WO2017006986A1 - Resin composition and method for manufacturing same, and molded body - Google Patents

Resin composition and method for manufacturing same, and molded body Download PDF

Info

Publication number
WO2017006986A1
WO2017006986A1 PCT/JP2016/070112 JP2016070112W WO2017006986A1 WO 2017006986 A1 WO2017006986 A1 WO 2017006986A1 JP 2016070112 W JP2016070112 W JP 2016070112W WO 2017006986 A1 WO2017006986 A1 WO 2017006986A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
lignocellulose
mass
composition according
Prior art date
Application number
PCT/JP2016/070112
Other languages
French (fr)
Japanese (ja)
Inventor
舩岡 正光
有希 ▲徳▼永
野寺 明夫
めぐみ 藤本
Original Assignee
出光ライオンコンポジット株式会社
国立大学法人三重大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ライオンコンポジット株式会社, 国立大学法人三重大学 filed Critical 出光ライオンコンポジット株式会社
Priority to JP2017527491A priority Critical patent/JP6745446B2/en
Publication of WO2017006986A1 publication Critical patent/WO2017006986A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse

Definitions

  • the present invention relates to a resin composition, a method for producing the same, and a molded body.
  • the fiber reinforced composite material whose strength and rigidity are greatly improved by blending various fibrous reinforcing materials with resin, is widely used in industrial fields such as electric / electronics, machinery, automobiles, and building materials.
  • the fibrous reinforcing material blended in the fiber-reinforced composite material glass fibers having excellent strength and lightness are mainly used.
  • the glass fiber reinforced material achieves high rigidity, but has a limitation in weight reduction because of its high specific gravity.
  • the glass fiber itself is non-flammable, which causes problems such as damage to the combustion furnace during incineration and low combustion efficiency, making it suitable for thermal recyclability. There was also the disadvantage of not.
  • fiber reinforcements made of organic materials such as polyester fibers, polyamide fibers, and aramid fibers have been studied, but fiber reinforcement materials containing these reinforcements can ensure light weight and thermal recyclability.
  • fiber reinforcement materials containing these reinforcements can ensure light weight and thermal recyclability.
  • mechanical reinforcement effect was not sufficient.
  • Patent Document 3 discloses a method in which cellulose fibers from pulp are modified in a solution, microfibrillated using a biaxial kneader, and uniformly dispersed in a matrix resin.
  • Patent Document 4 discloses a cellulose fiber coated with a lignophenol derivative and having an average fiber diameter of 2 nm or more and 200 nm or less, and a cellulose fiber composite material containing the cellulose fiber dispersed in a matrix resin. Yes.
  • the composite materials proposed in Patent Documents 1 and 2 are insufficient in mechanical properties such as tensile elastic modulus, their applications are limited. Moreover, in the invention described in Patent Document 3, the dispersion of cellulose fibers in the resin is still insufficient, and the resultant fiber composite material has insufficient mechanical strength.
  • the modified cellulose contains moisture and the like, and it becomes a problem in terms of productivity, or a resin (for example, polyamide or polyester) that is affected by moisture can produce a cellulose fiber composite material. There were problems such as being unable to do so. Furthermore, a modification step is necessary, which is disadvantageous in terms of cost.
  • Patent Document 4 the thermal decomposition temperature is improved by surface-coating cellulose fibers with a lignophenol derivative, but a process of coating with a lignophenol derivative is required, and this production method is There was a problem in terms of cost.
  • the problem to be solved by the present invention is that the manufacturing method is simple, the productivity is excellent, the production cost is low, the mechanical strength is high, and the molded product is excellent in flame retardancy, heat aging resistance, and weather resistance. It is providing the resin composition which can be obtained, its manufacturing method, and the molded object obtained from the said resin composition.
  • the inventors of the present invention include a lignophenol derivative and a cellulose component, blend a lignophenol-based mixture and a thermoplastic resin in a specific ratio, and a 1 mm or more irregularity is visually observed in a molded product.
  • a lignocellulosic mixture obtained by adding and mixing an acid to a lignocellulosic material to which a phenolic compound is added, and a thermoplastic resin at a specific ratio
  • the present inventors have found that the above problems can be solved.
  • the present invention provides the following.
  • a lignocellulose-based mixture and a thermoplastic resin are contained, and when the total of the lignocellulose-based mixture and the thermoplastic resin is 100% by mass, the lignocellulose-based mixture is contained in an amount of 0.5% by mass to 60% by mass.
  • the resin composition is characterized in that in the molded product, no defects of 1 mm or more are visually observed.
  • thermoplastic resin is at least one selected from the group consisting of polyolefin resins, polystyrene resins, polyamide resins, polyester resins, and polycarbonate resins.
  • thermoplastic resin is a polyolefin resin.
  • thermoplastic resin is at least one selected from the group consisting of polyethylene and polypropylene.
  • thermoplastic resin is at least one selected from the group consisting of polyethylene and polypropylene.
  • thermoplastic resin is at least one selected from the group consisting of polyethylene and polypropylene.
  • ⁇ 7> The resin composition according to ⁇ 5> or ⁇ 6>, wherein the obtained molded article has an elongation retention after exposure to light of 65% or more.
  • ⁇ 8> The resin composition according to any one of ⁇ 1> to ⁇ 7>, further comprising an antioxidant.
  • ⁇ 9> Contains a lignocellulose-based mixture and a thermoplastic resin, and when the total of the lignocellulose-based mixture and the thermoplastic resin is 100 mass%, the lignocellulose-based mixture is contained in an amount of 0.5 mass% to 60 mass%.
  • the lignocellulosic mixture is obtained by adding an acid to a lignocellulosic material to which a phenol compound has been added, and mixing the lignocellulosic material.
  • the lignocellulosic mixture comprises a lignophenol derivative and a cellulose component.
  • the resin composition as described in any one.
  • the phenol compound to be added to the lignocellulosic material has at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a hydroxyl group,
  • the resin composition according to any one of ⁇ 9> to ⁇ 11>, which is a phenol compound having an ortho position and / or a para position.
  • the lignocellulosic mixture is selected from the group consisting of p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol, 2,6-dimethoxyphenol, catechol, homocatechol, and pyrogallol.
  • ⁇ 9> to ⁇ 12> which is obtained by adding and mixing phosphoric acid having a concentration of 90% by mass or more to a lignocellulosic material to which at least one phenol compound is added.
  • Resin composition. ⁇ 14> The resin composition according to any one of ⁇ 1> to ⁇ 13>, which is obtained by hot melt mixing a lignocellulose-based mixture and a thermoplastic resin.
  • ⁇ 15> A molded product obtained by molding the resin composition according to any one of ⁇ 1> to ⁇ 14>.
  • ⁇ 16> Step of obtaining a lignocellulose-based mixture comprising a lignophenol derivative and a cellulose component by adding an acid to the lignocellulosic material to which the phenol compound has been added, and the lignocellulose-based mixture and the thermoplastic resin.
  • Manufacturing method. ⁇ 17> The method for producing a resin composition according to ⁇ 16>, wherein the acid is at least one selected from the group consisting of phosphoric acid, formic acid, and trifluoroacetic acid.
  • the phenol compound to be added to the lignocellulosic material has at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a hydroxyl group,
  • the lignocellulose-based mixture is selected from the group consisting of p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol, 2,6-dimethoxyphenol, catechol, homocatechol, and pyrogallol.
  • ⁇ 16> to ⁇ 19> obtained by adding and mixing phosphoric acid having a concentration of 90% by mass or more to a lignocellulosic material to which at least one phenol compound is added.
  • a method for producing the resin composition is produced by adding and mixing phosphoric acid having a concentration of 90% by mass or more to a lignocellulosic material to which at least one phenol compound is added.
  • thermoplastic resin is at least one selected from the group consisting of polyolefin resins, polystyrene resins, polyamide resins, polyester resins, and polycarbonate resins.
  • ⁇ 22> The method for producing a resin composition according to any one of ⁇ 16> to ⁇ 21>, wherein the thermoplastic resin is a polyolefin resin.
  • ⁇ 23> The method for producing a resin composition according to any one of ⁇ 16> to ⁇ 22>, wherein the thermoplastic resin is at least one selected from the group consisting of polyethylene and polypropylene.
  • ⁇ 24> The resin according to any one of ⁇ 16> to ⁇ 23>, wherein the step (2) is a step of heat-melting and mixing an antioxidant in addition to the lignocellulose-based mixture and the thermoplastic resin.
  • a method for producing the composition is a step of heat-melting and mixing an antioxidant in addition to the lignocellulose-based mixture and the thermoplastic resin.
  • a resin composition capable of producing a molded product with a simple manufacturing method, excellent productivity, low production cost, high mechanical strength, excellent flame resistance, heat aging resistance, and weather resistance. Articles, methods for producing the same, and molded articles obtained from the resin composition can be provided.
  • the first resin composition of the present invention contains a lignocellulose-based mixture and a thermoplastic resin, and when the total of the lignocellulose-based mixture and the thermoplastic resin is 100% by mass, the lignocellulose-based mixture is 0.5%. It is characterized by containing not less than 60% by mass and not visually confirming 1 mm or more in the molded product.
  • the second resin composition of the present invention contains a lignocellulosic mixture and a thermoplastic resin. When the total of the lignocellulosic mixture and the thermoplastic resin is 100% by mass, the lignocellulosic mixture is 0.
  • the lignocellulosic mixture is contained by adding an acid to a lignocellulosic material to which a phenol compound is added, and is composed of a lignophenol derivative and a cellulose component. It is characterized by.
  • the inventors have found that a high-strength material can be obtained and a heat aging resistance and a weather resistance are excellent by blending a specific amount of a lignocellulose-based mixture with a thermoplastic resin.
  • the cellulose component is uniformly dispersed in the resin by covering the cellulose component with a lignophenol derivative excellent in compatibility with the resin, and the resin is reinforced. It is presumed that this is a result of excellent aging resistance and weather resistance due to the lignophenol derivative that contributes to relaxation of stress and further has an antioxidant function and an ultraviolet absorbing ability.
  • the lignocellulose-based mixture is obtained by adding an acid to a lignocellulosic material to which a phenol compound has been added and mixing, and is composed of a lignophenol derivative and a cellulose component.
  • Lignocellulosic material examples include wooded materials, various materials mainly made of wood, such as wood flour, chips, waste materials, and scrap materials. Moreover, as wood to be used, any kind of wood such as conifers and hardwoods can be used. Furthermore, various herbaceous plants and related samples such as agricultural wastes can be used.
  • a lignocellulosic substance may be used individually by 1 type, and may use 2 or more types together.
  • the lignocellulosic material is preferably subjected to pretreatment such as pulverization and drying in advance, and it is preferable to perform a degreasing treatment as necessary.
  • the opening at the time of sieving after pulverization is preferably 5 mm or less, more preferably 2 mm or less, still more preferably 1 mm or less, and 0.5 mm. It is particularly preferable that it is not more than 0.3 mm, and most preferably not more than 0.3 mm.
  • the water content is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. It is preferable to perform drying so as to achieve the above moisture content. By setting the moisture content within the above range, clogging is suppressed during sieving and the yield of the raw material powder is improved, which is preferable.
  • a degreasing treatment By the degreasing treatment, unnecessary oil and fat can be removed.
  • a degreasing method for example, a lignocellulosic material and an organic solvent can be charged into a stirring tank, and sufficiently mixed and stirred. By degreasing with an organic solvent, an effect of removing water in the lignocellulosic material can also be obtained.
  • an organic solvent such as acetone or hexane.
  • the organic solvent for performing the degreasing treatment is not particularly limited, and an ethanol-benzene mixed solvent, an acetone-methanol mixed solvent and the like are preferably exemplified.
  • the amount of the organic solvent used is preferably 1 to 10 times the amount of lignocellulosic material.
  • the “double amount” defined here means the amount of the organic solvent (liters) relative to 1 kg of the raw material.
  • the “5-fold amount” means that 5 L of the organic solvent is added to 1 kg of the raw material. Means.
  • the mixture is preferably stirred for 1 to 120 hours, more preferably 1 to 60 hours. Before adding the phenol compound, it is preferable to remove the organic solvent used for degreasing, but if the phenol compound solvent and the organic solvent used for degreasing are the same, the removal step may be omitted. Good.
  • Phenol compound Although a phenol compound will not be specifically limited if it is a compound which has at least 1 OH group on an aromatic ring, It is preferable that it is a compound which has at least 1 OH group on a benzene ring. Specifically, a monovalent phenol compound, a divalent phenol compound, a trivalent phenol compound, or the like can be used as the phenol compound. Specific examples of the monovalent phenol compound include phenol that may have one or more substituents, naphthol that may have one or more substituents, and one or more substituents. Good antroll and the like.
  • divalent phenol compound examples include catechol which may have one or more substituents, resorcinol which may have one or more substituents, and one or more substituents. Examples include good hydroquinone.
  • trivalent phenol compound examples include pyrogallol, which may have one or more substituents.
  • a phenol compound may be used individually by 1 type and may use 2 or more types together.
  • the type of substituent that the monovalent to trivalent phenol compound may have is not particularly limited, and may have any substituent, but is preferably an electron donating group, for example, Alkyl groups having 1 to 6 carbon atoms (such as methyl, ethyl, and propyl groups), alkoxy groups having 1 to 6 carbon atoms (such as methoxy, ethoxy, and propoxy groups), aryl groups (such as phenyl groups), and the like. Can be mentioned.
  • the phenol compound preferably has at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • the alkoxy group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • the alkyl group and alkoxy group may further have a substituent, and examples of the substituent include a hydroxyl group.
  • the phenol compound is preferably a phenol compound having one or more substituents at least in the ortho-position or para-position, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a hydroxyl group More preferably, it is a phenol compound having at least one substituent selected from the group consisting of at the ortho position and / or the para position. In the phenol compound, at least one of the ortho positions is preferably unsubstituted.
  • Preferred examples of the phenol compound include p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol (Guaiacol), 2,6-dimethoxyphenol, catechol, resorcinol, homocatechol, pyrogallol, Loglucinol and the like, and p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol, 2,6-dimethoxyphenol, catechol, homocatechol, and pyrogallol are more preferable.
  • the phenol compound used in the present invention is a phenol compound having a substituent at the 4-position (para-position), a phenol compound having a substituent at the 2-position (ortho-position), the 2-position (ortho-position) and the 4-position (para-position). Phenol compounds having a substituent at the position) are preferred.
  • the phenol compound having a substituent at the 4-position (para-position) is a phenol compound having no substituent at two ortho positions.
  • the phenol compound having a substituent at the 2-position (ortho position) and the 4-position (para-position) is a phenol compound having no substituent at the 6-position (one ortho position).
  • a crosslinkable lignophenol derivative having a crosslinkable functional group at the ortho position of the phenolic hydroxyl group in the lignophenol derivative is prepared. It is also possible to prepare and use a polymer material by crosslinking lignophenol. In this case, the frequency of introduction of the crosslinkable functional group can be adjusted by selecting the type of phenol compound to be used.
  • the phenol compound when a phenol compound having a substituent at the 2-position (ortho position) and the 4-position (para-position) is used, the phenol compound is a carbon atom at the 6-position and the carbon atom at the benzyl position of the phenylpropane unit of lignin. Will be bound to.
  • the introduced phenol compound since there are no free ortho-position and para-position, the introduced phenol compound does not have a crosslinkable functional group introduction site. Therefore, the crosslinkable functional group is introduced only on the lignin matrix side.
  • a phenol compound having a crosslinkable functional group introduction site with different reactivity, or a number of introduction sites, or one or two or more different phenol compounds are introduced into lignin to introduce a lignophenol derivative.
  • the number of crosslinkable functional group introduction sites in can be controlled, and as a result, the crosslink density of the crosslinkable lignin derivative can be controlled.
  • a substituent is located at the 2-position (ortho position) or the 4-position (para position).
  • the function of the lignophenol derivative or the use of a phenol compound having a substituent at the 2-position (ortho position) and 4-position (para-position) as a blocking switching element It is also possible to control the structure.
  • the phenol compound when a phenol compound having a substituent at the 2-position (ortho position) and the 6-position (ortho position) is used as the introduced phenol compound, the phenol compound is a benzyl of a phenylpropane unit of lignin at the 4-position carbon atom. To the carbon atom at the position. In this case, since there are no free ortho-position and para-position, the introduced phenol compound does not have a crosslinkable functional group introduction site. In addition, a phenol compound having a substituent at the 2-position (ortho position) and the 6-position (ortho position) does not exhibit a switching function, and thus functions as a stable control element.
  • a phenol compound having a substituent at the 4-position para-position
  • the 2-position (ortho-position) and the 6-position A phenol compound having a substituent at the ortho position can be appropriately selected and used depending on the purpose.
  • the addition amount of the phenol compound added to the lignocellulosic material is preferably 10 to 50 parts by mass, more preferably 15 to 45 parts by mass, with respect to 100 parts by mass of the lignocellulosic material. More preferably, it is 40 mass parts.
  • the phenylpropane unit of lignin is obtained as follows. Specifically, a formula for C9 units is calculated from the elemental analysis values, and this is used as the average basic skeleton (C9 units). The variation in conifers and hardwoods is not so great.
  • the molecular weight of conifer C9 units (all guaiacyl units, one OCH 3 per C9 unit) is 200, and the broad-leaved tree C9 units (guayacyl units (one OCH 3 )): syringyl
  • the lignocellulosic material more preferably, the acid added to the lignocellulosic material sorbed with the phenolic compound has an action of swelling cellulose and a low action of hydrolyzing cellulose. Is preferred.
  • the acid added to the lignocellulosic material is an acid excluding the above-mentioned phenolic compound. Specific examples include phosphoric acid, hydrochloric acid, p-toluenesulfonic acid, trifluoroacetic acid, trichloroacetic acid, formic acid and the like.
  • the concentration of phosphoric acid is preferably 85% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more.
  • the concentration of hydrochloric acid is preferably 38% by mass or more.
  • the phosphoric acid having the above concentration is preferably prepared from 99% phosphoric acid.
  • the hydrochloric acid having the above concentration is preferably prepared under cooling and pressure.
  • the amount of the acid added is preferably 10 to 50 parts by weight, more preferably 15 to 45 parts by weight, and more preferably 20 to 40 parts by weight with respect to 100 parts by weight of the lignocellulosic material treated with the phenol compound. More preferably, it is part by mass.
  • the lignocellulose-based mixture comprises a lignophenol derivative and a cellulose component, and an acid is added to and mixed with a lignocellulosic material to which a phenolic compound has been added.
  • lignophenol derivative in the present specification means a polymer containing a diphenylpropane unit in which a phenol compound is introduced by a C—C bond at the side chain ⁇ -position of the phenylpropane unit of lignin.
  • the amount and molecular weight of the introduced phenol compound in this polymer vary depending on the lignocellulosic material used as a raw material and the reaction conditions.
  • the lignocellulose-based mixture of the present invention In order to obtain the lignocellulose-based mixture of the present invention from the lignocellulosic material, it is necessary to treat the lignin in the lignocellulosic material with a phenol compound to obtain a lignophenol derivative.
  • a method for converting lignin in a lignocellulosic substance into a lignophenol derivative the following two methods may be mentioned.
  • the first method is to impregnate a lignocellulosic material such as wood flour with a liquid phenolic compound (as described above, such as p-cresol), solvate the lignin with the phenolic compound, A concentrated acid (what was demonstrated above, for example, 95 mass% phosphoric acid) is added and mixed with a lignocellulosic substance, and a cellulose component is melt
  • a phenol compound obtained by solvating lignin and a concentrated acid dissolving a cellulose component form a two-phase separation system.
  • the lignin solvated by the phenolic compound is contacted with the acid only at the interface where the phenolic compound phase is in contact with the concentrated acid phase, and the side chain ⁇ -position, which is a highly reactive site of the lignin basic structural unit generated by contact with the acid.
  • the (benzylic) cation is attacked by the phenolic compound.
  • the phenol compound is introduced into the ⁇ -position by a C—C bond, and the benzyl aryl ether bond is cleaved to reduce the molecular weight.
  • the molecular weight of lignin is reduced, and at the same time, a lignophenol derivative in which a phenol compound is introduced at the benzyl position of the basic structural unit is produced in the phenol compound phase.
  • a lignocellulosic material is infiltrated with a solvent (for example, ethanol, acetone, hexane, etc.) in which a solid or liquid phenol compound is dissolved, and then the solvent is distilled off (recovery of the phenol compound). Wearing process).
  • a solvent for example, ethanol, acetone, hexane, etc.
  • concentrated acid as described above, for example, 95% by mass phosphoric acid
  • the lignin solvated with the phenol compound is attacked by the phenol compound with the cation at the highly reactive site (side chain ⁇ -position) of the lignin generated upon contact with the concentrated acid.
  • a compound is introduced.
  • the benzyl aryl ether bond is cleaved to reduce the lignin molecular weight.
  • the second method it is preferable to add the phenol compound in a state in which the phenol compound is sufficiently dispersed or dissolved in the lignocellulosic material.
  • the phenol compound is mixed and dissolved in an organic solvent. It is preferable to add to the lignocellulosic material in a state of being dispersed or dissolved.
  • a solution in which the phenol compound is dispersed or dissolved in an organic solvent (hereinafter also referred to as a phenol compound solution) is added to 1 kg of the lignocellulosic substance.
  • the temperature of the phenol compound solution is not particularly limited, but is preferably 10 to 50 ° C., more preferably 15 to 40 ° C., and still more preferably 20 to 30 ° C.
  • stirring is performed, and it is preferable to impregnate the phenolic compound solution with the lignocellulosic material, preferably for 1 to 60 hours. It is more preferably 2 to 48 hours, and further preferably 4 to 36 hours.
  • a method of stirring with a glass rod or a method using a magnetic stirrer can be used for a small scale, and for a large scale, a method using a magnetic stirrer or a tank having a stirring blade. Etc. are used. Further, after the impregnation, it is preferable to remove the organic solvent and sorb the phenol compound.
  • the acid is preferably added at 10 to 50 ° C., more preferably at 20 to 40 ° C. Moreover, after adding an acid, in order to advance reaction uniformly, it is preferable to fully stir uniformly and a kneader may be used.
  • the treatment time with the acid is preferably 5 minutes to 2 hours, more preferably 10 minutes to 1 hour.
  • the entire reaction solution after concentrated acid treatment was poured into excess water, and the insoluble fraction was collected by centrifugation and deacidified. Then, it may be dried.
  • the lignophenol derivative and the cellulose component are uniformly present, that is, the cellulose component is uniformly present in the lignophenol matrix.
  • the lignocellulose-based mixture obtained by the above-described method is a composition that uniformly contains a lignophenol derivative and a cellulose component, and that the cellulose component is uniformly present in the matrix of the lignophenol derivative without being unevenly distributed.
  • cellulose fibers are not coated with a lignophenol derivative.
  • a crystalline cellulose component monodispersed in the lignophenol derivative is uniformly distributed by hydrolyzing the amorphous portion of cellulose.
  • the lignocellulose-based mixture is preferably a composition containing needle-like or cage-like crystals (crystalline cellulose).
  • the crystallinity of cellulose is a method in which only crystals are produced in production, but the crystallinity can be confirmed by X-ray analysis.
  • the average length in the major axis direction (average major axis length) of the lignocellulosic mixture is preferably 10 to
  • the average length (average minor axis length) in the direction perpendicular to the major axis is preferably 5 to 50 nm, more preferably 5 to 30 nm, still more preferably 500 nm, more preferably 20 nm or more, still more preferably 30 nm or more. 10 to 20 nm.
  • the major axis length / minor axis length is preferably 5 or more.
  • the average major axis length is determined by observing an electron microscope image of the lignocellulose-based mixture. Specifically, the major axis length and the minor axis length of each of 50 randomly selected lignocellulose-based mixtures are measured using an electron microscope, and the average major axis length and the average minor axis length are obtained from the average. be able to.
  • the uniaxial length when the cross section in the direction orthogonal to the major axis (uniaxial direction) is not circular, the length of the longest portion measured in the axial direction is defined as the uniaxial length.
  • Lignocellulosic mixtures are usually fluid. However, when the lignophenol derivative fraction in the mixture is extracted, the fluidity is lost. Therefore, in the lignocellulose-based mixture, it is considered that the lignophenol derivative fraction expresses an important plastic effect. Moreover, the fluidity
  • liquidity of this mixture can be improved by acylating (for example, acetylation etc.) the lignophenol derivative in the lignocellulose-type mixture which is a component of this invention. That is, in the present invention, in the lignocellulose mixture, the lignophenol derivatives tend to bind to each other or to the cellulose section through hydrogen bonding, and the materials tend to associate with each other.
  • the fluidity of the composition is not so high.
  • the acylation of the lignophenol derivative (for example, acetylation, etc.) can eliminate the association between the materials, thereby improving the fluidity of the entire lignocellulosic mixture, and processing into a molded product or the like. The processing energy at the time can be reduced.
  • the lignophenol derivative in the lignocellulose-based mixture may be used after being methylolated. When a methylolated material is used, a molded product having a relatively low density, a high water absorption rate, and excellent stability can be produced.
  • thermoplastic resin examples include the following.
  • Polyolefin resin examples of the polyolefin resin mainly include the following.
  • (1-1) Polypropylene Resin The polypropylene resin can be composed of one or more selected from a homopolymer of propylene, a copolymer containing propylene as a main component, and the like.
  • the propylene homopolymer is not particularly limited, but a propylene homopolymer having a melt mass flow rate at 230 ° C. of 0.1 to 200 g / 10 min is preferred from the viewpoint of obtaining light weight and excellent moldability.
  • the melt mass flow rate at 230 ° C. is more preferably 0.2 to 60 g / 10 minutes.
  • the copolymer containing propylene as a main component is not particularly limited.
  • a copolymer of propylene and ethylene, or a random copolymer of one or more ⁇ -olefins other than propylene and propylene is used.
  • a block copolymer of propylene and one or more ⁇ -olefins other than propylene is used.
  • the melt mass flow rate at 230 ° C. is more preferably 0.2 to 60 g / 10 minutes.
  • ⁇ -olefins other than propylene include 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene and 1-hexadecene. , 1-octadecene, 1-eicosene and the like.
  • the polyethylene resin can be composed of one or more selected from a homopolymer of ethylene and a copolymer containing ethylene as a main component.
  • the ethylene homopolymer include low-density polyethylene, linear low-density polyethylene, linear low-density polyethylene, and high-density polyethylene. From the viewpoint of obtaining light weight and excellent moldability, the density is 0. a .910 ⁇ 0.965g / cm 3, ethylene homopolymer preferably has a melt mass flow rate at 190 ° C. is 0.01 ⁇ 200 g / 10 min. If the melt mass flow rate at 190 ° C. is within the above range, there is no possibility of causing problems in the fluidity of the resin composition and the surface appearance of the molded body.
  • the melt mass flow rate at 190 ° C. is more preferably 0.01 to 60 g / 10 min.
  • Examples of the copolymer mainly composed of ethylene include a random copolymer of ethylene and an ⁇ -olefin other than ethylene, and a block copolymer of ethylene and an ⁇ -olefin other than ethylene.
  • copolymers having ethylene as a main component an ethylene copolymer having a melt mass flow rate at 190 ° C. of 0.01 to 200 g / 10 min from the viewpoint of obtaining a light weight and excellent resin composition. Is preferred.
  • the melt mass flow rate at 190 ° C. is within the above range, there is no possibility of causing problems in the fluidity of the resin composition and the surface appearance of the molded body.
  • ⁇ -olefins other than ethylene include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 -Hexadecene, 1-octadecene, 1-eicocene and the like.
  • polystyrene resins examples include the series of polypropylene resins “Prime Polypro”, “Polyfine” and “Prime TPO” manufactured by Prime Polymer Co., Ltd., for example, product number: J-700GP, Idemitsu Kosan Co., Ltd. Polypropylene resin (product number: J-966HP) manufactured by Prime Polymer Co., Ltd. and various polyethylene resins “Hi-Zex”, “Neo-Zex”, “Ult-Zex”, “Moretech”, “Evolue” series (for example, high Density polyethylene resin, product number: 2200J), and low density polyethylene (for example, product number: Petrocene 190) manufactured by Tosoh Corporation.
  • Polystyrene resins are, for example, polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (p-tert-butylstyrene), poly (p-chlorostyrene), poly (M-chlorostyrene), poly (p-fluorostyrene), hydrogenated polystyrene, and copolymers containing these structural units. These polystyrene resins may be used alone or in combination of two or more.
  • polystyrene resins examples include PS Japan Co., Ltd., PSJ-polystyrene series (for example, product number: H8672), Toyo Styrene Co., Ltd., and Toyostyrene series.
  • polyester resin examples include polyol-polycarboxylic acid type polyester resin and hydroxycarboxylic acid type polyester resin.
  • polyol-polycarboxylic acid type polyester resin examples include polyethylene terephthalate resin, polybutylene terephthalate resin, and a copolymer of terephthalic acid and 1,3-propanediol or 1,4-butanediol.
  • hydroxycarboxylic acid type polyester resin examples include polylactic acid and / or a copolymer resin containing polylactic acid.
  • a polylactic acid resin and / or a copolymer resin containing polylactic acid is obtained by subjecting lactic acid or lactic acid and other hydroxycarboxylic acid to heat dehydration polymerization to obtain low molecular weight polylactic acid or a copolymer thereof.
  • Lactide which is a cyclic dimer of lactic acid or a copolymer thereof, is obtained by thermal decomposition under reduced pressure, and then lactide is polymerized in the presence of a catalyst such as a metal salt to produce polylactic acid resin and / or polylactic acid.
  • a copolymer resin containing is obtained. These polyester resins may be used alone or in combination of two or more.
  • Examples of commercially available polyol-polycarboxylic acid type polyester resins include Mitsui Chemicals, Mitsui PET TM series (for example, product number: Mitsui J125), Toyobo Co., Ltd., Byron series, and the like.
  • Examples of commercially available polylactic acid resins and / or copolymer resins containing polylactic acid include crystalline polylactic acid resins manufactured by Zhejiang Haisheng Biological Materials Co., Ltd.
  • Laissia series which is a polylactic acid resin (manufactured by lactic acid fermentation of plant starch) manufactured by Mitsui Chemicals, Inc.
  • polyamide resin examples include a ring-opening polymer of lactam, a polycondensate of diamine and dibasic acid, and a polycondensate of ⁇ -amino acid. These polyamide resins may be used alone or in combination of two or more. Examples of commercially available polyamide resins include nylon 6 and nylon 66 made by Toray Industries, Inc., Leona series made by Asahi Kasei Co., Ltd., and Teijin's n-nylon and n, m. -Nylon series and the like.
  • the polycarbonate resin may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin. From the viewpoint of affinity with the lignocellulosic mixture and from the viewpoint of impact resistance and heat resistance, the polycarbonate resin It is more preferable to use a group polycarbonate resin.
  • the aromatic polycarbonate resin an aromatic polycarbonate resin usually produced by a reaction of a dihydric phenol and a carbonate precursor can be used.
  • the aromatic polycarbonate resin can be a main component of the resin composition because it has better heat resistance, flame retardancy, and impact resistance than other thermoplastic resins.
  • the flame retardancy and impact resistance at low temperatures are further improved. be able to.
  • the polyorganosiloxane constituting the copolymer is more preferably polydimethylsiloxane from the viewpoint of flame retardancy.
  • aromatic polycarbonate resin Idemitsu Kosan Co., Ltd. Toughlon series, Teijin Ltd. Panlite series, etc. are mentioned.
  • thermoplastic resin compatible ones may be appropriately mixed and used. For example, if an appropriate amount of a polyester resin is mixed with an aromatic polycarbonate resin generally considered to have poor fluidity, the fluidity is improved.
  • other thermoplastic resins compatible with them for example, AS resin (acrylonitrile-styrene resin), (meth) acrylic ester ( A suitable amount of (co) polymer may be mixed.
  • the thermoplastic resin is preferably at least one selected from the group consisting of polyolefin resins, polystyrene resins, polyamide resins, polyester resins, and polycarbonate resins, and more preferably polyolefin resins.
  • the resin composition of the present invention contains a lignocellulose-based mixture in an amount of 0.5% by mass to 60% by mass when the total of the lignocellulose-based mixture and the thermoplastic resin is 100% by mass. If the content of the lignocellulose-based mixture is less than 0.5% by mass, the strength and flame retardancy are insufficient, and if it exceeds 60% by mass, the fluidity is greatly reduced and the appearance of the molded product is greatly reduced.
  • the content of the lignocellulose-based mixture is preferably 2% by mass or more and 40% by mass or less, and more preferably 4% by mass or more and 30% by mass or less.
  • the resin composition of the present invention may contain components other than the lignocellulose-based mixture and the thermoplastic resin, for example, various additives, but the lignocellulose-based mixture in the resin composition.
  • the total content of the thermoplastic resin is preferably 70% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and more preferably 95% by mass or more. Particularly preferred.
  • the resin composition of the present invention may contain various additives as necessary.
  • additives include ultraviolet absorbers, antioxidants, lubricants, crystal nucleating agents, softeners, antistatic agents, metal deactivators, antibacterial / antifungal agents, pigments and the like.
  • the resin composition of the present invention contains at least an antioxidant.
  • the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, benzoate compounds, polyamide polyether block copolymers (providing permanent antistatic performance), and the like.
  • antioxidant A phenolic antioxidant, phosphorus antioxidant, thioether type antioxidant, etc. are mentioned.
  • antioxidants examples include Irganox 1010, Irganox 1076 (manufactured by BASF, phenolic antioxidant), Adekastab 2112 and Adekastab PEP36 (manufactured by ADEKA, phosphorous antioxidant). These may be used alone or in combination of two or more.
  • the lubricant is not particularly limited, and examples thereof include fatty acid amide lubricants, fatty acid ester lubricants, fatty acid lubricants, and fatty acid metal salt lubricants. These may be used alone or in combination of two or more.
  • the crystal nucleating agent is not particularly limited, and examples thereof include sorbitols, phosphorus nucleating agents, rosins, and petroleum resins.
  • the softening agent is not particularly limited, and examples thereof include liquid paraffin, mineral oil softener (process oil), and non-aromatic rubber mineral oil softener (process oil). These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the antistatic agent is not particularly limited, and examples thereof include cationic antistatic agents, anionic antistatic agents, nonionic antistatic agents, amphoteric antistatic agents, and fatty acid partial esters such as glycerin fatty acid monoesters. Although it does not specifically limit as a metal deactivator, A hydrazine type metal deactivator, a nitrogen compound type metal deactivator, a phosphite ester type metal deactivator, etc. are mentioned. These may be used alone or in combination of two or more.
  • the antibacterial / antifungal agent is not particularly limited, and examples thereof include an organic compound antibacterial / antifungal agent, a natural organic antibacterial / antifungal agent, and an inorganic antibacterial / antifungal agent.
  • an inorganic pigment examples include titanium oxide, calcium carbonate, and carbon black.
  • organic pigments examples include azo pigments, acidic dye lakes, basic dye lakes, and condensed polycyclic pigments. These pigments may be used alone or in combination of two or more.
  • the amount of the additive component is not particularly limited as long as the properties of the resin composition of the present invention are not impaired.
  • the production method of the resin composition of the present invention is not particularly limited, but it is preferably obtained by hot melt mixing a lignocellulose-based mixture and a thermoplastic resin.
  • the resin composition of the present invention can be obtained by blending a lignocellulose-based mixture and a thermoplastic resin in the above proportions, and further adding various additives added as necessary, followed by hot melt mixing.
  • the compounding and kneading at this time are premixed with a commonly used equipment such as a ribbon blender or a drum tumbler, and then a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a multi screw extruder.
  • This method can be performed by a method using a machine and a conider.
  • the heating temperature at the time of kneading is suitably selected in the range of usually 160 to 350 ° C. depending on the kind of the thermoplastic resin, but when the polyolefin resin is used as the thermoplastic resin, the temperature is in the range of 160 to 250 ° C.
  • the temperature is in the range of 170 to 280 ° C.
  • it is preferably selected in the range of 230 to 280 ° C.
  • a polyamide resin it is preferably selected in the range of 240 to 290 ° C.
  • a polycarbonate resin in the range of 270 to 350 ° C.
  • a polylactic acid resin it is preferably selected in the range of 190 to 250 ° C.
  • the resin composition of the present invention is made from the pellets obtained by the above-mentioned melt-kneading and pelletizing as raw materials, an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, a press molding method, a vacuum molding method, and Various molded articles can be produced by a foam molding method or the like.
  • a pellet-shaped forming raw material is manufactured by the melt kneading method, and then this pellet is used suitably for manufacturing an injection molded body by injection molding or injection compression molding, and for manufacturing an extrusion molded body by extrusion molding. be able to.
  • after forming into an extrusion sheet by extrusion molding it is good also as a molded object by pressurizing and thermoforming.
  • the molded article obtained from the resin composition of this invention it is preferable that 1 mm or more of a lump (granular material) is not recognized visually.
  • the lignocellulose-based mixture is mixed with a thermoplastic resin, preferably when hot-melt mixed, the lignocellulose-based mixture is excellent in dispersibility in the thermoplastic resin, so that the occurrence of blisters (particulate matter) can be suppressed. This is because the lignocellulosic mixture is uniformly present in the matrix of lignophenolphenol derivative without the cellulose component being unevenly distributed.
  • the molded article obtained from the resin composition of this invention is excellent in tensile yield strength and a tensile elasticity modulus compared with the case where a lignocellulose type mixture is not added. Furthermore, it is preferable that the molded article obtained from the resin composition of the present invention has an improved elongation retention after exposure to light compared to the case where no lignocellulose-based mixture is added.
  • the elongation retention after exposure to light is preferably 65% or more, more preferably It is 70% or more, more preferably 80% or more, and still more preferably 85% or more.
  • the elongation retention after exposure to light is measured by the method described in the examples.
  • the molded article obtained from the resin composition of the present invention has an improved elongation retention after exposure to the oven as compared with the case where no lignocellulose-based mixture is added.
  • a polyolefin resin preferably at least one selected from the group consisting of polyethylene and polypropylene, more preferably polypropylene
  • the elongation retention after oven exposure is preferably 70% or more, more preferably 75% or more, more preferably 80% or more, and still more preferably 90 or more.
  • the elongation retention after exposure to the oven is measured by the method described in the examples and exposed to a temperature suitable for the thermoplastic resin.
  • the molded article obtained from the resin composition of this invention is excellent in a flame retardance (LOI) compared with the case where a lignocellulose-type mixture is not added.
  • LOI flame retardance
  • the resin composition of the present invention and the molded product obtained from the resin composition can be suitably used for OA materials, electrical / electronic materials, automotive materials, industrial materials, wire coating materials, films, fibers, and the like. .
  • the sample thus obtained contains the lignophenol derivative and the cellulose component uniformly because the cellulose component is once dissolved and recrystallized, that is, the cellulose component is uniformly distributed in the matrix of the lignophenol derivative.
  • It is a composition composed of acicular or cage crystals (also referred to herein as a lignocellulosic mixture).
  • Examples 1 to 9 and Comparative Examples 1 to 8 Each component was blended in the proportions shown in Tables 1 and 2, supplied to an extruder (model name: PCM-30, manufactured by Ikegai Co., Ltd.), melt-kneaded at 160 to 220 ° C., and pelletized.
  • 0.2 parts by mass of Irganox 1010 manufactured by BASF
  • 0.1 part by mass of ADK STAB 2112 manufactured by ADEKA
  • the obtained pellets were dried at 80 ° C.
  • the resulting lignophenol derivative-cellulose component mixture (lignocellulose-based mixture) is easy to manufacture without the steps of fibrillating cellulose or coating lignophenol, and the resulting mixture is powdery and thermoplastic. Even if it is melt-mixed with the resin, the dispersion is good and the molded appearance is not adversely affected. It was clarified that when the content ratio is within the range of the claims, the composition has high strength and is excellent in heat resistance, weather resistance, and flame retardancy.

Abstract

To provide a resin composition obtained by a simple manufacturing method and which has excellent productivity and low production cost as well as high chemical strength and excellent flame-retardant properties, heat aging resistance, and weather resistance, and a method for manufacturing the resin composition, and to provide a molded body obtained from the resin composition. This resin composition is characterized by containing a lignocellulose-based mixture and a thermoplastic resin, the resin composition containing 0.5% by mass to 60% by mass of the lignocellulose-based mixture with respect to a combined total of 100% by mass of the lignocellulose-based mixture and the thermoplastic resin, and particles 1 mm or larger not being visible in a molded article of the resin composition.

Description

樹脂組成物及びその製造方法、並びに成形体Resin composition, method for producing the same, and molded article
 本発明は、樹脂組成物及びその製造方法、並びに成形体に関する。 The present invention relates to a resin composition, a method for producing the same, and a molded body.
 樹脂に各種繊維状強化材を配合することで、その強度、剛性を大幅に向上させた繊維強化複合材料は、電気・電子、機械、自動車、建材等の産業分野で広く用いられている。この繊維強化複合材料に配合される繊維状強化材としては、優れた強度と軽量性を有するガラス繊維が主に用いられている。しかし、ガラス繊維強化材料では、高剛性化は達成されるが、比重が大きくなるため、軽量化に限界があった。また、このガラス繊維強化材料を廃棄する場合、ガラス繊維自体が不燃性であるために、焼却処理する際に燃焼炉を傷める、また、燃焼効率が低くなるといった問題があり、サーマルリサイクル性に適さないという欠点もあった。他の繊維状強化材としてポリエステル繊維、ポリアミド繊維、アラミド繊維といった有機材料からなる繊維強化材が検討されてきたが、これら強化材を配合した繊維強化材料は軽量性やサーマルリサイクル性については確保できるものの、機械的補強効果が十分ではないという問題があった。 The fiber reinforced composite material, whose strength and rigidity are greatly improved by blending various fibrous reinforcing materials with resin, is widely used in industrial fields such as electric / electronics, machinery, automobiles, and building materials. As the fibrous reinforcing material blended in the fiber-reinforced composite material, glass fibers having excellent strength and lightness are mainly used. However, the glass fiber reinforced material achieves high rigidity, but has a limitation in weight reduction because of its high specific gravity. In addition, when disposing of this glass fiber reinforced material, the glass fiber itself is non-flammable, which causes problems such as damage to the combustion furnace during incineration and low combustion efficiency, making it suitable for thermal recyclability. There was also the disadvantage of not. As other fibrous reinforcements, fiber reinforcements made of organic materials such as polyester fibers, polyamide fibers, and aramid fibers have been studied, but fiber reinforcement materials containing these reinforcements can ensure light weight and thermal recyclability. However, there was a problem that the mechanical reinforcement effect was not sufficient.
 近年、カーボンニュートラルの観点から植物由来材料を利用した高機能材料が注目されるなか、竹、ケナフ、サトウキビ、木材等の植物繊維を添加した強化樹脂が検討されている(例えば、特許文献1及び2)。
 また、前述したような植物繊維を解繊してミクロフィブリル化したセルロース繊維を樹脂に混合した繊維複合材料が提案されている。このようなミクロフィブリル化したセルロース繊維を樹脂の強化材として用いた場合、機械的強度を向上させることが報告されている(例えば、特許文献3及び4)。
In recent years, reinforced resins to which plant fibers such as bamboo, kenaf, sugar cane, and wood are added have been studied, while high-functional materials using plant-derived materials are attracting attention from the viewpoint of carbon neutral (for example, Patent Document 1 and 2).
In addition, a fiber composite material has been proposed in which cellulose fibers that have been fibrillated and microfibrillated as described above are mixed with a resin. It has been reported that when such microfibrillated cellulose fibers are used as a resin reinforcing material, the mechanical strength is improved (for example, Patent Documents 3 and 4).
 例えば、特許文献3では、パルプからのセルロース繊維を溶液内で変性し二軸混練機を用いてミクロフィブリル化してマトリックス樹脂中に均一に分散させる方法が開示されている。
 特許文献4では、リグノフェノール誘導体を被覆した、平均繊維径が2nm以上、200nm以下であるセルロース繊維と、マトリックス樹脂中に該セルロース繊維を分散して含有しているセルロース繊維複合材料が開示されている。
For example, Patent Document 3 discloses a method in which cellulose fibers from pulp are modified in a solution, microfibrillated using a biaxial kneader, and uniformly dispersed in a matrix resin.
Patent Document 4 discloses a cellulose fiber coated with a lignophenol derivative and having an average fiber diameter of 2 nm or more and 200 nm or less, and a cellulose fiber composite material containing the cellulose fiber dispersed in a matrix resin. Yes.
特開平5-92527号公報JP-A-5-92527 特開2002-69208号公報JP 2002-69208 A 特開2005-42283号公報JP 2005-42283 A 特開2011-38193号公報JP 2011-38193 A
 特許文献1及び2で提案されている複合材料は、いずれも引張弾性率等の力学特性が不十分であるため、用途が限定されていた。
 また、特許文献3に記載された発明では、樹脂中へのセルロース繊維の分散が未だに不十分であり、結果的に得られた繊維複合材料は力学的強度が不十分であった。また、変性したセルロースは水分等が含まれており、生産性の点で問題となったり、水分に影響を受けるような樹脂(例えば、ポリアミドやポリエステル)では、セルロース繊維複合材料を製造することができないなどの問題があった。更に、変性する工程が必要であり、コスト面で不利であった。
 更に、特許文献4では、セルロース繊維に対してリグノフェノール誘導体で表面被覆することにより熱分解温度を向上させているが、リグノフェノール誘導体で被覆する工程などが必要であり、この製法も生産性やコストの面で課題があった。
Since the composite materials proposed in Patent Documents 1 and 2 are insufficient in mechanical properties such as tensile elastic modulus, their applications are limited.
Moreover, in the invention described in Patent Document 3, the dispersion of cellulose fibers in the resin is still insufficient, and the resultant fiber composite material has insufficient mechanical strength. In addition, the modified cellulose contains moisture and the like, and it becomes a problem in terms of productivity, or a resin (for example, polyamide or polyester) that is affected by moisture can produce a cellulose fiber composite material. There were problems such as being unable to do so. Furthermore, a modification step is necessary, which is disadvantageous in terms of cost.
Further, in Patent Document 4, the thermal decomposition temperature is improved by surface-coating cellulose fibers with a lignophenol derivative, but a process of coating with a lignophenol derivative is required, and this production method is There was a problem in terms of cost.
 本発明が解決しようとする課題は、製法が簡便であり、生産性に優れ、生産コストが安く、かつ、力学強度が高く、難燃性、耐熱老化性、耐候性に優れた成形品を製造可能な樹脂組成物及びその製造方法、並びに前記樹脂組成物から得られる成形体を提供することである。 The problem to be solved by the present invention is that the manufacturing method is simple, the productivity is excellent, the production cost is low, the mechanical strength is high, and the molded product is excellent in flame retardancy, heat aging resistance, and weather resistance. It is providing the resin composition which can be obtained, its manufacturing method, and the molded object obtained from the said resin composition.
 本発明者らは鋭意検討した結果、リグノフェノール誘導体とセルロース成分と含み、リグノフェノール系混合物と、熱可塑性樹脂とを特定の比率で配合し、成形品において1mm以上のブツが目視にて認められない樹脂組成物とすること、又は、フェノール化合物を添加したリグノセルロース系物質に酸を添加して混合することにより得られるリグノセルロース系混合物と、熱可塑性樹脂とを特定の比率で配合することにより、上記課題が解決されることを見出した。 As a result of intensive studies, the inventors of the present invention include a lignophenol derivative and a cellulose component, blend a lignophenol-based mixture and a thermoplastic resin in a specific ratio, and a 1 mm or more irregularity is visually observed in a molded product. By blending a lignocellulosic mixture obtained by adding and mixing an acid to a lignocellulosic material to which a phenolic compound is added, and a thermoplastic resin at a specific ratio The present inventors have found that the above problems can be solved.
 即ち、本発明は、以下を提供する。
 <1> リグノセルロース系混合物、及び熱可塑性樹脂を含有し、リグノセルロース系混合物及び熱可塑性樹脂の合計を100質量%としたとき、リグノセルロース系混合物を0.5質量%以上60質量%以下含有し、成形品において1mm以上のブツが目視にて認められないことを特徴とする、樹脂組成物。
 <2> 前記リグノセルロース系混合物の平均長軸長が10~500nmであり、平均短軸長が5~50nmである、前記<1>に記載の樹脂組成物。
 <3> 前記リグノセルロース系混合物が、針状又は髭状の結晶を含む組成物である、前記<1>又は<2>に記載の樹脂組成物。
 <4> 熱可塑性樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド樹脂、ポリエステル樹脂、及びポリカーボネート樹脂よりなる群から選択される少なくとも1つである、前記<1>~<3>のいずれか1つに記載の樹脂組成物。
 <5> 熱可塑性樹脂が、ポリオレフィン系樹脂である、前記<1>~<4>のいずれか1つに記載の樹脂組成物。
 <6> 熱可塑性樹脂が、ポリエチレン及びポリプロピレンよりなる群から選択される少なくとも1種である、前記<1>~<5>のいずれか1つに記載の樹脂組成物。
 <7> 得られる成形品の耐光暴露後伸び保持率が65%以上である、前記<5>又は<6>に記載の樹脂組成物。
 <8> 更に、酸化防止剤を含む、前記<1>~<7>のいずれか1つに記載の樹脂組成物。
That is, the present invention provides the following.
<1> A lignocellulose-based mixture and a thermoplastic resin are contained, and when the total of the lignocellulose-based mixture and the thermoplastic resin is 100% by mass, the lignocellulose-based mixture is contained in an amount of 0.5% by mass to 60% by mass. In addition, the resin composition is characterized in that in the molded product, no defects of 1 mm or more are visually observed.
<2> The resin composition according to <1>, wherein the lignocellulose-based mixture has an average major axis length of 10 to 500 nm and an average minor axis length of 5 to 50 nm.
<3> The resin composition according to <1> or <2>, in which the lignocellulose-based mixture is a composition containing needle-like or cage-like crystals.
<4> Any one of the above <1> to <3>, wherein the thermoplastic resin is at least one selected from the group consisting of polyolefin resins, polystyrene resins, polyamide resins, polyester resins, and polycarbonate resins. The resin composition as described in one.
<5> The resin composition according to any one of <1> to <4>, wherein the thermoplastic resin is a polyolefin resin.
<6> The resin composition according to any one of <1> to <5>, wherein the thermoplastic resin is at least one selected from the group consisting of polyethylene and polypropylene.
<7> The resin composition according to <5> or <6>, wherein the obtained molded article has an elongation retention after exposure to light of 65% or more.
<8> The resin composition according to any one of <1> to <7>, further comprising an antioxidant.
 <9> リグノセルロース系混合物、及び熱可塑性樹脂を含有し、リグノセルロース系混合物及び熱可塑性樹脂の合計を100質量%としたとき、リグノセルロース系混合物を0.5質量%以上60質量%以下含有し、リグノセルロース系混合物は、フェノール化合物を添加したリグノセルロース系物質に酸を添加して混合することにより得られ、リグノフェノール誘導体とセルロース成分とからなる、前記<1>~<8>のいずれか1つに記載の樹脂組成物。
 <10> 酸が、リン酸、ギ酸、及びトリフルオロ酢酸よりなる群から選択される少なくとも1つである、<9>に記載の樹脂組成物。
 <11> リグノセルロース系物質に添加するフェノール化合物が、少なくともオルト位又はパラ位に1以上の置換基を有しているフェノール化合物である、<9>又は<10>に記載の樹脂組成物。
 <12> リグノセルロース系物質に添加するフェノール化合物が、炭素数1以上6以下のアルキル基、炭素数1以上6以下のアルコキシ基、及び水酸基よりなる群から選択される少なくとも1つの置換基を、オルト位及び/又はパラ位に有しているフェノール化合物である、<9>~<11>のいずれか1つに記載の樹脂組成物。
 <13> リグノセルロース系混合物が、p-クレゾール、2,6-キシレノール、2,4-キシレノール、2-メトキシフェノール、2,6-ジメトキシフェノール、カテコール、ホモカテコール、及びピロガロールよりなる群から選択される少なくとも1つのフェノール化合物を添加したリグノセルロース系物質に、濃度が90質量%以上のリン酸を添加して混合することにより得られる、<9>~<12>のいずれか1つに記載の樹脂組成物。
 <14> リグノセルロース系混合物と熱可塑性樹脂とを熱溶融混合して得られる、<1>~<13>のいずれか1つに記載の樹脂組成物。
 <15> 前記<1>~<14>のいずれか1つに記載の樹脂組成物を成形して得られる成形体。
<9> Contains a lignocellulose-based mixture and a thermoplastic resin, and when the total of the lignocellulose-based mixture and the thermoplastic resin is 100 mass%, the lignocellulose-based mixture is contained in an amount of 0.5 mass% to 60 mass%. The lignocellulosic mixture is obtained by adding an acid to a lignocellulosic material to which a phenol compound has been added, and mixing the lignocellulosic material. The lignocellulosic mixture comprises a lignophenol derivative and a cellulose component. The resin composition as described in any one.
<10> The resin composition according to <9>, wherein the acid is at least one selected from the group consisting of phosphoric acid, formic acid, and trifluoroacetic acid.
<11> The resin composition according to <9> or <10>, wherein the phenol compound added to the lignocellulosic material is a phenol compound having one or more substituents at least in the ortho position or the para position.
<12> The phenol compound to be added to the lignocellulosic material has at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a hydroxyl group, The resin composition according to any one of <9> to <11>, which is a phenol compound having an ortho position and / or a para position.
<13> The lignocellulosic mixture is selected from the group consisting of p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol, 2,6-dimethoxyphenol, catechol, homocatechol, and pyrogallol. <9> to <12>, which is obtained by adding and mixing phosphoric acid having a concentration of 90% by mass or more to a lignocellulosic material to which at least one phenol compound is added. Resin composition.
<14> The resin composition according to any one of <1> to <13>, which is obtained by hot melt mixing a lignocellulose-based mixture and a thermoplastic resin.
<15> A molded product obtained by molding the resin composition according to any one of <1> to <14>.
 <16> フェノール化合物を添加したリグノセルロース系物質に、酸を添加して混合し、リグノフェノール誘導体とセルロース成分とからなるリグノセルロース系混合物を得る工程、及び前記リグノセルロース系混合物と熱可塑性樹脂とを熱溶融混合する工程を有し、前記リグノセルロース系混合物及び前記熱可塑性樹脂の合計を100質量%としたとき、リグノセルロース系混合物を0.5質量%以上60質量%以下含有する樹脂組成物の製造方法。
 <17> 酸が、リン酸、ギ酸、及びトリフルオロ酢酸よりなる群から選択される少なくとも1つである、前記<16>に記載の樹脂組成物の製造方法。
 <18> リグノセルロース系物質に添加するフェノール化合物が、少なくともオルト位又はパラ位に1以上の置換基を有しているフェノール化合物である、前記<16>又は<17>に記載の樹脂組成物の製造方法。
 <19> リグノセルロース系物質に添加するフェノール化合物が、炭素数1以上6以下のアルキル基、炭素数1以上6以下のアルコキシ基、及び水酸基よりなる群から選択される少なくとも1つの置換基を、オルト位及び/又はパラ位に有しているフェノール化合物である、前記<16>~<18>のいずれか1つに記載の樹脂組成物の製造方法。
 <20> リグノセルロース系混合物が、p-クレゾール、2,6-キシレノール、2,4-キシレノール、2-メトキシフェノール、2,6-ジメトキシフェノール、カテコール、ホモカテコール、及びピロガロールよりなる群から選択される少なくとも1つのフェノール化合物を添加したリグノセルロース系物質に、濃度が90質量%以上のリン酸を添加して混合することにより得られる、前記<16>~<19>のいずれか1つに記載の樹脂組成物の製造方法。
 <21> 熱可塑性樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド樹脂、ポリエステル樹脂、及びポリカーボネート樹脂よりなる群から選択される少なくとも1つである、前記<16>~<20>のいずれか1つに記載の樹脂組成物の製造方法。
 <22> 熱可塑性樹脂が、ポリオレフィン樹脂である、前記<16>~<21>のいずれか1つに記載の樹脂組成物の製造方法。
 <23> 熱可塑性樹脂が、ポリエチレン及びポリプロピレンよりなる群から選択される少なくとも1種である、前記<16>~<22>のいずれか1つに記載の樹脂組成物の製造方法。
 <24> 工程(2)が、リグノセルロース系混合物及び熱可塑性樹脂に加え、更に、酸化防止剤を熱溶融混合する工程である、<16>~<23>のいずれか1つに記載の樹脂組成物の製造方法。
<16> Step of obtaining a lignocellulose-based mixture comprising a lignophenol derivative and a cellulose component by adding an acid to the lignocellulosic material to which the phenol compound has been added, and the lignocellulose-based mixture and the thermoplastic resin. A resin composition containing 0.5% by mass or more and 60% by mass or less of the lignocellulose-based mixture when the total of the lignocellulose-based mixture and the thermoplastic resin is 100% by mass. Manufacturing method.
<17> The method for producing a resin composition according to <16>, wherein the acid is at least one selected from the group consisting of phosphoric acid, formic acid, and trifluoroacetic acid.
<18> The resin composition according to <16> or <17>, wherein the phenol compound added to the lignocellulosic material is a phenol compound having one or more substituents at least in the ortho position or the para position. Manufacturing method.
<19> The phenol compound to be added to the lignocellulosic material has at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a hydroxyl group, The method for producing a resin composition according to any one of <16> to <18>, wherein the resin composition is a phenol compound having an ortho position and / or a para position.
<20> The lignocellulose-based mixture is selected from the group consisting of p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol, 2,6-dimethoxyphenol, catechol, homocatechol, and pyrogallol. <16> to <19> obtained by adding and mixing phosphoric acid having a concentration of 90% by mass or more to a lignocellulosic material to which at least one phenol compound is added. A method for producing the resin composition.
<21> Any one of the above <16> to <20>, wherein the thermoplastic resin is at least one selected from the group consisting of polyolefin resins, polystyrene resins, polyamide resins, polyester resins, and polycarbonate resins. The manufacturing method of the resin composition as described in one.
<22> The method for producing a resin composition according to any one of <16> to <21>, wherein the thermoplastic resin is a polyolefin resin.
<23> The method for producing a resin composition according to any one of <16> to <22>, wherein the thermoplastic resin is at least one selected from the group consisting of polyethylene and polypropylene.
<24> The resin according to any one of <16> to <23>, wherein the step (2) is a step of heat-melting and mixing an antioxidant in addition to the lignocellulose-based mixture and the thermoplastic resin. A method for producing the composition.
 本発明によれば、製法が簡便であり、生産性に優れ、生産コストが安く、かつ、力学強度が高く、難燃性、耐熱老化性、耐候性に優れた成形品を製造可能な樹脂組成物及びその製造方法、並びに前記樹脂組成物から得られる成形体を提供することができる。 According to the present invention, a resin composition capable of producing a molded product with a simple manufacturing method, excellent productivity, low production cost, high mechanical strength, excellent flame resistance, heat aging resistance, and weather resistance. Articles, methods for producing the same, and molded articles obtained from the resin composition can be provided.
 以下に、本発明を説明する。なお、本明細書において、数値の記載に関する「~」という用語は、端点を含む数値範囲を表す。また、質量%、質量部は、それぞれ重量%、重量部と同義である。本発明において、好ましい態様の組み合わせは、より好ましい態様である。 Hereinafter, the present invention will be described. In this specification, the term “to” relating to the description of numerical values represents a numerical range including end points. Moreover, mass% and mass part are synonymous with weight% and weight part, respectively. In the present invention, a combination of preferred embodiments is a more preferred embodiment.
(樹脂組成物)
 本発明の第一の樹脂組成物は、リグノセルロース系混合物、及び熱可塑性樹脂を含有し、リグノセルロース系混合物及び熱可塑性樹脂の合計を100質量%としたとき、リグノセルロース系混合物を0.5質量%以上60質量%以下含有し、成形品において1mm以上のブツが目視にて認められないことを特徴とする。
 また、本発明の第二の樹脂組成物は、リグノセルロース系混合物、及び熱可塑性樹脂を含有し、リグノセルロース系混合物及び熱可塑性樹脂の合計を100質量%としたとき、リグノセルロース系混合物を0.5質量%以上60質量%以下含有し、リグノセルロース系混合物は、フェノール化合物を添加したリグノセルロース系物質に酸を添加して混合することにより得られ、リグノフェノール誘導体とセルロース成分とからなることを特徴とする。
 本発明者らは、熱可塑性樹脂にリグノセルロース系混合物を特定量配合することにより、高強度の材料が得られるとともに、耐熱老化性、耐候性にも優れることを見出した。その詳細な効果の発現機構は不明であるが、樹脂との相溶性に優れたリグノフェノール誘導体にセルロース成分が覆われることにより、セルロース成分が樹脂中に均一分散し、樹脂を補強するとともに、内部応力の緩和に寄与し、更に、抗酸化機能・紫外線吸収能を有するリグノフェノール誘導体によって、優れた耐老化性、耐候性が発現した結果であると推定される。
(Resin composition)
The first resin composition of the present invention contains a lignocellulose-based mixture and a thermoplastic resin, and when the total of the lignocellulose-based mixture and the thermoplastic resin is 100% by mass, the lignocellulose-based mixture is 0.5%. It is characterized by containing not less than 60% by mass and not visually confirming 1 mm or more in the molded product.
The second resin composition of the present invention contains a lignocellulosic mixture and a thermoplastic resin. When the total of the lignocellulosic mixture and the thermoplastic resin is 100% by mass, the lignocellulosic mixture is 0. The lignocellulosic mixture is contained by adding an acid to a lignocellulosic material to which a phenol compound is added, and is composed of a lignophenol derivative and a cellulose component. It is characterized by.
The inventors have found that a high-strength material can be obtained and a heat aging resistance and a weather resistance are excellent by blending a specific amount of a lignocellulose-based mixture with a thermoplastic resin. Although the detailed mechanism of the effect is unknown, the cellulose component is uniformly dispersed in the resin by covering the cellulose component with a lignophenol derivative excellent in compatibility with the resin, and the resin is reinforced. It is presumed that this is a result of excellent aging resistance and weather resistance due to the lignophenol derivative that contributes to relaxation of stress and further has an antioxidant function and an ultraviolet absorbing ability.
1.リグノセルロース系混合物
 本発明において、リグノセルロース系混合物は、フェノール化合物を添加したリグノセルロース系物質に酸を添加して混合することにより得られ、リグノフェノール誘導体とセルロース成分とからなる。
(1)リグノセルロース系物質
 リグノセルロース系物質としては、木質化した材料、主として木材である各種材料、例えば、木粉、チップ、廃材、端材などを挙げることができる。また用いる木材としては、針葉樹、広葉樹など任意の種類のものを使用するこができる。更に、各種草本植物、それに関連する試料、例えば、農産廃棄物なども使用できる。
 リグノセルロース系物質は、1種単独で使用してもよく、2種以上を併用してもよい。
1. Lignocellulose-based mixture In the present invention, the lignocellulose-based mixture is obtained by adding an acid to a lignocellulosic material to which a phenol compound has been added and mixing, and is composed of a lignophenol derivative and a cellulose component.
(1) Lignocellulosic material Examples of the lignocellulosic material include wooded materials, various materials mainly made of wood, such as wood flour, chips, waste materials, and scrap materials. Moreover, as wood to be used, any kind of wood such as conifers and hardwoods can be used. Furthermore, various herbaceous plants and related samples such as agricultural wastes can be used.
A lignocellulosic substance may be used individually by 1 type, and may use 2 or more types together.
 リグノセルロース系物質には、あらかじめ、粉砕、乾燥等の前処理を行うことが好ましく、また、必要に応じて脱脂処理を行うことが好ましい。
 原料であるリグノセルロース系物質の粉砕は、粉砕後の篩い分け時の目開きが5mm以下であることが好ましく、2mm以下であることがより好ましく、1mm以下であることが更に好ましく、0.5mm以下であることが特に好ましく、0.3mm以下であることが最も好ましい。
 また、含水率は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。上記含水率となるように、乾燥を行うことが好ましい。含水率を上記範囲内とすることにより、篩い分け時に目詰まりの発生が抑制され、原料粉の収率が向上するので好ましい。
The lignocellulosic material is preferably subjected to pretreatment such as pulverization and drying in advance, and it is preferable to perform a degreasing treatment as necessary.
In the pulverization of the lignocellulosic material as the raw material, the opening at the time of sieving after pulverization is preferably 5 mm or less, more preferably 2 mm or less, still more preferably 1 mm or less, and 0.5 mm. It is particularly preferable that it is not more than 0.3 mm, and most preferably not more than 0.3 mm.
Further, the water content is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. It is preferable to perform drying so as to achieve the above moisture content. By setting the moisture content within the above range, clogging is suppressed during sieving and the yield of the raw material powder is improved, which is preferable.
 リグノセルロース系物質の種類によっては、脱脂処理を行うことが好ましい。脱脂処理により、不要な油脂分を除去することができる。脱脂方法としては、例えば、撹拌槽内にリグノセルロース系物質と有機溶剤とを投入し、十分に混合・撹拌することによって行うことができる。有機溶剤で脱脂を行うことにより、リグノセルロース系物質中の水分を除去するという効果も得られる。この目的では、アセトン、ヘキサンなどの有機溶剤を使用することが好ましい。
 また、脱脂処理を行うための有機溶剤としては、特に限定されず、エタノール-ベンゼン混合溶媒、アセトン-メタノール混合溶媒等が好ましく例示される。
 有機溶剤の使用量としては、リグノセルロース系物質の1~10倍量が好ましい。なお、ここで規定する「倍量」とは、原料1kgに対する有機溶剤の量(リットル数)を意味し、例えば、「5倍量」とは、原料1kgに対して、有機溶剤を5L加えることを意味する。また、有機溶剤を添加した後、1~120時間撹拌することが好ましく、1~60時間撹拌することがより好ましい。
 フェノール化合物を添加する前に、脱脂に使用した有機溶剤を除去することが好ましいが、フェノール化合物の溶剤と、脱脂に使用する有機溶剤が同じものである場合には、除去工程を省略してもよい。
Depending on the type of lignocellulosic material, it is preferable to perform a degreasing treatment. By the degreasing treatment, unnecessary oil and fat can be removed. As a degreasing method, for example, a lignocellulosic material and an organic solvent can be charged into a stirring tank, and sufficiently mixed and stirred. By degreasing with an organic solvent, an effect of removing water in the lignocellulosic material can also be obtained. For this purpose, it is preferable to use an organic solvent such as acetone or hexane.
Further, the organic solvent for performing the degreasing treatment is not particularly limited, and an ethanol-benzene mixed solvent, an acetone-methanol mixed solvent and the like are preferably exemplified.
The amount of the organic solvent used is preferably 1 to 10 times the amount of lignocellulosic material. The “double amount” defined here means the amount of the organic solvent (liters) relative to 1 kg of the raw material. For example, the “5-fold amount” means that 5 L of the organic solvent is added to 1 kg of the raw material. Means. Further, after the addition of the organic solvent, the mixture is preferably stirred for 1 to 120 hours, more preferably 1 to 60 hours.
Before adding the phenol compound, it is preferable to remove the organic solvent used for degreasing, but if the phenol compound solvent and the organic solvent used for degreasing are the same, the removal step may be omitted. Good.
(2)フェノール化合物
 フェノール化合物は、芳香環上に少なくとも1つのOH基を有する化合物であれば特に限定されないが、ベンゼン環上に少なくとも1つのOH基を有する化合物であることが好ましい。
 具体的には、フェノール化合物は、1価のフェノール化合物、2価のフェノール化合物、又は、3価のフェノール化合物などを用いることができる。
 1価のフェノール化合物の具体例としては、1以上の置換基を有していてもよいフェノール、1以上の置換基を有していてもよいナフトール、1以上の置換基を有していてもよいアントロールなどが挙げられる。
 2価のフェノール化合物の具体例としては、1以上の置換基を有していてもよいカテコール、1以上の置換基を有していてもよいレソルシノール、1以上の置換基を有していてもよいヒドロキノンなどが挙げられる。
 3価のフェノール化合物の具体例としては、1以上の置換基を有していてもよいピロガロールなどが挙げられる。
 フェノール化合物は、1種単独で使用してもよく、2種以上を併用してもよい。
(2) Phenol compound Although a phenol compound will not be specifically limited if it is a compound which has at least 1 OH group on an aromatic ring, It is preferable that it is a compound which has at least 1 OH group on a benzene ring.
Specifically, a monovalent phenol compound, a divalent phenol compound, a trivalent phenol compound, or the like can be used as the phenol compound.
Specific examples of the monovalent phenol compound include phenol that may have one or more substituents, naphthol that may have one or more substituents, and one or more substituents. Good antroll and the like.
Specific examples of the divalent phenol compound include catechol which may have one or more substituents, resorcinol which may have one or more substituents, and one or more substituents. Examples include good hydroquinone.
Specific examples of the trivalent phenol compound include pyrogallol, which may have one or more substituents.
A phenol compound may be used individually by 1 type and may use 2 or more types together.
 1価~3価のフェノール化合物が有していてもよい置換基の種類は特に限定されず、任意の置換基を有していてもよいが、好ましくは、電子供与性基であり、例えば、炭素数1以上6以下のアルキル基(メチル基、エチル基、プロピル基など)、炭素数1~6のアルコキシ基(メトキシ基、エトキシ基、プロポキシ基など)、アリール基(フェニル基など)などが挙げられる。これらのなかでも、フェノール化合物は、炭素数1~6のアルキル基及び炭素数1~6のアルコキシ基よりなる群から選択された置換基を少なくとも1つ有することが好ましい。また、アルキル基の炭素数は1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。アルコキシ基の炭素数は1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。上記アルキル基、アルコキシ基は更に置換基を有していてもよく、該置換基としては、水酸基が例示される。
 フェノール化合物が、少なくともオルト位又はパラ位に1以上の置換基を有しているフェノール化合物であることが好ましく、炭素数1以上6以下のアルキル基、炭素数1以上6以下のアルコキシ基及び水酸基よりなる群から選択される少なくとも1つの置換基を、オルト位及び/又はパラ位に有しているフェノール化合物であることがより好ましい。
 フェノール化合物は、オルト位のうちの少なくとも片方は無置換であることが好ましい。
The type of substituent that the monovalent to trivalent phenol compound may have is not particularly limited, and may have any substituent, but is preferably an electron donating group, for example, Alkyl groups having 1 to 6 carbon atoms (such as methyl, ethyl, and propyl groups), alkoxy groups having 1 to 6 carbon atoms (such as methoxy, ethoxy, and propoxy groups), aryl groups (such as phenyl groups), and the like. Can be mentioned. Among these, the phenol compound preferably has at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms. Further, the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 3 carbon atoms. The alkoxy group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 3 carbon atoms. The alkyl group and alkoxy group may further have a substituent, and examples of the substituent include a hydroxyl group.
The phenol compound is preferably a phenol compound having one or more substituents at least in the ortho-position or para-position, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a hydroxyl group More preferably, it is a phenol compound having at least one substituent selected from the group consisting of at the ortho position and / or the para position.
In the phenol compound, at least one of the ortho positions is preferably unsubstituted.
 フェノール化合物の好ましい例としては、p-クレゾール、2,6-キシレノール、2,4-キシレノール、2-メトキシフェノール(Guaiacol)、2,6-ジメトキシフェノール、カテコール、レソルシノール、ホモカテコール、ピロガロール、及びフロログルシノールなどが挙げられ、p-クレゾール、2,6-キシレノール、2,4-キシレノール、2-メトキシフェノール、2,6-ジメトキシフェノール、カテコール、ホモカテコール、及びピロガロールがより好ましい。 Preferred examples of the phenol compound include p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol (Guaiacol), 2,6-dimethoxyphenol, catechol, resorcinol, homocatechol, pyrogallol, Loglucinol and the like, and p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol, 2,6-dimethoxyphenol, catechol, homocatechol, and pyrogallol are more preferable.
 なお、使用するフェノール化合物の種類を選択することにより、得られる本発明の成分であるリグノセルロース系混合物の総体としての機能(親水性、疎水性などの化学的・物理的機能)を制御することができる。
 また、本発明で用いるフェノール化合物としては、4位(パラ位)に置換基を有するフェノール化合物、2位(オルト位)に置換基を有するフェノール化合物、2位(オルト位)及び4位(パラ位)に置換基を有するフェノール化合物が好ましい。4位(パラ位)に置換基を有するフェノール化合物とは、2つのオルト位に置換基を有していないフェノール化合物である。また、2位(オルト位)及び4位(パラ位)に置換基を有するフェノール化合物とは、6位(片方のオルト位)に置換基を有していないフェノール化合物である。
By controlling the type of phenolic compound used, the overall function (chemical / physical functions such as hydrophilicity and hydrophobicity) of the lignocellulosic mixture that is the component of the present invention obtained is controlled. Can do.
The phenol compound used in the present invention is a phenol compound having a substituent at the 4-position (para-position), a phenol compound having a substituent at the 2-position (ortho-position), the 2-position (ortho-position) and the 4-position (para-position). Phenol compounds having a substituent at the position) are preferred. The phenol compound having a substituent at the 4-position (para-position) is a phenol compound having no substituent at two ortho positions. In addition, the phenol compound having a substituent at the 2-position (ortho position) and the 4-position (para-position) is a phenol compound having no substituent at the 6-position (one ortho position).
 リグノフェノール誘導体を、アルカリ条件下で架橋性官能基形成化合物と反応させて、リグノフェノール誘導体中のフェノール性水酸基のオルト位に架橋性官能基を有する架橋性リグノフェノール誘導体を調製し、この架橋性リグノフェノールを架橋することにより高分子材料を調製して使用することもできる。この場合、使用するフェノール化合物の種類を選択することにより、架橋性官能基の導入頻度を調節することができる。即ち、4位(パラ位)に置換基を有するフェノール化合物を使用した場合には、該フェノール化合物は2位又は6位の炭素原子でリグニンのフェニルプロパン単位のベンジル位の炭素原子に結合することになる。この場合、残りの2位又は6位の炭素原子の片方はフリーのまま存在し、架橋性官能基の導入部位となる。
 一方、2位(オルト位)及び4位(パラ位)に置換基を有するフェノール化合物を使用した場合には、該フェノール化合物は6位の炭素原子でリグニンのフェニルプロパン単位のベンジル位の炭素原子に結合することになる。この場合、フリーな状態のオルト位及びパラ位は存在しないため、導入フェノール化合物には架橋性官能基導入部位は存在しない。従って、架橋性官能基は、リグニン母体側のみに導入されることになる。
 このように、反応性の異なる架橋性官能基導入部位を有するフェノール化合物や、導入部位数がないか、あるいは異なるフェノール化合物を1種あるいは2種以上組み合わせてリグニンに導入することにより、リグノフェノール誘導体における架橋性官能基の導入部位数を制御することができ、結果として、架橋性リグニン誘導体の架橋密度を制御することができる。
By reacting the lignophenol derivative with a crosslinkable functional group-forming compound under alkaline conditions, a crosslinkable lignophenol derivative having a crosslinkable functional group at the ortho position of the phenolic hydroxyl group in the lignophenol derivative is prepared. It is also possible to prepare and use a polymer material by crosslinking lignophenol. In this case, the frequency of introduction of the crosslinkable functional group can be adjusted by selecting the type of phenol compound to be used. That is, when a phenol compound having a substituent at the 4-position (para-position) is used, the phenol compound is bonded to the carbon atom at the benzyl position of the phenylpropane unit of lignin at the 2-position or 6-position carbon atom. become. In this case, one of the remaining carbon atoms at the 2nd or 6th position is left free to serve as a site for introducing a crosslinkable functional group.
On the other hand, when a phenol compound having a substituent at the 2-position (ortho position) and the 4-position (para-position) is used, the phenol compound is a carbon atom at the 6-position and the carbon atom at the benzyl position of the phenylpropane unit of lignin. Will be bound to. In this case, since there are no free ortho-position and para-position, the introduced phenol compound does not have a crosslinkable functional group introduction site. Therefore, the crosslinkable functional group is introduced only on the lignin matrix side.
In this way, a phenol compound having a crosslinkable functional group introduction site with different reactivity, or a number of introduction sites, or one or two or more different phenol compounds are introduced into lignin to introduce a lignophenol derivative. The number of crosslinkable functional group introduction sites in can be controlled, and as a result, the crosslink density of the crosslinkable lignin derivative can be controlled.
 即ち、リグノセルロース系物質をフェノール化合物の存在下で酸で処理することにより分離されるリグノフェノール誘導体又はそれを含む高分子材料において、2位(オルト位)又は4位(パラ位)に置換基を有するフェノール化合物を反応性スイッチング素子として使用し、2位(オルト位)及び4位(パラ位)に置換基を有するフェノール化合物をブロッキング性スイッチング素子として使用することにより、リグノフェノール誘導体の機能又は構造を制御することも可能である。 That is, in a lignophenol derivative separated by treating a lignocellulosic substance with an acid in the presence of a phenol compound or a polymer material containing the same, a substituent is located at the 2-position (ortho position) or the 4-position (para position). The function of the lignophenol derivative or the use of a phenol compound having a substituent at the 2-position (ortho position) and 4-position (para-position) as a blocking switching element It is also possible to control the structure.
 更に、導入フェノール化合物として2位(オルト位)及び6位(オルト位)に置換基を有するフェノール化合物を使用した場合には、該フェノール化合物は4位の炭素原子でリグニンのフェニルプロパン単位のベンジル位の炭素原子に結合することになる。この場合、フリーな状態のオルト位及びパラ位は存在しないため、導入フェノール化合物には架橋性官能基導入部位は存在しない。また、2位(オルト位)及び6位(オルト位)に置換基を有するフェノール化合物はスイッチング機能を発揮することもないため、安定なコントロール素子として機能する。本発明では、4位(パラ位)に置換基を有するフェノール化合物、2位(オルト位)及び4位(オルト位)に置換基を有するフェノール化合物、あるいは2位(オルト位)及び6位(オルト位)に置換基を有するフェノール化合物を、目的に応じて適宜選択して使用することができる。 Further, when a phenol compound having a substituent at the 2-position (ortho position) and the 6-position (ortho position) is used as the introduced phenol compound, the phenol compound is a benzyl of a phenylpropane unit of lignin at the 4-position carbon atom. To the carbon atom at the position. In this case, since there are no free ortho-position and para-position, the introduced phenol compound does not have a crosslinkable functional group introduction site. In addition, a phenol compound having a substituent at the 2-position (ortho position) and the 6-position (ortho position) does not exhibit a switching function, and thus functions as a stable control element. In the present invention, a phenol compound having a substituent at the 4-position (para-position), a phenol compound having a substituent at the 2-position (ortho-position) and the 4-position (ortho-position), or the 2-position (ortho-position) and the 6-position ( A phenol compound having a substituent at the ortho position can be appropriately selected and used depending on the purpose.
 リグノセルロース系物質に添加するフェノール化合物の添加量は、リグノセルロース系物質100質量部に対して、10~50質量部であることが好ましく、15~45質量部であることがより好ましく、20~40質量部であることが更に好ましい。
 また、リグノセルロース系物質のリグニンのフェニルプロパン単位(以下、「C9単位」ともいう。)あたり、1~5モル倍量のフェノール化合物を添加することが好ましく、1.5~4.5モル倍量のフェノール化合物を添加することがより好ましく、2~4モル倍量のフェノール化合物を添加することが更に好ましい。
 ここで、リグニンのフェニルプロパン単位は、以下のようにして求められる。具体的には、元素分析値よりC9単位としての示性式を算出し、それを平均基本骨格(C9単位)とする。針葉樹内、広葉樹内での変動はそれほど大きくなく、ここでは針葉樹C9単位(全てグアイアシル単位、C9単位あたりOCH 1個)の分子量を200、広葉樹C9単位(グアイアシル単位(OCH 1個):シリンギル単位(OCH 2個)=50:50)の分子量を215として計算する。
The addition amount of the phenol compound added to the lignocellulosic material is preferably 10 to 50 parts by mass, more preferably 15 to 45 parts by mass, with respect to 100 parts by mass of the lignocellulosic material. More preferably, it is 40 mass parts.
In addition, it is preferable to add 1 to 5 moles of a phenol compound per phenylpropane unit (hereinafter also referred to as “C9 unit”) of lignin of the lignocellulosic material, and 1.5 to 4.5 moles It is more preferable to add an amount of a phenol compound, and it is even more preferable to add a 2 to 4 molar amount of a phenol compound.
Here, the phenylpropane unit of lignin is obtained as follows. Specifically, a formula for C9 units is calculated from the elemental analysis values, and this is used as the average basic skeleton (C9 units). The variation in conifers and hardwoods is not so great. Here, the molecular weight of conifer C9 units (all guaiacyl units, one OCH 3 per C9 unit) is 200, and the broad-leaved tree C9 units (guayacyl units (one OCH 3 )): syringyl The molecular weight of the unit (2 OCH 3 ) = 50: 50) is calculated as 215.
(3)酸
 リグノセルロース系物質、より好ましくは、フェノール化合物が収着したリグノセルロース系物質に添加する酸としては、セルロースを膨潤させる作用を有し、かつ、セルロースを加水分解する作用が低い酸が好ましい。なお、リグノセルロース系物質、好ましくはフェノール化合物が収着したリグノセルロース系物質に添加する酸は、上述のフェノール化合物を除く酸である。具体的には、リン酸、塩酸、p-トルエンスルホン酸、トリフルオロ酢酸、トリクロロ酢酸、ギ酸などを挙げることができる。好ましくは、リン酸、ギ酸又はトリフルオロ酢酸であり、特に好ましくはリン酸である。リン酸は、濃度が85質量%以上であることが好ましく、より好ましくは90質量%以上であり、更に好ましくは95質量%以上である。塩酸は濃度が38質量%以上であることが好ましい。
 なお、上記の濃度のリン酸は、99%リン酸から調製することが好ましい。また、上記濃度の塩酸は、冷却、加圧下にて調製することが好ましい。
 酸の添加量としては、フェノール化合物で処理後のリグノセルロース系物質100質量部に対して、10~50質量部であることが好ましく、15~45質量部であることがより好ましく、20~40質量部であることが更に好ましい。
(3) Acid The lignocellulosic material, more preferably, the acid added to the lignocellulosic material sorbed with the phenolic compound has an action of swelling cellulose and a low action of hydrolyzing cellulose. Is preferred. The acid added to the lignocellulosic material, preferably the lignocellulosic material sorbed with the phenolic compound, is an acid excluding the above-mentioned phenolic compound. Specific examples include phosphoric acid, hydrochloric acid, p-toluenesulfonic acid, trifluoroacetic acid, trichloroacetic acid, formic acid and the like. Preferred is phosphoric acid, formic acid or trifluoroacetic acid, and particularly preferred is phosphoric acid. The concentration of phosphoric acid is preferably 85% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. The concentration of hydrochloric acid is preferably 38% by mass or more.
The phosphoric acid having the above concentration is preferably prepared from 99% phosphoric acid. The hydrochloric acid having the above concentration is preferably prepared under cooling and pressure.
The amount of the acid added is preferably 10 to 50 parts by weight, more preferably 15 to 45 parts by weight, and more preferably 20 to 40 parts by weight with respect to 100 parts by weight of the lignocellulosic material treated with the phenol compound. More preferably, it is part by mass.
(4)リグノセルロース系混合物の製造方法
 本発明において、リグノセルロース系混合物は、リグノフェノール誘導体とセルロース成分とからなり、フェノール化合物を添加したリグノセルロース系物質に、酸を添加して混合することによって製造される。
 本明細書でいう「リグノフェノール誘導体」とは、リグニンのフェニルプロパン単位の側鎖α位に、フェノール化合物がC-C結合で導入されたジフェニルプロパン単位を含む重合体を意味するものである。この重合体における導入フェノール化合物の量や、分子量は、原料となるリグノセルロース系物質及び反応条件により変動する。
(4) Method for producing lignocellulose-based mixture In the present invention, the lignocellulose-based mixture comprises a lignophenol derivative and a cellulose component, and an acid is added to and mixed with a lignocellulosic material to which a phenolic compound has been added. Manufactured.
The “lignophenol derivative” in the present specification means a polymer containing a diphenylpropane unit in which a phenol compound is introduced by a C—C bond at the side chain α-position of the phenylpropane unit of lignin. The amount and molecular weight of the introduced phenol compound in this polymer vary depending on the lignocellulosic material used as a raw material and the reaction conditions.
 リグノセルロース系物質から本発明のリグノセルロース系混合物を得るには、かかるリグノセルロース系物質中のリグニンをフェノール化合物で処理してリグノフェノール誘導体とする必要がある。リグノセルロース系物質中のリグニンを、リグノフェノール誘導体に変換する方法としては以下の2つの方法が挙げられる。
 第1の方法は、木粉等のリグノセルロース系物質に液体状のフェノール化合物(上記で説明したもの、例えば、p-クレゾール等)を浸透させ、リグニンをフェノール化合物により溶媒和させ、次に、リグノセルロース系物質に濃酸(上記で説明したもの、例えば、95質量%リン酸)を添加し混合して、セルロース成分を溶解する。この方法によると、リグニンを溶媒和したフェノール化合物と、セルロース成分を溶解した濃酸とが2相分離系を形成する。フェノール化合物により溶媒和されたリグニンは、フェノール化合物相が濃酸相と接触する界面においてのみ、酸と接触され、酸との接触により生じたリグニン基本構成単位の高反応サイトである側鎖α位(ベンジル位)のカチオンが、フェノール化合物により攻撃される。その結果、前記α位にフェノール化合物がC-C結合で導入され、またベンジルアリールエーテル結合が解裂することにより低分子化される。これによりリグニンが低分子化され、同時にその基本構成単位のベンジル位にフェノール化合物が導入されたリグノフェノール誘導体がフェノール化合物相に生成される。
In order to obtain the lignocellulose-based mixture of the present invention from the lignocellulosic material, it is necessary to treat the lignin in the lignocellulosic material with a phenol compound to obtain a lignophenol derivative. As a method for converting lignin in a lignocellulosic substance into a lignophenol derivative, the following two methods may be mentioned.
The first method is to impregnate a lignocellulosic material such as wood flour with a liquid phenolic compound (as described above, such as p-cresol), solvate the lignin with the phenolic compound, A concentrated acid (what was demonstrated above, for example, 95 mass% phosphoric acid) is added and mixed with a lignocellulosic substance, and a cellulose component is melt | dissolved. According to this method, a phenol compound obtained by solvating lignin and a concentrated acid dissolving a cellulose component form a two-phase separation system. The lignin solvated by the phenolic compound is contacted with the acid only at the interface where the phenolic compound phase is in contact with the concentrated acid phase, and the side chain α-position, which is a highly reactive site of the lignin basic structural unit generated by contact with the acid. The (benzylic) cation is attacked by the phenolic compound. As a result, the phenol compound is introduced into the α-position by a C—C bond, and the benzyl aryl ether bond is cleaved to reduce the molecular weight. As a result, the molecular weight of lignin is reduced, and at the same time, a lignophenol derivative in which a phenol compound is introduced at the benzyl position of the basic structural unit is produced in the phenol compound phase.
 第2の方法は、リグノセルロース系物質に、固体状又は液体状のフェノール化合物を溶解した溶媒(例えば、エタノール、アセトン、ヘキサン等)を浸透させた後、溶媒を留去する(フェノール化合物の収着工程)。次に、このリグノセルロース系物質に濃酸(上記で説明したもの、例えば、95質量%リン酸)を添加してセルロース成分を溶解する。この結果、第1の方法と同様、フェノール化合物により溶媒和されたリグニンは、濃酸と接触して生じたリグニンの高反応サイト(側鎖α位)のカチオンがフェノール化合物により攻撃されて、フェノール化合物が導入される。また、ベンジルアリールエーテル結合が解裂してリグニンが低分子化される。 In the second method, a lignocellulosic material is infiltrated with a solvent (for example, ethanol, acetone, hexane, etc.) in which a solid or liquid phenol compound is dissolved, and then the solvent is distilled off (recovery of the phenol compound). Wearing process). Next, concentrated acid (as described above, for example, 95% by mass phosphoric acid) is added to the lignocellulose-based material to dissolve the cellulose component. As a result, as in the first method, the lignin solvated with the phenol compound is attacked by the phenol compound with the cation at the highly reactive site (side chain α-position) of the lignin generated upon contact with the concentrated acid. A compound is introduced. In addition, the benzyl aryl ether bond is cleaved to reduce the lignin molecular weight.
 第2の方法において、リグノセルロース系物質に対して、フェノール化合物を十分に分散又は溶解させた状態で添加することが好ましく、そのためには、フェノール化合物を有機溶剤に混合・溶解して、溶剤中に分散又は溶解させた状態でリグノセルロース系物質に添加することが好ましい。フェノール化合物とリグノセルロース系物質との反応を効率的に行うためには、フェノール化合物を有機溶剤中に分散又は溶解させた溶液(以下、フェノール化合物溶液ともいう。)を、リグノセルロース系物質1kgに対して、3~50Lの割合(ここでは、これを3~50倍量と称する。)にて添加することが好ましく、5~15倍量で添加することがより好ましい。
 フェノール化合物溶液の温度は、特に限定されないが、10~50℃であることが好ましく、15~40℃であることがより好ましく、20~30℃であることが更に好ましい。
 フェノール化合物溶液をリグノセルロース系物質に添加したのち、撹拌を行うとともに、好ましくは1~60時間に渡って、リグノセルロース系物質をフェノール化合物溶液に含浸させることが好ましい。2~48時間であることがより好ましく、4~36時間であることが更に好ましい。なお、撹拌は、小スケールの場合にはガラス棒で撹拌する方法や、マグネティックスターラーを使用する方法などが使用でき、大スケールの場合には、マグネティックスターラーを使用する方法や、撹拌翼を有するタンクなどが使用される。
 また、上記含浸を行った後、有機溶剤を除去して、フェノール化合物を収着させることが好ましい。
In the second method, it is preferable to add the phenol compound in a state in which the phenol compound is sufficiently dispersed or dissolved in the lignocellulosic material. For this purpose, the phenol compound is mixed and dissolved in an organic solvent. It is preferable to add to the lignocellulosic material in a state of being dispersed or dissolved. In order to efficiently perform the reaction between the phenol compound and the lignocellulosic substance, a solution in which the phenol compound is dispersed or dissolved in an organic solvent (hereinafter also referred to as a phenol compound solution) is added to 1 kg of the lignocellulosic substance. On the other hand, it is preferably added at a ratio of 3 to 50 L (herein referred to as 3 to 50 times the amount), and more preferably 5 to 15 times the amount.
The temperature of the phenol compound solution is not particularly limited, but is preferably 10 to 50 ° C., more preferably 15 to 40 ° C., and still more preferably 20 to 30 ° C.
After adding the phenolic compound solution to the lignocellulosic material, stirring is performed, and it is preferable to impregnate the phenolic compound solution with the lignocellulosic material, preferably for 1 to 60 hours. It is more preferably 2 to 48 hours, and further preferably 4 to 36 hours. In the case of small scale, a method of stirring with a glass rod or a method using a magnetic stirrer can be used for a small scale, and for a large scale, a method using a magnetic stirrer or a tank having a stirring blade. Etc. are used.
Further, after the impregnation, it is preferable to remove the organic solvent and sorb the phenol compound.
 酸の添加は、10~50℃にて行うことが好ましく、20~40℃にて行うことがより好ましい。また、酸を添加した後、均一に反応を進行させるために、むらなく十分に撹拌することが好ましく、混練機を使用してもよい。
 酸による処理時間は、5分~2時間であることが好ましく、10分~1時間であることがより好ましい。
The acid is preferably added at 10 to 50 ° C., more preferably at 20 to 40 ° C. Moreover, after adding an acid, in order to advance reaction uniformly, it is preferable to fully stir uniformly and a kneader may be used.
The treatment time with the acid is preferably 5 minutes to 2 hours, more preferably 10 minutes to 1 hour.
(5)リグノセルロース系混合物
 上記反応混合物からリグノセルロース系混合物を調製するためには、濃酸処理後の全反応液を過剰の水中に投入し、不溶画分を遠心分離にて集め、脱酸後、乾燥すればよい。この乾燥物のなかには、リグノフェノール誘導体とセルロース成分が均一に、すなわち、リグノフェノールマトリックス中にセルロース成分が偏在なく一様に存在している。
 すなわち、上述の方法により得られたリグノセルロース系混合物は、リグノフェノール誘導体とセルロース成分とを均一に含み、リグノフェノール誘導体のマトリックス中にセルロース成分が偏在することなく一様に存在する組成物であり、特許文献4に記載されているように、セルロース繊維がリグノフェノール誘導体で被覆されているものではない。リグノセルロース系混合物は、セルロースの非晶質部分が加水分解することによって、リグノフェノール誘導体中に単分散した結晶セルロース成分が均一に分布している。本発明において、このようなリグノセルロース系混合物を使用することにより、1mm以上のブツが目視にて認められない、外観に優れた成形品が得られる。
(5) Lignocellulose-based mixture To prepare a lignocellulose-based mixture from the above reaction mixture, the entire reaction solution after concentrated acid treatment was poured into excess water, and the insoluble fraction was collected by centrifugation and deacidified. Then, it may be dried. In this dried product, the lignophenol derivative and the cellulose component are uniformly present, that is, the cellulose component is uniformly present in the lignophenol matrix.
That is, the lignocellulose-based mixture obtained by the above-described method is a composition that uniformly contains a lignophenol derivative and a cellulose component, and that the cellulose component is uniformly present in the matrix of the lignophenol derivative without being unevenly distributed. As described in Patent Document 4, cellulose fibers are not coated with a lignophenol derivative. In the lignocellulose-based mixture, a crystalline cellulose component monodispersed in the lignophenol derivative is uniformly distributed by hydrolyzing the amorphous portion of cellulose. In the present invention, by using such a lignocellulose-based mixture, it is possible to obtain a molded article having an excellent appearance in which no defects of 1 mm or more are visually observed.
 リグノセルロース系混合物は、針状又は髭状の結晶(結晶性セルロース)を含む組成物であることが好ましい。セルロースの結晶性は製造上結晶のみが生成される方法であるが、X線解析によって結晶性を確認することができる。また、力学強度に優れた成形品を得る観点や、熱可塑性樹脂への配合の容易さから、リグノセルロース系混合物の長軸方向の長さの平均(平均長軸長)は、好ましくは10~500nm、より好ましくは20nm以上、更に好ましくは30nm以上であり、長軸に直行する方向の長さの平均(平均短軸長)は、好ましくは5~50nm、より好ましく5~30nm、更に好ましくは10~20nmである。また、長軸長/短軸長は、5以上が好ましい。なお、平均長軸長は、リグノセルロース系混合物の電子顕微鏡画像を観察することによって求められる。具体的には、電子顕微鏡を用い、ランダムに選択した50個のリグノセルロース系混合物について、各々長軸長と短軸長とを測定し、その平均から平均長軸長及び平均短軸長を求めることができる。なお、長軸に直行する方向(単軸方向)の断面が円形でない場合の単軸長は、含軸方向の測定で最も長い箇所の長さを単軸長とする。 The lignocellulose-based mixture is preferably a composition containing needle-like or cage-like crystals (crystalline cellulose). The crystallinity of cellulose is a method in which only crystals are produced in production, but the crystallinity can be confirmed by X-ray analysis. Further, from the viewpoint of obtaining a molded article having excellent mechanical strength and ease of blending into a thermoplastic resin, the average length in the major axis direction (average major axis length) of the lignocellulosic mixture is preferably 10 to The average length (average minor axis length) in the direction perpendicular to the major axis is preferably 5 to 50 nm, more preferably 5 to 30 nm, still more preferably 500 nm, more preferably 20 nm or more, still more preferably 30 nm or more. 10 to 20 nm. Further, the major axis length / minor axis length is preferably 5 or more. The average major axis length is determined by observing an electron microscope image of the lignocellulose-based mixture. Specifically, the major axis length and the minor axis length of each of 50 randomly selected lignocellulose-based mixtures are measured using an electron microscope, and the average major axis length and the average minor axis length are obtained from the average. be able to. In addition, as for the uniaxial length when the cross section in the direction orthogonal to the major axis (uniaxial direction) is not circular, the length of the longest portion measured in the axial direction is defined as the uniaxial length.
リグノセルロース系混合物は通常流動性を有するものである。しかし、該混合物中のリグノフェノール誘導体画分を抽出すると流動性は失われる。従って、リグノセルロース系混合物では、リグノフェノール誘導体画分が重要な可塑効果を発現しているものと考えられる。
 また、本発明の成分であるリグノセルロース系混合物中におけるリグノフェノール誘導体をアシル化(例えば、アセチル化など)することにより、該混合物の流動性を高めることができる。即ち、本発明において、リグノセルロース系混合物中においてリグノフェノール誘導体はそれ同士、あるいはセルロース区分と水素結合で結合し、素材同士が会合する傾向がある。この場合、該組成物の流動性はそれ程高くはない。しかし、リグノフェノール誘導体をアシル化(例えば、アセチル化など)することにより素材間の会合を解消することができ、これによりリグノセルロース系混合物全体の流動性が向上し、成形体などへの加工の際の加工エネルギーを低下させることができる。更に、リグノセルロース系混合物中におけるリグノフェノール誘導体はメチロール化して用いてもよい。メチロール化した材料を用いた場合、比較的密度が低く、吸水率が高く、しかも優れた安定性を有する成形物を作製することができる。
Lignocellulosic mixtures are usually fluid. However, when the lignophenol derivative fraction in the mixture is extracted, the fluidity is lost. Therefore, in the lignocellulose-based mixture, it is considered that the lignophenol derivative fraction expresses an important plastic effect.
Moreover, the fluidity | liquidity of this mixture can be improved by acylating (for example, acetylation etc.) the lignophenol derivative in the lignocellulose-type mixture which is a component of this invention. That is, in the present invention, in the lignocellulose mixture, the lignophenol derivatives tend to bind to each other or to the cellulose section through hydrogen bonding, and the materials tend to associate with each other. In this case, the fluidity of the composition is not so high. However, the acylation of the lignophenol derivative (for example, acetylation, etc.) can eliminate the association between the materials, thereby improving the fluidity of the entire lignocellulosic mixture, and processing into a molded product or the like. The processing energy at the time can be reduced. Furthermore, the lignophenol derivative in the lignocellulose-based mixture may be used after being methylolated. When a methylolated material is used, a molded product having a relatively low density, a high water absorption rate, and excellent stability can be produced.
2.熱可塑性樹脂
 熱可塑性樹脂としては、例えば、以下のものが挙げられる。
(1)ポリオレフィン系樹脂
 ポリオレフィン系樹脂としては、主として以下のものが挙げられる。
(1-1)ポリプロピレン系樹脂
 ポリプロピレン系樹脂は、プロピレンの単独重合体、及びプロピレンを主成分とする共重合体等から選ばれる1種又は2種以上で構成することができる。
 プロピレンの単独重合体としては、特に制限はないが、軽量かつ優れた成形性を得る観点から、230℃でのメルトマスフローレートが0.1~200g/10分であるプロピレン単独重合体が好ましい。更に樹脂組成物の剛性や耐衝撃性の観点から230℃でのメルトマスフローレートが0.2~60g/10分であることがより好ましい。
2. Thermoplastic resin Examples of the thermoplastic resin include the following.
(1) Polyolefin resin Examples of the polyolefin resin mainly include the following.
(1-1) Polypropylene Resin The polypropylene resin can be composed of one or more selected from a homopolymer of propylene, a copolymer containing propylene as a main component, and the like.
The propylene homopolymer is not particularly limited, but a propylene homopolymer having a melt mass flow rate at 230 ° C. of 0.1 to 200 g / 10 min is preferred from the viewpoint of obtaining light weight and excellent moldability. Further, from the viewpoint of the rigidity and impact resistance of the resin composition, the melt mass flow rate at 230 ° C. is more preferably 0.2 to 60 g / 10 minutes.
 プロピレンを主成分とする共重合体としては、特に制限はないが、例えば、プロピレンとエチレンとの共重合体、プロピレンとプロピレン以外の1種又は2種以上のα-オレフィンとのランダム共重合体、及びプロピレンとプロピレン以外の1種又は2種以上のα-オレフィンとのブロック共重合体等が挙げられる。プロピレンを主成分とする共重合体のなかでも、軽量かつ成形性に優れる樹脂組成物を得るという観点から、230℃でのメルトマスフローレートが0.1~200g/10分であるプロピレン共重合体が好ましい。更に樹脂組成物の剛性や耐衝撃性の観点から230℃でのメルトマスフローレートが0.2~60g/10分であることがより好ましい。
 プロピレン以外のα-オレフィンとしては、例えば、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、及び1-エイコセン等が挙げられる。
The copolymer containing propylene as a main component is not particularly limited. For example, a copolymer of propylene and ethylene, or a random copolymer of one or more α-olefins other than propylene and propylene is used. And a block copolymer of propylene and one or more α-olefins other than propylene. Among the copolymers mainly composed of propylene, a propylene copolymer having a melt mass flow rate at 230 ° C. of 0.1 to 200 g / 10 min from the viewpoint of obtaining a light weight and excellent resin composition. Is preferred. Further, from the viewpoint of the rigidity and impact resistance of the resin composition, the melt mass flow rate at 230 ° C. is more preferably 0.2 to 60 g / 10 minutes.
Examples of α-olefins other than propylene include 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene and 1-hexadecene. , 1-octadecene, 1-eicosene and the like.
(1-2)ポリエチレン系樹脂
 ポリエチレン系樹脂は、エチレンの単独重合体、及びエチレンを主成分とする共重合体等から選ばれる1種又は2種以上で構成することができる。
 エチレンの単独重合体としては、例えば、低密度ポリエチレン、線状低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン等が挙げられるが、軽量かつ優れた成形性を得る観点から、密度が0.910~0.965g/cm3であり、190℃でのメルトマスフローレートが0.01~200g/10分であるエチレン単独重合体が好ましい。190℃でのメルトマスフローレートが上記範囲内であれば、樹脂組成物の流動性及び成形体の表面外観に不具合を生じるおそれがない。190℃でのメルトマスフローレートは、0.01~60g/10分であることがより好ましい。
(1-2) Polyethylene resin The polyethylene resin can be composed of one or more selected from a homopolymer of ethylene and a copolymer containing ethylene as a main component.
Examples of the ethylene homopolymer include low-density polyethylene, linear low-density polyethylene, linear low-density polyethylene, and high-density polyethylene. From the viewpoint of obtaining light weight and excellent moldability, the density is 0. a .910 ~ 0.965g / cm 3, ethylene homopolymer preferably has a melt mass flow rate at 190 ° C. is 0.01 ~ 200 g / 10 min. If the melt mass flow rate at 190 ° C. is within the above range, there is no possibility of causing problems in the fluidity of the resin composition and the surface appearance of the molded body. The melt mass flow rate at 190 ° C. is more preferably 0.01 to 60 g / 10 min.
 エチレンを主成分とする共重合体としては、例えば、エチレンとエチレン以外のα-オレフィンとのランダム共重合体、及びエチレンとエチレン以外のα-オレフィンとのブロック共重合体が挙げられる。エチレンを主成分とする共重合体のなかでも、軽量かつ成形性に優れる樹脂組成物を得るという観点から、190℃でのメルトマスフローレートが0.01~200g/10分であるエチレン共重合体が好ましい。また、190℃でのメルトマスフローレートが上記範囲内であれば、樹脂組成物の流動性及び成形体の表面外観に不具合を生じるおそれがない。190℃でのメルトマスフローレートは、0.01~60g/10分であることがより好ましい。
 エチレン以外のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、及び1-エイコセン等が挙げられる。
Examples of the copolymer mainly composed of ethylene include a random copolymer of ethylene and an α-olefin other than ethylene, and a block copolymer of ethylene and an α-olefin other than ethylene. Among copolymers having ethylene as a main component, an ethylene copolymer having a melt mass flow rate at 190 ° C. of 0.01 to 200 g / 10 min from the viewpoint of obtaining a light weight and excellent resin composition. Is preferred. Moreover, if the melt mass flow rate at 190 ° C. is within the above range, there is no possibility of causing problems in the fluidity of the resin composition and the surface appearance of the molded body. The melt mass flow rate at 190 ° C. is more preferably 0.01 to 60 g / 10 min.
Examples of α-olefins other than ethylene include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 -Hexadecene, 1-octadecene, 1-eicocene and the like.
 市販のポリオレフィン系樹脂としては、プライムポリマー(株)製のポリプロピレン系樹脂「プライムポリプロ」、「ポリファイン」、「プライムTPO」の各シリーズ等、例えば、品番:J-700GP、出光興産(株)製のポリプロピレン系樹脂(品番:J-966HP)やプライムポリマー(株)製の各種ポリエチレン樹脂「ハイゼックス」、「ネオゼックス」、「ウルトゼックス」、「モアテック」、「エボリュー」の各シリーズ(例えば、高密度ポリエチレン樹脂、品番:2200J)、及び東ソー(株)製の低密度ポリエチレン(例えば、品番:ペトロセン190)等が挙げられる。 Examples of commercially available polyolefin resins include the series of polypropylene resins “Prime Polypro”, “Polyfine” and “Prime TPO” manufactured by Prime Polymer Co., Ltd., for example, product number: J-700GP, Idemitsu Kosan Co., Ltd. Polypropylene resin (product number: J-966HP) manufactured by Prime Polymer Co., Ltd. and various polyethylene resins “Hi-Zex”, “Neo-Zex”, “Ult-Zex”, “Moretech”, “Evolue” series (for example, high Density polyethylene resin, product number: 2200J), and low density polyethylene (for example, product number: Petrocene 190) manufactured by Tosoh Corporation.
(2)ポリスチレン系樹脂
 ポリスチレン系樹脂は、例えば、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-tert-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)、水素化ポリスチレン、及びこれらの構成単位を含む共重合体等が挙げられる。これらポリスチレン系樹脂は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 市販のポリスチレン系樹脂としては、PSジャパン(株)製、PSJ-ポリスチレンシリーズ(例えば、品番:H8672)、東洋スチレン(株)製、トーヨースチロールシリーズ等が挙げられる。
(2) Polystyrene resins Polystyrene resins are, for example, polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (p-tert-butylstyrene), poly (p-chlorostyrene), poly (M-chlorostyrene), poly (p-fluorostyrene), hydrogenated polystyrene, and copolymers containing these structural units. These polystyrene resins may be used alone or in combination of two or more.
Examples of commercially available polystyrene resins include PS Japan Co., Ltd., PSJ-polystyrene series (for example, product number: H8672), Toyo Styrene Co., Ltd., and Toyostyrene series.
(3)ポリエステル樹脂
 ポリエステル樹脂としては、ポリオール-ポリカルボン酸型ポリエステル樹脂、及びヒドロキシカルボン酸型ポリエステル樹脂が挙げられる。上記ポリオール-ポリカルボン酸型ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、テレフタル酸と1,3-プロパンジオールあるいは1,4-ブタンジオールとの共重合体が挙げられる。
 ヒドロキシカルボン酸型ポリエステル樹脂としては、ポリ乳酸及び/又はポリ乳酸を含む共重合樹脂が例示される。ポリ乳酸樹脂及び/又はポリ乳酸を含む共重合樹脂は、乳酸又は乳酸とそれ以外のヒドロキシカルボン酸を加熱脱水重合することにより、低分子量のポリ乳酸又はその共重合体が得られ、これを更に減圧下に加熱分解することにより、乳酸又はその共重合体の環状二量体であるラクチドが得られ、次いでラクチドを金属塩等の触媒存在下で重合してポリ乳酸樹脂及び/又はポリ乳酸を含む共重合樹脂が得られる。
 これらポリエステル樹脂は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(3) Polyester resin Examples of the polyester resin include polyol-polycarboxylic acid type polyester resin and hydroxycarboxylic acid type polyester resin. Examples of the polyol-polycarboxylic acid type polyester resin include polyethylene terephthalate resin, polybutylene terephthalate resin, and a copolymer of terephthalic acid and 1,3-propanediol or 1,4-butanediol.
Examples of the hydroxycarboxylic acid type polyester resin include polylactic acid and / or a copolymer resin containing polylactic acid. A polylactic acid resin and / or a copolymer resin containing polylactic acid is obtained by subjecting lactic acid or lactic acid and other hydroxycarboxylic acid to heat dehydration polymerization to obtain low molecular weight polylactic acid or a copolymer thereof. Lactide, which is a cyclic dimer of lactic acid or a copolymer thereof, is obtained by thermal decomposition under reduced pressure, and then lactide is polymerized in the presence of a catalyst such as a metal salt to produce polylactic acid resin and / or polylactic acid. A copolymer resin containing is obtained.
These polyester resins may be used alone or in combination of two or more.
 市販のポリオール-ポリカルボン酸型ポリエステル樹脂としては、三井化学(株)製、三井PETTMシリーズ(例えば、品番:三井J125)や東洋紡(株)製、バイロンシリーズ等が挙げられる。
 市販のポリ乳酸樹脂及び/又はポリ乳酸を含む共重合樹脂としては、浙江海正生物材料股分有限公司製の結晶性ポリ乳酸樹脂(品番:レヴォダシリーズ、L体/D体比=100/0~85/5)や三井化学(株)製のポリ乳酸樹脂(植物澱粉を乳酸発酵して製造)であるレイシアシリーズ等が挙げられる。
Examples of commercially available polyol-polycarboxylic acid type polyester resins include Mitsui Chemicals, Mitsui PET series (for example, product number: Mitsui J125), Toyobo Co., Ltd., Byron series, and the like.
Examples of commercially available polylactic acid resins and / or copolymer resins containing polylactic acid include crystalline polylactic acid resins manufactured by Zhejiang Haisheng Biological Materials Co., Ltd. (Product No .: Levoda series, L-form / D-form ratio = 100 / 0 to 85/5) and Laissia series, which is a polylactic acid resin (manufactured by lactic acid fermentation of plant starch) manufactured by Mitsui Chemicals, Inc.
(4)ポリアミド樹脂
 ポリアミド樹脂は、例えば、ラクタムの開環重合体、ジアミンと二塩基酸との重縮合体、ω-アミノ酸の重縮合体等が挙げられる。これらポリアミド樹脂は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 市販のポリアミド樹脂としては、東レ(株)製のナイロン6やナイロン66であるアミランシリーズ、旭化成(株)製のポリアミド66樹脂であるレオナシリーズ、及び帝人(株)のn-ナイロンやn,m-ナイロンシリーズ等が挙げられる。
(4) Polyamide resin Examples of the polyamide resin include a ring-opening polymer of lactam, a polycondensate of diamine and dibasic acid, and a polycondensate of ω-amino acid. These polyamide resins may be used alone or in combination of two or more.
Examples of commercially available polyamide resins include nylon 6 and nylon 66 made by Toray Industries, Inc., Leona series made by Asahi Kasei Co., Ltd., and Teijin's n-nylon and n, m. -Nylon series and the like.
(5)ポリカーボネート樹脂
 ポリカーボネート樹脂は、芳香族ポリカーボネート樹脂であっても脂肪族ポリカーボネート樹脂であってもよいが、リグノセルロース系混合物との親和性の観点及び耐衝撃性と耐熱性の観点から、芳香族ポリカーボネート樹脂を用いることがより好ましい。
 芳香族ポリカーボネート樹脂としては、通常、2価フェノールとカーボネート前駆体との反応により製造される芳香族ポリカーボネート樹脂を用いることができる。芳香族ポリカーボネート樹脂は、他の熱可塑性樹脂に比べて、耐熱性、難燃性及び耐衝撃性が良好であるため樹脂組成物の主成分とすることができる。
 また、芳香族ポリカーボネート樹脂として、芳香族ポリカーボネート-ポリオルガノシロキサン共重合体、又は芳香族ポリカーボネート-ポリオルガノシロキサン共重合体を含む樹脂を用いる場合、難燃性及び低温における耐衝撃性を更に向上することができる。該共重合体を構成するポリオルガノシロキサンは、ポリジメチルシロキサンであることが難燃性の点からより好ましい。
 市販の芳香族ポリカーボネート樹脂としては、出光興産(株)製のタフロンシリーズや帝人(株)製のパンライトシリーズ等が挙げられる。
(5) Polycarbonate resin The polycarbonate resin may be an aromatic polycarbonate resin or an aliphatic polycarbonate resin. From the viewpoint of affinity with the lignocellulosic mixture and from the viewpoint of impact resistance and heat resistance, the polycarbonate resin It is more preferable to use a group polycarbonate resin.
As the aromatic polycarbonate resin, an aromatic polycarbonate resin usually produced by a reaction of a dihydric phenol and a carbonate precursor can be used. The aromatic polycarbonate resin can be a main component of the resin composition because it has better heat resistance, flame retardancy, and impact resistance than other thermoplastic resins.
In addition, when an aromatic polycarbonate-polyorganosiloxane copolymer or a resin containing an aromatic polycarbonate-polyorganosiloxane copolymer is used as the aromatic polycarbonate resin, the flame retardancy and impact resistance at low temperatures are further improved. be able to. The polyorganosiloxane constituting the copolymer is more preferably polydimethylsiloxane from the viewpoint of flame retardancy.
As commercially available aromatic polycarbonate resin, Idemitsu Kosan Co., Ltd. Toughlon series, Teijin Ltd. Panlite series, etc. are mentioned.
 熱可塑性樹脂は相溶性のあるものは適宜混合して用いてもよい。例えば、一般に流動性が悪いと考えられている芳香族ポリカーボネート樹脂にポリエステル樹脂を適量混合すれば、流動性が改善される。
 また、前記(1)~(5)に記載した熱可塑性樹脂以外に、それらと相溶性のある他の熱可塑性樹脂、例えば、AS樹脂(アクリロニトリル-スチレン樹脂)や(メタ)アクリル酸エステル系(共)重合体等を適量混合してもよい。
 熱可塑性樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド樹脂、ポリエステル樹脂、及びポリカーボネート樹脂よりなる群から選択される少なくとも1つであることが好ましく、ポリオレフィン樹脂であることがより好ましい。
As the thermoplastic resin, compatible ones may be appropriately mixed and used. For example, if an appropriate amount of a polyester resin is mixed with an aromatic polycarbonate resin generally considered to have poor fluidity, the fluidity is improved.
In addition to the thermoplastic resins described in the above (1) to (5), other thermoplastic resins compatible with them, for example, AS resin (acrylonitrile-styrene resin), (meth) acrylic ester ( A suitable amount of (co) polymer may be mixed.
The thermoplastic resin is preferably at least one selected from the group consisting of polyolefin resins, polystyrene resins, polyamide resins, polyester resins, and polycarbonate resins, and more preferably polyolefin resins.
3.割合
 本発明の樹脂組成物は、リグノセルロース系混合物及び熱可塑性樹脂の合計を100質量%としたとき、リグノセルロース系混合物を0.5質量%以上60質量%以下含有する。
 リグノセルロース系混合物の含有量が0.5質量%未満であると、強度や難燃性が不十分であり、60質量%を超えると流動性が大きく低下し、成形品外観が大きく低下する。好ましくはリグノセルロース系混合物の含有量が2質量%以上40質量%以下であり、更に好ましくは4質量%以上30質量%以下である。
 なお、本発明の樹脂組成物は、後述するように、リグノセルロース系混合物及び熱可塑性樹脂以外の成分、例えば、各種添加剤を含有していてもよいが、樹脂組成物中のリグノセルロース系混合物及び熱可塑性樹脂の総含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、95質量%以上であることが特に好ましい。
3. Proportion The resin composition of the present invention contains a lignocellulose-based mixture in an amount of 0.5% by mass to 60% by mass when the total of the lignocellulose-based mixture and the thermoplastic resin is 100% by mass.
If the content of the lignocellulose-based mixture is less than 0.5% by mass, the strength and flame retardancy are insufficient, and if it exceeds 60% by mass, the fluidity is greatly reduced and the appearance of the molded product is greatly reduced. The content of the lignocellulose-based mixture is preferably 2% by mass or more and 40% by mass or less, and more preferably 4% by mass or more and 30% by mass or less.
As will be described later, the resin composition of the present invention may contain components other than the lignocellulose-based mixture and the thermoplastic resin, for example, various additives, but the lignocellulose-based mixture in the resin composition. And the total content of the thermoplastic resin is preferably 70% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and more preferably 95% by mass or more. Particularly preferred.
4.その他の添加剤
(各種添加剤)
 本発明の樹脂組成物は、必要に応じて、各種添加剤を含有してもよい。そのような添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、結晶核剤、軟化剤、帯電防止剤、金属不活性化剤、抗菌・抗カビ剤、顔料等が挙げられる。これらのなかでも、本発明の樹脂組成物は、少なくとも酸化防止剤を含有することが好ましい。
 紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ベンゾエート系化合物、ポリアミドポリエーテルブロック共重合体(永久帯電防止性能付与)等が挙げられる。
 酸化防止剤としては、特に限定されないが、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤等が挙げられる。市販の酸化防止剤としては、イルガノックス1010、イルガノックス1076(BASF社製、フェノール系酸化防止剤)、アデカスタブ2112、アデカスタブPEP36(ADEKA社製、リン系酸化防止剤)が例示される。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 滑剤としては、特に限定されないが、脂肪酸アミド系滑剤、脂肪酸エステル系滑剤、脂肪酸系滑剤、脂肪酸金属塩系滑剤等が挙げられる。これらは1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。
 結晶核剤としては、特に限定されないが、ソルビトール類、リン系核剤、ロジン類、石油樹脂類等が挙げられる。
 軟化剤としては、特に限定されないが、流動パラフィン、鉱物油系軟化剤(プロセスオイル)、非芳香族系ゴム用鉱物油系軟化剤(プロセスオイル)等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
4). Other additives (various additives)
The resin composition of the present invention may contain various additives as necessary. Examples of such additives include ultraviolet absorbers, antioxidants, lubricants, crystal nucleating agents, softeners, antistatic agents, metal deactivators, antibacterial / antifungal agents, pigments and the like. Among these, it is preferable that the resin composition of the present invention contains at least an antioxidant.
Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, benzoate compounds, polyamide polyether block copolymers (providing permanent antistatic performance), and the like.
Although it does not specifically limit as antioxidant, A phenolic antioxidant, phosphorus antioxidant, thioether type antioxidant, etc. are mentioned. Examples of commercially available antioxidants include Irganox 1010, Irganox 1076 (manufactured by BASF, phenolic antioxidant), Adekastab 2112 and Adekastab PEP36 (manufactured by ADEKA, phosphorous antioxidant). These may be used alone or in combination of two or more.
The lubricant is not particularly limited, and examples thereof include fatty acid amide lubricants, fatty acid ester lubricants, fatty acid lubricants, and fatty acid metal salt lubricants. These may be used alone or in combination of two or more.
The crystal nucleating agent is not particularly limited, and examples thereof include sorbitols, phosphorus nucleating agents, rosins, and petroleum resins.
The softening agent is not particularly limited, and examples thereof include liquid paraffin, mineral oil softener (process oil), and non-aromatic rubber mineral oil softener (process oil). These may be used individually by 1 type and may be used in combination of 2 or more type.
 帯電防止剤としては、特に限定されないが、カチオン系帯電防止剤、アニオン系帯電防止剤、ノニオン系帯電防止剤、両性系帯電防止剤、グリセリン脂肪酸モノエステル等の脂肪酸部分エステル類が挙げられる。
 金属不活性化剤としては、特に限定されないが、ヒドラジン系金属不活性化剤、窒素化合物系金属不活性化剤、亜リン酸エステル系金属不活性化剤等が挙げられる。これらは1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。
 抗菌・抗カビ剤としては、特に限定されないが、有機化合物系抗菌・抗カビ剤、天然物有機系抗菌抗カビ剤、無機物系抗菌・抗カビ剤等が挙げられる。
 顔料としては、特に限定されないが、無機顔料、有機顔料等が挙げられる。無機顔料としては、酸化チタン、炭酸カルシウム、カーボンブラック等が挙げられる。有機顔料としては、アゾ顔料、酸性染料レーキ、塩基性染料レーキ、縮合多環顔料等が挙げられる。これらの顔料は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 添加剤成分の配合量は、本発明の樹脂組成物の特性が損なわれない範囲であれば特に制限はない。
The antistatic agent is not particularly limited, and examples thereof include cationic antistatic agents, anionic antistatic agents, nonionic antistatic agents, amphoteric antistatic agents, and fatty acid partial esters such as glycerin fatty acid monoesters.
Although it does not specifically limit as a metal deactivator, A hydrazine type metal deactivator, a nitrogen compound type metal deactivator, a phosphite ester type metal deactivator, etc. are mentioned. These may be used alone or in combination of two or more.
The antibacterial / antifungal agent is not particularly limited, and examples thereof include an organic compound antibacterial / antifungal agent, a natural organic antibacterial / antifungal agent, and an inorganic antibacterial / antifungal agent.
Although it does not specifically limit as a pigment, An inorganic pigment, an organic pigment, etc. are mentioned. Examples of inorganic pigments include titanium oxide, calcium carbonate, and carbon black. Examples of organic pigments include azo pigments, acidic dye lakes, basic dye lakes, and condensed polycyclic pigments. These pigments may be used alone or in combination of two or more.
The amount of the additive component is not particularly limited as long as the properties of the resin composition of the present invention are not impaired.
5.製法
 本発明の樹脂組成物の製造方法は特に限定されないが、リグノセルロース系混合物と熱可塑性樹脂を熱溶融混合して得ることが好ましい。
(混練・成形)
 本発明の樹脂組成物は、リグノセルロース系混合物と熱可塑性樹脂を前記割合で、更に必要に応じて添加される各種添加剤を配合し、熱溶融混合することにより得られる。このときの配合及び混練は、通常用いられている機器、例えばリボンブレンダー、ドラムタンブラー等で予備混合して、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機、及びコニーダ等を用いる方法で行うことができる。
5). Production Method The production method of the resin composition of the present invention is not particularly limited, but it is preferably obtained by hot melt mixing a lignocellulose-based mixture and a thermoplastic resin.
(Kneading / Molding)
The resin composition of the present invention can be obtained by blending a lignocellulose-based mixture and a thermoplastic resin in the above proportions, and further adding various additives added as necessary, followed by hot melt mixing. The compounding and kneading at this time are premixed with a commonly used equipment such as a ribbon blender or a drum tumbler, and then a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a multi screw extruder. This method can be performed by a method using a machine and a conider.
 混練の際の加熱温度は、熱可塑性樹脂の種類により通常160~350℃の範囲で適宜選択されるが、熱可塑性樹脂として、ポリオレフィン系樹脂を用いる場合は160~250℃の範囲、ポリスチレン系樹脂を用いる場合は170~280℃の範囲、ポリエステル樹脂を用いる場合は230~280℃の範囲で選択することが好ましい。
 また、ポリアミド樹脂を用いる場合は240~290℃の範囲、ポリカーボネート樹脂を用いる場合は270~350℃の範囲、ポリ乳酸樹脂を用いる場合は190~250℃の範囲で選択することが好ましい。
The heating temperature at the time of kneading is suitably selected in the range of usually 160 to 350 ° C. depending on the kind of the thermoplastic resin, but when the polyolefin resin is used as the thermoplastic resin, the temperature is in the range of 160 to 250 ° C. In the case of using polyester, it is preferable to select in the range of 170 to 280 ° C., and in the case of using a polyester resin, it is preferably selected in the range of 230 to 280 ° C.
In the case of using a polyamide resin, it is preferably selected in the range of 240 to 290 ° C., in the case of using a polycarbonate resin, in the range of 270 to 350 ° C., and in the case of using a polylactic acid resin, it is preferably selected in the range of 190 to 250 ° C.
 本発明の樹脂組成物は、上記の溶融混練及びペレット化によって得られたペレットを原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法、及び発泡成形法等により各種成形体を製造することができる。特に、上記溶融混練方法により、ペレット状の成形原料を製造し、次いでこのペレットを用いて、射出成形又は射出圧縮成形による射出成形体の製造、及び押出成形による押出成形体の製造に好適に用いることができる。また、押出成形にて押出シートにした後に加圧・熱成形して成形体としてもよい。 The resin composition of the present invention is made from the pellets obtained by the above-mentioned melt-kneading and pelletizing as raw materials, an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, a press molding method, a vacuum molding method, and Various molded articles can be produced by a foam molding method or the like. In particular, a pellet-shaped forming raw material is manufactured by the melt kneading method, and then this pellet is used suitably for manufacturing an injection molded body by injection molding or injection compression molding, and for manufacturing an extrusion molded body by extrusion molding. be able to. Moreover, after forming into an extrusion sheet by extrusion molding, it is good also as a molded object by pressurizing and thermoforming.
 本発明の樹脂組成物から得られる成形品は、1mm以上のブツ(粒状物)が目視にて認められないことが好ましい。リグノセルロース系混合物を熱可塑性樹脂と混合した場合、好ましくは熱溶融混合した場合に、リグノセルロース系混合物は熱可塑性樹脂中での分散性に優れるため、ブツ(粒状物)の発生が抑制できる。これは、リグノセルロース系混合物がリグノフェノールフェノール誘導体のマトリックス中にセルロース成分が偏在することなく一様に存在しているためである。
 また、本発明の樹脂組成物から得られる成形品は、リグノセルロース系混合物を添加しない場合に比べて、引張降伏強さ及び引張弾性率に優れることが好ましい。
 更に、本発明の樹脂組成物から得られる成形品は、リグノセルロース系混合物を添加しない場合に比べて、耐光暴露後伸び保持率が向上することが好ましい。熱可塑性樹脂としてポリオレフィン樹脂(好ましくはポリエチレン及びポリプロピレンよりなる群から選択される少なくとも1種、より好ましくはポリプロピレン)を使用した場合、耐光暴露後伸び保持率が、好ましくは65%以上、より好ましくは70%以上、更に好ましくは80%以上、より更に好ましくは85%以上である。耐光暴露後伸び保持率は、実施例に記載の方法により測定される。
As for the molded article obtained from the resin composition of this invention, it is preferable that 1 mm or more of a lump (granular material) is not recognized visually. When the lignocellulose-based mixture is mixed with a thermoplastic resin, preferably when hot-melt mixed, the lignocellulose-based mixture is excellent in dispersibility in the thermoplastic resin, so that the occurrence of blisters (particulate matter) can be suppressed. This is because the lignocellulosic mixture is uniformly present in the matrix of lignophenolphenol derivative without the cellulose component being unevenly distributed.
Moreover, it is preferable that the molded article obtained from the resin composition of this invention is excellent in tensile yield strength and a tensile elasticity modulus compared with the case where a lignocellulose type mixture is not added.
Furthermore, it is preferable that the molded article obtained from the resin composition of the present invention has an improved elongation retention after exposure to light compared to the case where no lignocellulose-based mixture is added. When a polyolefin resin (preferably at least one selected from the group consisting of polyethylene and polypropylene, more preferably polypropylene) is used as the thermoplastic resin, the elongation retention after exposure to light is preferably 65% or more, more preferably It is 70% or more, more preferably 80% or more, and still more preferably 85% or more. The elongation retention after exposure to light is measured by the method described in the examples.
 本発明の樹脂組成物から得られる成形品は、リグノセルロース系混合物を添加しない場合に比べて、オーブン暴露後伸び保持率が向上することが好ましい。熱可塑性樹脂としてポリオレフィン樹脂(好ましくはポリエチレン及びポリプロピレンよりなる群から選択される少なくとも1種、より好ましくはポリプロピレン)を使用した場合、オーブン暴露後伸び保持率が、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、より更に好ましくは90以上である。オーブン暴露後伸び保持率は、実施例に記載の方法により測定され、熱可塑性樹脂に適した温度に暴露する。
 また、本発明の樹脂組成物から得られる成形品は、リグノセルロース系混合物を添加しない場合に比べて、難燃性(LOI)に優れることが好ましい。
It is preferable that the molded article obtained from the resin composition of the present invention has an improved elongation retention after exposure to the oven as compared with the case where no lignocellulose-based mixture is added. When a polyolefin resin (preferably at least one selected from the group consisting of polyethylene and polypropylene, more preferably polypropylene) is used as the thermoplastic resin, the elongation retention after oven exposure is preferably 70% or more, more preferably 75% or more, more preferably 80% or more, and still more preferably 90 or more. The elongation retention after exposure to the oven is measured by the method described in the examples and exposed to a temperature suitable for the thermoplastic resin.
Moreover, it is preferable that the molded article obtained from the resin composition of this invention is excellent in a flame retardance (LOI) compared with the case where a lignocellulose-type mixture is not added.
6.用途
 本発明の樹脂組成物、及び前記樹脂組成物より得られた成形体は、OA材料、電気・電子材料、自動車材料、産業資材、電線被覆材料、フィルム、繊維等に好適に用いることができる。
6). Applications The resin composition of the present invention and the molded product obtained from the resin composition can be suitably used for OA materials, electrical / electronic materials, automotive materials, industrial materials, wire coating materials, films, fibers, and the like. .
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(製造例1:リグノセルロース系混合物の調製と評価)
(1)脱脂試料の調製
 ヒノキ(Chamaecyparis obtusa)の木粉を振動ミル(HEIKO製作所、TI-50)にて微粉化し、80mesh(目開き0.18mm)のふるい((株)飯田製作所)にかけ、80mesh passの木粉を得た。この木粉を室温にてエタノール:ベンゼン=1:2(還流下で着色がなくなるまで添加した。木粉の10~50倍量程度である。)で48時間、25℃にて抽出後、可溶分を溶媒とともに除去し、更に、ドラフト内で抽出残渣の溶媒を完全に留去し、供試試料とした。
(Production Example 1: Preparation and evaluation of lignocellulose-based mixture)
(1) Preparation of defatted sample Wood powder of cypress (Chamaecyparis obtusa) was pulverized with a vibration mill (HEIKO Mfg., TI-50) and passed through a sieve of 80 mesh (aperture 0.18 mm) (Iida Seisakusho) An 80 mesh pass wood flour was obtained. After extraction at 25 ° C. for 48 hours with ethanol: benzene = 1: 2 at room temperature (added until the color disappears under reflux. The amount is about 10 to 50 times the amount of wood flour). Solvent was removed together with the solvent, and the solvent of the extraction residue was completely distilled off in a fume hood to prepare a test sample.
(2)リン酸系相分離処理
(2-1)フェノール化合物収着木粉の製造
 500ml容ビーカーに上記脱脂木粉23gを量り取り、p-クレゾールのアセトン溶液(リグニンC9単位当たり3モル倍のフェノール化合物を含む)を加え、ガラス棒で撹拌し、アルミホイル及びパラフィルムでビーカーに蓋をし、24時間静置させた。その後、60分ドラフト内で木粉を激しく撹拌し、その後、アセトンを留去した。
(2) Phosphate phase separation treatment (2-1) Production of phenol compound sorption wood flour 23 g of the defatted wood flour was weighed into a 500 ml beaker, and p-cresol acetone solution (3 mol times per 9 units of lignin C9). (Including a phenol compound) was added, stirred with a glass rod, the beaker was covered with aluminum foil and parafilm, and allowed to stand for 24 hours. Thereafter, the wood flour was vigorously stirred in a draft for 60 minutes, and then acetone was distilled off.
(2-2)リン酸処理(相分離処理)
 上記で得られたフェノール化合物収着木粉に濃度が95質量%のリン酸200ml(50℃)を3回に分けて加え、ガラス棒及びテフロン(登録商標)へらで練り込み、1時間50℃で激しく撹拌した。その後、反応物を約3,500mlの脱イオン水に投入することでリン酸濃度を10%以下にし、反応を停止させ、更に反応物を分散させるためにスターラーで1時間激しく撹拌した。次に、遠心分離(8,800rpm、8分、4℃)により不溶画分を分離回収し、脱酸を行い、凍結乾燥・減圧乾燥し、相分離処理木粉を得た。
 こうして得られた試料は、セルロース成分が一度溶解し、再結晶するため、リグノフェノール誘導体とセルロース成分とを均一に含む、すなわち、リグノフェノール誘導体のマトリックス中にセルロース成分が偏在することなく一様に存在する針状又は髭状の結晶からなる組成物(本明細書では、リグノセルロース系混合物とも称する。)である。電子顕微鏡で得られた組成物の大きさを観察したところ、平均長軸長は10~500nmであり、平均短軸長は5~50nmであった。
(2-2) Phosphoric acid treatment (phase separation treatment)
To the phenol compound sorption wood flour obtained above, 200 ml of phosphoric acid having a concentration of 95% by mass (50 ° C.) was added in three portions, and kneaded with a glass rod and a Teflon (registered trademark) spatula for 1 hour at 50 ° C. Stir vigorously. Thereafter, the reaction mixture was poured into about 3,500 ml of deionized water to bring the phosphoric acid concentration to 10% or less, the reaction was stopped, and the mixture was further stirred vigorously for 1 hour to disperse the reaction mixture. Next, the insoluble fraction was separated and collected by centrifugation (8,800 rpm, 8 minutes, 4 ° C.), deoxidized, freeze-dried and dried under reduced pressure to obtain phase-separated wood flour.
The sample thus obtained contains the lignophenol derivative and the cellulose component uniformly because the cellulose component is once dissolved and recrystallized, that is, the cellulose component is uniformly distributed in the matrix of the lignophenol derivative. It is a composition composed of acicular or cage crystals (also referred to herein as a lignocellulosic mixture). When the size of the composition obtained with an electron microscope was observed, the average major axis length was 10 to 500 nm, and the average minor axis length was 5 to 50 nm.
(実施例1~9、及び比較例1~8)
 表1及び表2に示す割合で各成分を配合し、押出機(機種名:PCM-30、(株)池貝製)に供給し、160~220℃で溶融混練し、ペレット化した。なお、全ての実施例及び比較例において、樹脂組成物100質量部に対して、酸化防止剤としてイルガノックス1010(BASF社製)0.2質量部及びアデカスタブ2112(ADEKA製)0.1質量部をそれぞれ配合した。得られたペレットを、80℃で12時間乾燥させ後、射出成形機(東芝機械(株)製、型式:IS100N)シリンダー温度210~260℃、金型温度40℃の条件で射出成形してASTM規格準拠試験片を得た。得られた試験片を用いて性能を各種試験によって評価し、その結果を表1及び表2に示した。
 なお、表中の「-」の記載は、当該成分を含有しないことを意味する。
(Examples 1 to 9 and Comparative Examples 1 to 8)
Each component was blended in the proportions shown in Tables 1 and 2, supplied to an extruder (model name: PCM-30, manufactured by Ikegai Co., Ltd.), melt-kneaded at 160 to 220 ° C., and pelletized. In all of the examples and comparative examples, 0.2 parts by mass of Irganox 1010 (manufactured by BASF) and 0.1 part by mass of ADK STAB 2112 (manufactured by ADEKA) are used as an antioxidant with respect to 100 parts by mass of the resin composition. Respectively. The obtained pellets were dried at 80 ° C. for 12 hours, and then injection molded under the conditions of an injection molding machine (Toshiba Machine Co., Ltd., model: IS100N) cylinder temperature 210-260 ° C. and mold temperature 40 ° C. A standard-compliant test piece was obtained. The performance was evaluated by various tests using the obtained test pieces, and the results are shown in Tables 1 and 2.
In addition, the description of “-” in the table means that the component is not contained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2で使用した各成分は、以下のとおりである。
 ・ポリプロピレン(J-966HP):ポリプロピレン、出光興産(株)製、商品名「IDEMITSU PP:J-966HP」
 ・高密度ポリエチレン(2200J):高密度ポリエチレン、(株)プライムポリマー製、商品名「HI-ZEX 2200J」
 ・PC(A1900):ポリカーボネート樹脂、出光興産(株)製、商品名「タフロンA1900」
 ・ABS(テクノABS130):アクリロニトリル-ブタジエン-スチレン共重合体、テクノポリマー(株)製、商品名「テクノABS130」
・PHBH(X131A):ポリ(R-3-ヒドロキシブチレート-co-R-3-ヒドロキシヘキサナート)、(株)カネカ製、商品名「アオニレックス X131A」
 ・リグノセルロース系混合物:上記製造例1にて調製したリグノセルロース系混合物
 ・セルロース:セルロースファイバー、セライト社製、SW-10
Each component used in Tables 1 and 2 is as follows.
・ Polypropylene (J-966HP): Polypropylene, manufactured by Idemitsu Kosan Co., Ltd., trade name “IDEMITSU PP: J-966HP”
・ High-density polyethylene (2200J): High-density polyethylene, manufactured by Prime Polymer Co., Ltd., trade name “HI-ZEX 2200J”
PC (A1900): Polycarbonate resin, manufactured by Idemitsu Kosan Co., Ltd., trade name “Taflon A1900”
ABS (Techno ABS130): Acrylonitrile-butadiene-styrene copolymer, manufactured by Technopolymer Co., Ltd., trade name “Techno ABS130”
PHBH (X131A): poly (R-3-hydroxybutyrate-co-R-3-hydroxyhexanate), manufactured by Kaneka Corporation, trade name “Aonilex X131A”
Lignocellulose mixture: Lignocellulose mixture prepared in Production Example 1 Cellulose: Cellulose fiber, Celite, SW-10
 なお、得られた樹脂組成物及び成形体の評価を以下の項目について行った。
(引張試験)
 ASTM D638準拠して、引張降伏強さ(MPa)、及び引張弾性率(MPa)を測定した。
In addition, evaluation of the obtained resin composition and a molded object was performed about the following items.
(Tensile test)
Tensile yield strength (MPa) and tensile modulus (MPa) were measured according to ASTM D638.
(破断伸び率)
 ASTM D638準拠して、破断伸び率(%)を測定した。
(Elongation at break)
The elongation at break (%) was measured according to ASTM D638.
(耐光暴露後伸び保持率)
 キセノンランプに83℃雰囲気下で300時間暴露し、上記と同様に破断伸び率を測定し、未処理の値をもとに伸び保持率を評価した。
(オーブン暴露後伸び保持率)
 オーブンに120℃雰囲気下で500時間暴露し、上記と同様に破断伸び率を測定し、未処理の値をもとに伸び保持率を評価した。
(Elongation retention after exposure to light)
Exposed to a xenon lamp at 83 ° C. for 300 hours, the elongation at break was measured in the same manner as described above, and the elongation retention was evaluated based on the untreated values.
(Elongation retention after exposure to oven)
The oven was exposed to an oven at 120 ° C. for 500 hours, the elongation at break was measured in the same manner as described above, and the elongation retention was evaluated based on the untreated values.
(難燃性(LOI))
 JIS K7201-2準拠して、難燃性の指標であるLOI値を測定した。
(Flame retardance (LOI))
According to JIS K7201-2, the LOI value, which is an index of flame retardancy, was measured.
(セルロース分散状態)
 セルロースの分散状態は、成形品を目視にて評価した。
 評価基準は、以下のとおりである。
 A:ブツが認められない
 B:1mm未満のブツが認められる
 C:1mm以上のブツが認められる
(Cellulose dispersion state)
The cellulose dispersion was evaluated by visual observation of the molded product.
The evaluation criteria are as follows.
A: No spots B: Less than 1 mm is observed C: 1 mm or more is observed
 また、得られた試験片について、色調の観察を行った結果、樹脂としてポリプロピレン又は高密度ポリエチレンを使用した実施例1~4では顕著な着色は観察されなかったが、ポリカーボネート樹脂を使用した実施例6では強い着色があり(YI=45)、また、ポリカーボネート樹脂とABSを併用した実施例5でも着色が認められた(YI=27)。 Further, as a result of observing the color tone of the obtained test piece, no remarkable coloring was observed in Examples 1 to 4 in which polypropylene or high-density polyethylene was used as the resin, but examples using the polycarbonate resin were used. In No. 6, there was strong coloring (YI = 45), and coloring was also observed in Example 5 in which polycarbonate resin and ABS were used in combination (YI = 27).
 得られるリグノフェノール誘導体-セルロース成分混合物(リグノセルロース系混合物)は、セルロースをフィブリル化したり、リグノフェノールを被覆する工程が無く、製造が簡単であるとともに、得られる混合物は粉末状であり、熱可塑性樹脂に溶融混合しても分散が良好であり、成形外観に悪影響を及ぼさない。請求項の含有割合の範囲内であれば、強度が高く、耐熱性、耐候性、難燃性に優れる組成物となることが明らかとなった。 The resulting lignophenol derivative-cellulose component mixture (lignocellulose-based mixture) is easy to manufacture without the steps of fibrillating cellulose or coating lignophenol, and the resulting mixture is powdery and thermoplastic. Even if it is melt-mixed with the resin, the dispersion is good and the molded appearance is not adversely affected. It was clarified that when the content ratio is within the range of the claims, the composition has high strength and is excellent in heat resistance, weather resistance, and flame retardancy.

Claims (14)

  1.  リグノセルロース系混合物、及び熱可塑性樹脂を含有し、
     リグノセルロース系混合物及び熱可塑性樹脂の合計を100質量%としたとき、リグノセルロース系混合物を0.5質量%以上60質量%以下含有し、
     成形品において1mm以上のブツが目視にて認められないことを特徴とする、樹脂組成物。
    Containing a lignocellulosic mixture, and a thermoplastic resin,
    When the total of the lignocellulose-based mixture and the thermoplastic resin is 100% by mass, the lignocellulose-based mixture is contained in an amount of 0.5% by mass to 60% by mass,
    A resin composition characterized in that no 1 mm or more irregularities are visually recognized in a molded product.
  2.  前記リグノセルロース系混合物の平均長軸長が10~500nmであり、平均短軸長が5~50nmである、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the lignocellulose-based mixture has an average major axis length of 10 to 500 nm and an average minor axis length of 5 to 50 nm.
  3.  前記リグノセルロース系混合物が、針状又は髭状の結晶を含む組成物である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the lignocellulose-based mixture is a composition containing needle-like or cage-like crystals.
  4.  熱可塑性樹脂が、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド樹脂、ポリエステル樹脂、及びポリカーボネート樹脂よりなる群から選択される少なくとも1つである、請求項1~3のいずれか1つに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the thermoplastic resin is at least one selected from the group consisting of polyolefin resins, polystyrene resins, polyamide resins, polyester resins, and polycarbonate resins. object.
  5.  熱可塑性樹脂が、ポリオレフィン系樹脂である、請求項1~4のいずれか1つに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the thermoplastic resin is a polyolefin resin.
  6.  熱可塑性樹脂が、ポリエチレン及びポリプロピレンよりなる群から選択される少なくとも1種である、請求項1~5のいずれか1つに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein the thermoplastic resin is at least one selected from the group consisting of polyethylene and polypropylene.
  7.  得られる成形品の耐光暴露後伸び保持率が65%以上である、請求項5又は6に記載の樹脂組成物。 The resin composition according to claim 5 or 6, wherein the obtained molded article has an elongation retention after exposure to light of 65% or more.
  8.  更に、酸化防止剤を含む、請求項1~7のいずれか1つに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising an antioxidant.
  9.  請求項1~8のいずれか1つに記載の樹脂組成物を成形して得られる成形体。 A molded product obtained by molding the resin composition according to any one of claims 1 to 8.
  10.  フェノール化合物を添加したリグノセルロース系物質に、酸を添加して混合し、リグノフェノール誘導体とセルロース成分とからなるリグノセルロース系混合物を得る工程、及び
     前記リグノセルロース系混合物と熱可塑性樹脂とを熱溶融混合する工程を有し、
     前記リグノセルロース系混合物及び前記熱可塑性樹脂の合計を100質量%としたとき、リグノセルロース系混合物を0.5質量%以上60質量%以下含有する
     樹脂組成物の製造方法。
    A step of obtaining a lignocellulosic mixture comprising a lignophenol derivative and a cellulose component by adding an acid to a lignocellulosic material to which a phenolic compound has been added, and thermally melting the lignocellulosic mixture and a thermoplastic resin Mixing, and
    The manufacturing method of the resin composition which contains a lignocellulose type mixture 0.5 mass% or more and 60 mass% or less when the sum total of the said lignocellulose type mixture and the said thermoplastic resin is 100 mass%.
  11.  酸が、リン酸、ギ酸、及びトリフルオロ酢酸よりなる群から選択される少なくとも1つである、請求項10に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 10, wherein the acid is at least one selected from the group consisting of phosphoric acid, formic acid, and trifluoroacetic acid.
  12.  リグノセルロース系物質に添加するフェノール化合物が、少なくともオルト位又はパラ位に1以上の置換基を有しているフェノール化合物である、請求項10又は11に記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 10 or 11, wherein the phenol compound added to the lignocellulosic material is a phenol compound having one or more substituents at least in the ortho position or the para position.
  13.  リグノセルロース系物質に添加するフェノール化合物が、炭素数1以上6以下のアルキル基、炭素数1以上6以下のアルコキシ基、及び水酸基よりなる群から選択される少なくとも1つの置換基を、オルト位及び/又はパラ位に有しているフェノール化合物である、請求項10~12のいずれか1つに記載の樹脂組成物の製造方法。 The phenol compound added to the lignocellulosic material contains at least one substituent selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a hydroxyl group, The method for producing a resin composition according to any one of claims 10 to 12, which is a phenol compound having a para-position.
  14.  リグノセルロース系混合物が、p-クレゾール、2,6-キシレノール、2,4-キシレノール、2-メトキシフェノール、2,6-ジメトキシフェノール、カテコール、ホモカテコール、及びピロガロールよりなる群から選択される少なくとも1つのフェノール化合物を添加したリグノセルロース系物質に、濃度が90質量%以上のリン酸を添加して混合することにより得られる、請求項10~13のいずれか1つに記載の樹脂組成物の製造方法。 The lignocellulosic mixture is at least one selected from the group consisting of p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol, 2,6-dimethoxyphenol, catechol, homocatechol, and pyrogallol. The production of a resin composition according to any one of claims 10 to 13, which is obtained by adding and mixing phosphoric acid having a concentration of 90% by mass or more to a lignocellulosic material to which two phenolic compounds are added. Method.
PCT/JP2016/070112 2015-07-09 2016-07-07 Resin composition and method for manufacturing same, and molded body WO2017006986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017527491A JP6745446B2 (en) 2015-07-09 2016-07-07 Resin composition, method for producing the same, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015138046 2015-07-09
JP2015-138046 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006986A1 true WO2017006986A1 (en) 2017-01-12

Family

ID=57685334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070112 WO2017006986A1 (en) 2015-07-09 2016-07-07 Resin composition and method for manufacturing same, and molded body

Country Status (2)

Country Link
JP (1) JP6745446B2 (en)
WO (1) WO2017006986A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074949A1 (en) * 2000-03-31 2001-10-11 Masamitsu Hunaoka Lignocellulosic composition comprising lignophenol derivative and cellulose ingredient
JP2005194314A (en) * 2003-12-26 2005-07-21 Agri Future Joetsu Co Ltd Thermoplastic resin composition, composite material using the same and its production method
JP2007169612A (en) * 2005-11-28 2007-07-05 Japan Polypropylene Corp Wood-based material-compounded resin composition
JP2011038193A (en) * 2009-08-07 2011-02-24 Konica Minolta Holdings Inc Cellulose fiber and fiber composite material
WO2012176778A1 (en) * 2011-06-22 2012-12-27 出光興産株式会社 Thermoplastic resin composition and molded body
WO2013069373A1 (en) * 2011-11-07 2013-05-16 出光興産株式会社 Thermoplastic resin composition and molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074949A1 (en) * 2000-03-31 2001-10-11 Masamitsu Hunaoka Lignocellulosic composition comprising lignophenol derivative and cellulose ingredient
JP2005194314A (en) * 2003-12-26 2005-07-21 Agri Future Joetsu Co Ltd Thermoplastic resin composition, composite material using the same and its production method
JP2007169612A (en) * 2005-11-28 2007-07-05 Japan Polypropylene Corp Wood-based material-compounded resin composition
JP2011038193A (en) * 2009-08-07 2011-02-24 Konica Minolta Holdings Inc Cellulose fiber and fiber composite material
WO2012176778A1 (en) * 2011-06-22 2012-12-27 出光興産株式会社 Thermoplastic resin composition and molded body
WO2013069373A1 (en) * 2011-11-07 2013-05-16 出光興産株式会社 Thermoplastic resin composition and molded body

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MAGUMI FUJIMOTO ET AL.: "Lignophenol/ Nanocellulose Hybrid o Shiyo shita PP Fukugo Zairyo no Kaihatsu", POLYMER MATERIAL FORUM, vol. 24, 2015, pages 14 2 *
MASAMITSU FUNAOKA ET AL.: "Cellulose Nanofiber/ Lignophenol Fukugo Sozai no Yudo to sono Kino", CONVERTECH, vol. 44, no. 3, 2016, pages 93 - 96 *
MASAMITSU FUNAOKA ET AL.: "Nanocellulose Lignophenol Fukugotai (LNCC) no Kaihatsu", KAGAKU SOCHI, vol. 58, no. 3, 2016, pages 17 - 23 *
MASAMITSU FUNAOKA ET AL.: "New Functionality Control Technology for Lignocellulose", PLASTICS AGE, vol. 62, no. 5, 2016, pages 84 - 90 *
MEGUMI FUJIMOTO ET AL.: "Lignophenol/ Nanocellulose Hybrid o Shiyo shita PP Fukugo Zairyo no Kaihatsu", SEIKEI KAKO SYMPOSIA, 2015, pages 405 - 406 *
TETSUYA KANEDA ET AL.: "Lignophenol Cellulose Fukugokei no Kino to Oyo", THE SOCIETY OF FIBER SCIENCE AND TECHNOLOGY, vol. 61, no. 1, 2006, pages 361 *

Also Published As

Publication number Publication date
JPWO2017006986A1 (en) 2018-06-28
JP6745446B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
Liu et al. Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate
Ridho et al. Lignin as green filler in polymer composites: development methods, characteristics, and potential applications
Suardana et al. Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites
Maldhure et al. Mechanical properties of polypropylene blended with esterified and alkylated lignin
Rojo et al. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites
US7445835B2 (en) Kenaf-fiber-reinforced resin composition
Harnnecker et al. Biodegradable polyester-based blend reinforced with Curauá fiber: thermal, mechanical and biodegradation behaviour
JP6775160B2 (en) Defibering aid for hydrophobized cellulosic fibers, manufacturing method of resin composition using it, and molded article
Zhu et al. Preparation of methacrylic acid modified microcrystalline cellulose and their applications in polylactic acid: Flame retardancy, mechanical properties, thermal stability and crystallization behavior
Blanco et al. Thermal characterization of a series of lignin-based polypropylene blends
JP6580471B2 (en) Polylactic acid composition, method for producing the same, and composite
Ardekani et al. Mechanical and thermal properties of recycled poly (ethylene terephthalate) reinforced newspaper fiber composites
Chen et al. Characterization of rice husk-incorporated recycled thermoplastic blend composites
Magalhães et al. Preparation and characterization of polypropylene/heart‐of‐peach palm sheath composite
Pivsa‐Art et al. Eco‐friendly bamboo fiber‐reinforced poly (butylene succinate) biocomposites
WO2016104634A1 (en) Thermoplastic resin composition and molded article thereof
Alekhina et al. Physico-chemical properties of fractionated softwood kraft lignin and its potential use as a bio-based component in blends with polyethylene
Polat et al. Lignin as an additive for advanced composites
Karina et al. Physical and mechanical properties of recycled polypropylene composites reinforced with rice straw lignin
Lo Re et al. Kenaf‐filled biodegradable composites: rheological and mechanical behaviour
WO2016199923A1 (en) Thermoplastic resin composition and method for producing thermoplastic resin composition
Taflick et al. Acacia bark residues as filler in polypropylene composites
JP6136324B2 (en) Resin composition, resin molded body, and method for producing resin composition
Niu et al. Preparation, structure, and property of wood flour incorporated polypropylene composites prepared by a solid‐state mechanochemical method
WO2019150907A1 (en) Cellulose fiber master batch, cellulose fiber-containing resin composition, method for producing cellulose fiber master batch, method for producing cellulose fiber-containing resin composition, and molded body of cellulose fiber-containing resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/03/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16821454

Country of ref document: EP

Kind code of ref document: A1