なパルス幅を予め定める必要がある。具体的には、例えば、パルス幅の初期値を1msecとし、当該パルス幅、及び先に特定した神経刺激レベルにおいて、心拍低下が生じないか否かを確認する。その結果、心拍低下が観察された場合には、パルス幅を0.1msecずつ狭める。このような作業を繰り返すことにより、すなわち心拍低下を確認できる最も短いパルス幅である閾値パルス幅を確認することができる。このような閾値パルス幅は、センサ等から心拍を検出する神経検出装置が自動的に特定してもよいし、或いは術者が心電図モニタ等で心拍を確認しながら操作入力することにより特定してもよい。 In order to suppress the effects of neural stimulation, that is, to reduce the energy applied to the nerve, a method of reducing the pulse level of the pulse signal included in the stimulation signal is considered in addition to the method of suppressing the stimulation level of the stimulation signal described above. It is done. Therefore, it is necessary to predetermine a suitable pulse width of the pulse signal included in the stimulation signal. Specifically, for example, the initial value of the pulse width is set to 1 msec, and it is confirmed whether or not a heart rate decrease occurs at the pulse width and the previously specified neural stimulation level. As a result, if a decrease in heart rate is observed, the pulse width is reduced by 0.1 msec. By repeating such operations, it is possible to confirm the threshold pulse width which is the shortest pulse width capable of confirming a decrease in heart rate. Such a threshold pulse width may be automatically specified by a nerve detection device that detects a heartbeat from a sensor or the like, or specified by an operator performing operation input while confirming a heartbeat on an electrocardiogram monitor or the like. Also good.
 このようにして神経を刺激する際の刺激レベルとパルス幅との閾値を定めた後、これらの閾値刺激レベル以上かつ閾値パルス幅以上のパルス信号を含む神経信号が、反回神経19の探索(検索)に用いられる。より具体的には、術者は、当該刺激信号を用いて磁気刺激プローブ110により迷走神経17を刺激しながら、人体10内の反回神経19が走行していると推測される部位を、磁気センサ120により探索する。その結果、磁気センサ120で刺激信号に基づく刺激の伝達に伴う電磁界が検出されると、当該検出位置近傍に反回神経19が走行しており、正常に刺激が伝達されていることが特定される。すなわち、信号処理のみにより、反回神経19の走行位置や、反回神経19の損傷の有無等を特定することができる。尚ここで、神経刺激に使用する神経信号に含まれるパルス信号の刺激レベル及びパルス幅は、神経に与える刺激は極力小さい方が人体10に与える影響を抑えられるため、閾値と同値あるいはそれを少し上回る値とすることが好ましい。 After the threshold values of the stimulation level and the pulse width when the nerve is stimulated in this way are determined, a neural signal including a pulse signal equal to or higher than the threshold stimulation level and the threshold pulse width is searched for the recurrent nerve 19 ( Search). More specifically, the surgeon uses the stimulation signal to stimulate the vagus nerve 17 with the magnetic stimulation probe 110, while magnetizing a region where the recurrent nerve 19 in the human body 10 is estimated to be traveling. Search by the sensor 120. As a result, when an electromagnetic field associated with the transmission of the stimulus based on the stimulus signal is detected by the magnetic sensor 120, it is determined that the recurrent nerve 19 is running in the vicinity of the detection position and the stimulus is transmitted normally. Is done. That is, it is possible to specify the running position of the recurrent nerve 19, the presence or absence of damage to the recurrent nerve 19, and the like only by signal processing. Here, the stimulation level and the pulse width of the pulse signal included in the nerve signal used for nerve stimulation are the same as the threshold value or slightly less because the influence on the human body 10 can be suppressed when the stimulation given to the nerve is as small as possible. It is preferable to make it a value that exceeds.
 もし、磁気センサ120で磁気を検出できない場合には、迷走神経17の刺激部位から徐々に神経末梢に向けて神経探索範囲を広げることにより、損傷部位を同定することも可能である。 If the magnetic sensor 120 cannot detect magnetism, it is possible to identify the damaged site by gradually expanding the nerve search range from the stimulation site of the vagus nerve 17 toward the nerve periphery.
 図2を参照しながら、神経200に印加された刺激の伝達方法について説明する。上述の迷走神経17や反回神経19を含む有髄神経であれば、他の神経でも伝達方法は同様である。 Referring to FIG. 2, a method for transmitting a stimulus applied to the nerve 200 will be described. The transmission method is the same for other nerves as long as it is a myelinated nerve including the vagus nerve 17 and the recurrent nerve 19 described above.
 神経200は軸索203と、軸索203に巻き付き、絶縁性の脂質から構成されるミエリン鞘205(髄鞘)とを含む。各々のミエリン鞘205の長さは数mm程度であり、ミエリン鞘205の間には、軸索203が露出しているランビエの絞輪207が形成される。神経200に刺激が印加されると、ランビエの絞輪207において当該刺激に応じてNa+イオンの移動が軸索203の細胞膜の内側と外側との間に生じ、脱分極が生じる。当該脱分極の結果、隣接する絞輪207でNa+イオンの移動が生じる。つまり、隣接する絞輪207へ脱分極が移動する。この繰り返しにより、神経200上を、刺激信号としてのNa+イオンによる脱分極が移動する。当該刺激の伝達方法を跳躍伝導と呼ぶ。跳躍伝導では、Na+イオンの移動により生じる細胞膜電位の移動が、1以上のミエリン鞘205分離れたランビエの絞輪毎に発生する。これにより、跳躍電動による神経200上の刺激の移動は、筋肉や脂肪などの他の細胞組織に比べ、信号伝達速度が早い。 The nerve 200 includes an axon 203 and a myelin sheath 205 (myelin sheath) wound around the axon 203 and made of insulating lipid. The length of each myelin sheath 205 is about several millimeters, and between the myelin sheaths 205, a Lambie diaphragm 207 in which the axon 203 is exposed is formed. When a stimulus is applied to the nerve 200, Na + ions move between the inner and outer sides of the cell membrane of the axon 203 in response to the stimulus in the Lambier diaphragm 207, and depolarization occurs. As a result of the depolarization, Na + ions move at the adjacent diaphragm 207. That is, depolarization moves to the adjacent diaphragm 207. By repeating this, depolarization by Na + ions as a stimulation signal moves on the nerve 200. The method of transmitting the stimulus is called jumping conduction. In jump conduction, the movement of the cell membrane potential caused by the movement of Na + ions occurs for each lambier diaphragm that is separated from one or more myelin sheaths 205. Thereby, the movement of the stimulus on the nerve 200 by jumping electric motor has a higher signal transmission speed than other cell tissues such as muscle and fat.
 軸索203の周囲にNa+イオンの移動による電場が生じると、それに伴い、神経200の周囲には磁界も発生する。また、ランビエの絞輪207における脱分極に応じて、神経200の周囲には電界も生じる。磁気センサ120は、反回神経19の周囲に発生するこれらの電磁界を検出する。図2に示すように、磁気センサ120は、磁気センサ120A乃至120Cとして示す位置を順次移動させることにより神経200の周囲に発生する電磁界を検出してもよいし、或いは例えばアレイ状に配置された磁気センサ120A乃至120Cとして、神経200の周囲に発生する電磁界を検出してもよい。2次元又は3次元アレイ状に配置された磁気センサ120を用いれば、術者は広い範囲を同時に検索することが可能である。また、後述する通り、各磁気センサ120における検出結果を比較することにより、神経刺激位置からの相対距離や神経200からの神経経路上の相対的な空間距離も判別することが可能となる。 When an electric field is generated around the axon 203 due to the movement of Na + ions, a magnetic field is also generated around the nerve 200. In addition, an electric field is also generated around the nerve 200 in response to depolarization in the Lambier diaphragm 207. The magnetic sensor 120 detects these electromagnetic fields generated around the recurrent nerve 19. As shown in FIG. 2, the magnetic sensor 120 may detect an electromagnetic field generated around the nerve 200 by sequentially moving positions shown as the magnetic sensors 120A to 120C, or may be arranged in an array, for example. As the magnetic sensors 120A to 120C, an electromagnetic field generated around the nerve 200 may be detected. By using the magnetic sensors 120 arranged in a two-dimensional or three-dimensional array, the operator can search a wide range simultaneously. Further, as will be described later, by comparing the detection results of the magnetic sensors 120, it is possible to determine the relative distance from the nerve stimulation position and the relative spatial distance on the nerve path from the nerve 200.
 なお、人体10内には、複数の神経200が走行しており、ランダムに信号が伝達されるため、当該信号伝達に伴う電磁界が常に発生する。また、地球により発生する地磁気も存在する。そこで、人体10の近くに配置された磁気センサ130Aや、人体10内の神経200から離れた位置に配置された磁気センサ130B(以下、磁気センサ130A及び130Bを総称して磁気センサ130と呼ぶ)の少なくとも一方から周辺電界及び/又は周辺磁界(以下、周辺電磁界と呼ぶ)を検出する。磁気刺激プローブ110により、特徴的な特定のパターンを有する人工的な刺激を神経200に印加した上で、磁気センサ120で検出した電磁界信号から、磁気センサ130で検出した周辺電磁界に係る電磁界信号を差し引くことにより、人工的に与えた刺激に基づいて発生した信号を検出することができる。更に、このような特定のパターンを有する人工的な刺激を用いることにより、脳などから神経200に伝達される信号と区別することも可能である。 In addition, since a plurality of nerves 200 are running in the human body 10 and signals are transmitted at random, an electromagnetic field accompanying the signal transmission is always generated. There is also geomagnetism generated by the earth. Therefore, the magnetic sensor 130A disposed near the human body 10 and the magnetic sensor 130B disposed at a position away from the nerve 200 in the human body 10 (hereinafter, the magnetic sensors 130A and 130B are collectively referred to as the magnetic sensor 130). A peripheral electric field and / or a peripheral magnetic field (hereinafter referred to as a peripheral electromagnetic field) is detected from at least one of the above. An electromagnetic stimulus related to a peripheral electromagnetic field detected by the magnetic sensor 130 from an electromagnetic field signal detected by the magnetic sensor 120 after applying an artificial stimulus having a specific characteristic pattern to the nerve 200 by the magnetic stimulation probe 110. By subtracting the field signal, the signal generated based on the artificially applied stimulus can be detected. Further, by using an artificial stimulus having such a specific pattern, it is possible to distinguish it from a signal transmitted from the brain or the like to the nerve 200.
 以下、図3を参照しながら、神経200に与える刺激信号及び検出される検出信号について説明する。図3は、本実施形態に係る神経検出装置に係る信号の具体例を示す図である。 Hereinafter, the stimulation signal given to the nerve 200 and the detected signal will be described with reference to FIG. FIG. 3 is a diagram illustrating a specific example of a signal related to the nerve detection device according to the present embodiment.
 神経検出装置は、まず、図3(a)に示す周期信号を発生させる。当該周期信号において、Highレベルは神経200に刺激を与える期間に対応し、Lowレベルは刺激を与えない期間に対応する。つまり、神経200に与えられる刺激には、刺激する期間としない期間とが設けられ、神経信号は、間欠的に刺激が与えられるバースト信号となる。このように刺激を与える期間と与えない期間とを設けることにより、神経刺激に伴う各器官への影響を低く抑えることが可能となる。例えば、当該周期信号におけるデューティ比は50%以下とすることが望ましい。神経200を刺激しない期間を、神経200を刺激する期間と比較してなるべく長くすることで、副作用の発生を抑制できる。よって、この周期信号における周期の長さは、たとえば、刺激を印加する期間を100msec、刺激を印加しない期間を900msecと設定することができる。 First, the nerve detection device generates a periodic signal shown in FIG. In the periodic signal, the High level corresponds to a period during which the nerve 200 is stimulated, and the Low level corresponds to a period during which no stimulation is applied. That is, the stimulation given to the nerve 200 is provided with a period for stimulation and a period for which stimulation is not performed, and the nerve signal becomes a burst signal to which stimulation is intermittently applied. Thus, by providing the period during which the stimulation is applied and the period during which the stimulation is not performed, it is possible to suppress the influence on each organ accompanying the nerve stimulation. For example, the duty ratio in the periodic signal is desirably 50% or less. Generation | occurrence | production of a side effect can be suppressed by making the period which does not stimulate the nerve 200 long as compared with the period which stimulates the nerve 200. Therefore, the period length of this periodic signal can be set, for example, as 100 msec for the period for applying the stimulus and 900 msec for the period for not applying the stimulus.
 ここで、特に迷走神経17を刺激することを考えると、5秒以上迷走神経17を刺激すると心拍レートが低下し、徐脈の危険性があるため、刺激を印加する期間は5秒以下とすることが望ましい。周期信号におけるデューティ比を50%とすると、周期信号の周波数は、0.1Hz以上とすることにより、徐脈の危険性を低減することができる。特に、周期信号の周波数は0.1Hz以上100Hz以下とすることができる。 Here, considering the stimulation of the vagus nerve 17 in particular, if the vagus nerve 17 is stimulated for 5 seconds or more, the heart rate decreases and there is a risk of bradycardia. Therefore, the period for applying the stimulation is 5 seconds or less. It is desirable. When the duty ratio in the periodic signal is 50%, the risk of bradycardia can be reduced by setting the frequency of the periodic signal to 0.1 Hz or more. In particular, the frequency of the periodic signal can be 0.1 Hz or more and 100 Hz or less.
 更に神経検出装置は、図3(a)に示した周期信号に基づき、図3(b)に示す刺激信号を発生させる。より具体的には、周期信号がHighレベルの期間において、刺激信号は一定周期のパルス信号であり、周期信号がLowレベルの期間においては一定レベル(図3(b)ではレベルゼロ)である。このような人工的な特徴パターンを有する刺激信号を用いることにより、脳から神経200に与えられる信号と、この刺激信号とを区別することが可能となる。 Further, the nerve detection device generates a stimulation signal shown in FIG. 3B based on the periodic signal shown in FIG. More specifically, the stimulus signal is a pulse signal having a constant period when the periodic signal is at a high level, and is a constant level (level zero in FIG. 3B) while the periodic signal is at a low level. By using a stimulation signal having such an artificial feature pattern, it is possible to distinguish a signal given from the brain to the nerve 200 and this stimulation signal.
 なおここで、神経200に刺激を与えるための特徴パターンを有する刺激信号には、1Hz以上の周波数のパルス信号を用いることができる。特に、パルス信号のパルス幅を十分狭くすることで(必要最低限の幅に)、印加した刺激に伴う副作用を低く抑えることができる。しかしながら前述のとおり、刺激信号の有する特徴パターンは、1Hz以上の単一の周波数のパルスでなくとも、可変周波数を特徴周波数のパルスとしてもよい。 Here, a pulse signal having a frequency of 1 Hz or more can be used as a stimulation signal having a characteristic pattern for applying stimulation to the nerve 200. In particular, by making the pulse width of the pulse signal sufficiently narrow (to the minimum necessary width), the side effects associated with the applied stimulus can be kept low. However, as described above, the characteristic pattern of the stimulation signal may be a variable frequency pulse with a variable frequency, instead of a single frequency pulse of 1 Hz or higher.
 ところで、1kHz以下の低い周波数の信号は、筋肉や脂肪など、その他の組織でも伝達することが可能である。この点、神経200は、速度の早い跳躍伝導により刺激を伝達するため、高い周波数の信号を通すことができる。そこで、神経200に刺激を与えるための刺激信号に含まれるパルス信号は、筋肉等の他の組織が伝達することが難しい約1kHz以上であって、かつ有髄神経が伝達することができる約10kHz以下の範囲に含まれる周波数であることが好ましい。よって、例えば、刺激信号に含まれるパルス信号の周波数は、2.0kHz(周期は0.5msec)とすることができる。パルス信号の周波数を2.0kHzとし、刺激を印加する期間を前述のとおり100msecとした場合には、当該刺激を印加する期間において、パルス信号は200パルス含まれる。 By the way, a signal having a low frequency of 1 kHz or less can be transmitted to other tissues such as muscle and fat. In this respect, the nerve 200 can transmit a high-frequency signal because it transmits a stimulus by jumping conduction at a high speed. Therefore, the pulse signal included in the stimulation signal for stimulating the nerve 200 is about 1 kHz or more that is difficult for other tissues such as muscles to transmit, and about 10 kHz that the myelinated nerve can transmit. The frequency is preferably within the following range. Therefore, for example, the frequency of the pulse signal included in the stimulus signal can be 2.0 kHz (the cycle is 0.5 msec). When the frequency of the pulse signal is 2.0 kHz and the period for applying the stimulus is 100 msec as described above, the pulse signal includes 200 pulses in the period for applying the stimulus.
 ここで、刺激信号を用いた神経200への刺激は、ロックインアンプにより検出される(後述)。もし刺激信号に含まれる単位時間あたりのパルス数が少ないと、ロックインアンプから出力される検出信号の出力レベルが低くなるため、結果として誤検出の可能性が高くなる。一方、刺激信号に含まれる単位時間あたりの刺激パルス数が多すぎると、前述のとおり、迷走神経17がつながる各器官へ与える影響が大きくなるため、可能な範囲で刺激する期間を短く抑える必要がある。単位時間あたりに一定刺激パルス数を与える手法としては、1周期(図3(a)中の信号周期に相当)内に含まれる刺激パルス数を少なくする一方で1周期の時間を短くする(神経刺激をしない期間を減らす)手法と、1周期内に含まれる刺激パルス数を増やす一方で1周期の時間を長くする(神経刺激をしない期間を増やす)手法とが考えられる。生体における副作用を考えると連続した神経刺激をしない期間を多く取るように調整した方が好適である。よって、刺激パルス信号を印加する時間及び印加しない時間、並びに1周期に含まれる刺激パルス数は、上述の100msec、900msec及び200パルスに限られるものではなく、適当に調整することができる。しかしながら、上述の点を考慮することにより、例えば迷走神経17を刺激する際には、咽頭、心臓、胃、小腸、肝臓、腎臓などの迷走神経17が刺激を伝達する各器官への、迷走神経17に対して人工的な刺激を与えることに伴う副作用を低く抑えることが可能である。 Here, the stimulation to the nerve 200 using the stimulation signal is detected by a lock-in amplifier (described later). If the number of pulses per unit time included in the stimulus signal is small, the output level of the detection signal output from the lock-in amplifier is lowered, and as a result, the possibility of erroneous detection is increased. On the other hand, if the number of stimulation pulses per unit time included in the stimulation signal is too large, as described above, the influence on each organ to which the vagus nerve 17 is connected becomes large. Therefore, it is necessary to keep the stimulation period as short as possible. is there. As a method of giving a constant number of stimulation pulses per unit time, the number of stimulation pulses included in one cycle (corresponding to the signal cycle in FIG. 3A) is reduced while the time of one cycle is shortened (neural) A method of reducing the period of no stimulation) and a method of increasing the number of stimulation pulses included in one cycle while increasing the time of one cycle (increasing the period of no nerve stimulation) are conceivable. Considering the side effects in the living body, it is preferable to adjust so as to take a long period of time when no continuous nerve stimulation is performed. Therefore, the time for applying and not applying the stimulation pulse signal, and the number of stimulation pulses included in one cycle are not limited to the above-mentioned 100 msec, 900 msec, and 200 pulses, and can be appropriately adjusted. However, considering the above points, when stimulating the vagus nerve 17, for example, the vagus nerve to each organ to which the vagus nerve 17 transmits the stimulation, such as the pharynx, heart, stomach, small intestine, liver and kidney. It is possible to reduce the side effects associated with applying artificial stimulation to 17.
 磁気刺激プローブ110は、図3(b)に示した刺激信号を用いて、例えば神経200を磁気的に刺激する。当該刺激は、跳躍伝導により神経200に伝達される。跳躍伝導は非減衰伝達であるため、神経200が刺激を伝達するための閾値を刺激量が超えると、当該刺激は抹消まで同一のレベルで伝達される。 The magnetic stimulation probe 110 magnetically stimulates the nerve 200, for example, using the stimulation signal shown in FIG. The stimulus is transmitted to the nerve 200 by jump conduction. Since jump conduction is non-attenuating transmission, when the stimulation amount exceeds the threshold value for the nerve 200 to transmit the stimulation, the stimulation is transmitted at the same level until extinction.
 なお、神経200に刺激が与えられた直後の絶対不応期を呼ばれる一定期間は、どんなに強い刺激を与えても神経200は反応しない。これにより、刺激信号の周期が神経200の絶対不応期の長さよりも短くなることにより当該絶対不応期中に印加された刺激は伝達されない。つまり、神経200により伝達される刺激の周期は、絶対不応期の長さよりも必ず長くなる。 It should be noted that the nerve 200 does not respond to a certain period of time called the absolute refractory period immediately after the nerve 200 is stimulated, no matter how strong the stimulus is given. Thereby, the stimulus applied during the absolute refractory period is not transmitted because the period of the stimulus signal becomes shorter than the length of the absolute refractory period of the nerve 200. That is, the period of stimulation transmitted by the nerve 200 is always longer than the length of the absolute refractory period.
 磁気センサ120は当該神経200の周囲に発生する電磁界を検出する。また前述のとおり、磁気センサ130は周辺電磁界を検出する。磁気センサ120で検出した電磁界の信号から周辺電磁界の信号を減算することにより得られる測定信号と、図3(b)に示した刺激信号である参照信号とに対して、ロックインアンプによる処理を行うことにより、図3(c)に示す検出信号を得ることができる。具体的には、まず、バースト的な信号である参照信号の位相を順次ずらしながら、測定信号と参照信号とを乗算する。当該乗算した値が最も大きく反応する位相の参照信号において、これをローパスフィルタにかけることにより検出信号が得られる。一定の閾値以上の検出信号が観察できた場合には、磁気センサ120の位置において、磁気刺激プローブ110により人工的に神経200に与えられた刺激信号が、磁気センサ120で検出されたことを意味する。すなわち、磁気センサ120の近傍に神経200が走行していることを特定することができる。 The magnetic sensor 120 detects an electromagnetic field generated around the nerve 200. As described above, the magnetic sensor 130 detects the peripheral electromagnetic field. With respect to the measurement signal obtained by subtracting the signal of the peripheral electromagnetic field from the signal of the electromagnetic field detected by the magnetic sensor 120 and the reference signal which is the stimulation signal shown in FIG. By performing the processing, the detection signal shown in FIG. 3C can be obtained. Specifically, first, the measurement signal and the reference signal are multiplied while sequentially shifting the phase of the reference signal, which is a bursty signal. A detection signal is obtained by applying a low-pass filter to a reference signal having a phase to which the multiplied value reacts most. When a detection signal equal to or greater than a certain threshold value can be observed, it means that the stimulation signal artificially given to the nerve 200 by the magnetic stimulation probe 110 is detected by the magnetic sensor 120 at the position of the magnetic sensor 120. To do. That is, it can be specified that the nerve 200 is traveling in the vicinity of the magnetic sensor 120.
 なお、上記の説明では測定信号の生成に際し、磁気センサ120で検出した電磁界の信号から周辺電磁界の信号を減算するものとして説明したが、これに限られるものではない。特に、磁気センサ130により検出される周辺電磁界の変動が微弱である場合には、磁気センサ120で検出した電磁界の信号をそのまま測定信号とすることも考えられる。 In the above description, when generating the measurement signal, it has been described that the signal of the peripheral electromagnetic field is subtracted from the signal of the electromagnetic field detected by the magnetic sensor 120. However, the present invention is not limited to this. In particular, when the fluctuation of the surrounding electromagnetic field detected by the magnetic sensor 130 is weak, it is conceivable to use the electromagnetic field signal detected by the magnetic sensor 120 as a measurement signal as it is.
2.機能構成
 以下、図4を参照しながら、本実施形態に係る神経検出装置100の機能構成を説明する。図4は、神経検出装置100の構成の具体例を示す図である。神経検出装置100は、周期信号発生器101、バースト信号発生器103、刺激パルス発生器105、ドライバ107、刺激量調整部109、磁気刺激プローブ110、刺激パルス幅調整部111、磁気センサ120、ドライバ121、ドライバ123、加算器125、ロックインアンプ127、及び判定部133を含む
2. Functional Configuration Hereinafter, the functional configuration of the nerve detection device 100 according to the present embodiment will be described with reference to FIG. FIG. 4 is a diagram illustrating a specific example of the configuration of the nerve detection device 100. The nerve detection device 100 includes a periodic signal generator 101, a burst signal generator 103, a stimulation pulse generator 105, a driver 107, a stimulation amount adjustment unit 109, a magnetic stimulation probe 110, a stimulation pulse width adjustment unit 111, a magnetic sensor 120, and a driver. 121, a driver 123, an adder 125, a lock-in amplifier 127, and a determination unit 133.
 周期信号発生器101は、図3(a)に具体例を示した周期信号を発生させる。前述のとおり、当該周期信号は、神経200への刺激を与える刺激用のパルス信号を発生させるか否かのON/OFFを切り替えるためのものである。刺激信号を神経に印加しない期間を設けることにより、神経200に与える刺激量を抑え、結果として神経200の刺激伝達先の各器官へ与える影響を低く抑えられる。 The periodic signal generator 101 generates a periodic signal whose specific example is shown in FIG. As described above, the periodic signal is for switching ON / OFF whether or not to generate a pulse signal for stimulation that gives stimulation to the nerve 200. By providing a period during which no stimulation signal is applied to the nerve, the amount of stimulation given to the nerve 200 can be suppressed, and as a result, the influence of the nerve 200 on each stimulation transmission destination organ can be kept low.
 バースト信号発生器103は、周期信号発生器101から入力を受けた周期信号に基づいて、図3(b)に例示した刺激信号を発生させる。バースト信号発生器103は、周期信号がHighレベルとなっている期間に一定間隔のパルス信号を発生させ、Lowレベルとなっている期間はパルス信号を発生させないようにする。これにより、バースト信号発生器103が発生させる刺激信号はバーストパルス信号となる。 The burst signal generator 103 generates the stimulation signal illustrated in FIG. 3B based on the periodic signal received from the periodic signal generator 101. The burst signal generator 103 generates pulse signals at regular intervals during a period when the periodic signal is at a high level, and prevents a pulse signal from being generated during a period when the period signal is at a low level. Thereby, the stimulation signal generated by the burst signal generator 103 becomes a burst pulse signal.
 刺激パルス発生器105は、バースト信号発生器103が発生させた刺激信号に基づく磁気を磁気刺激プローブ110に発生させるべく、ドライバ107に対して刺激信号を入力する。ドライバ107は当該刺激信号に基づく磁気を磁気刺激プローブ110に発生させる。ここでドライバ107が発生させる磁気の大きさ(刺激レベル)は、刺激量調整部109が調整する。先述の通り、刺激レベルは、心拍低下が生じる中で極力低い値に設定されることが好ましい。また、刺激信号に含まれるパルス信号のパルス幅は、刺激パルス幅調整部111が調整する。先述の通り、パルス幅は、心拍低下が生じる中で極力低い値に設定されることが好ましい。 The stimulation pulse generator 105 inputs a stimulation signal to the driver 107 so that the magnetic stimulation probe 110 generates magnetism based on the stimulation signal generated by the burst signal generator 103. The driver 107 causes the magnetic stimulation probe 110 to generate magnetism based on the stimulation signal. Here, the magnitude (stimulation level) of magnetism generated by the driver 107 is adjusted by the stimulation amount adjustment unit 109. As described above, it is preferable that the stimulation level is set to a value as low as possible while the heart rate lowers. The pulse width of the pulse signal included in the stimulation signal is adjusted by the stimulation pulse width adjustment unit 111. As described above, it is preferable that the pulse width is set to a value as low as possible while the heart rate decreases.
 磁気刺激プローブ110は、刺激信号に基づく磁気を発生させることにより、神経200に対して磁気刺激を与える。神経200に与えられた刺激は、跳躍伝導により伝達される。磁気センサ120は、跳躍伝導に応じて当該神経200の周囲に発生する電磁界を検出し、ドライバ121は当該電磁界に応じた電気信号を加算器125へ出力する。 The magnetic stimulation probe 110 applies magnetic stimulation to the nerve 200 by generating magnetism based on the stimulation signal. The stimulus given to the nerve 200 is transmitted by jump conduction. The magnetic sensor 120 detects an electromagnetic field generated around the nerve 200 according to the jump conduction, and the driver 121 outputs an electrical signal corresponding to the electromagnetic field to the adder 125.
 また、磁気センサ130は周辺電磁界を検出し、ドライバ123は当該周辺電磁界に応じた電気信号を加算器125へ出力する。加算器125は、磁気センサ120からの電気信号から、磁気センサ130からの電気信号を減算する。これにより、周辺電磁界の影響を除いた、神経200における跳躍伝導に伴い発生した電磁界に係る測定信号のみが得られる。これは周辺電磁界の影響は磁気センサ120及び磁気センサ130の双方が受けるためである。前述のとおり、もし磁気センサ130で検出される電磁界の変動が小さければ、加算器125による減算処理を行わず、磁気センサ120からの電気信号をそのまま位相敏感検波器129に入力することも考えられる。例えば、磁気センサ120で検出する磁気のレベルが数十nT、磁気センサ130で検出する周辺磁界のレベルが45μTだとすると、周辺磁界のレベルは十分に小さいため、磁気センサ120での検出信号において周辺磁界の影響を考慮する必要はない。 Further, the magnetic sensor 130 detects a peripheral electromagnetic field, and the driver 123 outputs an electrical signal corresponding to the peripheral electromagnetic field to the adder 125. The adder 125 subtracts the electrical signal from the magnetic sensor 130 from the electrical signal from the magnetic sensor 120. As a result, only the measurement signal related to the electromagnetic field generated along with the jump conduction in the nerve 200 excluding the influence of the peripheral electromagnetic field is obtained. This is because both the magnetic sensor 120 and the magnetic sensor 130 are affected by the peripheral electromagnetic field. As described above, if the fluctuation of the electromagnetic field detected by the magnetic sensor 130 is small, it is possible to input the electric signal from the magnetic sensor 120 to the phase sensitive detector 129 without performing the subtraction process by the adder 125. It is done. For example, if the magnetic level detected by the magnetic sensor 120 is several tens of nT and the level of the peripheral magnetic field detected by the magnetic sensor 130 is 45 μT, the level of the peripheral magnetic field is sufficiently small. There is no need to consider the effects of.
 位相敏感検波器129、及びローパスフィルタ131は、ロックインアンプ127を構成し、ロックインアンプ127は、磁気刺激プローブ110により刺激を与える刺激信号の特徴パターンを検出する検出信号を出力する。これにより、脳などから神経200にランダムに伝達される信号と、人工的に印加した刺激に応じた信号とを区別することができる。例えば、神経200に人工的に与える刺激が2.0kHzであれば、ロックインアンプ127は、測定信号中に2.0kHzの信号成分が含まれているか否かを判定するための検出信号を出力する。もし測定信号中に、人工的に加えられた周波数帯である2.0kHzの信号成分が含まれていれば、磁気センサ120の近傍に、磁気刺激プローブ110により刺激を与えた神経200が走行していることがわかる。 The phase sensitive detector 129 and the low-pass filter 131 constitute a lock-in amplifier 127, and the lock-in amplifier 127 outputs a detection signal for detecting a feature pattern of a stimulus signal to be stimulated by the magnetic stimulation probe 110. This makes it possible to distinguish between a signal that is randomly transmitted from the brain or the like to the nerve 200 and a signal that corresponds to the artificially applied stimulus. For example, if the stimulus artificially applied to the nerve 200 is 2.0 kHz, the lock-in amplifier 127 outputs a detection signal for determining whether or not a 2.0 kHz signal component is included in the measurement signal. To do. If the measurement signal includes a signal component of 2.0 kHz, which is an artificially added frequency band, the nerve 200 stimulated by the magnetic stimulation probe 110 travels in the vicinity of the magnetic sensor 120. You can see that
 ロックインアンプ127の一部を構成する位相敏感検波器129は、バースト信号発生器103から入力された参照信号である刺激信号と、加算器125から出力される測定信号とを乗算する。刺激信号に含まれる刺激パルス信号が2.0kHzである場合には、位相敏感検波器129には、当該2.0kHzの刺激パルス信号が参照信号として入力される。更に位相敏感検波器129は、参照信号の位相をずらすことにより、当該乗算結果が最も敏感に反応する位相を特定する。 The phase-sensitive detector 129 that constitutes a part of the lock-in amplifier 127 multiplies the stimulation signal that is the reference signal input from the burst signal generator 103 and the measurement signal output from the adder 125. When the stimulation pulse signal included in the stimulation signal is 2.0 kHz, the 2.0 kHz stimulation pulse signal is input to the phase sensitive detector 129 as a reference signal. Furthermore, the phase sensitive detector 129 specifies the phase to which the multiplication result reacts most sensitively by shifting the phase of the reference signal.
 加算器125から得られる測定信号をsin(ωt+α)、刺激信号をsin(ωt+β)とすると、位相敏感検波器129が出力する信号は、以下のようになる。 If the measurement signal obtained from the adder 125 is sin (ωt + α) and the stimulus signal is sin (ωt + β), the signal output by the phase sensitive detector 129 is as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、この式において、α、βは位相のオフセットである。位相敏感検波器129は、α、βの少なくとも一方値を順次調整することにより、当該式における直流成分であるcos(α-β)の値が最も大きくなるα、βの値を特定する。この場合、理想的にはα=β+2π×n(nは整数)となる。 In this equation, α and β are phase offsets. The phase sensitive detector 129 specifies the values of α and β that maximize the value of cos (α−β), which is the DC component in the equation, by sequentially adjusting at least one of α and β. In this case, ideally, α = β + 2π × n (n is an integer).
 ロックインアンプ127を構成するローパスフィルタ131は、十分に大きな時定数を有することにより、検出対象の周波数(ここでは2.0kHz)成分が十分検出されるように設定される。これによりローパスフィルタ131は、位相敏感検波器129から出力される信号から、高周波数成分であるcos(2ωt+α+β)を除去する。例えば、ローパスフィルタ131は、カットオフ周波数3.0kHzで6dB減少するように設定される。これにより、ローパスフィルタ131は、神経刺激の際に使用した刺激信号の特徴パターンに応じた検出信号だけを取り出すことができる。検出信号の波形の具体例は、図3(c)に示す。 The low-pass filter 131 constituting the lock-in amplifier 127 has a sufficiently large time constant so that a frequency component (2.0 kHz in this case) to be detected is sufficiently detected. As a result, the low-pass filter 131 removes cos (2ωt + α + β), which is a high-frequency component, from the signal output from the phase sensitive detector 129. For example, the low-pass filter 131 is set to decrease by 6 dB at a cutoff frequency of 3.0 kHz. Thereby, the low-pass filter 131 can take out only the detection signal according to the feature pattern of the stimulus signal used in the nerve stimulation. A specific example of the waveform of the detection signal is shown in FIG.
 判定部133は、ロックインアンプ127から出力された検出信号に基づき、神経刺激を検出できたか否かを判定する。判定部133が神経刺激を検出できたか否かを判定する方法は種々考えられるが、例えば、検出信号が閾値を超えたか否かにより判別できる。もし検出信号の出力レベルが閾値よりも高ければ、磁気センサ120で検出された測定信号と、参照信号である刺激パルス信号との相関が高いことを示し、これは磁気センサ120の近傍に神経200があることを意味する。一方、検出信号の出力レベルが閾値よりも低ければ、測定信号と刺激パルス信号との相関が低いことを示す。相関が低い場合には、磁気センサ120と反回神経19との距離が遠いと解釈しうる。 The determination unit 133 determines whether or not the neural stimulation has been detected based on the detection signal output from the lock-in amplifier 127. There are various methods for determining whether or not the determination unit 133 can detect the neural stimulation. For example, the determination can be made based on whether or not the detection signal exceeds a threshold value. If the output level of the detection signal is higher than the threshold value, it indicates that the correlation between the measurement signal detected by the magnetic sensor 120 and the stimulation pulse signal that is the reference signal is high, which is in the vicinity of the magnetic sensor 120. Means there is. On the other hand, if the output level of the detection signal is lower than the threshold value, it indicates that the correlation between the measurement signal and the stimulation pulse signal is low. When the correlation is low, it can be interpreted that the distance between the magnetic sensor 120 and the recurrent nerve 19 is long.
 或いは、検出信号の出力レベルが低い場合には、迷走神経17の一部に損傷が生じていると解釈することも可能である。なぜならば、例えば迷走神経17のように、束となっている神経200を一体として全て刺激する場合には、それらの一部に損傷があれば、その損傷のある神経200では、刺激の伝達、すなわち跳躍伝導が生じない。跳躍伝導を行う神経200の数が減ると、跳躍伝導に伴い生じる電磁界の強度も低下するため、これを検出する検出信号の出力レベルも下がるからである。 Alternatively, when the output level of the detection signal is low, it can be interpreted that a part of the vagus nerve 17 is damaged. This is because, for example, when all of the bundled nerves 200 are stimulated as a unit, such as the vagus nerve 17, if there is damage to some of them, the damaged nerve 200 transmits the stimulation, That is, no jump conduction occurs. This is because if the number of nerves 200 that perform jump conduction decreases, the intensity of the electromagnetic field generated by jump conduction also decreases, and the output level of the detection signal that detects this also decreases.
 判定部133で検出信号の出力レベルの高低を判定する際に使用する閾値は、例えば以下のように設定することができる。 The threshold value used when the determination unit 133 determines the level of the output level of the detection signal can be set as follows, for example.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Aは刺激パルスの印加中における検出信号の出力レベル、Bは刺激パルスを印加していない期間における検出信号の出力レベルである。Bのレベルが低ければ、閾値をA/2としても良い。 Here, A is the output level of the detection signal during application of the stimulation pulse, and B is the output level of the detection signal during a period in which no stimulation pulse is applied. If the level of B is low, the threshold value may be A / 2.
 また、跳躍伝導は前述のとおり非減衰伝達であるため、神経200の周囲に生じる電磁界強度は神経200の部位に関わらず一定であり、また、当該電磁界強度は神経200からの距離に反比例する。よって、検出される検出信号の出力レベルが大きければ磁気センサ120と神経200との距離が短く、出力レベルが低ければ両者の距離が遠いことを意味する。すなわち、磁気センサ120を移動させたり複数配置したりした上で、それぞれの位置における検出信号のレベルを測定することにより、神経200と磁気センサ120との相対的かつ空間的な距離を求めることが可能である。判定部133は、検出信号のレベルに応じて、当該相対的距離を求めても良い。 Moreover, since jump conduction is non-attenuating transmission as described above, the electromagnetic field intensity generated around the nerve 200 is constant regardless of the site of the nerve 200, and the electromagnetic field intensity is inversely proportional to the distance from the nerve 200. To do. Therefore, if the output level of the detected signal to be detected is large, the distance between the magnetic sensor 120 and the nerve 200 is short, and if the output level is low, it means that the distance between them is long. That is, the relative and spatial distance between the nerve 200 and the magnetic sensor 120 can be obtained by measuring the level of the detection signal at each position after moving or arranging a plurality of magnetic sensors 120. Is possible. The determination unit 133 may obtain the relative distance according to the level of the detection signal.
 更に判定部133は、神経200を刺激している位置から、刺激を検出した位置までの、神経200の経路上での相対的距離を測定することも可能である。より具体的には、神経200の刺激を始めた時刻T1、及び検出信号が検出閾値を超えた時刻T2を測定することで、刺激の伝達に要した時間T2-T1がわかる。よって、磁気センサ120を移動させたり複数配置したりした上で、時間T2-T1の値が小さい検出位置は刺激位置から近く、当該値が大きい検出位置は刺激位置から遠いと判定できる。 Furthermore, the determination unit 133 can also measure the relative distance on the path of the nerve 200 from the position where the nerve 200 is stimulated to the position where the stimulation is detected. More specifically, by measuring the time T1 when the stimulation of the nerve 200 is started and the time T2 when the detection signal exceeds the detection threshold, the time T2-T1 required for the transmission of the stimulus can be obtained. Therefore, after moving or arranging a plurality of magnetic sensors 120, it is possible to determine that a detection position with a small value of time T2-T1 is close to the stimulation position and a detection position with a large value is far from the stimulation position.
3.本実施形態に係る効果
 以上説明したように、本実施形態に係る神経検出装置100は、磁気刺激プローブ110により神経200に対して人工的な刺激を与え、当該刺激を伝達するための跳躍伝導に応じて神経200の周囲に生じる電磁界を磁気センサ120で検出する。磁気センサ120で測定された信号に対する信号処理の結果、所定の検出信号が検出されると、当該磁気センサ120の近傍に神経200が走行していると特定できる。また神経検出装置100は、神経200の損傷の有無や、磁気センサ120と神経200との相対的かつ空間的な距離、刺激位置と検出位置との相対的な距離等も判別可能である。すなわち、神経検出装置100を用いれば、神経200に関係する関連器官の反射等を術者が観察せずとも、信号処理のみで神経200の位置や状態を確認することができる。
3. Effects According to the Present Embodiment As described above, the nerve detection device 100 according to the present embodiment applies artificial stimulation to the nerve 200 by the magnetic stimulation probe 110 and performs jump conduction for transmitting the stimulation. In response, an electromagnetic field generated around the nerve 200 is detected by the magnetic sensor 120. When a predetermined detection signal is detected as a result of signal processing on the signal measured by the magnetic sensor 120, it can be determined that the nerve 200 is running in the vicinity of the magnetic sensor 120. The nerve detection device 100 can also determine whether or not the nerve 200 is damaged, the relative and spatial distance between the magnetic sensor 120 and the nerve 200, the relative distance between the stimulation position and the detection position, and the like. That is, if the nerve detection device 100 is used, the position and state of the nerve 200 can be confirmed only by signal processing without the operator observing reflexes of related organs related to the nerve 200.
 また、本実施形態に係る神経検出装置100では、神経200に対して磁気刺激を与え、また神経200の周囲に発生する電磁界を検出している。すなわち、神経200を露出させたり神経200に接触したりする必要が無いため、神経200を損傷させる等のリスクを避ける事ができる。 Further, in the nerve detection device 100 according to the present embodiment, a magnetic stimulation is given to the nerve 200 and an electromagnetic field generated around the nerve 200 is detected. That is, since there is no need to expose the nerve 200 or contact the nerve 200, the risk of damaging the nerve 200 can be avoided.
 更に、神経200に与える刺激信号を間欠的なバースト信号とし、また信号レベルやパルス幅も調整するようにしているため、関連器官の機能に与える影響を低減させることができる。 Furthermore, since the stimulation signal given to the nerve 200 is an intermittent burst signal and the signal level and pulse width are adjusted, the influence on the function of the related organs can be reduced.
4.変形例
 なお、前述の実施形態の構成は、組み合わせたり或いは一部の構成部分を入れ替えたりしてもよい。また、本発明の構成は前述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。
4). Modifications Note that the configurations of the above-described embodiments may be combined or some components may be replaced. The configuration of the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the invention.
 より具体的には、例えば、上記神経検出装置100では、神経200に対して磁気刺激を与えていたが、神経200を切開により露出させた上で、磁気刺激プローブ110の代わりとなる電極プローブを当該神経200に接触させることにより、電気刺激を与えるようにしても良い。 More specifically, for example, in the nerve detection apparatus 100 described above, magnetic stimulation is applied to the nerve 200, but an electrode probe that replaces the magnetic stimulation probe 110 is provided after the nerve 200 is exposed through incision. Electrical stimulation may be applied by contacting the nerve 200.
 また、上記実施形態では、神経200における刺激の伝導を電磁界として検出していたが、これに限られるものでもなく、神経200に流れる電気信号を検出するようにしても良い。この場合、神経200に人工的に印加した刺激に基づく電気信号が神経200に接触した電気センサで検出された場合に、当該電気センサが接触する神経200が、標的の神経であると判定することができる。この場合、磁気センサ130の代替となる電気センサは、生体上の電気ノイズを検出すれば良い。神経200に接触させた電気センサ及び生体ノイズを検出した電気センサに対する信号処理については、上記実施形態と同様とすることが可能である。電気信号により刺激を検出する手法であっても、上記実施形態と同様に、標的器官の反射を観察せずとも、信号処理のみで刺激の有無を検出することができる。また、刺激レベルや刺激パルス幅を調整することにより、標的器官に与える影響も低く抑えることが可能である。 In the above embodiment, the conduction of the stimulus in the nerve 200 is detected as an electromagnetic field. However, the present invention is not limited to this, and an electric signal flowing through the nerve 200 may be detected. In this case, when an electrical signal based on a stimulus artificially applied to the nerve 200 is detected by the electrical sensor in contact with the nerve 200, it is determined that the nerve 200 in contact with the electrical sensor is the target nerve. Can do. In this case, an electrical sensor that is an alternative to the magnetic sensor 130 may detect electrical noise on the living body. Signal processing for the electrical sensor in contact with the nerve 200 and the electrical sensor that detects biological noise can be the same as in the above embodiment. Even in the method of detecting a stimulus by an electrical signal, the presence or absence of the stimulus can be detected only by signal processing without observing the reflection of the target organ as in the above embodiment. Further, by adjusting the stimulation level and the stimulation pulse width, the influence on the target organ can be suppressed to a low level.
 また、上記実施形態では、神経200に刺激を与えるための刺激信号が有する特徴パターンが単一周波数のパルスである場合を中心に説明したが、これに限られるものではない。例えば、刺激する周波数や刺激強度を可変にすることも考えられる。このようにすると、刺激信号のパターンをより特徴的とすることができるため、他の電気/磁気ノイズとの区別がつきやすくなり、検出信号による検出精度を向上させることが可能となる。 In the above embodiment, the case has been described in which the characteristic pattern of the stimulation signal for applying stimulation to the nerve 200 is a single-frequency pulse, but the present invention is not limited to this. For example, it may be possible to vary the stimulation frequency and stimulation intensity. In this way, since the pattern of the stimulus signal can be made more characteristic, it can be easily distinguished from other electric / magnetic noise, and the detection accuracy by the detection signal can be improved.
 更に、図1に示した例では、頸部を走行する迷走神経17から磁気刺激プローブ110で刺激を与え、反回神経19近傍にある磁気センサ120で当該刺激に応じた電磁界信号を検出するようにしていたが、これに限られるものでもない。例えば、胸腔内の反回神経19近傍において磁気刺激プローブ110で刺激を与え、頸部を走行する迷走神経17近傍若しくは甲状軟骨23周囲に配置された磁気センサ120で当該刺激に応じた電磁界を検出することも考えられる。 Further, in the example shown in FIG. 1, stimulation is applied by the magnetic stimulation probe 110 from the vagus nerve 17 traveling in the neck, and an electromagnetic field signal corresponding to the stimulation is detected by the magnetic sensor 120 near the recurrent nerve 19. However, it is not limited to this. For example, stimulation is performed by the magnetic stimulation probe 110 in the vicinity of the recurrent nerve 19 in the thoracic cavity, and an electromagnetic field corresponding to the stimulation is generated by the magnetic sensor 120 disposed in the vicinity of the vagus nerve 17 running around the neck or around the thyroid cartilage 23. Detection is also conceivable.
10   :人体
11   :皮膚
13A  :左総頸動脈
13B  :右総頚動脈
15   :大動脈弓
17A  :左迷走神経
17B  :右迷走神経
19A  :左反回神経
19B  :右反回神経
21   :気管
23   :甲状軟骨
25   :声帯筋
100  :神経検出装置
101  :周期信号発生器
103  :バースト信号発生器
105  :刺激パルス発生器
107  :ドライバ
109  :刺激量調整部
110  :磁気刺激プローブ
111  :刺激パルス幅調整部
120  :磁気センサ
121  :ドライバ
123  :ドライバ
125  :加算器
127  :ロックインアンプ
129  :位相敏感検波器
130  :磁気センサ
131  :ローパスフィルタ
133  :判定部
200  :神経
203  :軸索
205  :ミエリン鞘
207  :ランビエの絞輪
 
10: human body 11: skin 13A: left common carotid artery 13B: right common carotid artery 15: aortic arch 17A: left vagus nerve 17B: right vagus nerve 19A: left recurrent nerve 19B: right recurrent nerve 21: trachea 23: thyroid cartilage 25: Vocal cord muscle 100: Neural detector 101: Periodic signal generator 103: Burst signal generator 105: Stimulation pulse generator 107: Driver 109: Stimulation amount adjustment unit 110: Magnetic stimulation probe 111: Stimulation pulse width adjustment unit 120: Magnetic sensor 121: Driver 123: Driver 125: Adder 127: Lock-in amplifier 129: Phase sensitive detector 130: Magnetic sensor 131: Low pass filter 133: Determination unit 200: Nerve 203: Axon 205: Myelin sheath 207: Lambier's Diaphragm

Claims (20)

  1.  特徴パターンを有する刺激信号を発生させる手段と、
     前記刺激信号に基づく刺激を神経に与える刺激手段と、
     前記神経における刺激の伝達に伴い、前記神経の周囲に発生する電磁界を検出する第1の検出手段と、
     前記電磁界に応じた測定信号に基づき、前記特徴パターンに応じた検出信号を検出する第2の検出手段と
    を備える神経検出装置。
    Means for generating a stimulus signal having a feature pattern;
    A stimulation means for giving a nerve a stimulus based on the stimulation signal;
    First detection means for detecting an electromagnetic field generated around the nerve in accordance with transmission of a stimulus in the nerve;
    A nerve detection apparatus comprising: a second detection unit configured to detect a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electromagnetic field.
  2.  前記刺激信号は、前記特徴パターンである一定周波数のパルス信号を含む、
    請求項1記載の神経検出装置。
    The stimulation signal includes a pulse signal having a constant frequency which is the characteristic pattern.
    The nerve detection device according to claim 1.
  3.  前記刺激信号は、一定周波数のパルス信号を一定周期で間欠的に含む前記特徴パターンを持つ、
    請求項2記載の神経検出装置。
    The stimulation signal has the characteristic pattern including intermittently a pulse signal having a constant frequency at a constant period.
    The nerve detection device according to claim 2.
  4.  前記一定周期の周波数は、0.1Hz以上100Hz以下である、
    請求項3記載の神経検出装置。
    The frequency of the fixed period is 0.1 Hz or more and 100 Hz or less,
    The nerve detection device according to claim 3.
  5.  前記パルス信号の信号レベルを調整する第1の調整手段
    を更に備える請求項2乃至請求項4のいずれか1項記載の神経検出装置。
    The nerve detection device according to any one of claims 2 to 4, further comprising first adjusting means for adjusting a signal level of the pulse signal.
  6.  前記パルス信号のパルス幅を調整する第2の調整手段
    を更に備える請求項2乃至請求項4のいずれか1項記載の神経検出装置。
    The nerve detection device according to any one of claims 2 to 4, further comprising second adjustment means for adjusting a pulse width of the pulse signal.
  7.  前記パルス信号の周波数は、1Hz以上10kHz以下である、
    請求項2乃至請求項6のいずれか1項記載の神経検出装置。
    The frequency of the pulse signal is 1 Hz to 10 kHz,
    The nerve detection device according to any one of claims 2 to 6.
  8.  前記特徴パターンである前記刺激信号の周波数又は刺激強度の少なくとも一方を変える手段
    を更に備える請求項1記載の神経検出装置。
    The nerve detection apparatus according to claim 1, further comprising means for changing at least one of a frequency or a stimulation intensity of the stimulation signal which is the characteristic pattern.
  9.  前記第2の検出手段は、前記刺激信号と、前記測定信号とに基づき、前記検出信号を検出する、
    請求項1乃至請求項8のいずれか1項記載の神経検出装置。
    The second detection means detects the detection signal based on the stimulation signal and the measurement signal;
    The nerve detection device according to any one of claims 1 to 8.
  10.  周辺電磁界を検出する第3の検出手段
    を更に備え、
     前記測定信号は、前記電磁界に応じた信号から、前記周辺電磁界に応じた信号を減算することにより得られる、
    請求項9記載の神経検出装置。
    Further comprising third detection means for detecting a peripheral electromagnetic field;
    The measurement signal is obtained by subtracting a signal corresponding to the peripheral electromagnetic field from a signal corresponding to the electromagnetic field.
    The nerve detection device according to claim 9.
  11.  前記検出信号は、前記刺激信号と前記測定信号とを乗算することにより得られる信号に対し、高周波成分をフィルタリングすることにより生成される、
    請求項9又は請求項10記載の神経検出装置。
    The detection signal is generated by filtering a high-frequency component with respect to a signal obtained by multiplying the stimulation signal and the measurement signal.
    The nerve detection device according to claim 9 or 10.
  12.  前記刺激手段は、前記刺激信号に基づく磁気刺激を前記神経に印加する、
    請求項1乃至請求項11のいずれか1項記載の神経検出装置。
    The stimulation means applies a magnetic stimulation based on the stimulation signal to the nerve;
    The nerve detection device according to any one of claims 1 to 11.
  13.  前記刺激手段は、前記刺激信号に基づく刺激を電気信号として前記神経に与える、
    請求項1乃至請求項11のいずれか1項記載の神経検出装置。
    The stimulation means gives a stimulation based on the stimulation signal to the nerve as an electrical signal.
    The nerve detection device according to any one of claims 1 to 11.
  14.  前記検出信号に基づき、前記刺激を前記神経に与えた位置と、前記電磁界を検出する位置との間の神経経路上の相対的な距離を判定する、
    請求項1乃至請求項13のいずれか1項記載の神経検出装置。
    Based on the detection signal, a relative distance on a nerve path between a position where the stimulation is applied to the nerve and a position where the electromagnetic field is detected is determined.
    The nerve detection device according to any one of claims 1 to 13.
  15.  前記検出信号に基づき、前記神経から前記第1の検出手段までの相対的かつ空間的な距離を判定する、
    請求項1乃至請求項14のいずれか1項記載の神経検出装置。
    Determining a relative and spatial distance from the nerve to the first detection means based on the detection signal;
    The nerve detection device according to any one of claims 1 to 14.
  16.  特徴パターンを有する刺激信号を発生させる手段と、
     前記刺激信号に基づく刺激を神経に与える刺激手段と、
     前記神経における刺激の伝達に伴う電気信号を検出する第1の検出手段と、
     前記電気信号に応じた測定信号に基づき、前記特徴パターンに応じた検出信号を検出する第2の検出手段と
    を備える神経検出装置。
    Means for generating a stimulus signal having a feature pattern;
    A stimulation means for giving a nerve a stimulus based on the stimulation signal;
    First detection means for detecting an electrical signal associated with transmission of a stimulus in the nerve;
    A nerve detection apparatus comprising: a second detection unit configured to detect a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electrical signal.
  17.  前記第2の検出手段は、前記刺激信号と、前記測定信号とに基づき、前記検出信号を検出する、
    請求項15記載の神経検出装置。
    The second detection means detects the detection signal based on the stimulation signal and the measurement signal;
    The nerve detection device according to claim 15.
  18.  生体ノイズを検出する第3の検出手段
    を更に備え、
     前記測定信号は、前記電気信号から、前記生体ノイズを減算することにより得られる、
    請求項17記載の神経検出装置。
    A third detecting means for detecting biological noise;
    The measurement signal is obtained by subtracting the biological noise from the electrical signal.
    The nerve detection device according to claim 17.
  19.  特徴パターンを有する刺激信号を発生させるステップと、
     前記刺激信号に基づく刺激を神経に与えるステップと、
     前記神経における刺激の伝達に伴い、前記神経の周囲に発生する電磁界を検出するステップと、
     前記電磁界に応じた測定信号に基づき、前記特徴パターンに応じた検出信号を検出するステップと
    を装置が行う神経検出方法。
    Generating a stimulus signal having a feature pattern;
    Providing a nerve with a stimulus based on the stimulus signal;
    Detecting an electromagnetic field generated around the nerve accompanying transmission of a stimulus in the nerve;
    A nerve detection method in which the apparatus performs a step of detecting a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electromagnetic field.
  20.  特徴パターンを有する刺激信号を発生させるステップと、
     前記刺激信号に基づく刺激を神経に与えるステップと、
     前記神経における刺激の伝達に伴う電気信号を検出するステップと、
     前記電気信号に応じた測定信号に基づき、前記特徴パターンに応じた検出信号を検出するステップと
    を装置が行う神経検出方法。
     
    Generating a stimulus signal having a feature pattern;
    Providing a nerve with a stimulus based on the stimulus signal;
    Detecting an electrical signal associated with transmission of a stimulus in the nerve;
    A nerve detection method in which the apparatus performs a step of detecting a detection signal corresponding to the feature pattern based on a measurement signal corresponding to the electrical signal.
PCT/JP2016/070275 2015-07-08 2016-07-08 Nerve detecting device, and nerve detecting method WO2017007018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-136792 2015-07-08
JP2015136792A JP6830310B2 (en) 2015-07-08 2015-07-08 Nerve detection device and nerve detection method

Publications (1)

Publication Number Publication Date
WO2017007018A1 true WO2017007018A1 (en) 2017-01-12

Family

ID=57685063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070275 WO2017007018A1 (en) 2015-07-08 2016-07-08 Nerve detecting device, and nerve detecting method

Country Status (2)

Country Link
JP (1) JP6830310B2 (en)
WO (1) WO2017007018A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6917501B2 (en) * 2015-07-08 2021-08-11 国立大学法人東北大学 Nerve detector
US10674924B2 (en) * 2018-02-22 2020-06-09 Seoul National University Hospital Mapping cavernous nerves during surgery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285032A (en) * 1993-04-07 1994-10-11 Olympus Optical Co Ltd Medical treating implement
WO2009068793A1 (en) * 2007-11-08 2009-06-04 Theraclion Non-invasive device and method for locating a structure such as a nerve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510536B2 (en) * 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
WO2006044868A1 (en) * 2004-10-20 2006-04-27 Nervonix, Inc. An active electrode, bio-impedance based, tissue discrimination system and methods and use
FR2886533B1 (en) * 2005-06-03 2007-09-14 Theraclion Soc Par Actions Sim IMAGING AND PROCESSING HEAD OF LIVING ORGANS AND METHOD OF MANUFACTURING

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285032A (en) * 1993-04-07 1994-10-11 Olympus Optical Co Ltd Medical treating implement
WO2009068793A1 (en) * 2007-11-08 2009-06-04 Theraclion Non-invasive device and method for locating a structure such as a nerve

Also Published As

Publication number Publication date
JP6830310B2 (en) 2021-02-17
JP2017018197A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
US11259751B2 (en) Recording apparatus and method for noise reduction
JP6170616B2 (en) Multi-electrode impedance sensing
JP5005296B2 (en) Skin impedance detection
CN105025789B (en) For detecting the cladding of setting element and the system of non-cladding
JP4663654B2 (en) Method for identifying stimulation level used for transcranial magnetic stimulation
KR101302193B1 (en) Measurement and treatment apparatus for dysphagia
US20170007157A1 (en) Electrical-signal-based electrode-tissue contact detection
US20160166164A1 (en) Method and Apparatus for Detecting Neural Injury
Deb et al. An endoscopic wireless gastrostimulator (with video)
JP2018513714A (en) Electrode-nerve distance estimation
EP3285644B1 (en) Detecting activity in peripheral nerves
JP2017501798A (en) System and method for locating neural tissue
JP2009534108A (en) Electrical signal measurement system
JP6599122B2 (en) Placement of electrodes close to the heart
JP2018202160A (en) Automatic detection of phrenic nerve stimulation
O'Grady et al. A comparison of gold versus silver electrode contacts for high-resolution gastric electrical mapping using flexible printed circuit board arrays
WO2017007018A1 (en) Nerve detecting device, and nerve detecting method
JP2017529938A (en) Medical device for cardiac tissue mapping
CN107771053A (en) Magnetic survey monitoring system in art
JP6917501B2 (en) Nerve detector
WO2011106225A3 (en) Apparatus and method for treatment of pain with body impedance analyzer
KR20200023393A (en) Nerve activity monitoring
US9427224B1 (en) Apparatus and methods for surgical access
CN109937003B (en) System and method for placement of spinal cord stimulator leads
CZ309773B6 (en) A device for electrical stimulation of the organism reducing the stimulation artifact

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821486

Country of ref document: EP

Kind code of ref document: A1