WO2017006859A1 - Method for detecting target nucleic acid - Google Patents

Method for detecting target nucleic acid Download PDF

Info

Publication number
WO2017006859A1
WO2017006859A1 PCT/JP2016/069638 JP2016069638W WO2017006859A1 WO 2017006859 A1 WO2017006859 A1 WO 2017006859A1 JP 2016069638 W JP2016069638 W JP 2016069638W WO 2017006859 A1 WO2017006859 A1 WO 2017006859A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
tag
acid amplification
primer
sequence
Prior art date
Application number
PCT/JP2016/069638
Other languages
French (fr)
Japanese (ja)
Inventor
創太郎 佐野
重彦 宮本
高橋 孝治
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2017006859A1 publication Critical patent/WO2017006859A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a target nucleic acid detection method including amplification of a target nucleic acid using a two-step nucleic acid amplification reaction and detection of a nucleic acid amplification product on a solid phase carrier.
  • the obtained amplification product is diffused and moved in the porous solid phase carrier by a capillary phenomenon, and is captured and bound to the label and the solid phase carrier via the tags attached to both ends of the amplification product. Is detected visually (Patent Document 1).
  • this detection method relies on a tag derived from a primer attached to both ends of the amplification product to perform capture and binding to a label and a solid phase carrier, it is specific to the target nucleic acid.
  • the amplification product and the primer dimer formed by the non-specific reaction cannot be distinguished, and there is a possibility of performing false positive determination based on the detection of the primer dimer.
  • the present invention avoids non-specific detection of a primer dimer in a method for detecting a target nucleic acid including a nucleic acid amplification reaction and detection of a nucleic acid amplification product on a solid phase carrier (for example, a nucleic acid chromatography method).
  • An object of the present invention is to provide a new detection method with high determination accuracy.
  • a method for detecting a target nucleic acid comprising: (A) consisting of a primer containing a sequence homologous to the first base sequence of the target nucleic acid and a primer containing a sequence homologous to the complementary strand sequence of the second base sequence located downstream of the first base sequence Using the first primer set to obtain a first nucleic acid amplification product by performing a nucleic acid amplification reaction using the test DNA as a template, (B) a primer including a sequence homologous to a third base sequence located downstream of the first base sequence and upstream of the second base sequence; a downstream of the third base sequence; and A second primer set comprising primers containing a sequence homologous to the complementary strand sequence of the fourth base sequence located upstream of the second base sequence, wherein any one of the primers can bind to the labeling substance Using the second primer set, which is bound to a first tag and the other primer is bound to a second tag capable of
  • [5] (a) a primer containing a sequence homologous to the first base sequence of the target nucleic acid, and a sequence homologous to the complementary strand sequence of the second base sequence located downstream of the first base sequence A first primer set comprising primers, (B) a primer including a sequence homologous to a third base sequence located downstream of the first base sequence and upstream of the second base sequence; a downstream of the third base sequence; and A second primer set comprising primers containing a sequence homologous to the complementary strand sequence of the fourth base sequence located upstream of the second base sequence, wherein any one of the primers can bind to the labeling substance
  • the second primer set which is bound to a first tag and the other primer is bound to a second tag capable of binding to a solid phase carrier; (C) a labeling substance capable of binding to the first tag, and (D) a solid phase carrier capable of binding to the second tag,
  • a kit for detecting a target nucleic acid comprising: [6] The kit according to [
  • the first tag is a tag made of any low molecular weight compound selected from biotin, digoxigenin, and FITC, and the labeling substance contains a protein that can bind to the tag.
  • the second tag is a tag comprising an oligonucleotide
  • the solid phase carrier comprises an oligonucleotide having a sequence complementary to the oligonucleotide.
  • the Tm value of one or both primers included in the first primer set is higher than the Tm value of one or both primers included in the second primer set. [5 ] To [11].
  • non-specific detection of primer dimers is avoided in a method for detecting a target nucleic acid including a nucleic acid amplification reaction and detection of a nucleic acid amplification product on a solid phase carrier (eg, nucleic acid chromatography). Therefore, it is possible to provide a detection method with high determination accuracy.
  • a solid phase carrier eg, nucleic acid chromatography
  • the schematic diagram of a lateral flow type nucleic acid detection device is shown.
  • 1 solid phase carrier
  • 2 conjugate pad
  • 3 sample pad
  • 4 absorption pad
  • 5 substrate
  • 6 capture means.
  • the region corresponding to the recognition sequence of each primer used in the examples is shown.
  • A It is a photograph figure which shows the result of having detected the amplification product obtained by Nested-PCR method using the outer primer set and the inner primer set in Example 1 using the nucleic acid detection device.
  • (B) It is a photograph figure which shows the result of having detected the amplification product obtained by PCR method using only the inner primer in the comparative example 1 using the nucleic acid detection device. Each figure shows the amount of template DNA added to the reaction system.
  • the target nucleic acid detection method generally includes the following steps: Amplifying the target nucleic acid; A step of labeling the amplified target nucleic acid, and a step of capturing and detecting the labeled target nucleic acid on a solid phase carrier. Hereinafter, each step will be described.
  • the first nucleic acid amplification reaction can be performed using the first primer set, and the copy number of the first nucleic acid amplification product containing the target nucleic acid (if present) can be increased.
  • the copy number of the first nucleic acid amplification product containing the target nucleic acid (if present) can be increased.
  • the directivity for the target nucleic acid can be enhanced, and non-specific nucleic acid amplification different from the target nucleic acid. Can be reduced or avoided.
  • the “target nucleic acid” means any nucleic acid sequence or nucleic acid molecule to be detected, which may be natural or artificially synthesized, and is not particularly limited.
  • the target nucleic acid include a specific trait, a genetic marker indicating the onset or possibility of onset of a specific disease, a gene derived from a pathogen such as a bacterium or virus, a gene derived from an allergen, a single nucleotide polymorphism, Examples include, but are not limited to, base sequences that exhibit congenital or acquired mutations.
  • each primer (so-called forward primer and reverse primer) included in the “first primer set” and the “second primer set” is a common in the nested-PCR method. It can be designed according to a common technique (published by Hiroki Nakayama, “Bio-Experiment Illustrated, 3 Really PCR”, Shujunsha, 1997).
  • the “first primer set” includes a primer having a sequence homologous to a specific base sequence (first base sequence) on one strand of a double-stranded DNA that is a target nucleic acid, or consisting of the sequence, A sequence homologous to the complementary strand sequence of the specific base sequence (second base sequence) located downstream (3 ′ side) from the base sequence of 1 (ie, homologous to the base sequence of the other strand of the double-stranded DNA) Or a primer composed of the sequence.
  • the primer having a “homologous sequence” not only has the same sequence as the first base sequence and the same sequence as the complementary strand sequence of the second base sequence, but also binds to the target nucleic acid and amplifies the nucleic acid.
  • the size of the primer in the first primer set can be 8 bases or more, 12 bases or more, or 15 bases or more in length, and the upper limit is not particularly limited, but 50 bases or less, 40 bases or less, or 30 bases
  • the length can be as follows.
  • the size of each primer may be the same or different.
  • the first primer set has a higher annealing temperature than the annealing temperature in the second nucleic acid amplification reaction using the second primer set by 5 ° C or higher, preferably 10 ° C or higher, more preferably 15 ° C or higher.
  • the target nucleic acid can be amplified under the conditions of one nucleic acid amplification reaction. That is, the Tm value of any one, more preferably both primers included in the first primer set is more than the Tm value of any one, more preferably both primers included in the second primer set. It can be designed to be 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 15 ° C. or higher.
  • the first nucleic acid amplification is performed at a high annealing temperature according to the Tm value of the first primer set.
  • the “Tm value” of each primer in the second primer set means a value calculated based on a region not including the tag region or spacer region described below.
  • the “second primer set” is a specific base sequence located on the downstream side (3 ′ side) of the first base sequence and on the upstream side (5 ′ side) of the second base sequence ( (3rd base sequence) or a primer comprising this sequence, or a primer comprising the sequence, located downstream (3 ′ side) from the third base sequence, and upstream of the second base sequence ( Including a sequence homologous to a complementary strand sequence (that is, a sequence homologous to the base sequence of the other strand of double-stranded DNA) of a specific base sequence (fourth base sequence) located on the 5 ′ side), It can be combined with a primer comprising the sequence.
  • the second primer set can be designed in a region sandwiched between the first primer sets (that is, the first nucleic acid amplification product).
  • the primer having a “homologous sequence” not only has the same sequence as the third base sequence and the same sequence as the complementary strand sequence of the fourth base sequence, but also binds to the target nucleic acid and amplifies the nucleic acid.
  • a base sequence having a deletion, substitution, addition or insertion of one to several bases in the complementary strand sequence of the third base sequence and the fourth base sequence 85% or more, preferably 90% or more, more preferably 95%, when calculated using the base sequence of the above and the complementary strand sequence of the fourth base sequence and BLAST or the like (for example, default or default parameters)
  • a primer having a base sequence having a sequence identity of 99% or more is more preferable.
  • any one of the primers of the second primer set has the same sequence as the entire sequence of any one of the primers of the first primer set or a partial sequence thereof. Also good.
  • the primer size of the second primer set can be 8 bases or more, 12 bases or more, or 15 bases or more in length, and the upper limit is not particularly limited, but 50 bases or less, 40 bases or less, or 30 bases
  • the length can be as follows.
  • the size of each primer may be the same or different.
  • the “primer size” means a size that does not include the tag region and spacer region described below.
  • each primer of the first primer set and the second primer set can be performed using a known primer design software / design site or the like.
  • primer design software / design site for example, OligoEvaluator (Sigma-Aldrich), Primer 3 (National Human Genome Research Institute), Primer-BLAST (NCBI), etc. can be used.
  • each primer of the first primer set and the second primer set can be performed by a known method, and may be performed using a DNA synthesizer or a contracted synthesis service. Can do.
  • the primer included in the first primer set may be referred to as “outer primer” and the primer included in the second primer set may be referred to as “inner primer”.
  • a tag is bound to the 5 'end of each primer in the second primer set.
  • the tag is selected from a first tag that can bind to the labeling substance and a second tag that can bind to the solid phase carrier, and each primer in the second primer set (forward primer and reverse primer) One of the tags is bound to each primer.
  • the “first tag” only needs to be capable of binding to a labeling substance described in detail below, and is a nucleic acid (DNA, RNA, oligonucleotide, etc.), protein, peptide, or low molecular weight compound (eg, biotin, digoxigenin) , FITC, etc.) or a combination thereof can be used, and is not particularly limited.
  • the “second tag” only needs to be capable of binding to the solid phase carrier described in detail below, and is composed of a nucleic acid (DNA, RNA, oligonucleotide, etc.), protein, peptide, compound, or a combination thereof.
  • it contains an oligonucleotide or consists of an oligonucleotide.
  • the primer and the tag can be bound by any means, and can be bound directly or indirectly.
  • a spacer capable of suppressing or stopping the progress of the DNA polymerase reaction is used so that the tag region is not double-stranded together with the primer region by the nucleic acid amplification reaction.
  • the primer and the tag are combined.
  • any spacer can be used as long as it can suppress or stop the progress of the DNA polymerase reaction when contained in the template strand and prevent the tag region from becoming double-stranded.
  • a nucleic acid (or base) serving as a template is required, and the DNA strand does not extend without the template.
  • the spacer has a structure that cannot serve as a template for a DNA extension reaction by DNA polymerase.
  • a spacer include artificial nucleic acid bases such as L-type nucleic acids, peptide nucleic acids (PNA), cross-linked nucleic acids (Bridged Nucleic Acid (BNA) or Locked Nucleic Acid (LNA)), and are represented by the following formula I: Spacer with azobenzene structure, fatty chain such as alkylene chain or polyoxyalkylene chain, inverted base (natural nucleobase linked by 5'-5 'or 3'-3' bond), strong hairpin structure, Examples thereof include, but are not limited to, nucleic acid sequences having a pseudoknot structure.
  • 5′-O—C m H 2m —O-3 ′ (In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and m represents an integer of 2 to 40. To express.) In the formula II, m is preferably 2 or more and 36 or less, more preferably 3 or more and 18 or less, and further preferably 3 or 6.
  • the first nucleic acid amplification reaction and the second nucleic acid amplification reaction can be performed according to a general PCR method. That is, when PCR is performed on the template DNA containing the target nucleic acid using each of the first primer set and the second primer set, the PCR can be performed under PCR conditions that a desired region is amplified. .
  • test DNA is used as template DNA.
  • “Test DNA” means a DNA sample that may contain a target nucleic acid, and is derived from a sample such as an animal, plant, or a part thereof (organ, tissue, cell, etc.), microorganism, virus, food or drink, etc. Examples include (but are not limited to) DNA and cDNA prepared from these samples.
  • the test DNA may be in a form extracted and purified from a sample, or may be in a crudely purified form. Alternatively, a part of cells or tissues can be included in the reaction system as it is as test DNA.
  • the first nucleic acid amplification product produced by the first nucleic acid amplification reaction is used as the template DNA.
  • the number of PCR cycles in the second nucleic acid amplification reaction is preferably smaller than the number of PCR cycles in the first nucleic acid amplification reaction.
  • the DNA polymerase used for PCR is not particularly limited as long as it is a heat-resistant DNA polymerase.
  • commercially available DNA polymerase can be used, and for example, TaKaRa Ex Taq (registered trademark), KOD DNA polymerase, and the like can be suitably used.
  • the temperature, time, buffer composition, etc. can be appropriately selected depending on the DNA polymerase used, the primer sequence, the size of the target nucleic acid amplification region, and the like.
  • the first nucleic acid amplification reaction and the second nucleic acid amplification reaction may be sequentially performed in separate reaction containers, or the first nucleic acid amplification reaction and the second nucleic acid amplification reaction may be performed in the same reaction container. You may carry out continuously.
  • the first nucleic acid amplification reaction and the second nucleic acid amplification reaction are sequentially performed in separate reaction vessels, the obtained first nucleic acid amplification product is taken out after the first nucleic acid amplification reaction (if necessary, This means that after the dilution, a second nucleic acid amplification reaction is performed in addition to a separately prepared second nucleic acid amplification reaction system comprising a DNA polymerase, a second primer set, and the like.
  • performing the first nucleic acid amplification reaction and the second nucleic acid amplification reaction continuously in the same reaction vessel means that the first nucleic acid amplification product is not taken out after the first nucleic acid amplification reaction. It means that two nucleic acid amplification reactions are performed.
  • the second primer set is added to the reaction system in advance before the start of the first nucleic acid amplification reaction. Alternatively, it may be added to the reaction system after the first nucleic acid amplification reaction and before the start of the second nucleic acid amplification reaction.
  • DNA polymerase may be supplemented after the first nucleic acid amplification reaction and before the start of the second nucleic acid amplification reaction.
  • the first nucleic acid amplification reaction and the second nucleic acid amplification reaction are continuously performed in the same reaction vessel for ease of operation.
  • the first nucleic acid amplification reaction and the second nucleic acid amplification reaction are continuously performed in the same reaction vessel, and the second primer set is preliminarily set in the reaction system before the start of the first nucleic acid amplification reaction. To be added.
  • the Tm value of any one, more preferably both primers included in the first primer set is more preferably the Tm value of any one, more preferably both primers included in the second primer set. Is preferably high.
  • the annealing temperature in the first nucleic acid amplification reaction using the first primer set can be performed under a temperature condition higher than the annealing temperature in the second nucleic acid amplification reaction using the second primer set.
  • the binding of the second primer set to the target nucleic acid contained in the test DNA and the formation of primer dimers can be suppressed or avoided under the first nucleic acid amplification reaction conditions.
  • the step of labeling the amplified target nucleic acid The second nucleic acid amplification product containing the target nucleic acid (if present) obtained by the nucleic acid amplification includes the first tag and the second tag resulting from the second primer set At each end.
  • the labeling of the second nucleic acid amplification product can be performed by contacting and binding the labeling substance with the first tag that can bind to the labeling substance.
  • the labeling substance is not particularly limited as long as it can detect the second nucleic acid amplification product, but preferably allows visual detection of the second nucleic acid amplification product.
  • Examples of such a labeling substance include colored particles, pigments, enzymes (peroxidase, alkaline phosphatase, luciferase, etc.), and preferably colored particles.
  • Examples of the “colored particles” include, but are not limited to, metal colloid (eg, gold, silver, copper, platinum, etc.) particles, colored latex particles, silica nanoparticles including a pigment, and the like.
  • the size of the labeling substance does not hinder the capture of the second nucleic acid amplification product on the solid phase carrier, and may be any material that develops color at the time of detection. It can select suitably so that it may become a size smaller than the hole diameter of a porous member.
  • the size of the labeling substance can be about 500 nm or less, preferably about 0.1 nm to 250 nm, more preferably about 1 nm to 100 nm.
  • the contact and binding between the labeling substance and the first tag may be direct binding or indirect binding, and the binding means is suitably suitable depending on the labeling substance to be used and the first tag.
  • nucleic acid-nucleic acid interaction, protein-protein interaction, low molecular weight compound-protein interaction, and the like can be used.
  • the first tag includes an oligonucleotide
  • the labeling substance is hybridized by binding the labeling substance to an oligonucleotide containing a sequence complementary to the base sequence of the oligonucleotide, And the first tag can be indirectly coupled.
  • the binding between the labeling substance and the oligonucleotide may be performed via a peptide, protein, nucleic acid, or the like, or may be performed via an appropriate functional group.
  • the hybridization conditions are not particularly limited as long as hybridization occurs.
  • a buffer solution pH 6.5 to 7.5
  • the buffer may further contain a salt such as sodium chloride.
  • the first tag contains biotin, which is a low molecular weight compound, both can be bound by binding the labeling substance to avidin (streptavidin).
  • digoxigenin or FITC which are low molecular compounds, both can be bound by binding the labeling substance to the anti-DIG antibody or anti-FITC antibody.
  • Step of capturing and detecting the labeled target nucleic acid on a solid phase carrier The labeled second nucleic acid amplification product can be captured on a solid phase carrier and detected. Capture (ie, binding) of the second nucleic acid amplification product to the solid phase carrier is performed by bringing the solid phase carrier into contact with a second tag that can bind to the solid phase carrier in the second nucleic acid amplification product. be able to.
  • the solid phase carrier is not particularly limited, but may be made of a resin, metal, polysaccharide, mineral or the like, and may be in the form of a membrane, film, nonwoven fabric, plate, gel or the like.
  • the solid phase carrier has a porous structure so that the second nucleic acid amplification product and the labeling substance in the solution can be developed.
  • the solid phase carrier usable in the present invention include filter paper, nitrocellulose membrane, polyether sulfone membrane, nylon membrane, various dried gels (silica gel, agarose gel, dextran gel, gelatin gel) and the like.
  • the size and form of the solid phase carrier those suitable for various operations and detection can be appropriately selected.
  • Contact and capture (that is, binding) between the solid phase carrier and the second tag may be direct binding or indirect binding, and the binding means uses the solid phase carrier and the second tag to be used.
  • a suitable one can be selected depending on the case.
  • the second tag contains an oligonucleotide
  • an oligonucleotide containing a sequence complementary to the base sequence of the oligonucleotide is immobilized on a solid phase carrier to serve as a tag capturing means, and both oligonucleotides are hybridized.
  • the solid phase carrier and the second tag can be indirectly bound.
  • Immobilization of the oligonucleotide to the solid phase carrier may be performed via a peptide, protein, nucleic acid, or the like, or may be performed via an appropriate functional group.
  • immobilizing an oligonucleotide on a solid phase carrier the captured second nucleic acid amplification product is detected only in a predetermined region by immobilizing it in a specific region. Negative discrimination can be facilitated.
  • Hybridization conditions can be performed according to the conditions described above.
  • the detection of the second nucleic acid amplification product can be performed by detecting, preferably visually detecting the labeling substance bound to the second nucleic acid amplification product captured on the solid phase carrier.
  • the target nucleic acid is present, the labeling substance of the nucleic acid amplification reaction product captured and bound to the solid phase carrier is detected.
  • the presence or absence of the target nucleic acid in the second nucleic acid amplification reaction product can be determined using the presence or absence of the detection as an index.
  • Nucleic acid detection device The above-mentioned “step of labeling the amplified target nucleic acid” and “step of capturing and detecting the labeled target nucleic acid on a solid phase carrier” can be performed using a nucleic acid detection device utilizing nucleic acid chromatography. By using the nucleic acid detection device, the presence or absence of the target nucleic acid in the second nucleic acid amplification product can be detected and discriminated without requiring a special device, and the result can be obtained easily and quickly. it can.
  • nucleic acid detection device a known nucleic acid detection device (WO2012 / 070618) used for detecting a nucleic acid amplification product labeled by a nucleic acid chromatography method can be used.
  • FIG. 1 shows a schematic diagram of an embodiment of a nucleic acid detection device that can be used in the present invention, but the nucleic acid detection device is not limited to this embodiment.
  • the reference numerals given to the respective members correspond to the reference numerals shown in FIG.
  • the nucleic acid detection device of FIG. 1 includes a sample pad (3) for adding a second nucleic acid amplification product, a conjugate pad (2) having a labeling substance disposed thereon,
  • the solid phase carrier (1) and the absorption pad (4) for capturing the nucleic acid amplification product of 2 are sequentially stacked.
  • means (capturing means) (6) for example, the above-mentioned oligonucleotide etc.
  • the sample pad (3), the conjugate pad (2), the solid phase carrier (1) and the absorption pad (4) are composed of members having a porous structure that can be used as the solid phase carrier.
  • the base material (5) can support various members disposed thereon and can facilitate the operation of the nucleic acid detection device. For example, a material made of resin, metal, mineral, or the like is used. Can do. When the labeling substance is mixed in the developing solution, the conjugate pad (2) can be omitted.
  • the obtained second nucleic acid amplification reaction product is added to the sample pad (3).
  • the reaction solution after the nucleic acid amplification reaction may be dropped as it is, or may be dropped together with an appropriate developing solution (for example, phosphate buffer, Tris buffer, Good buffer, SSC buffer).
  • the developing solution can further contain a surfactant, a salt, a protein, a nucleic acid and the like, if necessary.
  • the second nucleic acid amplification reaction product added to the sample pad (3) develops by a capillary phenomenon from upstream to downstream in the direction indicated by the arrow in FIG.
  • the second nucleic acid amplification reaction product passes through the conjugate pad (2) on which the labeling substance is disposed, the second nucleic acid amplification reaction product comes into contact with the labeling substance and is labeled with the labeling substance via the first tag.
  • the labeling substance of the nucleic acid amplification reaction product captured and bound to the solid phase carrier (1) by the capture means (6) is detected in the region of the capture means (6). If the labeling substance can be visually confirmed, the region of the capturing means (6) is colored due to the labeling substance.
  • the presence or absence of the target nucleic acid in the second nucleic acid amplification reaction product can be determined using the presence or absence of detection (coloration) of the labeling substance as an index.
  • nucleic acid detection kit includes the first primer set, the second primer set, a labeling substance, and a solid phase carrier, and can be used in the nucleic acid detection method of the present invention.
  • the labeling substance and the solid phase carrier can be in the form of the nucleic acid detection device.
  • the nucleic acid detection kit can further contain a PCR buffer solution, dNTPs, DNA polymerase, a nucleic acid chromatography developing solution, and the like.
  • Example 1 Preparation of gold colloid-binding oligonucleotide Gold Colloid (40 nm, 9.0 ⁇ 10 10 (number of particles / ml), manufactured by British Biocell International) and thiol group-containing oligonucleotide represented by SEQ ID NO: 1 are mixed And incubated at 50 ° C. for 16 hours. Centrifugation was performed at 6000 rpm for 15 minutes, the supernatant was removed, 0.05 M sodium chloride, 5 mM phosphate buffer (pH 7) was added and mixed, and then incubated again at 50 ° C. for 40 hours.
  • the prepared gold colloid solution was uniformly added to a glass fiber pad, and then dried with a vacuum dryer to obtain a conjugate pad.
  • the lateral flow type nucleic acid detection device was produced by bonding.
  • an outer primer F (SEQ ID NO: 6) and an outer primer R (SEQ ID NO: 7) were designed so that the recognition sequence of the inner primer was sandwiched between the upstream side (5 ′ end side) of each inner primer.
  • the Tm value of the outer primer was designed to be 10 ° C. higher than the Tm value of the inner primer.
  • Table 1 shows the sequence and Tm value of each primer. Moreover, the area
  • tag sequence 1 SEQ ID NO: 8
  • tag sequence 2 sequence 2
  • spacer Expressed by the above formula (I)
  • azobenzene which is a polymerase reaction inhibition region.
  • Each of No. 9 was ligated to prepare inner primer-Tag1-F (SEQ ID NO: 10) and inner primer-Tag2-R (SEQ ID NO: 11).
  • V Amplification reaction of target nucleic acid TaKaRa Ex Taq (registered trademark) Hot Start Version (Takara Bio) was used as a PCR reagent, 1 ⁇ EX Taq buffer, 0.2 mM dNTPs for each, 0.5 ⁇ M inner primer-Tag1-F, 0.5 ⁇ M inner primer-Tag2-R, 0.11 ⁇ M outer primer F, 0.11 ⁇ M outer primer R, 0.9375 Unit TaKaRa EX Taq (registered trademark), template synthetic DNA (SEQ ID NO: 3) (0 pg / test, 0. Nested-PCR reaction was performed in a reaction solution containing 5 pg / test, 5 pg / test, or 50 pg / test).
  • Reaction conditions were 95 minutes at 95 ° C. for 2 minutes, 55 cycles of 95 ° C. for 10 seconds and 72 ° C. for 20 seconds, then 90 ° C. for 5 seconds, 60 ° C. for 10 seconds, 72 ° C. for 10 seconds. As a set, 15 cycles were performed to obtain an amplification product.
  • the obtained amplification product has a tag sequence consisting of single-stranded DNA resulting from each inner primer.
  • PCR amplification was performed using the synthetic nucleic acid represented by SEQ ID NO: 3 as the template DNA.
  • SEQ ID NO: 3 synthetic nucleic acid represented by SEQ ID NO: 3 as the template DNA.
  • PCR reagents TaKaRa Ex Taq (registered trademark) Hot Start Version (Takara Bio) was used, and 1 ⁇ EX Taq buffer, 0.2 mM dNTPs for each, 0.4 ⁇ M inner primer-Tag1-F, 0.4 ⁇ M inner primer-Tag2- PCR reaction in a reaction solution containing R, 0.9375 Unit TaKaRa EX Taq (registered trademark), template synthetic DNA (SEQ ID NO: 3) (0 pg / test, 0.5 pg / test, 5 pg / test, or 50 pg / test) Went.
  • SEQ ID NO: 3 template synthetic DNA
  • Reaction conditions were in accordance with a conventional method, and after 2 minutes at 95 ° C., 40 cycles were performed with 95 ° C. for 20 seconds, 60 ° C. for 30 seconds, and 72 ° C. for 30 seconds to obtain an amplification product.
  • the obtained amplification product was detected by a lateral flow type nucleic acid detection device in the same manner as in Example 1.
  • Non-specific coloring was also observed in the sample (0 pg / test) to which no template synthetic DNA was added.
  • the amplification product was analyzed by agarose gel electrophoresis for the cause of this coloring, formation of a primer dimer was observed and it was found that this was detected non-specifically.
  • Example 2 Among the PCR conditions described in Example 1, the second amplification step is fixed to 15 cycles that do not cause non-specific amplification by the primer dimer, and the number of cycles of the first amplification step is in the range of 10 to 60 cycles. The sensitivity and specificity when increasing or decreasing were examined.
  • Comparative Example 2 (Comparative Example 2) Among the PCR conditions described in Comparative Example 1, the number of cycles in PCR was changed in the range of 10 to 60 cycles, and the detectability under each PCR condition was evaluated. An amplification product detection test was carried out using a lateral flow type nucleic acid detection device under the same conditions as in Example 1.
  • the present invention can be used for various tests and research including a step of detecting a DNA fragment obtained by a nucleic acid amplification method. More specifically, according to the present invention, molecular biology research fields, pathogen detection, allergen detection in foods and drinks, livestock management, detection of nucleotide polymorphisms, detection of diseases (for example, cancer, etc.) are simplified. And can be done quickly. The present invention is expected to contribute greatly in such fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The purpose of the present invention is to provide a detection method having a high determination accuracy, said detection method being for detecting a target nucleic acid and comprising conducting a nucleic acid amplification reaction and detecting a nucleic acid amplification product on a solid support, whereby nonspecific detection of a primer dimer can be avoided. A method for detecting a target nucleic acid that comprises conducting a nucleic acid amplification reaction by a Nested-PCR method and detecting a nucleic acid amplification product on a solid support.

Description

標的核酸の検出法Target nucleic acid detection method
 本発明は、2段階の核酸増幅反応を利用する標的核酸の増幅と固相担体上にて核酸増幅産物を検出することを含む、標的核酸の検出方法に関する。 The present invention relates to a target nucleic acid detection method including amplification of a target nucleic acid using a two-step nucleic acid amplification reaction and detection of a nucleic acid amplification product on a solid phase carrier.
 今日、分子生物学の研究分野や、遺伝子検査や病原体検査等の臨床応用の分野において、標的核酸を特異的に検出する方法は非常に重要な技術となっている。その中でも、核酸増幅反応と核酸クロマトグラフィーとを利用する標的核酸の検出方法は、その迅速性と簡便性から注目を集めている。この検出方法は概ね、標的核酸に特異的なプライマーにタグを付して用いて、標的核酸を含むDNAを鋳型としてポリメラーゼ連鎖反応(以下、「PCR」と記載する)等の核酸増幅反応を行い、得られた増幅産物を、多孔質状の固相担体内をキャピラリー現象により拡散・移動させ、増幅産物の両端に付されたタグを介して標識及び固相担体に捕捉・結合し、標的核酸を目視にて検出する(特許文献1)。 Today, a method for specifically detecting a target nucleic acid is a very important technique in the field of molecular biology research and clinical application such as genetic testing and pathogen testing. Among them, a method for detecting a target nucleic acid using a nucleic acid amplification reaction and nucleic acid chromatography has attracted attention because of its rapidity and simplicity. This detection method is generally performed by attaching a tag to a primer specific to the target nucleic acid and performing a nucleic acid amplification reaction such as polymerase chain reaction (hereinafter referred to as “PCR”) using the DNA containing the target nucleic acid as a template. The obtained amplification product is diffused and moved in the porous solid phase carrier by a capillary phenomenon, and is captured and bound to the label and the solid phase carrier via the tags attached to both ends of the amplification product. Is detected visually (Patent Document 1).
 しかしながら、この検出方法においては、増幅産物の両端に付されたプライマー由来のタグに依拠して、標識及び固相担体への捕捉・結合を行っているために、標的核酸に由来する特異的な増幅産物と非特異的な反応により形成されるプライマーダイマーとを区別できない場合があり、プライマーダイマーの検出に基づいて偽陽性判定を行う虞があった。 However, since this detection method relies on a tag derived from a primer attached to both ends of the amplification product to perform capture and binding to a label and a solid phase carrier, it is specific to the target nucleic acid. In some cases, the amplification product and the primer dimer formed by the non-specific reaction cannot be distinguished, and there is a possibility of performing false positive determination based on the detection of the primer dimer.
 そのため、本検出方法においては、このようなプライマーダイマーの非特異的な検出を回避して、高い判定精度が得られるような改善が望まれていた。 For this reason, in this detection method, it has been desired to improve such that non-specific detection of the primer dimer is avoided and high determination accuracy is obtained.
WO2012/070618WO2012 / 070618
 本発明は、核酸増幅反応と固相担体上にて核酸増幅産物を検出すること(例えば、核酸クロマトグラフィー法)を含む標的核酸の検出方法において、プライマーダイマーの非特異的な検出を回避することを可能とする、判定精度の高い新たな検出方法を提供することを目的とする。 The present invention avoids non-specific detection of a primer dimer in a method for detecting a target nucleic acid including a nucleic acid amplification reaction and detection of a nucleic acid amplification product on a solid phase carrier (for example, a nucleic acid chromatography method). An object of the present invention is to provide a new detection method with high determination accuracy.
 核酸増幅反応においてプライマーダイマーの形成を防ぐためには、核酸増幅反応のサイクル数を少なくすることが必要であるが、当該サイクル数を少なくした場合には、標的核酸のコピー数を核酸クロマトグラフィー法等により目視で検出可能な程度に増大させることができない場合があり、検出感度を低下させ得る。したがって、核酸クロマトグラフィー法等により目視で検出可能な程度に標的核酸のコピー数を増大させながらも、プライマーダイマーの形成を防ぐことを可能とする手法が要求される。 In order to prevent the formation of primer dimers in the nucleic acid amplification reaction, it is necessary to reduce the number of cycles of the nucleic acid amplification reaction. However, if the number of cycles is reduced, the copy number of the target nucleic acid can be determined by nucleic acid chromatography, etc. In some cases, the detection sensitivity cannot be increased to the extent that it can be visually detected, and the detection sensitivity can be lowered. Accordingly, there is a demand for a technique that can prevent the formation of primer dimers while increasing the copy number of the target nucleic acid to such an extent that it can be visually detected by a nucleic acid chromatography method or the like.
 本発明者らは、標的核酸の増幅を2段階の核酸増幅反応(Nested-PCR法)を実施すること、すなわちタグが付されていないプライマーセットを用いて行う1段階目の核酸増幅反応とタグが付されたプライマーセットを用いて行う2段階目の核酸増幅反応とを実施することにより、1段階目の核酸増幅反応により標的核酸のコピー数を増大させることができ、タグが付されたプライマーセットを利用する2段階目の核酸増幅反応をダイマー形成が生じないサイクル数で実施することによって、標的核酸を核酸クロマトグラフィー法等により特異的にかつ高い感度にて検出できることを見出し、本発明を完成させるに至った。 The present inventors carry out a two-step nucleic acid amplification reaction (Nested-PCR method) for amplification of a target nucleic acid, that is, a first-step nucleic acid amplification reaction and a tag that are performed using an untagged primer set. By performing the second-stage nucleic acid amplification reaction performed using the primer set to which the tag is attached, the number of copies of the target nucleic acid can be increased by the first-stage nucleic acid amplification reaction, and a primer with a tag The target nucleic acid can be detected specifically and with high sensitivity by a nucleic acid chromatography method, etc. by carrying out the nucleic acid amplification reaction in the second stage using the set with the number of cycles in which dimer formation does not occur. It came to complete.
 すなわち、本発明は以下の発明を包含する。
[1] 標的核酸の検出方法であって、
(a)標的核酸の第1の塩基配列と相同な配列を含むプライマーと、該第1の塩基配列の下流側に位置する第2の塩基配列の相補鎖配列と相同な配列を含むプライマーからなる第1のプライマーセットを用いて、試験DNAを鋳型として核酸増幅反応を実施することにより、第1の核酸増幅産物を得る工程、
(b)該第1の塩基配列の下流側かつ該第2の塩基配列の上流側に位置する第3の塩基配列と相同な配列を含むプライマーと、該第3の塩基配列の下流側かつ該第2の塩基配列の上流側に位置する第4の塩基配列の相補鎖配列と相同な配列を含むプライマーからなる第2のプライマーセットであって、いずれか一つのプライマーが標識物質と結合可能な第1のタグと結合されており、かつ他方のプライマーが固相担体と結合可能な第2のタグと結合されている、該第2のプライマーセットを用いて、該第1の核酸増幅産物を鋳型として核酸増幅反応を実施することにより、各端に該第1のタグ及び該第2のタグがそれぞれ付加された第2の核酸増幅産物を得る工程、
(c)該第2の核酸増幅産物と、第1のタグと結合可能な標識物質とを接触させることにより、標識された核酸増幅産物を得る工程、
(d)該標識された核酸増幅産物と、固相担体とを接触させることにより、該標識された核酸増幅産物を該固相担体に捕捉する工程、ならびに
(e)該固相担体に捕捉された該標識された核酸増幅産物を検出する工程、
を含む、上記方法。
[2] 前記工程(a)と前記工程(b)とを、同一の反応容器内で連続して行うことを特徴とする、[1]の方法。
[3] 前記工程(a)における核酸増幅反応のアニーリング温度が、前記工程(b)における核酸増幅反応のアニーリング温度より高いことを特徴とする、[1]又は[2]の方法。
[4] 前記工程(b)における核酸増幅反応の増幅サイクル数が、前記工程(a)における核酸増幅反応の増幅サイクル数より少ないことを特徴とする、[1]~[3]のいずれかの方法。
[5] (a)標的核酸の第1の塩基配列と相同な配列を含むプライマーと、該第1の塩基配列の下流側に位置する第2の塩基配列の相補鎖配列と相同な配列を含むプライマーからなる第1のプライマーセット、
 (b)該第1の塩基配列の下流側かつ該第2の塩基配列の上流側に位置する第3の塩基配列と相同な配列を含むプライマーと、該第3の塩基配列の下流側かつ該第2の塩基配列の上流側に位置する第4の塩基配列の相補鎖配列と相同な配列を含むプライマーからなる第2のプライマーセットであって、いずれか一つのプライマーが標識物質と結合可能な第1のタグと結合されており、かつ他方のプライマーが固相担体と結合可能な第2のタグと結合されている、該第2のプライマーセット、
 (c)該第1のタグと結合可能な標識物質、ならびに、
 (d)該第2のタグと結合可能な固相担体、
を含む、標的核酸を検出するためのキット。
[6] 前記第2のプライマーセットにおける、前記第1のタグおよび前記第2のタグの少なくとも一方が、オリゴヌクレオチドからなるタグであることを特徴とする、[5]のキット。
[7] 前記オリゴヌクレオチドからなるタグが、DNAポリメラーゼ反応を抑制または停止可能なスペーサーを介してプライマーと結合されていることを特徴とする、[6]のキット。
[8] 前記スペーサーが、アゾベンゼン、脂肪鎖、又はInverted塩基であることを特徴とする、[7]のキット。
[9] 前記第1のタグがオリゴヌクレオチドからなるタグであり、標識物質が該オリゴヌクレオチドと相補的な配列を有するオリゴヌクレオチドを含む、[6]~[8]のいずれかのキット。
[10] 前記第1のタグがビオチン、ジゴキシゲニン、及びFITCから選択されるいずれかの低分子化合物からなるタグであり、標識物質が該タグと結合可能なタンパク質を含む、[6]~[9]のいずれかのキット。
[11] 前記第2のタグがオリゴヌクレオチドからなるタグであり、固相担体が該オリゴヌクレオチドと相補的な配列を有するオリゴヌクレオチドを含む、[6]~[10]のいずれかのキット。
[12] 前記第1のプライマーセットに含まれる一又は両方のプライマーのTm値が、前記第2のプライマーセットに含まれる一又は両方のプライマーのTm値よりも高いことを特徴とする、[5]~[11]のいずれかのキット。
That is, the present invention includes the following inventions.
[1] A method for detecting a target nucleic acid, comprising:
(A) consisting of a primer containing a sequence homologous to the first base sequence of the target nucleic acid and a primer containing a sequence homologous to the complementary strand sequence of the second base sequence located downstream of the first base sequence Using the first primer set to obtain a first nucleic acid amplification product by performing a nucleic acid amplification reaction using the test DNA as a template,
(B) a primer including a sequence homologous to a third base sequence located downstream of the first base sequence and upstream of the second base sequence; a downstream of the third base sequence; and A second primer set comprising primers containing a sequence homologous to the complementary strand sequence of the fourth base sequence located upstream of the second base sequence, wherein any one of the primers can bind to the labeling substance Using the second primer set, which is bound to a first tag and the other primer is bound to a second tag capable of binding to a solid phase carrier, the first nucleic acid amplification product is Performing a nucleic acid amplification reaction as a template to obtain a second nucleic acid amplification product to which each of the first tag and the second tag is added at each end;
(C) obtaining a labeled nucleic acid amplification product by bringing the second nucleic acid amplification product into contact with a labeling substance that can bind to the first tag;
(D) capturing the labeled nucleic acid amplification product on the solid phase carrier by contacting the labeled nucleic acid amplification product with a solid phase carrier; and (e) capturing the labeled nucleic acid amplification product on the solid phase carrier. Detecting the labeled nucleic acid amplification product;
Including the above method.
[2] The method according to [1], wherein the step (a) and the step (b) are continuously performed in the same reaction vessel.
[3] The method according to [1] or [2], wherein the annealing temperature of the nucleic acid amplification reaction in the step (a) is higher than the annealing temperature of the nucleic acid amplification reaction in the step (b).
[4] The number of amplification cycles of the nucleic acid amplification reaction in the step (b) is less than the number of amplification cycles of the nucleic acid amplification reaction in the step (a). Method.
[5] (a) a primer containing a sequence homologous to the first base sequence of the target nucleic acid, and a sequence homologous to the complementary strand sequence of the second base sequence located downstream of the first base sequence A first primer set comprising primers,
(B) a primer including a sequence homologous to a third base sequence located downstream of the first base sequence and upstream of the second base sequence; a downstream of the third base sequence; and A second primer set comprising primers containing a sequence homologous to the complementary strand sequence of the fourth base sequence located upstream of the second base sequence, wherein any one of the primers can bind to the labeling substance The second primer set, which is bound to a first tag and the other primer is bound to a second tag capable of binding to a solid phase carrier;
(C) a labeling substance capable of binding to the first tag, and
(D) a solid phase carrier capable of binding to the second tag,
A kit for detecting a target nucleic acid, comprising:
[6] The kit according to [5], wherein in the second primer set, at least one of the first tag and the second tag is an oligonucleotide tag.
[7] The kit according to [6], wherein the oligonucleotide tag is bound to a primer via a spacer capable of suppressing or stopping the DNA polymerase reaction.
[8] The kit according to [7], wherein the spacer is azobenzene, a fatty chain, or an inverted base.
[9] The kit according to any one of [6] to [8], wherein the first tag is a tag composed of an oligonucleotide, and the labeling substance includes an oligonucleotide having a sequence complementary to the oligonucleotide.
[10] The first tag is a tag made of any low molecular weight compound selected from biotin, digoxigenin, and FITC, and the labeling substance contains a protein that can bind to the tag. [6] to [9 ] One of the kits.
[11] The kit according to any one of [6] to [10], wherein the second tag is a tag comprising an oligonucleotide, and the solid phase carrier comprises an oligonucleotide having a sequence complementary to the oligonucleotide.
[12] The Tm value of one or both primers included in the first primer set is higher than the Tm value of one or both primers included in the second primer set. [5 ] To [11].
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-134659号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2015-134659, which is the basis of the priority of the present application.
 本発明によれば、核酸増幅反応と固相担体上にて核酸増幅産物を検出すること(例えば、核酸クロマトグラフィー法)を含む標的核酸の検出方法において、プライマーダイマーの非特異的な検出を回避することを可能とする、判定精度の高い検出方法を提供することができる。 According to the present invention, non-specific detection of primer dimers is avoided in a method for detecting a target nucleic acid including a nucleic acid amplification reaction and detection of a nucleic acid amplification product on a solid phase carrier (eg, nucleic acid chromatography). Therefore, it is possible to provide a detection method with high determination accuracy.
ラテラルフロー型核酸検出デバイスの模式図を示す。1:固相担体、2:コンジュゲートパッド、3:サンプルパッド、4:吸収パッド、5:基材、6:捕捉手段。The schematic diagram of a lateral flow type nucleic acid detection device is shown. 1: solid phase carrier, 2: conjugate pad, 3: sample pad, 4: absorption pad, 5: substrate, 6: capture means. 実施例にて利用した各プライマーの認識配列に対応する領域を示す。The region corresponding to the recognition sequence of each primer used in the examples is shown. (A)実施例1にてアウタープライマーセット及びインナープライマーセットを用いたNested-PCR法により得られた増幅産物を、核酸検出デバイスを用いて検出した結果を示す写真図である。(B)比較例1にてインナープライマーのみを用いたPCR法により得られた増幅産物を、核酸検出デバイスを用いて検出した結果を示す写真図である。各図において数値は反応系に加えた鋳型DNA量を示す。(A) It is a photograph figure which shows the result of having detected the amplification product obtained by Nested-PCR method using the outer primer set and the inner primer set in Example 1 using the nucleic acid detection device. (B) It is a photograph figure which shows the result of having detected the amplification product obtained by PCR method using only the inner primer in the comparative example 1 using the nucleic acid detection device. Each figure shows the amount of template DNA added to the reaction system.
I.標的核酸の検出方法
 本発明に係る標的核酸の検出方法は、概ね以下の工程:
標的核酸を増幅する工程、
増幅した標的核酸を標識する工程、及び
標識した標的核酸を固相担体に捕捉、検出する工程、を含む。以下、各工程について説明する。
I. Target Nucleic Acid Detection Method The target nucleic acid detection method according to the present invention generally includes the following steps:
Amplifying the target nucleic acid;
A step of labeling the amplified target nucleic acid, and a step of capturing and detecting the labeled target nucleic acid on a solid phase carrier. Hereinafter, each step will be described.
1.標的核酸を増幅する工程
 本発明方法において、標的核酸の増幅はNested-PCR法を利用して行うことができる。すなわち、第1のプライマーセットを用いて、試験DNAを鋳型として第1の核酸増幅反応を実施し第1の核酸増幅産物を得て、次いで、それぞれタグが結合された第2のプライマーセットを用いて、第1の核酸増幅産物を鋳型として第2の核酸増幅反応を実施し第2の核酸増幅産物を得る工程を含む。本手法によれば、第1のプライマーセットを用いて第1の核酸増幅反応を実施し、標的核酸を含む(存在する場合)第1の核酸増幅産物のコピー数を増大させることができ、これによりタグが結合された第2のプライマーセットを用いた第2の核酸増幅反応のサイクル数を減らし、タグが結合された第2のプライマーセットのプライマーダイマーの形成を抑制できると共に、検出するのに十分なコピー数の標的核酸を含む(存在する場合)所望の第2の核酸増幅産物を得ることができる。さらに、第1のプライマーセット及び第2のプライマーセットをそれぞれ用いた2段階の核酸増幅反応を経ることにより、標的核酸に対する指向性を高めることができ、標的核酸とは異なる非特異的な核酸増幅を低減又は回避することができる。
1. Step of Amplifying Target Nucleic Acid In the method of the present invention, the amplification of the target nucleic acid can be performed using a nested-PCR method. That is, using the first primer set, the first nucleic acid amplification reaction is performed using the test DNA as a template to obtain a first nucleic acid amplification product, and then each second primer set to which a tag is bound is used. A step of performing a second nucleic acid amplification reaction using the first nucleic acid amplification product as a template to obtain a second nucleic acid amplification product. According to this method, the first nucleic acid amplification reaction can be performed using the first primer set, and the copy number of the first nucleic acid amplification product containing the target nucleic acid (if present) can be increased. To reduce the number of cycles of the second nucleic acid amplification reaction using the second primer set to which the tag is bound, to suppress the formation of the primer dimer of the second primer set to which the tag is bound, and to detect A desired second nucleic acid amplification product containing a sufficient number of copies of the target nucleic acid (if present) can be obtained. Furthermore, through a two-step nucleic acid amplification reaction using the first primer set and the second primer set, respectively, the directivity for the target nucleic acid can be enhanced, and non-specific nucleic acid amplification different from the target nucleic acid. Can be reduced or avoided.
 本発明において「標的核酸」とは検出すべき任意の核酸配列又は核酸分子を意味し、天然のものであっても、人工的に合成されたものであってもよく、特に限定されない。標的核酸としては例えば、特定の形質を有することや、特定の疾患の発症もしくは発症の可能性を示す遺伝子マーカー、細菌やウイルス等の病原体由来の遺伝子、アレルギー物質由来の遺伝子、一塩基多型や先天的もしくは後天的変異を示す塩基配列等が挙げられるが、これらに限定されない。 In the present invention, the “target nucleic acid” means any nucleic acid sequence or nucleic acid molecule to be detected, which may be natural or artificially synthesized, and is not particularly limited. Examples of the target nucleic acid include a specific trait, a genetic marker indicating the onset or possibility of onset of a specific disease, a gene derived from a pathogen such as a bacterium or virus, a gene derived from an allergen, a single nucleotide polymorphism, Examples include, but are not limited to, base sequences that exhibit congenital or acquired mutations.
 本発明方法において、「第1のプライマーセット」及び「第2のプライマーセット」に含まれる各プライマー(所謂、順方向(フォワード)プライマー及び逆方向(リバース)プライマー)は、Nested-PCR法における一般的な手法に従って設計することができる(中山広樹著「バイオ実験イラストレイテッド 3 本当にふえるPCR」秀潤社発行、1997年)。 In the method of the present invention, each primer (so-called forward primer and reverse primer) included in the “first primer set” and the “second primer set” is a common in the nested-PCR method. It can be designed according to a common technique (published by Hiroki Nakayama, “Bio-Experiment Illustrated, 3 Really PCR”, Shujunsha, 1997).
 「第1のプライマーセット」は標的核酸である二本鎖DNAの一の鎖上の特定の塩基配列(第1の塩基配列)と相同な配列を含むか、当該配列からなるプライマーと、当該第1の塩基配列より下流側(3’側)に位置する特定の塩基配列(第2の塩基配列)の相補鎖配列と相同な配列(すなわち、二本鎖DNAの他方の鎖の塩基配列と相同な配列)を含むか、当該配列からなるプライマーとの組合せとすることができる。ここで「相同な配列」を有するプライマーには、前記第1の塩基配列と同一な配列、及び前記第2の塩基配列の相補鎖配列と同一な配列だけでなく、標的核酸と結合し核酸増幅反応を促すことができるかぎり、前記第1の塩基配列及び前記第2の塩基配列の相補鎖配列において1~数個の塩基の欠失、置換、付加または挿入を有する塩基配列や、前記第1の塩基配列及び前記第2の塩基配列の相補鎖配列とBLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、85%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは99%以上の配列同一性を有する塩基配列を有するプライマーも含まれる。ここで「1~数個」とは特に限定されないが、例えば、1から10個、好ましくは1から5個である(以下においても、同じ意味で使用する)。 The “first primer set” includes a primer having a sequence homologous to a specific base sequence (first base sequence) on one strand of a double-stranded DNA that is a target nucleic acid, or consisting of the sequence, A sequence homologous to the complementary strand sequence of the specific base sequence (second base sequence) located downstream (3 ′ side) from the base sequence of 1 (ie, homologous to the base sequence of the other strand of the double-stranded DNA) Or a primer composed of the sequence. Here, the primer having a “homologous sequence” not only has the same sequence as the first base sequence and the same sequence as the complementary strand sequence of the second base sequence, but also binds to the target nucleic acid and amplifies the nucleic acid. As long as the reaction can be promoted, the base sequence having a deletion, substitution, addition or insertion of 1 to several bases in the complementary strand sequence of the first base sequence and the second base sequence, (BASIC (Basic Local Alignment Search at the National Center for Biological Information) (basic local alignment search tool of the National Center for Biological Information), etc.) Default parameter) When calculated had 85% or more, preferably 90% or more, more preferably 95% or more, more preferably also include a primer having a nucleotide sequence with a sequence identity of 99% or more. Here, “1 to several” is not particularly limited, but is, for example, 1 to 10, preferably 1 to 5 (hereinafter also used in the same meaning).
 第1のプライマーセットのプライマーの大きさは、8塩基以上、12塩基以上、又は15塩基以上の長さとすることができ、上限は特に限定されないが、50塩基以下、40塩基以下、又は30塩基以下の長さとすることができる。各プライマーの大きさは、同一であっても良いし、異なっていても良い。 The size of the primer in the first primer set can be 8 bases or more, 12 bases or more, or 15 bases or more in length, and the upper limit is not particularly limited, but 50 bases or less, 40 bases or less, or 30 bases The length can be as follows. The size of each primer may be the same or different.
 第1のプライマーセットは、第2のプライマーセットを用いた第2の核酸増幅反応におけるアニーリング温度よりも、5℃以上、好ましくは10℃以上、さらに好ましくは15℃以上、高いアニーリング温度を有する第1の核酸増幅反応の条件下において標的核酸を増幅することが可能なものとすることができる。すなわち、第1のプライマーセットに含まれるいずれか一つ、より好ましくは両方のプライマーのTm値は、第2のプライマーセットに含まれるいずれか一つ、より好ましくは両方のプライマーのTm値よりも、5℃以上、好ましくは10℃以上、さらに好ましくは15℃以上、高くなるように設計することができる。これにより第1のプライマーセットを用いた第1の核酸増幅反応系に第2のプライマーセットが含まれる場合においても、第1のプライマーセットのTm値に合わせた高いアニーリング温度で第1の核酸増幅反応を実施することにより、第2のプライマーセットの標的核酸への結合やプライマーダイマーの形成を抑制又は回避することができる。なお、第2のプライマーセットにおける各プライマーの「Tm値」は、下記タグ領域やスペーサー領域を含めない領域に基づいて算出される値を意味する。 The first primer set has a higher annealing temperature than the annealing temperature in the second nucleic acid amplification reaction using the second primer set by 5 ° C or higher, preferably 10 ° C or higher, more preferably 15 ° C or higher. The target nucleic acid can be amplified under the conditions of one nucleic acid amplification reaction. That is, the Tm value of any one, more preferably both primers included in the first primer set is more than the Tm value of any one, more preferably both primers included in the second primer set. It can be designed to be 5 ° C. or higher, preferably 10 ° C. or higher, more preferably 15 ° C. or higher. Thereby, even when the second primer set is included in the first nucleic acid amplification reaction system using the first primer set, the first nucleic acid amplification is performed at a high annealing temperature according to the Tm value of the first primer set. By carrying out the reaction, binding of the second primer set to the target nucleic acid and formation of primer dimers can be suppressed or avoided. The “Tm value” of each primer in the second primer set means a value calculated based on a region not including the tag region or spacer region described below.
 「第2のプライマーセット」は、前記第1の塩基配列より下流側(3’側)に位置し、かつ前記第2の塩基配列の上流側(5’側)に位置する特定の塩基配列(第3の塩基配列)と相同な配列を含むか、当該配列からなるプライマーと、当該第3の塩基配列より下流側(3’側)に位置し、かつ前記第2の塩基配列の上流側(5’側)に位置する特定の塩基配列(第4の塩基配列)の相補鎖配列(すなわち、二本鎖DNAのうち他方の鎖の塩基配列と相同な配列)と相同な配列を含むか、当該配列からなるプライマーとの組合せとすることができる。すなわち、第2のプライマーセットは、第1のプライマーセットに挟まれた領域(つまり、第1の核酸増幅産物)内に設計することができる。ここで「相同な配列」を有するプライマーには、前記第3の塩基配列と同一な配列、及び前記第4の塩基配列の相補鎖配列と同一な配列だけでなく、標的核酸と結合し核酸増幅反応を促すことができるかぎり、前記第3の塩基配列及び前記第4の塩基配列の相補鎖配列において1~数個の塩基の欠失、置換、付加または挿入を有する塩基配列や、前記第3の塩基配列及び前記第4の塩基配列の相補鎖配列とBLAST等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときに、85%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは99%以上の配列同一性を有する塩基配列を有するプライマーも含まれる。あるいは、別の実施形態では、第2のプライマーセットのいずれか一方のプライマーは、第1のプライマーセットのいずれか一方のプライマーの配列全体又はその一部の配列と同一の配列を有していても良い。 The “second primer set” is a specific base sequence located on the downstream side (3 ′ side) of the first base sequence and on the upstream side (5 ′ side) of the second base sequence ( (3rd base sequence) or a primer comprising this sequence, or a primer comprising the sequence, located downstream (3 ′ side) from the third base sequence, and upstream of the second base sequence ( Including a sequence homologous to a complementary strand sequence (that is, a sequence homologous to the base sequence of the other strand of double-stranded DNA) of a specific base sequence (fourth base sequence) located on the 5 ′ side), It can be combined with a primer comprising the sequence. That is, the second primer set can be designed in a region sandwiched between the first primer sets (that is, the first nucleic acid amplification product). Here, the primer having a “homologous sequence” not only has the same sequence as the third base sequence and the same sequence as the complementary strand sequence of the fourth base sequence, but also binds to the target nucleic acid and amplifies the nucleic acid. As long as the reaction can be promoted, a base sequence having a deletion, substitution, addition or insertion of one to several bases in the complementary strand sequence of the third base sequence and the fourth base sequence, 85% or more, preferably 90% or more, more preferably 95%, when calculated using the base sequence of the above and the complementary strand sequence of the fourth base sequence and BLAST or the like (for example, default or default parameters) In addition, a primer having a base sequence having a sequence identity of 99% or more is more preferable. Alternatively, in another embodiment, any one of the primers of the second primer set has the same sequence as the entire sequence of any one of the primers of the first primer set or a partial sequence thereof. Also good.
 第2のプライマーセットのプライマーの大きさは、8塩基以上、12塩基以上、又は15塩基以上の長さとすることができ、上限は特に限定されないが、50塩基以下、40塩基以下、又は30塩基以下の長さとすることができる。各プライマーの大きさは、同一であっても良いし、異なっていても良い。なお、ここで「プライマーの大きさ」とは、下記タグ領域やスペーサー領域を含めない大きさを意味する。 The primer size of the second primer set can be 8 bases or more, 12 bases or more, or 15 bases or more in length, and the upper limit is not particularly limited, but 50 bases or less, 40 bases or less, or 30 bases The length can be as follows. The size of each primer may be the same or different. Here, the “primer size” means a size that does not include the tag region and spacer region described below.
 第1のプライマーセット及び第2のプライマーセットの各プライマーの設計は、公知のプライマー設計ソフト・設計サイト等を用いて行うことができる。このようなプライマー設計ソフト・設計サイトとしては例えば、OligoEvaluator(Sigma-Aldrich)、Primer3(National Human Genome Research Institute)、Primer-BLAST(NCBI)等を利用することができる(これらに限定はされない)。 The design of each primer of the first primer set and the second primer set can be performed using a known primer design software / design site or the like. As such primer design software / design site, for example, OligoEvaluator (Sigma-Aldrich), Primer 3 (National Human Genome Research Institute), Primer-BLAST (NCBI), etc. can be used.
 第1のプライマーセット及び第2のプライマーセットの各プライマーの製造は、公知の手法により行うことができ、DNA合成装置を利用して行ってもよいし、あるいは受託合成サービスを利用して行うことができる。 The production of each primer of the first primer set and the second primer set can be performed by a known method, and may be performed using a DNA synthesizer or a contracted synthesis service. Can do.
 なお、本明細書中、第1のプライマーセットに含まれるプライマーを「アウタープライマー」と記載し、第2のプライマーセットに含まれるプライマーを「インナープライマー」と記載する場合がある。 In the present specification, the primer included in the first primer set may be referred to as “outer primer” and the primer included in the second primer set may be referred to as “inner primer”.
 第2のプライマーセットにおける各プライマーの5’端には、タグが結合されている。タグは、標識物質と結合可能な第1のタグ及び固相担体と結合可能な第2のタグより選択され、第2のプライマーセットにおける各プライマー(順方向(フォワード)プライマー及び逆方向(リバース)プライマー)にいずれかのタグがそれぞれ結合される。「第1のタグ」は下記にて詳述する標識物質と結合可能なものであればよく、核酸(DNA、RNA、オリゴヌクレオチドなど)、タンパク質、ペプチド、もしくは低分子化合物(例えば、ビオチン、ジゴキシゲニン、FITC等)、またはそれらの組合せからなるものを利用することができ、特に限定はされない。好ましくは、オリゴヌクレオチドを含むか、オリゴヌクレオチドからなるものである。「第2のタグ」は下記にて詳述する固相担体と結合可能なものであればよく、核酸(DNA、RNA、オリゴヌクレオチドなど)、タンパク質、ペプチド、もしくは化合物、またはそれらの組合せからなるものを利用することができ、特に限定はされない。好ましくは、オリゴヌクレオチドを含むか、オリゴヌクレオチドからなるものである。 A tag is bound to the 5 'end of each primer in the second primer set. The tag is selected from a first tag that can bind to the labeling substance and a second tag that can bind to the solid phase carrier, and each primer in the second primer set (forward primer and reverse primer) One of the tags is bound to each primer. The “first tag” only needs to be capable of binding to a labeling substance described in detail below, and is a nucleic acid (DNA, RNA, oligonucleotide, etc.), protein, peptide, or low molecular weight compound (eg, biotin, digoxigenin) , FITC, etc.) or a combination thereof can be used, and is not particularly limited. Preferably, it contains an oligonucleotide or consists of an oligonucleotide. The “second tag” only needs to be capable of binding to the solid phase carrier described in detail below, and is composed of a nucleic acid (DNA, RNA, oligonucleotide, etc.), protein, peptide, compound, or a combination thereof. A thing can be utilized and is not particularly limited. Preferably, it contains an oligonucleotide or consists of an oligonucleotide.
 プライマーとタグとは任意の手段により結合することができ、直接的に、又は間接的に結合することができる。ただし、プライマーに結合されるタグが核酸よりなる場合、核酸増幅反応により当該タグ領域がプライマー領域と共に二本鎖化されないように、DNAポリメラーゼ反応の進行を抑制または停止することが可能なスペーサーを介して、プライマーとタグとは結合される。このような「スペーサー」としては、鋳型鎖に含まれたときに、DNAポリメラーゼ反応の進行を抑制または停止することができ、タグ領域の二本鎖化を防ぐものであればよい。DNAポリメラーゼによる伸長には、鋳型となる核酸(または塩基)が必要であり、鋳型がないとDNA鎖は伸長しない。すなわち、当該スペーサーは、DNAポリメラーゼによるDNA伸長反応の鋳型となり得ない構造を有している。このようなスペーサーとしては、例えば、L型核酸、ペプチド核酸(PNA)、架橋化核酸(Bridged Nucleic Acid(BNA)もしくはLocked Nucleic Acid(LNA))などの人工核酸塩基、下記式Iで表されるアゾベンゼン構造を有するスペーサー、アルキレン鎖やポリオキシアルキレン鎖などの脂肪鎖、Inverted塩基(天然核酸塩基を5’-5’結合、あるいは3’-3’結合で連結したもの)、強固なヘアピン構造やシュードノット構造を有する核酸配列等が挙げられるがこれらに限定はされない。 The primer and the tag can be bound by any means, and can be bound directly or indirectly. However, when the tag bound to the primer is composed of a nucleic acid, a spacer capable of suppressing or stopping the progress of the DNA polymerase reaction is used so that the tag region is not double-stranded together with the primer region by the nucleic acid amplification reaction. Thus, the primer and the tag are combined. As such a “spacer”, any spacer can be used as long as it can suppress or stop the progress of the DNA polymerase reaction when contained in the template strand and prevent the tag region from becoming double-stranded. For extension by DNA polymerase, a nucleic acid (or base) serving as a template is required, and the DNA strand does not extend without the template. That is, the spacer has a structure that cannot serve as a template for a DNA extension reaction by DNA polymerase. Examples of such a spacer include artificial nucleic acid bases such as L-type nucleic acids, peptide nucleic acids (PNA), cross-linked nucleic acids (Bridged Nucleic Acid (BNA) or Locked Nucleic Acid (LNA)), and are represented by the following formula I: Spacer with azobenzene structure, fatty chain such as alkylene chain or polyoxyalkylene chain, inverted base (natural nucleobase linked by 5'-5 'or 3'-3' bond), strong hairpin structure, Examples thereof include, but are not limited to, nucleic acid sequences having a pseudoknot structure.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 スペーサーとして脂肪鎖を用いる場合、鎖長の元素数は2以上40以下が好ましい。元素数が1以下では、DNAポリメラーゼの伸長反応の阻害が不完全になり、2本鎖化を抑制できず、元素数が40を超えると水への溶解性が低下するからである。DNAポリメラーゼ反応の阻害効率を考慮すると、脂肪鎖の鎖長は元素数2以上36以下が好ましく、3以上18以下がより好ましい。脂肪鎖スペーサーとしては、例えば、以下の式IIで表されるスペーサーが挙げられる。
  5’-O-C2m-O-3’ (式II)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)
式IIにおいてmは好ましくは2以上36以下であり、より好ましくは3以上18以下であり、さらに好ましくは3または6である。
When a fatty chain is used as the spacer, the number of chain length elements is preferably 2 or more and 40 or less. This is because when the number of elements is 1 or less, the inhibition of the elongation reaction of DNA polymerase is incomplete, and double stranding cannot be suppressed, and when the number of elements exceeds 40, the solubility in water decreases. Considering the inhibition efficiency of the DNA polymerase reaction, the chain length of the fatty chain is preferably 2 or more and 36 or less, more preferably 3 or more and 18 or less. Examples of the fatty chain spacer include spacers represented by the following formula II.
5′-O—C m H 2m —O-3 ′ (Formula II)
(In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and m represents an integer of 2 to 40. To express.)
In the formula II, m is preferably 2 or more and 36 or less, more preferably 3 or more and 18 or less, and further preferably 3 or 6.
 第1の核酸増幅反応及び第2の核酸増幅反応は、一般的なPCR法に従って行うことができる。すなわち、標的核酸を含む鋳型DNAに対し、上記の第1のプライマーセット及び第2のプライマーセットをそれぞれ用いてPCRを行った場合に、所望の領域が増幅されるPCR条件にて行うことができる。 The first nucleic acid amplification reaction and the second nucleic acid amplification reaction can be performed according to a general PCR method. That is, when PCR is performed on the template DNA containing the target nucleic acid using each of the first primer set and the second primer set, the PCR can be performed under PCR conditions that a desired region is amplified. .
 第1の核酸増幅反応においては、試験DNAを鋳型DNAとして利用する。「試験DNA」とは標的核酸を含む可能性のあるDNA試料を意味し、例えば、動物や植物もしくはその一部(器官、組織、細胞など)、微生物、ウイルス、飲食品等の試料に由来するDNAやそれら試料より調製されたcDNAが挙げられる(これらに限定はされない)。試験DNAは、試料より抽出・精製された形態であってもよいし、粗精製された形態であってもよい。あるいは、細胞や組織の一部等をそのまま試験DNAとして、反応系に含めることもできる。 In the first nucleic acid amplification reaction, test DNA is used as template DNA. “Test DNA” means a DNA sample that may contain a target nucleic acid, and is derived from a sample such as an animal, plant, or a part thereof (organ, tissue, cell, etc.), microorganism, virus, food or drink, etc. Examples include (but are not limited to) DNA and cDNA prepared from these samples. The test DNA may be in a form extracted and purified from a sample, or may be in a crudely purified form. Alternatively, a part of cells or tissues can be included in the reaction system as it is as test DNA.
 第2の核酸増幅反応においては、第1の核酸増幅反応によって産生された第1の核酸増幅産物を鋳型DNAとして利用する。第2の核酸増幅反応におけるPCRのサイクル数は、第1の核酸増幅反応におけるPCRのサイクル数と比べて少ないことが好ましい。第2の核酸増幅反応におけるPCRのサイクル数を少なくすることにより、第2のプライマーセットによるプライマーダイマーの形成を抑制又は回避することができる。プライマーダイマーの形成の有無は、第2の核酸増幅産物を常法に従ってアガロースゲル等の適当なゲルにて電気泳動することによって確認することができ、プライマーダイマーの形成を生じない第2の核酸増幅反応におけるPCRのサイクル数を適宜設定することができる。 In the second nucleic acid amplification reaction, the first nucleic acid amplification product produced by the first nucleic acid amplification reaction is used as the template DNA. The number of PCR cycles in the second nucleic acid amplification reaction is preferably smaller than the number of PCR cycles in the first nucleic acid amplification reaction. By reducing the number of PCR cycles in the second nucleic acid amplification reaction, formation of primer dimers by the second primer set can be suppressed or avoided. Presence or absence of primer dimer formation can be confirmed by electrophoresis of the second nucleic acid amplification product on an appropriate gel such as an agarose gel according to a conventional method. Second nucleic acid amplification that does not cause primer dimer formation The number of PCR cycles in the reaction can be set as appropriate.
 PCRに用いるDNAポリメラーゼは、耐熱性のDNAポリメラーゼであればよく、特に限定はされない。本発明においては、市販のDNAポリメラーゼを利用することが可能であり、例えばTaKaRa Ex Taq(登録商標)やKOD DNAポリメラーゼ等を好適に利用することができる。また、温度、時間、緩衝液の組成等は、用いるDNAポリメラーゼや、プライマーの配列、および目的の核酸増幅領域の大きさ等に応じて、適宜選択することができる。 The DNA polymerase used for PCR is not particularly limited as long as it is a heat-resistant DNA polymerase. In the present invention, commercially available DNA polymerase can be used, and for example, TaKaRa Ex Taq (registered trademark), KOD DNA polymerase, and the like can be suitably used. The temperature, time, buffer composition, etc. can be appropriately selected depending on the DNA polymerase used, the primer sequence, the size of the target nucleic acid amplification region, and the like.
 第1の核酸増幅反応と第2の核酸増幅反応とは別個の反応容器内で順次行ってもよいし、あるいは第1の核酸増幅反応と第2の核酸増幅反応とを同一の反応容器内で連続して行ってもよい。第1の核酸増幅反応と第2の核酸増幅反応とを別個の反応容器内で順次行うとは、第1の核酸増幅反応後、得られた第1の核酸増幅産物を取り出し(必要に応じて希釈した後)、DNAポリメラーゼや第2のプライマーセット等を含んでなる別個に用意された第2の核酸増幅反応系に加えて第2の核酸増幅反応を行うことを意味する。一方、第1の核酸増幅反応と第2の核酸増幅反応とを同一の反応容器内で連続して行うとは、第1の核酸増幅反応後、第1の核酸増幅産物を取り出すことなく、第2の核酸増幅反応を実施することを意味する。第1の核酸増幅反応と第2の核酸増幅反応とを同一の反応容器内で連続して行う場合において、第2のプライマーセットは第1の核酸増幅反応の開始前に予め反応系に添加されていてもよいし、第1の核酸増幅反応後、第2の核酸増幅反応開始前に反応系に添加されてもよい。また、必要に応じて、第1の核酸増幅反応後、第2の核酸増幅反応開始前に、DNAポリメラーゼを補充してもよい。好ましくは、第1の核酸増幅反応と第2の核酸増幅反応とは、操作容易性から同一の反応容器内で連続して行う。さらに、好ましくは、第1の核酸増幅反応と第2の核酸増幅反応とを同一の反応容器内で連続して行い、第2のプライマーセットは第1の核酸増幅反応の開始前に予め反応系に添加される。この場合、第1のプライマーセットに含まれるいずれか一つ、より好ましくは両方のプライマーのTm値は、第2のプライマーセットに含まれるいずれか一つ、より好ましくは両方のプライマーのTm値よりも高いことが好ましい。これにより第1のプライマーセットを用いた第1の核酸増幅反応におけるアニーリング温度は、第2のプライマーセットを用いた第2の核酸増幅反応におけるアニーリング温度よりも高い温度条件にて実施することが可能であり、第1の核酸増幅反応条件下にて第2のプライマーセットが試験DNA中に含まれる標的核酸と結合することやプライマーダイマーの形成を抑制又は回避することができる。 The first nucleic acid amplification reaction and the second nucleic acid amplification reaction may be sequentially performed in separate reaction containers, or the first nucleic acid amplification reaction and the second nucleic acid amplification reaction may be performed in the same reaction container. You may carry out continuously. When the first nucleic acid amplification reaction and the second nucleic acid amplification reaction are sequentially performed in separate reaction vessels, the obtained first nucleic acid amplification product is taken out after the first nucleic acid amplification reaction (if necessary, This means that after the dilution, a second nucleic acid amplification reaction is performed in addition to a separately prepared second nucleic acid amplification reaction system comprising a DNA polymerase, a second primer set, and the like. On the other hand, performing the first nucleic acid amplification reaction and the second nucleic acid amplification reaction continuously in the same reaction vessel means that the first nucleic acid amplification product is not taken out after the first nucleic acid amplification reaction. It means that two nucleic acid amplification reactions are performed. In the case where the first nucleic acid amplification reaction and the second nucleic acid amplification reaction are continuously performed in the same reaction vessel, the second primer set is added to the reaction system in advance before the start of the first nucleic acid amplification reaction. Alternatively, it may be added to the reaction system after the first nucleic acid amplification reaction and before the start of the second nucleic acid amplification reaction. If necessary, DNA polymerase may be supplemented after the first nucleic acid amplification reaction and before the start of the second nucleic acid amplification reaction. Preferably, the first nucleic acid amplification reaction and the second nucleic acid amplification reaction are continuously performed in the same reaction vessel for ease of operation. Furthermore, preferably, the first nucleic acid amplification reaction and the second nucleic acid amplification reaction are continuously performed in the same reaction vessel, and the second primer set is preliminarily set in the reaction system before the start of the first nucleic acid amplification reaction. To be added. In this case, the Tm value of any one, more preferably both primers included in the first primer set, is more preferably the Tm value of any one, more preferably both primers included in the second primer set. Is preferably high. Thereby, the annealing temperature in the first nucleic acid amplification reaction using the first primer set can be performed under a temperature condition higher than the annealing temperature in the second nucleic acid amplification reaction using the second primer set. The binding of the second primer set to the target nucleic acid contained in the test DNA and the formation of primer dimers can be suppressed or avoided under the first nucleic acid amplification reaction conditions.
2.増幅した標的核酸を標識する工程
 上記核酸増幅により得られた、標的核酸を含む(存在する場合)第2の核酸増幅産物は、第2のプライマーセットに起因する第1のタグ及び第2のタグをそれぞれ各端に有する。第2の核酸増幅産物の標識は、標識物質を当該標識物質と結合可能な第1のタグと接触及び結合させることにより行うことができる。標識物質は第2の核酸増幅産物の検出を可能とするものであればよく特に限定はされないが、好ましくは第2の核酸増幅産物の目視検出を可能とするものである。このような標識物質としては、着色粒子、色素、酵素(ペルオキシダーゼ、アルカリホスファターゼ、ルシフェラーゼ等)等が挙げられるが、好ましくは着色粒子である。「着色粒子」とは、金属コロイド(例えば、金、銀、銅、白金等)粒子、着色されたラテックス粒子、色素を包含するシリカナノ粒子等が挙げられるが、これらに限定はされない。標識物質の大きさは第2の核酸増幅産物を固相担体に捕捉するのを妨げるものでなく、かつ検出の際に発色の良いものであればよく、下記固相担体や核酸検出デバイスの各種多孔質部材の孔径よりも小さなサイズとなるように、適宜選択することができる。例えば、標識物質の大きさはおよそ500nm以下、好ましくはおよそ0.1nm~250nm、より好ましくはおよそ1nm~100nmの粒径とすることができる。
2. The step of labeling the amplified target nucleic acid The second nucleic acid amplification product containing the target nucleic acid (if present) obtained by the nucleic acid amplification includes the first tag and the second tag resulting from the second primer set At each end. The labeling of the second nucleic acid amplification product can be performed by contacting and binding the labeling substance with the first tag that can bind to the labeling substance. The labeling substance is not particularly limited as long as it can detect the second nucleic acid amplification product, but preferably allows visual detection of the second nucleic acid amplification product. Examples of such a labeling substance include colored particles, pigments, enzymes (peroxidase, alkaline phosphatase, luciferase, etc.), and preferably colored particles. Examples of the “colored particles” include, but are not limited to, metal colloid (eg, gold, silver, copper, platinum, etc.) particles, colored latex particles, silica nanoparticles including a pigment, and the like. The size of the labeling substance does not hinder the capture of the second nucleic acid amplification product on the solid phase carrier, and may be any material that develops color at the time of detection. It can select suitably so that it may become a size smaller than the hole diameter of a porous member. For example, the size of the labeling substance can be about 500 nm or less, preferably about 0.1 nm to 250 nm, more preferably about 1 nm to 100 nm.
 標識物質と第1のタグとの接触及び結合は、直接的結合であっても、間接的結合であってもよく、結合手段は利用する標識物質と第1のタグに応じて適宜好適なものを選択することができ、核酸-核酸相互作用、タンパク質-タンパク質相互作用、低分子化合物-タンパク質相互作用等を利用することができる。例えば、第1のタグがオリゴヌクレオチドを含む場合、標識物質を当該オリゴヌクレオチドの塩基配列と相補的な配列を含むオリゴヌクレオチドに結合することによって、両者のオリゴヌクレオチドをハイブリダイゼーションさせることによって、標識物質と第1のタグとを間接的に結合することができる。標識物質とオリゴヌクレオチドとの結合はペプチド、タンパク質、核酸などを介して行ってもよいし、適当な官能基を介して行ってもよい。ハイブリダイゼーションの条件は、ハイブリダイゼーションが生じる条件であればよく特に限定はされないが、例えば20℃~40℃にて、10mM~50mMのリン酸を含む緩衝液(pH6.5~7.5)中で反応させることにより行うことができる。ハイブリダイゼーション効率を高めるべく、緩衝液にはさらに塩化ナトリウム等の塩を含めることができる。あるいは、第1のタグが低分子化合物であるビオチンを含む場合、標識物質をアビジン(ストレプトアビジン)に結合することによって、両者を結合することができる。また、第1のタグが低分子化合物であるジゴキシゲニンやFITCを含む場合、標識物質を抗DIG抗体や抗FITC抗体に結合することによって、両者を結合することができる。 The contact and binding between the labeling substance and the first tag may be direct binding or indirect binding, and the binding means is suitably suitable depending on the labeling substance to be used and the first tag. And nucleic acid-nucleic acid interaction, protein-protein interaction, low molecular weight compound-protein interaction, and the like can be used. For example, when the first tag includes an oligonucleotide, the labeling substance is hybridized by binding the labeling substance to an oligonucleotide containing a sequence complementary to the base sequence of the oligonucleotide, And the first tag can be indirectly coupled. The binding between the labeling substance and the oligonucleotide may be performed via a peptide, protein, nucleic acid, or the like, or may be performed via an appropriate functional group. The hybridization conditions are not particularly limited as long as hybridization occurs. For example, in a buffer solution (pH 6.5 to 7.5) containing 10 mM to 50 mM phosphate at 20 ° C. to 40 ° C. It can be performed by reacting with. In order to increase the hybridization efficiency, the buffer may further contain a salt such as sodium chloride. Alternatively, when the first tag contains biotin, which is a low molecular weight compound, both can be bound by binding the labeling substance to avidin (streptavidin). When the first tag contains digoxigenin or FITC, which are low molecular compounds, both can be bound by binding the labeling substance to the anti-DIG antibody or anti-FITC antibody.
3.標識した標的核酸を固相担体に捕捉、検出する工程
 上記標識された第2の核酸増幅産物は、固相担体に捕捉し、検出することができる。第2の核酸増幅産物の固相担体への捕捉(すなわち、結合)は、固相担体と第2の核酸増幅産物における当該固相担体と結合可能な第2のタグとを接触させることにより行うことができる。固相担体は特に限定はされないが、樹脂、金属、多糖類、鉱物等からなるものを利用することができ、メンブレン、フィルム、不織布、プレート、ゲル等の形状とすることができる。好ましくは固相担体は、溶液中の第2の核酸増幅産物や標識物質が展開できるように多孔質構造を有するものである。本発明において利用可能な固相担体としては、例えば、ろ紙、ニトロセルロースメンブレン、ポリエーテルスルフォンメンブレン、ナイロンメンブレンや乾燥させた各種ゲル(シリカゲル、アガロースゲル、デキストランゲル、ゼラチンゲル)等が挙げられる。固相担体の大きさ及び形態は、各種操作や検出に適切なものを適宜選択することができる。
3. Step of capturing and detecting the labeled target nucleic acid on a solid phase carrier The labeled second nucleic acid amplification product can be captured on a solid phase carrier and detected. Capture (ie, binding) of the second nucleic acid amplification product to the solid phase carrier is performed by bringing the solid phase carrier into contact with a second tag that can bind to the solid phase carrier in the second nucleic acid amplification product. be able to. The solid phase carrier is not particularly limited, but may be made of a resin, metal, polysaccharide, mineral or the like, and may be in the form of a membrane, film, nonwoven fabric, plate, gel or the like. Preferably, the solid phase carrier has a porous structure so that the second nucleic acid amplification product and the labeling substance in the solution can be developed. Examples of the solid phase carrier usable in the present invention include filter paper, nitrocellulose membrane, polyether sulfone membrane, nylon membrane, various dried gels (silica gel, agarose gel, dextran gel, gelatin gel) and the like. As the size and form of the solid phase carrier, those suitable for various operations and detection can be appropriately selected.
 固相担体と第2のタグとの接触及び捕捉(すなわち、結合)は、直接的結合であっても、間接的結合であってもよく、結合手段は利用する固相担体と第2のタグに応じて適宜好適なものを選択することができる。例えば、第2のタグがオリゴヌクレオチドを含む場合、固相担体に当該オリゴヌクレオチドの塩基配列と相補的な配列を含むオリゴヌクレオチドを固定化してタグ捕捉手段とし、両者のオリゴヌクレオチドをハイブリダイゼーションさせることによって、固相担体と第2のタグとを間接的に結合することができる。固相担体へのオリゴヌクレオチドの固定化はペプチド、タンパク質、核酸などを介して行ってもよいし、適当な官能基を介して行ってもよい。オリゴヌクレオチドを固相担体に固定化する場合、特定の領域に限局して固定化することによって、捕捉された第2の核酸増幅産物は所定の領域のみに限局して検出されるため、陽性又は陰性の判別を容易にすることができる。ハイブリダイゼーションの条件は、上記した条件により行うことができる。 Contact and capture (that is, binding) between the solid phase carrier and the second tag may be direct binding or indirect binding, and the binding means uses the solid phase carrier and the second tag to be used. A suitable one can be selected depending on the case. For example, when the second tag contains an oligonucleotide, an oligonucleotide containing a sequence complementary to the base sequence of the oligonucleotide is immobilized on a solid phase carrier to serve as a tag capturing means, and both oligonucleotides are hybridized. Thus, the solid phase carrier and the second tag can be indirectly bound. Immobilization of the oligonucleotide to the solid phase carrier may be performed via a peptide, protein, nucleic acid, or the like, or may be performed via an appropriate functional group. When immobilizing an oligonucleotide on a solid phase carrier, the captured second nucleic acid amplification product is detected only in a predetermined region by immobilizing it in a specific region. Negative discrimination can be facilitated. Hybridization conditions can be performed according to the conditions described above.
 第2の核酸増幅産物の検出は、固相担体に捕捉された第2の核酸増幅産物に結合した上記標識物質を検出、好ましくは目視検出することにより行うことができる。標的核酸が存在する場合には、固相担体に捕捉・結合された核酸増幅反応産物の標識物質が検出される。当該検出の有無を指標にして、第2の核酸増幅反応産物中の標的核酸の有無を判別することができる。 The detection of the second nucleic acid amplification product can be performed by detecting, preferably visually detecting the labeling substance bound to the second nucleic acid amplification product captured on the solid phase carrier. When the target nucleic acid is present, the labeling substance of the nucleic acid amplification reaction product captured and bound to the solid phase carrier is detected. The presence or absence of the target nucleic acid in the second nucleic acid amplification reaction product can be determined using the presence or absence of the detection as an index.
4.核酸検出デバイス
 上記の「増幅した標的核酸を標識する工程」及び「標識した標的核酸を固相担体に捕捉、検出する工程」は核酸クロマトグラフィーを利用する核酸検出デバイスを用いて行うことができる。当該核酸検出デバイスを利用することにより、第2の核酸増幅産物中の標的核酸の有無を、特殊な装置を必要とすることなく検出・判別することができ、簡便かつ迅速に結果を得ることができる。
4). Nucleic acid detection device The above-mentioned “step of labeling the amplified target nucleic acid” and “step of capturing and detecting the labeled target nucleic acid on a solid phase carrier” can be performed using a nucleic acid detection device utilizing nucleic acid chromatography. By using the nucleic acid detection device, the presence or absence of the target nucleic acid in the second nucleic acid amplification product can be detected and discriminated without requiring a special device, and the result can be obtained easily and quickly. it can.
 核酸検出デバイスは、核酸クロマトグラフィー法により標識された核酸増幅産物を検出するために利用される公知の核酸検出デバイス(WO2012/070618)を利用することができる。 As the nucleic acid detection device, a known nucleic acid detection device (WO2012 / 070618) used for detecting a nucleic acid amplification product labeled by a nucleic acid chromatography method can be used.
 本発明にて利用可能な核酸検出デバイスの一実施形態の模式図を図1に示すが、核酸検出デバイスは本実施形態に限定されるものではない。なお、以下の説明において、各部材に付された符号は、図1中に示される符号に対応する。 FIG. 1 shows a schematic diagram of an embodiment of a nucleic acid detection device that can be used in the present invention, but the nucleic acid detection device is not limited to this embodiment. In the following description, the reference numerals given to the respective members correspond to the reference numerals shown in FIG.
 図1の核酸検出デバイスは、基材(5)の上に、第2の核酸増幅産物を添加するためのサンプルパッド(3)、標識物質を配置したコンジュゲートパッド(2)、標識された第2の核酸増幅産物を捕捉するための固相担体(1)及び吸収パッド(4)を順次重ねて配置してなる。固相担体(1)には、標識された第2の核酸増幅産物を捕捉するための手段(捕捉手段)(6)(例えば、上記オリゴヌクレオチド等)が限局して配置・固定化されている。サンプルパッド(3)、コンジュゲートパッド(2)、固相担体(1)及び吸収パッド(4)は上記固相担体として利用可能な多孔質構造を有する部材よりなる。これらは同一の部材より構成されていてもよいし、異なる部材より構成されていてもよい。基材(5)はその上に配置された各種部材を支持することができ、核酸検出デバイスの操作を容易にするものであればよく、例えば樹脂、金属、鉱物等からなるものを利用することができる。標識物質を展開溶液中に混合する場合には、コンジュゲートパッド(2)は省略することができる。 The nucleic acid detection device of FIG. 1 includes a sample pad (3) for adding a second nucleic acid amplification product, a conjugate pad (2) having a labeling substance disposed thereon, The solid phase carrier (1) and the absorption pad (4) for capturing the nucleic acid amplification product of 2 are sequentially stacked. On the solid phase carrier (1), means (capturing means) (6) (for example, the above-mentioned oligonucleotide etc.) for capturing the labeled second nucleic acid amplification product is locally arranged and immobilized. . The sample pad (3), the conjugate pad (2), the solid phase carrier (1) and the absorption pad (4) are composed of members having a porous structure that can be used as the solid phase carrier. These may be comprised from the same member, and may be comprised from a different member. The base material (5) can support various members disposed thereon and can facilitate the operation of the nucleic acid detection device. For example, a material made of resin, metal, mineral, or the like is used. Can do. When the labeling substance is mixed in the developing solution, the conjugate pad (2) can be omitted.
 第2の核酸増幅反応後、得られた第2の核酸増幅反応産物はサンプルパッド(3)に添加する。核酸増幅反応後の反応液をそのまま滴下してもよいし、適当な展開溶液(例えば、リン酸緩衝液、Tris緩衝液、グッド緩衝液、SSC緩衝液)と共に滴下してもよい。展開溶液には必要に応じて、界面活性剤、塩、タンパク質、核酸等をさらに含めることができる。サンプルパッド(3)に添加された第2の核酸増幅反応産物は、図1中の矢印で示す方向に上流から下流に向かってキャピラリー現象により展開する。 After the second nucleic acid amplification reaction, the obtained second nucleic acid amplification reaction product is added to the sample pad (3). The reaction solution after the nucleic acid amplification reaction may be dropped as it is, or may be dropped together with an appropriate developing solution (for example, phosphate buffer, Tris buffer, Good buffer, SSC buffer). The developing solution can further contain a surfactant, a salt, a protein, a nucleic acid and the like, if necessary. The second nucleic acid amplification reaction product added to the sample pad (3) develops by a capillary phenomenon from upstream to downstream in the direction indicated by the arrow in FIG.
 第2の核酸増幅反応産物は標識物質が配置されたコンジュゲートパッド(2)を通過する際に、標識物質と接触し第1のタグを介して標識物質により標識される。 When the second nucleic acid amplification reaction product passes through the conjugate pad (2) on which the labeling substance is disposed, the second nucleic acid amplification reaction product comes into contact with the labeling substance and is labeled with the labeling substance via the first tag.
 次いで、標識された第2の核酸増幅反応産物は、固相担体(1)を通過する際に、捕捉手段(6)と接触し、第2のタグを介して固相担体(1)に捕捉・結合される。 Next, when the labeled second nucleic acid amplification reaction product passes through the solid phase carrier (1), it contacts the capture means (6) and is captured by the solid phase carrier (1) through the second tag. -Combined.
 標的核酸が存在する場合には、捕捉手段(6)により固相担体(1)に捕捉・結合された核酸増幅反応産物の標識物質が捕捉手段(6)の領域に検出される。標識物質が目視確認できるものであれば、標識物質に起因して捕捉手段(6)の領域が呈色する。当該標識物質の検出(呈色)の有無を指標にして、第2の核酸増幅反応産物中の標的核酸の有無を判別することができる。 When the target nucleic acid is present, the labeling substance of the nucleic acid amplification reaction product captured and bound to the solid phase carrier (1) by the capture means (6) is detected in the region of the capture means (6). If the labeling substance can be visually confirmed, the region of the capturing means (6) is colored due to the labeling substance. The presence or absence of the target nucleic acid in the second nucleic acid amplification reaction product can be determined using the presence or absence of detection (coloration) of the labeling substance as an index.
II.核酸検出キット
 本発明に係る核酸検出キットは、上記の第1のプライマーセット、第2のプライマーセット、標識物質及び固相担体を含み、上記本発明における核酸の検出方法において利用することができる。標識物質及び固相担体は、上記核酸検出デバイスの形態とすることができる。
II. Nucleic acid detection kit The nucleic acid detection kit according to the present invention includes the first primer set, the second primer set, a labeling substance, and a solid phase carrier, and can be used in the nucleic acid detection method of the present invention. The labeling substance and the solid phase carrier can be in the form of the nucleic acid detection device.
 核酸検出キットにはさらに、PCR用緩衝液、dNTPs、DNAポリメラーゼ、核酸クロマトグラフィー展開溶液等を含めることができる。 The nucleic acid detection kit can further contain a PCR buffer solution, dNTPs, DNA polymerase, a nucleic acid chromatography developing solution, and the like.
 以下、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
(実施例1)
(I)金コロイド結合オリゴヌクレオチドの作製
 Gold Colloid(40nm,9.0×1010(粒子数/ml)、British Biocell International社製)と下記配列番号1で表されるチオール基含有オリゴヌクレオチドを混合し、50℃で16時間インキュベートした。6000rpmで15分間遠心分離し、上清を除去し、0.05M塩化ナトリウム、5mMリン酸バッファー(pH7)を添加し混和後、再度50℃で40時間インキュベートした。
(Example 1)
(I) Preparation of gold colloid-binding oligonucleotide Gold Colloid (40 nm, 9.0 × 10 10 (number of particles / ml), manufactured by British Biocell International) and thiol group-containing oligonucleotide represented by SEQ ID NO: 1 are mixed And incubated at 50 ° C. for 16 hours. Centrifugation was performed at 6000 rpm for 15 minutes, the supernatant was removed, 0.05 M sodium chloride, 5 mM phosphate buffer (pH 7) was added and mixed, and then incubated again at 50 ° C. for 40 hours.
 インキュベート後、遠心(6000rpm、15分間)を行い、上清を除去し、5mMリン酸バッファー(pH7)を添加した。このバッファー置換を再度行った。 After incubation, centrifugation (6000 rpm, 15 minutes) was performed, the supernatant was removed, and 5 mM phosphate buffer (pH 7) was added. This buffer replacement was performed again.
 調製した金コロイド溶液をグラスファイバー製パッドに均一になるように添加した後、真空乾燥機にて乾燥させ、コンジュゲートパッドとした。
 (チオール基含有オリゴヌクレオチド):5’-CTATAAACCCAGTGAAAAATGTTGCCA-SH-3’(配列番号1)
The prepared gold colloid solution was uniformly added to a glass fiber pad, and then dried with a vacuum dryer to obtain a conjugate pad.
(Thiol group-containing oligonucleotide): 5′-CTAATAACCCAGTGAAAAATGTGCCA-SH-3 ′ (SEQ ID NO: 1)
(II)タグ捕捉手段を固定化したメンブレンの作製
 タグ捕捉手段として、下記配列番号2で表されるオリゴヌクレオチドプローブを含む溶液を、メルクミリポア社製ニトロセルロースメンブレン(Hi-Flow180)に、ディスペンサーを用いてライン状に塗布した。その後40℃で30分間乾燥させることでタグ捕捉手段を備えたメンブレンとした。
 (オリゴヌクレオチドプローブ):5’-ATCACACATTAGCTGTCACTCGATGCA-3’(配列番号2)
(II) Preparation of membrane with immobilized tag capturing means As a tag capturing means, a solution containing the oligonucleotide probe represented by SEQ ID NO: 2 below was applied to a nitrocellulose membrane (Hi-Flow 180) manufactured by Merck Millipore, and a dispenser. And applied in a line. Thereafter, the membrane was dried at 40 ° C. for 30 minutes to obtain a membrane equipped with tag capturing means.
(Oligonucleotide probe): 5′-ATCACACATTAGCTGTTCACTCGATGCA-3 ′ (SEQ ID NO: 2)
(III)ラテラルフロー型核酸検出デバイスの作製
 作製したラテラルフロー型核酸検出デバイスは、図1の模式図に示される検出デバイスに準拠して作製した。
(III) Production of Lateral Flow Type Nucleic Acid Detection Device The produced lateral flow type nucleic acid detection device was produced according to the detection device shown in the schematic diagram of FIG.
 すなわち、基材(5)としてポリプロピレン製バッキングシート(Lohmann社)、コンジュゲートパッド(2)として上記(I)で作製したコンジュゲートパッド、固相担体(1)及び捕捉手段(6)として上記(II)で作製したタグ捕捉手段を備えたメンブレン、サンプルパッド(3)としてグラスファイバー製のサンプルパッド、吸収パッド(4)としてセルロース製の吸収パッドを、それぞれ図1に示すように互いに重なり合わせて貼り合わせ、ラテラルフロー型核酸検出デバイスを作製した。 That is, a backing sheet made of polypropylene (Lohmann) as the base material (5), the conjugate pad prepared in the above (I) as the conjugate pad (2), the solid phase carrier (1) and the above as the capture means (6) ( The membrane provided with the tag capturing means prepared in II), the sample pad made of glass fiber as the sample pad (3), and the absorbent pad made of cellulose as the absorption pad (4) overlap each other as shown in FIG. The lateral flow type nucleic acid detection device was produced by bonding.
(IV)標的検出用プライマーの設計
 本実施例では、配列番号3で表される合成核酸を鋳型DNAとし、PCR増幅を行った場合に、鋳型配列の特定領域の約230塩基対が増幅するようにインナープライマーF(配列番号4)及びインナープライマーR(配列番号5)を設計した。
(IV) Design of target detection primer In this example, when PCR amplification is performed using the synthetic nucleic acid represented by SEQ ID NO: 3 as a template DNA, about 230 base pairs in a specific region of the template sequence are amplified. Inner primer F (SEQ ID NO: 4) and inner primer R (SEQ ID NO: 5) were designed.
 さらに各インナープライマーのそれぞれ上流側(5’末端側)に、インナープライマーの認識配列を挟むようにアウタープライマーF(配列番号6)及びアウタープライマーR(配列番号7)を設計した。 Further, an outer primer F (SEQ ID NO: 6) and an outer primer R (SEQ ID NO: 7) were designed so that the recognition sequence of the inner primer was sandwiched between the upstream side (5 ′ end side) of each inner primer.
 設計に際しては、アウタープライマーのTm値が、インナープライマーのTm値より10℃以上高くなるように設計した。 In designing, the Tm value of the outer primer was designed to be 10 ° C. higher than the Tm value of the inner primer.
 各プライマーの配列及びTm値を表1に示す。また、各プライマーの認識配列に対応する領域を図2に示す。 Table 1 shows the sequence and Tm value of each primer. Moreover, the area | region corresponding to the recognition sequence of each primer is shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各インナープライマーの5’末端には、ポリメラーゼ反応阻害領域であるアゾベンゼンを有するスペーサー(上記式(I)で表される)を介して、下記タグ配列1(配列番号8)及びタグ配列2(配列番号9)をそれぞれ連結し、インナープライマー-Tag1-F(配列番号10)及びインナープライマー-Tag2-R(配列番号11)を作製した。
(タグ配列1):5’-TCGAGTGACAGCTAATGTGTGATT-3’(配列番号8)
(タグ配列2):5’-ATTTTTCACTGGGTTTATAGT-3’(配列番号9)
(インナープライマー-Tag1-F):5’-TCGAGTGACAGCTAATGTGTGATT-X-CGGAGGTTCCGCAAAAGATG-3’(配列番号10)
(インナープライマー-Tag2-R):5’-ATTTTTCACTGGGTTTATAGT-X-CCTCCAGAGTGATCGATGTT-3’(配列番号11)
(上記配列中、「X」とはスペーサーを示す)
The following tag sequence 1 (SEQ ID NO: 8) and tag sequence 2 (sequence) are attached to the 5 ′ end of each inner primer via a spacer (expressed by the above formula (I)) having azobenzene which is a polymerase reaction inhibition region. Each of No. 9) was ligated to prepare inner primer-Tag1-F (SEQ ID NO: 10) and inner primer-Tag2-R (SEQ ID NO: 11).
(Tag sequence 1): 5'-TCGAGTGACAGCTCATAATGTGTATT-3 '(SEQ ID NO: 8)
(Tag sequence 2): 5′-ATTTTTCACTGGGTTTATAGT-3 ′ (SEQ ID NO: 9)
(Inner primer-Tag1-F): 5′-TCGAGTGACAGCTCATAGTGTGTATT-X-CGGAGGTTCCGCAAAAGATG-3 ′ (SEQ ID NO: 10)
(Inner primer-Tag2-R): 5'-ATTTTTCACTGGGTTTATAGT-X-CCTCCCAGAGTGATCGATGTTT-3 '(SEQ ID NO: 11)
(In the above sequences, “X” represents a spacer)
(V)標的核酸の増幅反応
 PCR試薬はTaKaRa Ex Taq(登録商標)Hot Start Version(タカラバイオ)を用い、1×EX Taqバッファー、各0.2mM dNTPs、0.5μMインナープライマー-Tag1-F、0.5μMインナープライマー-Tag2-R、0.11μMアウタープライマーF、0.11μMアウタープライマーR、0.9375Unit TaKaRa EX Taq(登録商標)、鋳型合成DNA(配列番号3)(0pg/test,0.5pg/test,5pg/test,又は50pg/test)を含む反応溶液にて、Nested-PCR反応を行った。
(V) Amplification reaction of target nucleic acid TaKaRa Ex Taq (registered trademark) Hot Start Version (Takara Bio) was used as a PCR reagent, 1 × EX Taq buffer, 0.2 mM dNTPs for each, 0.5 μM inner primer-Tag1-F, 0.5 μM inner primer-Tag2-R, 0.11 μM outer primer F, 0.11 μM outer primer R, 0.9375 Unit TaKaRa EX Taq (registered trademark), template synthetic DNA (SEQ ID NO: 3) (0 pg / test, 0. Nested-PCR reaction was performed in a reaction solution containing 5 pg / test, 5 pg / test, or 50 pg / test).
 反応条件は、95℃で2分後、95℃で10秒、72℃で20秒を1セットとして55サイクル実施し、その後、90℃で5秒、60℃で10秒、72℃で10秒を1セットとして15サイクル実施し、増幅産物を得た。得られた増幅産物は各インナープライマーに起因する1本鎖DNAからなるタグ配列を有する。 Reaction conditions were 95 minutes at 95 ° C. for 2 minutes, 55 cycles of 95 ° C. for 10 seconds and 72 ° C. for 20 seconds, then 90 ° C. for 5 seconds, 60 ° C. for 10 seconds, 72 ° C. for 10 seconds. As a set, 15 cycles were performed to obtain an amplification product. The obtained amplification product has a tag sequence consisting of single-stranded DNA resulting from each inner primer.
(VI)ラテラルフロー型核酸検出デバイスを用いた増幅産物の検出
 上記(V)にて得られた増幅産物を、上記(III)で作製したラテラルフロー型核酸検出デバイスにて検出を行った。
(VI) Detection of amplification product using lateral flow nucleic acid detection device The amplification product obtained in (V) above was detected by the lateral flow nucleic acid detection device prepared in (III) above.
 Nested-PCR後の反応溶液(5μL)をデバイス上のサンプルパッドに添加し、さらに80μLの展開溶液(1×SSC,1%Tween20,0.1%SDS)を添加することで、反応溶液を展開した。室温で10分後、メンブレン上のライン状に固定化されたタグ捕捉手段の着色の有無を確認した。 Add the reaction solution (5 μL) after Nested-PCR to the sample pad on the device, and then add 80 μL of the developing solution (1 × SSC, 1% Tween 20, 0.1% SDS) to develop the reaction solution. did. After 10 minutes at room temperature, the tag capturing means fixed in a line on the membrane was checked for coloration.
 結果を図3(A)に示す。0.5pg/testの鋳型合成DNAを添加したサンプルにおいても、適切に金コロイドに由来する赤色ラインが観察され、鋳型合成DNAに由来する増幅産物を検出することができた。一方、鋳型合成DNAを添加しないサンプル(0pg/test)においては着色を認めず、増幅産物に由来しない非特異的な着色は示さないことが確認された。 The result is shown in FIG. Also in the sample to which 0.5 pg / test template synthetic DNA was added, a red line derived from the gold colloid was observed appropriately, and the amplification product derived from the template synthetic DNA could be detected. On the other hand, in the sample (0 pg / test) to which no template synthetic DNA was added, no coloration was observed, and it was confirmed that no nonspecific coloration not derived from the amplification product was exhibited.
(比較例1)
 実施例1で作製したタグ配列を連結したインナープライマーのみを用いて、配列番号3で表される合成核酸を鋳型DNAとしてPCR増幅を行った。PCR試薬はTaKaRa Ex Taq(登録商標)Hot Start Version(タカラバイオ)を用い、1×EX Taqバッファー、各0.2mM dNTPs、0.4μMインナープライマー-Tag1-F、0.4μMインナープライマー-Tag2-R、0.9375Unit TaKaRa EX Taq(登録商標)、鋳型合成DNA(配列番号3)(0pg/test,0.5pg/test,5pg/test,又は50pg/test)を含む反応溶液にて、PCR反応を行った。
(Comparative Example 1)
Using only the inner primer to which the tag sequence prepared in Example 1 was linked, PCR amplification was performed using the synthetic nucleic acid represented by SEQ ID NO: 3 as the template DNA. As PCR reagents, TaKaRa Ex Taq (registered trademark) Hot Start Version (Takara Bio) was used, and 1 × EX Taq buffer, 0.2 mM dNTPs for each, 0.4 μM inner primer-Tag1-F, 0.4 μM inner primer-Tag2- PCR reaction in a reaction solution containing R, 0.9375 Unit TaKaRa EX Taq (registered trademark), template synthetic DNA (SEQ ID NO: 3) (0 pg / test, 0.5 pg / test, 5 pg / test, or 50 pg / test) Went.
 反応条件は定法に従い、95℃で2分後、95℃で20秒、60℃で30秒、72℃で30秒を1セットとして40サイクル実施し、増幅産物を得た。得られた増幅産物は、実施例1と同様にラテラルフロー型核酸検出デバイスにて増幅産物の検出を行った。 Reaction conditions were in accordance with a conventional method, and after 2 minutes at 95 ° C., 40 cycles were performed with 95 ° C. for 20 seconds, 60 ° C. for 30 seconds, and 72 ° C. for 30 seconds to obtain an amplification product. The obtained amplification product was detected by a lateral flow type nucleic acid detection device in the same manner as in Example 1.
 結果を図3(B)に示す。鋳型合成DNAを添加しないサンプル(0pg/test)においても、非特異的な着色が認められた。この着色の原因について、増幅産物をアガロースゲル電気泳動法により解析したところ、プライマーダイマーの形成が認められ、これが非特異的に検出されたことが判明した。 The result is shown in FIG. Non-specific coloring was also observed in the sample (0 pg / test) to which no template synthetic DNA was added. When the amplification product was analyzed by agarose gel electrophoresis for the cause of this coloring, formation of a primer dimer was observed and it was found that this was detected non-specifically.
(実施例2)
 実施例1に記載のPCR条件のうち、第2の増幅工程は、プライマーダイマーによる非特異増幅を生じない15サイクルに固定し、第1の増幅工程のサイクル数を10サイクルから60サイクルの範囲で増減した場合の感度、特異度を検討した。
(Example 2)
Among the PCR conditions described in Example 1, the second amplification step is fixed to 15 cycles that do not cause non-specific amplification by the primer dimer, and the number of cycles of the first amplification step is in the range of 10 to 60 cycles. The sensitivity and specificity when increasing or decreasing were examined.
 結果を以下の表2に示す。第1の増幅工程におけるサイクル数が25以上の場合、鋳型DNAに特異的な着色が確認された。また、50サイクル以上の場合、鋳型DNAが0.5pg/testであっても特異的な着色が確認された。第2の増幅工程を15サイクルにした条件では、鋳型合成DNAを添加しないサンプル(0pg/test)の疑陽性着色は確認されなかった。 The results are shown in Table 2 below. When the number of cycles in the first amplification step was 25 or more, specific coloring of the template DNA was confirmed. In the case of 50 cycles or more, specific coloring was confirmed even when the template DNA was 0.5 pg / test. Under the condition that the second amplification step was 15 cycles, no false positive coloring was observed in the sample (0 pg / test) to which no template synthetic DNA was added.
(比較例2)
 比較例1に記載のPCR条件のうち、PCRにおけるサイクル数を10サイクルから60サイクルの範囲で変え、各PCR条件における検出能を評価した。実施例1と同様の条件にてラテラルフロー型核酸検出デバイスを用いて増幅産物の検出試験を行った。
(Comparative Example 2)
Among the PCR conditions described in Comparative Example 1, the number of cycles in PCR was changed in the range of 10 to 60 cycles, and the detectability under each PCR condition was evaluated. An amplification product detection test was carried out using a lateral flow type nucleic acid detection device under the same conditions as in Example 1.
 結果を以下の表2に示す。PCRにおけるサイクル数が25サイクル以上の場合、着色が確認された。しかし、鋳型合成DNAを添加しないサンプル(0pg/test)においても疑陽性着色が確認された。このため、いずれの条件においても陽性・陰性判定は不可となった。 The results are shown in Table 2 below. Coloring was confirmed when the number of cycles in PCR was 25 cycles or more. However, false positive coloring was also confirmed in the sample (0 pg / test) to which no template synthetic DNA was added. For this reason, a positive / negative determination was impossible under any conditions.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果より、本発明方法によれば、プライマーダイマーによる非特異的な増幅産物の検出を回避することができ、標的核酸に由来する増幅産物を簡便かつ効率的に、また高感度にて検出することができる。 From the above results, according to the method of the present invention, detection of non-specific amplification products by primer dimers can be avoided, and amplification products derived from target nucleic acids can be detected simply, efficiently and with high sensitivity. can do.
 本発明は、核酸増幅法により得られたDNA断片を検出する工程を含む各種試験及び研究に利用することができる。より具体的には、本発明によれば、分子生物学の研究分野、病原体の検出、飲食品中のアレルゲンの検出、家畜管理、塩基多型の検出、疾患(例えば癌等)の検出を簡便かつ迅速に行うことができる。本発明はこのような分野において大いに貢献することが期待される。 The present invention can be used for various tests and research including a step of detecting a DNA fragment obtained by a nucleic acid amplification method. More specifically, according to the present invention, molecular biology research fields, pathogen detection, allergen detection in foods and drinks, livestock management, detection of nucleotide polymorphisms, detection of diseases (for example, cancer, etc.) are simplified. And can be done quickly. The present invention is expected to contribute greatly in such fields.
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (12)

  1.  標的核酸の検出方法であって、
    (a)標的核酸の第1の塩基配列と相同な配列を含むプライマーと、該第1の塩基配列の下流側に位置する第2の塩基配列の相補鎖配列と相同な配列を含むプライマーからなる第1のプライマーセットを用いて、試験DNAを鋳型として核酸増幅反応を実施することにより、第1の核酸増幅産物を得る工程、
    (b)該第1の塩基配列の下流側かつ該第2の塩基配列の上流側に位置する第3の塩基配列と相同な配列を含むプライマーと、該第3の塩基配列の下流側かつ該第2の塩基配列の上流側に位置する第4の塩基配列の相補鎖配列と相同な配列を含むプライマーからなる第2のプライマーセットであって、いずれか一つのプライマーが標識物質と結合可能な第1のタグと結合されており、かつ他方のプライマーが固相担体と結合可能な第2のタグと結合されている、該第2のプライマーセットを用いて、該第1の核酸増幅産物を鋳型として核酸増幅反応を実施することにより、各端に該第1のタグ及び該第2のタグがそれぞれ付加された第2の核酸増幅産物を得る工程、
    (c)該第2の核酸増幅産物と、第1のタグと結合可能な標識物質とを接触させることにより、標識された核酸増幅産物を得る工程、
    (d)該標識された核酸増幅産物と、固相担体とを接触させることにより、該標識された核酸増幅産物を該固相担体に捕捉する工程、ならびに
    (e)該固相担体に捕捉された該標識された核酸増幅産物を検出する工程、
    を含む、上記方法。
    A method for detecting a target nucleic acid, comprising:
    (A) consisting of a primer containing a sequence homologous to the first base sequence of the target nucleic acid and a primer containing a sequence homologous to the complementary strand sequence of the second base sequence located downstream of the first base sequence Using the first primer set to obtain a first nucleic acid amplification product by performing a nucleic acid amplification reaction using the test DNA as a template,
    (B) a primer including a sequence homologous to a third base sequence located downstream of the first base sequence and upstream of the second base sequence; a downstream of the third base sequence; and A second primer set comprising primers containing a sequence homologous to the complementary strand sequence of the fourth base sequence located upstream of the second base sequence, wherein any one of the primers can bind to the labeling substance Using the second primer set, which is bound to a first tag and the other primer is bound to a second tag capable of binding to a solid phase carrier, the first nucleic acid amplification product is Performing a nucleic acid amplification reaction as a template to obtain a second nucleic acid amplification product to which each of the first tag and the second tag is added at each end;
    (C) obtaining a labeled nucleic acid amplification product by bringing the second nucleic acid amplification product into contact with a labeling substance that can bind to the first tag;
    (D) capturing the labeled nucleic acid amplification product on the solid phase carrier by contacting the labeled nucleic acid amplification product with a solid phase carrier; and (e) capturing the labeled nucleic acid amplification product on the solid phase carrier. Detecting the labeled nucleic acid amplification product;
    Including the above method.
  2.  前記工程(a)と前記工程(b)とを、同一の反応容器内で連続して行うことを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the step (a) and the step (b) are continuously performed in the same reaction vessel.
  3.  前記工程(a)における核酸増幅反応のアニーリング温度が、前記工程(b)における核酸増幅反応のアニーリング温度より高いことを特徴とする、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the annealing temperature of the nucleic acid amplification reaction in the step (a) is higher than the annealing temperature of the nucleic acid amplification reaction in the step (b).
  4.  前記工程(b)における核酸増幅反応の増幅サイクル数が、前記工程(a)における核酸増幅反応の増幅サイクル数より少ないことを特徴とする、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the number of amplification cycles of the nucleic acid amplification reaction in the step (b) is less than the number of amplification cycles of the nucleic acid amplification reaction in the step (a). .
  5.  (a)標的核酸の第1の塩基配列と相同な配列を含むプライマーと、該第1の塩基配列の下流側に位置する第2の塩基配列の相補鎖配列と相同な配列を含むプライマーからなる第1のプライマーセット、
     (b)該第1の塩基配列の下流側かつ該第2の塩基配列の上流側に位置する第3の塩基配列と相同な配列を含むプライマーと、該第3の塩基配列の下流側かつ該第2の塩基配列の上流側に位置する第4の塩基配列の相補鎖配列と相同な配列を含むプライマーからなる第2のプライマーセットであって、いずれか一つのプライマーが標識物質と結合可能な第1のタグと結合されており、かつ他方のプライマーが固相担体と結合可能な第2のタグと結合されている、該第2のプライマーセット、
     (c)該第1のタグと結合可能な標識物質、ならびに、
     (d)該第2のタグと結合可能な固相担体、
    を含む、標的核酸を検出するためのキット。
    (A) consisting of a primer containing a sequence homologous to the first base sequence of the target nucleic acid and a primer containing a sequence homologous to the complementary strand sequence of the second base sequence located downstream of the first base sequence First primer set,
    (B) a primer including a sequence homologous to a third base sequence located downstream of the first base sequence and upstream of the second base sequence; a downstream of the third base sequence; and A second primer set comprising primers containing a sequence homologous to the complementary strand sequence of the fourth base sequence located upstream of the second base sequence, wherein any one of the primers can bind to the labeling substance The second primer set, which is bound to a first tag and the other primer is bound to a second tag capable of binding to a solid phase carrier;
    (C) a labeling substance capable of binding to the first tag, and
    (D) a solid phase carrier capable of binding to the second tag,
    A kit for detecting a target nucleic acid, comprising:
  6.  前記第2のプライマーセットにおける、前記第1のタグおよび前記第2のタグの少なくとも一方が、オリゴヌクレオチドからなるタグであることを特徴とする、請求項5に記載のキット。 The kit according to claim 5, wherein at least one of the first tag and the second tag in the second primer set is an oligonucleotide tag.
  7.  前記オリゴヌクレオチドからなるタグが、DNAポリメラーゼ反応を抑制または停止可能なスペーサーを介してプライマーと結合されていることを特徴とする、請求項6に記載のキット。 The kit according to claim 6, wherein the tag comprising the oligonucleotide is bound to a primer through a spacer capable of suppressing or stopping the DNA polymerase reaction.
  8.  前記スペーサーが、アゾベンゼン、脂肪鎖、又はInverted塩基であることを特徴とする、請求項7に記載のキット。 The kit according to claim 7, wherein the spacer is azobenzene, a fatty chain, or an inverted base.
  9.  前記第1のタグがオリゴヌクレオチドからなるタグであり、標識物質が該オリゴヌクレオチドと相補的な配列を有するオリゴヌクレオチドを含む、請求項6~8のいずれか一項に記載のキット。 The kit according to any one of claims 6 to 8, wherein the first tag is a tag composed of an oligonucleotide, and the labeling substance includes an oligonucleotide having a sequence complementary to the oligonucleotide.
  10.  前記第1のタグがビオチン、ジゴキシゲニン、及びFITCから選択されるいずれかの低分子化合物からなるタグであり、標識物質が該タグと結合可能なタンパク質を含む、請求項6~9のいずれか一項に記載のキット。 10. The tag according to claim 6, wherein the first tag is a tag composed of any low molecular compound selected from biotin, digoxigenin, and FITC, and the labeling substance includes a protein that can bind to the tag. Kit according to item.
  11.  前記第2のタグがオリゴヌクレオチドからなるタグであり、固相担体が該オリゴヌクレオチドと相補的な配列を有するオリゴヌクレオチドを含む、請求項6~10のいずれか一項に記載のキット。 The kit according to any one of claims 6 to 10, wherein the second tag is a tag composed of an oligonucleotide, and the solid phase carrier includes an oligonucleotide having a sequence complementary to the oligonucleotide.
  12.  前記第1のプライマーセットに含まれる一又は両方のプライマーのTm値が、前記第2のプライマーセットに含まれる一又は両方のプライマーのTm値よりも高いことを特徴とする、請求項5~11のいずれか一項に記載のキット。 The Tm value of one or both primers included in the first primer set is higher than the Tm value of one or both primers included in the second primer set. The kit as described in any one of.
PCT/JP2016/069638 2015-07-03 2016-07-01 Method for detecting target nucleic acid WO2017006859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015134659A JP2018133998A (en) 2015-07-03 2015-07-03 Method for detecting target nucleic acid
JP2015-134659 2015-07-03

Publications (1)

Publication Number Publication Date
WO2017006859A1 true WO2017006859A1 (en) 2017-01-12

Family

ID=57685551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069638 WO2017006859A1 (en) 2015-07-03 2016-07-01 Method for detecting target nucleic acid

Country Status (2)

Country Link
JP (1) JP2018133998A (en)
WO (1) WO2017006859A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241785A1 (en) * 2019-05-29 2020-12-03 藤倉化成株式会社 Composition to be attached to solid phase, solid phase support using same, method for producing solid phase support and method for using solid phase support

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505999A (en) * 1989-03-22 1992-10-22 セミュ・バイオテクニク・アーベー Solid-phase diagnostic methods for medical health conditions
WO2012070618A1 (en) * 2010-11-24 2012-05-31 株式会社カネカ Amplified nucleic acid detection method and detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505999A (en) * 1989-03-22 1992-10-22 セミュ・バイオテクニク・アーベー Solid-phase diagnostic methods for medical health conditions
WO2012070618A1 (en) * 2010-11-24 2012-05-31 株式会社カネカ Amplified nucleic acid detection method and detection device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
COSTA, J. ET AL.: "Effect of thermal processing on the performance of the novel single-tube nested real-time PCR forthe detection of walnut allergens in sponge cakes", FOOD RES. INT., vol. 54, no. 2, 2013, pages 1722 - 1729, XP028792643, ISSN: 0963-9969 *
HORNG, YT. ET AL.: "Development of an improved PCR-ICT hybrid assay for direct detection of Legionellae and Legionella pneumophila from cooling tower water specimens", WATER RES., vol. 40, 2006, pages 2221 - 2229, XP027902408, ISSN: 0043-1354 *
KLEMSDAL, SS. ET AL.: "Development of a highly sensitive nested-PCR method using a single closed tube for detection of Fusarium culmorum in cereal samples", LETT. APPL. MICROBIOL., vol. 42, no. 5, 2006, pages 544 - 548, XP055345933, ISSN: 0266-8254 *
SOO, PC. ET AL.: "Direct and simultaneous identification of Mycobacterium tuberculosis complex (MTBC) and Mycobacterium tuberculosis (MTB) by rapid multiplex nested PCR-ICT assay", J. MICROBIOL. METHODS, vol. 66, no. 3, September 2006 (2006-09-01), pages 440 - 448, XP027926921, ISSN: 0167-7012 *
TANG, X. ET AL.: "A single-tube nested PCR for Pneumocystis carinii f. sp. hominis", J. CLIN. MICROBIOL., vol. 35, no. 6, 1997, pages 1597 - 1599, XP002075978, ISSN: 0095-1137 *

Also Published As

Publication number Publication date
JP2018133998A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6783590B2 (en) Amplified nucleic acid detection method and detection device
AU2015215750B2 (en) Nucleic acid detection or quantification method using mask oligonucleotide, and device for same
WO2015076356A1 (en) Short-chain rna detection method
JP7030051B2 (en) Primer sets, kits and methods for detecting more than one target nucleic acid
JP7068469B2 (en) Primer Pairs, Kits and Methods for Detecting Cannabis DNA
WO2017006859A1 (en) Method for detecting target nucleic acid
JP6196611B2 (en) Target nucleic acid detection method
WO2014007289A1 (en) Nucleic acid chromatography method, composition for nucleic acid chromatography, and kit containing same
JP2007189984A (en) Method for detecting nucleic acid by hybridization and assaying kit
JP7068468B2 (en) Primer Mixtures, Kits and Methods for Detecting Cannabis DNA
Cansız et al. A sandwich-type DNA array platform for detection of GM targets in multiplex assay
US20230067733A1 (en) Primer set and method for detecting target nucleic acid using same
WO2021201206A1 (en) Method for determining single base mutation of erm (41) gene of acid-fast bacillus belonging to mycobacteroides abscessus complex, and primer set and probe used in said method
JP4560285B2 (en) Hybridization assay of nucleic acid amplification products using nucleic acid precipitants
JP2017158523A (en) Primer set, kit and method for detecting Listeria monocytogenes
WO2017034019A1 (en) Nucleic acid detection device and nucleic acid detection method
WO2009026651A1 (en) A method of detecting a nucleic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP